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Summary 

Proteorhodopsin (PR) originally isolated from uncultivated γ-Proteobacterium as a result of 

biodiversity screens, is highly abundant ocean wide. PR, a Type I retinal binding protein with 

26% sequence identity, is a bacterial homologue of Bacteriorhodopsin (BR). The members 

within this family share about 78% of sequence identity and display a 40 nm difference in the 

absorption spectra. This property of the PR family members provides an excellent model system 

for understanding the mechanism of spectral tuning. Functionally PR is a photoactive proton 

pump and is suggested to exhibit a pH dependent vectorality of proton transfer. This raises 

questions about its potential role as pH dependent regulator. The abundance of PR in huge 

numbers within the cell, its widespread distribution ocean wide at different depths hints towards 

the involvement of PR in utilization of solar energy, energy metabolism and carbon recycling in 

the Sea.  

Contrary to BR, which is known to be a natural 2D crystal, no such information is available for 

PR til date. Neither its functional mechanism nor its 3D structure has been resolved so far. This 

PhD project is an attempt to gain a deeper insight so as to understand structural and functional 

characterization of PR. The approach combines the potentials of 2D crystallography, Atomic 

Force Microscopy and Solid State NMR techniques for characterization of this protein. 

Wide range of crystalline conditions was obtained as a result of 2D crystallization screens. This 

hints towards dominant protein protein interactions. Considering the high number of PR 

molecules reported per cell, it is likely that driven by such interactions, the protein has a native 

dense packing in the environment. The projection map represented low resolution of these 

crystals but suggested a donut shape oligomeric arrangement of protein in a hexagonal lattice 

with unit cell size of 87Å*87Å. Preliminary FTIR measurements indicated that the crystalline 

environment does not obstruct the photocycle of PR and K as well as M intermediate states could 

be identified. 

Single molecule force spectroscopy and atomic force microscopy on these 2D crystals was used 

to probe further information about the oligomeric state and nature of unfolding. The data 

revealed that protein predominantly exists as hexamers in crystalline as well as densely 

reconstituted regions but a small percentage of pentamers is also observed. The unfolding 
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mechanism was similar to the other relatively well-characterized members of rhodopsin family. 

A good correlation of the atomic force microscopy and the electron microscopy data was 

achieved. 

Solid State NMR of the isotopically labeled 2D crystalline preparations using uniformly and 

selectively labeling schemes, allowed to obtain high quality SSNMR spectra with typical 15N line 

width in the range of 0.6-1.2 ppm. The measured 15N chemical shift value of the Schiff base in 

the 2D crystalline form was observed to be similar to the Schiff base chemical shift values for 

the functionally active reconstituted samples. This provides an indirect evidence for the active 

functionality of the protein and hence the folding. The first 15N assignment has been achieved for 

the Tryptophan with the help of Rotational Echo Double Resonance experiments. The 2D Cross 

Polarization Lee Goldberg measurements reflect the dynamic state of the protein inspite of 

restricted mobility in the crystalline state. The behavior of lipids as measured by 31P from the 

lipid head group showed that the lipids are not tightly bound to the protein but behave more like 

the lipid bilayer. The 13C-13C homonulear correlation experiments with optimized mixing time 

based on build up curve analysis, suggest that it is possible to observe individual resonances as 

seen in case of glutamic acid. The signal to noise was good enough to record a decent spectrum 

in a feasible period. The selective unlabeling is an efficient method for reduction in the spectral 

overlap. However, more efficient labeling schemes are required for further characterization. The 

present spectral resolution is good for individual amino acid investigation but for uniformly 

labeled samples, further improvement is required. 
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Zusammenfassung 
Proteorhodopsin (PR) wurde ursprünglich aus nicht kultivierten γ-Proteobakterium isoliert und 

ist in großen Mengen in den Ozeanen enthalten. PR ist wie sein homolog Bakteriorhodopsin 

(BR) ein TypI Retinal Bindeprotein und die Sequenzen sind zu 26% identisch. 

Innerhalb der PR Familie haben die Mitglieder eine Sequenzhomologie zu ungefähr 78% und 

zeigen einen Unterschied von 40 nm im absorptions spektrum. Diese Eigenschaft bietet ein gutes 

Modelsystem um zu verstehen durch welchen Mechanismus das Absorptionsspektrum 

moduliert wird. 

 

PR ist ein photoaktive Protonenpumpe und es wird angenommen, dass die Richtung des 

Protonentransfers vom pH-wert abhängt, was auf eine Rolle als ein pH abhängiger Regulator 

hindeutet. Da PR sowohl in der Zelle in hoher Zahl, als auch in den Ozeanen in 

unterschiedlichen Tiefen weit verbreitet ist, wird angenommen, dass PR bei der Verwertung von 

Sonnenlicht, im Energiestoffwechsel und beim Kohlenstoffumsatz beteiligt ist. 

 

Im Gegensatz zu BR, welches bekannterweise 2D Kristalle bildet, ist etwas vergleichbares für 

PR bis heute nicht bekannt. Weder der Mechanismus von PR noch seine 3D Struktur sind bisher 

gelöst. Die vorliegende Doktorarbeit versucht offene Punkte zum Mechanismus und zur Struktur 

von PR zu klären. Für die Charakterisierung werden 2D Kristallographie, "Atomic Force 

Microscopy" und Festkörper NMR verwendet. 

 

Für die Bildung von 2D Kristallen konnte eine große Auswahl an Kristallisationbedingungen 

ermittelt werden, was auf deutliche Protein Protein Wechselwirkungen hindeutet. Zieht man die 

hohe Zahl an PR Molekülen pro zelle in betracht, ist es wahrscheinlich, dass durch diese 

Interaktionen auch in der natürlichen Membran eine dichte Packung der Proteine auftritt. 

Elektronenmikroskopische Aufnahmen mit geringer Auflösung deuten auf eine ringförmige 

Anordnung der Proteine in einem hexagonalen Gitter mit einer Einheitszelle von 87Å * 87Å. 

Vorläufige FTIR Messungen deuten darauf hin, dass diese Anordnung den Photozyklus nicht 

behindert und sowohl K als auch M Zustand konnten identifiziert werden. 

 

Um weitere Informationen über den Oligomerisierungszustand der 2D Kristalle zu gewinnen 
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wurden Einzelmolekül - und Rasterkraft Mikroskopie durchgeführt. Hierbei zeigte sich, dass das 

Protein in kristallinen und dicht rekonstituierten Regionen überwiegend als Hexamer vorliegt. 

Daneben kann zu einem geringen Anteil auch ein pentamerer Zustand beobachtet werden. Der 

Mechanismus der Proteinentfaltung war vergleichbar zu anderen, besser untersuchten 

Mitgliedern der Rhodopsinfamilie. Zwischen den Daten aus der "Atomic Force Microscopy" und 

der Elektronenmikroskopie zeigt sich eine gute Korrelation. 

 

Festkörper NMR an vollständig und selektiv markierten 2D Kristallen ergaben Spektren mit 

einer typischen 15N Linienbreite von 0,6 bis 1,2 ppm. Die 15N chemische Verschiebung der 

Schiffschen Base hat im Kristall den gleichen Wert wie funktional aktiv rekonstitutierte Proben, 

was indirekt die Funktionalität und die korrekte Faltung bestätigt. 

 

Die Zuordnung der 15N Signale für Tryptophan wurde durch "Rotational Echo Double 

Resonance" Experimente vorgenommen. 2D kreuzpolarisation Lee Goldburg Messungen zeigen 

den dynamischen Zustand des Proteins trotz der eingeschränkten Mobilität im kristallinen 

Zustand. Das Verhalten der Lipide wurde mit 31P messungen der Lipidkopfgruppe untersucht 

und zeigt, dass diese nicht fest gebunden sind, sondern sich mehr wie in einer Lipiddoppelschicht 

verhalten. Für 13C-13C homonukleare korrelations Experimente wurde die Mischzeit durch die 

Analyse von Aufbaukurven optimiert. Diese Versuche deuten darauf hin, dass es möglich ist 

einzelne Resonanzen aufzulösen, wie im Fall des Glutamat gezeigt mit einem gutem Signal zu 

Rauschen Verhältnis. Selektives "unlabeling" ist eine effizente Methode um die Ueberlappung 

der Signal zu reduzieren. Darüberhinaus sind für eine weitere Chrakterisisierung effizentere 

Markierungsschemata notwendig. Die bisherige spektrale Auflösung ist gut genug für die 

Untersuchung einzelner Aminosäuren, für vollständig markierte Proben sind weitere 

Verbesserungen notwendig. 
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Abbreviations 
AFM  Atomic Force Microscopy 

BR  Bacteriorhodopsin 

BPR  Blue Proteorhodopsin 

CMC  Critical Miceller concentration 
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DP  Direct Polarization 

DQF  Double Quantum Filtering 
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FTIR  Fourier Transform Infra Red Spectroscopy 

FT  Fourier Transform 
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PSB  Protonated Schiff’s Base 

PR  Proteorhodopsin 

REDOR Rotational Echo Double Resonance 

SSNMR Solid-State Nuclear Magnetic Resonance 

SRII  Sensory Rhodopsin II 

TPPM  Two pulse Phase Modulation 

2D  Two dimension 
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Chapter 1-Introduction 
 
1.1 Membrane proteins and challenges 

Biological cell membranes provide an interface between the internal cellular and outer 

extracellular environment. These membranes have basic hydrophobic phospholipid bilayer 

matrix and associated with it are the proteins, which interact with the external environment and 

thus help the cell to communicate with the exterior. Based on the extent of embedding of these 

proteins in the bilayer, they are broadly classified into integral membrane proteins or peripheral 

proteins. Peripheral membrane proteins are primarily linked to the membrane by specific 

interactions; however, the integral membrane proteins form the integral part of the membrane by 

spanning through the membrane with their hydrophobic domains, which are known as trans-

membranous regions. Polar side chains dominate these trans-membranous regions and Van der 

Waals interactions coupled with entropy driven parameters play an important role in stabilizing 

interactions within the hydrocarbon core region of the bilayer. Integral membrane proteins, 

which lie within the bilayer, are classified into two general types: β-barrels and bundles of α-

helices. The folding mechanism and natural abundance for β-barrels and helix bundles is very 

different and β-barrel proteins are much less common as compared to α-helical proteins [1].  

 

Most accepted mechanism for the folding of the α helical proteins is a two stage model [2]. 

Where in the first stage the membrane protein is inserted across the bilayer and its topology is 

established. In the second stage, the tertiary and quaternary structures are built. The second stage 

involves assembly and reorientation of the trans-membranous segments established in the first 

phase. In addition the SecY membrane component in bacteria and Sec 61 translocon complexes 

in eukaryotes, or protein-conducting channels, work in concert with bound ribosomes to insert 

proteins into membranes during the first step of membrane protein assembly [3]. 

 

The integral membrane proteins, because of their diversity of structure and dynamics are 

associated with variety of functions and are classified accordingly. For example, these membrane 

proteins facilitate functions like enzymes, transporters, linkers, signal transduction, receptors, 

recognition and adhesion sites etc. Membranes also provide barrier to the diffusion process. 

Since these proteins have a spectrum of functions to perform, they provide a vast field for 
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pharmacological targets.  

 

For better understanding of the structure function relationship of these membrane proteins it is 

necessary to have the three dimensional structure of the protein, which poses several challenges. 

 
Figure 1 : Original figure from Singer and Nicolson (1972) depicting membrane cross section with integral proteins 

in the phospholipid bilayer mosaic. Phospholipids are represented as spheres with tails, integral membrane proteins 

as embedded shaded, globular objects. Some transmembranous protein span entire membrane on left. 

 

1.2 Biophysical approach for membrane proteins 
Biophysics is multifaceted area of science. It usually deals with structure and dynamics of 

molecules, the influence of environment, energy transformation and transfer, thermodynamics 

and modeling of the biomolecules. It also provides an explanation to the physical phenomenon of 

biological systems, which occur at the molecular level and works to understand structures of 

individual molecules as well as interactions between molecules as complex mechanisms. The 

main area of interest is to understand membranes and membrane protein. In recent years there is 

increasing number of structures from the membrane proteins, which is possible not only because 

of better understanding of the protein and crystallization techniques but also because of new 

generation instrumentation and infrastructure. There is a wide choice of biophysical techniques 

available for understanding the structural and functional relationship of these cell membranes 

and membrane proteins. X-Ray Crystallography, NMR and Cryo EM are the common techniques 

for membrane protein structure determination. All these techniques have a potential of structure 

elucidation but at the same time have own set of limitations for biological (membrane) protein 
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samples. Although the preferred choice is 3D Crystallography but considering the application of 

the relevant technique, only selected ones are discussed. 

 

X-Ray crystallography has a prerequisite of a well diffracting 3D crystal. This is major hurdle for 

amphipatic membrane proteins, which have a tendency to aggregate in aqueous environment to 

shield their hydrophobic regions. Most of the crystallization conditions depend on reducing the 

solubility or alternatively increasing the super saturation in the aqueous environment. 

Aggregation and thus denaturation of the membrane protein is much faster than the 

crystallization process. Even if aggregation and denaturation is overcome, the major obstacle is 

the good quality diffraction from the membrane protein crystal and the properties of these 

complexes do not favor the formation of well-ordered lattice to yield a good diffraction pattern 

for structural studies.  

 

High-resolution structural data can be studied by electron microscopy. The major break through 

with electron microscopy is the high resolution 2D structure of BR [4-6], light harvesting 

complex [7], tubulin [8] and aquaporin [9] with resolution of 3.0 Å, 3.4 Å ,3.7 Å and 1.9 Å 

respectively. The technique is also widely used for several other retinal proteins. E.g. A 3D 

density map of bovine rhodopsin was determined by electron cryo microscopy of 2D crystals 

with p221 21 symmetry to a resolution of 3.5 Å [10]. The 3D structure of invertebrate rhodopsin 

(squid rhodopsin) as studied by cryo-electron microscopy of 2D crystals provided the first 3D 

structural comparison between invertebrate and vertebrate G-protein-coupled receptors [11]. 

Another example of GPCR is of frog rhodopsin with 6 Å resolution which was studied with this 

technique [12]. A huge number of new structures of reaction intermediates have been published 

with X-Ray crystallography using trapping approaches, but there were also studies using electron 

microscopy [13-15]. The technique is also widely used to detect the conformational changes in 

the 2D crystals [16-20]. All the approaches are based on same principle, which involve formation 

of 2D arrays by induction of either lipid-protein or protein-protein interaction. There are 

proposed theories for the 2D crystallization and can occur in various stages. It can occur by 

assimilation of microcrystal or reordering of protein after reconstitution in the lipid bilayer. 

However, the approach involves obtaining of the 2D crystals through various means. E.g. with 

the aid of biobeads [21, 22] or dialysis [23-25] and there after application of image processing 



Chapter 1-Introduction 
---------------------------------------------------------------------------------------------------- 

25 | 174 

[26]. However, for reasons of reproducibility dialysis is the most conventional method. The 

major limitations include obtaining a well diffracting 2D crystal and 3D reconstruction of the 

images. 

 

NMR spectroscopy is unique among the other 3D structure determination methods for proteins 

and nucleic acids at atomic resolution. This method is of utmost importance in context to the 

proteins, in the sense that it does not require crystalline protein. This property becomes 

indispensible for membrane proteins, which are difficult to crystallize due to the large detergent 

protein micelle. NMR applications include investigations of dynamic features of the molecular 

structures as well as studies of structural, thermodynamic and kinetic aspects of interactions 

between proteins and other solution components, which may be either ligands or drug targets. 

Solution state NMR is finding increasing application for the structure calculation of (membrane) 

proteins. Although there is no upper limit for the size of protein but in practice it is limited by the 

size of the protein detergent complex, which hinders the fast tumbling rates to average out 

anisotropic chemical shifts and couplings. 

 

SSNMR, still in its budding stage, in principle can be applied to large protein detergent or 

protein lipid complexes [27] and has the potential to observe the anisotropic interactions, which 

reflect the structure as well as dynamics of protein [28]. It is an ideal choice because it does not 

require the biological sample to be either in a soluble or in a crystalline state. These orientation 

dependent anisotropic interactions for the protein are very complex and to overcome this 

problem various modifications like Magic Angle Spinning and sample alignment have been 

introduced [29]. Theoretically, there is no upper molecular weight limit that can be studied by 

SSNMR unlike solution state NMR that is restricted by the size of the complex for fast isotropic 

tumbling. These modified approaches need specialized instrumentation like special probes, pulse 

sequences etc. along with optimal biochemical contribution. 

 

1.3 What are Pumps and channels? 
Integral membrane proteins that transport substances across the membrane are categorized 

broadly into pumps or as channels. There exist some basic structural differences and 

requirements for proteins to act either as pump or channel, which are usually dependent on the 
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function of the protein. Broadly they can be covered under the name of transporters, which 

provide means to the ions and many molecules that cannot freely pass through the hydrophobic 

membrane but are crucial for biological systems and so aid their movement in and out of the cell.  

Channels allow the movement of charged species down the gradient without the expense of 

energy. They require a membrane spanning domain through which the substances generally ions 

can diffuse and a gate to control the entry and exit of the ions which operates as per the 

requirement. However, there are some channels, which are always open based on the biological 

function. Usually the rate of ion diffusion is of the order of 10-100 million ions per second [30]. 

Pumps facilitate the building of the electrochemical gradient by selective opening and closing of 

two gates at the expense of energy. There is usually some holding time of ions in the pump to 

have significant gradient of ions across the membrane. The diffusion rate of ions for a pump is 

roughly about 100 times per second as in case of sodium-potassium pump primary transporter 

[31]. 

In a lipid bilayer, these gates physically comprise of some selected amino acids in and near the 

trans-membranous domain. Usually charged amino acids with their side chains, which are 

sensitive to the micro environmental conditions contribute to such category. These residues show 

some conformation changes in response to the surroundings and can regulate the diffusion of 

ions through the trans-membranous domain. 

 

1.4 What is Rhodopsin? 
One such well characterized family of proteins is Rhodopsin, which has provided basis for 

detailed understanding of structure and function relationship [32]. Based on hydropathy plots, the 

family has characteristic seven trans-membranous helices that form an internal binding pocket, 

where the chromophore 'retinal' is attached. This association leads to the formation of a light 

absorbing pigment known as Rhodopsin. Upon photo excitation, a conformation change occurs 

in the retinal, covalently bound through the Schiff base to a lysine located in the seventh helix. 

This initiates a cascade of electrochemical reactions known as photocycle. Primary function of 

such proteins is light driven transport of ions in microorganisms and photo induced signal 

transduction for vision perception in case of higher organisms. 

 

Broadly, the rhodopsin family members are classified into two-types. The Type I rhodopsin class 
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functions as light driven ion transporters (BR and halorhodopsin) phototaxis receptors (sensory 

rhodopsin I and II) or has unknown functions (e.g. fungal rhodopsins) [4, 33-35]. These proteins 

are characterized by very short interhelical loop region. They are also found in some halophilic 

archaea and γ-proteobacteria, some fungi and green alga [36]. 

 

 
Figure 2 : Phylogenetic analysis of PR with archeal (BR, HR and SR prefixes) and neurospora crassa rhodopsins. 

The picture is taken from [37]. 

 

The Type II rhodopsin acts as a photo sensory pigments and exist as visual rhodopsin, located in 

the retinal layer of eyes in the animal kingdom and exist as retinochrome found in human or 

mouse brain [38]. All type II rhodopsins are so far reported in higher eukaryotes [32]. This 

category features relatively larger hydrophilic domain and comprises of visual pigments, which 

act as photosensitive receptors in higher eukaryotes e.g. rods, and cones pigments in humans. 

These two different rhodopsin types show no significant sequence similarity but have identical 

topologies.  

 

Similar topology with seven transmembranous domains is exhibited by GPCRs, which comprise 

a large family of integral membrane proteins. These proteins found only in eukaryotes, can sense 

presence of certain biochemical molecules outside the cell and activate inside a cascade of signal 

transduction pathways leading to cellular responses. They are involved with several vital 

  A 
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functions like smell, vision, transmission of nerve impulses etc. and form drug targets for over 

half of modern pharmacological targets. The first 3D crystal structure of a mammalian GPCR 

known as bovine rhodopsin (1F88) was solved in the year 2000 [39]. With this crystal structure, 

it was observed that although the seven transmembranous helices are conserved, the relative 

orientation of the helices differ significantly from that of BR. The first structure of a human 

GPCR was solved in the year 2007 (2R4R, 2R4S) [40] which was followed immediately by a 

higher resolution structure of the same receptor (2RH1) [41, 42]. This GPCR structure of human 

β2-adrenergic receptor showed high similarity to the bovine rhodopsin in terms of the relative 

orientation of the seven trans-membrane helices. However, the conformation of the second 

extracellular loop was entirely different between the two structures.  

 

1.5 What is Proteorhodopsin? 
One major discovery in past decade was that of PR, which is a bacterial homologue of BR and 

belongs to Type I retinal family. PR genes were first identified as an outcome of the cloning and 

the sequencing of large genomic fragments of the seawater from an uncultured marine γ-

proteobacterium cluster known as “SAR 86” [37]. PRs are believed to exhibit wide distribution 

worldwide and posses phylogenetic diversity [43-47]. PRs are estimated to be present in 13% of 

all phototrophic marine bacteria [48]. About 10% of Bacteria and Archea in the oceanic photonic 

zone have PR photosystem [48, 49] and occupy 20% of the inner membrane surface area [50]. 

