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Preface

This dissertation is a summary of research carried out between April 2009 and April

2012 as a PhD candidate at the Technical University of Denmark. Part of the project

was carried out as a visiting student at the Department of Biology, University of Copen-

hagen and at the Department of Chemistry, University of Cambridge, to which I hereby

extend my gratitude. I also acknowledge Radiometer for financial support.

The central idea behind my studies is the development and use of methodologies for

molecular simulations of biomolecules. In this thesis, three distinct but connected

aspects of this problem are considered. First, the design and the assessment of a

Monte Carlo method for conformational sampling of macromolecules. Secondly, the

development of a model describing the water environment, and finally the applications

of these techniques to biological problems.

An introduction to the central topics of the thesis, together with an overview of the

literature, is given in the first chapter. The results of my research are presented in

chapter 2, which constitutes the core of the dissertation. Concluding remarks and

possible directions for future work are presented in the last chapter.

Sandro Bottaro

Copenhagen, April 2012
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Abstract

Proteins play a fundamental role in virtually every process within living
organisms. For example, some proteins act as enzymes, catalyzing a wide
range of reactions necessary for life, others mediate the cell interaction with
the surrounding environment and still others have regulatory functions. Re-
cent studies have demonstrated that the specificity of the biological func-
tion and activity of proteins is intimately linked to their structural and
dynamical properties. In principle, these properties can be calculated using
computational techniques. However, most structural transitions of biolog-
ical relevance occur on time-scales inaccessible to current methodologies
due to prohibitive computational costs. In this dissertation I present a
number of new methodological improvements for calculating structural and
dynamical properties of proteins at long time-scales. First of all, we have
developed a new mathematical approach to a classic geometrical problem in
protein simulations, and demonstrated its superiority compared to existing
approaches. Secondly, we have constructed a more accurate implicit model
of the aqueous environment, which is of fundamental importance in protein
chemistry. This model is computationally much faster than models where
water molecules are represented explicitly. Finally, in collaboration with the
group of structural bioinformatics at the Department of Biology (KU), we
have applied these techniques in the context of modeling of protein structure
and flexibility from low-resolution data.

Dansk resumé
Proteiner spiller en fundamental rolle i stort set alle processer i levende
organismer. Nogle proteiner fungerer for eksempel som enzymer, der katal-
yserer en bred vifte af livsvigtige reaktioner, andre medierer vekselvirknin-
gen mellem cellen og dens omgivende miljø eller optræder som regulerende
molekyler i de cellulære processer. Nylige studier har p̊avist at proteiners
specifikke biologiske funktion og aktivitet er tæt knyttet til deres struk-
turelle og dynamiske egenskaber. I princippet kan disse egenskaber studeres
ved hjælp af computermodeller. Desværre optræder mange af de biologisk
relevante strukturelle overgange i proteiner p̊a tidskalaer som ikke er tilgæn-
gelige med nuværende simuleringsteknikker, da disse er beregningsmæssige
omkostningsfulde. I denne afhandling præsenterer jer en række nye simuler-
ingsteknikker til at beregne proteiners strukturelle og dynamiske egenskaber



p̊a lange tidsskalaer. Først og fremmest har vi udviklet en ny matematisk
løsning til et klassisk geometrisk problem i proteinsimuleringer, som udgør
en væsentlig forbedring i forhold til eksisterende tilgange. Dernæst har vi
konstrueret en mere præcis implicit model for det omgivende vands vek-
selvirkning med proteinet. Denne model er beregningsmæssig langt hur-
tigere end modeller, hvor vandmolekylerne er repræsenteret eksplicit. En-
delig har vi i samarbejde med gruppen for strukturel bioinformatik p̊a KU
anvendt disse teknikker til at modellere proteiners struktur og fleksibilitet
ud fra lav-opløsnings data. Samlet set bidrager mit arbejde s̊aledes til bedre
at beregne proteiners dynamiske egenskaber, hvilket har potentielle anven-
delsesmuligheder indenfor en lang række bio-relaterede felter.
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1

Introduction

Since their introduction in the 1950s [1, 2], theoretical methods and computational

techniques have provided powerful insights into the nature of biomolecular systems.

Despite the shortcomings and the limitations of current methodologies, molecular sim-

ulations can address questions of great biological relevance, ranging from elucidating

the mechanism of protein function at atomic detail to studying the protein folding

process [3, 4]. In this respect, atomistic molecular mechanics simulation is the most

promising method for giving a useful and accurate description of structure and func-

tion of proteins. There are a number of challenges connected to such simulations. One

is the design of an accurate mathematical and physical description of the interactions

between atoms. Secondly, the accessible conformational space of biomolecules is so vast

that simulations of large-scale, long-time configurational changes require a substantial

computational effort. Despite of impressive hardware and software advances, computer

power alone is often not sufficient for simulations to access biologically-relevant time

scales. In the attempt to circumvent this problem, a large number of enhanced sampling

techniques and coarse-grained models are being developed.

In the present thesis I describe the design and use of methodologies for conforma-

tional sampling of proteins. The development and assessment of a Monte Carlo (MC)

method suitable for atomistic simulations of macromolecules (CRISP) constitutes the

core of the PhD project (section 2.1). CRISP is one of the building blocks of PHAIS-

TOS, a general-purpose software package for conducting MC simulations of proteins

(section 2.2). The method is applied in the context of protein structure determina-

tion (section 2.3), to characterize the flexibility of globular proteins (section 2.4) and

1



1. INTRODUCTION

served as a tool for elucidating the use of knowledge-based potential in MC simulations

(section 4).

Monte Carlo simulations of biomolecules are typically performed using a simplified

representation of the aqueous environment, in which an effective energy mimics the av-

erage influence of the solvent. The design of an accurate and computationally efficient

representation of the water effects is a non-trivial theoretical problem. In the attempt

to improve the current methodologies, I have optimized the parameters in a popular

implicit solvent model using fully atomistic, state-of-the-art molecular dynamics simu-

lations (section 2.5). To reach this goal, I have used a recently described coarse-graining

technique based upon the minimization of an entropy-related function.

The following sections serve as an introduction to the research articles presented in

Chapter 2. A special emphasis is given to the topics of the studies in sections 2.1 and

2.5, as they represent the two central works of this dissertation. A short introduction to

protein structure, function and dynamics is given in the first part. In section 1.2, I give

an overview of MC methods for simulations of biomolecules. The problems connected

with the MC approach are presented, together with the methodologies proposed in

literature to overcome these difficulties. Finally, the implicit solvent model and the

coarse-graining technique used in the work of section 2.5 are introduced in the rest of

the chapter (sections 1.3 and 1.4).

1.1 Protein structure, function and dynamics

Proteins play a fundamental role in virtually every process within living organisms. For

example, some proteins act as enzymes, catalyzing a wide range of reactions necessary

for life, others mediate the cell interaction with the surrounding environment and still

others have structural or mechanical functions.

A protein is a linear polymer chain of amino acid assembled together using infor-

mation encoded in genes. During and after protein synthesis, polypeptide chains often

fold to assume their stable, biologically active functional form, called the native state.

This process, known as protein folding, is probably the most significant example of

conformational rearrangement in proteins.

The native state itself is not a static conformation, but a highly dynamic entity [5].

As a growing number of studies suggest, the inherent flexibility of a protein is intimately

2



1.2 Monte Carlo simulations of proteins

related to its function, and holds the key to a number of biochemical processes such

as signal transduction, antigen recognition, protein transport and enzyme catalysis [6].

From an experimental point of view, it is not yet possible to directly follow protein

dynamics at atomic detail. Instead, it is possible to measure physical properties of the

system from which the dynamics can be inferred. Computer simulations have the great

advantage over real experiments as they can provide an atomic-resolution structural

description of the conformational states, together with their relative probabilities and

the energy barriers between them. Obtaining an atomic-detailed, complete in silico

characterization of protein dynamics is, however, a highly non-trivial problem. In first

place because it requires an accurate description of all the interactions between the

particles in the system (i.e. a force-field). Secondly, because the typical time-scales over

which many biological processes of interest occur are often not amenable by standard

computational techniques (Fig. 1.1). In the light of these considerations, the effort of

the scientific community is devoted to the improvement of both accuracy and precision

(i.e. sampling efficiency) of molecular simulations (Fig. 1.1).

1.2 Monte Carlo simulations of proteins

The aim of a Monte Carlo simulation is the calculation of equilibrium properties of

a system of interest. In the context of molecular simulations of proteins, the Monte

Carlo method allows to sample conformations of the polypeptide chain according to a

statistical ensemble distribution and to calculate expectation values as averages over

sampled configurations.

Monte Carlo is not the most common choice for simulating biomolecules, as molec-

ular dynamics (MD) is assumed to be superior for systems that are characterized by

large correlations between many degrees of freedom [12]. One of the main difficulties

of existing MC techniques is their inefficiency in dense environment, such as the native

state of globular proteins. Here, even small variations in the degrees of freedom often

result in steric clashes, and therefore in the rejection of the trial configurations (Fig.

1.2). Similarly, when using explicit solvent representation, any large-scale move alter-

ing the solute coordinates without also moving the solvent particles is likely to result

in a substantial overlap of atoms.

3



1. INTRODUCTION
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time (s)

1977 1995 2008 2010year

Figure 1.1: - Schematic illustration of the typical time-scales associated with confor-
mational rearrangements in proteins. Bond vibrations and librations represent the fastest
motions, occurring on the fs to ps time-scale. Side-chain rearrangements (methyl group ro-
tations or rotameric transitions) and local backbone movements such as loop motions, take
place on a longer time span, ranging from ps up to µs. The structural transitions directly
connected to the different biological function of proteins (e.g. ligand binding or allosteric
regulation) range from small motions of few amino acids in the binding site to domain
re-orientation [7], and occur over a wide temporal window. Lastly, protein folding often
involves large rearrangements of the whole polypeptide chain, and the very fastest known
protein folding reactions are complete within a few microseconds [8], while time-scales of
milliseconds are the norm. The bottom axis shows the evolution of the time-scales acces-
sible to atomistic molecular dynamics simulations through the last four decades. 1977: ≈
10 ps MD simulation on the bovine pancreatic trypsin inhibitor (BPTI) protein [9]. 1995:
5.3 ns MD simulations on chymotrypsin inhibitor 2 (CI2) [10]. 2008: 10 µs simulation on
a WW domain mutant. 2010: 1ms MD simulation on BPTI [11].
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1.2 Monte Carlo simulations of proteins

Figure 1.2: Steric clash - A rotation of a single dihedral backbone angle by 2◦ at residue
36 on the native state of protein G (pdb code 1GB1), produces the structure colored in
orange. The energy difference between the two structures calculated using the OPLSAA

[13] potential is ∆E > 15000 kcal/mol. This large energy difference is mainly due to
electrostatic interactions between side-chains (not shown in this representation).

Another reason for the infrequent use of MC for protein simulations is the scarcity

of specifically-tailored software [14, 15, 16], compared to the large number of widely

used and established packages for conducting molecular dynamics simulations, such as

GROMACS [17], NAMD [18], AMBER [19] and CHARMM [20].

Being free from following the dynamics of the system, however, Monte Carlo is

a powerful tool for accessing large-scale, long time-scale conformational transitions.

Moreover, in its standard form, MC does not require calculation of derivatives of the

potential energy function. Therefore, it is easier to introduce holonomic constraints,

non-differentiable potentials, generalized ensembles and non-physical weighting for en-

hanced sampling, although corresponding molecular dynamics methods have been in-

troduced [21, 22, 23, 24]. Important biological processes that have proven difficult

to treat using atomistic MD simulations, have been studied by means of MC meth-

ods. Notable examples are the aggregation of peptides [25, 26], the dimer formation

of intrinsically disordered proteins [27] and the membrane absorption and insertion of

peptides [28, 29].

Whether to use MD or MC for conformational sampling of proteins is problem-

specific. Although a general rule does not exist, MC has an edge for simulations of

short peptides and with implicit water representation [30], while it is seldom used for

conformational sampling of native globular proteins [31, 32, 33, 34].

5



1. INTRODUCTION

1.2.1 Biased Monte Carlo

In the standard Markov chain Metropolis scheme [1], the system is randomly perturbed

and the trial move from the current microstate c to a new state n is accepted with a

probability given by

a(c→ n) = min
{

1,
p(n)
p(c)

}
(1.1)

where p(x) is the probability of observing a given conformation x (e.g. the Boltzmann

weight in the canonical ensemble). In the context of protein simulations, any large

perturbation to the chain, such as a random rotation of a dihedral backbone angle,

is likely to be rejected (Fig. 1.2). In order to enhance the sampling efficiency of MC

on such systems, it is common practice to introduce non-random updates. To satisfy

detailed balance, however, it is necessary to compensate for the bias introduced, by

modifying the standard Metropolis acceptance rule

a(c→ n) = min
{

1,
p(n)s(c→ n)
p(c)s(n→ c)

}
(1.2)

Here, s(c → n) is the probability of selecting the update c → n and s(n → c) is the

probability for the reverse move n→ c. Typically, the efficiency of MC simulations can

be enhanced by choosing a selection probability s that includes some prior knowledge

of the target distribution p, for example by designing moves that alter only the soft

degrees of freedom of the chain [35] or that take in account correlations or specific

configurational propensities of the system [36].

A common prescription in Monte Carlo simulations is that the collection of moves

(moveset) should be as diverse as possible, i.e. each type of move should involve different

degrees of freedom and/or different scales of motion, compatibly with the system and

the problem of interest. For this reason, a large variety of approaches has been proposed

in literature, ranging from simple updates of a single dihedral backbone angle (Fig. 1.3

a), to local backbone rearrangements (Fig. 1.3 b-c), and to rotations of side-chain angles

(Fig. 1.3 d).

An introduction to the MC algorithms specifically designed for off-lattice Monte

Carlo simulations of biomolecules is given in the next part of this section. With the

purpose of introducing the study presented in section 2.1, a broad overview of the

different techniques for generating local Monte Carlo trial configurations is presented.

6



1.2 Monte Carlo simulations of proteins

a - Pivot move b - Semi-local move

c - Local move d - Sidechain  move

Figure 1.3: Monte Carlo moves - Illustrative representation of moves for Monte Carlo
sampling of proteins. Trial updates to the original chain configuration (black) involve
different degrees of freedom and different scales of motion, resulting in new configurations
colored in orange. (a) Large structural rearrangements can be obtained by performing pivot
moves, consisting in a rotation of a single dihedral backbone angle. (b) Semi-local moves
also involve the rotation of dihedral backbone angles, but produce less drastic changes
compared to pivot moves. Such updates can be obtained by introducing a bias that favors
small displacement of the chain terminus, as in the biased Gaussian step move [37]. (c)
Local moves alter only a restricted part of the protein backbone, leaving the rest of the
chain unaffected. (d) The sampling of internal degrees of freedom in side-chains (e.g. χ
angles) is performed by side-chain moves. For illustrative purposes, the different MC moves
are here shown in separate panels and involve only specific residues. In a typical Monte
Carlo simulation, however, these moves are combined and uniformly applied to the chain,
so as to sample all degrees of freedom

7



1. INTRODUCTION

Secondly, I introduce the concept of generative probabilistic models (GPMs) of local

structure, i.e. probabilistic distributions that allow to sample trial configurations ac-

cording to the specific angular propensities of proteins. Two possible applications of

the approach are presented in sections 2.3 and 2.4. Finally, a number of alternative

techniques are briefly discussed.

8



1.2 Monte Carlo simulations of proteins

1.2.2 Local moves

A common approach in Monte Carlo sampling of flexible chain molecules is to intro-

duce local moves, i.e. trial updates that alter only a restricted part of the chain, in

order to reduce the probability of generating steric clashes and therefore enhancing the

acceptance rate. In polymer science many MC methods are based on the reptation

model [38] where a monomer unit is removed from one end and pasted at the other

end. This method, however, cannot easily be applied to heterogeneous polymers with

different side-chains like proteins. Local conformational changes involving only a small

number of monomer units can be obtained by using kink jump or crankshaft motions

[39, 40], as shown in Fig. 1.4.

τ

Figure 1.4: Crankshaft move - One backbone atom is chosen (white circle), and
rotated by an angle τ around the axis connecting the adjacent atoms (dotted line) so as to
vary the four dihedral and two bond angles shown in red.

Although crankshaft-type of moves have been employed for MC simulations of pro-

teins, leading to successful applications in the context of protein modeling and for

characterizing loop flexibility [41, 42], these moves involve the rotation of both bond

and dihedral angles: this represents a problem for proteins, as backbone bond angles

have little flexibility under physiological conditions [43].

These difficulties motivated the development of a large variety of more elaborate

methodologies. Although all the approaches share many common features, local moves

can be divided in two different classes: concerted rotation and configurational-bias

methods.

The concerted rotation method consists in a cooperative change of several degrees

of freedom that does not alter the conformation of the molecule outside a selected

chain region. In the seminal paper by Gō and Scheraga [44] it was shown that the

locality requirement (i.e. that the move is restricted to a selected region of the chain,

9



1. INTRODUCTION

see Fig. 1.5) imposes 6 constraints among the n degrees of freedom involved in the

move, thus giving n − 6 independent variables. In that study, the problem (also

χ1 χ2

χ3 χn

sn

Figure 1.5: Loop closure - Illustration of the loop closure problem. The problem is to
find new values for the n degrees of freedom χ1 . . . χn, which are compatible with the fixed
bond length constraints, and that leaves the rest of the chain unaffected. A deformation
cannot be confined to a local region for an arbitrary set of values for these n variables.
Instead, some relations must exist among the n degrees of freedom. In order to meet
the locality constraint, Gō and Scheraga [44] showed that it is sufficient to demand the
location and orientation of the “last” local coordinate system (sn) to remain fixed. The
local coordinate system can be specified by six variables (three for the origin position and
three for the Eulerian angles), thus introducing six constraints among the n degrees of
freedom involved in the move. Therefore, the number of independent variables is n− 6.
Based on this idea, Dodd et al. [45] devised the concerted rotation Monte Carlo move.
The driver dihedral angle χ1 (in red) is changed by a random amount, thus displacing the
position of the adjacent atom (dashed circle). The values of the six remaining degrees of
freedom (shown in blue) that restore the chain connectivity are determined by numerically
solving a set equations for the six unknown variables, resulting in a new chain configuration
(light gray).

known as the loop closure problem) was formulated as a set of equations for the six

unknowns, reducible to a single equation of one variable. More recently, loop closure

problems involving different monomeric units were solved exactly by reducing them to

the determination of the real roots of a polynomial [46], or using results provided by

the literature on inverse kinematics [47, 48]. In section 2.1 I demonstrate that a simple,

analytical solution for loop closure is available, provided that bond angles are included

as degrees of freedom (Fig. 1.6).

Based on the ideas of Gō and Scheraga, Dodd et al. [45] designed the concerted ro-

tation Monte Carlo move, which consists in a rotation of seven adjacent dihedral angles

(Fig. 1.5). Moreover, the authors showed that the solution to the loop closure problem

entails a change in the variables used to describe the configuration space. Consequently,

the Jacobian determinant of this transformation needs to be calculated and included

10



1.2 Monte Carlo simulations of proteins

χ1

χ2 χ3

χ7

s7

c

Figure 1.6: Loop closure in CRISP - Illustration of the loop closure problem in
CRISP move, presented in section 2.1. Variations in the driver angles (for simplicity and
without loss of generality, in this representation a single driver angle χ1, shown in red, is
used), produce the displacement of the adjacent atom on the right. Being the reference
system s7 fixed by the locality requirement, the loop closure simply consists in positioning
the central atom (labeled c), resulting in new values for the six degrees of freedom shown
in blue. As described in detail in section 2.1, this problem has an analytical solution based
on simple geometrical considerations.

in the acceptance criterion in order to meet the detailed balance condition, an aspect

that was neglected in previous studies [49]. The concerted rotation approach has been

refined [50, 51, 52, 53], and modified in order to account for structural properties of

polypeptides [54, 55] and nucleic acids [56, 57]. In 2003, Ulmschneider and Jorgensen

[58] introduced a concerted rotation type of move (CRA) specifically designed for con-

formational sampling of proteins and showed their method to outperform the classic

concerted rotation algorithm. The increased efficiency was obtained by including bond

angle flexibility and by introducing a Gaussian bias favoring small angular variations.

This idea, originally introduced by Favrin et al. [37] as a semi-local move, was used in

the CRA method to ensure the existence of a solution for the loop closure equations

(Fig. 1.7).

The configurational bias method consists of erasing an arbitrary section of a chain

and regrowing it, segment by segment, until the original chain length of the molecule

is restored (Fig. 1.8). While the original idea of regrowing a chain on a lattice from

one random point to the end was proposed in the 50s by Rosenbluth and Rosenbluth

[59], Siepmann and Frenkel introduced the configurational-bias Monte Carlo move [60],

working out the necessary requirements that guarantee a Boltzmann-distributed sam-

pling. The approach was then extended to continuum space [61, 62], and modified in

order to produce strictly local perturbations [63]. Similarly to the case of concerted

rotation techniques, a wide variety of improvements to the original method has been

proposed. Specifically, Boltzmann weights and look-ahead strategies were employed for

11



1. INTRODUCTION

a

Figure 1.7: CRA move - The CRA move consists in a concerted rotation of bond and φ,
ψ backbone angles in 5 consecutive residues, therefore involving the variation of n−6 = 15
driver angles (red lines). Subsequently, Gō and Scheraga’s loop closure equations are used
to determine the values for the 6 remaining degrees of freedom (shown in blue). If all
driver angles are varied by a random amount, the position of the atom a is likely to change
dramatically, therefore producing a geometrical configuration for which the chain closure is
impossible under the constraint of fixed bond lengths (i.e. no solution for the loop closure
is available). In CRA, this problem is circumvented by drawing driver angle variations
from a Gaussian distribution that favors small displacements of atom a, as in the biased
Gaussian step proposed by Favrin et al. [37].

a

b

c

Figure 1.8: Configurational Bias local move - Pictorial representation of the re-
bridging/internal configurational bias move. (a) An internal section of the chain (in red)
is removed. (b) The chain is regrown site by site by selecting one new position from a set
of trial configurations, until the chain connectivity is restored (c).

12



1.2 Monte Carlo simulations of proteins

reducing the number of rejected configurations [64, 65, 66, 67, 68] or to encourage the

regrowth towards the end of the segment [69, 70].

In summary, the design of a local move entails three distinct but connected prob-

lems:

1. devise a method to locally perturb the chain (either by using concerted rotations

or regrowing techniques) under the constraints given by the molecule representa-

tion, such as fixed bond lengths, bond or dihedral angles.

2. design the move in such a way that the typical displacement of the atoms (step-

size) can be controlled. It is worth noting that large updates are often rejected,

and that exceedingly small changes lead to inefficient simulations. Having the

possibility of tuning the step-size makes it possible to find the optimal trade-

off in different simulation conditions (e.g. folded/unfolded states, all-atom/coarse

grained representation, non-physiological temperatures).

3. determine the bias introduced by the move. Because of the non-random nature

of the update, the selection probability is in general non-symmetric and, in order

to preserve detailed balance, the ratio p(n)
p(c)

s(n→c)
s(c→n) in Eq. 1.2 has to be calculated.

Current methodologies only partially address these problems. For example, in classic

concerted rotation methods controlling the stepsize is often problematic, as trial con-

figurations typically introduce large dihedral angle (> 40◦) [58] or bond angle (> 5◦)

variations with respect to the original structure. Moreover, none of those methods

are known to work for dense systems such as the native state of globular proteins. In

section 2.1 we present a novel concerted-rotation type of move (CRISP) specifically de-

signed for atomistic simulations of proteins, that address many of the aforementioned

problems. The algorithm is based on an analytical solution to the loop-closure problem

(Fig. 1.6), making it possible to control the variations of all the degrees of freedom

involved in the move. We show improved efficiency compared to the current state-of-

the-art Monte Carlo techniques. Moreover, we prove CRISP to produce a near-native

ensemble of a globular protein which is comparable to molecular dynamics simulations,

both in terms of accuracy and efficiency. Considering that MC is expected to be highly

efficient in non-compact states, this result strongly suggests that MC can be used as
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valuable method in the study of macromolecules in atomic detail, offering a powerful al-

ternative to molecular dynamics for probing large-scale, long time-scale conformational

transitions.

1.2.3 Knowledge-biased moves

With the steadily growing number of experimentally solved protein structures, it has

been possible to construct accurate models describing local conformational features

of native proteins. Specifically, the well-known dihedral backbone [71, 72] and side-

chain [73] angular propensities of proteins can be captured using for example fragment

[74, 75] or rotamer libraries [76, 77]. These techniques usually rely on the clustering

of conformations derived from experimental structures and are widely employed for

protein structure prediction and modeling [78, 79, 80]. The accuracy of these methods

has been improved by capturing the amino acid sequence and the secondary struc-

ture dependence of these libraries using hidden Markov models [81, 82]. Recently,

several generative probabilistic models of local protein structure have been proposed

[83, 84, 85, 86]. These models describe continuous probability distributions (e.g. of φ, ψ

backbone angles [84] or χ side-chain angles [86]) that accurately capture the angular

propensities of native proteins. More importantly, GPMs make it possible to sample

trial configurations from such distributions, and to estimate the probability associated

with any given conformation.

GPMs can be directly used in Monte Carlo simulations of proteins. As previously

described, producing small perturbations is one possible way to enhance the efficiency

of MC simulations. An even better candidate for s(·) in Eq. 1.2, however, is the one

that approximates the target distribution p(·). In the case of chain molecules and at

full atomic detail, the design of an easy-to-sample trial distribution s(·) is highly chal-

lenging, because of the high-dimensionality of the problem. In this context, GPMs

can be directly used to propose tentative updates to the chain. Unlike the standard

library-based approaches [82], in GPMs samples are drawn from a continuous probabil-

ity distribution. Moreover, the probability associated with the proposed conformation

is readily evaluated, and the bias introduced can be therefore compensated for, thus

fulfilling the detailed balance condition. It should be also noted that the GPM Torus-

DBN [84], that describes the (φ, ψ) backbone propensities, can be integrated into the
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1.2 Monte Carlo simulations of proteins

CRISP algorithm [87]. This combination makes it possible to propose trial configura-

tions from the probability distribution in TorusDBN for a restricted region of the chain,

thus combining the properties of GPM with the efficiency of CRISP.

By construction, GPMs mainly capture the local features of proteins. Non-local

interactions can be described by specific models (e.g. hydrogen bond networks, NOEs

distance restraints), that are easily incorporated as potentials in the MC framework.

In this case, the acceptance criterion becomes

a(c→ n) = min
{

1,
p(n)sGPM

loc (c→ n)
p(c)sGPM

loc (n→ c)

}
(1.3)

Here, sGPM
loc is the GPM probability distribution from which trial configurations are

drawn, while p is the target distribution.

Two applications of this approach are presented in Chapter 2. In section 2.3 Torus-

DBN [84] and Basilisk [86] (describing side-chain angle propensities) are used in com-

bination with a network of user-defined, non-local restraints. The resulting method,

TYPHON, is used to characterize the near-native state of globular proteins, and is

proven to provide a simple, yet accurate method to investigate plausible conformational

fluctuations in proteins. A similar approach is used in section 2.4, where TorusDBN

and Basilisk serve again as trial distribution, while Nuclear Overhauser Effect mea-

surements describe non-local interactions. This combination is successfully applied for

protein structure determination on two model systems, and the results show improved

efficiency and accuracy compared to the current state-of-the-art methodology.

In principle, GPMs can be used to enhance the sampling efficiency of MC simula-

tions of proteins with classic all-atom physical force-fields. However, the probability

distributions in GPMs are typically constructed using native structures and turn out

not to be ideal to model the protein behavior under different conditions (e.g. simu-

lations of unfolded states or at non-physiological temperatures). Moreover, ergodicity

problems arise if the support of the trial distribution is only a subset of the full target

distribution. Similar considerations apply to library-based approaches that were intro-

duced with the purpose of improving the efficiency of MC simulations [88]. For a more

complete introduction to probabilistic models and their use in MC simulations, I refer

to the recent book of Hamelryck et al. [89].
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1.2.4 Other techniques

Along different lines, a multitude of alternative approaches for Monte Carlo sampling

of macromolecules have been proposed. MC updates involving collective motions of

atoms like cluster algorithms were introduced for lattice spin models [90, 91], and later

generalized for continuous systems such as Lennard-Jones fluids [92]. However, none of

those methods are known to work for heterogeneous systems with long-range interac-

tions such as proteins [15]. Around the pioneering idea of Noguti and Gō [32], normal

modes were used to generate torsion space moves in Monte Carlo simulations, with

successful applications on peptides [93]. Another possible approach is hybrid Monte

Carlo, where a molecular dynamics simulation is run for a fixed length of time, and

the final configuration is accepted or rejected with the standard Metropolis criterion

[94, 95, 96]. Although hybrid Monte Carlo probably represents the most straightfor-

ward and general way to introduce the characteristic correlations of the system in the

move set, the approach requires gradient calculations, therefore eliminating one of the

advantage of MC over MD.

As a final remark, it is important to stress that local Monte Carlo updates can

considerably enhance the simulation efficiency, but do not solve all sampling problems.

As an example, when a large enthalpic barrier separates two potential energy minima,

a stepwise evolution of the system is often not sufficient for barrier-crossing. This

problem, of an ergodic nature, can be addressed by using multicanonical techniques

[97, 98, 99].
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1.3 Implicit solvent models

Many experimental and computational studies have underscored the role of the solvent

environment in the description of structure and function of biomolecules [100, 101, 102].

The presence of water molecules is important in protein folding [103], determines the

secondary structure propensities of peptides [104] and plays a role in complex formation

and molecular recognition [105, 106]. For these reasons, the development of accurate

computational water models is an important and active field of research [107]. The

most widely used approach for modeling the aqueous environment is the inclusion of

explicit water molecules, using for example the popular TIP3P [108] or SPC/E [109]

models, in which a water molecule consists of three sites, representing the oxygen and

the two hydrogens atoms. An alternative approach is to approximate the influence of

the solvent by a potential of mean force that depends only on the atomic coordinates

of the solute. This approach, called implicit solvation, has the advantage of being

less computational demanding compared to explicit water simulations. Moreover, the

reduced solvent viscosity and the smoothing of the energy landscape have the net effect

of enhancing considerably the conformational search. The increased efficiency, however,

comes at the price of reduced accuracy. An intrinsic limit of implicit solvent is that

short-range effects mediated by few water molecules cannot be captured [110, 111].

Although the drawbacks of implicit solvent models should not be downplayed, these

methods provide a fast and approximate way to address a variety of thermodynamic

problems related to solvation of macromolecules [112].

Statistical mechanics is the natural theoretical framework for deriving a formulation

of the approach. Assuming the potential energy, U , of a system to be additive, one can

perform the following decomposition:

U(X,Y ) = Umm(X) + Ums(X,Y ) + Uss(Y ) (1.4)

Here, the three terms represent the intra-molecular Umm, the solute-solvent Ums and

the solvent-solvent interactions Uss, while X, Y are the solute and water coordinates,

respectively. The potential energy uniquely dictates the probability p(X,Y ) of observ-

ing the microstate (X,Y ) in a thermal bath at temperature T

p(X,Y ) =
1
Z

exp (−βU(X,Y )) (1.5)

17



1. INTRODUCTION

where β = 1/kBT , kB is the Boltzmann’s constant and Z is the partition function

Z =
∫

exp (−βU(X,Y ))dXdY . The central idea of implicit solvent is to define an

effective energy W (X) that depends only on the atomic coordinates of the solute.

Formally, this is done by “integrating out” the solvent degrees of freedom in Eq. 1.5:

p(X) =
exp (−βW (X))

ZW
≡

∫
p(X,Y )dY =

1
Z

∫
exp (−βU(X,Y ))dY (1.6)

where ZW is a suitable normalization constant. Using Eq. 1.4 and multiplying/deviding

by Zs =
∫

exp (−βUss(Y ))dY we write

p(X) =
1
Z

exp (−βUmm(X))
∫

exp (−βUms(X,Y )) exp (−βUss(Y ))dY

=
Zs

Z
exp (−βUmm(X))

∫
exp (−βUms(X,Y ))

exp (−βUss(Y ))
Zs

dY

=
Zs

Z
exp (−βUmm(X))〈exp (−βUms(X))〉s (1.7)

with the average being taken over solvent configurations [113]. This ensemble average

is related to the free energy of solvation ∆Gsolv [114] as

− β∆Gsolv = ln 〈exp (−βUms)〉s (1.8)

Therefore, the potential of mean force W can be written as

W (X) = Umm(X) + ∆Gsolv(X) (1.9)

Many of the classical mechanics force-fields describe the intra-molecular interactions

Umm, while the aim of implicit solvent is to provide an approximation for the free

energy cost of solvating the molecule ∆Gsolv.

The development of implicit solvent models for simulations of biomolecules has pro-

gressed mainly along three different lines of research: surface-area approaches [115, 116],

solvent-exclusion [113, 117] and continuum electrostatics models [118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130]. The first two approaches assume the

solvation free energy to be modeled by some physically sensible functional form, and

the parameters of the model are adjusted such that specific experimental data are

correctly reproduced. Although computationally very efficient, these methods lack

a rigorous treatment of long-range electrostatic interactions. This important aspect
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is more accurately described by continuum electrostatics models, where the solute

is represented as a low-dielectric cavity embedded in a high-dielectric solvent. The

corresponding (electrostatic) solvation free energy is calculated either by solving the

Poisson-Boltzmann equation [118], or estimated using Generalized Born (GB) meth-

ods [119, 123]. Because of its relatively good accuracy, the latter method is recog-

nized as a prime choice for the implicit treatment of solvent in biomolecular simu-

lations [112], and a large variety of GB-based approaches can be found in literature

[120, 121, 122, 124, 125, 126, 127, 128, 129, 130]. It should be noted, however, that

the computational efficiency of standard GB methods is in many cases comparable to

explicit water simulations [107].

