97 research outputs found

    A structural model of the active ribosome-bound membrane protein insertase YidC

    Get PDF

    A structural model of the active ribosome-bound membrane protein insertase YidC

    Get PDF
    The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate F(O)c. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion

    A structural model of the active ribosome-bound membrane protein insertase YidC

    Get PDF

    Characterization of proteorhodopsin 2D crystals by electron microscopy and solid state nuclear magnetic resonance

    Get PDF
    Proteorhodopsin (PR) originally isolated from uncultivated γ-Proteobacterium as a result of biodiversity screens, is highly abundant ocean wide. PR, a Type I retinal binding protein with 26% sequence identity, is a bacterial homologue of Bacteriorhodopsin (BR). The members within this family share about 78% of sequence identity and display a 40 nm difference in the absorption spectra. This property of the PR family members provides an excellent model system for understanding the mechanism of spectral tuning. Functionally PR is a photoactive proton pump and is suggested to exhibit a pH dependent vectorality of proton transfer. This raises questions about its potential role as pH dependent regulator. The abundance of PR in huge numbers within the cell, its widespread distribution ocean wide at different depths hints towards the involvement of PR in utilization of solar energy, energy metabolism and carbon recycling in the Sea. Contrary to BR, which is known to be a natural 2D crystal, no such information is available for PR til date. Neither its functional mechanism nor its 3D structure has been resolved so far. This PhD project is an attempt to gain a deeper insight so as to understand structural and functional characterization of PR. The approach combines the potentials of 2D crystallography, Atomic Force Microscopy and Solid State NMR techniques for characterization of this protein. Wide range of crystalline conditions was obtained as a result of 2D crystallization screens. This hints towards dominant protein protein interactions. Considering the high number of PR molecules reported per cell, it is likely that driven by such interactions, the protein has a native dense packing in the environment. The projection map represented low resolution of these crystals but suggested a donut shape oligomeric arrangement of protein in a hexagonal lattice with unit cell size of 87Å*87Å. Preliminary FTIR measurements indicated that the crystalline environment does not obstruct the photocycle of PR and K as well as M intermediate states could be identified. Single molecule force spectroscopy and atomic force microscopy on these 2D crystals was used to probe further information about the oligomeric state and nature of unfolding. The data revealed that protein predominantly exists as hexamers in crystalline as well as densely reconstituted regions but a small percentage of pentamers is also observed. The unfolding mechanism was similar to the other relatively well-characterized members of rhodopsin family. A good correlation of the atomic force microscopy and the electron microscopy data was achieved. Solid State NMR of the isotopically labeled 2D crystalline preparations using uniformly and selectively labeling schemes, allowed to obtain high quality SSNMR spectra with typical 15N line width in the range of 0.6-1.2 ppm. The measured 15N chemical shift value of the Schiff base in the 2D crystalline form was observed to be similar to the Schiff base chemical shift values for the functionally active reconstituted samples. This provides an indirect evidence for the active functionality of the protein and hence the folding. The first 15N assignment has been achieved for the Tryptophan with the help of Rotational Echo Double Resonance experiments. The 2D Cross Polarization Lee Goldberg measurements reflect the dynamic state of the protein inspite of restricted mobility in the crystalline state. The behavior of lipids as measured by 31P from the lipid head group showed that the lipids are not tightly bound to the protein but behave more like the lipid bilayer. The 13C-13C homonulear correlation experiments with optimized mixing time based on build up curve analysis, suggest that it is possible to observe individual resonances as seen in case of glutamic acid. The signal to noise was good enough to record a decent