Initially PRs were believed to belong to the uncultivated strains γ and α-proteobacteria [43, 45, 

46, 51]. Until recently, when it was reported that SAR11 strain HTCC1062 'Pelagibacter ubique' 

can be cultivated, which expresses a PR gene when cultured in autoclaved seawater and in its 

natural environment, the ocean [50]. PR genes have now been also identified for the genomes of 

cultured oceanic members of Flavobacteriacae [52] and SAR92 clade from γ-proteobacterium 

[53]. Over a brief period several PR variants numbering in hundreds [47] have been identified in 

the marine plankton. 

 

The PR gene encodes a 249 amino acid long polypeptide and possesses a molecular weight of 

27kDa [37]. The hydropathy plots indicate seven trans-membranous domains, which is a typical 

feature of rhodopsin family. The amino acid residues, which form the binding pocket in case of 

archeal rhodopsins, are also conserved in PR. The topology plot of wild type PR modeled on BR 
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showing the important residues is shown in figure 3. The major residues include Asp97, the 

proton acceptor and Schiff base counter ion (homologous to Asp 85 in BR), a part of counter ion, 

Asp227(Asp212 in BR) which is close to the Schiff base and C13=C14 bond of the 

chromophore. Glu108 is homologous to the internal proton donor Asp96 for BR and reprotonates 

the Schiff base during M to N transition in PR [54, 55]. The most conserved residue in the 

chromophore binding site across all archeal retinal proteins and all PRs is Asp227, homologous 

to Asp212 and the chromophore retinal is bound to the protein via a Schiff base to Lys231 

homologous to Lys216 in BR. The sequence alignment of PRs with BR is shown in figure 4. For 

better understanding, the homology model of PR based on BR is also given in figure 5. 

 

 
Figure 3 : The topology plot for wild type GPR [56] with BR (1C3W) as a template. The picture shows the C 

terminus towards the cytoplasmic side and N terminus facing the extracellular side. The Lys231 is squared in green, 

proton acceptor Asp97 in yellow, spectral tuning switch Leu105 in pink and proton donor Glu108. 
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Figure 4 : Sequence alignment results for 2 different variants of  PR with BR. GPR (Q9F7P4), BPR (Q9AFF7) and 

BR (P02945) were used for  alignment. The important residues in GPR are highlighted. Proton acceptor (yellow), 

spectral tuning switch (purple), proton donor (blue) and lysine Schiff base (green). Grey regions represent the helical 

regions of GPR.  

 

 

Figure 5 : Homology model of PR based on BR (1C3W). Chromophore retinal and essential residues E108 (primary 

proton donor), D97 (primary proton acceptor), K231 (Schiff base) and L105 (responsible for colour tuning) are 

highlighted. This picture is an taken from [57]. 
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1.5.1 Distribution of genes and sequence information 
Various evidences suggest the relatively frequent transfer of PR between different lineages and 

common lateral transfer of PR genes [58]. In this context, identification of the exact origin, based 

entirely on the sequence is challenging. An extended survey and study involving large insert 

clones has reported that vast majority of the clones originate from α or γ-Proteobacterium. Full 

genome sequencing of the isolates and the shotgun sequencing have hinted towards encoding of 

PR by bacteroidetes [47] and Oceanic Vibrio and photobacterium species also have some strains 

possessing PR. Similar gene sequences are reported for eukaryotic P.Lunula and in marine group 

II Euryarchaeotes [49]. PR photo system, encoded by a single gene is capable of gene 

duplication and diversification. The different strains of PR as an outcome of such phenomenon 

are favored by positive selection for their survival and propagation in the photic zone. Reports 

have documented the presence of genes necessary for biosynthesis of retinal downstream of PR. 

This supports the fact that for functional relevance, the target cell should have the desired 

capability of retinal production. This kind of arrangement of genes provides a bioenergetic favor 

and contributes to the widespread acquisition of PR [48]. A strong selection pressure plays an 

important role for preservation of these photoactive systems and aids in wide distribution. The 

light absorbing rhodopsins were initially restricted to Archea and Eukarya but discovery of PR in 

bacteria extends the representation in all the three domains of life. 

 

1.5.2 Spectroscopic properties  
PCR based gene surveys have helped identify different PR variants, which are spectroscopically 

tuned to absorb different wavelengths of light. The PRs isolated from the surface waters e.g. 

Monterey Bay show absorption maxima at 520 nm and are referred to as green absorbing 

proteorhodopsin (GPR). Whereas PR from greater depths e.g. Central North Pacific are named as 

Blue proteorhodopsin (BPR) and absorb maximally at 480 nm [37, 43, 51, 59]. The distribution 

of these PRs has shown to be stratified with depth. These two PR families detected in the 

Mediterranean Sea and the Sargossa Sea did not show any geographic isolation. However, 

season based variations were observed. This was explained on the basis of stratification of 

nutrients and salinity, penetration of light, variations in temperature with respect to the season 

[60]. In addition to this, the contribution from dissolved organic matter may have control over 

the abundance of PR [61]. The topology of these two groups is similar, however there exists no 
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significant similarities in their sequence which might suggest different origin [32].  

 

1.5.2.1 Spectral tuning 
The four different H.salinarium rhodospin display similar variation in color and share <50% 

sequence similarity. However, PR family could prove potential for studying the spectral tuning 

in the big rhodospin family because these two groups differ in about 40 nm in their absorption 

maxima but have a substantial 78% identical amino acid sequence. The tuning is suggested to be 

optimized to match the light that reaches the dwelling level of bacteria [59]. 

 

Based on the theoretical structural models some of the potential but reliable amino acid residues 

responsible for the spectral difference are identified in these two groups. These are residues 68 

(Isoleucine in BPR and Valine in GPR) and 105 (Glutamine in BPR and Leucine in GPR) and 

can be seen in figure 4. Mutation studies on these two residues indicate that the mutation at 

position 68 has trivial effect on the spectroscopic properties. However, mutation at 105 position 

can completely interconvert the spectral properties. The Glutamine to Leucine mutation between 

GPR and BPR thus proved to be spectral tuning switch. This residue is also in close vicinity to 

the protonated Schiff base nitrogen. The mutation of the corresponding residue in case of BR and 

human rhodopsin is known to affect the spectral properties [62, 63]. The observed spectral 

changes are explained based on altered hydrogen bonding, which repositions the quaternary 

charged complex and in turn results in the spectroscopic differences [51, 59]. This absorption is 

also explained based on the fact that both Methionines and Leucine have non-polar side chains. 

However, there is only limited information available for such Methionines containing subgroup. 

Spectral tuning properties are unique within the SAR11 family where GPR and BPR share about 

86% of amino acid (Pelagibacter GPR and Sargasso sea EAI06928 BPR) [60]. This value is 

higher than 78% as reported for earlier SAR86 group [59]. 

 

The only histidine, His75 is cited to play an important role in the spectral tuning properties of PR 

especially GPR. It is known that the protein exhibits shifting of the absorption spectra with the 

change in the pH. At acidic pH, it is red shifted whereas at basic pH it is blue shifted. It is 

suggested that under physiological pH 6, this Histidine is unprotonated and as the pH turns basic 

the protonation and reprotonation takes place. The spectral properties of PR in intact cells have 
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also been studied. Most of the functional spectral diversity is anticipated to be because of 

difference in polarity or structure of single amino acid residue the retinal binding pocket [64]. 

 

1.5.2.2 Absorption maxima 
The expression of PR in E.coli, in the absence of host organism (SAR86) results into a stable 

protein, which exhibits photocyclity, is a reflection of its correctly folded state [65]. The 

verification for the binding of PR with the retinal comes from the generation of 520 nm pigment 

in the membranes containing PR apoprotein and only in presence of retinal. Furthermore, the half 

bandwidth of ~100 nm, a signature of retinylidine protein is also observed. Normally retinal in 

an unbound form gives a λmax =370 nm. However, in case where it is bound through the Schiff 

base to the Lysine 231, the λmax is red shifted to a new wavelength of 520 nm. The absorption 

spectra of PR variants can be seen in figure 6. 

 

 
Figure 6 : Spectral tuning of the PR family. Absorbance spectra of PR variants show the importance of position 

L105 (Q107) to PR spectral properties. The absorbance spectrum of Bac31A8 PR (solid red line) is similar to the 

absorbance spectrum of Q107L Hot75m1 PR (dashed blue line). The absorbance spectrum of Hot75m1 PR (solid 

blue line) is similar to the spectrum of L105QBac31A8 PR (dashed red line). The picture is an taken from [64]. 

 

1.5.2.3 Retinal isomerization 
Retinal extraction experiments at alkaline pH of 9 indicate that the light adapted state consists of 

40% 13 cis and 60% all trans retinal. However, this ratio changes to 20% 13- cis and 80% all 

trans in the dark-adapted state. At acidic pH of 6, there was no difference between the light and 

the dark-adapted state. This ratio was found to be 20% 13 cis and 80% all trans state. This 
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behavior is temperature dependent and resembles the values from sensory rhodopsin [66]. Both 

light and dark-adapted states display similar absorption maxima but the extinction coefficient for 

light adapted proteins is 10% reduced as compared to the light adapted state [67]. The recent 

SSNMR data on GPR shows that the chromophore exists in mainly all-trans configuration in the 

ground state [68]. 

 
Figure 7 : Retinal isomerization from 13 cis to all trans and vica versa. 

 

1.5.2.4 Photocycle 
The rhodopsins have a characteristic cyclic photochemical cascade of reactions known as 

photocycle. In case of transport rhodopsins like BR and halorhodopsin, the typical time required 

for photocycle is <20 ms. However for sensory rhodopsin it 10 times longer [33]. The photocycle 

of GPR has resemblance to the BR photocycle and the photo kinetics are also comparable ~20 

ms [69]. The difference in the kinetics of the photocycle is indicative of the functionality of the 

PR. The slower photocycle reflects involvement in the efficient light detection and a faster 

photocycle refers to efficient pumping action. The nature of photocycles in GPR and BPR is 

similar to BR, but the intermediates are still unclear and unspecified [54, 69-71]. It is known that 
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the photocycle of BPR is 10 times slower than that of GPR [59, 69]. 

 

Different models have been suggested based on the multiphasic decay of the kinetic signal which 

indicate the existence of a spectrally silent intermediates for PR [72] and the different suggestive 

models are given below.  

 

1. Model with sequential reactions: 
 

K ↔ L ↔ N ↔ PR’→PR 
 

2. Models with two parallel photocycles, such as: 
 

K ↔ N ↔ PR‘→PR 
 

K‘→ L→PR: 
 

3. Or model with a branch: 
 

K ↔N ↔ PR‘→PR 
 

Plus K↔ L→PR: 

 

Unlike BR, the photocycle of PR is suggested to be pH dependent. The characteristic features of 

PR photocycle were determined by time resolved absorption and Fourier Transform Infrared 

spectroscopy [67]. The PR in the reconstituted form exhibits short photocycle of 20 msec, which 

has typical M and O intermediates, where decay of O is the rate-limiting step. The absorption 

spectrum with varying pH indicates that the pKa of the proton acceptor Asp97 is 7.68. Although 

there is a lot of resemblance of the photocycles between PR and BR, there also exist some 

evident differences. E.g. for PR L like intermediate whose existence is still unclear was not 

detected and pH >7 shows presence of M like and O like intermediate upon photo illumination. 

However, at pH 5 no traces of M like intermediate could be found. Acidic and basic pH kinetics 

show different visible intermediates and time scales, only the K intermediate shows little pH 

dependency and the protonation state of Asp97 varies. At lower pH, PR starts to lose retinal, 

which leads to precipitation.  
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Other studies based on the transient spectra at pH 9.5, show the existence of three spectrally 

different intermediates, K, M, and N, named in analogy with the BR photo intermediates. Model 

analysis based on time-dependent absorption kinetic signals at four wavelengths suggested the 

existence of two more spectrally silent intermediates and lead to a sequential reaction scheme 

with five intermediates, K, M1, M2, N, and PR', before decay to the initial state PR. An L-like 

intermediate was not observed, probably for kinetic reasons [73]. 

The photocycle kinetics of GPR and BPR are significantly different. This reflects influence of 

lower light penetration to the lower levels in the sea. It also infers the adaptability of the PR to 

the available light in its natural niche. For better comparison of the functional discrimination of 

the residues that from the binding pocket across the different Type I family, the concept of super 

pocket was introduced. This super pocket sequence was extracted from the full-length sequence 

based on well-defined criteria and comprised of 26 residues. In case of PR, the binding super 

pockets were separated into two groups. 

 
Figure 8 : Photocycle models of PR alkaline (pH 10) and PR acidic (pH 5).The picture is an taken from [67]. The 

different spectroscopic intermediates with characteristic wavelengths are denoted. 

 

Group A with Met residue equivalent to 105 GPR where as larger group B with wide array of 

residue types at this position. The mutation L105Q in GPR vs. Q105L in BPR completely 

exchanges the absorption spectra of the two pigments and affects the photocycle of the mutated 
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protein [69]. Various evidences suggest that BPR behaves more like a light sensor than a proton 

pump based on its longer photocycle. Biochemical analysis established its association with 

retinal when over expressed heterologously in E.coli. Based on biophysical analysis, GPR 

functions as an ion pump rather than resembling a sensory rhodopsin [59] and its photocycle is 

comparable to that of BR. 

 

The early steps in the photocycle of PR were analyzed by ultrafast pump/probe spectroscopy. 

The results obtained for the rate of retinal isomerization at alkaline and acidic pH values showed 

that at pH 9, the functionally important primary proton acceptor (Asp97, pKa = 7.7) is negatively 

charged and consequently, a reaction cycle analogous to the BR is observed. The excited 

electronic state of PR displays a pronounced biphasic decay with different time constants. 

However, at pH 6 where Asp97 is protonated a similar biphasic decay is observed, but it is 

significantly slower. This indicates that in PR the charge distribution within the chromophore 

binding pocket is a major determinant for the rate and the efficiency of the primary reaction [74]. 

 

1.5.3 Functional aspects 
1.5.3.1 Influence of pH  
The pH dependent spectral shift is reported for over 20 natural PR variants [64]. The values of 

absorption maxima span from 536-569 nm for acidic forms of PR but for basic forms there are 

two groups. First between 488-493 nm for BPR and the other group between 518-526 nm for 

GPR. pKa of the titratable group which is responsible for the spectral shift is calculated to be 8.2 

for intact cells and 8.4 for purified protein. The values for all, over 20 PR variants covered a 

range from 7.1 to 8.5 [64]. It is shown that Asp97Asn mutant did not exhibit the pH sensitive 

shifting pattern [54].  

 

The pH of natural oceanic environment lies between 7.5 and 8.1 [75]. In this pH range, which is 

close to the pKa of the proton acceptor majority of the PR will be in functionally inactive state, 

which would mean mere wastage of light energy. In order to make the most efficient use, 

probably PR expressing cells utilize this pKa for the regulatory function. This is questionable in 

the light of PR known to be a photoactive proton pump. There also exists a possibility of having 

local pH maintenance, which is basic for active PR functioning [64]. However, until date the 
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reason for PR to have pKa values in the ambient range remains unanswered. In contrast, the pka 

value of BR is many units below the natural environment, which makes is an efficient proton 

pump [76, 77]. 

 

1.5.3.2 Light activated proton pump 
Gene and Protein sequence analysis in combination with laser flash induced photolysis have 

provided proof for PR to be a light activated proton pump. The deprotonated form of PR is the 

functionally active form, which pumps the protons from inside of the cell to the outside [54, 67, 

71, 78]. Time resolved FTIR spectroscopy suggests that in the protonated state of the Asp97, the 

direction of proton pumping can be inverted and this change is pH dependent [67].  

 

Studies on oriented membrane fragments and reconstituted PR, show proton transport at high pH 

but not at low pH [78]. During the course of proton pumping, the light energy is finally used to 

produce ATP via intermediate conversions. Suspensions of E.coli cells expressing PR produced 

transient pH decrease when exposed to light, providing further support to conclude that this PR is 

a light-driven proton pump [50]. 

 

1.5.3.3 Energy production and photo effect 
The rough estimation of the PR containing bacteria in the ocean accounts to 1028 which makes 

them the most widespread organisms [47, 79]. These huge numbers propose an important 

question: Why is PR present in such high number in bacteria naturally and what is the biological 

significance? 

 

Initial experiments showed that PR functions as the proton pump which includes light mediated 

transport of protons. Therefore, it was logical to measure proton motive force (pmf), which is 

electrochemical potential of protons across the membrane and is maintained by bacteria under 

aerobic conditions by oxidative phosphorylation. Bacteria use this pmf for several biological 

activities such as propelling the flagella [80] and ATP synthesis [81] and it is shown that BR 

uses this proton pump to produce ATP [82]. Similar hypothesis was applied to PR. It was 

observed that when cellular respiration of PR expressing E.coli cells was hampered using either 
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respiratory poison or by oxygen depletion, the host cells could create pmf. When cells were 

illuminated with light of same wavelength as their absorption maxima, the derived pmf could 

propel the cell flagella [83]. This supported the theory that photoactive proton pumping of PR 

can generate cellular energy but under defined conditions. It was shown that the cells expressing 

PR in presence of retinal could also titrate azide concentration in contrast to the cells possessing 

either only PR gene or only retinal. The laboratory cultivated P.ubique demonstrated 

comparative growth rates under illuminated and unilluminated conditions. When a 

Flavobacterium MED154 was used for similar photo experiments but with natural seawater, 

there were observed differences. The cells under unilluminated conditions picked up growth, 

when exposed to light. This simple experiment displayed the positive influence of light on the 

PR encoding cells. The mRNA upregulation analysis complements the fact that PR has 

phototrophic function in bacteria [52]. The phototrophic mode of energy production suggests that 

the absorption maxima could be tuned to optimize the available light. 

 

 
Figure 9 : Over view of transmembranous fluxes and proton pumping in PR containing E.coli cells. The picture is an 

taken from [83]. 

 

Based on information available for haloarcheal BR [84, 85], it was postulated that the light 

activated PR, induces pmf. This induced pmf could drive ATP synthesis as proton reenter the 

cell through the ATP synthase complex. This hypothesis based on photophosphorylation in PR 

containing E.coli cells was tested with luciferase based assay on PR containing and PR deficient 

E.coli cells. The light induced changes in ATP levels were measured and increased ATP levels 

were observed after few minutes of illumination only in the PR containing cells. This also 
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indicates that the possibility of utilization of light energy for biochemical energy conversion 

[86]. 

 

The wide distribution of PR in the marine environment along with capability of spectral tuning 

could support a potential photoheterotrophic mode of survival and suggest a probable role in the 

carbon and energy cycling in the photonic zone in the ocean. This inference provides an answer 

as to why PR exists in such huge numbers and is favored by nature. 

 

1.5.4 Homology model 
The PR family members show high homology amongst themselves (up to 99%) as shown in 

figure 10 as compared to sequence homology to BR, which is ~22%, with Archeal sensory 

rhodopsin ~14%, and with Halorhodopsins up to 24% [64].  

 

 

 
Figure 10 : Sequence alignment for GPR (Q9F7P4) and BPR (Q9AFF7). 

 

For molecular dynamics simulation, GPR models based on BR (1C3W) template show increased 

stability with low energies in contrast to the models based on SRII (1H68) [87]. The BR based 
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model provides more realistic 3D homology on account of potential energy calculations. Another 

reason for the favored homology with BR is the collapse of the model based on SRII with 2 ns 

dynamic simulation. The reason of the collapse being, formation of strong salt bridge between 

the chromophore, retinal and the Asp227 [88]. The BR based model also supports in explanation 

of spectroscopic and pH dependent properties of GPR and at the same time provides feasible 

picture of the binding pocket and an overall structural stability. The sequence alignment of GPR 

with BR is shown in figure 11. 

 
Figure 11 : Sequence alignment of GPR ( Q9F7P4 ) with BR ( P02945 ). 

 

The BPR is unique to have the most blue shifted absorption wavelength amongst all the retinal 

proteins (after sensory rhodopsin II) and pronounced pH dependence as compared to other retinal 

proteins. In contrast to the GPR, for BPR it is SRII, which serves as better homology template 

based on optical spectroscopy, homology modeling and molecular orbital theory [65]. At alkaline 

pHs BPR spectroscopic properties are similar to SRII and they resemble BR more at acidic pH. 

The fact that the BPR resembles more to SRII than to BR, but the experimental data indicates it 

to be a proton pump, this contradiction argues about the possible functionality of PR as a photo 

sensor. 