In section 2.5 we propose a new parameterization for the Gaussian-exclusion implicit

solvent model EEF1 [113], which we briefly introduce in the next part of this section.

1.3.1 EEF1: an effective energy function for proteins in water

In the EEF1 effective energy function the solvation free energy of the solute is modeled

as a sum over atomic contributions

∆Gsolv =
∑

i

∆Gsolv
i (1.10)

where the individual terms, ∆Gsolv
i , are given by the solvation free energy ∆Gref

i minus

the reduction due to the presence of surrounding groups

∆Gsolv
i = ∆Gref

i −
∑
j 6=i

fi(rij)Vj (1.11)

∆Gref
i were obtained by dissecting the experimental free energy for a set of model

compounds into group contributions [131] and the sum is performed over the groups j

with volumes Vj around i. Finally, the solvation free energy density fi(rij) is assumed

to be a Gaussian function of the distance rij

fi(r)4πr2 =
2√
π

∆Gfree
i

λi
exp

{
−(r −Ri)2

λ2
i

}
(1.12)

this functional form is such that the volume integral over the first solvation shell of

thickness λ (i.e. from ri = Ri to ri = Ri + λi, where Ri is the van der Waals radius)
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accounts for the 84% of the solvation energy. ∆Gfree
i corresponds to the free energy

of solvation of the isolated atom. In EEF1 this value is determined by requiring the

solvation energy of deeply buried groups in the protein CI2 to be zero. λ was taken to

be the thickness of one hydration shell (3.5 Å) except for ionic groups, for which a value

of 6Å was used. In EEF1, a modified version of the united-atom CHARMM 19 energy

function [132] describes the solute-solute interactions. Ionic charges are neutralized, and

a distance-dependent dielectric constant is used to approximate electrostatics effects.

Despite of the crudeness of the latter assumption, the EEF1 effective energy function

is still widely and successfully used in a number of different contexts, such as folding

simulations [133], protein structure prediction [134] and models solvent effects in the

popular Rosetta software [135].
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1.4 Coarse-graining Techniques

As already pointed out, atomistic molecular simulations with explicit solvent are recog-

nized as the method of choice for providing an accurate description of protein structure,

dynamics and function. The high computational cost of the approach, however, often

poses a practical limit to its applicability. In parallel to the development of enhanced

sampling techniques, several so-called coarse-grained (CG) approaches have been in-

troduced. The goal of CG methods is to devise a simpler description of the effective

interactions between particles, while retaining the ability of the model to reproduce the

properties of the system. Typically, grouping atoms in fewer sites is a common way to

reduce the problem complexity. Given a simplified representation, different methods

can then be used to devise a proper description of the interactions between the CG

structural units.

One possible coarse-graining method is given by the reverse Monte Carlo approach

[136], where iterative Monte Carlo-based adjustments to the CG potential parameters

are made, so as to correctly reproduce some quantity of interest (e.g. pair distribution

function consistent with experimental measurements). A different strategy, devised by

Ercolessi and Adams [137], constructs a CG potential by applying a force-matching

procedure. The approach is based on the idea of minimizing the mean squared differ-

ence χ2 between the forces F0 exerted on CG sites observed in an all-atom reference

simulation, and those determined by the CG force FCG at the same CG configuration

χ2 = 〈 1
3N

N∑
i=1

|F0
i − FCG

i (η̄)|2〉 (1.13)

Here, the summation runs over the N coarse-grained sites and the average is taken

over all the atomic configurations used in the fit, while the optimization is carried out

adjusting the set of parameters η̄ in the CG force-field. The approach has been refined

and successfully applied for developing CG models of liquid water [138], lipid bilayer

[139] and peptides [140].

Recently, Shell [141] developed a multiscale coarse-graining approach that relies

upon the minimization of an entropy-related objective function called relative entropy

(RE). In the study presented in section 2.5, we extend the effective energy function

EEF1, which was originally based on the united-atom CHARMM 19 force-field [132],
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to the all-atom description of CHARMM 36[142]. The significant differences in the

molecular representation as well as in the parameterization of the two force-fields does

not allow a direct transfer of the EEF1 model parameters. Therefore, we devised a

modified version of EEF1 were the model parameters are adjusted using the relative

RE approach, which is presented in the remainder of this section.

1.4.1 Relative entropy approach

The RE approach is based on the minimization of the relative entropy Srel (also known

as Kullback-Liebler divergence) between the ensemble generated in an all-atom (AA)

and in a coarse-grained (CG) simulation. From an information-theory perspective, the

relative entropy quantifies the overlap between the two configurational ensembles AA

and CG, which is linked to the amount of information lost due to coarse-graining. More

precisely, the relative entropy Srel is defined as

Srel =
∑
R

pAA(R) ln
pAA(R)
pCG(R)

(1.14)

where p(R) is the probability of a particular configuration R, and the sum proceeds

over the AA microstates. By definition, the coarse-grained model has less degrees of

freedom than the all-atom one, meaning that pCG is a function of r only, where r = r(R)

is some given dimension-reducing mapping from the AA coordinates R onto the CG

coordinates r 1. This implies that

pCG(R) =
pCG(r(R))
Ω(r(R))

(1.15)

Here Ω(r̃) =
∑

R δr̃,r(R) is the degeneracy for any given CG state r̃, where the summa-

tion is performed over the AA configurations and δ is the Kronecker delta. Therefore,

the relative entropy Srel can be expressed as

Srel =
∑
R

pAA(R) ln
pAA(R)

pCG(r(R))
+

∑
R

pAA(R) ln Ω(r(R))

1In the study of section 2.5, the AA ensemble is obtained from explicit water simulations, while the
CG ensemble is given by the solvent-exclusion model previously described. In this case, R = (X, Y )
where X and Y are the solute and solvent coordinates, respectively, while the mapping function is
simply given by r = r(X, Y ) = X.
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=
∑
R

pAA(R) ln
pAA(R)

pCG(r(R))
+ 〈Smap〉 (1.16)

It is worth highlighting that the average entropy 〈Smap〉 does not depend on the CG

ensemble beyond the specification of the mapping function.

In the canonical ensemble, the probabilities in Eq. 1.16 are linked to the potential

energy of the CG an the AA model (UCG and UAA respectively) as in Eq. 1.5, and the

relative entropy can be expressed as

Srel = β(〈UCG − UAA〉AA)− β(ACG −AAA) + 〈Smap〉 (1.17)

where A = −kBT lnZ is the free energy and β = (kBT )−1 is the inverse temperature

T multiplied by the Boltzmann’s constant, kB. In this formulation, calculating Srel

requires the impractical estimation of free energies. Assuming the CG potential to be

function of some parameters η, however, the derivatives of the relative entropy with

respect to η can be expressed as simple averages over the CG and AA ensembles

∂Srel

∂η
= β〈∂UCG

∂η
〉AA − β〈∂UCG

∂η
〉CG

∂2Srel

∂η2
= β〈∂

2UCG

∂η2
〉AA − β〈∂

2UCG

∂η2
〉CG + β2〈∂UCG

∂η

2

〉CG − β2〈∂UCG

∂η
〉2CG

Hence, standard numerical techniques can be employed to minimize the relative en-

tropy with respect to the model parameter, for example by iterative application of the

Newton-Raphson update rule

ηk+1 = ηk − γ

[
∂2Srel

∂η2

]−1 [
∂Srel

∂η

]
(1.18)

From a practical point of view, performing the minimization (especially in a multi-

dimensional parameter space) can be problematic. A detailed discussion of the numer-

ical issues connected with the parameter optimization is presented in section 2.5, as

well as in other studies by Shell and co-workers [143, 144, 145].
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Research Articles

2.1 Subtle Monte Carlo Updates in Dense Molecular Sys-

tems

Density is commonly regarded as the limiting factor in making Monte Carlo (MC) use-

ful for simulating biomolecules. While standard random updates are too inefficient for

large systems and at high density, a clever choice of the update rule can considerably

enhance the sampling efficiency of MC methods. In this research article we describe

the design of a Monte Carlo move for producing local trial updates in a chain molecule.

The approach is based on an analytical solution for the loop-closure problem, making

it possible to control the variations of all the involved degrees of freedom. We demon-

strate that CRISP reaches a comparable level of accuracy and efficiency as molecular

dynamics simulations, and outperforms the current state-of-the-art MC methodologies.

The supplementary material included after the manuscript contains a detailed descrip-

tion of the geometrical issues connected to the loop-closure problem and the complete

derivation of the CRISP move. Moreover, detailed balance is proved and a number of

geometrical and energetic aspects are discussed.

This is a joint first-author paper, and I was involved in every aspect of the work.
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ABSTRACT: Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring
conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural
states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the
sampling efficiency in all-atomMC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic
chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as
correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins
with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with
molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic
detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.

1. INTRODUCTION

The conformational flexibility of molecules plays a central role
in many important biological processes, including signaling,
catalysis, regulation, and aggregation.1�4 Structural and dynami-
cal information of the conformational changes associated with
these processes can be partly extracted from spectroscopic
techniques, such as X-ray diffraction or nuclear magnetic reso-
nance experiments (NMR).4 Molecular simulations serve as an
ideal complement to these techniques, by allowing the confor-
mational variation to be studied at a detailed atomic level.

Molecular simulations, however, are faced with two main
challenges: the design of an accurate energy function5 and the
construction of a sampling strategy capable of efficiently explor-
ing the conformational space.6 In the all-atom physical potentials
usually employed in protein simulations, the energy landscape is
rugged and complex due to the presence of a large number of
protein�protein and protein�solvent interactions. For these
systems, molecular dynamics (MD) is commonly considered the
technique of choice.

The alternative approach to molecular simulation, Markov
chainMonte Carlo (MC), has the potential to explore the energy
landscape more rapidly than MD. In particular, the transitions
between consecutive microstates in an MC simulation are not
required to follow the dynamics of the system (i.e Newton’s law).
Using a scheme to accept/reject proposed updates to the chain, it
is possible to generate conformations according to the Boltzmann
distribution associated with the system. While the MC approach
does not provide explicit real-time information, it allows for a
rapid exploration of conformations separated by high-energy
barriers (i.e., long time-scales) and thereby an efficient thermo-
statistical characterization of the system. This makes the Monte
Carlo method extremely well suited for large scale simulations
of, for instance, protein aggregation7 or for exploring the

conformational space of intrinsically disordered proteins,8 both
of which are still mostly intractable using MD. However, for the
exploration of dense systems, where even small variations in the
degrees of freedom (e.g., dihedral angles) are likely to introduce
collisions in the molecule, MC simulations often perform
poorly. In an attempt to alleviate this problem, many MC
procedures extend their kinetics with so-called local moves,
which produce subtle deformations in a small segment of the
protein chain, while keeping the positions of all atoms outside
the segment fixed.

The geometrical issues behind the local move problem were
first studied by Go and Scheraga in 1970.9 On the basis of these
considerations, Theodorou and co-workers developed the con-
certed rotation MC-move by working out the necessary require-
ments for detailed balance (the central condition to ensure
Boltzmann distributed sampling).10 The method works with
seven adjacent dihedral angles along the chain. One of these
angles is turned by a random amount, and the values of the six
remaining angles are determined by numerically solving a set
of equations, resulting in a new closed chain structure. Several
variants of this original approach have been proposed.11,12

The most recent is the CRA method,13 in which increased
efficiency was obtained by including bond angle variations14

and imposing a locality constraint to raise the probability of
chain closure, a technique originally introduced in the context
of semilocal moves.15

Several alternative formulations of the local move problem
have been proposed. The configurational biasmethod is based on
the idea of regrowing a segment of a chain one atom at a time.16,17

This approach has been extended with various look-ahead and
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biasing strategies to decrease the number of rejected growth
attempts.18,19 More recently, robotics-inspired methods have been
employed to perform local backbone deformations20 and to char-
acterize the flexibility of protein loops.21 As another alternative, an
off-lattice version of the crankshaft move has been proposed.22 The
method consists of a rigid rotation of a chain segment around the axis
defined by theCα atoms delimiting the segment. An extension of this
approach, the backrubmove,23,24 has led to successful applications in
the context of both protein design and modeling.25

The crankshaft/backrub move stands out from the remaining
methods for its simplicity and ease of implementation. However,
the kinetics produced by this move are limited to hinge-like
motions, which can potentially reduce the rate with which the
move can decorrelate a structure. The remaining local move
methods all introduce a break in chain-connectivity. This forces
the methods to treat the placement of a subset of the atoms as a
special case in order to maintain a closed chain, thereby intro-
ducing an asymmetry in the degrees of freedom involved in the
move. Using Boltzmann factors or constrained proposals, it is
possible to control the local geometry for the initial, stochastic
part of the move. However, the final closure step will typically
introduce unfavorable local structure in the chain, leading to
an elevated rejection rate.

In the present study, we demonstrate that this problem
constitutes one of the primary bottlenecks in current MC sim-
ulations of dense protein systems. We present a novel and effi-
cient solution, in which the geometrical constraints are naturally
incorporated in a proposal distribution. This leads to a con-
certed-rotation type Monte Carlo move, CRISP (Concerted
Rotations Involving Self-consistent Proposals), which effectively
proposes closed structures with user-controlled variations of all
involved degrees of freedom. We demonstrate the correctness of
the method and assess its efficiency by estimating the correla-
tion time associated with the move. The results demonstrate that
CRISP significantly outperforms the current state of the art MC
methodologies. We proceed with a study of the native ensemble
of ubiquitin. A comparison to X-ray and NMR experimental data
shows that our improved sampling strategy enables us to cover
the entire known conformational fluctuation spectrum of ubiqui-
tin in solution, including several experimentally confirmed con-
formational switches. In addition to the clear performance im-
provement over existing MC methods, we demonstrate that our
method has comparable real-time performance to MD on this
system.

2. RESULTS

2.1. Method Overview. For simplicity, we will present the
method in the context of protein molecules, although the basic
principles apply to other chain molecules (Text S1 and S2,
Supporting Information). A typical parametrization used in
protein simulations is one with flexible dihedral angles and bond
angles, but with bond lengths fixed. Given this parametrization,
the local move problem can be phrased as follows: propose new
values for all dihedral and bond angles in a region of a protein
chain so that any atom position outside the region remains
untouched. The requirement of chain integrity imposes a strong
dependency among the degrees of freedom. From this perspec-
tive, the local move problem is essentially a matter of finding the
cross-correlation between the degrees of freedom that fulfills the
geometrical constraints given by the protein representation. In
this paper, we will demonstrate how a probability distribution can
be constructed that takes these dependencies into account.
A natural framework for these considerations is that of the
concerted rotation. [Note that it could also be formulated as a
configurational bias move with the bias given by the derived
probability distribution.] In the concerted rotation approach, a
move is divided into a stochastic prerotation step followed by a
deterministic postrotation step. During prerotation, new angles
are proposed for a small segment of the chain, introducing a
break of the chain. The postrotation step then closes the chain by
finding the necessary compensating changes in the six postrota-
tional degrees of freedom (Figure 1).
The derivation of our desired probability distribution is based

on two observations. First, we note that given the described
molecular chain representation, an exact, analytical solution for
the postrotation problem can be derived (Text S1). This means
that for any given value of the prerotated degrees of freedom, the
resulting postrotation values can be determined with high effi-
ciency and robustness. This solution represents a great advantage
over other concerted-rotation methods by avoiding the tedious
numerical resolution of a system of six equations in six unknowns.
The second step is the realization that the analytical solution

allows us to express the coupling between pre- and postrotation
as a linear transformation, which enables the construction of a
probability distribution that controls both pre- and postrotational
degrees of freedom as well as the necessary chain-closure
constraints. To our knowledge, this is a novel mathematical
description of the 40-year-old chain closure problem. Unlike
previous approaches, it makes it possible, to first order, to
directly sample closed chains. Since the complete derivation is
quite involved, we only highlight the main features here
and refer the reader to the Supporting Information for details
(Text S2�S4).
To illustrate the nature of the procedure, we consider a local

move where n degrees of freedom χ̅ = (χ1...χn) of the chain
backbone are modified, leading to a new conformation χ̅ 0.
Angular variations δχ̅ = χ̅ 0 � χ̅ are drawn from a multivariate
Gaussian distribution

pðδχ̅ Þ � exp � 1
2
δχ̅ TλCnδχ̅

� �
ð1Þ

where the scalar parameter λ specifies the degree of locality, with
increasing λ leading to smaller changes. Cn is an n-dimensional
diagonal matrix introduced with the purpose of scaling, by a
factor k, the allowed variations of bond and ω dihedral angles

Figure 1. Illustration of the concerted rotation method. During pre-
rotation, new values for the angles shown in red (light gray box) are
proposed for a small segment of the chain, introducing a break of the
chain. The role of the postrotation step (dark gray box) is then to find
the necessary compensating changes in the six remaining degrees of
freedom, labeled in blue, in order to return to a closed state of the chain.
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relative to j,ψ angles:

Cii ¼
k if i is a bond or ω dihedral angle
1 if i is a j or ψ dihedral angle

(
ð2Þ

Due to the deterministic nature of the chain closure problem, the
values of the six postrotational degrees of freedom χ̅post =
(χpost

(1) ...χpost
(6) ) are determined by the remaining n � 6 prerota-

tional angles via our analytical solution. To first order, this allows
us to express the variation of the six postrotational angles as a
function of the prerotational variation,δχ̅post = Sδχ̅pre, where S is
a 6� (n� 6) matrix (Text S2). This information can be directly
embedded in the proposal distribution of eq 1. As demonstrated
in Text S3, the proposal distribution can now be written as

pðδχ̅ preÞ � exp � 1
2
δχ̅ T

preλðCn�6 þ STC6SÞδχ̅pre

� �

¼ exp � 1
2
δχ̅

T
preMδχ̅ pre

� �
ð3Þ

Figure 2 illustrates the construction of the proposal function in
eq 3. Angular variations for the prerotational degrees of freedom
are drawn from a Gaussian distribution with mean 0 and cova-
rianceM�1 (Figure 2a).M is a sum of two terms (Figure 2b): the
scaling diagonal matrix Cn�6, acting on the prerotational angles,
and STC6S. The latter, nondiagonal matrix carries the correla-
tions between pre- and postrotational angles arising from the
fixed bond-lengths constraint and from the restrictions given by
the stereochemistry of the protein backbone. In other words, it
operates on δχ̅ pre as depicted in Figure 2c: The S matrix first
reports the compensating changes δχ̅post upon the variation
δχ̅ pre. The postrotational variations are then properly con-
strained via C6, and ST finally maps the changes back to the
n � 6 dimensional space of the prerotation.
A proof of correctness of the first order approximation and a

study of the range of its effectiveness is presented in Figures S1
and S2. We check the validity of the MC procedure, outlined in

Text S4, by demonstrating detailed balance (Figure S3). The
approach is further validated by demonstrating that, for long
simulations on a small system, MC and MD methods produce
comparable ensembles (Figure S4 and Table S1).
We proceed by establishing the performance of CRISP relative

to two successful local move methods from the literature: the
CRA concerted rotation method (CRA)13 and a detailed balance
version of the crankshaft-based backrubmethod (CRANKSHAFT)24

(see Materials and Methods).
2.2. Controlled Variations.The main motivation for introdu-

cing local kinetics into a simulation is to increase sampling
efficiency in dense systems, since nonlocal moves tend to
propose a high number of self-colliding structures. However,
while local moves successfully reduce the rate of self-collision,
they are faced with a different problem: due to the strong chain-
closure constraints, local moves will often introduce unfavorable
values to a subset of the involved degrees of freedom, leading to
an increase in the rate of rejection. We illustrate this problem
using the CRA concerted rotation move. The method is con-
structed around the idea of limiting the movement of the end
point of the prerotation (the breakpoint), in order to increase the
probability of finding a solution for the postrotation. It is evident
from Figure 3 that this strategy creates an imbalance in the move:
constraining the displacement of the breakpoint is not sufficient
to avoid significant fluctuations of the postrotational angles. In
this case, the effect does not represent a significant problem for
dihedral angles, but a typical change of 5� for all postrotational
bond angles is dramatic, considering that the experimentally
observed distribution width is∼2.7� for such degrees of freedom
(Figure S5).26 Other local move methods suffer from similar
problems: in crankshaft-type moves, the bond angles surround-
ing the pivotal points will be subject to large fluctuations, while
concerted rotation methods that do not include bond angles
typically involve large jumps in dihedral angle values.10,11 In
contrast to existing methods, Figure 3 demonstrates that CRISP
displays identical variations in pre- and postrotational degrees of
freedom, de facto eliminating the asymmetry introduced by the

Figure 2. Graphical representation of the proposal probability distribution used in CRISP moves. (a) Angular variations are drawn from a normal
distribution with mean 0 and covarianceM�1. The Smatrix couples the prerotational degrees of freedom (red) to the postrotational ones (blue). In the
example shown in the figure, the matrix element S3,15 reports the variation of the third postrotational angle upon a change in the prerotational degree of
freedom at position 15. (b)M is a sum of a diagonal matrixCn�6 that controls the variations of the prerotational degrees of freedom, and STC6S. This last,
nondiagonal matrix operates on δχ̅ pre as shown in c: the S matrix first reports the changes δχ̅ post upon the variation δχ̅ pre. The variations
of postrotational angles, shown in blue, are then properly constrained via C6, and ST maps back the postrotational changes to the prerotational,
n � 6-dimensional space. λ is a free parameter controlling the overall size of the move.
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chain-closure constraint. Note that the difference between bond
angle and dihedral variations is user-defined (see eq 2).
2.3. Simulation Efficiency. The optimal way to quantify

sampling efficiency is by measuring the correlation time asso-
ciated with a given kinetic algorithm,27 which represents the
number of MC steps separating two independent samples. The
correlation time allows us to compare the efficiency of the dif-
ferent methods and to establish the optimal values of the two free
parameters of CRISP. Since obtaining converged estimates of
the correlation time requires extensive simulations, we consider
the equilibrium fluctuations around the stable helical state of the
small peptide Ala14.

13

In Table 1, we report the correlation times in MC steps for the
energy, τe, and the average correlation time, τ̅d, of the 20 central
dihedral angles when using CRISP, CRA, and CRANKSHAFT
moves as described in the Materials and Methods. There is a
difference in the dimension of configurational space explored by
the three methods which should be taken into account when
comparing the correlation times. Given the correlation time, the
size of explored space can be estimated by calculating the
standard deviation σ of the distribution for the energy and for
dihedral angles (Table 1). CRISP shows a dramatic improvement
of a factor of 15�20 in sampling efficiency compared to CRA as a
consequence of the more appropriate treatment of the geome-
trical problem. Furthermore, the CRANKSHAFTmove explores
a conformational and energetic space which is ∼30% smaller
than the one covered by CRISP for each degree of freedom, at a
computational cost that is 2�3 times larger.
The two free parameters of CRISP, k and λ, were optimized

with respect to the correlation time (Figure S6). In our experi-
ence, this setting is not sensitive to the type of protein being
simulated, and all simulations in our study therefore use these
values.
2.4. The Native Ensemble of Ubiquitin. While the Ala14

system is useful for the calculation of correlation times, it is not
representative of the structural heterogeneity observed in native
globular proteins. We therefore extend our analysis with a study
of ubiquitin. Ubiquitin is a key to several cellular signaling
networks28,29 and is recognized by a broad variety of proteins

with high specificity. Furthermore, this protein is well character-
ized by NMR30�33 and has been used extensively as a model
system in previous computational approaches.34�37 We use this
as a model system for a comparison of CRISP to existing MC
sampling algorithms, to MD, and to stochastic dynamics38 (SD)
simulations.
Structural fluctuations around the native state can be ex-

pressed as root mean squared fluctuations (RMSF), which
measure the amplitude of movements of individual atoms around
their equilibrium positions. The RMSF values generally grow
with the simulation time, converging when the neighborhood of
the local energy minima is exhaustively explored. We captured
the global time evolution of this process by considering the sum
of the individual RMSF values for all Cα atoms in the chain
(cumulative RMSF). Although not as rigorous as the correlation
time estimation, this procedure is useful to evaluate and compare
the efficiency of different sampling techniques in the vicinity of
the native state. In Figure 4, we show the simulation-time
evolution of the cumulative Cα RMSF for the different methods.
For each method, we report the average cumulative RMSF over
10 simulations performed at T = 300 K, starting from a relaxed
state of the human ubiquitin X-ray structure (1UBQ). The MD/
SD simulations covered 10 ns using the exact same force field and
conditions (see Materials and Methods). For visualization pur-
poses, the x axis for MD/SD is scaled to match the CPU time of
the MC methods on the same machine.
Since detailed balance is fulfilled for all simulations (Figures S2

and S4), we expect the fluctuations of the different methods to
eventually converge to the same levels. The observed differences
thus reflect the degree of ergodicity obtained by the various
sampling methods within the given simulation time. For CRA
and CRANKSHAFT, the cumulative RMSF saturates at around
40 Å with a similar convergence time (Figure 4). The SD
simulations are considerably faster but saturate approximately
at the same level. Our CRISP method clearly outperforms the
competing MC methodologies: the cumulative RMSF quickly
crosses the 40 Å barrier, saturating at the same level as the MD
simulations (∼50 Å). To further investigate the nature of these
fluctuations, Figure 5 shows the converged RMSF profile per Cα

atom for the different simulation methodologies. The fluctua-
tions produced by CRISP are remarkably similar to MD, while
the RMSF profiles of SD, CRA, and CRANKSHAFT are con-
sistently lower.
As an experimental reference, we present the RMSF of two

NMR-derived ensembles: MUMO (PDB code 2NR235) and
EROS (PDB code 2K3933), selected to represent the variation of
experimentally based ensembles reported in the literature
(Figure 6b). The fluctuations obtained with CRISP and MD
are in good agreement with the experimental data. Specifically,
the large variability observed in the β1�β2 loop, the C-terminal
region of α1, and the β3�β4 loop cover the main conformational
variability observed in X-ray ubiquitin complexes, as represented

Figure 3. Average angular variations based on 5 � 104 attempted
CRISP and CRA updates on ubiquitin. Each bar corresponds to the
average variation of the degree of freedom shown in the chain below the
histogram. In the prerotation (red angles), similar average angular varia-
tions are proposed by both methods. During postrotation (blue angles),
large angular variations are introduced by CRA, due to the lack of a
strategy controlling these degrees of freedom. Conversely, no imbalance
between pre- and postrotation is observed when using CRISP.

Table 1. Correlation Time τ in MC Steps and Standard
Deviation σ of theDistribution for CRA, CRANKSHAFT, and
CRISP Moves Calculated over 5 Independent Runs

τ̅d (10
3 steps) σ̅d (deg) τe (10

3 steps) σe (kcal/mol)

CRA 13.2 ( 1.1 9.31 18.2 ( 3.3 3.04

CRANKSHAFT 1.9 ( 0.4 7.68 2.9 ( 0.9 2.42

CRISP 0.78 ( 0.01 10.67 0.85 ( 0.05 3.39
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by the zinc finger ubiquitin-binding domain of isopeptidase T
(2G45) and the conjugating enzyme (E2) binding domain
(1AAR)33 (Figure 6c�d).
Large fluctuations in the MD and CRISP simulations are also

observed in the α1 N-cap region around GLU24 and in the
β4�α2 loop around GLY53. It is worth noticing that residual
fluctuations in these regions are directly linked to a more subtle
conformational switch consisting of the flipping of the ASP52/
GLY53 amide plane (Figure 6e). This movement exposes the
backbone CO of ASP52 to the exterior of the molecule, while the
backbone NH of GLY53 forms an internal hydrogen bond with
the side chain of GLU24, which changes rotamer state due to this
interaction. This switch has recently been observed in a crystal
structure of monomeric human ubiquitin,39 and the flexibility of
these residues was hypothesized to play a role when ubiquitin
binds with deubiquinating enzymes. Notably, this backbone
transition is not observed in the 10 ns SD or in the CRA/
CRANKSHAFT simulations.
We stress that any such in silico observation is in principle a

consequence of the applied force field, not the sampling method
used. However, the fact that these transitions are not seen by all of
the simulation methods within the same time frame using the same
force field points to the importance of an efficient sampling strategy.
We analyze the different ensembles in detail by comparing the

probability distributions of both dihedral backbone angles and
Cα positions produced by the different methodologies. In
Table 2, we report the Jensen-Shannon divergence (JSD) of
thej/ψ distributions between a reference ensembleMD and the
individual trajectories (Figure S7). The MD ensemble is con-
structed using the samples from all conducted MD simulations.
MD serves as a meaningful reference, as it represents the broad-
est and most complete representation of the near-native dy-
namics among the existing methods. The results show that
CRISP and SD simulations reproduce the dihedral backbone
distributions of MDwith greater accuracy compared to CRA and
CRANKSHAFT. The same scenario is observed when consider-
ing the Kullback�Leibler divergence (KLD) between Cα posi-
tion distributions (Table 2), a recently proposed alternative
measure of ensemble similarity.40

3. DISCUSSION

The efficiency of Markov chain Monte Carlo protein simula-
tions relies heavily on the kinetic algorithm used to probe the
various possible conformational states of the molecule. In
particular, densely packed systems typically require the presence
of a move which restricts itself to modifying atom positions
within a short stretch of the molecule. Designing such moves is a
nontrivial task, due to the complex interdependencies among
bond and dihedral angles that arise from constraining the
end point of the modified stretch to be fixed. Our present
study introduces a novel technique for incorporating these
interdependencies directly into a proposal distribution. The
resulting local move, CRISP, displays significant performance
improvements compared to existing state-of-the-art MC methods.

It should be noted that efficient side-chain dynamics is an
important prerequisite for obtaining the presentedMC results. In
particular, in the often dense hydrogen bond networks charac-
terizing native proteins, one should ensure that an MC simula-
tion includes side-chain moves that can break and form these
bonds independently.We discuss this issue in greater detail in the
Materials and Methods and in Figure S8. In addition, when
conducting a local backbone move, the corresponding displace-
ment of rigidly attached side-chain atoms can lead to self-
collisions in the chain, and thus an elevated rejection rate. This
consideration is of great importance especially for long side-
chains at high densities. The presented move could therefore
potentially be improved by including constraints from side-chain

Figure 5. Ubiquitin RMSF from 10 ns MD simulations (in black/gray)
compared to SD and to 9� 107 long MC runs using CRISP, CRA, and
CRANKSHAFT. The shaded regions show the standard deviation based
on 10 independent runs.

Figure 4. Time evolution of the cumulative Cα RMSF relative to MD
simulations (in black/gray) compared with SD and withMC simulations
using CRISP, CRA, and CRANKSHAFT as local moves around the
native state of protein ubiquitin. The shaded regions show the standard
deviation based on 10 independent runs.
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interactions into the derived probability distribution, thus mer-
ging backbone and side-chain dynamics into a single move.

One of the goals of our study was to investigate the relative
sampling efficiency of Monte Carlo versus molecular dynamics.
As has been observed before,41 our results demonstrate that, in
dense environments, molecular dynamics provides a more
efficient sampling algorithm than previously described state-of-
the-art Monte Carlo methods, presumably due to the high
information content provided by the gradient in this scenario.
However, this does not seem an inherent limitation of theMonte
Carlo method. Our current study indicates, as previously demon-
strated for smaller systems,42,43 that MC can provide the same
level of accuracy and efficiency as MD, given that an efficient
sampling strategy is used. This result therefore suggests that MC
simulations can be reliably employed not only in less dense
scenarios (such as intrinsically disordered proteins,8 protein
aggregation,7 or flexible protein loops21) but also for a general
in silico characterization of flexibility and dynamics of compact
molecular systems.

4. MATERIALS AND METHODS

4.1. Molecular Representation. We used a full-atom repre-
sentation of proteins with fixed bond lengths and flexible dihedral
and bond angles. Although flexibility in bond angles is sometimes
omitted, it has been shown to increase sampling efficiency.13,14,44

The peptide dihedral angle ω is included as it is known
experimentally to vary at least at the level of bond angles.
4.2. Simulation Setup. The molecular dynamics and stochas-

tic dynamics simulations were conducted using the molecular-
modeling package TINKER 5.1.45 As described in previous
studies,46 stochastic dynamics at constant temperature T =
300 K models the viscous drag of water (frictional coefficient
91 ps�1). Constant temperature T = 300 K molecular dynamics
simulations were run using the Beeman integration method.
Bond lengths were constrained with the RATTLE algorithm,
allowing time steps of 2 fs. MC simulations were conducted using
the standard Metropolis-Hastings Monte Carlo scheme at phy-
siological temperature (T = 300 K). Note that several techniques
(such as replica exchange48 or multicanonical ensembles49) can
be used to enhance the sampling relative to standard MD or
Metropolis-Hastings MC simulations. In the present study, for
comparative purposes and simplicity, we limited ourselves to
direct sampling from the canonical ensemble.
4.3. Force Field. All simulations in this study were conducted

using the OPLSaa
50 potential in combination with the general-

ized Born/surface area implicit solvent model GB/SA.51 Despite
the limitations of implicit solvent models, this combination has
been widely used and successfully applied to identify the native
state of a large set of proteins52 and for folding simulations.46,43,47

Note that the CRISPmethod is not necessarily limited to implicit
solvent simulations. Several examples exist of fruitful combina-
tions ofMonte Carlo sampling using explicit solvents models.53,54

The MC implementation of the OPLSaa+GB/SA force field
followed that of the Tinker software package and was verified to
reproduce the same energy values as this package. The MD and
MC results reported in the paper are therefore directly compar-
able, both in terms of energetics and computational time. We
acknowledge that bothmethods could be optimized further using
for instance hardware specific implementations.
4.4. Correlation Times. The MC simulations on Ala14 were

conducted using the standard Metropolis-Hastings Monte Carlo
scheme at physiological temperature (T = 300 K), using only
local internal moves (i.e., the N- and C-terminal were kept fixed

Figure 6. Structural ensemble of ubiquitin obtained with CRISP. (a) Backbone trace of 90 random samples from 10 9 � 107 MC-iteration-long
simulations usingCRISPmoves. The residue’s color varies from blue (RMSF= 0.5 Å) to green and yellow to red (RMSF> 1.3 Å). (b) RMSF profile from
CRISP simulations and from theNMR ensembles EROS andMUMO. (c) TheVAL5�LYS11 stretch of the crystal structure 1AAR (dark red) and 2G45
(dark blue). The closest MC samples to the crystal structures are shown in light red and light blue. (d) The ILE44�LEU50 loop of 1AAR (dark red) and
2G45 (dark blue). (e) The ASP52/GLY53 conformational switch. With respect to the crystal structure of 1UBQ (in dark red), this amide-plane flipped
state is coupled to the side chainmovement of GLU24 and is recurrently found in crystal structures of complexes with deubiquinating enzymes, including
2G45 (in dark blue). Both flipped (light blue) and unflipped (light red) states are explored in our MC sampling.