spectrum in a feasible period. The selective unlabeling is an efficient method for reduction in the spectral overlap. However, more efficient labeling schemes are required for further characterization. The present spectral resolution is good for individual amino acid investigation but for uniformly labeled samples, further improvement is required.Proteorhodopsin (PR) wurde ursprünglich aus nicht kultivierten γ-Proteobakterium isoliert und ist in großen Mengen in den Ozeanen enthalten. PR ist wie sein homolog Bakteriorhodopsin (BR) ein TypI Retinal Bindeprotein und die Sequenzen sind zu 26% identisch. Innerhalb der PR Familie haben die Mitglieder eine Sequenzhomologie zu ungefähr 78% und zeigen einen Unterschied von 40 nm im absorptions spektrum. Diese Eigenschaft bietet ein gutes Modelsystem um zu verstehen durch welchen Mechanismus das Absorptionsspektrum moduliert wird. PR ist ein photoaktive Protonenpumpe und es wird angenommen, dass die Richtung des Protonentransfers vom pH-wert abhängt, was auf eine Rolle als ein pH abhängiger Regulator hindeutet. Da PR sowohl in der Zelle in hoher Zahl, als auch in den Ozeanen in unterschiedlichen Tiefen weit verbreitet ist, wird angenommen, dass PR bei der Verwertung von Sonnenlicht, im Energiestoffwechsel und beim Kohlenstoffumsatz beteiligt ist. Im Gegensatz zu BR, welches bekannterweise 2D Kristalle bildet, ist etwas vergleichbares für PR bis heute nicht bekannt. Weder der Mechanismus von PR noch seine 3D Struktur sind bisher gelöst. Die vorliegende Doktorarbeit versucht offene Punkte zum Mechanismus und zur Struktur von PR zu klären. Für die Charakterisierung werden 2D Kristallographie, "Atomic Force Microscopy" und Festkörper NMR verwendet. Für die Bildung von 2D Kristallen konnte eine große Auswahl an Kristallisationbedingungen ermittelt werden, was auf deutliche Protein Protein Wechselwirkungen hindeutet. Zieht man die hohe Zahl an PR Molekülen pro zelle in betracht, ist es wahrscheinlich, dass durch diese Interaktionen auch in der natürlichen Membran eine dichte Packung der Proteine auftritt. Elektronenmikroskopische Aufnahmen mit geringer Auflösung deuten auf eine ringförmige Anordnung der Proteine in einem hexagonalen Gitter mit einer Einheitszelle von 87Å * 87Å. Vorläufige FTIR Messungen deuten darauf hin, dass diese Anordnung den Photozyklus nicht behindert und sowohl K als auch M Zustand konnten identifiziert werden. Um weitere Informationen über den Oligomerisierungszustand der 2D Kristalle zu gewinnen wurden Einzelmolekül - und Rasterkraft Mikroskopie durchgeführt. Hierbei zeigte sich, dass das Protein in kristallinen und dicht rekonstituierten Regionen überwiegend als Hexamer vorliegt. Daneben kann zu einem geringen Anteil auch ein pentamerer Zustand beobachtet werden. Der Mechanismus der Proteinentfaltung war vergleichbar zu anderen, besser untersuchten Mitgliedern der Rhodopsinfamilie. Zwischen den Daten aus der "Atomic Force Microscopy" und der Elektronenmikroskopie zeigt sich eine gute Korrelation. Festkörper NMR an vollständig und selektiv markierten 2D Kristallen ergaben Spektren mit einer typischen 15N Linienbreite von 0,6 bis 1,2 ppm. Die 15N chemische Verschiebung der Schiffschen Base hat im Kristall den gleichen Wert wie funktional aktiv rekonstitutierte Proben, was indirekt die Funktionalität und die korrekte Faltung bestätigt. Die Zuordnung der 15N Signale für Tryptophan wurde durch "Rotational Echo Double Resonance" Experimente vorgenommen. 2D kreuzpolarisation Lee Goldburg Messungen zeigen den dynamischen Zustand des Proteins trotz der eingeschränkten Mobilität im kristallinen Zustand. Das Verhalten der Lipide wurde mit 31P messungen der Lipidkopfgruppe untersucht und zeigt, dass diese nicht fest gebunden sind, sondern sich mehr wie in einer Lipiddoppelschicht verhalten. Für 13C-13C homonukleare korrelations Experimente wurde die Mischzeit durch die Analyse von Aufbaukurven optimiert. Diese Versuche deuten darauf hin, dass es möglich ist einzelne Resonanzen aufzulösen, wie im Fall des Glutamat gezeigt mit einem gutem Signal zu Rauschen Verhältnis. Selektives "unlabeling" ist eine effizente Methode um die Ueberlappung der Signal zu reduzieren. Darüberhinaus sind für eine weitere Chrakterisisierung effizentere Markierungsschemata notwendig. Die bisherige spektrale Auflösung ist gut genug für die Untersuchung einzelner Aminosäuren, für vollständig markierte Proben sind weitere Verbesserungen notwendig