 

Based on the overall minimized energy calculations and overall stability to the long-term 
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molecular dynamics SRII has proved to be more preferred homology model for BPR. The BR 

based models failed similar to the GPR, due to the collapse after 2 ns dynamics because of strong 

salt bridge formation between chromophore and Asp229. Finally, BR based model turned out to 

be unrealistic and unstable as observed by molecular orbital calculations. The BR based model 

generated high transition energy, which in turn led to very high ordering, and was responsible for 

the salt bridge. Over all, there exists a contradiction about the functionality of the BPR as it 

functions as a slow proton pump when compared to as BR. Above all, its homology model 

resembles SRII, which is a photo sensor [65]. Although there exists a considerable sequence 

identity among naturally occurring PR genes, the origin of taxonomic lineage still cannot be 

predicted [45]. The sequence alignment of BPR with SRII is shown in figure 12. 

 

 
Figure 12 : Sequence alignment of BPR (Q9AFF7) and SRII (P42196). 
 

Structural model of PR along with multiple sequence alignment indicates that majority of active 

residues are conserved between PR and Archeal BR. The phylogenetic comparison of PR with 

Archeal rhodopsin suggests that PR forms an independent branch. However there are indications 

that PR resembles sensory rhodopsin [89]. 

PR can be successfully expressed in E. coli with exogenous addition of retinal unlike BR [90, 



Chapter 1-Introduction 
---------------------------------------------------------------------------------------------------- 

43 | 174 

91]. The heterologous expression of PR in E.coli can question about the location pattern when 

over expressed. For this, the immunofluorensce staining using antibodies reactive to Myc tag 

provided the best answer. These studies have shown that at lower expression levels PR is 

abundant in the cells, while at higher expression levels there is an indication of self association 

[64]. However, this staining pattern for higher expression levels is unlike BR [6].  

 

1.6 Aims of thesis 

High-resolution structures are available for type I rhodopsin which include BR, halorhodopsin 

and sensory rhodopsin II. However, similar information is lacking for PR. The discovery of this 

novel gene has opened range of questions, which open up a wide area of investigation. A 

spectrum of approaches have helped to understand better about the distribution of PR, and 

variability which included techniques like PCR surveys [46, 51], directed sequencing of BAC of 

fosmid clones [43, 45, 46, 48, 49], whole genome sequencing [50] and random shotgun 

sequencing of environmental DNA [92]. However, biophysical approaches have also been just 

touched upon. 

The rhodopsins were known to exist in the microbial world as ‘BR' found in some Archea and in 

animals as sensory rhodopsin. However, PR is newly discovered which inhabitats marine 

bacterioplankton, is relatively less characterized. The structure and function information is 

unexplored. In the absence of 3D structures, there are many open questions, which need to be 

addressed. For this PhD thesis main focus has been on wild type GPR, in order to answer few of 

such questions with different biophysical approaches: 

 

 With Electron Microscopy, attempts have been made to find the best crystalline 

conditions. The dual purpose being to achieve structural insights into the crystalline state 

of protein with the help of projection map on one hand and on the other aiming for high 

resolution and improved sensitivity for SSNMR. 

 

 Atomic Force Microscopy has been used to reveal the oligomerization state of the protein 

in the crystalline form and Single Molecule Force Spectroscopy to reveal the (un)folding 

patterns of the membrane protein from the native environment. 
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 Correlation and comparison of the data from electron microscopy with atomic force 

microscopy has been attempted to derive conclusive structural information especially 

about the oligomeric state of PR in 2D crystals. 

 
 With FTIR spectroscopy, the functionally active state of the protein in the 2D crystalline 

form is investigated whereas Circular Dichorism revealed the stability pattern of the 

protein within the crystalline arrangement. 

 
 SSNMR characterized the 13C and 15N line shapes and achieved the first 15N Tryptophan 

assignments with the help of Rotational Echo Double Resonance. The1H-15N CPLG 

measurements have demonstrated the dynamic aspects of the protein although in 

restricted mobility arrangement. 31P SSNMR measurements on the 2D crystals were used 

to characterize the lipids and finally the 13C-13C DARR homonuclear correlation 

experiment with 125 msec mixing time showed the possibility of resolving individual 

amino acid as demonstrated by the Glutamic acid chemical shifts. 
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Chapter 2 : Materials and Methods  

2.1 Materials 

2.1.1 General materials 

Most of the routine chemicals were acquired from Sigma but sources of special materials are 

listed here. The nickel-nitrilotriacetic acid (Ni-NTA) resin used for protein purification was 

obtained from Qiagen (Hilden, Germany); dialysis tubing with 12-14 kDa was obtained from 

Spectrum Laboratories Inc. (Breda, Netherlands); protein standard for gels were obtained from 

Applichem (Darmstadt, Germany). lipids such as 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine 

(DOPC); 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC); 1-Palmitoyl-2-Oleoyl-sn-

Glycero-3-Phosphocholine (POPC); 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-

glycerol)] (POPG); Archeal lipid, E. coli Polar Lipid Extract were obtained from Avanti Polar 

Lipids (Alabaster, USA). Detergents like n-Dodecyl- ß-D maltoside (DDM) was purchased from 

Applichem GmbH (Darmstadt, Germany) and n-ßoctyl-D-glucopyranoside (OG) was obtained 

from Glycon Biochemicals (Luckenwalde, Germany). SM-2 Biobeads were obtained from 

BioRAD (München, Germany). 

 

2.1.2 Equipment 
For estimation of protein concentration, an ultraviolet (UV) and visible Jasco V-550 

spectrophotometer (Jasco, Gross-Umstadt, Germany) was used. For preparative 

ultracentrifugation an Optima™ LE-80K ultracentrifuge from Beckman Coulter (Fullerton, 

USA) was used with Ti70 rotor. Bruker style 4 mm zirconium rotor, KEL-F caps and bottom 

inserts were obtained from RototecSpintec (Biebesheim, Germany). Experiments were measured 

using 4 mm MAS DVT probeheads. 4 mm Bruker style zirconium rotors were sealed by HR 

MAS inserts. For long-term measurements silicon rubber discs were placed between the top 

insert and the cap to avoid dehydration. The probeheads were obtained from Bruker Biospin 

(Rheinstetten, Germany). 400 MHz, 600 MHz and 850 MHz spectrometers, used for NMR 

measurements were purchased from Bruker (Karlsruhe, Germany). Philips CM120 electron 

microscope with an accelerating voltage of 120 kV was used for screening. Freeze-fracture 

replicas were produced in the freeze-fracture unit BAF400T (Bal-TEC Inc., Principality of 

Liechtenstein) and were analysed in an EM208S electron microscope (FEI Company). The CD 
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spectra were acquired on Jasco 720 CD Spectrometer and FTIR data was collected on IFS66 

spectrometer. 

 

Individual experimental settings specific to each experiment shall be indicated in the figure 

legends and specific pulse sequence used for acquiring data shall be described. 

 

2.1.3 Software 
Acquisition and analysis software used for NMR includes Topspin 1.3 Topspin 2.0 and XWIN-

NMR Version 3.5 all from Bruker Biospin (Rheinstetten, Germany), Sparky 3 from Goddard and 

Kneller at the University of California (San Francisco, USA). Typical chemical shifts of amino 

acids were obtained from the Biological Magnetic Resonance Bank (BMRB) webpage. Topology 

models were generated using TMPres2D [56]. The electron micrographs were processed with  

MRC program package [93]. 
 

2.2 Methods 

2.2.1 Expression and purification 

2.2.1.1 Host organism 
For over expression of PR, the E.coli expression system was used. The host organism used was 

E. coli C41 (DE3) strain with PR expression gene encoded in the pET27 (b+) vector. The protein 

had Kannamycin as resistance marker and HSV and 6x His tags on the C terminal end. The 

plasmid was a generous gift from M.Engelhard from Dortmund, Germany. 

 

2.2.1.2 Culture maintenance 

The cryo stock of a log phase culture was prepared by shock freezing in liquid nitrogen in final 

concentration of 40% glycerol. These culture aliquots were stored at -80°C. A loopful of these 

aliquots was used for inoculation in the fresh medium. Repeated freeze thawing was however 

avoided. 

 

2.2.1.3 Expression  
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Depending on the intended use, the expression of wild type PR was done in different media. E.g. 

LB medium for crystallization screens, defined medium for specific labeling or minimal medium 

for uniform labeling.  

 

Typically, preculture was inoculated in Luria Bertani (LB) medium overnight at 37°C at 200 

rpm. Next day about 10-15 ml of actively growing cells were added to 1 litre of autoclaved 

medium (LB/ defined medium/minimal medium) with 50 μg/ml kanamycin. The cells were 

collected when an OD578 of 0.8 was reached. After spinning down, cells were resuspended in 

fresh medium. In case of labeled preparations, fresh medium containing labeled amino acids was 

introduced at this stage. After 15 min of incubation, 1 mM IPTG and 0.7 mM of all-trans retinal 

dissolved in ethanol were added. Over expression was achieved by a further incubation at 37°C 

for 3–4 h and was visually observed by a pink color change of the cells. The cells were harvested 

by centrifugation at 6,000 rpm at 4°C for 10 mins. 

While making specifically labeled sample e.g. Tryptophan labeling for REDOR measurements, 

defined media with labeled amino acid was used. The composition of defined medium is given 

below. 

Table:1 Composition of Defined medium for selective labeling  

Components Amount for 1 Liter
Alanine  0.50 g  
Arginine  0.40 g  
Aspartic Acid  0.40 g  
Cystine  0.05 g  
Glutamine  0.40 g  
Glumatic Acid  0.65 g  
Glycine  0.55 g  
Histidine  0.10 g  
Isoleucine  0.23 g  
Leucine  0.23 g  
Lysine hydrochloride  0.42 g  
Methionine  0.25 g  
Phenylalanine  0.13 g  
Proline  0.10 g  
Serine  2.10 g  
Threonine  0.23 g  
Tyrosine  0.17 g  
Valine  0.23 g  
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Others  
Adenine  0.50 g  
Guanosine  0.65 g  
Thymine  0.20 g  
Uracil  0.50 g  
Cytosine  0.20 g  
Sodium acetate  1.50 g  
Succinic acid  1.50 g  
NH4Cl  0.50 g  
NaOH  0.85 g  
K2HPO4  10.50 g  

After autoclaving add:  

Compoments Volume for 1 liter 
40% Glucose 50 ml 
1M MgSO4 4 ml 
0.01M FeCl3 1 ml 
Trace elements 10 ml 
Antibiotic ( 100 µg/ml) 1 ml 

Composition of trace elements  

Compoment Amount for 10 ml of trace elements 
CaCl2*2 H2O 2 mg 
ZnSO4*7 H2O 2 mg 
MnSO4*H2O 2 mg 
L-Tryptophan 50 mg 
Thiamine (B1) 50 mg 
Niacin 50 mg 
Biotin 1 mg 
 

Add the required amount after filter sterilization to the medium 

The final pH of the solution is around 7.2 

 

2.2.1.4 Membrane preparation and solubilization 

Cells were harvested and disrupted with a cell disrupter (Constant cell system, UK) at 1-2 kbar. 

To remove the contamination from earlier usage the cell disrupter was washed thoroughly with 

about 300 ml of water then with 300 ml of 0.1 M NaOH and then again equal amount of water / 

buffer. The homogeneous cell pellet in MES buffer pH 6, was then subjected to the disrupter. 

The membrane fraction was collected by centrifugation at 45,000 g at 4°C for 30 mins. 
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Membranes were solubilized in solubilization buffer (1.5% -D-Dodecyl maltoside (DDM), 300 

mM NaCl, 50 mM MES, 5 mM Imidazole, pH 6.0 for 48 hours minutes at 4°C. The insoluble 

fraction was removed by ultracentrifugation at 45,000 g for 15 mins at 4°C. 

 

2.2.1.5 Protein purification 
The NiNTA was equilibrated with equilibration buffer (300 mM NaCl, 50 mM MES, pH 6.0) 

with at least 10 volumes of the column in a disposable syringe. After equilibration, the 

disposable syringe was inverted over a glass beaker and with the help of airflow and the NiNTA 

was transferred to the beaker. The supernatant (slightly red in color) after ultra centrifugation 

was incubated with this NiNTA for at least 2 hours at 4°C. After incubation (most likely the 

NiNTA beads turn red), the NiNTA column was again packed, followed by slow washing step 

with about 100 ml of washing buffer (Trition X -100= 200 µl / 200 ml), 300 mM  NaCl, 50 mM 

MES, 50 mM Imidazole, pH 6.0). The detergent concentration in wash buffer was lower than 

CMC. The protein was finally eluted in a elution buffer (Triton X -100 = 200 mg/ 100ml), 300 

mM NaCl, 50 mM MES, 200 mM Imidazole, pH 7.5). 

 

2.2.1.6 Protein estimation 
The quantitative estimation of protein was carried out using UV-Vis Spectroscopy. UV-Vis 

absorption spectra in the range of 250 nm up to 600 nm wavelength were acquired. The total 

protein content was determined from the two different peaks. The retinylidine peak was observed 

at 520 nm, which was further used for calculation of protein concentration whereas total protein 

content was estimated from the peak at 280 nm. The relative purity of protein preparation was 

estimated by the ratio of Abs 280 nm/ Abs 520 nm. For a decently pure protein preparation it was 

between 1.6 -2.2. The absorption value at 520 nm was used to calculate the amount of PR in 

mg/ml quantities. Usually 1:10 dilution of protein was used and referenced against the elution 

buffer. 

 

(Abs 520nm * dilution factor)  / (1.6* 0.3) = concentration of protein mg/ml 

 

Extinction coefficient of PR =1.6 

Thickness of quartz cuvette=0.3 mm 
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The typical yield of protein was 2-3 mg/lit from LB medium, 15-18 mg/lit for defined medium 

and 10 g/lit for minimal medium. 

 

 
Figure 13 : UV-Vis spectra in the range of 250-600 nm for the Triton X-100 solubilized wild type GPR with typical 

retinylidine peak of ~100 nm at 520 nm and total protein content at 280 nm. 

 

2.2.1.7 Protein purity 
The purified protein was evaluated for the purity of preparation by using SDS PAGE, where a 

single band of monomer at 27 kDa was clearly observed after coomarsie staining. For further 

verification, the protein was run on Superdex 200 column. However, it was performed only for 

initial standardization. The purity of protein as judged by SDS PAGE was over 95%, was 

adequate for setting up the 2D crystallization trials, and hence gel filtration was not a routine for 

every preparation. 

 

NOTE: The homogeneity of the reconstituted sample was further checked on 60-80% sucrose 

gradient. For an ideal preparation a single sharp band was obtained.  
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Figure 14 : Evaluation of homogeneity of reconstitution on sucrose gradient A. diffused band of inhomogeneous 

sample and B single sharp band of homogenous reconstituted sample. 

 

Table 2: Resolving gel composition  

 

 Ingredients 1 gel 

1 Gel buffer + Glycerol 2 ml 

2 40% Acrylamide 1 ml 

3 Water 1,5 ml 

4 APS 7.5 µl 

5 TEMED 7.5 µl 

 

Table 3: Stacking gel composition 

 

 Ingredients 1 gel 

1 Gel buffer  300 µl 

2 40% Acrylamide 1 ml 

3 Water 1,5 ml 

4 APS 7.5 µl 

5 TEMED 7.5 µl 
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Figure 15 : A: SDS PAGE of purified PR after single step NiNTA purification showing a single monomeric band. B 

Major fractions from analytical Gel filtration of detergent solubilized PR. Gel filtration was carried out using 

Superadex 200. 

 

2.2.1.8 DNA sequence 
AATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGAAATTATTACTGATATTAGGTAGTGTTATT

GCACTTCCTACATTTGCTGCAGGTGGTGGTGACCTTGATGCTAGTGATTACACTGGTGTTTCTTTTTGGT

TAGTTACTGCTGCTTTATTAGCATCTACTGTATTTTTCTTTGTTGAAAGAGATAGAGTTTCTGCAAAATG

GAAAACATCATTAACTGTATCTGGTCTTGTTACTGGTATTGCTTTCTGGCATTACATGTACATGAGAGG

GGTATGGATTGAAACTGGTGATTCGCCAACTGTATTTAGATACATTGATTGGTTACTAACAGTTCCTCT

ATTAATATGTGAATTCTACTTAATTCTTGCTGCTGCAACTAATGTTGCTGGATCATTATTTAAGAAATT

ACTAGTTGGTTCTCTTGTTATGCTTGTGTTTGGTTACATGGGTGAAGCAGGAATCATGGCTGCATGGCC

TGCATTCATTATTGGGTGTTTAGCTTGGGTATACATGATTTATGAATTATGGGCTGGAGAAGGAAAATC

TGCATGTAATACTGCAAGTCCTGCTGTGCAATCAGCTTACAACACAATGATGTATATTATCATCTTTGG

TTGGGCGATTTATCCTGTAGGTTATTTCACAGGTTACCTGATGGGTGACGGTGGATCAGCTCTTAACTT

AAACCTTATCTATAACCTTGCTGACTTTGTTAACAAGATTCTATTTGGTTTAATTATATGGAATGTTGCT

GTTAAAGAATCTTCTAATGCTCTCGAGATCAAACGGGCTAGCCAGCCAGAACTCGCCCCGGAAGACCC

CGAGGATGTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAGCCCGAAAGGAAGCTG

AGTTGGCTGCTGCCACCGCTGA. 

 

The DNA sequence was then translated 5’3’ in frame 1 to get the desired PR sequence 

arrangement using ExPASy. ExPASy stands for (Expert Protein Analysis System) proteomics 

server of the Swiss Institute of Bioinformatics (SIB). 

 

2.2.1.9 Protein sequence  
The protein sequence of the wild type GPR as obtained after sequencing is given below : 
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N N F V Stop L Stop E G D I H M K L L L I L G S V I A L P T F A A G G G D L D A S D Y T 

G V S F W L V T A A L L A S T V F F F V E R D R V S A K W K T S L T V S G L V T G I 

A F W H Y M  Y M R G V W I E T G D S P T V F R Y I D W L L T V P L L I C E F Y L I 

L A A A T N V A G S L F K K L L V G S L V M L V F G Y M G E A G I M A A W P A F I 

I G C L A W V Y M I Y E L W AG E G K S A C N T A S P A V Q S A Y N T M M Y I I I F 

G W A I Y P V G Y F T G Y L M G D G G S A L N L N L I Y N L A D F V N K I L F G L I I 

W N V A V K E S S N A L E I K R A S Q P E L A P E D P E D V E H H H H H H Stop D P A 

A N K A R K E A E L A A A T A 

In all there are 280 amino acids including the following 

1) Signal sequence : M K L L L I L G S V I A L P T F A 

2) HSV TAG : Q P E L A P E D P E 

3) 6x His tag: H H H H H H 

4) Additional residues 

 

2.2.1.10 Preparation of lipid stock 
Lipids were obtained from Avanti Lipids as stocks in chloroform or powder. Desired amount of 

Lipid was dried under inert gas (Nitrogen) and if required traces of chloroform were further 

removed in vacuum for 2 hours. Lipid was resuspended in 2% of OG solution to a final 

concentration of 5 mg/ml, sonicated until a clear solution was obtained. This stock of solubilized 

lipid was stored in small volume aliquot at –20°C. 

 

2.2.1.11 General sample preparation 
DOPC was solubilized in 2% OG and PR was reconstituted at a very low lipid to protein ratio of 

0.25 (w/w). The protein was diluted to 1 mg/ml with the dialysis buffer. The protein and lipid 

mixture was allowed to equilibrate at RT for about 1 h and then transferred to presoaked dialysis 

tube (12-14 kDa cut-off) with clamps. Typical crystalline preparations involved slow detergent 

removal by dialysis with the aid of dialysis tubes against excess of dialysis buffer (50 mM 

Tricine, 100 mM NaCl, 10 mM MgCl2, 3 mM NaN3, 5 mM DTT, pH 8.5, 7.5% MPD). The 

dialysis buffer was changed every day and the crystalline samples were obtained after 7 days. 

These samples were then used either for electron microscopy or for NMR measurements. 
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2.2.1.12 Preparation of samples for EM 
For EM screening the expression was done using readymade Luria Bertani medium (Carl roth 

GmbH art no:X968.3) and purification was carried out as described earlier. After reconstitution, 

about 5 µl of samples were put out on the carbon coated copper grids (400 mesh) and allowed to 

incubate at room temperature for 2 min. The grids were placed upside down on 2% uranylacetate 

(pH 4.5) and held for 30 sec to remove excess of sample. The grid was finally air-dried.  

Additionally freeze-fracture replicas produced in the freeze-fracture unit BAF400T (Bal-TEC 

Inc., Principality of Liechtenstein) were analysed in an EM208S electron microscope (FEI 

Company).  

 

2.2.1.13 Electron microscopy and image processing 
Grids were examined in a Philips CM120 electron microscope with an accelerating voltage of 

120 kV at a magnification of 45,000× or 60,000×. Images were collected on a 2K × 2K slow-

scan CCD camera (Gatan Inc.). 

The crystal images were processed using the MRC program package [94]. A Fourier transform 

of crystalline area was calculated. The diffraction spots were indexed and the unit cell 

parameters were calculated. A filtered image of the 2D crystal was created by extracting the 

phase and the amplitude information from the diffraction spots. Then the image was subjected to 

lattice unbending by cross correlation of the image with a small central part of the filtered image 

as a reference and subsequent interpolation of the image to the ideal lattice from the reference. 

The amplitude and phases from the Fourier transform of the unbent image could be used to 

calculate the projection map. 