Table 2. Comparison between the MD Ensemble and MD,
SD, CRISP, CRANKSHAFT, and CRA Simulationsa

JSD (j/ψ) KLD (Cα)

MD 0.07 ( 0.04 174 ( 148

CRISP 0.09 ( 0.05 300 ( 110

SD 0.10 ( 0.06 530 ( 57

CRA 0.13 ( 0.07 1084 ( 115

CRANKSHAFT 0.17 ( 0.09 2265 ( 719
aAverages and standard deviations of the JS divergence in j/ψ space
and of the KL divergence of the Cα positions are calculated over 10 runs.
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during simulation). For CRISP and CRA, the move length was
set to five residues. The free parameter λ, which determines the
overall size of the CRISP and CRA moves, was tuned for opti-
mality in the context of the correlation times of Ala14 (Figure S6).
In the CRANKSHAFTmove, the number of residues involved in
each update was randomly chosen in the range 2�12, as reported
in the original description of backrub.24 Fixed-lengthCRANKSHAFT
moves of length 5 were also attempted but were found to lead to
dramatically inferior performance.
4.5. Ubiquitin. All MC simulations on ubiquitin were con-

ducted using the standard Metropolis-Hastings Monte Carlo
scheme at T = 300 K. The move-set was composed as follows:
20% local moves, 75% single side-chain moves, and 5% pivot
moves. Two different types of single side-chainmoves were used:
with weight 2/3, samples were drawn from the Dunbrack back-
bone independent rotamer library55 (compensating for the bias
introduced), while the remaining 1/3 consisted of local side-
chain moves (see below). For the pivot moves, new values for the
j andψ values of a single, randomly chosen residue were drawn
from a Gaussian distribution with zero mean and σ = 1�.
4.6. Side-Chain Sampling. In order to obtain an efficient side-

chain sampling, we included a semilocal side-chain move in our
move set. Inspired by the biased Gaussian step,15 this move
consists of updating the χ side-chain angles with a constraint
toward small displacement of atoms involved as acceptors or
donors in hydrogen bonds (Figure S8). This type of move was
necessary in order to enable small adjustment of the side-chains
without breaking the dense network of noncovalent interactions
and was found to greatly facilitate both backbone and side-chain
transitions.
It is important to note that all MCmethods in our comparison

share the same set of Monte Carlo moves for the side chains. It is
thus the combination of improved backbone dynamics and
efficient side-chain dynamics that gives rise to the increased
fluctuations observed with CRISP.
4.7. RMSF Calculations. For each MC/MD simulation,

samples were dumped every 2 � 104 MC steps/4 ps and
superimposed on the crystal structure 1UBQ, excluding the
highly fluctuating terminal residues 71�76. The Cα RMSF of
each ensemble was calculated as the root mean squared deviation
from the mean position.
4.8. CRANKSHAFT. The CRANKSHAFT move24 includes an

optimized placement of Cβ and Hα atoms, which does not fulfill
detailed balance and is therefore omitted in our implementation.
4.9. Jensen-Shannon and Kullback�Leibler Divergence.

The average Jensen-Shannon divergence ÆJSD(MD )X)æ be-
tween the reference ensemble MD and the ensemble produced
by the method X was calculated as

ÆJSDðMDjjXÞæ ¼ 1
m ∑

m

i¼ 1

1
N ∑

N

j¼ 1
JSDðpj

MD
ðj,ψÞjjpjXiðj,ψÞÞ

ð4Þ
where the index i runs over the 10 simulations, j runs over the
residues, and p is thej,ψ probability distribution estimated using
a binning procedure.
The Kullback�Leibler ensemble distance measure was calcu-

lated as described in the original reference.40 In short, assuming
the ensembles to be modeled as multivariate normal distribu-
tions, it is possible to find a closed-form expression for the KL
divergence, which has a direct interpretation in terms of similarity
between ensembles. This measure was averaged over 10 runs. All

the samples are aligned to the crystal structure 1UBQ prior to the
analysis.
4.10. Availability. The CRISP method is implemented as

part of the Phaistos software package, freely available under the
GNU General Public License v3.0 at sourceforge.net/projects/
phaistos.
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Text S1 - Analytical solution for chain closure

Figure 1 illustrates the degrees of freedom involved in the post-rotation. The leftmost C, N and Cα atoms
are the last positions that are affected by the pre-rotation, and will remain fixed during post-rotation.
By construction, the positions of the rightmost N and Cα and C atoms as well as all the bond lengths
and the dihedral angle ωp should be unaffected by the local move. Only the position ~r2 of the central
C atom will be updated during post-rotation, resulting in new values for the dihedral angles χ1, χ3, χ6,
and bond angles χ2, χ4, χ5 (in blue, Fig. 1).

Cα N

Cα

C

CN

C

Figure 1. The post-rotation step. This step proceeds by calculating the position of the central C atom
(in blue), from which all bond vectors ~p0 . . . ~p4 can be determined, resulting in new values for the 6
post-rotational degrees of freedom χ

(1)
post . . . χ

(6)
post. The peptide dihedral angle ωp does not vary during

post-rotation.

Let i represent the atom number along the backbone, and ~ri be the corresponding position vectors
relative to the origin of the global coordinate system. By assumption, the lengths pi of all bond vectors
~pi = ~ri − ~ri−1 are known. Since ~r1 and ~r3 are known, the vector ~∆ = ~r3 − ~r1, is also known (see Fig. 1).
In the following we determine ~p3 from ~∆ and ωp and use ~r2 = ~r3 − ~p3 to obtain the desired position of
the C-atom. In order to determine ~p3 it is convenient to define the orthonormal basis {êi}

ê1 =
~p2 + ~p3

|~p2 + ~p3|
=
~∆
∆
, ê2 =

~p4 − (~p4 · ê1)ê1
|~p4 − (~p4 · ê1)|

, ê3 = ê1 × ê2. (1)

Applying the law of cosines, the projection of ~p3 on ê1 is given by

~p3 · ê1 = p3,1 =
∆2 + p2

3 − p2
2

2∆
. (2)

Since ωp is fixed we can use the definition of the dihedral angle

cos (ωP ) =
(~p2 × ~p3) · (~p3 × ~p4)
|(~p2 × ~p3)||(~p3 × ~p4)|

=
(ê1 × ~p3) · (~p3 × ~p4)
|(ê1 × ~p3)||(~p3 × ~p4)|

(3)

to obtain a quadratic expression for ~p3 · ~p4. Squaring Eq. (3) and applying the vectorial identity
(~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d)− (~a · ~d)(~c ·~b) we obtain

(p2
3,1 + p̃2

3,⊥)[~p3 · ~p4]2 − 2p2
3p3,1p4,1[~p3 · ~p4] + p2

3(p
2
3p

2
4,1 − p2

4p̃
2
3,⊥) = 0 (4)
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where p̃2
3,⊥ = (p2

3 − p2
3,1) cos2(ωP ) and p4,1 = ~p4 · ê1. Eq. (4) provides two solutions. To avoid large

conformational changes we choose the solution for which the scalar product

~p3 · ê2 = p3,2 =
~p3 · ~p4 − p3,1p4,1

|~p4 · ê2|
(5)

deviates least from the same quantity calculated from the original structure. Finally, the component of
~p3 along ê3 is given by

~p3 · ê3 = p3,3 = ±
√
p2
3 − p2

3,1 − p2
3,2. (6)

Once again, the sign of the solution is chosen according to the original structure. Eq. (2), (5) and (6) give
the three components of ~p3 with respect to the known ortonormal basis, Eq. (1) and which allows us to
position the C-atom, ~r2. From here, all post-rotational degrees of freedom, {χi}, can then be obtained.

We emphasize that in the calculations carried out so far we have fixed the peptide dihedral angle
ωp, in order to make our kinetic approach equally applicable to cases where all ω-angles are kept fixed.
From a mathematical point of view, however, it is easier to fix the bond angle χ5, releasing the degree of
freedom ωp. In this case the scalar product ~p3 · ~p4 is given by the original structure and the projection
p3,2 in Eq. 5 is readily determined.

Text S2 - First order approximation

The derived analytical solution allows us to express the six post-rotational degrees of freedom
χ̄post = (χ(1)

post . . . χ
(6)
post) as a function of the pre-rotational ones χ̄pre = (χ(1)

pre . . . χ
(n−6)
pre ). The change

of each post rotational degrees of freedom, δχ(k)
post upon the pre-rotation δχ̄pre can be evaluated to first

order as

δχ
(k)
post =

n−6∑
j=1

∂χ
(k)
post

∂χ
(j)
pre

δχ(j)
pre =

n−6∑
j=1

Sk,jδχ
(j)
pre (7)

where the index j runs over the n − 6 pre-rotational degrees of freedom and S is a 6 × (n − 6) matrix.
This matrix is most easily evaluated using

Sk,j =
∂χ

(k)
post

∂χ
(j)
pre

=
3∑

i=0

∂χ
(k)
post

∂~pi
· ∂~pi

∂χ
(j)
pre

=
3∑

i=0

~Zk,i · ~Λi,j (8)

Here, the index i runs over the four bond vectors ~p0 . . . ~p3. For convenience and ease of reference, we

have introduced the matrices ~Z and ~Λ with vectorial elements, ~Zk,i =
∂χ

(k)
post

∂~pi
and ~Λi,j = ∂~pi

∂χ
(j)
pre

. The

multiplication between these matrix elements is understood as a scalar product. We shall derive each of
these matrices in turn.

Derivation of ~Z
To calculate ~Zk,i = ∂χ

(k)
post/∂~pi, we destinguish between the case where k refers to a bond (b) angle and

where it refers to a dihedral (d) angle. Furthermore, we shall refer to ~pi using a relative indexation, ~p−,
~p and ~p+, according to how ~pi relates to χ(k) (Fig. 2). Consequently, if χk is a bond angle then ~Zk,i = ~0
when ~pi does not equal either ~p− or ~p. Similarly, ~Zk,i = ~0 when χk is a dihedral angle and ~pi does not
equal either ~p−, ~p or ~p+. When χk is bond angle, χb, we derive from

~p− · ~p = − cos(χb)p−p (9)
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Cα N

Cα

C

CN

C

Figure 2. Definition of the notational relation between angles, χ and bond vectors ~p. The bond angle,
χb is defined from the two consecutive bond vectors ~p− and ~p. The dihedral angle, χd, is defined from
the three consecutive bond vectors ~p−, ~p and ~p+.

and
δ cos(χ) = − sin(χ)δχ (10)

the following expressions

∂χb

∂~p−
= − 1

sin(χb)
~p

p−p
;

∂χb

∂~p
= − 1

sin(χb)
~p−
p−p

. (11)

We note that these two expressions are always well-defined since sin(χb) is never close to zero for a bond
angle. However, this is not necessarily true for dihedral angles, χd. To ensure that the expression for
~Zk,i is always evaluable in this case as well, irrespective of the value of χd, we base the derivation on two
alternative formulas. For χd ∈ [π

4 ,
3
4π[∪ [− 3

4π,−
1
4π[, we use the definition

cos(χd) = ~b− ·~b+ (12)

whereas for χd ∈ [ 34π,
5
4π[∪ [− 1

4π,
1
4π[, we use

sin(χd) =
~p

p
· (~b− ×~b+). (13)

Here, ~b− = ~p−×~p
|~p−×~p| and ~b+ = ~p×~p+

|~p×~p+| .
Differentiating the cosine-version of χd, Eq. (12), with respect to ~pi leads to

∂ cos(χd)
∂~pi

=
∂~b+
∂~pi

·~b− +
∂~b−
∂~pi

·~b+. (14)

To evaluate the two terms, we observe that the differential of any vector ~b = ~v
v is given by

δ~b =
δ~v − (~b · δ~v)~b

v
. (15)

Furthermore, for all ~p, ~q, ~r 1

∂(~p× ~q)
∂~p

· ~r = ~q × ~r, ∂(~p× ~q)
∂~q

· ~r = ~r × ~p. (16)

1This equation is demonstrated by rewriting in tensor notation

[
∂(~p × ~q)

∂~p
· ~r]µ =

∂εαβγpβqγ

∂pµ
rα = εαµγqµrα = [~q × ~r]µ,

where ε is the Levi-Civita symbol.
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From Eq. (15) and Eq. (16) we can easily evaluate Eq. (14). For instance, for any vector ~q

∂~b−
∂~p−

· ~q =
∂

∂~p−

(
~p− × ~p

|~p− × ~p|

)
· ~q =

(~p× ~q)− (~p× ~b−)(~b− · ~q)
|~p− × ~p|

. (17)

Consequently, for the three cases of interest (−, ·,+), Eq. (14) becomes

∂ cos(χd)
∂~p−

= k1

[
(~p×~b+)− cos(χd)(~p×~b−)

]
∂ cos(χd)

∂~p
= k1

[
(~b+ × ~p−) + cos(χd)(~p− ×~b−)

]
+ k2

[
(~p+ ×~b−)− cos(χd)(~p+ ×~b+)

]
∂ cos(χd)
∂~p+

= k2

[
(~b− × ~p) + cos(χd)(~p×~b+)

]
(18)

where we have defined
k1 =

1
|~p− × ~p|

, k2 =
1

|~p× ~p+|
.

Finally ~Zk,i is obtained using
∂χd

∂~pi
= − 1

sin(χd)
∂ cos(χd)
∂~pi

.

When χd ∈ [ 34π,
5
4π[∪ [− 1

4π,
1
4π[, we determine the matrix elements from the differential of Eq. (13)

∂ sin(χd)
∂~pi

=
∂

∂~pi

(
~p

p

)
· (~b− ×~b+) +

~p

p
·

(
∂~b−
∂~pi

×~b+ +~b− ×
∂~b+
∂~pi

)

=
∂

∂~pi

(
~p

p

)
· (~b− ×~b+) +

∂~b−
∂~pi

·
(
~b+ × ~p

p

)
− ∂~b+
∂~pi

·
(
~b− ×

~p

p

)
(19)

Therefore, by applying Eq. (17) and the vector identities

~a · (~b× ~c) = (~a×~b) · ~c = (~c× ~a) ·~b, (~a×~b)× ~c = (~a · ~c)~b− (~b · ~c)~a, ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

we obtain

∂ sin(χd)
∂~p−

= k1

[
p~b+ − sin(χd)(~p×~b−)

]
∂ sin(χd)

∂~p
=

~b− ×~b+
p

+ k1

[
(~b+ × ~p)× ~p−

p
+ sin(χd)(~p− ×~b−)

]
+ k2

[
(~b− × ~p)× ~p+

p
− sin(χd)(~p+ ×~b+)

]
∂ sin(χd)
∂~p+

= k2

[
p~b− + sin(χd)(~p×~b+)

]
(20)

The matrix elements, ~Zk,i, for χd ∈ [ 34π,
5
4π[∪ [− 1

4π,
1
4π[, are then finally obtained as

∂χd

∂~pi
=

1
cos(χd)

∂ sin(χd)
∂~pi

. (21)

Derivation of ~Λ
The matrix elements, ~Λi,j = ∂~pi

∂χ
(j)
pre

can be found directly when i = 0, 1 from the properties of rotation
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matrices. Let n̂j be the normalized vector associated with the j’th prerotational degree of freedom χ
(j)
pre,

defined as

n̂j =


~p
(j)
− ×~p(j)

|~p(j)
− ×~p(j)|

if χ(j)
pre is bond angle

~p(j)

p(j) if χ(j)
pre is dihedral angle

where ~p(j)
− and ~p(j) are bond vectors associated with the j’th prerotational degree of freedom, c.f. Fig. 2.

Then
∂~pi

∂χ
(j)
pre

= n̂j × ~pi, for i = 0, 1. (22)

To determine the matrix elements for ~Λi,j when i = 2, 3, we shall take the following approach. First, we
determine the tensorial relation between δ~p3 and δ~r1 from the analytical chain-closure solution. Let this
relation be written as δ~p3 = Π3 · δ~r1, where Π3 is a rank two tensor2. Secondly, we apply the known
relation between δ~r1 and δχj , which is given by an expression similar to Eq. (22). Combining these
results will yield the matrix elements ~Λi=3,j . The remaining matrix-elements, ~Λi=2,j , are finally obtained
from ~Λi=3,j , using the relation δ(~p2 + ~p3) = δ~∆ = −δ~r1 which implies

δ~p2 = −δ~p3 − δ~r1 = −(Π3 + I) · δ~r1, (23)

where I is the identity tensor.
To determine Π3 we begin by projecting the variation of the vector ~p3 on the orthonormal basis defined

in Eq. (1)

δ~p3 =
3∑

i=1

δ((~p3 · êi)êi) =
3∑

i=1

δ(p3,iêi) =
3∑

i=1

p3,iδêi +
3∑

i=1

êiδp3,i (24)

We calculate each of these terms in turn. The differential of ê1 is given by

δê1 = δ

(
~∆
∆

)
=

1
∆

(δ~∆− (ê1 · δ~∆)ê1) = (I− ê1ê1) ·
δ~∆
∆
.

Here, ê1ê1 represents the outer product between ê1 and ê13. Defining also δ~∆′ = δ~∆
∆ , we write

δê1 = (ê2ê2 + ê3ê3) · δ~∆′, (25)

where I =
∑3

n=1 ênên has been used. Using Eq. (15) the differential of the second basis vector becomes

δê2 = δ

(
~p4 − p4,1ê1
|~p4 − p4,1ê1|

)
=

1
p4,2

[δ(~p4 − p4,1ê1)− (δ(~p4 − p4,1ê1) · ê2)ê2]

=
1
p4,2

[−δ(p4,1ê1) + (δ(p4,1ê1) · ê2)ê2] , (26)

where we have used the fact that ~p4 remains constant, δ~p4 = 0. Since p4,3 = 0 the variation of p4,1

becomes
δp4,1 = ~p4 · δê1 = p4,2(ê2 · δ~∆′)., (27)

2A rank two tensor corresponds uniquely to a 3 × 3 matrix once a basis system is defined.
3In the rest of this text the multiplication between two vectors, ~a~b, is understood as an outer product, unless a different

product (· or ×) is explicitly specified. We remind the reader that the outer product is a rank two tensor defined from the

relations (~a~b) ·~c = ~a(~b ·~c) and ~c · (~a~b) = (~c ·~a)~b. Consequently, if ai and bj are the components of ~a and ~b with respect to a

given basis then ~a~b can be represented as a matrix, M , with elements Mij = aibj .
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where Eq. (25) has been used. Using the linearity of differentials and inserting Eq. (25) and Eq. (27) in
Eq. (26) we obtain

δê2 =
(
p4,1

p4,2
ê2ê2 − ê1ê2 −

p4,1

p4,2
ê2ê2 −

p4,1

p4,2
ê3ê3

)
· δ~∆′ = −(ê1ê2 +

p4,1

p4,2
ê3ê3) · δ~∆′ (28)

Consequently,

δê3 = δ(ê1 × ê2) = ê1 × δê2 − ê2 × δê1 = −ê1 ×
(
ê1ê2 +

p4,1

p4,2
ê3ê3

)
· δ~∆− ê2 × (ê2ê2 + ê3ê3) · δ~∆′

=
(
p4,1

p4,2
ê2ê3 − ê1ê3

)
· δ~∆′. (29)

This concludes the first summation on the right hand side of Eq. (24). The first term in the second
summation is directly evaluable from the law of cosines

δp3,1 = δ

(
∆2 + p2

3 − p2
2

2∆

)
= (1− p3,1

∆
)δ∆ = (1− p3,1

∆
)
~∆ · δ~∆

∆

= (∆− p3,1)(ê1 · δ~∆′) = p2,1(ê1 · δ~∆′). (30)

The second term, δp3,2, is found from

δp3,2 = δ

(
~p3 ·

~p4 − p4,1ê1
p4,2

)
(31)

=
1
p4,2

[δ(~p3 · ~p4)− δ(p3,1p4,1)− p3,2δp4,2] . (32)

This expression involves δp3,1, δp4,1, δp4,2 and δ(~p3 · ~p4). The first two differentials are given by Eq. (30)
and Eq. (27), respectively. The third differential is obtained from Eq. (28)

δp4,2 = ~p4 · δê2 = −p4,1(ê2 · δ~∆′). (33)

Finally, δ(~p3 · ~p4) is related to δp3,1 and δp4,1 through the quadratic formula in Eq. (4). Taking the full
differential of Eq. (4) leads to

δ(~p3 · ~p4) = −δa(~p3 · ~p4)2 + δb(~p3 · ~p4) + δc

2a(~p3 · ~p4) + b
(34)

where a, b, c are the coefficients

a = p2
3 cos2(ωp) + p2

3,1 sin2(ωp)

b = −2p2
3p3,1p4,1

c = p2
3(p

2
3p

2
4,1 − (p2

3 − p2
3,1)p

2
4 cos2(ωp))

and

δa = 2p3,1 sin2(ωp)δp3,1

δb = −2p2
3(p4,1δp3,1 + p3,1δp4,1)

δc = 2p2
3(p

2
3p4,1δp4,1 + p2

4p3,1 cos2(ωp)δp3,1)
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Consequently,

δ(~p3 · ~p4) = − (~p3 · ~p4)2p3,1 sin2(ωp)− (~p3 · ~p4)p2
3p4,1

D
δp3,1 −

p2
3p

2
4p3,1 cos2(ωp)

D
δp3,1 +

− p4
3p4,1 − (~p3 · ~p4)p3,1p

2
3

D
δp4,1 = Aδp3,1 +Bδp4,1, (35)

where we have defined D = p2
3(~p3 · ~p4) cos2(ωp)− p3,1p4,1p

2
3 + p2

3,1~p3 · ~p4 sin2(ωp). Note that if one chooses
to fix the bond angle (χ5 in Fig. 1) instead of the dihedral angle (ωp in Fig. 1), δ(~p3 · ~p4) vanishes.
Inserting equations (30),(27), (33),( 35) in Eq. (32) we get

δp3,2 =
p2,1

p4,2
(A− p4,1)(ê1 · δ~∆′) +

(
p3,2p4,1 − p3,1p4,2

p4,2
+B

)
(ê2 · δ~∆′)

= Ã(ê1 · δ~∆′) + B̃(ê2 · δ~∆′). (36)

Returning to Eq. (24), the only remaining differential is δp3,3. By exploiting the invariance of the length
p2
3 = p2

3,1 + p2
3,2 + p2

3,3 this term becomes

δp3,3 = − (p3,1δp3,1 + p3,2δp3,2)
p3,3

= − (p3,2Ã+ p3,1p2,1)(ê1 · δ~∆′) + p3,2B̃(ê2 · δ~∆′)
p3,3

(37)

This concludes the derivation of δ~p3. Inserting Eq. (30, 36, 37, 25, 28, 29) into Eq. (24) we finally obtain

δ~p3 =
[

p2,1ê1ê1 − p3,2ê1ê2 − p3,3ê1ê3

+Ãê2ê1 + (B + p3,2p4,1
p4,2

)ê2ê2 + p3,3p4,1
p4,2

ê2ê3

−p3,2Ã+p2,1p3,1
p3,3

ê3ê1 − p3,2B̃
p3,3

ê3ê2 + p3,1p4,2−p3,2p4,1
p4,2

ê3ê3

]
· δ
~∆
∆
. (38)

The sum over outer products of basis vectors in the bracket on the right hand side represents a rank two
tensor relating δ~∆

∆ to δ~p3. Since δ~∆ = −δ~r1 we can express this relation as

δ~p3 = Π3 · δ~r1 = Π3 ·

n−6∑
j=1

[
n̂j × (~r1 − ~r(j)pre)

]
δχ(j)

pre

 , (39)

where Π3 is readily obtained from Eq. (38) and ~r(j)pre is the position of the atom associated with the j’th
prerotational degree of freedom, i.e. the anchoring point of the rotation related to χ(j)

pre. With respect to
the basis {êi}, Π3 has the matrix representation

Π3 =
1
∆


−p2,1 p3,2 p3,3

p2,1
p4,2

[p4,1 −A] −
[
B + p3,2p4,1

p4,2

]
−p3,3p4,1

p4,2

p2,1
p3,3

[
p3,2
p4,2

A− C
]

p3,2
p3,3

[B + C] C

 , (40)

where C = p3,2
p4,1
p4,2

− p3,1 and A and B are defined by Eq. (35). Eq. (39) and Eq. (40) conclude the

calculation of the matrix elements ~Λ3,j . Finally, defining Π2 = −(Π3 + I) as in Eq. (23)), the variation
of ~p2 is found as

δ~p2 = Π2 ·

n−6∑
j=1

[
n̂j × (~r1 − ~r(j)pre)

]
δχ(j)

pre

 (41)
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which concludes the calculation of the remaining matrix elements ~Λ3,j . The full results are summarized
in the next section.
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Text S3 - M Matrix

The calculations presented above allow us to express the variation of the post-rotational degrees of freedom

as δχ̄post = S(χ̄pre, χ̄post)δχ̄pre, with Sk,j =
∑3

i=0

∂χ
(k)
post

∂~pi
· ∂~pi

∂χ
(j)
pre

=
∑3

i=0
~Zk,i · ~Λi,j .

~Z is a 6× 4 matrix whose vectorial elements are given by

~Z =



~D−(~p0, ~p1, ~p2, χ1) ~D(~p0, ~p1, ~p2, χ1) ~D+(~p0, ~p1, ~p2, χ1) ~0
~0 ~B−(~p1, ~p2, χ2) ~B(~p1, ~p2, χ2) ~0
~0 ~D−(~p1, ~p2, ~p3, χ3) ~D(~p1, ~p2, ~p3, χ3) ~D+(~p1, ~p2, ~p3, χ3)
~0 ~0 ~B−(~p2, ~p3, χ4) ~B(~p2, ~p3, χ4)
~0 ~0 ~0 ~B−(~p3, ~p4, χ5)
~0 ~0 ~0 ~D−(~p3, ~p4, ~p5, χ6)


Here, χj refers to the j’th postrotational degree of freedom and

~B−(~p−, ~p, χ) = − 1
sin(χ)

~p

p−p
; ~B(~p−, ~p, χ) = − 1

sin(χ)
~p−
p−p

.

For ~D−,·,+, two sets of equations are available. If χd ∈ [π
4 ,

3
4π[∪ [ 54π,

7
4π[

~D−(~p−, ~p, ~p+, χ) = k1

[
(~p×~b−) cot(χ)− ~p×~b+

sin(χ)

]
; ~D+(~p−, ~p, ~p+, χ) = k2

[
(~b+ × ~p) cot(χ) +

~p×~b−
sin(χ)

]

~D(~p−, ~p, ~p+, χ) = cot(χ)
[
k1(~b− × ~p−)− k2(~b+ × ~p+)

]
+
k1(~p− ×~b+)− k2(~p+ ×~b−)

sin(χ)

otherwise when χd ∈ [ 34π,
5
4π[∪ [− 1

4π,
1
4π[

~D−(~p−, ~p, ~p+, χ) = k1

[
p

~b+
cos(χ)

− tan(χ)(~p×~b−)

]
; ~D+(~p−, ~p, ~p+, χ) = k2

[
p

~b−
cos(χ)

+ tan(χ)(~p×~b+)

]
~D(~p−, ~p, ~p+, χ) =

1
p cos(χ)

[
(~b− ×~b+) + k1(~b+ × ~p)× ~p− + k2(~b− × ~p)× ~p+

]
+ tan(χ)

[
k1(~p− ×~b−)− k2(~p+ ×~b+)

]
where the following quantities have been defined

~b− =
~p− × ~p

|~p− × ~p|
; ~b+ =

~p× ~p+

|~p× ~p+|
; k1 =

1
|~p− × ~p|

; k2 =
1

|~p× ~p+|
.

~Λ is a 4× (n− 6) matrix whose elements are given by the vectors

~Λ =


n̂

(1)
pre × ~p0 . . . n̂

(n−7)
pre × ~p0 0

n̂
(1)
pre × ~p1 . . . n̂

(n−6)
pre × ~p1

Π2 · [n̂(1)
pre × (~r1 − ~r(1)pre)] . . . Π2 · [n̂(n−6)

pre × (~r1 − ~r(n−6)
pre )]

Π3 · [n̂(1)
pre × (~r1 − ~r(1)pre)] . . . Π3 · [n̂(n−6)

pre × (~r1 − ~r(n−6)
pre )]


with

n̂(i)
pre =


~p
(i)
− ×~p(i)

|~p(i)
− ×~p(i)|

if χ(i)
pre is bond angle

~p(i)

p(i) if χ(i)
pre is dihedral angle
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Π2 and Π3 are given by

Π3 =
1
∆


−p2,1 p3,2 p3,3

p2,1
p4,2

[p4,1 −A] −
[
B + p3,2p4,1

p4,2

]
−p3,3p4,1

p4,2

p2,1
p3,3

[
p3,2
p4,2

A− C
]

p3,2
p3,3

[B + C] C

 ; Π2 = −(Π3 + I)

having defined

A =
(~p3 · ~p4)(p2

3p4,1 − (~p3 · ~p4)p3,1 sin2(ωp))− p2
3p

2
4p3,1 cos2(ωp)

D

B =
p2
3((~p3 · ~p4)p3,1 − p2

3p4,1)
D

C = p3,2
p4,1

p4,2
− p3,1

D = p2
3(~p3 · ~p4) cos2(ωp)− p3,1p4,1p

2
3 + p2

3,1~p3 · ~p4 sin2(ωp)

where pi,j indicates the projection of the bond vector ~pi on the unit vector êj defined in Eq. (1).
The matrix S constitutes one of the building blocks of the CRISP proposal distribution. Considering

Eq. (1) in the main text, we write

p(δχ̄) ∝ exp
{
−λ

2
(δχ̄)T Cn(δχ̄)

}
= exp

{
−λ

2
(δχ̄pre‖δχ̄post)T (Cn−6 ⊕C6)(δχ̄pre‖δχ̄post)

}
= exp

{
−λ

2
(δχ̄pre‖Sδχ̄pre)T (Cn−6 ⊕C6)(δχ̄pre‖Sδχ̄pre)

}
(42)

where ⊕ is the matrix direct sum and ‖ indicates the concatenation of column or row vectors 4. Therefore

p(δχ̄pre) ∝ exp
{
−λ

2
(δχ̄T

pre(Cn−6 + ST C6S)δχ̄pre)
}

= exp
{
−1

2
(δχ̄T

preMδχ̄pre)
}

(43)

which gives the final expression of the proposal distribution of Eq. (3).

4Given two row vectors ā = [a1, a2, . . . , an] and b̄ = [b1, b2, . . . , bm] their concatenation is ā‖b̄ = [a1, a2, . . . , an, b1, . . . , bm]
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Fig. S1 The first order approximation δχ̄post = Sδχ̄pre is validated by checking that

lim
|δχ̄pre|→0

|(δχpost)i − (∆χpost)i|
|δχ̄pre|

= 0 (1)

where δχ̄post is the angular variation calculated via the first order approximation and ∆χ̄post is the
actual change introduced during post-rotation. In the plot we show the quantity defined in Eq.(1) for
each degree of freedom, calculated for 25000 CRISP moves on protein G (PDB entry 2GB1). As shown
in panel (a), the limit in Eq.(1) is satisfied for all the 6 post-rotational degrees of freedom. (b) Scatter
plot of the actual change ∆χ̄post vs. the predicted variation δχ̄post = Sδχ̄pre for the optimal choice of
the parameters (λ = 200 and k = 65, Fig. S5). The plots refer to 25000 attempted moves on protein
G. With these settings, the average pre-rotation is < |δχ̄pre| >= 6.13◦, with an average absolute error
< |δχ̄post −∆χ̄post| >= 0.58◦
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Fig. S2 By tuning the free parameter λ, the allowed angular variation during pre-rotation can be
varied both for the CRA and the CRISP move. If the pre-rotation is made too large, however, no
solution for chain-closure is available under the constraint of fixed bond length. The selection
probability used in CRISP allows to propose tentative updates over a much larger range compared to
CRA, without affecting the success of the chain closure. Each point reports the percentage of moves for
which a solution for post-rotation is found averaged over 1000 attempted moves on protein G (PDB
entry 2GB1).