    Computational Methods for Conformational Sampling of Biomolecules

    Get PDF

    Multiscale Simulations of Biological Membranes : The Challenge To Understand Biological Phenomena in a Living Substance

    Get PDF
    Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.Peer reviewe

    Exploring the Pinhole: Biochemical and Genetic Studies on the Prototype Pinholin, S21

    Get PDF
    Lysis of the host by bacteriophage 21 requires two proteins: the pinholin S21 (forms pinholes in the cytoplasmic membrane and controls lysis timing) and the endolysin (degrades the cell wall). S21 has a dual-start motif, encoding a holin, S2168, and a weak antiholin, S2171. Both proteins have two transmembrane domains (TMD) and adopt an N-in, C-in topology. The topology of S2168 is dynamic because TMD1 is a signal-anchor-release (SAR) domain which, while initially integrated into the cytoplasmic membrane, is eventually released into the periplasm. TMD1 is dispensable because the truncated protein, S2168?TMD1, retains the holin function. Adding two positive charges to N-terminus of S2168 by an irs tag (RYIRS) prevents the release of TMD1. The irsS2168 protein not only has lost its holin function, but is a potent antiholin and blocks the function of S2168. In this dissertation, the structure of S2168 was suggested by incorporating electron-microscopy, biochemical, and computational approaches. The results suggest that S2168 forms a symmetric heptamer, with the hydrophilic side of TMD2 lining the channel of ~ 15 A in diameter. This model also identifies two interacting surfaces, A and B, of TMD2. A model for the pinhole formation pathway was generated from analyzing phenotypes of an extensive collection of S21 mutants. In this model, the individually folded and inserted S21 molecules first form the inactive dimer, with the membrane-inserted TMD1 inhibiting the lethal function of TMD2 both inter- and intra-molecularly. A second inactive dimer may form, with one TMD1 released. When both TMD1s are released, the activated dimer is formed, with the homotypic interfaces A:A interaction of the TMD2s. However, this interaction might not be stable, which will shift to heterotypic A:B interactions, allowing TMD2 to oligomerize. Finally, the pinhole forms, possibly driven by the hydration of lumenal hydrophilic residues. In addition, the localization of pinholes was visualized by fusing the green fluorescent protein (GFP) to the C-terminus of pinholins. The results showed that pinholins form numerous small aggregates, designated as rafts, spread all over the cell body. The antiholin irsS2168 not only inhibits the triggering of S2168GFP, but inhibits the rafts formation as well

    Molecular dynamics simulation and machine learning study of biological processes

    Get PDF
    In this dissertation, I use computational techniques especially molecular dynamics (MD) and machine learning to study important biological processes. MD simulations can effectively be used to understand and investigate biologically relevant systems with lengths and timescales that are otherwise inaccessible to experimental techniques. These include but are not limited to thermodynamics and kinetics of protein folding, protein-ligand binding free energies, interaction of proteins with membranes, and designing new therapeutics for diseases with rational design strategies. The first chapter includes a detailed description of the computational methods including MD, Markov state modeling and deep learning. In the second chapter, we studied membrane active peptides using MD simulation and machine learning. Two cell penetrating peptides MPG and Hst5 were simulated in the presence of membrane. We showed that MPG enters the model membrane through its N-terminal hydrophobic residues while Hst5 remains attached to the phosphate layer. Formation of helical conformation for MPG helps its deeper insertion into membrane. Natural language processing (NLP) and deep generative modeling using a variational attention based variational autoencoder (VAE) was used to generate novel antimicrobial peptides. These in silico generated peptides have a high quality with similar physicochemical properties to real antimicrobial peptides. In the third chapter, we studied kinetics of protein folding using Markov state models and machine learning. We studied the kinetics of misfolding in β2-microglobulin using MSM analysis which gave us insights about the metastable states of β2m where the outer strands are unfolded and the hydrophobic core gets exposed to solvent and is highly amyloidogenic. In the next part of this chapter, we propose a machine learning model Gaussian mixture variational autoencoder (GMVAE) for simultaneous dimensionality reduction and clustering of MD simulations. The last part of this chapter is about a novel machine learning model GraphVAMPNet which uses graph neural networks and variational approach to markov processes for kinetic modeling of protein folding. In the last chapter, we study two membrane proteins, spike protein of SARS-COV-2 and EAG potassium channel using MD simulations. Binding free energy calculations using MMPBSA showed a higher binding affinity of receptor binding domain in SARS-COV-2 to its receptor ACE2 than SARS-COV which is one of the major reason for its higher infection rate. Hotspots of interaction were also identified at the interface. Glycans on the spike protein shield the spike from antibodies. Our MD simulation on the full length spike showed that glycan dynamics gives the spike protein an effective shield. However, breaches were found in the RBD at the open state for therapeutics using network analysis. In the last section, we study ligand binding to the PAS domain of EAG potassium channel and show that a residue Tyr71 blocks the binding pocket. Ligand binding inhibits the current through EAG channel
    corecore