 

2.2.1.14 Preparation of samples for NMR measurements 
The reconstituted samples after the dialysis duration were pelleted down in an eppendorf at 

25,000 rpm at 4ºC for 30 mins in an ultracentrifuge. The pellet was subjected to 8-10 subsequent 

washes with fresh dialysis buffer without the salts, DTT and MPD. Finally it was packed in 4 

mm rotor with a top and bottom insert. The samples were stored at 4ºC until measured. 

 

2.2.1.15 Specifically labeled samples 
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For specific labeling of the amino acid, defined medium was used for expression. The amino 

acid, which needed to be labeled, was replaced with the appropriate label. The expression and 

purification was done in the same manner as described earlier. The 15N ζ lysine, 15N Tryptophan, 
13C Cysteine, 13C Histidine samples were prepared in this way. 

 

2.2.1.16 REDOR samples 
For REDOR measurements, doubly labeled samples were prepared using the defined media, 

where 15N Tryptophan label was used for (i) position along with and 13C label for the appropriate 

(i-1) residue.  

 

2.2.1.17 Uniformly labeled samples 
For preparation of uniformly labeled samples minimal media was used, whose composition is 

given below. The 13C labeled glucose (2 gm/lit) and 15N labeled (NH4)2SO4 (0.3 gm/lit) were 

introduced at the time of Induction. 

 

Table 4: Composition of minimal media 

Components Amount for 1 liter 

K2HPO4 10.5 g 

KH2PO4 4.5 g 

10%MgSO4 1 ml 

40%Glucose 10 ml 

(NH4)2SO4 0.5 g 

Thiamine (2.5mg/ml) 1 ml 

 

2.2.1.18 Selectively unlabeled samples 
For preparation of selectively unlabeled samples, first the amino acids, which need to be 

unlabeled, are identified. The expression is carried out as in case of uniformly labeled samples in 

the minimal medium, except that the identified amino acids are added to the medium in addition 

to the normal components of the minimal medium in the same amounts as shown for defined 

medium. 
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Table 5: List of labled/unlabeled amino acids for NMR samples 

Amino Acids labeled Amino Acids unlabeled 

Arginine Alanine 

Aspartic acid Glycine 

Asparagine Isoleucine 

Cysteine Leucine 

Glutamine Phenylalanine 

Glutamic acid Serine 

Histidine Threonine 

Lysine Valine 

Proline Tyrosine 

Tryptophan  
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Chapter 3 : Reconstitution and 2D Electron Microscopy  

3.1 Motivation  
Our 2D crystallization screen was initially motivated by the similarities between BR and PR, and 

the fact that BR is arranged in 2D arrays within the Halobacterium salinarium membrane [93]. 

However, nothing is known about the arrangement of PR protobacterial membranes. The first 

goal was therefore to find suitable 2D crystallization conditions. The projection map of well 

diffracting 2D crystals would help in understanding the structural details of the protein in the 

membrane and at the same time could also be used for detailed mechanistic studies by SSNMR 

as natural 2D crystals of BR (purple membrane) did yield very well resolved spectra [95]. Major 

benefits of 2D crystals for SSNMR study are high sample concentration and homogeneity. 

Furthermore, it is assumed that crystal packing would reduce internal molecular motions, which 

might interfere with coherent averaging by magic angle sample spinning. In view of advantages 

conferred by 2D crystals, the trials were attempted.  

 

3.2 Background 
The simplest definition of 2D crystals is arrangement of single layers of ordered membrane 

protein molecules in two planes. Broadly the membrane protein 2D crystals are classified into 

Type I crystals and Type II comprise of soluble proteins. The need of 2D crystals for membrane 

proteins arise because of the following reasons: 

• The orderly arrangement of the protein has a preferred identical orientation. 

• The Fourier transformation of 2D crystal is discrete and the structural information is 

contained in the form of defined reflection or “spots” because the Fourier transform of 

the 2D crystal is the FT of the molecules sampled at positions of reciprocal lattice points. 

This explains the reason for the discreteness. 

• The amplitude and phase of each reflection is calculated from the FT of the images. 

• If appropriate crystalline condition is screened then various intermediates can also be 

crystallized with similar conditions. 

 

However, like any other technique there are some limitations associated with the 2D 

crystallization trials. 
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• Obtaining a 2D crystal is a matter of luck and can take very long time with or without 

success. 

• Significant amount of time can be invested in improving the quality of 2D crystal. 

• The crystalline arrangement of the protein is achieved in vesicles, membranes or tubes. In 

all these cases, each image provides only single view of the molecule. Nevertheless, in 

order to reconstruct the overall view of the protein arrangement in the crystalline packing 

the tilted data from random orientations needs to be collected. This gives the biggest 

challenge. 

• From biochemical point of view, although the protein is reconstituted into the membrane 

but may not be active. This is because the crystalline packing offers limited flexibility, 

which might be required for the functionality of the protein. 

 

3.3 Approach 
1. Reconstitution: The most traditional but still the most widely used approach as it has 

produced the maximum number of crystalline samples. The setup utilizes small amounts 

of known concentration of detergent solubilized protein and detergent solubilized lipid is 

added to it in molar protein to lipid ratio in the range of 0.1-10. After incubation of this 

mixture at RT or on ice, the detergent is removed either quickly by adding hydrophobic 

biobeads or slowly by dialysis. Various screens can be set up depending upon varying 

parameters like temperature, pH, concentration, additives, lipids etc. 

 
Figure 16 : Principle of dialysis A: detergent (red) solubilized membrane protein (grey). B: Mixture of detergent 

solubilized membrane protein with lipids (blue) in the dialysis bag. C: After definite time duration for dialysis the 

detergent molecules replaced by lipids and protein attains a crystalline conformation. 
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2. In situ Approach: This approach is used for those proteins, which constitute the dominant 

fraction of the entire membrane protein fraction. The underlined principle is to raise the 

concentration of desired protein above the critical threshold required for the lattice 

formation by extracting excess of bulk lipids from the membranes. The choice of 

detergent for lipid extraction should be such that it does not dissolve the membrane 

protein. Typically, a membrane suspension of known concentration is prepared and 

extraction of lipid is done by incubation with detergents for hours at different 

temperatures. The detergent is removed mostly by dialysis. This method is least 

disruptive as protein always resides in its membrane. However, this preparation is prone 

to contamination with non crystalline membrane material and hence the unit cell may 

vary from batch to batch. 

 

3. Surface Crystallization: Especially suited for membrane proteins, which have a natural 

tendency to form arrays at interface between the 2 phases. The phases referred to are air–

water or carbon water interface. This type of approach can also be extended to the 

substrate induced 2D crystallization. It requires less time and may yield large crystalline 

arrays with very little protein requirement. If carbon-water interface is chosen then it can 

directly be done on carbon-coated grid and can be observed directly. However, there may 

exist a possibility of inhomogeneity in larger patches. Additives used for inducing the 

crystallization may contribute to the background noise. 

 

3.4 Theory and image processing 
The electron microscopy technique is well suited for studying the 2D crystals. The major credit 

for development and refinement this technique for the study of membrane proteins goes to 

Henderson et al [4, 96]. Recent developments of electron crystallography using a combination of 

electron diffraction and electron imaging has made structure determination of biomolecules 

reach atomic resolution. 

 

Electron microscopy is based on strong scattering power of electrons. The atomic scattering 

intensities are 100,000 times larger than the X-Rays and because of these strong interactions, it is 

possible to obtain a high quality diffraction pattern from very small samples which permit the 
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usage of very thin samples such as biomembranes, which have a thickness of one or two 

molecules. The electrons are scattered by the shielded coulomb potential and as a result, the 

density maps in electron microscopy represent the coulomb potential. The electrons can be 

focused to produce a high-resolution image. 

 

Fourier transformation of the electron microscopic image shows a diffraction pattern from which 

the reciprocal vectors are determined. A filtered image is created by using the information from 

the diffraction spots, which originate from the periodic structure from which the intensities and 

phases on the reciprocal lattice points are used for back transform. The signal to noise ratio of the 

primary data from two-dimensional crystals is initially low because of lattice imperfections and 

beam damage. For the purpose of increasing the signal to noise ratio, the data is usually filtered 

in digital format (filtering) and lattice imperfections are computationally corrected (unbending). 

This results in an image, which shows the average over multiple unit cells. The optical 

diffraction pattern thus obtained from the crystalline arrays contains information about the 

symmetry and the quality of the specimen.  

 

After image processing for the crystal improvement, a projection map is calculated. For the 

acquisition of high-resolution data on biomolecules the samples are usually studied in the frozen-

hydrated state (electron cryo-microscopy), which resembles the natural hydration state of the 

proteins. The cryo conditions also prevent the radiation damage to the sample. 

 

3.5 Results and Discussion 

3.5.1 Biochemical analysis and crystallization screens 
There are many parameters, which need to be optimized to obtain a perfectly well ordered and 

highly diffracting 2D crystal. However, considering the feasibility of the screening, these 

parameters need to be prioritized. Multiple parameters were tested simultaneously and most 

important parameters are discussed under different headings.  

 

3.5.1.1 Effect of detergent 
By definition, detergents are amphipatic molecules which have a polar head group region and a 
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non polar side chain. The purpose of detergent is to cover the hydrophobic residues of the helical 

region, which span the membrane such that it is properly folded and is functional outside the 

membrane. Detergent is expected to ape the physical properties of lipid bilayer in anticipation 

that the structural properties of the protein will be restored. In case of membrane proteins, the 

detergents orient in such a manner that the hydrophobic tail region surrounds the hydrophobic 

region of the protein and the polar head groups interact with the aqueous external environment in 

a thermodynamically stable conformation. These detergents are characterized by the critical 

miceller concentration, aggregation number, head groups, side chains and degree of saturation or 

unsaturation of the bonds in the side chain. Based on the charge carried the head group these 

detergents behave differently and have different impact on the membrane protein which is briefly 

discussed. 

 

In short, Ionic detergents have a net charge, which can be positive, or negative. Ionic detergents 

are more sensitive to pH, ionic strength, and the nature of the counter ion, and can interfere with 

charge-based analytical methods. E.g. SDS. 

Non-ionic detergents consist of uncharged hydrophilic head group are non-denaturing, but are 

less effective at disrupting protein aggregation. They have mild properties, which are strong 

enough for breaking lipid–lipid interactions and lipid–protein interactions but are not capable of 

disrupting the protein-protein interactions. Such detergents preserve the native conformational 

state of membrane protein. E.g. OG.  

Zwitterionic detergents possess intermediate properties, which can efficiently disrupt protein 

aggregation, offer slow denaturing and net-zero charge. E.g. CHAPS. 

 

Considering all these aspects, different detergent screens were set. The detergents were evaluated 

based on the stability of the protein monitored by the UV-Vis spectra and the ease of detergent 

removal with dialysis. For this LDAO, C12H8, Hecameg, Triton-X, CHAPS, DPC, DDM, CTAB, 

Sodium Cholate, DTAC and combination of detergents was analyzed. These detergents were 

known to have BR in functional state hence were shortlisted. It was observed that PR was 

definitely more stable in Triton-X 100, DDM and OG, which belong to the class of non ionic 

detergents. Once the protein was stable, considering the effect of the CMC on the duration of the 

dialysis, the detergent screen was further expanded to the use of different combinations of 
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detergents for protein elution and lipid solubilization. The best combination was achieved with 

PR eluted in non-ionic Triton X-100 (CMC of 0.25–0.3 mM) and lipid solubilization in OG 

(CMC of 20–25 mM ) [97]. 

 

NOTE: The detergent screen was also evaluated for the ease of removal from the system. It was 

found that the presence of extra detergent in the system causes loss of resolution in SSNMR 

spectra. In order to regain the resolution additional washing steps with dialysis buffer were 

introduced. 

 

3.5.1.2 Effect of additives  
Amphiphiles are generally used in 2D and 3D crystallization. They aid in crystallization by 

various mechanisms. Some are believed to reduce the size of the protein detergent micelle and 

provide assistance in increasing the interaction between the extramembranous segments [98]. 

Another hypothesis says that they make the detergent miceller collar more flexible, which in turn 

helps in crystal growth [99] and in the absence of lipids cover the transmembranous part. Some 

small additives can directly act on the extra membranous part of the protein as seen in 

Ca++ATPase. The use of additives is more frequent in case of 3D crystallography; however, for 

2D it is still not a routine yet. The list of common additives used for crystallization screens is 

also available [100, 101]. 

 

In case of PR, MPD, which is an amphiphile and has nonpolar character, enhanced the growth of 

2D crystals. Several different concentrations were tested and the best was found with 7.5% 

concentration in the dialysis buffer. It is known that MPD binds to the hydrophobic sites and 

prefers leucine side chains. Binding of MPD involves amino acid residues in the helical or β 

sheet regions. MPD binding to protein is penetrative and leads to displacement of the water 

molecules in the grooves and cavities on the protein surface, which in turn reduces the solvent 

accessible areas and has implications on the solubility of the protein. MPD, normally expected to 

be a strong denaturant but in this case it promotes stabilization of protein by preferential 

hydration, which is due to binding of MPD molecules to the hydrophobic surface. 

3.5.1.3 Effect of buffer  
The buffer, which is used to dialyze out the detergent from the reconstitution mixture, plays a 
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key role for crystallization. This is because the buffer has salt, additives, temperature and 

specific pH and most important it interacts directly with the protein and alters the solubility. 

After screening different divalent salts e.g. MgCl2, NiCl2, CoCl2, BaCl2, MgCl2, CaCl2 and 

monovalant salts e.g. KCl, LiCl, NaCl, in different combinations and concentrations, the best 

condition was obtained in combination with 100 mM NaCl and 10 mM MgCl2. 

 

NOTE: The concentration of salts in the dialysis buffer was optimized considering the 

requirements for the NMR measurements. The NMR samples with high concentration of salt are 

known to have arching problems. In order to avoid this problem the concentration of salts was 

restricted to minimum required. 

 

3.5.1.4 Effect of pH 
Protein has a net charge and the buffer has a specific pH. This implies that there will be 

alteration of interactions, which may influence the crystallization. The effect of pH on the 

solubility will be much stronger at low ionic concentration of the buffer. Apart from this, PR has 

shown a pH dependent vectorality for the pumping of protons [67]. Since pH has important role 

in the functioning of PR, a pH rage of 4-10 was screened. The quality of crystals improved 

slightly towards the alkaline pH, while it deteriorated at acidic pH 4. The lowest pH value for the 

crystal formation was pH 6 and the best crystals were obtained at pH 10.  

 

Reconstitution under acidic condition (pH 6) led to diffused, low order diffraction spots, 

compared to those obtained under physiological condition (pH 7). At alkaline pH (up to 11), the 

quality of crystals improved slightly (figure 17 B). The pH of seawater is around 7.2–8.5 which 

means that most PR molecules in a marine bacterium under native conditions are pumping 

protons from inside the cell to the outside. As the pKa of the proton acceptor is 7.2, PR is either 

inactive or transports protons in opposite direction at acidic pH, which could lead to a 

heterogeneous mixture of the molecules in different conformational states, leading to the 

diffused diffraction spots. 
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Figure 17 : Diffraction pattern of PR 2D crystals at different pH.  A: Diffused spots and one order diffraction pattern 

at pH6 B: Two orders of diffraction pattern at pH10 

 

NOTE: The projection map as shown in figure 19 was calculated with the sample reconstituted 

at pH 10. However, to be close to the physiological range the SSNMR samples were prepared at 

pH 8.5. 

 

3.5.1.5 Effect of dialysis duration 
It was observed that when above stated combination of detergent is used and the samples are 

analyzed with EM after 7 days and 14 days, no significant improvement in the quality was 

observed. Hence, a manageable dialysis time of typically one week with regular buffer changes 

was used. 

 

3.5.1.6 Effect of lipid  
Lipids are amphiphiles with a hydrophilic head group and two staurated or unstaurated 

hydrophobic chains. Lipids pay an important role in providing the membrane protein a native 

environment for proper folding and functioning. During reconstitution, the lipids gradually 

replace the detergent belt around the hydrophobic region of membrane protein. The lipids also 

have characteristic head groups and side chains, which determine the inherent properties of lipid 

per se. Hence, for crystallization it is one of the most important parameter for screening.  

 

In addition, the importance of lipids have been reported to have considerable impact on the 

stabilization of the crystal structure of BR [102]. Most likely, crystallization can be favored by 

A B 
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using native lipid environment as in case of BR, Photosystem II, Ca++-ATPase, Na+ and K+-

ATPase, Rhodopsins and Light harvesting complex II. In some cases, combination of lipids have 

also proved to be essential [103]. DMPC has a significant success associated with it. It was found 

to be successful for Photosystem I/II, aquaporin, porin, and mixture of DMPC with other lipid 

for e.g. lactose permease. For crystallization, it is important to consider the hydrophilic and 

hydrophobic balance of the protein. The lipid to protein ratio is known to have been influenced 

with this parameter [23].  

 

The dependence of BR assembly on the membrane lipid content have been investigated earlier 

by conventional kinetics, equilibrium methods [104, 105] and neutron diffraction [106]. The 

reports support the fact that the change of lipids during reconstitution affects the membrane 

protein assembly of BR. Lipid environment may be influential in deciding the oligomeric state of 

the protein. The contribution of the head group moieties for the stabilization of the BR trimers is 

also well documented [4, 107]. 

 

In context to the importance of lipids for crystallization, a series of lipids were screened based on 

different chain lengths and head groups. These included POPC, POPG, Soy PC, DOPC, Archeal 

Lipids, E.coli Lipids, Egg PC and DMPC. Different combinations and different ratios of these 

lipids were tested. It was observed that the crystals of comparable diffraction pattern as shown in 

figure 17 B were obtained with almost all the lipids except for DMPC. The inability of 

crystallization with DMPC could be explained based on its short side chain. The best diffraction 

was obtained with DOPC as shown in figure 17 B and hence was standardized. The Protein to 

Lipid ratio range for obtaining crystals was 1:0.25 - 0.16 (w/w). A low lipid to protein ratio of 

about 0.20 (w/w) was essential for the formation of homogenous 2D crystalline samples. 

Increasing the amount of lipids to more than 0.25 (w/w) led to formation of isolated crystalline 

patches that apparently prevented further growth of these areas.  

 

3.5.1.7 Effect of protein concentration 
It is important to begin the crystallization with the protein of substantial purity. In case of PR, the 

purity was over 95% as judged by SDS PAGE, which was a good starting point. The 

concentration of protein in the crystallization setup was usually 1 mg/ml. However a complete 
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range from 100 µg/ml up to 5 mg/ml was screened but no significant effect of protein 

concentration was observed. 

 

3.5.1.8 Other parameters 
Reducing agents: Different reducing agents and combination in different concentration were also 

experimented with β-mercaptoethanol, DTT and isopropanol in order to reduce the disulphide 

bonds. No significant difference was observed. 

 

Temperature: An entire temperature range from 4ºC up to 60ºC was screened with different 

modifications like ramp. The temperature screening did not help much and finally room 

temperature of 20ºC+ 2ºC was chosen for routine crystallization. 

 

The different parameters, which were varied, and the range of testing conditions have been 

summarized in the following table. However, it should be noted that multiple combinations of 

these parameters were tested at a given time. 

 

Table 6: Brief summary of conditions screened for 2D crystallization of PR 

Type of screen Range screened Comments / best condition 

Protein:Lipid Ratio 

(w/w) 

1:5, 1:2.5, 1:1.25, 1:0.83, 1:0.41, 

1:0.166, 1:0.083 

First diffraction pattern with 

1: 0.83 and the best with 

1:1.20 

Monovalent salts  Sodium chloride, Potassium 

chloride, Lithium chloride 

Lithium Chloride no 

crystals  

Monovalent salt 

concentration (mM) 

50, 100, 250, 500, 750, 1000 100 mM  

Divalent salts Manganese chloride(MnCl2), 

Calcium chloride (CaCl2,) Nickel 

chloride(NiCl2), Cobalt chloride 

(CoCl2), Magnesium chloride 

(MgCl2), Barium chloride (BaCl2) 

Magnesium chloride 

(MgCl2)  
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Divalent salt 

concentration (mM) 

5, 10, 25, 50, 100, 250, 10 mM 

Combination of Sodium 

chloride and Magnesium 

chloride (mM/mM) 

 

1000/10, 800/10, 600/10, 400/10, 

200/10, 100/10 1000/20, 800/20, 

600/20, 400/20, 200/20, 100/20 

 

100/10 

pH 4, 5, 6, 7, 8, 9, 10 No crystal under pH 6, 

Diffused crystals at pH 6, 

Best crystals at pH 10 

Temperature (ºC) 4, 20, RT, 25, 30, 37, 60, ramp First crystals at 37 later RT 

was used. 