Text S4 - Outline of the Monte Carlo algorithm

As demonstrated by Theodorou and coworkers,1 the solution of the concerted rotation problem entails
a temporary change in the variables used to describe the geometrical configuration from χ̄post to the
six degrees of freedom of the constraint. This transformation is not metric preserving, and a Jacobian
determinant J(χ̄post) relating the volume elements in the two coordinates frames is required in order to
preserve detailed balance. This consideration leads to the Metropolis-Hastings acceptance probability for
a move χ̄→ χ̄′ given by

Pa(χ̄→ χ̄′) = min
[
1,
Peq(χ̄′, χ̃)W (χ̄′ → χ̄)J(χ̄′post)
Peq(χ̄, χ̃)W (χ̄→ χ̄′)J(χ̄post)

]
(2)

where Peq(χ̄, χ̃) = Z−1 exp(−βE(χ̄, χ̃)) is the Boltzmann equilibrium distribution, E is the energy, and
χ̃ are the degrees of freedom unaffected by the move. W (χ̄′ → χ̄) is the probability of proposing state χ̄′

when currently in state χ̄.
In this context, the natural choice for the selection probability W is given by Eq. 43. The procedure for
a complete CRISP move on n degrees of freedom in a protein of length N is:

• Select a start index s in the range [1, N −m], where m is the number of residues involved in the
move.

• Calculate the matrix M for the current structure χ̄.

• Draw a set of variations δχ̄pre from the distribution of Eq. 43 as previously described2: the M
matrix is first separated by a Cholesky decomposition M = LLT . A vector of independent random
numbers ψ̄ is then draw from a Gaussian distribution with zero mean and unit variance. Finally,
the system LT δχ̄pre = ψ̄ is solved for δχ̄pre.

• Modify the pre-rotational degrees of freedom χ̄′pre = χ̄pre + δχ̄pre.

• Find the solution for the chain closure using the analytical solution, leading to a new conformation
χ̄′ = (χ̄′pre, χ̄

′
post).
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• If a solution is found, calculate the ratio J(χ̄′post)W (χ̄′→χ̄)

J(χ̄post)W (χ̄→χ̄′) .

• Accept the move with the probability given by Eq. (2).
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Fig. S3 We verify the correct implementation of CRISP move by checking that the dihedral degrees of
freedom are uniformly distributed in the absence of a force field. The histogram shows the dihedral
angle population for all the φ, ψ angles of protein ubiquitin in the absence of the force field using
CRISP moves. Each bar represents the counts in one of the 16 bins for each dihedral angle in the chain.
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Fig. S4 We verify the correctness of the MC approach by comparing the angular distribution obtained
from 5× 100ns SD simulations performed with TINKER on Alanine 5 (left column) with the angular
distribution obtained from 5× 108 steps MC simulations using CRISP (right column). The same test
was performed using CRA and CRANKSHAFT, giving similar results.
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Table S1 Comparison between average collective variables calculated using SD and different MC
methodologies. Averages and standard error of the average calculated on 5× 108 MC steps / 5× 100ns
simulations on Ala5.

Energy (Kcal/mol)∗ Radius of Gyration (Å) RMSD (Å)†

SD −258.367± 1.113 3.754± 0.148 1.787± 0.099
CRA −256.856± 0.824 3.820± 0.117 1.809± 0.106
CRANKSHAFT −253.969± 0.572 3.866± 0.072 1.764± 0.081
CRISP −255.847± 0.498 3.857± 0.066 1.809± 0.029

∗ OPLSaa potential + GB/SA solvation energy.
† The alignment is performed on Ala5 in helical conformation
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Fig. S5 Probability distribution and cumulative probability distribution of energy jumps based on 105

proposed CRA, CRISP and CRANKSHAFT local moves on protein ubiquitin, using the OPLSaa

potential in combination with the GB/SA solvation model. For the local part of the energy (angle bend
and dihedral energy), all the distributions are characterized by one mode around zero. CRA shows a
heavy right-side tail, as a consequence of the large variations in bond angles introduced by this move
during post-rotation. CRISP and CRANKSHAFT behave very similarly, however it must be highlighted
that in each single CRISP move 12 bond and 12 dihedral angles are modified, while in CRANKSHAFT
moves 4 dihedral and 2 bond angles are varied at a time. Non local interactions (charge-charge, van der
Waals and solvation energy) contributes to a similar extent to the total energy jump. As shown in the
plots on the right, concerted-rotation methods introduce less dramatic variations compared to
CRANKSHAFT move, for which, in the 50% of the cases, a variation in energy larger than 10 Kcal/mol
is introduced, corresponding to an acceptance probability < 0.25% at physiological temperature.
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Fig. S6 Dependence of the average correlation time τ̄d of the 20 central dihedral angles of Ala14 and of
the energy, τe, on the choice of the parameter λ (In the notation introduced in the original CRA paper
the parameter λ corresponds to c1. The values of the other CRA parameters were set to c2 = 8 and
c3 = 20 as described in the original paper). The solid line is a polynomial fit of the data to guide the eye.
For each value of λ, 5 independent runs were started in the α-helical conformation, fluctuating around
that state throughout the simulation. Correlation times were calculated using the Jackknife analysis3

by subdividing the N observations of the quantity of interest, o, in NB blocks of length l containing all
data except one of the previous binning blocks oJ,n = Nō−

Pl
i=1 o(n−1)l+i

N−l . In the Jackknife analysis, the

correlation time τ of the observable o is estimated as τ = liml→∞
N(NB−1)3

NB

σ2
J

2σ2
o

= liml→∞ f(l), where σ2
J

is the block variance and σ2
o the sample variance. For N � l, we observed that f(l) is a monotonically

increasing function of l. We therefore estimated τ by fixing N = 109 and ensuring the convergence of f
as l→∞. For both CRISP and CRA the value of the parameter λ that minimize the correlation time is
λopt = 200, which was used in all simulations carried out in this work. The optimal choice of the
auxiliary parameter k, which set the scale the allowed variations of bond and peptide dihedral angle
with respect to the variations of φ and ψ (c.f. Eq. (2)) in the main text, was determined by choosing k
such that the average dihedral stepsize 〈δω〉 = 1

N

∑N
i=1 |δωi| is maximized, where |δωi| =

√∑nω

j=1 δωj is
the average dihedral variation per local move. This procedure led to an optimal kopt = 65.
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Fig. S7 Average Jensen-Shannon divergence in φ/ψ space between the ensemble composed by the all
the MD structures (MD) and SD, CRISP, CRA, CRANKSHAFT simulations. The average distance
between single MD simulations and the MD ensemble is shown in black/gray. Averages and standard
deviations (illustrated as shaded regions) are calculated over ten independent runs. This detailed
residue-wise measure of ensemble differences provides additional support for the conclusion in the main
text that the CRISP method more accurately reproduces the MD ensemble than existing MC-methods.
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Fig. S8 Snapshots from a Monte Carlo simulation on ubiquitin, illustrating the sidechain sampling
problem. Throughout the simulation, LYS11 visits different rotamer states such as the one shown in
yellow, in which only one hydrogen bond with THR9 is present, and in blue, where three non-covalent
interactions are formed. In this situation any sudden rotameric jump from the latter state would be
energetically unfavorable, and as an effect the sidechain is locked in this state. Inspired by the Biased
Gaussian Step method2, we overcome this difficulty by introducing sidechain moves constrained towards
small displacement of atoms involved as acceptors or donors in hydrogen bonds This type of move was
found to greatly facilitate the inter-conversion between different rotamer states, especially for buried
residues involved in the dense network of non-covalent interactions.
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2.2 PHAISTOS: A Framework for Markov Chain Monte

Carlo Simulation of Proteins

Although based on a very simple idea, the development, design and implementation of

a Monte Carlo software package for biomolecular simulations entails a number of the-

oretical and technical challenges. Together with Dr. Wouter Boomsma (Department

of Astronomy and Theoretical Physics, University of Lund, Sweden) and the group of

Structural Bioinformatics led by Prof. Thomas Hamelryck (Department of Biology, Uni-

versity of Copenhagen, Denmark) we developed PHAISTOS, a framework for Markov

chain Monte Carlo simulation of proteins. In this research article we present the main

features of the package and we discuss current applications of the software.

This is a co-author article, I was involved in the design and development of the code

used to perform many of the trial MC updates, and I implemented parts of the OPLSAA

force-field and GB/SA solvent model. Moreover, I did extensive debugging and testing

of the package, and contributed to the code documentation.
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Abstract

We present a new framework for conducting Markov chain Monte Carlo sampling
for protein simulation, prediction, and structural inference from experimental data.
The software package contains implementations of a number of recent advances in
Monte Carlo methodology, such as highly efficient local kinetics and sampling from
probabilistic models of local protein structure. Currently, two established force-fields
are available within the framework, the PROFASI effective forcefield, and OPLSAA

with the GB/SA implicit solvent model. A flexible command-line and configuration
file interface allows users to quickly set up a simulation with the desired settings.

PHAISTOS is released under the GNU General Public License v3.0. Source code
and documentation are freely available at http://phaistos.sourceforge.net. The
software is implemented in C++, and has been tested on Linux and OS X platforms.
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We present a new software package for conducting protein
simulations. The PHAISTOS framework contains implemen-
tations of a range of novel sampling techniques developed
over the last years, which are now made available for the
first time. The package provides tools for a variety of dif-
ferent tasks, including reversible folding simulations and pre-
diction/determination of structure from experimental data.
The code is released under an open source license and full
documentation is available online.
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INTRODUCTION

Two methods dominate the field of molecular simulation: molecular dynamics (MD) and

Markov chain Monte Carlo (MCMC). MD involves iteratively calculating the forces exerted

on each particle in a system, and using Newton’s equations of motion to update their posi-

tions. In contrast, MCMC is a statistical approach, where the goal is to generate samples

from the Boltzmann distribution associated with the system. MD has typically been regarded

as best-suited for exploring the native ensemble of dense systems, while MCMC methods are

typically used for longer time scale simulations. However, using improved move sets, it has

recently been demonstrated that even in the densely packed native state, MCMC can serve

as an efficient alternative to MD1.

Although several publicly available MCMC simulation packages exist2–5, these packages

have not generally obtained the same broad acceptance in the scientific community as some

of the best-known MD packages. The framework presented in this paper contains imple-

mentations of various recently developed tools that increase the efficiency of MCMC-based

simulations. By making our methods available in an easily extendible framework, we hope to

further encourage the use of MCMC for protein simulations, and promote the development of

new MCMC methodologies for the simulation, prediction and inference of protein structure.

METHODOLOGY

The main distinguishing feature of the PHAISTOS package is efficient sampling, obtained

through an elaborate set of both established and novel Monte Carlo moves. Comple-

mented with an interface to the MUNINN generalized ensemble MCMC program (http:

//muninn.sourceforge.net/), this constitutes an ideal tool for rapidly exploring protein

conformational space. The set of available moves include various types of pivot moves, the

crankshaft/backrub local move6,7, the CRA local move8, and the semi-local biased Gaussian

move9. Side-chain sampling can be done either from Gaussian distributions given by rotamer

libraries10 or by sampling values locally around the current state. Finally, PHAISTOS con-

tains a number of unique new moves, described in the sections below. Note that all moves
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in PHAISTOS can be applied so that they obey detailed balance, which ensures, together

with the ergodicity provided by MUNINN-based sampling, that simulations sample from a

well-defined target distribution.

The user can specify all simulation settings directly from the command line or in a con-

figuration file, making it possible to quickly set up a simulation. In particular, this allows

the user to readily experiment with different force-fields and parameter values. Currently,

two well-known force-fields are available: PROFASI4, and the OPLSAA
11 forcefield in com-

bination with the GB/SA implicit solvent model12.

PHAISTOS also serves as an easily extendible library for the development of tools for

protein structure simulation, inference and prediction. One of the design goals in PHAISTOS

is to ensure that new energy terms and moves can be easily implemented with little knowledge

of the overall code. Iterators are provided for easy iteration over atoms in a molecule. In

addition, caching and rapid determination of interacting atom pairs is made possible by an

implementation of the chaintree algorithm13. Through a modular build-system, users can

readily write their own modules utilizing the library.

Probabilistic models

We recently developed a number of probabilistic models that describe protein structure on

a local length scale. A unique feature of the models is that they allow sampling of protein-

like conformations in continuous space, providing a statistically rigorous alternative to the

widely used fragment and rotamer libraries. Three different models are available: FB5HMM

covers the Cα trace of a protein14, while TORUSDBN and BASILISK, respectively, model

backbone and side-chain structure in atomic detail15,16. All models can be applied both as

proposal distributions (moves) and as components of an energy function.

Efficient local kinetics

To ensure efficient sampling in densely packed environments, PHAISTOS includes the CRISP

method, a novel Monte Carlo move that produces local deformations in a small segment of a

protein chain. Unlike other local move approaches7,8, CRISP makes it possible to generate
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small updates to the chain without disrupting its local geometry. We have recently shown

that this can have a dramatic impact on simulation performance, in particular around the

densely packed native state1.

Generalized Ensembles

In addition to fixed temperature Metropolis-Hastings (MH) simulations, PHAISTOS in-

cludes support for conducting simulations in generalized ensembles. While MH simulations

generate samples from the Boltzmann distribution, generalized ensemble methods can avoid

convergence and ergodicity problems by sampling from a modified distribution, after which

sampled structures can be reweighted to obtain the original Boltzmann distribution at any

given temperature. We have recently developed an automated method, MUNINN, for esti-

mating weights in generalized ensemble simulations (http://muninn.sourceforge.net/).

It employs the generalized multi-histogram equations17, and uses a non-uniform adaptive

binning of the energy space, ensuring efficient scaling to large systems. Optionally, weights

can be restricted to cover a limited temperature range of interest.

RESULTS

To illustrate the versatility of PHAISTOS, we highlight several recently published applica-

tions of the framework.

Reversible folding and native ensembles

The OPLSAA
11 and PROFASI4 energy functions, available in PHAISTOS, represent two

extremes in the range of force-fields available in the literature: an ultrafast force-field mod-

eling effective interactions in a solvent, which has been successfully used for reversible folding

simulations of a range of proteins4, and a highly detailed classic molecular mechanics force-

field, which is useful in the exploration of details of native ensembles. The energy landscape

around the native state tends to be rugged, and it can be challenging to sample such states

efficiently. For such tasks, the CRISP move is particularly well suited, given its ability to pro-
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pose subtle, non-disruptive updates to the protein backbone. Monte Carlo simulations using

this move were recently shown to perform on par with molecular dynamics, outperforming

the current state-of-the-art in local move methods1.

The TYPHON program18 (implemented as a PHAISTOS module) rapidly explores near-

native ensembles by using the CRISP move in combination with a user-defined set of non-

local restraints. Local structure is under the control of probabilistic models of the backbone

(TORUSDBN) and side chain (BASILISK), while non-local interactions such as hydrogen

bonds and disulfide bridges are imposed as Gaussian restraints. Typhon can be seen as a ”null

model” of conformational fluctuations in proteins: it rapidly explores the conformational

space accessible to a protein given a set of specified restraints.

Structure prediction and determination

PHAISTOS can also be applied in the context of protein structure prediction and inference

from experimental data. A recent study demonstrated the prediction aspect using a combi-

nation of TORUSDBN with probabilistic models of compactness and hydrogen bonding19.

The framework also includes support for simulations restrained with various types of

experimental data. Small angle X-ray scattering (SAXS) is an experimental technique that

provides low resolution information on the overall shape of a protein. It is particularly useful

for determining the relative orientations in multi-domain proteins or complexes. PHAISTOS

contains a SAXS-module that provides support for inferring the structure of proteins con-

sisting of multiple domains connected by flexible linkers, given the atomic structures of the

individual domains. The method relies on the efficient back-calculation of SAXS curves

based on a coarse grained Debye method20. Furthermore, PHAISTOS was recently used for

inferential structure determination using NOE data21.

Efficient clustering

Efficient clustering of large numbers of protein structures is an important task in protein

structure prediction and analysis. Typically, clustering programs require the costly calcu-

lation of the root mean square deviations (RMSD) for many pairs in the set of structures.
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PHAISTOS contains a clustering module called PLEIADES, that uses a K-means clustering

approach to avoid the calculation of pairwise RMSD calculations. Furthermore, the RMSD

distance computations can be replaced with distances between vectors of Gauss integrals22,

a technique which provides dramatic computational speedups23.

DISCUSSION

The PHAISTOS framework provides a set of tools for conducting MCMC simulations of

protein systems, incorporating efficient conformational sampling and generalized ensembles.

The sampling efficiency is ensured through an extensive set of Monte Carlo moves. This

includes both a novel local move, and several biased proposal moves, in which the sampling

is controlled by probabilistic models of local structure, a technique which is unique to this

framework14–16.

In conclusion, PHAISTOS extends the scope of MCMC methods for protein simulation,

prediction and structural inference. The software is freely available, providing the scientific

community with a versatile toolkit for a wide variety of in silico protein challenges. The

source code is fully documented using the Doxygen system, and a user manual is available

for detailed descriptions on how simulations are set up. Both sources of information are

accessible via the PHAISTOS web site http://phaistos.sourceforge.net.
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2.3 An Efficient Null Model for Conformational Fluctua-

tions in Proteins

In this research paper we present a simple yet accurate Monte Carlo method to charac-

terize the flexibility of proteins in near-native conditions. The approach is based on the

idea of conducting a Monte Carlo simulation using probabilistic models of local struc-

ture to describe the φ, ψ backbone and χ side-chain angles propensities of proteins,

while imposing a set of user-defined restraints (e.g. hydrogen bonding and disulfide

bridges) to model the non-local interactions of near-native conformations. In this con-

text, the conformational space is efficiently explored with the use of CRISP moves. The

method is validated by comparing the native dynamics obtained from the simulations

with experimental measurements.

This is a co-author article, I was involved in the design and implementation of the

method used to combine the MC moves together with the probabilistic model of local

structure. In addition, I contributed to analyze the trajectories obtained from the MC

simulations.
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SUMMARY  

Protein dynamics plays a crucial role in function, 
catalytic activity and pathogenesis. Consequently, 
there is great interest in computational methods that 
probe the conformational fluctuations of a protein. 
However, molecular dynamics simulations are 
computationally costly and therefore often limited to 
comparatively short timescales. 

TYPHON is a novel method to explore the 
conformational space of proteins under the guidance 
of a probabilistic model of local structure and a given 
set of restraints that represent nonlocal interactions 
such as hydrogen bonds or disulfide bridges.  The 
choice of the restraints themselves is heuristic, but 
the resulting probabilistic model is well-defined and 
rigorous. Conceptually, TYPHON constitutes a null 
model of conformational fluctuations under a given 
set of restraints. 

We demonstrate that TYPHON can provide 
information on conformational fluctuations that is in 
correspondence with experimental measurements. 
TYPHON provides a flexible yet computationally 
efficient method to explore possible conformational 
fluctuations in proteins. 

 
INTRODUCTION 

Over the past few decades it has become increasingly 
accepted that proteins are dynamic molecules (Stryer 
1988). While many proteins adapt unique and specific 
folds, their inherent flexibility is often essential to the 
protein’s function. However, flexibility can also lead to 
pathogenesis through misfolding, possibly leading to the 
formation of aggregates and fibrils (Dobson 2003; Teilum 
et al. 2009a).  

Computer simulations have emerged as important 
tools to study the dynamics of proteins, complementing 
the data obtained from biophysical experiments. A variety 
of methods are available, ranging from detailed, all atom 
molecular dynamics (MD) simulations (McCammon et al. 
1977; Karplus and McCammon 2002; Hess et al. 2008) to 
coarse grained and approximative methods such as 

normal mode analysis (NMA) (Levitt et al. 1983), elastic 
networks (Zheng et al. 2007), tCONCOORD (de Groot et 
al. 1997; Seeliger and Groot 2009) and FRODA (Jacobs 
et al. 2001; Wells et al. 2005). All methods come with a 
trade off between the level of detail and the computational 
cost for obtaining useful information.  

The concept behind MD simulations is to approximate 
the physical forces acting on a protein and to calculate the 
motion of particles in the system by applying Newton’s 
laws of motion (McCammon et al. 1977; Karplus and 
McCammon 2002; Hess et al. 2008). Since the calculation 
of these physical forces is computationally expensive, MD 
simulations are usually limited to short timescales — 
typically in the range of hundreds of nano second. The 
high level of detail in MD simulations make general 
physical conclusions viable (van Gunsteren et al. 1996; 
Brooks et al. 2009). However, the timescales routinely 
accessible through MD simulations rarely cover the full 
dynamic range of proteins. Coarse grained MD 
simulations sacrifice certain atomic details to gain a 
computational advantage, thus allowing longer simulation 
times or simulations of larger systems. Merging multiple 
atoms into so called beads or pseudo atoms is a common 
approach to reduce the number of particles in the system 
(Marrink et al. 2007). Another solution to overcome the 
computational cost of MD simulations is to use faster 
computer hardware. Shaw and co-workers were able to 
achieve a millisecond simulation using custom built, 
special purpose hardware (Klepeis et al. 2009; Shaw et 
al. 2010).  
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HIGHLIGHTS 

• TYPHON explores a protein’s conformational 
space under given non-local restraints.  

• TYPHON’s advanced probabilistic models ensure 
protein-like local structure.  

• TYPHON can reproduce a range of experimental 
results.  

• TYPHON’s computational efficiency makes large 
scale screening efforts possible.1 

•  
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Many faster, heuristic alternatives to MD have been 
developed. The idea behind elastic network (EN) models 
is that the dynamics of folded, native proteins are rather 
limited compared to unfolded dynamics, and overall 
governed by the inter-residue contact topology (Bahar 
and Rader 2005). Over the past years, the 
computationally efficient EN models have replaced the 
original harmonic potentials in many NMA approaches 
(Bahar and Rader 2005; Yang et al. 2009). In EN models, 
the protein’s atoms are viewed as point masses that are 
interconnected by springs. Often only the backbone Cα  
atoms are included. Subsequently, a number of 
conformations are sampled and a principal component 
analysis is performed on the generated ensemble, 
yielding the normal modes (Levitt et al. 1983).  However, 
ensembles sampled from EN models can also be used in 
different scenarios (Zheng et al. 2007); vice versa, normal 
modes can also be calculated from ensembles generated 
in MD simulations (Hess et al. 2008).  

Other heuristic approaches that include atomic detail 
have gained popularity over the past years. FRODA 
(Jacobs et al. 2001; Wells et al. 2005) identifies rigid 
substructures in the protein structure to reduce the 
degrees of freedom for the subsequent simulation. 
Another widely used, heuristic tool is tCONCOORD (de 
Groot et al. 1997; Seeliger et al. 2007; Seeliger and Groot 
2009), which has successfully been applied in different 
contexts (Zachariae et al. 2008; Seeliger and De Groot 
2010). Here, the input structure is analyzed to create a 
network of constraints. Subsequently, tCONCOORD 
randomly perturbs the atom coordinates within a box 
around their initial positions in the native structure. Then, 
a Monte Carlo procedure changes the perturbed atomic 
positions until they again satisfy the constraints. In this 
procedure, the atomic positions are subject to changes 
sampled from a uniform distribution. Consequently, all the 
information is encoded in the constraint network; in the 

absence of constraints there is no information on how to 
arrange the atoms.  

Here, we present TYPHON, which adopts a 
probabilistic approach to exploring conformational 
fluctuations in proteins. TYPHON is based on two recent 
innovations: TorusDBN (Boomsma et al. 2008) and 
BASILISK (Harder et al. 2010). TorusDBN and BASILISK 
are probabilistic models of the conformational space of a 
protein’s main chain and its amino acid side chains, 
respectively. Both models are formulated as dynamic 
Bayesian networks (DBNs), and make use of directional 
statistics (Mardia and Jupp 2000) — the statistics of 
angles and directions — to represent protein structure in a 
natural, continuous space (Hamelryck et al. 2006; 
Boomsma et al. 2008; Harder et al. 2010). Together, 
TorusDBN and BASILISK constitute a probabilistic model 
of protein structure in atomic detail. This model is 
generative; plausible protein conformations can be 
efficiently sampled. Furthermore, TYPHON incorporates 
CRISP (Bottaro et al. 2012), an efficient method for 
applying local modifications to the protein’s conformation.  

The application of these probabilistic models in 
TYPHON ensures that the structure remains protein-like 
on a local length scale throughout the conformational 
sampling. The long-range structure is maintained by 
imposing different types of distance based restraints, 
which are heuristic representations of nonlocal 
interactions such as hydrogen bonds. TYPHON uses 
Gaussian distributions to implement the restraints, 
resulting in a valid probabilistic description of the restraint 
network and the local structure of proteins. This well 
justified probabilistic formulation differs from previous ad 
hoc approaches. TYPHON explores the conformational 
space accessible to a protein, within the limits imposed by 
the restraint network. In the absence of a restraint 
network, sampling is solely guided by the probabilistic 
models and results in an ensemble of extended 
conformations with realistic local structure, conceptually 
reminiscent of an “unfolded state”. 

In short, TYPHON can be considered a null model of 
conformational fluctuations given a set of probabilistic 
restraints. We again stress that our method is well 
justified given a chosen set of restraints; the biological 
relevance of the obtained conformations will necessarily 
depend on the relevance of the heuristic restraints. 
However, TYPHON provides default restraints, which 
typically deliver good results for common applications, as 
discussed below.  

In the following, we compare results obtained from 
TYPHON with experimental measures describing the 
native ensemble of folded proteins, including B-factors, 
nuclear magnetic resonance (NMR) order parameters and 
residual dipolar couplings (RDCs). The different measures 
allow us to investigate how well TYPHON captures the 
flexibility of a folded protein. We then demonstrate how 
local unfolding caused by the loss of metal ions is 
correctly modeled by TYPHON. Finally, we show how 
fluctuations of local structure can be investigated under 
the control of the probabilistic models, which is an 
additional attractive and innovative aspect of our 
approach.  

 
 

GRAPHICAL ABSTRACT 
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RESULTS 

Overview of TYPHON 

TYPHON samples protein structures from a joint 
probability distribution that includes local and nonlocal 
interactions (described in more detail in Experimental 
procedures). TYPHON incorporates several sophisticated 
probabilistic models to maintain the local structure, and 
uses simple Gaussian restraints to maintain relevant non-
local interactions. Although the choice of these non-local 
restraints is heuristic, the resulting joint probabilistic 
model is well defined and rigorous. In other words, if a 
suitable restraint network can be chosen for the problem 
of interest, TYPHON will typically deliver good results, 
obtained from a well defined probability distribution.  

By default, TYPHON automatically detects the 
hydrogen bond network. The geometry of the individual 
hydrogen bonds is restrained using a simple model based 
on four distances modeled by Gaussian probability 
distributions. Disulfide bridges are by default treated in a 
similar way. By default, TYPHON also restrains all 
distances between Cα  atoms that are five or more 
residues apart in the amino acid chain, and within six Å of 
each other. The latter restraints aim to capture general 
interactions that stabilize the protein, such as the 
hydrophobic effect.  

The user can manipulate and verify the restraint 
network. For example, it is possible to disregard all 
hydrogen bonds involving side chains, or to add or 
remove restraints between arbitrary atom pairs. In this 
manuscript, we use different restraint networks to answer 
different questions. These networks range from involving 
Cα  atoms (see Experimental B-factors) over hydrogen 
bonds (see Generating a native ensemble) to a small 
number of disulfide bridges (see Local structure under the 
control of probabilistic models).  

TYPHON is obviously limited with respect to modeling 
the formation and dissolution of non-local interactions 
themselves, as the restraint network is fixed throughout 
the sampling procedure. However, the secondary 
structure can to some extent be put under the control of 
the probabilistic models (see Local structure under the 
control of probabilistic models), allowing for formation and 
dissolution of certain hydrogen bonds, notably in helices.  

 
Experimental B-factors 

The Protein Data Bank (PDB) (Berman et al. 2000) 
currently contains over 77,000 solved structures; the 
majority of them are determined by X-ray crystallography. 
Experimental B-factors associated with the atoms of a 
crystal structure often give a first indication of the 
conformational fluctuations within a protein. The B-factor 
reflects both the thermal vibrations of single atoms and 
small structural differences between molecules in the 
crystal. The latter contribution is of interest for inferring 
protein flexibility. In this test, we analyze whether 
TYPHON is able to reproduce the flexibility that is 
indicated by the B-factors of a protein.  

TYPHON makes it possible to sample an ensemble of 
structures that is close to the native structure. We 

illustrate this with the crystal structure of the 317 residue 
long protein Candida antarctica Lipase B (CalB, PDB: 
1tca) (Uppenberg et al. 1995). CalB is an enzyme with 
industrial applications that adopts an α/β fold. A short 
helix, consisting of residues 139 to 147, is suspected to 
act as a flexible lid that is important for catalysis, making it 
a prime subject of dynamics studies (Skøt et al. 2009). 
For comparison, we translated the experimental B-factors 
of the crystal structure into root-mean-square fluctuations 
(RMSF) using the following relation (Kuzmanic and 
Zagrovic 2010): 

  RMSFi
2 =

3Bi
8π 2  

where Bi  is the B-factor for the i-th residue.  
TYPHON used the crystal structure as sole input, from 

which 581 CαCα  Gaussian distance restraints were 
derived (see Experimental procedures). The sampling ran 
for 50 million iterations. Figure 1 shows RMS fluctuation 
calculated from the experimental B-factors for the crystal 
structure and from 1000 sampled conformations, chosen 
with a regular interval. The overall flexibility along the 
sequence is captured well. The lid region clearly displays 
a higher level of flexibility, in correspondence with its 
dynamic nature (Skøt et al. 2009). The good agreement 
with the experimental measure is also reflected in the 
Pearson correlation coefficient, which is equal to 0.71.  
 
Generating a native ensemble 

Advances in nuclear magnetic resonance 
spectroscopy (NMR) over the past decades made more 
detailed studies of dynamics in proteins possible. The S2  

	  
 

Figure 1: Experimental B-factors of Candida antarctica lipase 
B. The figure shows root-mean-square fluctuations calculated 
from the B-factors taken from the crystal structure (PDB: 1tca, 
green line) and calculated from a TYPHON simulation started 
from the same crystal structure (blue line). The secondary 
structure elements are indicated by blue circles for α-helices 
and red squares for β-strands. The lid region is indicated by 
the black bracket. 
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order parameter is a measure arising from NMR 
experiments describing the amplitude of motion of an N-H 
vector (Lipari and Szabo 1982). A backbone segment that 
is unrestricted in its movement, usually in a region of high 
flexibility, will have a low S2  value. For segments in more 
constrained or rigid regions of the protein, the S2  value 
will be higher. Analyzing S2  order parameters provides a 
more direct view on the dynamics of a protein compared 
to the B-factors. In this test, we analyze whether TYPHON 
is able to capture the fast dynamics of a protein as implied 
by the S2  order parameters.  

Ubiquitin is a well studied protein in terms of its 
dynamics; its relatively small size of 76 amino acids 
allows for both extensive MD simulations as well as NMR 
studies. Ubiquitin consists of a five stranded, twisted, 
antiparallel β-sheet with an α-helix lying across. A number 
of recent publications discuss the molecular recognition 
mechanisms using ubiquitin as a model system (Lange et 
al. 2008; Wlodarski and Zagrovic 2009; Long and 
Brüschweiler 2011).  

TYPHON sampling started from a single crystal 
structure of ubiquitin (PDB: 1ubi) (Ramage et al. 1994), 
with 46 automatically detected hydrogen bonds as 
restraints, and ran for 50 million iterations. A total of 1000 
structures were sampled in regular intervals. We also 
generated an ensemble of 1000 structures using 
tCONCOORD, starting from the same ubiquitin crystal 

structure and using default settings. For further 
comparison, we also included the order parameters 
calculated from an MD simulation of ubiquitin (Maragakis 
et al. 2008).  

Figure 2 shows the S2  order parameters calculated 
from the TYPHON ensemble following (Best and 
Vendruscolo 2004) and order parameters obtained from 
an experiment (Tjandra et al. 1995). The figure further 
shows order parameters calculated from a tCONCOORD 
ensemble obtained with default parameters and from an 
MD simulation (Maragakis et al. 2008). Overall, the S2  
parameters calculated from the TYPHON ensemble are in 
good agreement with the experimental measurements; 
the correlation coefficient for the two curves is 0.73. The 
most rigid region is located in the well ordered α-helix, 
between residues 23 and 33. This region is indeed rigid in 
the TYPHON ensemble as well, though overly so 
compared to the experimental results (Tjandra et al. 
1995). The terminal regions are the most flexible (see 
Figure 2). Recently, it was found that the increased 
flexibility in the C-terminus and in loop I, between the β1 
and β2 strands, is of importance for the molecular 
recognition mechanism of ubiquitin (Lange et al. 2008; 
Wlodarski and Zagrovic 2009). The ensemble generated 
by TYPHON accurately reflects the conformational 
fluctuations in these regions of interest.  

The order parameters calculated from the MD 
simulation match the experimental values less well; the 
correlation coefficient is 0.52. While the MD ensemble 
accurately reflects the flexibilities in loop I, it does not 
reproduce the fluctuations in the C-terminus well. The S2  
order parameters calculated from the tCONCOORD 
ensemble match the general trend of the experimental 
curve. The correlation coefficient is 0.53, which is also 
lower than for TYPHON. The generated ensemble 
appears to overemphasize the flexibility in certain loops, 
including the functionally important loop I – around 
residues 7 to 10. In addition, loop V — around residues 
63 to 65 — shows considerable discrepancy. Leaving out 
the flexible C-terminal region following (Lindorff-Larsen et 
al. 2005) results in correlation coefficients equal to 0.50, 
0.55 and 0.28 for the MD, TYPHON and tCONCOORD 
ensembles, respectively. In conclusion, TYPHON 
matches the experimentally determined order parameters 
well, indicating that the fast dynamics — as described by 
the Lipari-Szabo S2  parameters — are captured well in 
the generated ensemble.  