Buffers Citrate, MES, Tris HCl, Tricine, 

Phosphate, Hepes, 

No effect (except for  pH) 

Buffer range (mM) 10, 20, 50, 100, No effect  

 

Detergent removal  biobeads and dialysis biobeads used for initial 

reconstitution screening  

Incubation with biobeads 

(h) 

2, 4, 6, 10 4- 6  

Dialysis duration (days) 3, 5, 7, 10, 15, 20, 25, 30 10-12 days was optimum 

 

Protein concentration 

(mg/ml) 

0.100, 0.25, 0.5, 0.75. 1, 2, 3, 4, 5 No effect 

Lipids DOPC, POPC, POPG, EPL, 

Archeal, lipids, Soy PC, POPE, 

DMPC, 

DMPC gave no crystal  

 

Detergents for lipid 

solubilization 

Triton X-100, DDM, OG Crystals of comparable  

quality 

Detergents for protein 

elution 

CHAPS, CHAPSO, Trition X-100, 

DDM, OG, CTAB, LDAO, 

Protein was stable in Trition 

X-100, DDM, OG as 
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Hecameg, DTAC, Sodium choleate, 

C12H8, 

observed by UV Vis spectra 

Reducing agents and 

concentration (mM) 

DTT(2,4) 

β-mercaptoethanol, (2,4), 

Isopropanol (1.5%, 2.5%, 5%) 

No effect  

Additives Glycerol, MPD MPD better than glycerol 

 

Concentration of 

additives (MPD %) 

2.5, 5, 7.5, 10, 12.5,15 ,17.5, 20 7.5% 

 

In all over 1000 conditions were screened in order to obtain well diffracting 2D crystals, which 

were suited for cryo electon microscopy analysis. The first diffraction pattern was be observed in 

the condition number 24 (Condition number 24: Protein concentration in elution buffer = 

1mg/ml, protein to lipid (w/w) ratio of 1: 0.83, detergent removal with biobeads (ratio of 

biobeads to detergent = 40:1), incubation time = 2 h, temperature = 37ºC and lipid used was 

E.coli polar extract. Further screening gave a better diffraction pattern in condition number 142 

(protein to lipid (w/w) ratio =1:0.2 , lipids used were E.coli polar extract, temperature = 37ºC, 

dialysis duration 5 days and dialysis buffer  consisted of 250 mM Sodium chloride in Hepes 

buffer at pH7 ). These conditions which later remained constant throughout the rest of the 

screening conditions.  

 

Based on high reproducibility and reliability of the reconstitution approach, the 2D crystals of 

PR were attempted with dialysis. In addition, the sample preparation is discussed earlier in 

chapter 2. Unfortunately, highly ordered 2D crystalline sheets or vesicles which would be ideal 

for 2D crystallography were not obtained under any conditions tested. Interestingly, the pH of 

the reconstitution buffer and the detergent used for solubilization of lipid and for the elution of 

protein played a crucial role for the quality of the diffraction pattern. The use of appropriate 

detergents for membrane protein stabilization and crystallization played a crucial role and has 

been discussed extensively [108].  

 

3.5.2 EM analysis 



Chapter 3-Reconstitution and 2D Electron Microscopy 
--------------------------------------------------------------------------------------- 

69 | 174 

The best 2D crystals were obtained using synthetic lipids (DOPC) at pH 10 using an initial lipid 

to protein ratio of 0.25 (w/w) as described in figure 18.  

 

 
Figure 18 : EM Micrographs of PR 2D crystals. A : Overview of the PR 2D crystalline preparation (bar 1mm). B : 

Best 2D crystals of PR were obtained in DOPC at pH 10. C : Fourier transformation of (B) shows two orders of 

diffraction spots. D : Freeze-fracture EM image depicts the 2D crystalline arrangement of PR samples. 

 

The conditions under which these crystals were prepared include following parameters. Protein 

to lipid ratio (w/w) of 1:0.25, PR eluted in 0.02% Triton X-100, DOPC solubilzed in 2% OG, 

protein concentration of 1 mg/ml, dialysis buffer containing 100 mM NaCl, 10 mM MgCl2, 7.5% 

MPD, 5 mM DTT, 3mM NaN3, 50 mM Tricin buffer with pH adjusted to 10). 

Figure 18 A shows the overview of the crystalline proteoliposomes. The size of the crystalline 

vesicles was in the order of 0.5 μm as seen in figure 18 B and the best diffraction pattern is 

shown in figure 18 C. The crystalline arrangement of PR becomes especially clear using freeze-

fracture electron microscopy (figure 18 D).  

A B

C D
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Figure 19 : Projection map in negative stain has been calculated at a resolution of 37 Å. The parts of the protein 

protruding out of the membrane correspond to high density regions (solid contours) in the map. The unit cell 

dimensions are 87 Å×87 Å. Two by two unit cells are shown. PR oligomerizes into a donut shaped ring-shaped 

assembly. The scalebar is ~50 Å and is indicated in black solid line. 

A projection map as shown in figure 19 was calculated from a negatively stained sample. 

Because the negative stain does not penetrate in the membrane, the projection map only depicts 

parts of the protein sticking out of the membrane. As can be seen in the Fourier transform (figure 

18 C), the protein has a hexagonal packing as in the case of BR. However, the resolution of 37 Å 

does not allow distinguishing between 3-fold or 6-fold symmetry. A comparison with the well 

resolved structure of BR could indicate a trimeric arrangement [4] but a higher oligomer would 

be possible as well. The calculated size of the unit cell of 87 Å×87 Å is too large for an 

individual PR molecule and supports this assumption. The protomers assemble into a ring like 

structure with an average diameter of 42 Å. The role of electrostatic interactions in guiding the 

assembly of PR towards 2D and 3D arrays has been recently described by Liang et al [109]. 

Their conclusions about a hexagonal lattice arrangement are consistent with presented electron 

microscopy data. 

 

In search of the best crystallization conditions, a systematic variation of parameters was carried 

out as described in detail in the biochemical analysis. All together over thousand conditions were 

tested initially with biobeads and then with dialysis and checked for sample homogeneity by 

density gradient centrifugation and for formation of 2D crystals by electron microscopy. This 



Chapter 3-Reconstitution and 2D Electron Microscopy 
--------------------------------------------------------------------------------------- 

71 | 174 

systematic screen resulted finally in more than 900 successful crystallization conditions with 

comparable sample quality but low diffraction. This means that the success rate of obtaining at 

least low diffracting 2D crystals is relatively high. The formation of any ordered protein 

arrangements within the membrane could be driven by entropy, protein–protein or protein–lipid 

interactions. In case of PR, the same low-resolution 2D crystals were obtained under a wide 

range of conditions, which would hint towards dominating protein–protein interactions. It could 

also indicate, that PR might form protein patches in the native membrane. 

 

One reason for the limited crystal growth is undesired obstruction or discontinuity in the 

crystalline plane of growth. The formation of small patches of crystals can also be discussed in 

light of the recent AFM data. For obtaining best projection map, the ideal requirement is well-

separated and single sheet of well-ordered 2D crystalline patch. The AFM data as discussed in 

chapter – 4, indicates the formation of hexamers in majority of the densely reconstituted region 

and the crystalline patch. With electron microscopy, only the crystalline patches could be 

observed with the corresponding diffraction pattern and in the absence of diffraction pattern, the 

rest would be unnoticed. 

 

However, with the aid of AFM small proportion (<10%) of pentamers is also observed since it is 

possible to select the crystalline patch individually. This means that the sample possess inherent 

inhomogeneity, which obstructs the growth of crystalline patches. To determine the proportion of 

2D crystalline to the non-crystalline region with electron microscopy is very challenging and 

attempts to separate these two inhomogeneous fractions with sucrose gradient were unsuccessful 

because the density of both the regions was similar. This hindered the separation of purely 

crystalline patches and further calculation of projection map for EM analysis.  

 

Another possible explanation for obtaining plenty but small crystalline patches is simultaneous 

presence of multiple nucleation sites and dislocation of lattice. Various nucleation sites initiated 

the 2D crystal formation, which grew to small crystalline region from a densely reconstituted 

region. However, before these small crystalline patches could fuse to yield a larger patch, the 

continuity was probably broken due to presence of pentamers. With multiple nucleation sites, the 

crystal has a tendency to grow very fast but is limited to smaller size. Experiments to slow down 
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the crystallization to get bigger patches, using low temperatures and different detergents failed. 

Under such conditions, the PR molecule has limited growth. The growth of crystalline patches 

has been reported for BR using special detergents [110]. Similar attempts to grow these small 

crystalline patches with the aid of specific detergent were also unfruitful.  

 

3.5.3 Conclusions 
In conclusion, it is possible to crystallize PR under wide variety of conditions. The poorly 

diffracting low quality 2D crystals were highly reproducible. The pH of the dialysis buffer and 

detergent for solubilization of lipid and the protein played a crucial role. The interesting aspect of 

the 2D crystal of PR was the ability to crystallize under wide range of different conditions and 

produce similar quality of diffraction pattern. The most likely explanation could be that the 

protein has the tendency to associate or adhere by itself. Such a case is suggestive of strong 

protein protein interaction. The high number of PR molecules per cells, relatively bigger unit cell 

size of the 2D crystals and the donut shaped assembly of the PR molecules as observed with the 

projection map hint towards the higher oligomeric state of the protein. 

 

3.5.4 Perspective  
In case of PR obtaining the 2D crystals was relatively faster than its improvement. At this stage it 

is not conclusive, whether the inherent inhomogeneity of the crystalline sample or the quality of 

crystals in itself is the reason for the limited growth and poor diffraction quality of the crystal. 

The improvement of the crystal would definitely be advantageous for better resolution of the 

projection map, which will enrich the structural information but at the same time could also 

prove beneficial for the better correlation with the AFM and the SSNMR data. There are 

increased chances of all these techniques to prove complimentary to each other to get an 

improved overview of PR. 

 

Probable ways of improving the crystal in the light of the recent oligomerization information 

would be to have the homogenous population to begin with. MALDI data on the detergent 

solubilized protein hinted towards the monomeric state of the protein (data not shown) but the 

state of art techniques like LILBID and analytical centrifugation could help in knowing the 
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oligomeric state prior to crystallization. This would also indicate the presence of any other 

impurities if present and might interfere with the crystallization process. 

In case of PR, the same low-resolution 2D crystals were obtained under a wide range of 

conditions, which hints towards dominating protein–protein interactions. It could also indicate, 

that PR might form protein patches in the native membrane. It would be worthwhile to check for 

the different growth conditions if they have any impact on the natural assembly of the protein. 
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Chapter 4 : Functional Characterization of PR 2D crystals  

 

Circular dichorism is well known spectroscopic technique for determination of folded state of the 

protein, conformational state of the protein under different conditions and for determination of 

involvement of protein-protein interaction for the related conformation change of the protein. In 

this chapter, the focus is on CD spectroscopy measurements, which were carried out for 

accessing the thermal stability of PR 2D crystals and comparison with detergent solubilized state. 

The second part of the chapter deals with Fourier Transform Infra Red Spectroscopy, which has 

been extensively used to probe into the photocycle of BR, where the characteristic structural 

changes and photointermediates are determined with the help of typical FTIR bands in the 

difference spectra. In this section, attempts for the presence of the photocycle and then later for 

identification of different photointermediates of the PR photocycle have been discussed. 

 

4.1 Stability of PR 2D crystals: CD spectroscopy 

4.1.1 Motivation 
Reconstitution of the membrane protein in lipids outside the natural environment always 

questions the correct folding of the protein. In context to this, the purpose of studying the 2D 

crystals with CD spectroscopy is to determine the difference or compare the differences in the 

protein folding behavior in detergent solubilized and 2D crystalline form and help in further 

functional characterization of the protein. 

 

4.1.2 Approach 
CD spectroscopy is used routinely for the characterization of the folded state of the protein, its 

secondary or tertiary structure. It also finds its application to observe the patterns obtained from 

different members of a family of proteins or groups. Application of CD to study the effect of 

temperature, pH, reversibility of folding, effect of denaturants, protein protein interactions is also 

well known.  

Circular dichroism is defined as the difference in the absorbance of left circularly polarized light 
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(LCPL) and right circularly polarized light (RCPL). 

CD = Abs (LCPL) – Abs (RCPL).  

CD is generally reported in units of absorbance miliabsorbance units (mA) or ellipticity (mdeg or 

m°), which are a thousand of a degree. For any molecule to be “CD active”, a molecule must be 

structurally asymmetric and exhibit absorbance. In case of protein samples, asymmetry results 

from chiral molecules such as the peptide backbone of proteins, a non-chiral molecule covalently 

attached to a chiral molecule (aromatic amino acid side chains), or a non-chiral molecule in an 

asymmetric environment (e.g., a chromophore bound to a protein). Proteins are CD active (all 

amino acids except glycine contain a chiral carbon, thus are asymmetrical), and the resulting CD 

signals are sensitive to protein secondary and tertiary structure. Secondary structure can be 

determined by CD spectroscopy in the "far-uv" spectral region (190-250 nm). At these 

wavelengths, the chromophore is the peptide bond, and the signal arises when it is located in a 

regular, folded environment.  
CD signals for pure alpha helix, beta sheet, and random coil structures each give rise to a 

characteristic shape and magnitude of CD spectrum. For obtaining the information regarding the 

secondary structure and the stability of the protein with respect to the temperature, the CD 

spectra were carried out at Institute for Biophysics, in collaboration with of Prof. Mantele and 

measurements were done by Ms. Gabriela Schäfer. 

 

4.1.3 Sample preparation 
The CD spectra form 2D crystalline preparation was obtained at a concentration of 1 mg/ml and 

this liquid sample was used for CD measurements. The CaF2 cuvettees with 4-5 µl sample and a 

path length of ~60 µm were used. For comparison, spectra of the detergent solubilized protein 

were also measured. The temperature range of 20°C up to 90°C was analyzed for stability and 

the melting point measurements. The temperature was manually adjusted using the water bath. 

Data was collected in the range of 185 nm - 260 nm. The typical CD spectrum from the 

crystalline as well as the detergent solubilized protein is shown below in figure 20 A and B. 

 

The detergent sample shows a typical alpha helix pattern in figure 20 A. Where as the CD 

spectra from the crystalline preparations in figure 20 B indicate presence of additional 

interactions. It was difficult to acquire the data for the crystalline preparations due to light 
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scattering. But the typical α helical dip is observed which changes  continuously with the 

increase in the temperature. At a first glance, it might appear that the extent of minima at around 

210 or 209 nm for the crystalline preparation is different but this is because of high sample 

concentration. The diluted samples from the crystalline preparations showed identical minima as 

that of detergent solubilized samples. However, it should be noted that no correction for light 

scattering was made. A good measure to determine the relative α helical content is to fit the CD 

spectra with the existing values for the helical content from the available database. The majority 

of the proteins in the available databases are soluble proteins, a very small fraction comprises of 

the membrane protein and almost none for the membrane protein 2D crystals. 
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Figure 20 A : Circular Dichroism spectra of detergent solubilized PR at different temperatures showing the typical 

α-helical pattern, inset: transient absorption at 209 nm. B Circular Dichorism spectra of PR 2D crystals at different 

temperatures, inset: transient absorption at 209 nm. These spectra were collected at Institute for Physics by 

Ms.Gabriela Schäfer. 

 

The typical range to obtain a good fit is to have the data points between 175 nm and 230 nm. 

However, it was observed that the 2D crystals caused light scattering in the lower wavelength 
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region. Hence, it was not possible to obtain the exact value for the α-helical content for the PR 

2D crystals. 

 

The transient absorption curve is plotted with values for 209 nm for both the sample 

preparations. This data clearly shows transition of states with increasing temperature. However, 

the mode of transition is different. In case of detergent solubilized PR, the slope is gradual but 

for 2D crystals, it is steeper. Both spectra show two different forms at different temperatures. In 

case of detergent solubilized protein, there is a gradual degradation of the protein with slight 

increase in the temperature. This can be attributed to the increasing solubility of the detergent 

with increasing temperature, which makes the local environment less stable. However, 2D 

crystals are stable up to 50°C and then cooperatively start to dissimilate. This change of state can 

be due to the sudden disruption of a more stable local environment for the protein in 2D form. 

 

4.1.5 Conclusion 
The CD spectra in the detergent solubilzed form and 2D crystalline form suggests similar folding 

pattern, which resembles the helical pattern as shown in figure 20 Nevertheless, the transient 

absorption spectra indicate a more stable conformation for the protein in 2D crystals. The 

crystals are stable upto 50ºC and the melting point for the PR 2D crystals can be calculated to be 

around 70º. This stability information is very important from long term NMR measurements 

point of view. The stability of protein at these temperture ensures that the protein is in proper 

conformation state while the NMR measurements are recorded  

 

4.2 Functionality of PR 2D crystals PR: FTIR time resolved spectroscopy. 

4.2.1 Motivation 
Crystallization of protein in 2D always questions the functional state of the protein in the 

relatively restricted environment. In this context, the purpose of applying FTIR on the 2D 

crystals is to determine the functional state of the protein. In case the protein is functional, it 

should be possible to observe the photocycle with repeated cycles of photo excitation and 

relaxation. PR is a retinal protein; hence, it is important to identify the different photo states of 

the photocycle, if the protein enters the photocycle and if there exists any photocycle. 
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4.2.2 Background  
Microbial rhodopsin comprises a family of photoactive seven trans membranous helical retinal 

proteins, which is found in diverse microorganisms [32, 37, 111]. The most well studied member 

of this family is BR and a homologue of archeal rhodopsin is PR. The cascade of cyclic 

reactions, which follow the retinal photo isomerization, is known as the “photocycle” and is 

characterized by presence of distinct and spectroscopically identifiable intermediates and has 

been discussed in chapter 1. The pH dependent color changes are attributed to the protonation 

state of the counter ion of the retinal Schiff base. For BR, such changes were linked to the 

protonation state of Asp85 [112]. The corresponding residue for Asp85 in PR is Asp97, whose 

protonation state can be followed by pH dependent FTIR difference spectroscopy for 

identification of the photocycle intermediates. These measurements were carried out at Institute 

for Biophysics, in collaboration with of Prof. Mantele and measurements were done by Ms. 

Gabriela Schäfer. 

 

4.2.3 Sample preparation 
Prior to the measurement, the dialysis buffer was exchanged to a simple phosphate buffer with 

the pH 8.5 and concentrated using centrifugation. 5 μl of this solution was dried with stream of 

N2 on a CaF2 window with a shallow groove. A second window was placed on top and a final 

sample thickness of 10 μm was achieved. The consistency of the sample was similar to highly 

concentrated liquid sample. This window then was placed in a temperature controlled sample 

holder inside an IFS66v/s FTIR spectrometer. A series of 50 Rapid Scan spectra were collected 

and averaged to obtain a better signal to noise ratio. The measurements were performed at 4ºC 

mainly to slow down the photocycle to obtain better resolution especially in the fast decaying 

steps of photocycle (K intermediate step). The interference due to formation of ice crystals can 

also be avoided while measuring at 4ºC. 

 

4.2.4 Results and Discussion 
The protonation state of Asp97 in the 2D crystalline state at pH 8.5, (which is above the pKa of 

the proton acceptor) was followed by rapid scan infrared difference spectroscopy as shown in 

figure 21. The time resolution obtained for rapid scan measurements depends on the velocity of 
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the moving mirror and the number of scans averaged per measurement. For these measurements, 

the fastest time resolution achieved was 76 msec. The largest negative band observed at ~1541 

cm-1 and positive band at ~1523 cm-1 can be assigned to the C=C stretching vibration of the 

retinal in the alkaline pH [113]. The negative band at 1541 cm-1 shows the depopulation of the 

ground state and the positive band at 1523 cm-1 represents an arising K intermediate. The 

positive band at 1200 cm-1 and negative bands at position 1235 cm-1 and 1250 cm-1 show the 13 

cis isomerisation of the retinal and arise from C-C stretching vibrations. The bands ~1300 cm-1 

/1400 cm-1 can be due to the stretching of N-H and C-H. The C=N stretching vibration of Schiff 

base of PR comes at ~1651 cm-1. The positive band at ~1189 cm-1 can be assigned to C14-C15 

stretch of retinal in K state. Thus, it is after photo excitation, that the 13 cis state of retinal is 

observed. The band pattern in this range is also useful for tracking the right isomerization of the 

retinal. Basically this band arises from the photoproduct of the 13 cis portion of retinal [114] and 

can be observed in acidic as well as alkaline form of PR [67]. Occurrence of the characteristic  

peaks in the fingure print region of retinal after photo excitation indicate presence of K state in 

the 2D crystalline form. 

 
Further the C=C stretching of the retinal in the M state is difficult to detect with infrared 

spectroscopy owing to its small dipole moment. The presence of M state for PR is marked by 

appearance of positive band in the range of 1700 cm-1 in the reconstituted sample. This is 

observed at 1755 cm-1 and is assigned to the C=O stretching vibration from Asp97. In case of the 

2D crystalline samples, the similar band at 1755 cm-1 is observed and is attributed to the 

protonation of Asp97 [67].  

 

After the successful assignment of the retinal band further following the retinal C=C band at 

1540 cm-1, it can be observed, that the protein exhibits the M intermediate as observed by 

transient absorption spectroscopy. The major peaks identified are listed in the following table. 
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Figure 21 : Infrared light and dark difference spectra of PR2D crystals after 75 msec of excitation at pH 8.5. The 

spectra show vibration bands in the Aspartate region photo excitation at 532 nm BigSky Ultra Nd:YAG laser. The 

bands around 1200 cm-1 indicate that the 13 cis isomerization of the retinal has occurred and a positive band at 1755 

cm-1 shows the presence of M state. The bands around 1200 cm-1 indicate that the 13 cis isomerization of the retinal 

has occurred and a disappearing band at 1523 cm-1 shows the decline of the K state. This spectrum was acquired by 

Ms. Gabriela Schaefer at Institute of Physics, Frankfurt.  