Residual dipolar couplings (RDCs) probe the bond 
vector geometry relative to an external magnetic field. 
Data acquisition in a nematic phase solvent or in the 
presence of a paramagnetic center can make 
measurement of RDCs in the solution state possible 
(Tjandra et al. 1997; Banci et al. 2004). RDCs are 
anisotropic quantities and thus average out when 
molecules undergo isotropic rotational diffusion. 

For ubiquitin, Cornilescu et al. (Cornilescu et al. 1998) 
obtained six sets of backbone RDCs in a nematic phase 
solvent based on phospholipid bicelles. The experimental 
data was obtained from the Biological Magnetic 
Resonance Data Bank (BMRB entry: 6457) (Ulrich et al. 
2007). We used the same TYPHON and tCONCOORD 
ensembles as in the previous section. Ensemble 

 

 
 

Figure 2: Experimentally determined S2  values (green) 
versus values calculated from a TYPHON ensemble (blue) for 
ubiquitin. The S2 order parameter is an experimental measure 
arising from NMR experiments that reflects flexibilities in the 
protein. It ranges from 0 (isotropic motion) to 1 (no motion). 
For comparison the figure also shows S2 order parameters 
calculated from an MD simulation (light blue) and from a 
tCONCOORD simulation (light red). The secondary structure 
is indicated by red squares for β-strands and blue circles for 
α-helices. The fragmentation of the lines is due to missing 
values for Ile23, Glu24, Asn25, Gln31, Ile36, Gly53, Arg72, 
Arg74, Gly75 and Gly76 in the experimental data, and for all 
proline residues. 
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averages were calculated from these ensembles using 
the procedure described by Showalter and Bruschweiler 
(Lindorff-Larsen et al. 2005; Showalter and Bruschweiler 
2007). 

Figure 3 shows experimentally determined Cα −CO  
RDCs in comparison with RDCs calculated from a 
TYPHON ensemble. Supplementary Figure 1 additionally 
shows correlation plots for all RDCs. In general, there is a 
good correlation between the values obtained from the 
TYPHON and the experimental data (see Table 1). The 
agreement with experiment for the TYPHON ensemble is 
comparable to the tCONCOORD ensemble and the 
crystal structure (1UBI). However, Q-factors for the 
TYPHON ensemble (0.37) are larger than for the 
tCONCOORD ensemble (0.28) and the crystal structure 
(0.23), suggesting better qualitative agreement of the 
tCONCOORD ensemble (Lipsitz and Tjandra 2004).   

While reproduction of experimental data such as 
residual dipolar couplings and order parameters serves as 

sanity check, it is difficult to make quantitative 
assessment of the physical time scales sampled 
(Showalter and Bruschweiler 2007). However, collectively, 
the results suggest that TYPHON samples broader 
ensembles in some regions of ubiquitin as compared to 
tCONCOORD. Regions that appear over-stabilized may 
be attributed to the employed restraints suggesting that 
TYPHON ensembles can be improved by input of expert 
knowledge. In view of the excellent structural quality of 
the generated decoys (compare section Quality of the 
sampled structures), these observations support the 
interpretation of TYPHON as a suitable “null model” of 
conformational fluctuations in proteins for a given set of 
restraints; given the nonlocal restraints, the probabilistic 
models of local structure ensure a thorough exploration of 
the remaining conformational space.  

 
Functional dynamics of an enzyme 

Ribonuclease (RNase) A is a pancreatic protein that 
cleaves single-stranded RNA; its structural dynamics are 
essential for its enzymatic function (Doucet et al. 2009; 
Formoso et al. 2010). The protein has 124 residues and 
adopts an α/β fold that consists of two domains flanking a 
catalytic site. In this experiment, we analyze whether 
TYPHON can reproduce the functional dynamics of 
RNase A. In addition, we compare the TYPHON 
ensemble to results obtained from NMA.  

We initialized TYPHON sampling from the RNase A 
crystal structure (PDB: 7RSA) (Wlodawer et al. 1988) and 
used the automatically detected hydrogen bond network 
with default settings, resulting in 76 hydrogen bonds and 
4 disulfide bridges. The sampling was run for 100 million 
iterations, from which 1000 structures were retained.  

As a measure of the structural flexibility of RNase A, 
we analyzed 132 experimentally determined structures 
with a maximum of one point mutation (for a complete list 
see supplementary Table 1). We superimposed the 
experimental structures using iterative RMSD 
minimization to the average structure and calculated the 
RMSF of the Cα  atoms. We call this set the high-
sequence similarity PDB ensemble (Best et al. 2006).  

In addition, we compare our result to the dynamics of 
the enzyme according to the elastic network model 
(ENM), a coarse-grained model of protein dynamics that 
has been used to analyze collective motions, residue 
fluctuations, and conformational changes (Tirion 1996; 
Hinsen 1998; Bahar and Rader 2005; Ma 2005; Kimber et 

 N−NH  CO−NH  Cα −Hα  N−CO  Cα −CO  Cα −Cβ  
Correlation coefficient 
average RDC TYPHON 

0.91 0.90 0.92 0.94 0.93 0.90 

Correlation coefficient 
average RDC tCONCOORD 

0.96 0.91 0.96 0.96 0.96 0.97 

Correlation coefficient 
Crystal structure (1UBI) 

0.98 0.96 0.93 0.99 0.99 0.97 

 
Table 1: Statistics for the RDC values obtained from the TYPHON and tCONCOORD ensembles of 
ubiquitin. Rows one and two: correlation coefficients of the TYPHON and tCONCOORD ensembles 
with the experimental data, respectively. Third row: correlation coefficient between the crystal 
structure 1UBI and for all six RDC types. 

 

 

	  
 

Figure 3: Cα −CO  RDC values for ubiquitin. The figure 
shows a comparison between experimentally determined 
Cα −CO  RDCs (green line) and RDCs calculated from a 
TYPHON ensemble using the procedure described in 
(Showalter and Bruschweiler 2007). (blue line), where the 
RDCs are plotted on the y-axis against the residue index on 
the x-axis. See also Figure S1. 
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al. 2010). In the ENM, the protein structure is 
approximated as a network of coupled harmonic 
oscillators between all Cα  atoms closer than a specified 
cut-off radius. The collective motions of the system can 
then be calculated using NMA. The ENM analysis was 
performed with the elNémo server and default 
parameters, using an 8Å cut-off distance to identify elastic 
interactions (Suhre and Sanejouand 2004). The server 
reports the RMSF calculated from the scaled Eigen 
vectors of the first hundred modes. 

The fluctuations found within the PDB and the 
TYPHON ensembles (Figure 4) are in good agreement; 
the correlation coefficient is 0.72. The overall flexibility 
pattern along the amino acid chain indicates increased 
mobility in the same regions. The amplitude of the 
fluctuations, however, is significantly larger for the 
TYPHON ensemble, indicating that a large volume of the 
conformational space is sampled. This again confirms the 
interpretation of TYPHON as a suitable null model of 
conformational fluctuations for a given set of restraints. 
Notably, loop I - consisting of residues 14 to 25 - has a 
high degree of flexibility (Figure 4). The dynamics of this 
loop are especially important for the catalytic activity of 
the enzyme (Doucet et al. 2009; Formoso et al. 2010). 
TYPHON sampling started from other crystal structures of 
RNase A in the PDB yielded similar results (PDB code 
3LXO (Doucet et al. 2010) and 2G8Q (Leonidas et al. 
2006)). In contrast, while having only a slightly lower 
correlation coefficient to the PDB ensemble (0.67), the 
result from the ENM analysis does not show an elevated 
flexibility in this loop. 

The dynamics of loop 1 is a requirement for the 
functional dynamics of RNase A; RNase has been shown 
to function through a concerted motion between an open 

form that can bind substrate and a closed form where 
catalysis occurs (Watt et al. 2007). In order to investigate 
how the TYPHON ensemble relates to these motions, we 
performed a principle component analysis on the 
TYPHON samples and isolated the main modes. The first 
mode, which contains the most important variations of the 
ensemble, indeed shows an opening and closing of the 
catalytic cleft, lending further evidence that the TYPHON 
ensemble can be used to explore enzyme dynamics. A 
video of the motion is part of the supplementary material 
(see SV1). 

 
Induced change in flexibility 

Large scale motions or major changes in flexibility in 
proteins are often induced by binding or releasing ligands. 
These ligands can be as complex as multi-atom 
substrates, inhibitors or drugs or as simple as single metal 
ions. In this test we use TYPHON to simulate partial 
unfolding upon loss of metal ions. This application 
illustrates how the probabilistic models “step in” to provide 
information in the absence of restraints.  

Cu/Zn superoxide dismutase (SOD1) is a ubiquitous 
protein in the cytoplasm that is associated with the 
neurodegenerative disease amyotrophic lateral sclerosis 
(ALS). ALS results in paralysis and respiratory failure 
within one to five years from onset (Pasinelli and Brown 
2006). The oligomerization of SOD1 is associated with a 
gain in toxic function. Experimental evidence suggests 
that a loss of the two metal ions induces structural 
changes to the monomeric form of SOD1 and 
subsequently leads to pathogenic aggregation (Teilum et 
al. 2009b). The exact pathway is however still unknown. 
We used the PDB:2v0a crystal structure as starting point 
for our experiments (Strange et al. 2007). SOD1 consists 
of a β  barrel with long loops connecting the antiparallel 
strands. It contains a disulfide bridge and has two 
associated metal ions: a copper ion that is coordinated by 
four histidines (residues 46, 48, 63, 120) and a zinc ion 
that is coordinated by three histidines and an aspartate 
(residues 63,71, 80 and 82).  

Ding and coworkers performed a molecular dynamics 
analysis of the SOD1 monomer (Ding and Dokholyan 
2008). They systematically tested the effect of losing 
metal ions and/or reducing the disulfide bridge. Each 
individual event leads to a significant increase in flexibility; 
the two most affected regions are both located in the long 
loop IV (Figure 5, A). The region around Cys57, which is 
involved in the disulfide bridge, is primarily affected by the 
loss of the disulfide bridge. The loss of the metal ions 
primarily affects the regions adjacent to the ion 
coordinating histidines. Other parts of the structure seem 
mostly unaffected by either event. Following this study, 
we analyzed the mobility of different forms of SOD1, 
namely the holo form with the C57-C146 disulfide bridge 
intact and the apo monomer with the disulfide bridge 
reduced. Again we used only a single crystal structure as 
starting point. We set up two different TYPHON 
experiments. For the apo experiment, we removed the 
automatically detected disulfide bridge and did not include 
any restraints involving the metal ions. For the holo 
experiment, we added the copper and zinc ions in the 
form of distance restraints that maintain the mutual 

 
 

Figure 4: Ribonuclease A dynamics: The plot show the RMS 
fluctuations measured from a set of PDB structures (see text, 
green line), from an ENM analysis (red line) and a TYPHON 
simulation (blue line). The secondary structure elements are 
indicated by blue circles for helical residues and red squares for 
strands. Loop I, including residue 14-25, is indicated by the 
black bracket. See also supplementary Figure 2, 
supplementary Video SV1 and supplementary Table ST1. 
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distances between the four ion-coordinating atoms (see 
supplementary Table 2), and included the disulfide bridge. 
The remaining restraint network, consisting of 73 
automatically detected hydrogen bonds, was identical in 
both setups. For each setup we ran three experiments of 
100 million iterations each, and combined the generated 
structures for the final evaluation in order to ensure 
converged sampling. Note that in the absence of the 
restraints concerning metal ions and disulfide bridge, the 
relative influence of the probabilistic models of local 
structure on the sampled conformations increases.  

Figure 5 shows the results of the different experiments 
in putty representation. The results show that the loss of 
the metal ions and the reduced disulfide bridge leads to a 
significant increase in flexibility, especially in the long loop 
IV between residues 49 and 83, but also in the loops II, VI 
and VII. The spike in flexibility around residue 57 can be 
attributed to the reduced disulfide bridge, which in the 
native structure covalently binds this surface loop. The 
increased flexibility in other parts of the protein is likely 
due to the loss of the metal ions. An interesting 
observation is also the increased flexibility in loop II 
around residue 25, which is not in direct contact with any 
of the mutated sites. We speculate that the overall 
increased mobility in the long loop IV and VI also 
influenced the flexibility in this region.  
The results closely resemble the results of Ding et al. that 
were obtained from molecular dynamics simulations. A 
TYPHON experiment requires about twenty hours, which 
would allow scanning of larger sets of clinically known 
mutations (Andersen et al. 2003). We point out that the 
increased mobility in loop II was not observed in the MD 
study of Ding et al. (Ding and Dokholyan 2008), which 
illustrates that TYPHON can deliver results that suggest 
starting points for new hypotheses or follow up studies. It 
should be noted that TYPHON only includes the steric 
component of the ion loss; changes in electrostatics or 
solvent accessibility are not directly accounted for. 
Nonetheless, in this case, modeling the effect of the metal 
ions as simple Gaussian restraints accurately reproduces 
the results obtained from much more sophisticated 
simulations, and leads to potentially interesting new 
observations.  
 
Local structure under the control of probabilistic 
models 
 

The Gaussian restraints obviously do not allow for 
formation or dissolution of nonlocal interactions; the 
restraint network is rigorously fixed during the sampling 
procedure. However, certain nonlocal interactions, such 
as hydrogen bonds in helices, can be put under the 
control of the probabilistic models instead. In practice, this 
means that certain conformational fluctuations of the 
protein backbone on a local length scale could be 
investigated. In this application, we explore and illustrate 
this approach with a small helical protein and investigate 
helical mobility and α / 310 -helix transitions.  

The Mature-T-Cell Proliferation Gene 1 (MTCP1) is a 
known oncogene that is linked to certain types of 
leukemia (Barthe et al. 2002). The structure of the human 
p8MTCP1  protein has been solved by NMR and consists of 

three helices. A stable α  hairpin connecting helix I and II 
is covalently held together by two disulfide bridges 
between residues 7, 38 and 17, 28 respectively. A third, 
less restricted and stable helix (helix III) is also connected 
to helix II with a third disulfide bridge between residues 39 
and 50 (Barthe et al. 1997). MD simulations indicate that 
helix III is fairly flexible with respect to the α  hairpin 
(Barthe et al. 2002).  

We first investigate to which extent the helices move 
with respect to each other. We therefore started from the 
first model of a p8MTCP1  NMR ensemble (PDB: 2hp8) 
(Barthe et al. 1997). The experiment ran for 100 million 
iterations with the three disulfide bridges as only 
restraints. However, we also imposed the secondary 

 
 

Figure 5: Cu/Zn Superoxide Dismutase (SOD1). (A) TYPHON 
ensemble obtained from the native monomer. The Cu and Zn 
ions are shown as an orange and a purple sphere, 
respectively. The C57-C146 disulfide bridge is shown as a 
stick representation. The roman numerals indicate the loop 
numbers. This ensemble corresponds to the blue line in (C). 
(B) TYPHON ensemble obtained without the ions and with 
the disulfide bridge reduced. This ensemble corresponds to 
the red line in (C). Panel (C) shows the corresponding RMSF 
curves. The disulfide bridge is indicated as a black line. The 
residues coordinating the metal ions are marked by orange 
and purple circles for the copper and zinc ion, respectively. 
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structure of the native structure according to DSSP 
(Kabsch and Sander 1983) through TorusDBN (Boomsma 
et al. 2008). This is a more flexible and “soft” way to 
restrain the sampling, as the helical regions are allowed to 
bend, or to a certain extent form and dissolve hydrogen 
bonds under the influence of the probabilistic model.  

Despite the absence of restraints besides those 
involving the three disulfide bridges, all helices remain 
stable throughout the sampling. Figure 6 A shows five 
representative structures from the ensemble. Helix I and 
helix II are tightly fixed by the interhelical disulfide bridges, 

which only allow limited movements. Helix III is only 
tethered by a single disulfide bond in the beginning of the 
helix, which results in higher flexibility. As indicated in 
Figure 6 A, helix III slightly tilts away from the other two 
helices, a behavior that has also been observed in MD 
simulations (Barthe et al. 2002).  

Figure 6 C shows the secondary structure content over 
the course of the first experiment. The consistent red bars 
show that all three helices remain fully helical throughout 
the sampling. In the beginning of helix III, we observe 
transitions between α - and 310 -helix, which is again in 
agreement with the results of an MD simulations (Barthe 
et al. 2002).  

In the second experiment, we investigate the stability 
of the helices themselves. We again included restraints 
concerning the three native disulfide bonds. However, this 
time we did not provide any secondary structure 
information to TorusDBN. In other words, this means that 
TorusDBN still enforces protein-like conformations, but 
does not require them to be helical.  

Again helix I and helix II remain stable throughout the 
sampling as indicated by the consistent red bars in Figure 
6 D. This is not surprising since both helices are 
covalently connected near their respective start and end. 
The entire protein structure however, is significantly more 
flexible, expressed by the movement of the helices with 
respect to each other (compare Figure 6 B). In contrast to 
helices I and II, helix III quickly unfolds up to residue 50, 
where it is covalently attached to helix II via a disulfide 
bridge.  

In addition to the unfolding helix III, we observe 
significant differences compared to the first experiment in 
the loop regions. In particular, for loop II, which connects 
helix II and III and stretches from residue 39 to 47, we 
observe a transition to an α -helix. The terminal 18 
residues of helix III readily unfold (see Figure 6 D), which 
points to a difference in stability between the first two and 
the third helix.  

This experiment strikingly demonstrates the 
possibilities of probabilistic models. In the first experiment, 
which includes the disulfide bridges and secondary 
structure information, we observed specific movements of 
the helices with respect to each other, and transitions 
from an α - to a 310 -helix in the beginning of helix III. Both 
observations concur with the results obtained from MD 
simulations (Barthe et al. 2002). In the second 
experiment, which includes the disulfide bridges but not 
the secondary structure information, we obtained some 
information on the relative stability of the helices 
themselves. Helices I and II remain stable, while helix III 
readily unfolds. Again, this difference in stability is in 
accordance with MD simulations (Barthe et al. 2002).  

 
Quality of the sampled structures 

In order to evaluate the quality of the structures, we 
analyzed 50 random structures from an RNase A 
ensemble, generated as described above, using 
PROCHECK (Laskowski et al. 1993). For comparison, we 
generated 50 tCONCOORD (Seeliger et al. 2007) 
samples for the same protein (starting from PDB: 7rsa). 

 
 
Figure 6: Local structure under the control of probabilistic 
models. (A,B) Five representative structures of the simulation 
(A) with and (B) without fixed secondary structure 
assignment. The disulfide bridges are shown in stick 
representation and highlighted in panel (B). (C,D) Secondary 
structure content of the simulation (C) with and (D) without 
fixed secondary structure input. The secondary structure was 
measured using DSSP. Color code: red is α -helix; yellow is 
310 -helix; gray is β -turn; blue is random coil. 
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The detailed PROCHECK reports can be accessed as 
supplementary documents SD1 and SD2.  

The Ramachandran map divides the main chain’s 
conformational space, as parameterized by the φ  and ψ  
angles, in different regions, some sterically more 
favorable then others (Ramachandran et al. 1963). Well-
refined protein structures are expected to have 90% or 
more of the backbone dihedral angles in the most 
favorable regions. The PROCHECK analysis indicates 
that the TYPHON samples are of good quality; over 88% 
of all angles are in the most favored regions. In contrast, 
the tCONCOORD samples have less than 70% of the 
backbone angles in these favored regions (Table 2).  

PROCHECK’s G factor is a measure of how well the 
analyzed structures match the observed distributions of 
bond lengths, bond angles and dihedral angles in crystal 
structures and is expected to be -0.5 or higher for well-
refined structures. Also in this respect, TYPHON samples 
have a higher quality then tCONCOORD samples; the G-
factor is -0.13 versus -0.69. The G factor takes the side 
chain quality into account; in this respect, TYPHON 
undoubtedly benefits from the detailed side chain 
modeling in BASILISK (Harder et al. 2010).  

Additionally, we performed a WHATIF (Vriend 1990) 
packing analysis of the TYPHON and tCONCOORD 
ensembles of RNase A. The structures generated by 
TYPHON have an average packing environment score of 
-1.495. Those generated by tCONCOORD have an 
average score of -1.944. As well-refined structures have a 
score around -0.5, both methods might be improved in 
this respect. 

 
Computational efficiency 

TYPHON is computationally efficient. The ubiquitin 
experiments used in this study were performed on a 
regular desktop computer (Intel Core i7, 2.8GHz) and ran 
for around 10 hours on a single CPU core. The human 
p8MTCP1  protein experiments comprising 100 million 
iterations ran for about 15h. Naturally, the runtime 
increases as the number of restraints in the network 
grows, though extensive caching in the calculations 
minimizes this effect to an extent. With increasing protein 
size, more iterations will be necessary to achieve a 
comparable level of convergence. While a parallelization 

of a single run onto multiple cores is not possible in the 
current implementation, it is possible to perform several 
TYPHON experiments in parallel to obtain better 
statistics.  

 
Discussion 

In this paper we present TYPHON, a novel approach 
to explore conformational fluctuations in proteins. 
TYPHON incorporates detailed probabilistic models of the 
conformational space of a protein’s main chain and its 
amino acid side chains (Boomsma et al. 2008; Harder et 
al. 2010) and an efficient local backbone resampling 
algorithm (Bottaro et al. 2012). During sampling by 
TYPHON, the conformational space is restricted by a set 
of restraints imposed on the structure. These restraints 
typically concern nonlocal interactions such as hydrogen 
bonds, disulfide bridges or interactions with metal ions. 
The protein structure on a local length scale, including 
main chain and side chains, is controlled by the 
probabilistic models.  

In this study, we show that TYPHON is able to 
generate structural ensembles that closely resemble 
native ensembles described by experimental measures. 
This includes fluctuations as measured by S2  order 
parameters, as well as measured by RDC values. The 
RNase A study shows not only that TYPHON captures the 
functional dynamics in the correct regions, but also that a 
principal component analysis of the results is feasible to 
identify large-scale motions. The analysis of the 
superoxide dismutase results shows that TYPHON can be 
used to model effects due to the gain or loss of a ligand, 
including partial unfolding.  

Its computational efficiency makes TYPHON a 
promising tool for larger screening efforts; for example, of 
known mutations with clinical relevance. Another 
interesting application lies in generating suitable 
candidate structure for docking experiments, allowing for 
some degree of flexibility in the binding pocket (Henzler 
and Rarey 2010). The high quality of the generated 
structures indicates that no irrelevant parts of the 
conformational space are explored. On the other hand, 
TYPHON thoroughly samples the relevant conformational 
space.  

Residues in regions tCONCOORD TYPHON 
Most favored 69.8% 88.1% 
Additionally allowed 26.3% 10.8% 
Generously allowed 3.1% 0.7% 
Disallowed 0.7% 0.5% 
φ /ψ  G factor -0.93 -0.24 
χ1  G factor -0.26 0.10 
Overall G factor -0.69 -0.13 

  
Table 2: Quality assessment of structures generated by TYPHON. The table lists the results of a 
PROCHECK analysis of a set of TYPHON and tCONCOORD samples. Well-refined structures 
usually have 90% or more percent of all residues in the most favored regions. The G factor is a log 
odds score; higher numerical values denote higher quality. See also supplementary documents SD 
1 and SD2. 
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The results of the human p8MTCP1  protein experiments 
demonstrate another strength of our approach. With only 
a minimal set of restraints defined for the system, the 
effect of the probabilistic models becomes obvious. They 
control the local structure and maintain the overall 
secondary structure, while still allowing for significant 
conformational fluctuations. It should be noted that it is 
also possible to run TYPHON without explicitly defining 
the secondary structure, leading to significantly broader 
sampling.  

In the current implementation, TYPHON keeps the 
constraint network fixed during the sampling. As a next 
step, it would be advantageous to allow more flexibility in 
the restraint network, such as the dissolution or formation 
of arbitrary hydrogen bonds as the sampling progresses. 
However, this will require the development of a suitable 
probabilistic model of nonlocal interactions in proteins, 
and its seamless combination with the probabilistic 
models of local structure. Fortunately, important 
theoretical progress was recently made in this respect 
(Hamelryck et al. 2010). Another interesting addition 
would be to directly include restraints from experimental 
data (Olsson et al. 2011).  

 
Availability 

TYPHON is available as part of the Phaistos package 
(Borg et al. 2009) and can be obtained freely from 
sourceforge under the GNU public license1. Currently the 
Phaistos package is limited to single chain proteins. 
However, support for multiple chains will be added in the 
next release. 
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EXPERIMENTAL PROCEDURES 

Overview  

The TYPHON network calculation starts from a full 
atom protein structure, including all the hydrogen atoms. 
A restraint network is either loaded from an input file or 
created according to the protocol described in the 
following section. In the course of the sampling, the 
dihedral angles in both the main chain and as well as in 
the side chains are modified under the control of 
TorusDBN (Boomsma et al. 2008) and BASILISK (Harder 

                                                        
1 http://sourceforge.net/projects/phaistos/ 

et al. 2010), respectively. An efficient local moves method 
makes subtle movements of the protein backbone 
possible (Bottaro et al. 2012), and also affects the bond 
angles in the backbone (see below).  

 
Restraint network calculation 

TYPHON currently supports three classes of restraints, 
involving hydrogen bonds, disulfide bridges and distance 
restraints between arbitrary atoms. In the absence of any 
user input, the program suggests a network using default 
parameters described in the following paragraphs. This 
default network is mainly based on biologically relevant 
restraints, such as hydrogen bonds and disulfide bridges. 
In order to stabilize parts of the protein that are naturally 
stabilized by effects that are not modeled explicitly, 
TYPHON also connects residues that are far apart in the 
amino acid sequence, but close in space. The user can 
edit the generated network by adding, removing or 
modifying restraints between arbitrary atoms.  

We evaluate all potential hydrogen bonds using the 
DSSP hydrogen bond energy (Kabsch and Sander 1983). 
Following Kabsch and co-workers, we discard all 

candidates with a DSSP energy higher than -0.5 kcal
mol

. If 

an atom has multiple potential hydrogen bonding 
partners, only the one with the lowest energy is retained. 
Following the general idea of the DSSP hydrogen bond 
energy, the hydrogen bond geometry is modeled using 
four distances. For backbone-backbone hydrogen bonds, 
these respective distances are explained in more detail in 
supplementary Figure 3. For hydrogen bonds involving 
side chains, the corresponding standard hydrogen bond 
acceptors and donors are used; asparagine, aspartate, 
glutamine and glutamate can act as hydrogen bond 
acceptors; arginine, asparagine, glutamine, histidine, 
lysine, serine, threonine, tryptophan and tyrosine can act 
as hydrogen bond donors. 

Disulfide bridges are required to have a SγSγ  
distance of 3 Å or less. Similar to hydrogen bonds, the 
geometry of the disulfide bond is also modeled by four 
distances, consisting of the SγSγ , CβSγ , SγCβ  and 
CβCβ  distances.  

The last class of restraints that are detected by default 
connects residues that are far apart in the amino acid 
sequence but close together in space. These restraints 
stabilize parts of the protein that are naturally stabilized by 
effects not accounted for explicitly in TYPHON, such as 
hydrophobic interactions. Residue pairs that are five or 
more residues apart in the sequence but within six Å 
(CαCα  distance) are modeled by a Gaussian probability 
distribution on the distance between the two Cα  atoms. 
The distance in the input structure is used as mean µ . 
The variance σ 2  is set proportional to the square of the 
distance:  

σ 2 =
µ
6
!

"
#

$

%
&
2

 

This value was chosen by trial-and-error and produces 
reasonable results. It allows for more flexibility with 
increasing distance.  
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Especially when modeling large scale movements, the 
automatically detected restraints will not always yield the 
best results. In order to keep the framework flexible and to 
utilize the expert knowledge of the researcher, TYPHON 
allows modifying the restraints and adding distance 
restraints between arbitrary atom pairs in the structure. In 
that way, the researcher may additionally stabilize certain 
parts of the structure or allow more flexibility in other 
parts. It is also possible to remove automatically detected 
restraints, for example when a certain hydrogen bond is 
known to be weak. 

To further simplify this process, TYPHON can 
generate a PyMOL (Schrödinger 2010) script that 
visualizes the restraints. This makes it possible to quickly 
detect regions that need manual, expert interaction. 
Figure 7 shows different restraint networks visualized 
using the generated PyMOL script. 

 
Unstable hydrogen bonds 

Hydrogen bonds that are in direct contact with solvent 
molecules are known to be significantly less stable than 
those that are well shielded. Fernandez et al. (Fernández 
and Berry 2002; Fernández et al. 2002; Fernández and 
Scott 2003; Fernández 2010) proposed the concept of 
dehydrons; insufficiently shielded hydrogen bonds that 
are more likely to break. They showed that the number of 
the carbonaceous groups, CHn , in a shell around the 
hydrogen bond is a good estimate of water accessibility. 
tCONCOORD incorporates this convenient measure to 
judge the stability of a hydrogen bond (Seeliger et al. 
2007). We extended their approach, which was only 
formulated for backbone hydrogen bonds, to apply to 
hydrogen bonds involving side chains as well. We 
therefore moved the centers of the two spheres 
composing the dehydration shell to the donor nitrogen 
and the acceptor carbon atoms (Fernández and Berry 
2002; Fernández et al. 2002; Fernández and Scott 2003; 
Fernández 2010). We recalibrated the measure using 
counts of carbonaceous groups derived from a set of high 
resolution crystal structures previously used as training 

data for BASILISK (Harder et al. 2010). Following 
Fernandez et al. (Fernández and Berry 2002; Fernández 
et al. 2002; Fernández and Scott 2003; Fernández 2010), 
we defined the threshold between weak and strong 
hydrogen bonds as the 4% percentile of the counts. This 
resulted in thresholds equal to 14, 9 and 7 for backbone-
backbone, backbone-side chain and side chain-side chain 
hydrogen bonds, respectively. All weak hydrogen bonds 
are removed from the restraint network by default.  

 
Protein backbone move 

TYPHON sampling is usually started from the native 
state of a protein, that is, from a densely packed, compact 
structure. In order to capture the subtle movements and 
flexibilities in compact proteins, it is important to propose 
local updates of the backbone conformation. A local move 
only affects a limited part of the protein backbone - such 
as a stretch of five residues - while the rest of the protein 
remains unchanged.  

In TYPHON, we use a novel type of local move, called 
CRISP (Bottaro et al. 2012). Similar to other methods (Go 
and Scheraga 1970; Dodd et al. 1993; Hoffmann and 
Knapp 1996; Ulmschneider and Jorgensen 2003), a local 
move consists of a concerted rotation of the bond and 
dihedral angles of the backbone atoms of neighboring 
residues. Each move involves four elementary steps: (1) 
Choose a random stretch in the protein chain. (2) Pre-
rotation: Propose a set of bond and dihedral angle 
variations in the first N − 6  degrees of freedom. (3) Post-
rotation: calculate the six remaining degrees of freedom 
such that the loop closes. (4) Calculate the bias 
introduced by performing such a non-random modification 
of the chain. The bias calculation is important when the 
method is used in a Markov chain Monte Carlo sampling 
scheme to ensure detailed balance.  

This geometrical problem is tackled in a novel and 
original manner. We derived an analytical solution for the 
post-rotational step, thus avoiding the tedious numerical 
solution of a system of six equations for the six unknown 
degrees of freedom. The analytical solution is used to 

 
 

Figure 7: Restraint Network. Depicted are three different calculated networks for ubiquitin (PDB 1ubi). (A) A network that includes 
all hydrogen bond types (red: backbone hydrogen bonds, purple: backbone-side chain hydrogen bonds, yellow: side chain-side 
chain hydrogen bonds) as well as Cα  contacts (green). (B) A network that includes only the backbone hydrogen bonds. (C) A 

network that only includes Cα contacts. The cutoff was 7 Å. The minimum sequence separation between the residues in the chain 
was two. See also supplementary figure 3. 
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derive an efficient strategy to draw tentative updates of 
the chain. This scheme makes it possible to continuously 
control the angular variations of all degrees of freedom 
involved. The CRISP method thus improves on previous 
concerted-rotation methods where, in order to satisfy all 
geometrical restraints, tentative updates of the chain are 
often radically different from the original structure or 
introduce a suboptimal local structure.  

 
Protein side chain move 

To propose a new side chain conformation, we use our 
previously developed probabilistic model of side chain 
conformational space, BASILISK (Harder et al. 2010). 
BASILISK is a dynamic Bayesian network that makes it 
possible to sample side chain conformations for all 
relevant amino acids in continuous space. By default, 
TYPHON resamples a single, randomly picked residue at 
a time, proposing an entirely new set of χ  angles for the 
side chain. Both the bond length and the bond angles 
remain unchanged. In order to have a roughly equal 
amount of accepted changes affecting side chains and 
backbone, TYPHON on average resamples five side 
chains for every backbone move, since a local move 
affects five backbone residues.  