 

The measurements indicate the retinal band at 1540 cm-1 undergoes photo kinetics upon 

excitation and relaxes to the initial normal base line. It should be noted that that the negative 

band at 1540 cm-1 is the ground state depopulation and the ground state is therefore repopulated 

as shown in figure 22. Comparable spectra could be obtained after repeated photo excitation and 

relaxation, which indicate that the photocycle is iterative and is not hindered. This is an 

indication of active protein state in the 2D crystalline form 
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Table 7: List of identified FTIR band position for PR 2D crystals 

label Band position 

(positive) 

Band position 

(negative) 

Indication 

 ~1523 ~1541 C=C stretching vibration of retinal at alkaline 

pH 

C  ~1541 Depopulation of ground state 

 ~1523  Arising K state 

 ~1200 ~1235/~1250 C-C stretching vibration indicating 13-cis 

isomerization 

B ~1651  C=N stretching vibration of Schiff base 

D ~1189  C14-C15 stretch of retinal in K state 

A ~1755  C=O stretching vibration of Aspartate 97 
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Figure 22 : Transient absorption of the ground state depopulation at 1541cm-1 and its re population after the 

photocycle. This spectrum was acquired by Ms. Gabriela Schaefer at Institute of Physics, Frankfurt.  

 

4.2.5 Conclusions 
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Based on the preliminary FTIR measurements, it is obvious that the PR in 2D crystalline form 

does enter the photocycle and K and M intermediates could be identified. The identification of 

the N and O intermediate is difficult, due to an ongoing discussion about the band positions and 

shape of a true N or O spectra. Furthermore, the low time resolution of the rapid scan technique 

leads to the observation of mixed states, which cannot easily be decomposited into the true 

spectra. Since the difference bands of the photoproduct disappear over time, and the baseline is 

recovered, the protein crystals undergo photocycle. This concludes that the 2D crystalline 

packing does not affect the functionality of the PR but as expected slight changes in the time, 

constants of the photocycle are visible due to the rigid environment in the 2D crystals. 

 

The activity of PR in vivo has been as shown before by monitoring single cells of E. coli and 

their observed response to light due to the proton motive force (pmf) that bacteria use as the 

energy source to power the rotary flagellar motor which enables them to swim [83]. Suspensions 

of E.coli membranes containing PR were also observed with laser flash-induced absorbance 

changes to determine the activity of the protein. Light-mediated proton translocation was 

determined by measuring pH changes in a cell suspension exposed to light, where the net 

outward transport of protons was observed only in PR containing E.coli cells and only in the 

presence of retinal and light [37]. Time resolved FTIR spectroscopy has been used to study the 

photo intermediates of PR which are involved in fast transient proton release in reconstituted 

state [115]. The light induced proton currents in the PR reconstituted samples were also 

measured in a compound membrane system where proteoliposomes were adsorbed to planar lipid 

bilayers [67].  

 

Considering the sparse amount of lipids in the 2D crystalline preparations, it was difficult to 

adsorb the proteoliposomes to the planar lipid bilayers and hence the spectroscopic analysis for 

identification of intermediates was opted to show the functionality of the protein. 

 

4.3 Functionality of PR 2D crystals PR : SSNMR 

An indirect evidence of active functionality was also judged by measuring the chemical shift 

values for the 15N-ζ-labeled lysine samples. It was observed that the chemical shift values for 

such labled lysine had similar chemical shift values as for the fully functional reconstituted 
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sample. This suggested that the local chemical environment of the Schiff base lysine for both 

sample preparations is similar and may have similar active functionality.  

The details of these experiments are described in Chapter 6. 
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Chapter 5 : Assembly of PR: An AFM study 

5.1 Scope  
AFM has emerged as a powerful tool for biologists in terms of providing the ability to study 

biological samples in their native environment and has the capability to illustrate the 

topographical features at sub molecular level [116, 117]. It shows a unique way for 

characterization of structure function relationship of the native membrane proteins. AFM 

provides sub nanometer resolution of the substructures as well as associated conformational 

changes, oligomerization state, dynamics and assembly.  

 

SMFS (single molecule force spectroscopy) permits detection of inter as well as intra molecular 

interactions. This method is able to unearth the interactions which are primarily involved in the 

stabilization of secondary structure [118]. It represents a multifunctional tool that finds its 

application in the oligomeric state and conformational change determination for better 

understanding of structural and functional characteristics of the protein. The unique technique 

helps simultaneous monitoring of the varied parameters, which aid in the determination of 

flexibility or rigidity of the protein. It can be used to determine the folding and the unfolding 

pathways of the membrane proteins and finds its application in studying the association patterns 

of membrane proteins, which lead to higher oligomerization states. Time dependent SMFS can 

also probe into the kinetics of these processes [119, 120]. 

 

This work was done in collaboration with Prof. Daniel Mueller and Adriana L. Klyszejko from 

Biotechnology Center, University of Technology, Dresden, Germany. The results of this study 

have been published in Journal of Molecular Biology (2008) 376, 35–41. 

 

5.2 Approach 
Different kind of information can be obtained with AFM technique depending upon the mode of 

operation: 

Contact mode: This mode is especially used to study membrane proteins where the probing tip is 

gently touched at the surface of the protein with a constant force while scanning. These probing 

tips are known as cantilevers with very small force constants (~0.1 N/m). 
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Tapping and oscillating mode: Usually this mode is used to record the topography of a weakly 

immobilzed specimen and where the tip undergoes a vertical oscillation. 

For the purpose of high-resolution structural data collection, AFM is the mode of choice in 

contact mode. The effective forces contributing to the deformation of the specimen may be 

overall sum of force applied to the stylus, the electrostatic repulsion and Van der Waal attraction 

between the two surfaces. This feature has been extensively discussed in aqueous environment 

[121]. However higher forces may prove to be of an additional benefit of studying the hidden 

feature in a protein as in case of AB loop in BR [122]. These weak Van der Waals and 

electrostatic forces can be minimized by optimizing the pH and ionic concentration of the buffer. 

The force distance curves between the tip and the sample under different buffer conditions 

determine the best imaging conditions. While recording the AFM data the vibrations in the 

microscope should be considerably minimized. To increase the chances of adsorption for the 

crystalline patches significantly, various buffer related parameters need to be optimized. E.g 

incubation time between the application of the sample and the washing step, concentration of 

ions in the buffer etc. 

 

5.3 Advantages for membrane proteins 
Like all techniques, AFM too has its own advantages and disadvantages. The benefit of working 

with AFM is very high signal to noise ratio which enables every single protein to be observed 

[123]. It does not require any specific labeling but analyzes the samples under normal buffer 

conditions. This applies not only to the field of polymers and inorganic crystals but has profound 

application in the field of biology and the specimens are widely diverse. These range from fibers, 

DNA, cells, viruses and bacteria. The information obtained in terms of lateral and vertical 

resolution with high signal to noise of the topographs make significant contribution to 

understanding of the single biomolecules. The AFM probe interacts directly with the protein 

surface and measures the electrostatic potential, detects current (pA) and this contribution in any 

case cannot be overlooked when trying to acquire high-resolution structural information from 

membrane proteins in their native environment. This technique can be applied on reconstituted as 

well as 2D crystalline samples. The biggest advantage with 2D crystal is of flat surface of the 

crystalline patches, which provide an excellent specimen quality for the AFM measurements. But 

to avoid any structural damage to the biological sample, utmost care should taken to reduce the 
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applied friction forces between tip and the sample. 

 

5.4 Motivation 
The structure and function relationship of BR and its homologs, the light-driven chloride pump 

halorhodopsin [124] and sensory rhodopsin [125], have been studied at molecular resolution. 

However, for PR the structural information is limited. Like the other members of this family, by 

virtue of being a membrane protein, PR is expected to possess additional stability due to the inter 

as well as intra molecular interactions [126]. 

 

PR is relatively new and the structural aspects need to be explored. The electron microscopy data 

reveals a donut shaped assembly of PR molecules and a bigger unit cell size. The bigger unit cell 

size of PR, which is 87Å*87Å, when compared to BR unit cell size of 64Å* 64Å, suggests an 

oligomeric state of the protein. However, the poor resolution of the 2D crystals limited further 

detailed information especially about the oligomeric state by electron microscopy. Hence, in 

order to probe into the oligomeric state of the protein single image AFM analysis was attempted.  

In contrast to this, detailed information is available for other retinal proteins e.g rhodospin and in 

particular BR under optimum conditions for the assembly, conformation changes, 

oligomerization and dynamic aspects of these proteins [127-129]. This becomes relevant when 

observing the 2D crystals of our protein, which is in crystalline arrangement and may exhibit 

similar behavior of oligomerization, stability and (un) folding pattern. The major aim of this 

study was to observe if the protein exhibits similar structural oligomerization patterns as other 

retinal proteins such as BR or are there striking differences ? 

 

5.5 High-resolution AFM imaging 
Reconstituted proteorhodopsin membranes were adsorbed onto freshly cleaved mica in buffer 

solution (300 mM KCl, 10 mM MgCl2, 20 mM Tris-HCl, pH 8.0). After this, the sample was 

washed with imaging buffer (150 mM KCl, 10 mM MgCl2, 20 mM Tris-HCl, pH 8.5) to remove 

weakly attached membranes. The AFM used was a Nanoscope III (Digital Instruments, Santa 

Barbara, California) equipped with a J-scanner (≈100 μm) and oxide sharpened Si3N4 stylus on a 

cantilever with a nominal spring constant of ≈0.1 N/m (OMCLTR-400-PS, Olympus, Tokyo, 
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Japan). Contact mode AFM imaging performed by electrostatically dampening the forces applied 

locally between the AFM stylus and protein membrane to ≈50 pN [130]. Such low forces 

prevented possible deformations of the protein by the scanning AFM stylus [131]. Topographs 

recorded in trace and retrace scanning directions showed no significant differences confirming 

that the scanning process of the AFM did not disturb the protein surface. All measurements were 

carried out at room temperature.  

 

5.6 Single-molecule force spectroscopy 
The motivation for single molecule force spectroscopy was to determine the (un)folding pattern 

of the PR helices from the crystalline arrangement. This is typically performed with the aid of 

force distance spectra (F-D curve). To calculate the F-D spectra, a single protein is tethered 

between the tip of the micromachined AFM cantilever and a supporting surface. The tip-surface 

separation is then continuously increased using a piezoelectric actuator while the forces applied 

to the molecule by the cantilever are detected with an accuracy of a few pN. The continuous 

extension of an individual protein molecule results in subsequent unfolding of the protein 

domains. Plotting force against tip-surface separation produces a characteristic force-distance (F-

D) curve from which the unfolding force as well as the unfolding pathway of a single protein 

domain is derived [132, 133]. 

 

To mechanically unfold individual PR using SMFS, the protein membrane was first imaged by 

AFM. Then the AFM stylus was brought into contact with the membrane protein surface. 

Applying a constant force of ≈1-1.5 nN for ≈1s ensured that one terminal end of the protein 

attached to the stylus via nonspecific interactions [130, 134, 135]. Separation of stylus and 

membrane stretched this molecular bridge and exerted a force at the protein leading to its 

unfolding. The F-D spectra recorded during the unfolding process showed characteristic patterns 

similar to those previously assigned to the unfolding of one BR molecule [128, 130] or to the 

unfolding of one halorhodopsin molecule [134] by pulling from the C-terminal end. The first 20 

nm of the F-D traces exhibited higher noise compared to the remaining trace due to non-specific 

AFM stylus-sample interactions [128, 130]. Thus, force peaks lying within this region are 

masked by noise and show higher deviations compared to the peaks detected at separations 
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above 20 nm. SMFS was conducted in buffer solution (150 mM KCl, 20 mM Tris-HCl, pH7.8) 

at a pulling velocity of 87 nm/s. 

 

5.7 Results and Discussion 
Although the given resolution was not sufficient to differentiate between the cytoplasmic and 

extracelluar sides of the PR in the 2D crystals, but AFM imaging of reconstituted PR membranes 

in buffer solution showed two different packing regions. One was crystalline (*) and the other 

densely packed (**) region as shown in figure 23. At high-resolution the surface of the 2D PR 

crystals revealed donut-like structures arranged in a hexagonal lattice of 8.8 ± 0.7 nm (ave±SD; 

n=30) side length. These donut-like structures exhibited protrusions extending 0.9 ± 0.3 nm 

(n=50) above the lipid surface. In contrast to BR, the total area covered by the unit cell of the 

hexagonal proteorhodopsin lattice corresponds is 33.53 nm2 which is twice that of BR. This 

indicated higher chance of adjusting six PR molecules in a unit cell.  

 

5.7.1 Comparison of PR AFM data with BR  
For BR, AFM studies under optimum conditions the diameter of the crystalline patches varied 

between 0.5-0.15 μm. In the extracellular side, a typical feature of protrusions extending up to 

0.5 nm was observed for which the major contribution is the β sheet between the trans-membrane 

domain B and C. On the cytoplasmic side, the flexible EF loop provided the force dependent 

conformational changes. These EF loops were observed as sharp protrusions of ~0.8 nm in 

height with 100 pN force applied on the AFM stylus. However, when the force applied increased 

3 times, this feature becomes less conspicuous. The AB loops become more visible with an 

applied force of 300 pN and reveal to have a height of ~0.6 nm. The hexagonal lattice of BR 

trimers in native purple membrane patches shows a side length of ≈ 6.2 nm [4] with single BR 

molecule protruding between ≈ 0.5 and 0.8 nm from the lipid bilayer [131]. The area covered by 

the hexagonal unit cell of the purple membrane lattice is 16.64 nm2 which accommodated three 

BR molecules [57]. These results are further discussed under different sub headings. 
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Figure 23 : AFM of 2D crystals and densely packed PR membranes. A, Survey showing crystalline (*) and densely 

packed (**) patches of PR embedded in the lipid (DOPC) bilayer. The lipid bilayer protruded 4.5 ± 0.5 nm (n=10) 

from the support, the crystals 7.1 ± 0.5 nm (n=10) and the densely packed proteorhodopsins 6.3 ± 0.5 nm (n=10). B, 

High-resolution topography showing the hexagonal lattice (a = 8.8 ± 0.7 nm) of donut shaped oligomers formed by 

PR. C, Calculated diffraction pattern of (B) documents spots (red circles) suggesting a lateral resolution of ≈1.5 nm. 

D, Correlation average of (B). The symmetrized average showed a 9% deviation from six-fold symmetry. AFM 

topographs recorded in buffer solution exhibit a full gray level corresponding to vertical scale of 20 nm (A) and 2 

nm (B and D). 

This data was collected by Adriana L. Klyszejko in Prof. Daniel Mueller lab at biotechnology Center, University of 

Technology, Dresden, Germany and figure is taken from [136]. 

 

Note: When compared with the electron microscopy data, the size of the unit cell correlates very 

well. However, with electron microscopy the distinction between the crystalline part and the 

non-crystalline part was not achieved. The probable reason is that only the crystalline areas 

would provide the diffraction pattern and in the absence of diffraction pattern from the non-

crystalline part, this region would be unnoticed. 

 

5.7.2 Oligomerization 
Approximate calculation suggests ≈ 24.000 PR molecules per SAR86 cell [59]. When in a 

densely packed crystalline lattice, as in case of BR, this would refer to a circular flat circular 

patch of 600 nm in diameter occupying a major portion of a cell surface. This implies that with 

half packing density of PR the area covered would be twice the area of the cell membrane. 

Hence, the larger unit size of the PR donuts pose a question on the oligomeric state of the 

protein. In this case may point towards trimers, tetramers, pentamers or hexamers. 
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Figure 24: High-resolution AFM of densely packed proteorhodopsin oligomers. A,PR molecules could assemble 

into different oligomeric forms. Galleries show individual hexameric (B) and pentameric (C) proteorhodopsin 

oligomers. The last oligomers shown with black background represent correlation averages. Scale bars in (B) and 

(C) correspond to 5 nm. AFM topographs recorded in buffer olution exhibit a full gray level corresponding to 

vertical scale of 2 nm. 

The data was collected at Technische Universität Dresden, Center of Biotechnology in collaboration with Dr. Daniel 

Muller by Adriana L. Klyszejnko and figure is taken from [136]. 

 

5.7.3 Assembly  
The oligomeric dimensions of BR trimers and PR in 2D crystalline form exhibited a hexagonal 

lattice. The superimposition of BR molecules indicated a tangential assembly. However, for 

hexameric PR in the crystalline state, the PR molecules did not have sufficient space to 

accommodate in the tangential manner. The unique way to place these 6 PR molecules in the 
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lattice is to arrange them in a radially symmetric fashion. Averaging of several topographs 

indicated that all the molecules in the lattice were equal with respect to each other. It means that 

it is cooperative process, either all of them pointing towards inside or outside. However, the 

resolution was insufficient to determine the direction of the arrangement. 

 

 

 
Figure 25 : Correlation averaged AFM topographs showing the hexagonal assembly of BR trimers of native purple 

membrane (A) and of reconstituted proteorhodopsin hexamers (B). A, Cytoplasmic purple membrane surface: The 

highest protrusion of each bacteriorhodopsin molecule corresponds to the polypeptide loop connecting 

transmembrane α-helices E and F[131]. The outlined BR shapes were adapted from sections close to the cytoplasmic 

surface of BR trimers obtained from electron crystallographic analyses[4]. B, Crystallized proteorhodopsin 

hexamers: Assuming each of the six protrusions to represent one proteorhodopsin molecule, the proton pumps must 

be assembled radially to fit into the oligomer. Outlines in white and blue show two of many possible orientations of 

the PR molecules. Averaged topographs exhibit a full gray level corresponding to vertical scale of 2 nm. 

This data was collected by Adriana L. Klyszejko in Prof. Daniel Mueller lab at biotechnology Center, University of 

Technology, Dresden, Germany and figure is taken from [136]. 

 

5.7.4 (Un)folding pattern with SMFS and F-D spectra 
The proper folding of the membrane protein is important for the protein to be functionally active. 

This is governed by intermolecular interactions which are responsible for appropriate folding and 

are decisive in the functional and structural properties of the membrane protein [137]. The 

mechanical unfolding of the membrane protein was conventionally approached by varying the 

physical parameters of temperature or chemical parameters like detergents [138, 139]. The 

stability of the protein may depend on either monomeric interaction or oligomeric interaction or 

on both. This constitutes an important area for further investigation and is subject to study. 
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BR in purple membrane and PR in 2D crystalline form represent a relatively stable conformation 

in the membrane. However the stability of any membrane protein is determined by overall 

interaction of the protein with the lipid bilayer as well as the inter and intra molecular 

interactions [126]. The nature of molecular interactions, which are responsible for providing the 

stability to the structural components within a protein can be measured by force spectra. The 

force spectra are a plot of the applied force and the distance and are correlated to the extraction 

of individual protein from the membrane. Each curve requires a detailed analysis for measuring 

the probability of unfolding for an individual structural element and the amount of unfolding 

force. The individual peaks of the single force extension curves is generally fit with worm like 

chain model. The force spectrum may be correlated to the actual unfolding of individual residues 

in a membrane protein. F-D spectra contain information about the unfolding process and the last 

peak shows the completion of the extraction procedure. 

 

The forces that stabilize or destabilize the stable conformation include those, which are involved 

in positioning the membrane protein and interactions, which stabilize the secondary structure. 

However, it is known that the intra molecular forces have higher contribution as compared to the 

intermolecular forces to maintain the functional and structural integrity of membrane protein  

 

5.7.4.1 Comparison of PR unfolding pattern with BR 

For PR, application of moderate force (~1nN) for 1sec for calculation of the force distance 

curves indicated unfolding pattern was similar. Considering the number of amino acids that 

comprise the PR sequence, the stretched polypeptide chain lengths of 88, 148 and 219 matches 

with the pair wise unfolding of the helices. This strongly indicates a similar secondary structure 

with transmembranous region. 

 

In case of BR it was concluded that length and position of polypeptide chains responsible for 

unfolding pattern within the BR molecule remain unaffected irrespective of the oligomeric state 

of the protein. However, the mechanical stability and strength of the molecular interactions of 

structural segments were dependent on BR assembly. The mechanical stability of the unfolding 

pattern of the paired helices E (5th) and D (4th) was maximum and minimum for monomeric 

arrangement. Amongst the members of the retinal family, the probability of transmembranous 
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helix to unfold in a paired manner was found to be highest for BR [127].The unfolding in a 

paired fashion has been reported earlier [128, 132, 134, 140]. 
 

The unfolding pattern of BR, as studied by force distance spectra in SMFS suggests that the 

unfolding is very characteristic [128]. The helices G (7th) and F(6th) along with E (5th) and D (4th) 

always unfold pair wise and helices B (2nd) and C (3rd) occasionally fold in sequential manner. 

An average of several different unfolding spectra indicated 4 pronounced peaks in descending 

order [132]. Previous studies on BR and halorhodopsin indicated a sequential mode of unfolding 

of the transmembranous helices of the loops [128, 134, 135].  