 
Sampling strategy and scoring functions 

For sampling, we use a classic Markov chain Monte 
Carlo (MCMC) approach. According to the Metropolis-
Hastings (Metropolis et al. 1953; Bishop 2006) sampling 
scheme, a newly proposed X '  structure is accepted with 
the following likelihood:  

Pacc (X→ X ') =min 1, P(X ')Q(X '→ X)
P(X)Q(X→ X ')

"

#
$

%

&
'  

where Pacc (X→ X ')  is the probability of accepting to 
move from structure X  to structure X ' ; P(X)  and P(X ')  
is the probability of X  and X ' , respectively; Q(X→ X ')  
and Q(X '→ X)  are the probabilities of proposing to move 
from X  to X '  and from X '  and X , respectively. P(X)  is 
defined as:  

P(X)∝PR (X)PT (X | A)PB(X | A)Δ(X)  
where A  is the amino acid sequence; PR (X)  is the 

probability density of the restraint network, consisting of 
the product of the probability densities of the individual 
Gaussian restraints; PT (X | A)  is the density of the 
backbone angles according to TorusDBN; PB(X | A)  is the 
probability density of the side chain angles according to 
BASILISK; and Δ(X)  is a clash term that is either one or 
zero. This simple clash function is introduced to avoid 
close contacts between atoms. We reject every structure 
with one or more atom pairs below a specific distance 
cutoff. The exact cutoff distance depends on the atoms 
involved: 1.5 Å for a hydrogen atom and any other atom; 
1.8 Å for Sγ  atoms, in order to allow disulfide bridges; and 
2.3 Å for any other atom pair.  

The proposal distributions consist of resampling of side 
chain conformations using BASILISK (Harder et al. 2010), 
or local moves using CRISP. To facilitate smooth local 

perturbations of the backbone chain, CRISP allows for 
small variations of the backbone bond-angles. Each angle 
is modeled by an atom specific Gaussian distribution with 
parameters chosen in accordance with the bond-angle 
term of the OPLS-AA force field (Jorgensen et al. 1996; 
Kaminski et al. 2001).  
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2.4 Generative Probabilistic Models Extend the Scope of

Inferential Structure Determination

This manuscript describes a successful combination of probabilistic models and MC

simulations for protein structure determination. The approach is based on the idea of

conducting a Monte Carlo simulation using probabilistic models of local structure as

trial distributions, and modeling the non-local interactions using an energy function

derived from Nuclear Overhauser Effect measurements. In this study, CRISP moves

are combined with standard MC methods for sampling the conformational space. The

method is tested on two model systems, and the results show improved efficiency and

accuracy compared to the current state-of-the-art technique.

This is a co-author article, I was involved in the design and implementation of the

method used to combine the MC moves together with the probabilistic model of lo-

cal structure, and I contributed to the optimization of the move-set for this specific

application.
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1. Introduction

Current methods for macromolecular structure determination
rely on the seminal idea of hybrid energy minimization introduced
by Jack and Levitt [1]. However, the choice of model parameters,
such as the weight of the experimental data with respect to a phys-
ical force field, is intrinsically problematic in this approach – a fact
that was already recognized in the original study [1]. With a grow-
ing number of sources of experimental data used in protein struc-
ture determination, estimation of weights and other nuisance
parameters is becoming increasingly problematic. Current meth-
odology relies on a more or less arbitrary choice of these parame-
ters, using heuristic approaches [2]. While a persistent concern
towards the applied heuristics has been evident in the literature
[3,2,4], only few quantitative methods have been described to rig-
orously determine these nuisance parameters [4,5]. These meth-
ods, and the underlying Bayesian approach are referred to as
inferential structure determination (ISD).

Bayesian probabilistic inference has previously shown great po-
tential in macromolecular structure determination [2,6]. However,
the scope of the approach has been limited due to excessive com-
putational demands. The current study describes a new approach

to inferential structure determination which draws on the use of
generative probabilistic models. Generative probabilistic models,
or GPMs, are probabilistic models that allow sampling. Here, we
demonstrate that the use of GPMs greatly increases efficiency, pre-
cision and scope of rigorous inferential structure determination. As
these GPMs contain information about protein structure, they may
supersede physical forcefields – especially in cases where data is
very sparse.

2. Methods

In the ISD approach, samples are drawn from a joint posterior
distribution over conformational space, X, and model parameter
space, n, given experimental data, D, and prior knowledge, I:

pðX;njD; IÞ / pðDjX;n; IÞpðnjIÞpðXjIÞ:

Consequently, a natural result of posterior sampling is an ensemble
of conformers representing the experimental uncertainty. That is,
the Bayesian formalism accounts for uncertainty and degeneracy,
a feature that is difficult to obtain when using schemes that mini-
mize a hybrid energy consisting of a physical and a data-dependent
term [7,8].

In ISD, a physical forcefield Ephys enters the Bayesian framework
as a conformational prior through a canonical ensemble
pðXjIÞ / e�bEphys , where b = 1/kT, k is Boltzmann’s constant and T is
the temperature [2]. The data enters as a likelihood function,
p(DjX,n, I); its product with the prior distributions, p(njI)p(XjI),
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results in the posterior distribution, p(X,njD, I). When the posterior
is defined in this way, Markov Chain Monte Carlo (MCMC) sam-
pling requires evaluation of both likelihood and priors explicitly,
in each step. This can potentially lead to substantial computational
costs. Conversely, using no, or a uninformative forcefield, leaves a
vast conformational space [9]. Here, we use GPMs of local protein
structure instead of the Boltzmann distribution of a physical force-
field. Consequently, we demonstrate that the explicit evaluation of
the prior can be avoided altogether as the information of the prior
enters the posterior distribution through sampling.

Recently, our group has published several GPMs of protein con-
formational space, describing backbone (TorusDBN) [10,11] and
sidechain (Basilisk) [12] dihedral angles. These models only pro-
vide structural information on a local sequential scale, ideally com-
plementing the long-range information obtained from NMR
nuclear Overhauser enhancements experiments (NOE). As general-
izations of the commonly used fragment- [13] and rotamer-
libraries [14], and related potentials that involve discretization
[15], these GPMs also serve to reduce the complexity of the confor-
mational space. The particular GPMs applied here use continuous
angular probability distributions to avoid the intrinsic limitations
caused by discretization [16]. Furthermore, since these GPMs are
probability distributions, probabilities of arbitrary conformations
can be evaluated, which is not generally possible for fragment-
and rotamer libraries. Consequently, the full posterior probability
can be evaluated explicitly when necessary. Here, we demonstrate
that the use of GPMs as conformational proposal distributions can
dramatically increase convergence in MCMC sampling of protein
conformers from a posterior distribution, in addition to providing
an increase in precision.

The GPMs, TorusDBN and Basilisk, enter the ISD approach as
p(XjI) / p(bja)p(vja), where a denotes amino acid sequence, while
b and v denote backbone and sidechain conformations respec-
tively. Thus, during simulation we alternate between moving in
backbone and sidechain conformational space, conditioned on
amino acid sequence. Following Rieping et al. we assume idealized
Engh–Huber bond lengths [17] and parameterize conformations as
sets of torsion angles [18]. Variations in the bond angles were al-
lowed to facilitate conformational sampling [19].

We used a generalized ensemble Metropolis–Hastings sampling
scheme to draw samples from the posterior distribution. To prior-
itize search in relevant regions of the conformational space we
adopted the 1/k-ensemble implemented using the generalized
multi-histogram equations [20,21]. The 1/k-ensemble allows sam-
pling independently of temperature, thus avoiding nuisance
parameters such as the number of replicas, and their temperature
span. It is, however, important to stress that the statistical informa-
tion provided by this sampling scheme is equivalent to the Replica
Exchange Monte Carlo scheme used in the original ISD study [22].
We employ the log-normal formulation of the NOE data to evaluate
p(Djb,v,n, I), as this provides the least biased formulation of the
likelihood [5].

To assess the performance of TorusDBN and Basilisk as confor-
mational priors, and for comparison to previous results, we created
a set of conformers corresponding to the lowest posterior samples,
using the very sparse (154 constraints) SH3 FYN domain data [2]
and the TRP-Cage data set [28]. As a model baseline, we carried
out the same simulations without the models of local protein
structure. This simple hard-sphere potential corresponds to the
use of a prior distribution reminiscent of that of the original ISD
implementation [2].

2.1. Posterior sampling

As described previously, we sample from the joint posterior dis-
tribution p(X,njD, I) [2]:

pðX;njD; IÞ / r�ðnþ1Þc�1 exp � 1
2r2 v2ðdðv; bÞ; IÞ

� �
pðvjaÞpðbjaÞ;

with the log-normal chi-square: v2ðd;DÞ ¼
Pn

i log2ðcd�a
i =DiÞ;Di are

experimental data and di calculated distances [5]. v and b are the
sidechain and backbone dihedrals, respectively. c and r are ISPA
(isolated spin-pair approximation) equilibration parameter and
experimental uncertainty, respectively. A power a = �1 was used
here as all data were derived distances.

Here, we cannot employ the Gibbs sampling scheme applied in
Rieping et al. [2], due to the inherent absence of an explicit temper-
ature in the 1/k ensemble. This absence of an explicit temperature
makes the implementation of the soft-sphere potential employed
previously difficult without introduction of additional heuristics,
and was therefore avoided [2]. Instead, we here use a Metropo-
lis–Hastings approach, where the involved parameters are updated
one at the time. The 1/k ensemble allows us to sample the confor-
mational- and nuisance-space efficiently.

Low acceptance rates in the nuisance sampling was avoided by
introducing a scheme exploiting the information about the current
state. For the nuisance parameters, n = {c,r}, a log-change is pro-
posed from a log-normal distribution with a standard deviation

rni
¼ 1:0

max @ log pðX;njD;IÞ
@ni

��� ���;1:0� � :

This expression was derived using standard error propagation and
adds a simple regularizer which ensures a maximum standard devi-
ation of 1.0 [23]. As a result, we can draw samples efficiently from
the joint posterior distribution without the temperature dependent
Gibbs sampling scheme. Using the log-normal distribution in this
way we can ensure being in the right domain. We avoid additional
bias from the log-normal distribution in the posterior, by dividing
out the bias in the Monte Carlo acceptance ratio. For completeness,
the analytical expressions of the standard deviations are shown
here:

rr ¼
1:0

max � v2ðdðv;bÞ;IÞ
r2 þ m

��� ���;1:0� �

where m is the number of datapoints, and:

rc ¼
1:0

max
m log c�

Pm
i

ki

r2

����
����;1:0

� � ;

with ki ¼ ln Ii
obs

Ii
calc

corresponding to the log-ratio between the observed

and back-calculated experimental data.
For sampling of the conformational space, a series of MCMC

moves for backbone (pivot, local [19] and semi-local [24]) and
sidechain conformations were employed. All applied moves fulfill
detailed balance, and were chosen with even probability with re-
spect to backbone and sidechain conformational and nuisance
space. TorusDBN was extended to account for small deviations
from ideal cis/trans-angles, using a normal distribution with mean
at the ideal values and a standard deviation of five degrees. In the
baseline model, all angles b, v were sampled uniformly in the
interval [0,2p]. Note that Basilisk was used in a backbone indepen-
dent fashion for simplicity [12]. Samples were accepted or rejected
according to the generalized 1/k ensemble [20]. Convergence was
assessed through inspection of diagnostics provided by Muninn:
the multi-histogram implementation of the generalized ensemble
(http://www.muninn.sourceforge.net/). It is important to stress
that convergence of histograms necessarily reflect convergence of
posterior samples, additional sampling allow generation of more
refined ensembles.
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3. Results

3.1. SH3 FYN

When employing the GPMs, the sampling of the posterior distri-
bution defined by the sparse SH3 FYN data set converges in less
than 36 h of computation time on a single standard CPU core. In
comparison, the previously published ISD ensemble derived from
the same data set took 3 days on a 50 core computer cluster [2].
Even given the increase in average computational power since
2005, this is a substantial increase in the efficiency. We do not ob-
serve convergence within the same simulation time when applying
the baseline model. This illustrates clearly how the GPMs increase
efficiency of posterior sampling.

Performing posterior sampling with the baseline prior, gives
rise to two distinct conformational basins (Fig. 1b). There is an ex-
cited basin corresponding to the mirror image of the native basin.
The local geometry of this basin is highly unfavorable. The second
basin corresponds to the correct, native fold, observed in the crys-
tal structure. The latter of the two basins is the only one observed
when using the informative GPMs as conformational priors
(Fig. 1a). Evidently, the experimental data likelihood in conjunction
with the baseline prior only modestly distinguishes between the
two folds, resulting in slow convergence due to an excessive con-
formational multiplicity. The basin with the correct fold is not
thoroughly explored within the given time frame, resulting in rel-
atively inaccurate structures among the 20 highest posterior con-
former ensemble (Fig. 2b). In contrast, the ensembles obtained
within the same simulation time using the TorusDBN and Basilisk
priors accurately capture the native state (Fig. 2a). This result
illustrates the importance of prior information to resolve
degeneracies in sparse experimental data. While avoidance of poor

Fig. 1. Scatter plots of the RMSD of conformational samples to the crystal structure
of SH3 FYN (PDB:1SHF chain A) versus �logp(X,njD, I) (posterior density) for (a)
TorusDBN and Basilisk and (b) the baseline prior after 400 million MCMC steps.
Samples are from the 1/k ensemble.

Fig. 2. Illustration of 20 of the samples with the highest posterior probability using (a) TorusDBN and Basilisk (RMSD: 1.74 ± 0.17Å) or (b) the baseline prior (RMSD:
3.12 ± 0.24 Å), after 400 million MCMC steps. Conformations are aligned to PDB: 1SHF chain A (shown in a black cartoon representation). Figure prepared using PyMOL
(DeLano Scientific LLC).

Table 1
VADAR and PROCHECK structure quality statistics for the previously published
ensemble (PDB: 1ZBJ) (1ZBJ) [2] and current SH3 FYN (GPMs) ensembles and
reference values presented by VADAR (Ref). /, w core, allowed, generous and outside
denote distinct regions of the Ramachandran plot of decreasing favoredness. x core
denotes the percentage of x-angles in the most favored region (the three other
classes are not shown here). Packing defects, free energy folding, percentage of
residues 95% buried and buried charges denotes the number of packing defects, free
energy of folding and bury ratios for residues and charges, respectively [25].
Percentile reference values were normalized. PROCHECK G-factors reflect average log-
odds of (/,w), (v1,v2), (v1) and overall dihedral angle combinations.

VADAR
Dihedral prior 1ZBJ GPMs Ref

/, w core 68.95 ± 4.19% 88.33 ± 2.85% 91.84%
/, w allowed 27.6 ± 4.12% 9.96 ± 3.17% 7.14%
/, w generous 1.7 ± 1.27% 1.65 ± 1.50% 1.02%
/, w outside 0.0 ± 0.0% 0.05 ± 0.0% 0.0%
x core 100.0 ± 0.0% 91.0 ± 2.17% 97%
x allowed 0.0 ± 0.0% 8.0 ± 2.61% 3%
x generous 0.0 ± 0.0% 1.0 ± 1.49% 0%
Packing defects 11.95 ±2.85 5.95 ± 2.06 4.0
Free energy fold �40.7 ± 1.88 �46.07 ± 2.06 �42.39
Res. 95% buried 2.25 ± 1.22 4.30 ± 1.90 6.0
Buried charges 0.15 ± 0.30 0.30 ± 0.56 0.0

PROCHECK
Dihedral prior 1ZBJ GPMs
G-factor (/,w) �1.41 �0.72
G-factor (v1,v2) �1.82 0.25
G-factor (v1 only) �0.54 0.20
G-factor (overall) �1.43 �0.28
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stereochemistry has been pointed out previously as a feature of the
ISD approach [2], degeneracy due to poor local structure has re-
mained unaddressed.

The mean heavy-atom (Ca, C and N) root mean square deviation
(RMSD) to the crystal structure from the 20 highest posterior prob-
ability structures (see Fig. 2) is comparable to the previously pub-
lished ISD ensemble (1.84 ± 0.20 Å, PDB: 1ZBJ). However, statistics

derived from structure validation server VADAR [25], WHATIF [26]
and PROCHECK [27] were vastly improved (see Table 1 and Supple-
mentary material) with respect to both packing quality and local
structure. Importantly, clustering of (/,w)-angle pairs in less favor-
able regions of the Ramachandran space is reduced dramatically
(see SI). Other structure quality indicators such as number of bur-
ied charges remain unchanged. While the improvement in local

Fig. 3. Scatter plots of RMSD of conformational samples to the previously published NMR structure of TRP-Cage (PDB:1L2Y) versus �logp(X,njD, I) (posterior density) for (a)
TorusDBN and Basilisk and (b) baseline prior after 50 million MCMC steps; (c) baseline prior after 500 million MCMC steps. Samples are from the 1/k ensemble.

Fig. 4. Illustration of 20 of the samples with the highest posterior probability using (a) TorusDBN and Basilisk (RMSD: 0.63 ± 0.12 Å) or (b) baseline prior (RMSD:
1.41 ± 0.39 Å), after 50 million MCMC samples. Conformations are aligned to PDB: 1L2Y (shown in a black cartoon representation). Figure prepared using PyMOL (DeLano
Scientific LLC).
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structure is an expected consequence of the information contained
in TorusDBN and Basilisk, non-local structure quality parameters
such as packing defects hint increase in accuracy. The nuisance
parameters r, c were estimated to be 0.11 ± 0.01 and 1.00 ± 0.01,
respectively. These values deviate somewhat from the estimates
obtained previously. The discrepancy may be linked to a different
conformational prior distribution [2].

3.2. TRP-cage

In addition to increasing efficiency and precision, GPMs can ac-
count for the information derived from ambiguous NOE con-
straints. We demonstrate this point on the TRP-cage data set
[28]. Of the reported 169 restraints, 37 involve pseudo atoms,
which strictly speaking yields them ambiguous. In these particular
calculations, the restraints were therefore not included. The result-
ing set of unambiguous NOE restraints are insufficiently informa-
tive to distinguish native-like structures from conformers with
an RMSD of up to 3 Å from the previously published NMR struc-
ture. However, when we use the GPMs as structural priors, we ob-
tain an ensemble of high resemblance with the previously
published structure.

The simulations of TRP-cage were performed identically to
those of SH3 FYN using 50 million MCMC steps. Both simulations
complete within a few hours (see Fig. 3a and b). The pattern ob-
served for SH3 FYN emerges again: when using GPMs convergence
was reached within the simulation time, whereas convergence was
not reached using the baseline model. Extending the simulation
time with the baseline model to 500 million MCMC steps results
in convergence (Fig. 3c). However, the resulting 20 highest poster-
ior ensemble is of significantly lower quality (RMSD: 1.24 ± 0.39 Å)
than the ensemble obtained using the GPMs running for 50 million
MCMC steps, Fig. 4a. With these results we again demonstrate how
efficiency is gained when employing GPMs in the ISD approach. In
addition the results illustrate, how the unambiguous constraints
[28] can be complemented by the local information contained in
the GPMs.

4. Conclusions

In both examples presented here, the difference in accuracy of
the selected ensembles is modest, with mean RMSD differences
of at most 1 Å. However, the highest probability (or lowest energy)
criterion for selection of conformation for these ensembles may
not only underestimate the spread of the ensemble [29,30], but
also ignore severe degeneracies (see Figs. 1 and 3). This points to
the importance of using appropriate prior information when ana-
lyzing sparse data and suggests extra caution be taken when
selecting these ensembles.

This communication describes how generative probabilistic
models can be applied to significantly increase efficiency and pre-
cision of inferential structure determination. As a natural exten-
sion, we propose the development of more specialized GPMs,
drawing on additional prior information such as protein family
membership or chemical shifts. Such models would presumably
resolve degeneracies to an even greater extent, further increasing
the scope, efficiency and precision of the inferential structure
determination approach.
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2.5 Implicit Solvent Model Parameterization Via Relative

Entropy Minimization

In this article we derive a parameterization for a widely used implicit solvent model

from atomistic state-of-the-art molecular dynamics simulations. A recently-proposed

coarse-graining technique based upon the minimization of the relative entropy between

the coarse-grained and the all-atom ensembles is used. We present preliminary results,

and discuss the validity of the approach.

This is a first-author article, and I was involved in all aspects of the work. The project

was carried out under the supervision of Dr. Robert Best at the Department of Chem-

istry, University of Cambridge (United Kingdom) and Prof. Kresten Lindorff-Larsen,

at the Department of Biology, Copenhagen University (Denmark).
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Abstract

An efficient solvation term based on a Gaussian solvent-exclusion model is combined with the all-

atom CHARMM 36 force-field for simulations of proteins in aqueous environment. The presented

model is obtained by extending to full atomic detail the EEF1 effective energy function, which is

based on the united-atom representation of the CHARMM 19 force-field. The model parameters

are adjusted so as to reproduce the behavior of explicit water simulations. To reach this goal,

a recently proposed coarse-graining method based on the iterative minimization of an entropy-

related objective function is used. The procedure is first validated and subsequently employed to

produce a set of optimized model parameters using the α-helical (AAQAA)3 peptide as a model

system. The resulting effective energy function, termed EEF1-SB, is subjected to a number

of tests. Molecular dynamics simulations at room temperature of two proteins in their native

conformation are performed, and stable trajectories are obtained, showing improved or similar

accuracy compared to existing methodologies. The range of applicability of EEF1-SB is further

assessed by performing folding simulations on structured peptides. The obtained results show

that EEF1-SB correctly folds β-stranded peptides, but fails to detect the structural propensity

of α-helical systems. EEF1-SB thus provides an efficient (only 20% slower compared to vacuum

simulations) and realistic first approximation for treating solvent effects. However, the observed

propensity towards β conformations suggests that a further optimization of the force-field is

needed.
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Introduction

The aqueous environment plays an important role in determining the function, structure and

dynamics of biomolecules [1,2]. For this reason, the solute-water interaction has been the subject

of many theoretical, computational and experimental studies over the last decades [3–5].

The most realistic way to treat solvation effects in computer simulations is the inclusion of

explicit water molecules. The high level of detail provided by this approach, however, has sub-

stantial computational costs, which often become prohibitive for molecular systems undergoing

significant structural rearrangements.

Implicit solvent represents a simplified, though less accurate, alternative to explicit water

models for treating solvent effects. In implicit solvent models the average influence of water

molecules is described by an effective energy that depends only on the atomic coordinates of

the solute. The formulation of an accurate and computationally efficient description of solvent

effects is a nontrivial theoretical problem, and the development of implicit water models for

biomolecular simulations has progressed along many different lines of research. One of the most

simple approaches is given by solvent-accessible surface area (SASA) models [6], in which the

solvent effect is taken proportional to the area of the solute atom that is accessible to solvent

molecules. Typically, the proportionality constants are determined by matching the experimental

free energy of hydration of small molecules [6,7] or by reproducing the solvent accessible surface

area for a selected set of systems [8,9]. Similar approaches have been employed to parameterize

contact models, where the solvation free energy depends on the number of contacts that each

atom makes with other solute particles [10], and the contacts are weighted according to some

function of their distance [11]. Another alternative approach is represented by Gaussian solvent-

exclusion models, in which the solvent effects are assumed to be proportional to the volume of

the first hydration shell that is accessible to the solvent [12]. Because of its good accuracy and

efficiency (only about 50% more computational effort with respect to a vacuum simulation), the

Gaussian solvent-exclusion model EEF1 [13] was applied to a wide range of biological problems.

Despite known limitations [14–16], EEF1 provides a reasonably accurate description of solvent
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effects [13,17,18], it has been shown in certain cases to yield comparable results with respect to

explicit water simulations [19], and recently led to successful applications in protein structure

prediction [20,21] and folding studies [22].

In all of the aforementioned effective potentials, the electrostatic effects are usually crudely

approximated (e.g. using a distance-dependent dielectric constant [9,13]) or completely ignored.

The effect of the solvent on electrostatic interactions is more rigorously described in contin-

uum electrostatic models, where the solute is assumed as a low-dielectric cavity immersed in a

high-dielectric and featureless environment. The electrostatic (polar) free energy of solvating a

molecule is then calculated solving the Poisson-Boltzmann (PB) equation [23–25] or efficiently

estimated by using the popular Generalized-Born (GB) equation [26,27]. A number of variations

to the original GB approach have been introduced in order to improve the accuracy and the

efficiency of the method [28–32]. While continuum electrostatic models provide a theoretical for-

mulation for polar interactions, the non-polar effects (e.g. hydrophobicity) are usually neglected

or modeled by empirical potentials. Moreover, it is worth highlighting that the computational

complexity of most PB and GB methods scales very poorly with the system size (although no-

table exceptions exist [31,32]) and is comparable to explicit water simulations for large, globular

molecules [33].

In the present work we extend the effective energy function EEF1 [13], which was origi-

nally based on the united-atom CHARMM 19 force-field [34], to the all-atom description of

CHARMM 36 [35]. The significant differences in the molecular representation as well as in the

parameterization of the two force-fields does not allow a direct transfer of the EEF1 model pa-

rameters. Therefore, we devised a modified version of EEF1, which we term EEF1-SB, were the

model parameters are adjusted so as to mimic the equilibrium ensemble obtained from explicit

water simulations. Following the idea of Shell and co-workers [36–39], the “overlap” between

the implicit and explicit water models is maximized by using a procedure based on the iterative

minimization of an objective function called relative entropy.

In the next sections we describe the EEF1-SB effective energy, and we briefly outline the
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relative entropy minimization approach used for model parameterization. The method is first

validated by showing that the explicit water structural ensemble of the short Ala5 peptide is

accurately reproduced by the coarse-grained model upon relative entropy minimization. Sub-

sequently, the procedure is used to determine the optimal parameters in EEF1-SB, using the

α-helical peptide (AAQAA)3 as a model system. Finally, we test the accuracy of EEF1-SB

by performing molecular dynamics simulations on the native state of globular proteins and by

conducting folding studies on three short peptides.

The obtained results prove the EEF1-SB model to produce stable trajectories when simu-

lating the near-native state of globular proteins, yielding better or similar results compared to

existing empirical implicit solvent models. In the folding studies, EEF1-SB fails to reproduce the

secondary structure propensities of α-helical systems, but correctly fold β-stranded peptides. It

should be noted that similar biases are observed in many force-fields [40,41], unless specific cor-

rections are introduced. Overall, the results indicate that the effective energy function EEF1-SB

developed here is a realistic but not fully accurate approximation for proteins in aqueous envi-

ronment. Specifically, the clear propensity towards the β-regions of the Ramachandran space

suggests that a further optimization of the force-field is desirable.

Description of the model

Solvent-exclusion model

The formulation of the solvent exclusion model in EEF1-SB is identical to the EEF1 ap-

proach [13], where the total solvation free energy of a protein is expressed as a sum of atomic

contributions

∆Gsolv =
∑

i

∆Gsolv
i (1)

each individual term ∆Gsolv
i is equal to a reference solvation free energy ∆Gref

i , obtained by

dissecting the experimental free energy for a set of small compounds into group contributions [42],
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minus a reduction due to the presence of surrounding atoms

∆Gsolv
i = ∆Gref

i −
∑
j 6=i

fi(rij)Vj (2)

Here, the sum runs over the neighboring atoms j with volume Vj , and the solvation free energy

density fi(r) is a Gaussian function of the distance, chosen such that the volume integral over

the first solvation shell of thickness λ accounts for ≈ 85% of the solvation energy

fi(r)4πr2 =
2√
π

∆Gfree
i

λi
exp

{
−(r −Ri)2

λ2
i

}
(3)

where ∆Gfree is the solvation free energy of the isolated group, and R the van der Waals radius.

Model parameters

While in the EEF1 effective energy the atom types are those used in the united-atom CHARMM

19 force-field [34], in which only hydrogen atoms belonging to polar groups are explicitly in-

cluded, in the present work we employ an all-atom representation to be used in combination

with the CHARMM 36 force-field [35].

The reference solvation free energies ∆Gref , taken from the EEF1 model [13], were originally

obtained by dissecting the experimental solvation free energy (at T = 298.15K) for a set of model

compounds into group contributions [42], and subsequently corrected to account for long-range

van der Waals effects [13]. A similar procedure was used to determine the solvation enthalpy

∆H [43] and heat capacity ∆Cp [44]. These quantities make it possible to obtain an approximate

expression for ∆Gref as a function of the temperature. In the development of EEF1-SB, the

solvation free energy of the isolated atom ∆Gfree is initially assumed to be equal to ∆Gref , and

then optimized by relative entropy minimization (see below).

The volume of each atom type is calculated as the van der Waals volume minus the overlap

volume between covalently bonded atoms [29]. The CHARMM 36 van der Waals radii and bond

lengths are used for the volume calculation. When the same atom type is found in different
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covalent arrangements, the most common is used, and triple or higher overlap volumes are

neglected. All hydrogens are assumed not to contribute to the solvation energy, and their

volumes are set to zero.

Finally, the thickness of the hydration shell, λ, is set to the 3.5 Å except for the atoms in

charged groups, for which a value of 6 Å is used. The final values for the different parameters

are listed in table 1.

Treatment of non-bonded interactions and ionic groups

The electrostatic screening effect of water is not considered directly by the exclusion-solvent

model, and is here approximated using a linear, distance-dependent dielectric constant (i.e.

ε = r). As pointed out by Lazaridis and Karplus [13], the distance-dependent dielectric constant

does not screen the electrostatic interactions for charged groups to a sufficient degree. In order to

account for this effect, ionic side-chains are neutralized by adjusting the partial atomic charges, as

detailed in table 2. To model the strong interactions between atoms in ionic groups and solvent

molecules, the correlation λ for these atom types is set to 6 Å, and the reference solvation

free energies ∆Gref are arbitrarily set to large values, in order to increase their hydrophilic

propensity. Electrostatic and van der Waals interactions are smoothly switched-off between 7

and 9 Å, and interactions between atoms separated by three (1-4 pairs) covalent bonds are not

rescaled.
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Atom type Volume ∆Gref ∆Gfree ∆H ∆Cp λ

C 14.720 0.000 0.000 0.000 0.0 3.5
CD 14.720 0.000 0.000 0.000 0.0 3.5
CT1 11.507 -0.187 -0.160 0.876 0.0 3.5
CT2 18.850 0.372 0.318 -0.610 18.6 3.5

CT2A 18.666 0.372 0.318 -0.610 18.6 3.5
CT3 27.941 1.089 0.930 -1.779 35.6 3.5

CPH1 5.275 0.057 0.068 -0.973 6.9 3.5
CPH2 11.796 0.057 0.068 -0.973 6.9 3.5
CPT 4.669 -0.890 -0.760 2.220 6.9 3.5
CY 10.507 -0.890 -0.760 2.220 6.9 3.5
CP1 25.458 -0.187 -0.160 0.876 0.0 3.5
CP2 19.880 0.372 0.318 -0.610 18.6 3.5
CP3 26.731 0.372 0.318 -0.610 18.6 3.5
CC 16.539 0.000 0.000 0.000 0.0 3.5
CAI 18.249 0.057 0.049 -0.973 6.9 3.5
CA 18.249 0.057 0.049 -0.973 6.9 3.5

N 0.000 -1.000 -0.854 -1.250 8.8 3.5
NR1 15.273 -5.950 -5.081 -9.059 -8.8 3.5
NR2 15.111 -3.820 -3.262 -4.654 -8.8 3.5
NR3 15.071 -5.950 -5.081 -9.059 -8.8 3.5
NH1 10.197 -5.950 -5.081 -9.059 -8.8 3.5
NH2 18.182 -5.950 -5.081 -9.059 -8.8 3.5
NH3 18.817 -20.000 -17.078 -25.000 -18.0 6.0
NC2 18.215 -10.000 -8.539 -12.000 -7.0 6.0
NY 12.001 -5.950 -5.08 -9.059 -8.8 3.5
NP 4.993 -20.000 -17.078 -25.000 -18.0 6.0

O 11.772 -5.330 -4.551 -5.787 -8.8 3.5
OB 11.694 -5.330 -4.551 -5.787 -8.8 3.5
OC 12.003 -10.000 -8.539 -12.000 -9.4 6.0
OH1 15.528 -5.920 -5.055 -9.264 -11.2 3.5
OS 6.774 -2.900 -2.476 -3.150 -4.8 3.5

S 20.703 -3.240 -2.767 -4.475 -39.9 3.5
SM 21.306 -3.240 -2.767 -4.475 -39.9 3.5

Table 1. Solvation parameters used in EEF1-SB. The volume (in Å3) is given by the van der
Waals volume minus the overlap with the volume of covalently bonded atoms. The values of
∆Gref (kcal mol−1), ∆H (kcal mol−1), and ∆Cp (kcal mol−1 K−1) are taken from the original
EEF1 model [13]. ∆Gfree (in kcal mol−1) were optimized using the relative entropy
minimization procedure. The correlation length λ is 3.5 Å , except for atoms in ionic groups,
for which a value of λ = 6 Å is used.
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Residue Atom Charge Residue Atom Charge

ARG CD -0.30 HSP CB -0.10
HD1/HD2 0.05 HB1/HB2 0.05
NE -0.28 CD2 0.05
HE 0.12 HD2 0.00
CZ -0.20 CG 0.05
NH1/NH2 -0.121 NE2/ND1 -0.55
HH1/HH2 0.2005 HE2/HD1 0.45

CE1 0.10
ASP CB -0.28 HE1 0.00

HB1/HB2 0.14
HB1/HB2 0.14 LYS CE 0.00
HB1/HB2 0.14 HE1/HE2 0.00

NZ -0.90
GLU CG -0.28 HZ1/HZ2/HZ3 0.30

HG1/HG2 0.14
CD 1.00
OE1/OE2 -0.50 NTER N -0.90

HT1/HT2/HT3 0.20
GLP CG -0.21 HA 0.10

HG1/HG2 0.09 CA 0.20
CD 0.75
OE1 -0.55 CTER C 1.00
OE2 -0.61 OT1/OT2 -0.50
HE2 0.44

Table 2. Partial atomic charges for ionic groups in EEF1-SB
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Relative entropy minimization

∆Gfree optimization

The optimal ∆Gfree were determined using the relative entropy approach introduced by Shell

and co-workers [36] as a general coarse-graining technique. The approach makes it possible

to optimize the parameters in a coarse-grained potential, here represented by the the implicit

solvent model in EEF1-SB, in order to reproduce the properties of a reference, all-atom potential.

In the present work, the all-atom model is given by the CHARMM 36 force-field in combination

with the TIP3P explicit water model [45].

The approach is based upon variational minimization of the relative entropy, Srel, between

the configurational ensembles produced by a reference explicit water (E) and implicit water (I)

simulation

Srel =
∑

i

pE(i) log
pE(i)
pI(i)

(4)

p(i) is the probability of configuration i in the ensemble, and the index i proceeds over the

all-atom configurations. In the canonical ensemble, the relative entropy is given by

Srel = β(< UI − UE >E)− β(AI −AE)+ < Smap >E (5)

Here, UE , UI are the all-atom and coarse-grained potentials, respectively, A = −kBT logZ,

where Z is the partition function and β = 1/kBT is the inverse temperature T multiplied by the

Boltzmann’s constant kB. The mapping entropy < Smap >E is the average entropy that results

from degeneracies in the target-model mapping. According to Eq. 5, calculating Srel requires

the impractical estimation of free energies. Assuming the coarse-grained potential to be function

of some parameters η, however, the derivatives of the relative entropy with respect to η can be
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expressed as simple averages over the two ensembles

∂Srel

∂η
= β〈∂UI

∂η
〉E − β〈∂UI

∂η
〉I

∂2Srel

∂η2
= β〈∂

2UI

∂η2
〉E − β〈∂

2UI

∂η2
〉I + β2〈∂UI

∂η

2

〉I − β2〈∂UI

∂η
〉2I (6)

Hence, standard numerical techniques can be employed to minimize the relative entropy with

respect to the model parameters, for example by iterative application of the Newton-Raphson

update rule

ηk+1 = ηk − γ

[
∂2Srel

∂η2

]−1 [
∂Srel

∂η

]
(7)

Performing the minimization can be challenging in practical applications. First, because the

absolute value of the relative entropy in Eq. 5 cannot be easily calculated. As proposed by Shell

and co-workers [38], an approximate expression for the relative entropy is obtained from Eq. 5

via standard free energy perturbation [46]

Srel ≈ log {〈exp [∆ − 〈∆〉E ]〉E} (8)

where ∆ = β(UI−UE). However, the approximation holds as long as a substantial overlap exists

between the coarse-grained and all-atom ensembles. Moreover, the average of the exponential

in Eq. 8 is dominated by individual contributions with large ∆, and can therefore be affected by

large statistical errors. It is worth highlighting that for parameters linear in the potential UI ,

the second derivative of the relative entropy in Eq. 6 reads

∂2Srel

∂η2
= β2(〈∂UI

∂η

2

〉I − 〈∂UI

∂η
〉2I) (9)

This quantity is positive definite, and requiring the gradient |∂Srel
∂η | to be zero is a sufficient

condition for optimality. As a consequence, for parameters linear in the potential, it is not

strictly necessary to monitor the absolute value of the relative entropy during the minimization
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procedure. Another difficulty is given by the fact that the calculation of averages over the

coarse-grained ensembles (Eq. 6) requires a substantial computational effort, as a new implicit

solvent simulation (with a new set of parameters η) has to be performed at each iteration step,

although re-weighting techniques can in principle be used [47].

Finally, the minimization procedure becomes unstable (and inaccurate) if the individual im-

plicit solvent simulations are not sufficiently equilibrated, causing for example large fluctuations

during successive iteration of parameter optimization. In order to alleviate this problem, in the

present work we make extensive use of replica exchange molecular dynamics (REMD) simula-

tions [48]. The numerical stability of the relative entropy minimization is further improved by

adjusting the step size in parameter space (i.e. the value of γ in Eq. 7). Following the ideas of

Shell and co-workers [39], we dynamically adjust the step size until two heuristic criteria are

met: i) the absolute change in the parameter at each iteration step is smaller than the 50% of its

initial value and ii) the change ∆Srel = Srel(ηk+1)−Srel(ηk) is smaller than the 20% of Srel(ηk),

where the variation ∆Srel is extimated via Zwanzig perturbation as

∆Srel = log (〈exp (−β∆U)〉) + β〈∆U〉 (10)

where ∆U = U(ηk+1)− U(ηk), and the averages are computed over the ηk ensemble.

As formulated here, the relative entropy approach can be easily extended to perform a simul-

taneous optimization of multiple parameters. Therefore, it is in principle possible to adjust all

the parameters of the implicit solvent model in EEF1-SB (i.e. the volume V , the reference free

energy ∆Gfree and the correlation length λ). However, the optimization in a high-dimensional

space can be numerically unstable and leads to over-fitting when multiple atom-types are consid-

ered. For this reason, in the present work we used a minimal number of adjustable parameters.

During the developmental stage we included both ∆Gfree and λ in the minimization procedure,

but the values of the latter parameter were subject to small variations during optimization. We

therefore kept λ, as well as V , fixed to the values listed in table 1.
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Relative entropy minimization on Ala5

As a first test, we optimized the values of ∆Gfree in order to reproduce the behavior of a 100ns

MD simulation in explicit water of the short Ala5 peptide. The results obtained on this system

are useful to understand some of the difficulties of the approach, arising not only from the

numerical and computational issues connected to the minimization, but also from the inability

of the coarse-grained model to reproduce the effect of explicit water molecules.

In this example, we considered only the solvation parameters ∆Gfree associated to the CA,

CB, O and N backbone atoms as adjustable model parameters, excluding the atom-types of

the N and protonated C terminus from the relative entropy minimization. At each step of the

iterative procedure, a 5ns REMD simulation (8 replicas spanning the temperature range 298-

650K) in implicit water was performed, using only the last 2.5ns for the actual calculation of the

derivatives. The model parameters were updated using the standard Newton-Raphson method

(Eq. 7), and 100 iteration steps were sufficient to observe the convergence of the procedure (Fig.

1a).

Although not to a perfect level of detail, the parameterization obtained via relative entropy

minimization improves the similarity of the implicit solvent structural ensemble with respect

to the explicit solvent equivalent. This is noteworthy, because the method aims to match the

energetic distribution in the coarse-grained and all-atom system, and does not directly consider

structural parameters. Fig. 1b shows the radius of gyration distribution for the explicit water

simulation (black), for the implicit model with initial parameters (green) and with the optimized

values of ∆Gfree (pink). It is interesting to observe that the distribution for the optimized

parameters is strikingly similar to the explicit water simulation, except for the shoulder of the

distribution around 4 Å. As Fig. 1c suggests, this discrepancy is due to the fact that the optimized

implicit solvent model does not sufficiently populate the states associated to the α-helical and

polyproline II (PPII) region of the Ramachandran map. It should also be noted that the final set

of ∆Gfree are considerably different from the initial parameters (Fig. 1a), and in some cases (i.e.

atom-types CB and O), the minimization procedure causes the sign inversion of ∆Gfree. This
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undesirable behavior is due to the fact that not all the solvent effects can be captured by the

implicit solvent model. Specifically, the neutralization of the charged N terminus, together with

the distance-dependent dielectric constant, poorly mimic the electrostatic interactions, which

are likely to play a large role on this system. Therefore, large changes in the parameters are

introduced by the relative entropy optimization, in order to compensate for effects not pertaining

to the solvent-exclusion model itself. We also observe that a fairly large number of iteration

steps (100) were performed to ensure convergence. Minimizing the relative entropy for a larger

system not only requires longer simulations at each iteration step, but also implies that a search

in a higher-dimensional parameter space has to be performed (i.e. the number of atom-types),

thus considerably increasing the computational cost of the procedure.

Relative Entropy minimization on AAQAA3

While the test on Ala5 is instructive and useful to validate the relative entropy approach, we

use the Ac-(AAQAA)3-NH2 (which we will refer to as (AAQAA)3) peptide as a model system

to obtain optimized parameters in EEF1-SB. (AAQAA)3 is a weakly structured peptide that

significantly populates helical states under physiological conditions [49]. This characteristic

secondary structure propensity, together with its small size, makes of (AAQAA)3 an ideal model

system for force-fields parameterization [40, 50, 51]. Notably, the CHARMM 36 force-field was

optimized to correctly reproduce the behavior of (AAQAA)3 in solution as inferred from chemical

shift data, suggesting that the equilibrium ensemble obtained from explicit water simulations

on this system can be reliably used as target distribution in the relative entropy minimization.

With the purpose of generating an equilibrated ensemble, we conducted a 150ns REMD

simulation (32 replicas spanning a temperature range from 278 to 416 K) on (AAQAA)3 in

explicit water, and used the last 50ns of the trajectory as the target distribution. At each

step of the relative entropy minimization, a 25ns REMD simulation in implicit solvent (16

replicas spanning the temperature range 285-570K) was performed, and only the last 12.5ns

were used for calculating the Newton-Raphson update. In order to reduce the dimensionality
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Figure 1. Relative entropy minimization on Ala5. (a) Convergence behavior of the four
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of the problem and to avoid “runaway” of the parameters, we optimize a global scaling factor

k for all ∆Gfree, instead of considering one parameter for each atom-type. Starting from the

initial value k = 1.0, the procedure converged in 20 iteration steps, yielding a global scaling

factor k = 0.854 at optimality (i.e ∆Gfree
optimal = k∆Gfree

initial = k∆Gref for all atom-types).

We assessed the effect of the relative entropy minimization by comparing 500ns REMD

simulations (16 replicas spanning a 278-525 K temperature interval) using both the optimized

and initial (unoptimized) parameter set. As shown in Fig. 2a, the changes in the implicit

model parameters weakly affect the radius of gyration distribution at T=298K, that exhibits

in both cases a pronounced peak around 8 Å. Specifically, the implicit solvent model favors

hairpin-like structures, corresponding to the highly populated β region of the Ramachandran

maps shown in Fig. 2b, region 3. Conversely, the broad distribution observed in the explicit

water simulation reflects the structural diversity of the equilibrium ensemble, composed by a

mixture of elongated polyproline II (PPII) and α-helical configurations (Fig. 2b, regions 1-2).

According to experimental data [49], a significant helical content (≈ 0.21 at 300K) is observed in

explicit water and, to a lesser extent, also for the optimized implicit solvent, while is completely

absent in the unoptimized model (Fig. 2c). It is also interesting to observe that when helix

is not formed in implicit solvent, turn or hairpin structures are obtained, suggesting that the

solvent model does not stabilizes to a sufficient degree the unstructured, solvent-exposed states

associated with the PPII region of the Ramachandran map (Fig. 2b, region 1). As described

in a number of experimental studies [52, 53], these PPII conformations are stabilized by direct

interactions between the main chain and water molecules, that are difficult to describe with a

simple solvent-exclusion model.

Given the modest results achieved by minimizing the relative entropy on (AAQAA)3, a

number of attempts were made to improve the effectiveness of procedure. More precisely, we

independently optimized ∆Gfree (as in the validation test on Ala5), or included all backbone

atom-types and the correlation length λ as adjustable model parameter. Unfortunately, none

of the above approaches produced a better agreement with the explicit solvent ensemble. The
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current study thus serves to illustrate the improvements that can be obtained by optimizing

only the implicit solvent model and within the context of the current EEF1 functional form.

Model Validation

Simulations of native proteins

We first show EEF1-SB to yield stable trajectories by performing molecular dynamics simula-

tions at room temperature for two folded proteins, ubiquitin (76 residues, pdb code 1UBQ) and

GB3 (56 residues, pdb code 1P7E). As a number of experimental and computational studies

suggests, both systems are very stable, but at the same time undergo small conformational

changes occurring on the microsecond time-scale [54, 55]. In the present test, we simply assess

the ability of the solvent model to maintain a native-like structure during the simulation, and

to avoid the main problems that arise in in vacuo simulations (e.g. compactification and large

deviation from the native conformation). Starting from the experimentally solved structures, we

performed 100ns molecular dynamics simulations at T=300K using the EEF1-SB model. Both

systems remained in the vicinity of the native structure throughout the simulations, with an

average backbone root mean squared deviation (bRMSD) of 1.16 Å and 2.36Å for ubiquitin and

GB3, respectively. The EEF1-SB trajectories are compared with CHARMM 36 in vacuo simu-

lations and with three different implicit solvent models: the EEF1 effective energy function [13],

the analytic continuum electrostatics (ACE) model [28], and the GB-based fast analytical con-

tinuum treatment of solvation (FACTS) [32]. The results, summarized in table 3, show the

RMSD for EEF1-SB to be lower compared to EEF1, ACE and the vacuum simulations, while

similar results are obtained with respect to FACTS model. The computational cost associated

with this latter model, however, is about 100% higher compared to EEF1-SB.
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Systema Force-fieldb Solvent modelc Rgyrd (Å) bRMSDe (Å) aaRMSDf ns/day g

ubq C19 ACE 10.461 2.304 3.081 2.7
ubq C19 EEF1 11.129 3.931 5.017 16.7
ubq C22 FACTS 10.682 0.711 1.427 2.4
ubq C36 vacuum 10.562 2.200 2.960 6.6
ubq C36 EEF1-SB 10.939 1.161 2.016 5.6
gb3 C19 ACE 9.998 3.651 4.392 4.3
gb3 C19 EEF1 10.781 4.058 4.787 23.3
gb3 C22 FACTS 10.327 2.159 2.391 4.0
gb3 C36 vacuum 10.419 4.193 4.532 10.5
gb3 C36 EEF1-SB 10.491 2.362 2.625 8.2

Table 3. Simulations on native proteins. (a) pdb codes: ubq (1UBQ) and gb3 (1P7E). (b, c)
The different solvent models are used in combination with the associated force-field, as
described in the original studies. The united-atom CHARMM 19 force-field (C19) [34] was
used for ACE and EEF1, the all-atom force-field CHARMM 22 (C22) [56] for FACTS and the
optimized CHARMM 36 (C36) potential [35] for EEF1-SB and vacuum simulations. (d, e, f)
Radius of gyration, heavy backbone atoms RMSD (bRMSD) and all-atom (excluding
hydrogens) RMSD. For ubiquitin, residues 71-76 are not included in the RMSD calculation.(g)
Approximate computational time on a 1.86Ghz Intel Xeon processor expressed in ns/day.

Folding simulations

As a second test, we assess the ability of EEF1-SB to fold different peptides. The aim of this

experiment is not to perform a thermodynamic characterization of the system, but rather to

assess the free energy minima at room temperature to correspond to conformations compatible

to the native structure. Here, three well studied systems with different secondary structure

propensities are considered: the β-hairpin of the B1 domain of protein G (which we will refer

to as GB1) [57], the α-helical mini protein Trp-cage [58] and the three-stranded β-sheets beta3s

peptide [59]. For each system, we report the results from 250ns REMD simulations (16 replicas

spanning the temperature range 278-525K) using EEF1-SB. All simulations were initialized from

an extended conformation, and the first 100ns were discarded in the analysis.

GB1

The first system we consider is the β-hairpin of GB1 (pdb code 1GB1, residues 41-56). Experi-

mental studies suggest this peptide to populate 40%-60% conformations similar to the β-hairpin

of the full structure [57], with a folding time of 6µs [60]. GB1 has been used in numerous com-
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Figure 3. EEF1-SB folding free-energy surface of GB1 at T=298K. The two-dimensional
surface is calculated by projecting onto the the number of native contacts q and the backbone
RMSD from residues 41-56 of the native structure (pdb code 1GB1). In the insets, two
representative structures from the dominant basins are shown in orange. The folded state is
superimposed to the experimental structure, shown in dark gray.

putational studies as a model system to investigate the mechanism of hairpin formation [61,62],

and has served as a benchmark for force-field validation and comparison [40,41,63,64]. The free

energy surface obtained from the EEF1-SB simulation (shown in Fig. 3), reveals two dominant

basins: an “unfolded state” at q=0.5 and a “folded” conformation around q=0.9, where q is

the number of native CA contacts calculated using a cutoff of 6.5 Å. This result is in line with

previous studies where the original EEF1 model was employed on the same system [65], and is

in qualitative agreement with explicit water simulation [64].

Trp-cage

Trp-cage is a 20-residues designed protein derived from a fragment of a larger protein. Under

physiological conditions, this peptide is ≈ 95% folded, with an estimated folding time of 4µs [58].

The NMR-derived native structure contains an α-helix, a 310 helix and a polyproline II C-

terminus, as shown in Fig. 4. Because of its small size and definite structural propensity, Trp-

cage, similarly to GB1, has been the subject of numerous simulation studies, that demonstrated

the ability of different force-fields to correctly fold this system with an accuracy up to 1Å
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Figure 4. EEF1-SB folding free energy surface of Trp-cage at T=298K. The two-dimensional
surface is calculated by projecting onto the the number of native contacts q and the backbone
RMSD from native structure (pdb code 1L2Y). In the insets, representative conformations
from selected basins are shown in orange, and superimposed to the experimental structure
(dark gray). Chain configurations corresponding to the dominant basins are weakly structured,
while near-native conformations (RMSD < 3 Å) are not significantly populated.

[41, 63, 66–71]. As shown in Fig. 4, the EEF1-SB model fails to detect the correct fold. The

dominant basin is characterized by compact but weakly structured conformations, and near-

native states (RMSD < 3 Å) are only weakly populated. In line with the results obtained on

the (AAQAA)3 peptide presented in the previous section, the helical content for Trp-cage is

negligible, suggesting this missing feature to be responsible for the discrepancy between the

simulated and expected free energy surface. Moreover, this sytem has not been tested in explicit

solvent simulations and there could be some deficiency also in the underlying CHARMM 36

force-field.

Beta3s

As a last test, we focused on the folding of the 20-residue protein beta3s [59]. Experimental

and computational studies suggests beta3s to fold to a defined three-stranded, antiparallel β-
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Figure 5. EEF1-SB folding free energy surface of beta3s at T=298K. Left panel: projection
onto the the number of native contacts q and the backbone RMSD from the putative native
structure. Right panel: free energy surface calculated by projecting onto the the number of
formed contacts in the first (q12) and second (q23) hairpin. In the insets, representative
structures from two selected basins are shown in orange, and superimposed to the putative
native structure.

sheet structure in equilibrium with a heterogeneous ensemble of non-native states [72, 73]. The

behavior of beta3s was investigated in a number of different studies by MD simulations in implicit

solvent [63,74,75], which showed reversible folding at 330K and a weak temperature dependence

of the free energy landscape. Compatibly with previous findings [74], different basins can be

identified in the projection of the EEF1-SB trajectory onto the number of contacts in hairpin

1 and hairpin 2 (Fig. 5). More precisely, “folded” states (q12, q23 > 0.7) are in equilibrium

with “unfolded” structures (q12, q23 < 0.4) and with conformations in which only one of the two

hairpins is fully formed.

Discussion

Describing the effect of the aqueous environment is of fundamental importance in molecular

simulations of biomolecules. While explicit water simulations provide a high level of detail,

implicit solvent models represent a fast and approximate way to describe the behavior of proteins

in solution.
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The design of an implicit solvent model often entails three distinct but connected tasks.

First, an assumption on the physical model describing the effects arising from the presence of

the solvent. Secondly, the choice of a force-field describing the solute-solute interactions. It

should be noted that most of the recent molecular mechanics force-fields are designed and tested

to be used with explicit water models. Therefore, their combination with an implicit solvent

representation requires adequate adjustments in the parameters of the resulting effective energy

function.

In the present work we employed an approximate, but extremely fast exclusion-solvent model

and combined it with the all-atom CHARMM 36 force-field. CHARMM 36 was extensively opti-

mized against experimental data, by performing long molecular dynamics simulations in explicit

water. In order to retain the accuracy of the original force-field, we optimized the parameters

in the solvent-exclusion model so as to mimic the behavior of explicit water simulations, using

a coarse-graining technique based on the minimization of the relative entropy. Although not

to a perfect level of detail, the obtained parameters are shown to improve the similarity of the

implicit solvent structural ensemble with respect to the explicit solvent equivalent.

Using the optimized parameters, different tests were conducted to ensure that the model

gives realistic results. EEF1-SB was shown to give stable native proteins in room tempera-

ture molecular dynamics simulations, and reasonable results were obtained from folding studies

on β-sheets peptides. Given the poor performance of EEF1-SB on helical systems, a further

optimization of the model is desirable. The goal can be achieved using different approaches.

One possible route is to make extensive use of reweighting techniques in the relative entropy

minimization. This would alleviate some of the computational and numerical problems con-

nected to the procedure, thus allowing a more accurate parameterization. Ideally, only the

implicit solvent model would be optimized. However, it may be that certain important proper-

ties such as helicity cannot be matched by tuning the solvent model alone. In this case, it may

be useful to include additional parameters (e.g. torsion parameters) directly into the relative

entropy procedure, but only as a final tuning step once the solvent model has ben optimized
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as far as possible. It is also likely that a more precise description of the electrostatic effects is

needed to improve the EEF1-SB model. While an accurate treatment of the problem is given

by Poisson-Boltzmann and Generalized Born models, these methods are often computationally

very expensive, although dramatic speed-ups were reported with the use of graphic processing

units (GPU) [76]. Alternative approaches, such as the screened coulomb potential model [77],

would instead offer a good compromise between efficiency and accuracy.

Simulation setup

Explicit water simulations The explicit water simulations used in this work are taken from the

study of Best et. al [35]. For ease of reference, we briefly report the simulation conditions. All simulations

were performed with the CHARMM 36 force-field and TIP3P water model using GROMACS 4.5.3 [78].

Long range electrostatics were treated using Particle-Mesh Ewald [79] summation with a real-space cutoff

of 12 Å and a 1 Å grid spacing, while the Lennard-Jones interactions were treated with a switching

function from 10 to 12 Å. The equations of motion were integrated with a 2 fs time step. Bond lengths

were constrained using the SHAKE algorithm [80], while SETTLE [81] maintained rigid water geometries.

The 100ns simulation on the unblocked Ala5 peptide with protonated C-terminal was performed in the

NPT ensemble at 298K and 1 atm pressure in a box of size 34.56 Å3. A Langevin thermostat and barostat

were used. The Ac-(AAQAA)3-NH2 peptide was solvated with 1833 water molecules in a truncated

octahedron cell with a distance between nearest faces of 42 Å. The peptide was first unfolded using a 5

ns constant volume simulation at 800 K. Subsequently, a constant volume replica exchange MD was run,

with 32 replicas spanning a temperature range from 278 to 416 K and exchange attempts every 10 ps,

for a total of 150 ns per replica, of which only the last 50ns were used for the relative entropy procedure.

A Langevin thermostat with a friction coefficient of 1 ps−1 was used.

Implicit water simulations Simulations in implicit water were performed with the CHARMM 36

force-field using the CHARMM software package [82]. Langevin dynamics with a friction coefficient of 1

ps−1 was used, and all bond lengths were constrained using the SHAKE algorithm. REMD simulations

were performed spanning different temperature ranges, as described in the main text, and with exchange

attempts every 0.4ps.
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3

Conclusion

3.1 Concluding Remarks

One of the main challenges connected to computer simulations of biomolecules is to

extend the observation time (i.e. the length of the simulation) to the typical time-scale

over which the biological process of interest occurs. This problem is very relevant:

calculating average quantities over unconverged simulations can lead to dramatic er-

rors, which would therefore give wrong insights into the problem under consideration.

It should also be noted that accessing long time-scales allows for a direct comparison

between results from simulations and experimental measurements, thus providing a

robust route for validating the employed computational approach. It therefore comes

as no surprise that a substantial effort of the scientific community is devoted to the

development of high-performance hardware, efficient software and smart sampling al-

gorithms.

In this dissertation I presented a number of methodologies for efficient conforma-

tional sampling of proteins. Specifically, I introduced a novel Monte Carlo algorithm,

CRISP, and derived a coarse-grained representation for modeling protein-solvent inter-

actions. When possible, I compared the performance of these methods to the current

state-of-the-art techniques and with experimental data. As the simulation community

grows, it becomes more and more important to perform a thorough assessment of new

methodologies, in order to make the results of the study useful to others in the field.

The main limitation of the approaches presented in this dissertation is connected

to the use of implicit solvent models. The combination of the OPLSAA force-field with
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3. CONCLUSION

the generalized Born/surface area (GB/SA) model used in the study of section 2.1 has

been criticized for over-stabilizing salt bridges [146]. Moreover, the computational cost

of GB approaches on standard CPUs is only marginally lower compared to explicit

water simulations, although a dramatic speed-up can be achieved by using graphic

processing units (GPU) [147]. On the other hand, the effective EEF1/EEF1-SB models

are extremely fast, but not always accurate. A good compromise between accuracy and

efficiency can be in principle obtained by combining the EEF1-SB implicit solvent with

a simple model that accounts for electrostatic effects, such as the screened Coulomb

potential approach [148]. Bearing in mind the aforementioned disadvantages, implicit

solvent can be used to study a wide range of biological systems, and, as a large body of

work demonstrates [25]-[29], it can be fruitfully used in combination with Monte Carlo

simulations.

Other aspects of the work presented in this dissertation can be improved. Specif-

ically, future developments of the software package PHAISTOS (section 2.2) could

progress roughly along three different lines.

First, the complementarity with molecular dynamics methods. From a theoretical

standpoint it is important to show that MC and molecular dynamics give comparable

results, even the in dense environment of native globular proteins (see section 2.1).

Application-wise, it is however more natural to use MC for studying systems that un-

dergo large structural or spatial rearrangements, such as intrinsically disordered pro-

teins or aggregation-prone peptides. Computational studies of these processes require

specific force-field and the possibility of handling multiple chains, but both features are

currently not available within the package. The use of experimental data to guide the

MC simulation is another promising approach that we partially considered (section 2.4

and Ref. [149]) and that recently became very popular within the field [150].

The ease of use is a second aspect that could be improved. As also discussed in

section 1.2, the efficiency of an MC simulation relies on the choice of the move and

on the associated parameters. In turn, the optimal settings depend on the system of

interest, on the specific problem and on the desired level of detail. Clearly, this leaves

the user of the software with a large set of free parameters. One possible solution to this

problem is the introduction of an automated system for optimizing the move type/size,

along the same lines as the approach used in the CHARMM MC module [151].
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3.1 Concluding Remarks

Finally, further extensions and refinements to the move-set can be introduced. In the

Monte Carlo move presented in section 2.1, side-chain and backbone degrees of freedom

are treated independently. This approach, although very common, neglects completely

the fact that even a small, local backbone variation can lead to a large displacement

of the rigidly attached side-chain, and therefore to the rejection of the trial configu-

ration. Similarly, uncorrelated motions of interacting side-chains can be energetically

unfavorable (e.g. breaking of hydrogen bonds). In this context, the Gaussian-biased

step approach [37] and CRISP moves can be combined in a large number of different

ways to further enhance the efficiency of MC simulations (Figure 3.1).

a b

c

Figure 3.1: Extended CRISP - (a-b) CRISP moves can be applied for side-chain sam-
pling, by constructing a fictitious chain connecting interacting side-chains or even involving
one or more water molecules. This type of move allows to vary the internal degrees of free-
dom, while preserving the polar interactions (dashed line). The region of the chain affected
by the local update is colored in blue. (c) Alternatively, it is possible to introduce purely
backbone moves with a bias toward a small displacement of a side-chain endpoint (colored
in red).
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Appendix A

Potentials of Mean Force for Protein Structure Prediction Vindicated, For-
malized and Generalized

This article presents the reference ratio method for combining two probability distri-
butions describing respectively local and non-local features of biomolecular structure.
A theoretical formulation for the problem is given, and two applications of the method
to protein structure determination are presented as explicative examples.

Although I was not involved in the theoretical discussions leading to the develope-
ment of the reference ratio method, I contributed with the sampling algorithms used
in the study.
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knowledge-based potentials based on pairwise distances – so-called ‘‘potentials of mean force’’ (PMFs) – have been center
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Introduction

Methods for protein structure prediction, simulation and design

rely on an energy function that represents the protein’s free energy

landscape; a protein’s native state typically corresponds to the state

with minimum free energy [1]. So-called knowledge based

potentials (KBP) are parametrized functions for free energy

calculations that are commonly used for modeling protein

structures [2,3]. These potentials are obtained from databases of

known protein structures and lie at the heart of some of the best

protein structure prediction methods. The use of KBPs originates

from the work of Tanaka and Scheraga [4] who were the first to

extract effective interactions from the frequency of contacts in

X-ray structures of native proteins. Miyazawa and Jernigan

formalized the theory for contact interactions by means of the

quasi-chemical approximation [5,6].

Many different approaches for developing KBPs exist, but the

most successful methods to date build upon a seminal paper by

Sippl – published two decades ago – which introduced KBPs

based on probability distributions of pairwise distances in proteins

and reference states [7]. These KBPs were called ‘‘potentials of

mean force’’, and seen as approximations of free energy functions.

Sippl’s work was inspired by the statistical physics of liquids, where

a ‘‘potential of mean force’’ has a very precise and undisputed

definition and meaning [8,9]. However, the validity of the

application to biological macromolecules is vigorously disputed

in the literature [2,10–17]. Nonetheless, PMFs are widely used

with considerable success; not only for protein structure prediction

[3,18,19], but also for quality assessment and identification of

errors [20–22], fold recognition and threading [23,24], molecular

dynamics [24], protein-ligand interactions [16,25], protein design

and engineering [26,27], and the prediction of binding affinity

[17,28]. In this article, the abbreviation ‘‘PMF’’ will refer to the

pairwise distance dependent KBPs following Sippl [7], and the

generalization that we introduce in this article; we will write

‘‘potentials of mean force’’ in full when we refer to the real,

physically valid potentials as used in liquid systems [9,13,29]. At

the end of the article, we will propose a new name for these

statistical quantities, to set them apart from true potentials of mean

force with a firm physical basis.
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Despite the progress in methodology and theory, and the

dramatic increase in the number of experimentally determined

protein structures, the accuracy of the energy functions still

remains the main obstacle to accurate protein structure prediction

[22,30,31]. Recently, several groups demonstrated that it is the

quality of the coarse grained energy functions [18], rather than

inadequate sampling, that impairs the successful prediction of the

native state [30,31]. The insights presented in this article point

towards a new, theoretically well-founded way to construct and

refine energy functions, and thus address a timely problem.

We start with an informal outline of the general ideas presented

in this article, and then analyze two notable attempts in the

literature to justify PMFs. We point out their shortcomings, and

subsequently present a rigorous probabilistic explanation of the

strengths and shortcomings of traditional pairwise distance PMFs.

This explanation sheds a surprising new light on the nature of the

reference state, and allows the generalization of PMFs beyond

pairwise distances in a statistically valid way. Finally, we

demonstrate our method in two applications involving protein

compactness and hydrogen bonding. In the latter case, we also

show that PMFs can be iteratively optimized, thereby effectively

sculpting an energy funnel [24,32–36].

Results and Discussion

Overview
In order to emphasize the practical implications of the

theoretical insights that we present here, we start with a very

concrete example that illustrates the essential concepts (see Fig. 1).

Currently, protein structure prediction methods often make use of

fragment libraries: collections of short fragments derived from

known protein structures in the Protein Data Bank (PDB). By

assembling a suitable set of fragments, one obtains conforma-

tions that are protein-like on a local length scale. That is, these

conformations typically lack non-local features that characterize

real proteins, such as a well-packed hydrophobic core or an

extensive hydrogen bond network. Such aspects of protein

structure are not, or only partly, captured by fragment libraries.

Formally, a fragment library specifies a probability distribution

Q(X ), where X is for example a vector of dihedral angles. In order to

obtain conformations that also possess the desired non-local features,

Q(X ) needs to be complemented with another probability

distribution P(Y ), with Y being for example a vector of pairwise

distances, the radius of gyration, the hydrogen bonding network, or

any combination of non-local features. Typically, Y is a determin-

istic function of X ; we use the notation Y (X ) when necessary.

For the sake of argument, we will focus on the radius of gyration

(rg) at this point; in this case Y (X ) becomes rg(X ). We assume that

a suitable P(rg) was derived from the set of known protein

structures; without loss of generality, we leave out the dependency

on the amino acid sequence for simplicity. The problem that we

address in this article can be illustrated with the following question:

how can we combine P(rg) and Q(X ) in a rigorous, meaningful

way? In other words, we want to use the fragment library to

sample conformations whose radii of gyration rg are distributed

according to P(rg). These conformations should display a realistic

local structure as well, reflecting the use of the fragment library.

Simply multiplying P(rg(X )) and Q(X ) does not lead to the

desired result, as X and Rg are not independent; the resulting

conformations will not be distributed according to P(rg).

The solution is given in Fig. 1; it involves the probability

distribution QR(rg), the probability distribution over the radius of

gyration for conformations sampled solely from the fragment

library. The subscript R stands for reference state as will be explained

below. The solution generates conformations whose radii of

gyration are distributed according to P(rg). The influence of Q(X )
is apparent in the fact that for conformations with a given rg, their

local structure X will be distributed according to Q(X Drg). The

Figure 1. Illustration of the central idea presented in this article. In this example, the goal is to sample conformations with a given
distribution P(rg) for the radius of gyration rg , and a plausible local structure. P(rg) could, for example, be derived from known structures in the
Protein Data Bank (PDB, left box). Q(X ) is a probability distribution over local structure X , typically embodied in fragment library (right box). In order
to combine Q(X ) and P(rg) in a meaningful way (see text), the two distributions are multiplied and divided by QR(rg) (formula at the bottom);
QR(rg) is the probability distribution over the radius of gyration for conformations sampled solely from the fragment library (that is, Q(X )). The
probability distribution P(X ) will generate conformations with plausible local structures (due to Q(X )), while their radii of gyration will be distributed
according to P(rg), as desired. This simple idea lies at the theoretical heart of the PMF expressions used in protein structure prediction.
doi:10.1371/journal.pone.0013714.g001

Reference Ratio Distributions
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latter distribution has a clear interpretation: it corresponds to

sampling an infinite amount of conformations from a fragment

library, and retaining only those with the desired rg. Note that

even if we chose the uniform distribution for Q(X ), the resulting

QR(rg) will not (necessarily) be uniform.