 

 

Figure 26 : Unfolding pattern of single PR embedded within membranes. A, Individual F-D curves each one 

recorded upon unfolding a single proteorhodopsin molecule by SMFS Force -Distance curve exhibit a maximum 

length of ≈70 nm. B, Superimposition of 30 F-D spectra enhances common patterns. Red curves are fits using the 

worm-like-chain (WLC) model. The three main peaks detected at pulling distances correspond to stretched 

polypeptide lengths of 88, 148 and 219 amino acids. These distances denote that the unfolding intermediates of PR 

structure match exactly with those measured for BR. 

The data was collected at Technische Universität Dresden, Center of Biotechnology in collaboration with Dr. Daniel 

Muller by Adriana L. Klyszejnko and figure is an taken from [136]. 
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5.8 Comparison of BR and PR from Electron Microscopy  
Under native conditions BR assembles into trimers which are in turn arranged into 2D hexagonal 

lattice [141]. Recrystallization of BR in presence of detergent yield 2D crystals with p22121 

symmetry and show dimeric arrangement and an orthorhombic lattice[142]. BR forms highly 

ordered 2D crystals naturally in the native membrane of H. salinarium. BR has trigonal lattice 

(a=b=6.2 nm, γ=60 ) [141]. The retinal lies in the intra membranous cavity formed by 7 trans 

membranous helices generally denoted by A to G. The main portion that protrude out of the 

membrane are the loops connecting the trans-membranous A and B as well as E and F on the 

cytoplasmic side and between B and C inter helical loop on the extracellular side. The latter 

forms a twisted anti parallel β sheet and is more stable than the flexible EF loop [143]. 

 

In case of PR, comparison with the well resolved structure of BR, could indicate a trimeric 

arrangement [4] and suggest the bigger size of the unit cell. This indicates a possibility of a 

higher oligomer. The protein has a hexagonal packing as in the case of BR. However, the 

resolution of 37 Å does not allow distinguishing between 3-fold or 6-fold symmetry. The 

calculated size of the unit cell of 87 Å×87 Å is too large for an individual PR molecule and 

supports this assumption. The protomers assemble into a ring like structure with an average 

diameter of 42 Å. The formation of any ordered protein arrangements within the membrane is 

driven by entropy, protein–protein or protein–lipid interactions. In case of PR, the same low-

resolution 2D crystals were obtained under a wide range of conditions, which would hint towards 

dominating protein–protein interactions. It could also indicate, that PR might form protein 

patches in the native membrane. 

 

5.9 Conclusion 
This study provides important conclusions about the oligomeric state and the unfolding pattern 

of PR in the crystalline arrangement. The major conclusions from this study are be listed as 

below. 

• The sample is actually a mixture of small 2D crystalline patches as well as non crystalline 

but densely packed areas. 

• The protein in the 2D crystalline area exhibits hexameric oligomeric state. 

• The non crystalline but densely packed regions of protein are also hexamers, a small 
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roportion shows presence of pentameric oligomeric state. 

• The observed unfolding pattern was similar to the other members of the rhodopsin 

family. 

 

 
Figure 27 : Comparison of Projection map of PR 2D crystals with AFM micrographs. A: Projection map with one 

unit cell displayed in red dotted lines. B: AFM topographs showing hexameric oligomeric state in PR 2D crystals. 

Inset showing a monomers as observed with Electron Microscopy and AFM topographs. 

 

The AFM topographs indicate that the PR exists mainly as hexamers in reconstituted as well as 

in 2D crystalline state. However, a small proportion of pentamers is also observed. Unlike AFM 

which can select and observe individual molecules and gives a diffraction pattern, electron 

microscopy needs larger and more ordered crystalline area for detailed structural information. 

Presence of different oligomeric states also suggests existence of an inherent inhomogeniety in 

the reconstituted sample, which might have implications in the analysis of electron microscopy 

and SSNMR data that involve sample averaging.  
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The hint for the coexistence of the higher oligomer state was an outcome of the electron 

microscopy data where the unit cell size was relatively large for a monomer. Other in house 

biochemical techniques used for characterization such as gel filtration and SDS PAGE were 

suggestive of only monomeric state. The oligomerization of PR but in the form of trimers is 

suggested by SDS–PAGE and the broad peaks generated from size exclusion chromatography 

[144]. 

 

5.10 Functional implication 
Stable structural segments of BR monomeric suggest appreciable contribution from the intra 

molecular interactions. However, oligomerization can also contribute significantly to the 

stabilization. In context to PR which is spectrally tuned to different wavelengths and has 

potential of generating energy from the solar energy, the relatively high number of PR molecules 

and slower photocycle suggest a dense packing. Obtaining the 2D crystals under wide range of 

conditions with varying parameters indicate dominant protein-protein interactions, which 

indirectly hint towards favorable oligomerization. Similar indication is also provided by presence 

of huge number of PR molecules present per bacterial cell. This dense packing suggests that the 

oligomerization process might be favored in nature.  

 

The AFM topographs further show a uniform arrangement of individual PR molecules in the 

hexamers as well as in pentamers. However, with the available information about PR, it is still 

unclear whether PR portrays a cooperative phenomenon of photo excitation for the individual 

molecules in the oligomeric state or it is specific for an individual. 

 

Various spectroscopic studies have been carried out to gain insight into the functional aspect of 

PR. Most of these studies were performed in the detergent solubilized state where the protein 

exists as monomer and have shown the active functionality of the protein. If in the detergent 

solubilized state, the protein is functional it means that the monomeric form of the protein is 

active. However, the effect of oligomerization on the degree of activity and for what reason the 

hexamers be useful, is still unknown. 
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Chapter 6 : Solid State NMR characterization of PR 2D crystals 

6.1 Motivation 

The SSNMR studies on PR were motivated with the idea of solving the 3D structure by SSNMR. 

The similarities between BR and PR, and the fact that BR is arranged in 2D arrays within the 

Halobacterium salinarium membrane [93] provided additional support to the motivation. 

However, information about the PR protobacterial membranes is scarce. After obtaining the 

suitable 2D crystallization conditions, it was hypothesized that the 2D crystals would provide 

well-resolved NMR spectra for the structural and detailed mechanistic studies by SSNMR. From 

earlier work, it is known that the natural 2D crystals of BR did yield very well resolved spectra 

[95]. Major benefits of applying SSNMR on PR 2D crystals are high sample concentration and 

homogeneity, which have been used to study various aspects of BR e. g. surface dynamics of BR 

[145], interactions between the various tryptophans [146], retinal-Schiff base photo 

isomerization [147], studying the dynamics [148] to cite a few. Furthermore, crystal packing 

would reduce internal molecular motions, which might interfere with coherent averaging by 

magic angle sample spinning. Considering the above stated facts the SSNMR was applied on PR 

2D crystals for investigation of structural information, preliminary assignments and dynamics of 

PR in crystalline arrangement. The entire SSNMR data shall be discussed from application 

perspective for these crystals under the following broad titles: 

1. Investigation of lipids in the 2D crystalline samples with 31P measurements from the lipid 

head groups. 

2.  Selective 15N isotopic labeling 

• Lysines : Schiff  Base chemical shift 

• Methionines : Resolution and dynamics with HETCOR and  LG-CP 

• Tryptophans : Assignment with REDOR 

3. Selective 13C isotopic labeling  

• Cysteines 

• Histidines 

4. Uniform 13C labeling schemes 

• 2- 13C Glycerol labeling 
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• 13C Selective unlabeling 

• U-13C labeling 

 

6.2 Background  

SSNMR has provided atomic-level structural constraints for biomolecules like peptides and 

proteins which pose challenges for other biophysical techniques based on insolubility, molecular 

weight, non crystallinity, or other biological characteristics [149]. It has emerged as a powerful 

tool for resolving structural information of large molecular complexes with the aid of specific 

methods such as specific labeling schemes. The complexity of the spectra increases with the 

increasing molecular weight but the technological advancements such as well-designed pulses 

sequences and multidimensional measurements coupled with higher field strengths aid in either 

reducing the spectral overlap or increasing the spectral resolution. Recently the structure of nano 

crystalline protein was determined up to atomic resolution [150]. However, this needs to be 

combined with optimal sample preparation especially for membrane proteins as was 

demonstrated for SH3 domain [151, 152]. 

 

The NMR spectrum in both solid and solution state result from observed interactions between the 

nuclear spins in presence of an external magnetic field. The spectral resolution of solution state 

NMR spectrum is solely based on the averaging of the anisotropic interactions due to the fast 

tumbling of the molecules. However, this restricts the application of solution state NMR with 

respect to the molecular weight of the molecules for study. SSNMR on the other hand is not 

limited with restriction on the molecular weight but widely applicable to such molecules or 

complexes of biological origin. SSNMR utilizes anisotropic nuclear spin interactions for 

understanding of structural and functional aspects. Interactions such as chemical shift anisotropy, 

quadrupolar coupling and dipole dipole coupling are exploited for quantitative information on 

molecular structure, dynamics and conformation in space. This technique can be applied for 

structural measurements such as determination of bond length and bond angles without the need 

of crystal on amorphous and hetergenous biological samples. The additional advantage conferred 

by SSNMR is the flexibility to study the molecular dynamics of the protein. 
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6.3 Basic SSNMR Methods 

6.3.1 Magic angle spinning (MAS) 

Majority of the experiments adopt the MAS in order to remove effects of chemical shift 

anisotropy and to aid suppression of dipolar coupling effects. It is known that the average of 

molecular orientation dependence of the nuclear spin interaction is given by a factor of (3 cos2θ-

1), where θ is the angle between the interaction and the magnetic field. Rapid sample rotation 

projects all interactions on the rotational axis and when the rotation is with respect to the 

magnetic field then the interaction can be averaged out. To achieve this, the spinning axis of the 

rotor is oriented at an angle of 54.74º with respect the static magnetic field B0. When the value of 

θ is set to 54.74º, the average of (3 cos2θ-1) becomes 0 and the anisotropy interaction averages to 

zero.  

B0

 
Figure 28 : MAS Picture showing the orientation of the rotor with respect to the external magnetic field of strength 

B0.The rotor is inclined at magic angle, which has a value of 54.7º. 

 

6.3.2 Decoupling 

For MAS experiments, the spinning speed widely used is generally below 15 kHz. This spinning 

frequency is inefficient to eliminate the 13C-1H, 15N-1H and 1H-1H interactions. To eliminate this 

undesired effect, the carbons or nitrogens are decoupled from protons by means of heteronuclear 

decoupling. 1H-1H or homonulear decoupling can be achieved by use of special sequences such 

54.7º 



Chapter 6-Solid State NMR characterization of PR 2D crystals 
--------------------------------------------------------------------------------------- 

100 | 174 

as Lee Goldberg [153]. The common decoupling method is constant wave irradiation (CW), 

which switches the orientation of protons faster than the NMR time scales. This results in 

averaged dipolar coupling of zero. Associated with CW are the demerits of sample heating and 

reduced MAS efficiency. As an improvement over this method, other decoupling methods such 

as Two Pulse Phase Modulation (TPPM) and Spinal 64 have been introduced. TPPM is the most 

efficient broadband decoupling method for solids which is based on 2-step phase shifting [154]. 

The step wise increase in the phase angle of the TPPM sequence in combination with phase 

cycling proves better for solid samples and is known as small phase incremental alteration with 

64 steps or Spinal 64 [155]. 

 

6.3.3 Cross polarization (CP) 

CP is a technique to aid observation of the rare spin systems for biological samples. Spins of 

special interest are 13C and 15N which have a low natural abundance of 1.1% and 0.37% 

respectively and have less gyromagnetic ratio of γ13C= 67*106 rad/sT and γ15N= -27*106 MHz/T 

respectively, but are the core building blocks of biomolecules. In contrast, the natural abundance 

of 1H is 99.99% but the high gyromagnetic ratio of γ1H=267*10 6 rad/sT makes them difficult to 

detect due to stronger homonuclear dipolar coupling which results in line broadening.  

Observation of rare spins such as 13C directly confronts the problems of poor signal with respect 

to noise and longer relaxation time. These issues are overcome by use of cross polarization 

where a network of abundant spin transfers the magnetization to the rare spin. Usually 1H are 

used for the sensitivity enhancement of rare spins such as 13C and 15N because of their high 

natural abundance and shorter relaxation time. This polarization transfer is accomplished through 

the dipolar interaction between the rare and abundant spins and is mediated by Hartmann Hahn 

match, which permits the magnetization transfer when larmor frequency of the rare and the 

abundant spins are exactly matched. This in turn is achieved by adjusting the applied 

radiofrequency on the two spins as the gyromagnetic ratios are inherent properties. 

γH B1H= γC B1C 

where γ represents the gyromagnetic ratios of the two spins and B1, the applied radio frequency. 
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This 1D experiment offers high sensitivity spectra for rare spins by eliminating broadening from 

chemical shift anisotropy and dipolar coupling. This technique does not consider the effect of 

dipolar coupling between the abundant spin system and hence decoupling is applied while the 

signal from the rare spin is recorded. When coupled with MAS, the spinning should not be too 

fast with respect the dipolar coupling which mediate the transfer of magnetization. The basic 

pulse sequence of CP is shown below. 

DECOUPLINGCP

CP

1H

X

90o

 
Figure 29 : The pulse sequence of cross polarization. The magnetization is induced with a 90º pulse on 1H and then 

the bulk magnetization is transferred to the rare spin via Hartmann Hahn match. The 1H are decoupled while the free 

induction decay of the rare spin is acquired. 

 

6.3.4 Recoupling 

It is a method to reintroduce the dipolar couplings under MAS condition. The reintroduction is 

achieved with the help of rational resonance, REDOR or symmetry based pulse sequences. The 

sequence is used to measure the dipolar couplings between the spins in a spin pair system. The 

most practical example is the suppression of the natural abundance in a specifically labeled 

amino acid. In practice, this is accomplished with the help of rotor synchronized C type 

sequences (CNn
v). These sequences have blocks of 360º pulses, which are applied over fixed 

rotor periods with a definite phase increment [156].  
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6.4 Investigation of lipids in the 2D crystalline samples with 31P measurements 

from the lipid head groups 

6.4.1 Motivation 
Lipid protein interactions are essential for successful 2D crystallization and for protein activity. 

The lipids are known to provide stability to the crystal of BR and the composition of lipid and 

density is shown to be variable for the cytoplasmic and extracellular sides [157]. The crystal 

structure of BR at 1.55 Å resolution indicates a bilayer of 18 tightly bound lipid chains, which 

forms a ring like structure around the protein in the crystal. It also indicates that the contacts 

between the trimers in the membrane plane are mediated almost exclusively by lipids [158]. In 

some other membrane proteins like the aquaporin where the structure is determined by electron 

crystallography of 2D crystals and by X-Ray crystallography of 3D crystals, reveals presence of 

nine lipids per aquaporin monomer, which adopt a wide variety of conformations and tightly fill 

the space between the adjacent aquaporin tetramers [159]. In order to gain an insight into the 

arrangement of the lipid and to characterize DOPC, the lipid used for crystallization for PR, was 

investigated. 

 
6.4.2 Importance of lipids  
 
Lipids, which are amphipathic in nature, form the major components of the biological 

membranes. The amphipatic nature of the lipids is responsible for the structural basis of the 

biomembranes and hence form an integral part of the membrane protein characterization. The 

lipids typically consist of a glycerol backbone and attached to this are the 2 organic fatty acid 

side chains with varying degree of unsaturation and chain length with ester bond and one 

phosphate group. All lipids have 2 phases, an ordered gel phase (Lβ) and a disordered liquid 

crystalline phase (Lα). The lipids are characterized by specific phase transition temperature. It is 

defined as a temperature, which induces change from one phase to the other. The kind of fatty 

acid side chains play an important role in the membrane protein reconstitution and 

crystallization. The appropriate selection of lipid and phase appears to be very important for 

crystallographic and NMR studies. E.g. the structure of the BR-trimer lipid complex suggests 

complementary ways in which the lipids stabilize oligomeric rings of membrane proteins and 

achieve an asymmetric distribution in biological membranes [107]. The involvement of lipids is 

also known to influence certain properties in BR, such as the regulation of the pK for the purple 
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to blue transition caused by deionization, and the reformation of trimers from monomers after 

exposure of the purple membrane to detergent. An important role for the neutral lipid known as 

squalene is found to provide the functional stability of the fast-decaying M-intermediate [102]. 

 

Study of Lipids, known as ‘lipidomics‘ constitutes a vast area for detailed investigation due to 

the involvement of lipids in various aspects of structural biology. There are various techniques 

used for the analysis of lipids like Chromatography (HPLC and TLC) and for separation of lipid 

mixtures [160], Mass spectrometry (ESI /APCI/ MALDI) for estimation of lipid composition of 

complex mixtures with negligible amount of fragmentation, FTIR for biochemical processes e.g. 

hydration and conformational changes [161, 162], studies based on characteristic band position 

[163], Neutron and X-Ray diffraction to determine the phospholipids structures [164] and 

fluorescence by chemical modification with a flurophore. Amongst all these techniques FTIR, 

diffraction [165], and florescence [166] have been shown to aid the study related to the 

membrane lipid interactions. However, the modern technique, which annuls in terms of obtaining 

structural information, is the 31P SSNMR. 

 

6.4.3 Advantages of 31P for lipid investigation 
The phosphorous head group in the lipid molecule confers several advantages. It is NMR active 

isotope with a natural abundance of 100% along with 1H and 19F and possesses high positive 

gyro magnetic ratio. The sensitivity of 31P detection is next to 1H. The higher sensitivity means 

detection under dilute concentration and lower field strengths. Each molecule of lipid has just 

one 31P molecule hence it provides unique isotropic chemical shift. By virtue of relatively less 

number of 31P nuclei, the spectra is less complicated and overlapping as compared to 1H or 13C 

[167]. The chemical shift anisotropy values for 31P are also indicative of the phase of lipid and 

dispersion. 

 

6.4.4 Results and Discussion 
The lipids are characterized by transition temperatures and exhibit different properties and 

behavior depending on the temperature of measurement. The lipid used for characterization is 

DOPC and has a phase transition temperature of -24ºC. All the measurements were carried out at 

280 K, which is above the DOPC main phase transition temperature. Figure 30 a shows direct 
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polarized 31P spectra under proton decoupling at low spinning speed (3 kHz) where two major 

resonances were observed at 3.6 ppm and −0.6 ppm. While the less shielded resonance is rather 

narrow and disappears under cross polarization (figure 30 b), the peak at −0.6 ppm shows 

significant line-broadening (2.5 ppm) and is surrounded by spinning sidebands indicating large 

chemical shift anisotropy. 

 

The CP spectrum of the PR 2D crystals shows increased line broadening. This increased line 

width in figure 30 b can be attributed to the fast chemical exchange between protein-bound and 

non-bound lipids or altered lipid dynamics within the 2D crystal. The line broadening may also 

be caused due to the inhomogeneity in the sample. The narrow lipid signals in figure 30 a, found 

at around 3.6 ppm do not show any significant anisotropy. These could be co-purified E.coli 

lipids or lipids in residual amounts of small unilamellar vesicles.  

 

For control measurements, a comparison with a spectrum of DOPC bilayers at the same 

temperature and spinning speed was acquired. The spectra shows comparable isotropic and 

anisotropic chemical shifts but reduced line-broadening (0.1 ppm) (figure 30 c). The spinning 

sidebands in figure 30 c correspond to an axially symmetric CSA tensor typical for fluid lipid 

bilayers. The rotational diffusion of lipids is not restricted despite the very small lipid to protein 

ratio in the 2D crystalline preparation.  

 

The 31P MAS NMR control experiments at above (280 K) and below (220 K) the main lipid 

phase transition temperature (-24°C) on pure DOPC bilayers and on 2D crystal samples were 

also carried out. The direct polarization as well as cross polarization spectra for both the 

temperatures were comparable as shown in figure 31. In all cases, the 31P CSA was always 

comparable between 2D crystals and DOPC bilayers. This also supports the hypothesis that the 

lipids in the 2D crystalline arrangement behave lipid bilayers as seen in figure 31. 
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Figure 30 : 31P 1D MAS spectra of PR 2D crystals and DOPC bilayers. 31P direct polarized MAS spectrum (3 kHz 

spinning) of PR 2D crystals prepared in DOPC (a). The main species at −0.6 ppm shows a large CSA (CSA=33 

ppm, η=0.1), while a minor population at 3.6 ppm is rather narrow and disappears under cross-polarization (b). It 

could arise from other lipids copurified with PR. For comparison, DOPC lipid bilayers are shown in (c) which show 

a similar axial symmetric CSA tensor (CSA=33 ppm, η=0) but reduced line width. Spectra were acquired with 40 k 

scans at 162 MHz for 31P. The temperature was adjusted to 280 K to ensure a fully fluid lipid bilayer. The chemical 

shift values are indicated in ppm. 

 

6.4.5 Conclusion 
Since the amount of lipid used for the 2D crystallization is infinitesimal and the fact that the type 

of lipid does not affect the crystallization process, it was important to know their contribution to 

the overall crystalline arrangement. The likelihood of involvement of lipids in the stabilization of 

the monomers by forming a tight belt around the individual monomer was high. However, from 

the 31P data presented for lipids, it is highly suggestive that they behave more like lipid bilayer. 