Intuitively, P(rg) provides correct information about the radius

of gyration, but no information about local structure; Q(X )
provides approximately correct information about the structure of

proteins on a local length scale, but is incorrect on a global scale

(leading to an incorrect probability distribution for the radius of

gyration); finally, the formula shown in Fig. 1 merges these two

complementary sources of information together. Another view-

point is that P(rg) and Q(rg) are used to correct the shortcomings

of Q(X ). This construction is statistically rigorous, provided that

P(rg) and Q(X ) are proper probability distributions.

After this illustrative example, we now review the use of PMFs

in protein structure prediction, and discuss how PMFs can be

understood and generalized in the theoretical framework that we

briefly outlined here.

Pairwise PMFs for protein structure prediction
Many textbooks present PMFs as a simple consequence of the

Boltzmann distribution, as applied to pairwise distances between

amino acids. This distribution, applied to a specific pair of amino

acids, is given by:

P rð Þ~ 1

Z
e
{

F rð Þ
kT

where r is the distance, k is Boltzmann’s constant, T is the

temperature and Z is the partition function, with Z~
Ð

e
{

F (r)
kT dr.

The quantity F (r) is the free energy assigned to the pairwise

system. Simple rearrangement results in the inverse Boltzmann

formula, which expresses the free energy F (r) as a function of P(r):

F rð Þ~{kT ln P rð Þ{kT ln Z

To construct a PMF, one then introduces a so-called reference state

with a corresponding distribution QR and partition function ZR,

and calculates the following free energy difference:

DF rð Þ~{kT ln
P rð Þ

QR rð Þ{kT ln
Z

ZR

ð1Þ

The reference state typically results from a hypothetical system

in which the specific interactions between the amino acids are

absent [7]. The second term involving Z and ZR can be ignored,

as it is a constant.

In practice, P(r) is estimated from the database of known

protein structures, while QR(r) typically results from calculations

or simulations. For example, P(r) could be the conditional

probability of finding the Cb atoms of a valine and a serine at a

given distance r from each other, giving rise to the free energy

difference DF . The total free energy difference of a protein,

DFTOT, is then claimed to be the sum of all the pairwise free

energies:

DFTOT~
X
ivj

DF (rij Dai,aj) ð2Þ

~{kT
X
ivj

ln
P rij Dai,aj

� �
QR rij Dai,aj

� � ð3Þ

where the sum runs over all amino acid pairs ai,aj (with ivj) and

rij is their corresponding distance. It should be noted that in many

studies QR does not depend on the amino acid sequence [11].

Intuitively, it is clear that a low free energy difference indicates

that the set of distances in a structure is more likely in proteins

than in the reference state. However, the physical meaning of

these PMFs have been widely disputed since their introduction

[2,12–15]. Indeed, why is it at all necessary to subtract a reference

state energy? What is the optimal reference state? Can PMFs be

generalized and justified beyond pairwise distances, and if so,

how? Before we discuss and clarify these issues, we discuss two

qualitative justifications that were previously reported in the

literature: the first based on a physical analogy, and the second

using a statistical argument.

PMFs from the reversible work theorem
The first, qualitative justification of PMFs is due to Sippl, and

based on an analogy with the statistical physics of liquids [37]. For

liquids [8,9,13,14,37], the potential of mean force is related to the

pair correlation function g(r), which is given by:

g(r)~
P(r)

QR(r)

where P(r) and QR(r) are the respective probabilities of finding two

particles at a distance r from each other in the liquid and in the

reference state. For liquids, the reference state is clearly defined; it

corresponds to the ideal gas, consisting of non-interacting particles.

The two-particle potential of mean force W (r) is related to g(r) by:

W (r)~{kT log g(r)~{kT log
P(r)

QR(r)
ð4Þ

According to the reversible work theorem, the two-particle potential of

mean force W (r) is the reversible work required to bring two

particles in the liquid from infinite separation to a distance r from

each other [8,9].

Sippl justified the use of PMFs – a few years after he introduced

them for use in protein structure prediction [7] – by appealing to

the analogy with the reversible work theorem for liquids [37]. For

liquids, g(r) can be experimentally measured using small angle X-

ray scattering; for proteins, P(r) is obtained from the set of known

protein structures, as explained in the previous section. The

analogy described above might provide some physical insight, but,

as Ben-Naim writes in a seminal publication [13]: ‘‘the quantities,

referred to as ‘statistical potentials,’ ‘structure based potentials,’ or

‘pair potentials of mean force’, as derived from the protein data

bank, are neither ‘potentials’ nor ‘potentials of mean force,’ in the

ordinary sense as used in the literature on liquids and solutions.’’

Another issue is that the analogy does not specify a suitable

reference state for proteins. This is also reflected in the literature

on statistical potentials; the construction of a suitable reference

state continues to be an active research topic [3,22,38–41]. In the

next section, we discuss a second, more recent justification that is

based on probabilistic reasoning.

PMFs from likelihoods
Baker and co-workers [18] justified PMFs from a Bayesian point

of view and used these insights in the construction of the coarse

Reference Ratio Distributions
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grained ROSETTA energy function; Samudrala and Moult used

similar reasoning for the RAPDF potential [42]. According to

Bayesian probability calculus, the conditional probability P(X DA)
of a structure X , given the amino acid sequence A, can be written

as:

P X DAð Þ~ P ADXð ÞP Xð Þ
P Að Þ !P ADXð ÞP Xð Þ

P(X DA) is proportional to the product of the likelihood P ADXð Þ
times the prior P Xð Þ. By assuming that the likelihood can be

approximated as a product of pairwise probabilities, and applying

Bayes’ theorem, the likelihood can be written as:

P ADXð Þ& P
ivj

P ai,aj Drij

� �
! P

ivj

P rij Dai,aj

� �
P(rij)

ð5Þ

where the product runs over all amino acid pairs ai,aj (with ivj),

and rij is the distance between amino acids i and j. Obviously, the

negative of the logarithm of expression (5) has the same functional

form as the classic pairwise distance PMFs, with the denominator

playing the role of the reference state in Eq. 1. The merit of this

explanation is the qualitative demonstration that the functional

form of a PMF can be obtained from probabilistic reasoning.

Although this view is insightful – it rightfully drew the attention to

the application of Bayesian methods to protein structure

prediction – there is a more quantitative explanation, which does

not rely on the incorrect assumption of pairwise decomposability

[12–14,43], and leads to a different, quantitative conclusion

regarding the nature of the reference state. This explanation is

given in the next section.

A general statistical justification for PMFs
Expressions that resemble PMFs naturally result from the

application of probability theory to solve a fundamental problem

that arises in protein structure prediction: how to improve an

imperfect probability distribution Q(X ) over a first variable X

using a probability distribution P(Y ) over a second variable Y (see

Fig. 2, Fig. 1 and Materials and Methods). We assume that Y is a

deterministic function of X ; we write Y (X ) when necessary. In

that case, X and Y are called fine and coarse grained variables,

respectively. When Y is a function of X , the probability

distribution Q(X ) automatically implies a probability distribufo-

tion Q(X ,Y (X )). This distribution has some unusual properties:

Q(X ,Y (X ))~Q(X ); and if Y ’=Y (X ), it follows that

Q(X ,Y ’)~0.

Typically, X represents local features of protein structure (such

as backbone dihedral angles), while Y represents nonlocal features

(such as hydrogen bonding, compactness or pairwise distances).

However, the same reasoning also applies to other cases; for

example, P(Y ) could represent information coming from

experimental data, and Q(X ) could be embodied in an empirical

force field as used in molecular mechanics [2,44] (see Fig. 2).

Typically, the distribution Q(X ) in itself is not sufficient for

protein structure prediction: it does not consider important

nonlocal features such as hydrogen bonding, compactness or

favorable amino acid interactions. As a result, Q(X ) is incorrect

with respect to Y , and needs to be supplemented with a

probability distribution P(Y ) that provides additional information.

By construction, P(Y ) is assumed to be correct (or at least useful).

The above situation arises naturally in protein structure

prediction. For example, P(Y ) could be a probability distribution

over the radius of gyration, hydrogen bond geometry or the set of

pairwise distances, and Q(X ) could be a fragment library [18] or a

Figure 2. General statistical justification of PMFs. The goal is to combine a distribution Q(X ) over a fine grained variable X (top right), with a
probability distribution P(Y ) over a coarse grained variable Y (X ) (top left). Q(X ) could be, for example, embodied in a fragment library (F ),
a probabilistic model of local structure (T ) or an energy function (E); Y could be, for example, the radius of gyration, the hydrogen bond network, or
the set of pairwise distances. P(Y ) usually reflects the distribution of Y in known protein structures (PDB), but could also stem from experimental
data (D). Sampling from Q(X ) results in a distribution QR(Y ) that differs from P(Y ). Multiplying P(Y ) and Q(X ) does not result in the desired
distribution for Y either (red box); the correct result requires dividing out the signal with respect to Y due to Q(X ) (green box). The reference
distribution QR(Y ) in the denominator corresponds to the contribution of the reference state in a PMF. If QR(Y ) is only approximately known, the
method can be applied iteratively (dashed arrow). In that case, one attempts to iteratively sculpt an energy funnel. The procedure is statistically
rigorous provided Q(X ) and P(Y ) are proper probability distributions; this is usually not the case for conventional pairwise distance PMFs.
doi:10.1371/journal.pone.0013714.g002
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probabilistic model of local structure [45]. In Fig. 1, we used the

example of a distribution over the radius of gyration for P(Y ) and

a fragment library for Q(X ). Obviously, sampling from a fragment

library and retaining structures with the desired nonlocal structure

(radius of gyration, hydrogen bonding, etc.) is in principle possible,

but in practice extremely inefficient.

How can Q(X ) be combined with P(Y ) in a meaningful way?

As mentioned previously, simply multiplying the two distributions

– resulting in P(Y (X ))Q(X ) – does not lead to the desired result as

the two variables are obviously not independent. The correct

solution follows from simple statistical considerations (see Mate-

rials and Methods), and is given by the following expression:

P(X )~
P Y (X )ð Þ

QR Y (X )ð ÞQ(X ) ð6Þ

We use the notation P(X ), as this distribution implies the desired

distribution P(Y ) for Y (X ). The distribution QR(Y ) in the

denominator is the probability distribution that is implied by Q(X )
over the coarse grained variable Y . Conceptually, dividing by

QR(Y ) takes care of the signal in Q(X ) with respect to the coarse

grained variable Y . The ratio in this expression corresponds to the

probabilistic formulation of a PMF, and QR(Y ) corresponds to the

reference state (see Materials and Methods).

In practice, Q(X ) is typically not evaluated directly, but brought

in through conformational Monte Carlo sampling (see Materials

and Methods); often sampling is based on a fragment library

[18,46], although other methods are possible, including sampling

from a probabilistic model [45,47,48] or a suitable energy function

[2,44]. The ratio P(Y )=QR(Y ), which corresponds to the

probabilistic formulation of a PMF, also naturally arises in the

Markov chain Monte Carlo (MCMC) procedure (see Materials

and Methods). An important insight is that, in this case, the

conformational sampling method uniquely defines the reference

state. Thus, in the case of a fragment library, the reference

distribution QR(Y ) is the probability distribution over Y that is

obtained by sampling conformations solely using the fragment

library.

As the method we have introduced here invariably relies on the

ratio of two probability distributions – one regarding protein

structure and the other regarding a well-defined reference state –

we refer to it as the reference ratio method. In the next section, we

show that the standard pairwise distance PMFs can be seen as an

approximation of the reference ratio method.

Pairwise distance PMFs explained
In this section, we apply the reference ratio method to the

standard, pairwise distance case. In the classic PMF approach, one

considers the vector of pairwise distances R between the amino

acids. In this case, it is usually assumed that we can write

P(RDA)! P
ivj

P(rij Dai,aj) ð7Þ

where the product runs over all amino acid pairs ai,aj (with ivj),

and rij is their matching distance. Clearly, the assumption that the

joint probability can be written as a product of pairwise

probabilities is not justified [12,13,43], but in practice this

assumption often provides useful results [22]. In order to obtain

protein-like conformations, P(RDA) needs to be combined with an

appropriate probability distribution Q(X DA) that addresses the

local features of the polypeptide chain. Applying Eq. 6 to this case

results in the following expression:

P(X DA)!
Pivj P(rij Dai,aj)

Pivj QR(rij Dai,aj)
Q(X DA)

where the denominator QR(:) is the probability distribution over

the pairwise distances as induced by the distribution Q(X DA). The

ratio in this expression corresponds to the probabilistic expression

of a PMF. The reference state is thus determined by Q(X DA): it

reflects the probability of generating a set of pairwise distances

using local structure information alone. Obviously, as Q(X DA) is

conditional upon the amino acid sequence A, the reference state

becomes sequence dependent as well.

We again emphasize that the assumption of pairwise decom-

posability in Eq. 7 is incorrect [12–14,43]. Therefore, the

application of the reference ratio method results in a useful

approximation, at best. As a result, the optimal definition of the

reference state also needs to compensate for the errors implied by

the invalid assumption. As is it well established that distance

dependent PMFs perform well with a suitable definition of the

reference state [3,22,38–40], and the incorrect pairwise decom-

posability assumption impairs a rigorous statistical analysis, we do

not discuss this type of PMFs further. Indeed, for pairwise distance

PMFs, the main challenge lies in developing better probabilistic

models of sets of pairwise distances [49].

The pairwise distance PMFs currently used in protein structure

prediction are thus not statistically rigorous, because they do not

make use of a proper joint probability distribution over the

pairwise distances, which are strongly intercorrelated due to the

connectivity of molecules. A rigorous application of the reference

ratio method would require the construction of a proper joint

probability distribution over pairwise distances. This is certainly

possible in principle, but currently, as far as we know, a

challenging open problem and beyond the scope of this article.

However, we have clarified that the idea of using a reference state

is correct and valid, and that this state has a very precise definition.

Therefore, in the next two sections, we show instead how

statistically valid quantities, similar to PMFs, can be obtained for

very different coarse grained variables.

A generalized PMF: radius of gyration
As a first application of the reference ratio method, we consider

the task of sampling protein conformations with a given probability

distribution P(rg) for the radius of gyration rg. For P(rg), we chose a

Gaussian distribution with mean m~22 Å and standard deviation

s~2 Å. This choice is completely arbitrary; it simply serves to

illustrate that the reference ratio method allows imposing an exact

probability distribution over a certain feature of interest. Applying

Eq. 6 results in:

P(X DA)~
P(rg(X ))

QR(rg(X )DA)
Q(X DA) ð8Þ

For Q(X DA), we used TorusDBN – a graphical model that allows

sampling of plausible backbone angles [45] – and sampled

conditional on the amino acid sequence A of ubiquitin (see

Materials and Methods). QR(rg DA) is the probability distribution of

the radius of gyration for structures sampled solely from TorusDBN,

which was determined using generalized multihistogram MCMC

sampling (see Materials and Methods).

In Fig. 3, we contrast sampling from Eq. 8 with sampling from

P(rg(X ))Q(X DA). In the latter case, the reference state is not

properly taken into account, which results in a significant shift

towards higher radii of gyration. In contrast, the distribution of rg

for the correct distribution P(X ), given by Eq. 8, is indistinguish-
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able from the target distribution. This qualitative result is

confirmed by the Kullback-Leibler divergence [50] – a natural

distance measure for probability distributions expressed in bits –

between the target distribution and the resulting marginal

distributions of rg. Adding QR(rg(X )DA) to the denominator

diminishes the distance from 0.08 to 0.001 bits. For this particular

PMF, the effect of using the correct reference state is significant,

but relatively modest; in the next section, we discuss an application

where its effect is much more pronounced.

Iterative optimization of PMFs: hydrogen bonding
Here, we demonstrate that PMFs can be optimized iteratively,

which is particularly useful if the reference probability distribution

QR(Y DA) is difficult to estimate. We illustrate the method with a

target distribution that models the hydrogen bonding network

using a multinomial distribution.

We describe the hydrogen bonding network (H ) with eight

integers (for details, see Materials and Methods). Three integers

(na,nb,nc) represent the number of residues that do not partake in

hydrogen bonds in a-helices, b-sheets and coils, respectively. The

five remaining integers (naa,nbb,ncc,nac,nbc) represent the number

of hydrogen bonds within a-helices, within b-strands, within coils,

between a-helices and coils, and between b-strands and coils,

respectively.

As target distribution P(H) over these eight integers, we chose a

multinomial distribution whose parameters were derived from the

native structure of protein G (see Materials and Methods). P(H)
provides information, regarding protein G, on the number of

hydrogen bonds and the secondary structure elements involved,

but does not specify where the hydrogen bonds or secondary

elements occur. As in the previous section, we use TorusDBN as

the sampling distribution Q(X DA); we sample backbone angles

conditional on the amino acid sequence A of protein G. Native

secondary structure information was not used in sampling from

TorusDBN.

The reference distribution QR(H DA), due to TorusDBN, is very

difficult to estimate correctly for several reasons: its shape is

unknown and presumably complex; its dimensionality is high; and

the data is very sparse with respect to b-sheet content. Therefore,

QR(H DA) can only be approximated, which results in a suboptimal

PMF. A key insight is that one can apply the method iteratively

until a satisfactory PMF is obtained (see Fig. 2, dashed line). In

each iteration, the (complex) reference distribution is approximat-

ed using a simple probability distribution; we illustrate the method

by using a multinomial distribution, whose parameters are

estimated by maximum likelihood estimation in each iteration,

using the conformations generated in the previous iteration. In the

first iteration, we simply set the reference distribution equal to the

uniform distribution.

Formally, the procedure works as follows. In iteration iz1, the

distribution Pi(H DA) is improved using the samples generated in

iteration i:

Piz1(X DA)~
P(H(X ))

PR,i(H(X )DA)
Pi(X DA) ð9Þ

where PR,i(H DA) is the reference distribution estimated from the

samples generated in the i-th iteration, P0(X )~Q(X DA) stems

from TorusDBN, and PR,0(H DA) is the uniform distribution. After

each iteration, the set of samples is enriched in hydrogen bonds,

and the reference distribution PR,i(H DA) can be progressively

estimated more precisely. Note that in the first iteration, we simply

use the product of the target and the sampling distribution; no

reference state is involved.

Fig. 4 shows the evolution of the fractions versus the iteration

number for the eight hydrogen bond categories; the structures with

minimum energy for all six iterations are shown in Fig. 5. In the

Figure 3. A PMF based on the radius of gyration. The goal is to adapt a distribution Q(X DA) – which allows sampling of local structures – such
that a given target distribution P(rg) is obtained. For A, we used the amino acid sequence of ubiquitin. Sampling from Q(X DA) alone results in a
distribution with an average rg of about 27 A (triangles). Sampling using the correct expression (open circles), given by Eq. 8, results in a distribution
that coincides with the target distribution (solid line). Not taking the reference state into account results in a significant shift towards higher rg (black
circles).
doi:10.1371/journal.pone.0013714.g003
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first iteration, the structure with minimum energy (highest

probability) consists of a single a-helix; b-sheets are entirely absent

(see Fig. 5, structure 1). Already in the second iteration, b-strands

start to pair, and in the third and higher iterations complete sheets

are readily formed. The iterative optimization of the PMF quickly

leads to a dramatic enrichment in b-sheet structures, as desired,

and the fractions of the eight categories become very close to the

native values (Fig. 4).

Conclusions
The strengths and weaknesses of PMFs can be rigorously

explained based on simple probabilistic considerations, which

leads to some surprising new insights of direct practical relevance.

First, we have made clear that PMFs naturally arise when two

probability distributions need to be combined in a meaningful

way. One of these distributions typically addresses local structure,

and its contribution often arises from conformational sampling.

Each conformational sampling method thus requires its own

reference state and corresponding reference distribution; this is

likely the main reason behind the large number of different

reference states reported in the literature [3,22,38–41]. If the

sampling method is conditional upon the amino acid sequence, the

reference state necessarily also depends on the amino acid

sequence.

Second, conventional applications of pairwise distance PMFs

usually lack two necessary features to make them fully rigorous: the

use of a proper probability distribution over pairwise distances in

proteins for P(Y DA), and the recognition that the reference state is

rigorously defined by the conformational sampling scheme used,

that is, Q(X DA). Usually, the reference state is derived from

external physical considerations [11,51].

Third, PMFs are not tied to pairwise distances, but generalize to

any coarse grained variable. Attempts to develop similar quantities

that, for example, consider solvent exposure [52,53], relative side

chain orientations [54], backbone dihedral angles [55,56] or

hydrogen bonds [37] are thus, in principle, entirely justified.

Hence, our probabilistic interpretation opens up a wide range of

possibilities for advanced, well-justified energy functions based on

sound probabilistic reasoning; the main challenge is to develop

proper probabilistic models of the features of interest and the

estimation of their parameters [49,57]. Strikingly, the example

applications involving radius of gyration and hydrogen bonding

that we presented in this article are statistically valid and rigorous,

in contrast to the traditional pairwise distance PMFs.

Finally, our results reveal a straightforward way to optimize

PMFs. Often, it is difficult to estimate the probability distribution

that describes the reference state. In that case, one can start with

an approximate PMF, and apply the method iteratively. In each

iteration, a new reference state is estimated, with a matching

probability distribution. In that way, one iteratively attempts to

sculpt an energy funnel [24,32–36]. We illustrated this approach

with a probabilistic model of the hydrogen bond network.

Although iterative application of the inverse Boltzmann formula

has been described before [24,35,58,59], its theoretical justifica-

tion, optimal definition of the reference state and scope remained

unclear.

As the traditional pairwise distance PMFs used in protein

structure prediction arise from the imperfect application of a

statistically valid and rigorous procedure with a much wider scope,

we consider it highly desirable that the name ‘‘potential of mean

force’’ should be reserved for true, physically valid quantities [13].

Because the statistical quantities we discussed invariably rely on

the use of a ratio of two probability distributions, one concerning

protein structure and the other concerning the (now well defined)

reference state, we suggest the name ‘‘reference ratio distribution’’

deriving from the application of the ‘‘reference ratio method’’.

Pairwise distance PMFs, as used in protein structure prediction,

are not physically justified potentials of mean force or free energies

Figure 4. Iterative estimation of a PMF. For each of the eight hydrogen bond categories (see text), the black bar to the right denotes the fraction
of occurrence f (n) in the native structure of protein G. The gray bars denote the fractions of the eight categories in samples from each iteration; the
first iteration is shown to the left in light gray. In the last iteration (iteration 6; dark gray bars, right) the values are very close to the native values for all
eight categories. Note that hydrogen bonds between b-strands are nearly absent in the first iteration (category nbb).
doi:10.1371/journal.pone.0013714.g004
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[2,13] and the reference state does not depend on external

physical considerations; the same is of course true for our

generalization. However, these PMFs are approximations of

statistically valid and rigorous quantities, and these quantities

can be generalized beyond pairwise distances to other aspects of

protein structure. The fact that these quantities are not potentials

of mean force or free energies is of no consequence for their

statistical rigor or practical importance – both of which are

considerable. Our results thus vindicate, formalize and generalize

Sippl’s original and seminal idea [7]. After about twenty years of

controversy, PMFs – or rather the statistical quantities that we

have introduced in this article – are ready for new challenges.

Materials and Methods

Outline of the problem
We consider a joint probability distribution Q(X ,Y ) and a

probability distribution P(Y ) over two variables of interest, X and

Y , where Y is a deterministic function of X ; we write Y (X ) when

relevant. Note that because Y is a function of X , it follows that

Q(X )~Q(X ,Y (X )); and if Y ’=Y (X ), then Q(X ,Y ’)~0.

We assume that P(Y ) is a meaningful and informative

distribution for Y . Next, we note that Q(X ,Y ) implies a matching

marginal probability distribution QR(Y ) (where the subscript R

refers to the fact that QR(Y ) corresponds to the reference state, as

we will show below):

QR(Y )~

ð
Q(X ,Y )dX

We consider the case where QR(Y ) differs substantially from

P(Y ); hence, QR(Y ) can be considered as incorrect. On the other

hand, we also assume that the conditional distribution Q(X DY ) is

indeed meaningful and informative (see next section). This

distribution is given by:

Q(X DY )~

0 if Y=Y (X)

Q(X )Ð
Q(X ’)d(Y (X ’){Y )dX ’

if Y~Y (X)

8<
: ð10Þ

where d(:) is the delta function. The question is now how to

combine the two distributions P(Y ) and Q(X ) – each of which

provide useful information on X and Y – in a meaningful way.

Before we provide the solution, we illustrate how this problem

naturally arises in protein structure prediction.

Application to protein structure
In protein structure prediction, Q(X ,Y ) is often embodied in a

fragment library; in that case, X is a set of atomic coordinates

obtained from assembling a set of polypeptide fragments. Of

course, Q(X ,Y ) could also arise from a probabilistic model, a pool

of known protein structures, or any other conformational sampling

method. The variable Y could, for example, be the radius of

gyration, the hydrogen bond network or the set of pairwise

distances. If Y is a deterministic function of X , the two variables

are called coarse grained and fine grained variables, respectively. For

example, sampling a set of dihedral angles for the protein

backbone uniquely defines the hydrogen bond geometry between

any of the backbone atoms.

Above, we assumed that Q(X DY ) is a meaningful distribution.

This is often a reasonable assumption; fragment libraries, for

example, originate from real protein structures, and conditioning

on protein-like compactness or hydrogen bonding will thus result

in a meaningful distribution. Of course, sampling solely from

Q(X ,Y ) is not an efficient strategy to obtain hydrogen bonded or

compact conformations, as they will be exceedingly rare. We now

provide the solution of the problem outlined in the previous

section, and discuss its relevance to the construction of PMFs.

Figure 5. Highest probability structures for each iteration. The structures with highest probability out of 50,000 samples for all six iterations
(indicated by a number) are shown as cartoon representations. The N-terminus is shown in blue. The figure was made using PyMOL [64].
doi:10.1371/journal.pone.0013714.g005
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Solution for a proper joint distribution
A first step on the way to the solution is to note that the product

rule of probability theory allows us to write:

P(X ,Y )~P(Y )P(X DY )

As only P(Y ) is given, we need to make a reasonable choice for

P(X DY ). We assume, as discussed before, that Q(X DY ) is a

meaningful choice, which leads to:

P(X ,Y )~P(Y )Q(X DY )

In the next step, we apply the product formula of probability

theory to the second factor Q(X DY ), and obtain:

P(X ,Y )~P(Y )
Q(X ,Y )

QR(Y )
ð11Þ

The distribution P(X ,Y ) has the correct marginal distribution

P(Y ).

In the next two sections, we discuss how this straightforward

result can be used to great advantage for understanding and

generalizing PMFs. First, we show that the joint distribution

specified by Eq. 11 can be reduced to a surprisingly simple

functional form. Second, we discuss how this result can be used in

MCMC sampling. In both cases, expressions that correspond to a

PMF arise naturally.

PMFs from combining distributions
Using the product rule of probability theory, Eq. 11 can be

written as:

P(X ,Y )~P(Y )
Q(Y DX )Q(X )

QR(Y )

Because the coarse grained variable Y is a deterministic function

of the fine grained variable X , Q(Y DX ) is the delta function:

P(X ,Y )~P(Y )
d Y{Y (X )ð ÞQ(X )

QR(Y )
ð12Þ

Finally, we integrate out the, now redundant, coarse grained

variable Y from the expression:

P(X )~

ð
P(X ,Y )dY

~

ð
P(Y )

d Y{Y (X )ð ÞQ(X )

QR(Y )
dY

~
P(Y (X ))

QR(Y (X ))
Q(X )

and obtain our central result (Eq. 6). Sampling from P(X ) will

result in the desired marginal probability distribution P(Y ). The

influence of the fine grained distribution Q(X ,Y ) is apparent in

the fact that P(X DY ) is equal to Q(X DY ). The ratio in this

expression corresponds to the usual probabilistic formulation of a

PMF; the distribution QR(Y ) corresponds to the reference state. In

the next section, we show that PMFs also naturally arise when

P(Y ) and Q(X ,Y ) are used together in Metropolis-Hastings

sampling.

PMFs from Metropolis-Hastings sampling
Here, we show that Metropolis-Hastings sampling from the

distribution specified by Eq. 11, using Q(X ,Y ) as a proposal

distribution, naturally results in expressions that are equivalent to

PMFs. The derivation is also valid if the proposal distribution

depends on the previous state, provided Q(X ,Y ) satisfies the

detailed balance condition.

According to the standard Metropolis-Hastings method [60],

one can sample from a probability distribution P(X ,Y ) by

generating a Markov chain where each state X ’,Y ’ depends only

on the previous state X ,Y . The new state X ’,Y ’ is generated using

a proposal distribution p(Y ’,X ’DY ,X ), which includes

p(X ’,Y ’DX ,Y )~p(X ’,Y ’) as a special case. According to the

Metropolis-Hastings method, the proposal X ’,Y ’ is accepted with

a probability a:

a(X ’,Y ’DX ,Y )~ min (1,p),

p~
P(X ’,Y ’)
P(X ,Y )

|
p(X ,Y DX ’,Y ’)
p(X ’,Y ’DX ,Y )

ð13Þ

where Y ,X is the starting state, and Y ’,X ’ is the next proposed

state. We assume that the proposal distribution p(X ’,Y ’DX ,Y )
satisfies the detailed balance condition:

p(X ’,Y ’DX ,Y )p(X ,Y )~p(X ,Y DX ’,Y ’)p(X ’,Y ’)

As a result, we can always write Eq. 13 as:

P(X ’,Y ’)
P(X ,Y )

|
p(X ,Y )

p(X ’,Y ’)

The Metropolis-Hastings expression (Eq. 13), applied to the

distribution specified by Eq. 11 and using Q(X ’,Y ’) or

Q(X ’,Y ’DX ,Y ) as the proposal distribution, results in:

P(Y ’)QR(Y )Q(X ’,Y ’)
P(Y )QR(Y ’)Q(X ,Y )

|
Q(X ,Y )

Q(X ’,Y ’)

which reduces to:

P(Y ’)
P(Y )

|
QR(Y )

QR(Y ’)
ð14Þ

Hence, we see that the Metropolis-Hastings method requires the

evaluation of ratios of the form P(Y )=QR(Y ) when Q(X ’,Y ’) or

Q(X ’,Y ’DX ,Y ) is used as the proposal distribution; these ratios

correspond to the usual probabilistic formulation of a PMF.

Finally, when Y is a deterministic function of X , the proposal

distribution reduces to Q(X ’) or Q(X ’DX ), and Eq. 14 becomes:

P(Y (X ’))
P(Y (X ))

|
QR(Y (X ))

QR(Y (X ’))

Application to radius of gyration and hydrogen bonding
Conformational sampling from a suitable Q(X DA) was done

using TorusDBN [45] as implemented in Phaistos [61]; backbone

angles (w,y and v) were sampled conditional on the amino acid

sequence. We used standard fixed bond lengths and bond angles in

Reference Ratio Distributions

PLoS ONE | www.plosone.org 9 November 2010 | Volume 5 | Issue 11 | e13714

145



constructing the backbone coordinates from the angles, and

represented all side chains (except glycine and alanine) with one

dummy atom with a fixed position [61].

For the radius of gyration application, we first determined

QR(rg DA) using the multi-canonical MCMC method to find the

sampling weights w(rg) that yield a flat histogram [62]. Sampling

from the resulting joint distribution (Eq. 8) was done using the

same method. In both cases, we used 50 million iterations; the rg

bin size was 0.08 Å. Sampling from TorusDBN was done

conditional on the amino acid sequence A of ubiquitin (76

residues, PDB code 1UBQ).

For the hydrogen bond application, sampling from the PMFs

was done in the 1=k-ensemble [63], using the Metropolis-Hastings

algorithm and the generalized multihistogram method for

updating the weights [62]. In each iteration i, 50,000 samples

(out of 50 million Metropolis-Hastings steps) were generated, and

the parameters of the multinomial distribution QR,i(H) were

subsequently obtained using maximum likelihood estimation.

Hydrogen bonds were defined as follows: the N,O distance is

below 3.5 Å, and the angles formed by O,H,N and C,O,H are

both greater than 1000. Each carbonyl group was assumed to be

involved in at most one hydrogen bond; in case of multiple

hydrogen bond partners, the one with the lowest H,O distance

was selected. Each residue was assigned to one of the eight possible

hydrogen bond categories (na,nb,nc,naa,nbb,ncc,nac,nbc) based on

the presence of hydrogen bonding at its carbonyl group and the

secondary structure assignments (for both bond partners) by

TorusDBN. The target distribution – the multinomial distribution

P(H) used in Eq. 9 – was obtained by maximum likelihood

estimation using the number of hydrogen bonds, for all eight

categories, in the native structure of protein G (56 residues, PDB

code 2GB1). Sampling from TorusDBN was done conditional on

the amino acid sequence of protein G; native secondary structure

information was not used.
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