Whether DOPC forms a bound belt around PR or whether other bound lipids have been co-
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purified together with PR and contribute to the 31P signal cannot be decided at this point but is 

subject to further studies. 
 

 
Figure 31 : Comparison spectra of DOPC and PR 2D crystals at different temperatures. A: Cross polarization spectra 

of DOPC 220 K with line broadening of 50, B: Cross polarization spectra of PR crystals at 220 K with line 

broadening of 150. C: Direct polarization spectra of DOPC 280 K and line broadening of 50 and D: Direct 

polarization spectra of PR 2D crystals at 280 K with line broadening of 150. The spectra were collected on 400 MHz 

spectrometer with spinning speed of 3 kHz. Approx. 9000 scans were collected per spectra. The chemical shift is 

indicated in ppm. 

 

Further from AFM and EM data, it is evident that there exists an inherent inhomogeneity in the 

crystalline samples, which is represented by the presence of equally dense reconstituted samples. 
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It is possible that the 31P spectra are representative of the bulk lipids in the reconstituted samples 

as the amount of lipids in the reconstituted region is relatively more than the crystalline region 

and broad line shapes mask the resonances representing the crystalline part. 

 

6.5 Schiff Base characterization with MAS NMR on 15N-ζ-Lys labeled PR 

6.5.1 Motivation 
A remarkable feature observed in case of retinal proteins especially in BR is a large protein 

induced shift of the absorption spectra of the chromophore, which gives them characteristic 

colour. This spectral shift is referred to as opsin shift and is defined as the difference in the 

energies of maximum visible absorption of the free potonated retinal Schiff base in solution and 

the light adapted retinal protein complex. The opsin shift is investigated in detail with several 

approaches [168-170] including SSNMR [171, 172]. This effect refers to the important 

interactions between chromophore and protein. It is shown that the deionization or acidification 

affects the opsin shift for BR [173, 174] and is also suggested that the change in the surface pH, 

affects the chromophore. 

In case of PR, the chromophore retinal is bound to the protein via a Schiff base to lysine 231 and 

in context to these reports; it is highly probable that it might be involved in the similar 

interactions. In order to investigate such sensitive interactions, it is important to check the proper 

folding of protein and to ensure the native environment of the Schiff base. To ensure the correct 

folding and functionality of the protein the 15N -ζ-Lysine CPMAS spectra were measured in 2D 

crystalline samples. 

 

6.5.2 Results and Discussion 
The 15N CPMAS spectra of 15N labeled lysine was measured at 280 K. Lysine is the most 

conserved residue within the retinal binding pocket of proteins from the rhodopsin family. In PR, 

the chromophore retinal is covalently linked via a Schiff base to lysine231. The 15N chemical 

shift of this Schiff base is highly responsive to its protonation state [147] and an accurate reporter 

of photocycle intermediates [175]. It has been studied extensively for photoisomerization of 

retinal proteins [176].  
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The spectrum in figure 32 reveals a chemical shift of 185 ppm for the protonated Schiff base and 

36.6 ppm for the other lysine side chains. The Schiff base chemical shift is almost identical to 

that in non-crystalline, reconstituted samples which are fully functional as reported previously 

[68]. In dark-adapted BR, the PSB of the all-trans retinal resonates at 171 ppm and shows a λmax 

at 568 nm which is different from PR (185 ppm and 520 nm). While the correlation between 

chemical shift and λmax [177], it deviates significantly for PR indicating very strong 

chromophore–opsin interactions [68, 177]. It is important to note, that Schiff base, backbone 

amides and lysine side chains cross polarize in non-frozen 2D crystalline samples while low 

temperatures (230 K) had to be used for the non-crystalline, reconstituted samples [68]. The line 

width has improved as well from 4.5 ppm to 0.5 ppm for the lysine side chains as a result of 2D 

crystallization.  

 

For 15N assignment purposes, sample with 15N labeled lysine and 15N histidine was prepared 

initially at pH 7 and the spectrum obtained is displayed in figure 33. The figure 33 A shows the 

entire spectrum and gives a clear picture of the side chain resonances. The chemical shift value 

for the resonance from the free lysines comes at 36.6 ppm and backbone region around 120 ppm. 

However, the side chain region exhibits more than expected resonances. In all, there were five 

peaks in the side chain region. The observed resonances had chemical shift values of 184.3 ppm, 

178.7 ppm, 175.9 ppm, 170.4 ppm and 164.8 ppm respectively. From our earlier measurement of 
15N lysine at pH 8.5, it is known that the chemical shift value for the Schiff base is about 186 

ppm. In addition, from BMRB database, the standard 15N chemical shift values for histidine are 

given as follows: backbone 119.59, δ1= 189.93 and δ2= 176.78. These chemical shift values are 

based on solution state measurements and are likely to show deviation for the reconstituted 

samples especially in crystalline environment. The possible explanation to account for additional 

peaks is the co-existence of more than one conformational state at pH 7 and resonances arising 

from mobile 6xHis tag. If the pH of the surrounding environment is below the pKa of proton 

acceptor, which happens to be in the range of 7.1-7.6, there is a possibility of vectorality of the 

proton pumping for the protein. From the structural point of view, it indicates that the protein has 

heterogeneous arrangement, which gives rise to the additional peaks in the SSNMR. 
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Figure 32 : 15N-CP-MAS spectrum of 15N- ζ-Lysine 2D crystalline PR shows the protonated Schiff base (SB) at 185 

ppm. The spectra recorded on 600 MHz at 11 K Hz spinning speed and 30 k scans were accumulated at 280 K. The 

free lysine or the side chains (SC) appear at 36.6 ppm and the backbone resonance at 120 ppm. The spectra is 

processed with line broadening of 25.  

 

For improved spectral resolution, the 15N uniformly labeled samples were measured on 850 MHz 

spectrometer and spectra was collected as shown in figure 33 B. The spectra shows free lysines 

at 36.6 ppm and backbone resonances show better resolution. Resonances from the aromatic 

region could also be seen but it was not possible to differentiate due to spectral overlap. The 

most interesting region in the spectrum is shown in the inset, which compares well with the 

earlier 15N lysine spectra. This is the region, where the resonances from the side chains of 

histidine and lysines are expected. The region shows similarity with the multiple peaks as has 

been shown in figure 33 A. The peaks at 185 and 165 ppm are relatively sharp and well defined. 

The peak at 185 ppm is from the Schiff base and most likely the other peak at 165 ppm is 

originating from the structured location of histidine 75. The resonances which lie in between 

these two peaks are probably because of the 6xHis tag, which displays mobility and hence the 

reason for the broadening of the peaks. However, this can only be confirmed with 15N spectra of 

histidine75 mutant. 



Chapter 6-Solid State NMR characterization of PR 2D crystals 
--------------------------------------------------------------------------------------- 

110 | 174 

1 50

15

A

N Chem ical Shift

6080100120140160180

180

40 20

160

15N Chemical  Shift

100150200

B

 

Figure 33 : A: 15N CPMAS of lysine and histidine labeled sample at pH 7. The observed resonances appear at 

purple: 184.3 ppm, red: 178.7 ppm, black: 176 ppm , grey: 170.4 ppm and blue at 164.8 ppm respectively in the side 

chain region. The spectra were acquired at 280 K with 10 kHz spinning frequency and ~100 K scans were 

accumulated on 400 MHz spectrometer. Line broadening of 25 is applied. B: 15N CPMAS from uniformly labeled 

samples of PR 2D crystals at pH 8.5. The spectra was collected at 850 MHz Bruker spectrometer with a spinning 

speed of 10 kHz and temperature of 280 K. 23 K scans were collected and line broadening of zero is applied. 

 

6.6 15N characterization of Methionines 

6.6.1 Motivation 
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Magic angle sample spinning for determination of set of oriental constraints for specifically 

labeled samples was used for BR. The advantage conferred is of improved resolution and 

sensitivity. This approach was applied for BR for characterization of methionines where 6 out of 

9 residues are located in the helical region [29]. The 15N CPMAS allowed the resolution of 7 

methionines and further their assignment [95]. In case of PR, there are 10 methionines out of 

which 9 are located in the helical region as shown in figure 34. This distribution of methionines 

is quite similar to the arrangement in BR. It also suggests that the information so obtained will be 

reflective of the behavior of helical region. On the basis of above available literature and the 

feasibility of isotope labeling the 15N methionine in PR 2D crystals, methionines were 

investigated. 

The initial investigation aimed to observe the extent of resolution by means of CPMAS and later 

to obtain a greater insight into the resolution, 2D experiments such as 2D Heteronuclear 

correlation were performed. Attempts to measure helix mobility by 15N–1H dipolar couplings 

using Lee–Goldberg cross-polarization were also made. 

Some results of this section are published in Biochimica et Biophysica Acta 1768 (2007) 3012–

3019. 

 

6.6.2 Approach 
The experiments used for characterization of Methionines were 15N CPMAS, 15N-1H 

Heteronuclear experiment and 15N-1H Lee-Goldberg Cross Polarization. The basic principle of 

CPMAS has been discussed before and the principle of HETCOR and LG-CP shall be discussed 

in the following paragraphs. 

 

6.6.3 15N-1H Heteronuclear experiment  
HETCOR experiments display spatial correlation between 2 heteronuclear species. Here in this 

case it was used for 1H-15N correlation. HETCOR is a 2 dimensional experiment where 1H 

evolution takes place during 1H-1H decoupling which is achieved with FSLG. This is followed 

by a CP step to transfer the magnetization to 15N and further by 15N detection.  

 



Chapter 6-Solid State NMR characterization of PR 2D crystals 
--------------------------------------------------------------------------------------- 

112 | 174 

 
Figure 34 :  Topology model of PR showing the location of methionines in the amino acid sequence. Methionines at 

positions 77, 79, 134, 140, 146, 162, 189, 190, 210 are located in the helical region. The Methionines are circled in 

red. 

 

6.6.3.1 HETCOR experimental parameters 
15N-1H 2D Heteronuclear spectroscopy was performed using frequency switched Lee–Goldburg 

decoupling [178] as described in [179] at an effective proton decoupling field of 85 kHz during 

the evolution period and two pulse phase modulation proton decoupling at 64 kHz during the 

acquisition period. 2 k scans in the ω2 dimension and 64 rows in the ω1 dimension were acquired 

using time-proportional phase increments. Here 1H evolve under homonuclear 1H-1H decoupling 

using FSLG and 15N detection is done by CP. The scaling factor for the ω1 dimension was 

determined to be 0.57. A spinning rate of 14 kHz was used. HETCOR experiments were carried 

out using a Bruker Avance 400. 

 

6.6.4 15N-1H LG-CP experiment 

The LG-CP experiment refers to 1H-15N CP measurement while 1H are decoupled from each 

other during the Hartmann Hahn transfer step. By variations of the CP contact time, a 2D 

spectum can be acquired, which correlates 1H-15N dipolar couplings to 15N chemical shifts and 

the dipolar coupling is scaled to 0.57[178]. 
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Cross polarization Lee Goldberg is an example of chemical shift dipolar correlation experiment 

for studying molecular dynamics. In 2D LG-CP method, the CP contact time is incremented to 

produce 2D spectrum, which contains the 15N high-resolution spectrum along one spectral 

dimension and corresponding 15N-1H dipolar powder pattern along the other axis. For this 

measurement, a normal CP measurement is coupled with homonuclear 1H-1H decoupling 

method. The effective magnetization transfer during CP is mediated via strong homo nuclear 

dipolar coupling. Motionally averaged 1H-15N dipolar couplings can be used to access the 

molecular dynamics at the site of 15N label in the protein. The 1H-1H interactions are largely 

suppressed by applying off resonance radio frequency field that results in an effective field 

pointing along an axis tilted by magic angle with respect to the direction of external magnetic 

field at the same time proton carbon dipolar interaction is reintroduced via Hartmann Hahn 

condition imposed on effective radiofrequency fields experienced by nuclei.  

 

6.6.4.1 15N-1H LG-CP experimental parameters 
15N chemical shift -15N–1H dipolar correlation spectra were acquired using LG-CP. The contact 

time was incremented by 30 μs 128 times resulting in a t1 evolution time of 3.84 ms. 

Experiments were carried out at 12 kHz sample spinning. The 15N spin-lock field was adjusted to 

the first order sideband condition. Only cosine-modulated data were collected and a real Fourier 

transformation was applied to the indirect dimension. To remove the dominant zero frequency 

peak caused by the signal increase with increasing contact time, an exponential baseline 

correction was applied prior to Fourier transformation. LG-CP experiments were carried out 

using a Bruker Avance 400. 

 

6.6.5 Results and Discussion 

Nuclear spin relaxation times provide a direct and unambiguous measure of the presence of 

molecular dynamics in “solid samples”. The most widely used approach is to study deuterium 

NMR line shape and measure relaxation rates. Measurements of 15N-nuclear longitudinal 

relaxation rates in microcrystalline sample of the protein have provided a qualitative description 

of the site-specific backbone dynamics in the solid state [180]. With recent advances in SSNMR, 

it became possible to obtain dynamic information on a per-residue basis using uniformly labeled 
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protein samples [181]. And here we have made similar attempt to measure the protein dynamics 

with 15N specifically labeled samples of methionines.  

 

In 15N–1H HETCOR experiments as shown in figure 35 a, most peaks are found around 120 ppm 

but cross-peak intensities are also seen at 123 ppm and 117.5 ppm. This data indicates that highly 

ordered protein samples in 2D crystalline form in a non-frozen state provide well resolved 

spectra even of side chain resonance. 9 out of 10 methionines (77, 79, 134, 140, 146, 162, 189, 

190, 210) are buried inside the transmembranous region and only methionine189 is located at the 

interface as shown in the topology model in figure 34. Compared to BR, these resonances did 

show a similar line width of 0.7 ppm but a smaller chemical shift dispersion of (6 ppm vs. 11 

ppm) [95]. Cross-polarization at 280 K is possible, which indicates restricted protein dynamics. 

 

The LG-CP experiment has been carried out first on crystalline 15N-acetyl-leucine, where a rigid-

limit, scaled dipolar splitting of 4.7 kHz is found (figure 35 b). In PR, at 280 K, all 15N–1H 

methionine dipolar couplings are smaller with variations from residue to residue (in average 3.7 

kHz). This corresponds to an order parameter of 0.8. A comparison between 1D slice through the 

spectra of 15N-acetyl-leucine and15N-Met labeled PR is shown in the figure 35 d and e. It has 

been shown earlier that the rigid segments exhibit strong dipolar couplings and thus large 

splittings in the LG-CP spectra whereas the mobile groups show diminished coupling strengths 

[182]. To obtain an overall view, the same experiment was carried out on uniformly 15N labeled 

PR. The spectrum obtained at 280 K figure 35 f deviates clearly from the rigid-limit case shown 

in figure 35 d but also from the selectively labeled sample in figure 35 e. The spectrum in figure 

35 e shows a reduction in splitting but not a significant change in line shape compared to the 

rigid-limit case, while figure 35 f reveals a line shape expected. 

 

The determination of molecular dynamics of proteins is one of the major challenges in 

understanding their structure-function relationship of a membrane protein. Relationships 

SSNMR spectroscopy is a powerful method for studying internal dynamics for motions typically 

on the 10-2 to 10-12 s time scale. Correlation times and activation energies for specific models of 

motion have been determined using this technique. Previous models have shown that internal 

dynamics are very sensitive and subjective to packing in crystalline amino acids [183]. 
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Figure 35 : 15N–1H HETCOR experiment of 15N-Met PR reveals major intensities around 120 ppm but also at 123 

and 117.5 ppm. The spectra was acquired with 1100 points in the direct dimension and 128 points in the indirect 

dimension. 1096 transients were accumulated per slice and acquisition time of 49 msec was used (a). The 2D 15N–1H 

LG-CP spectrum of 15N-acetyl-leucine shows a rigid-limit dipolar splitting of 4.7 kHz. The spectrum was acquired 

with 684 points in the direct dimension and 128 points in the indirect dimension. 2 transients were accumulated per 

slice and acquisition time of 48 msec was used (b), while the 15N-Met resonances in PR show reduced dipolar 

splitting with an average value of 3.7 kHz indicating helix mobility despite 2D crystalline arrangement. The 

spectrum was acquired with 684 points in the direct dimension and 128 points in the indirect dimension. 4096 

transients were accumulated per slice and acquisition time of 48 msec was used. (c). A slice through the 15N-acetyl-

leucine spectrum at 130 ppm is shown in (d) and compared with 15N-Met PR at 120 ppm in (e). The LG-CP 

spectrum of U–15N PR (slice taken at 120 ppm) (f) deviates significantly from (e) indicating motions in PR caused 

by nonuniaxially motional averaging. Upon lowering the temperature to 220 K, the spectrum approaches a line 

shape expected for the rigid-limit case (d). All spectra are acquired at a 400 MHz for 15N and 280 K except (e) 

where the temperature was adjusted to 220 K. All the chemical shifts are indicated in ppm and dipolar coupling in 

Hz. 
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The reduced splitting observed for methionines could partially be explained by their involvement 

in strong hydrogen bonds within the PR α-helices. However, must contain some motional 

averaging due to small angle wobbling of these individual residues, liberation of the peptide 

plane, or general fluctuations of the helices around their axis. The dependence of Lee–Goldberg 

cross-polarization line shapes on molecular motions had been discussed extensively [153]. 

Uniaxially motional averaging would just reduce the observed dipolar splitting while non 

uniaxially dipolar averaging causes alterations in the spectral line shape such as broadening and 

additional wings on both sites of the spectrum. 

 

6.6.6 Conclusions 
The 15N-1H HETCOR measurements show that it is possible to resolve individual methionines in 

second dimension, which was not possible with 15N methionine labeled 1D spectra. The major 

conclusion from the 15N-1H LG-CP measurements is the presence of helix mobility despite the 

crystalline packing of the protein. The helix mobility, which is observed, in effect may be the 

representation of the bulk mobility of the inherently inhomogeneous samples and is open to 

further investigation. 

 

6.7 15N Tryptophan assignments with Rotational Echo double Resonance 

(REDOR) 

6.7.1 Motivation 

Biochemically tryptophan is highly hydrophobic residue and has potential of hydrogen bonding. 

This residue has a large indole (benzopyrrole) side chain, which is comprised of two fused 

aromatic rings. Due to its aromatic nature character, it can form π -π interactions. The indole ring 

is considerably separated from the hydrogen bonding part of the molecule. Such a spatial 

arrangement allows hydrophobic as well as hydrogen bonding interactions [184]. 

Membrane proteins have significantly higher content of tryptophan as compared to soluble 

proteins. Within the subunits, they form hydrogen bonds with carboxyl oxygen of the main chain 

and thereby conferring stability to the protein. On the surface, these are positioned to form 
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hydrogen bonds with the lipid head groups. This indicates involvement of tryptophan in 

anchoring of the protein subunits within the bilayer. 

PR has 10 tryptophans in the entire sequence and the 15N tryptophan CPMAS spectra showed a 

significant resolution of resonances as shown in the figure 38. The resonances from the side 

chain as well as backbone were very well separated. Previous attempts made on 15N methionines 

labeled preparations on BR [95] and recent reports on 15N tryptophan in rhodopsin [185] have 

suggested the possibility of the assignment of well separated resonances with Rotational echo 

double resonance. Considering the comparable resolution of 15N tryptophan spectra in PR with 

the above reported assignments for BR and Rhodopsin, similar measurements were attempted. 

Another reason for this attempt was to assign the tryptophan 197, which is highly conserved and 

if assigned might provide an anchor point for the assignment purposes in the spectra from fully 

labeled samples in multi dimensional experiments.  

 

6.7.2 Approach 

REDOR is a high-resolution SSNMR heteronuclear MAS recoupling method, which employs 

MAS and CP to measure the distance between two selected labeled heteronuclei, such as 13C–15N 

in the molecule or can be used for assignment purpose of a selected spin pair in a specifically 

labeled sample. This method is particularly used here for recoupling of C’i-1-Ni dipolar coupling 

for assignment purpose. The pulse sequence of REDOR is given in figure 36. 

Using CP, the 15N magnetization is enhanced. A set of 180° pulses on 13C channel, which are 

separated with the rotor rotation (as shown in figure 36) interfere with the averaging of the 13C-
15N dipolar coupling by MAS. Experimentally, 2 data sets are acquired with (S) and without 

dephasing (S0) in order to conpensate for the spin relaxation during recoupling. The difference 

between a 15N NMR spectrum obtained with 13C π pulses and one obtained with no 13C π pulses, 

measures the 13C-15N coupling. The difference signals for the 15N spectra of the sample are 

comparable, but weaker than that for the carbon directly bonded to 13C [186]. These C-N 

distances are generally of the order of 4-6 Å. This is of particular interest in special cases like 

amide bond, where carbonyl is 13C labeled and amide has 15N label. In general, maximizing a 
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REDOR difference signal for a given dipolar coupling requires selection of both pulse location 

and number of rotor cycles. The signal intensity reduces for the dephased spectrum because of 

incomplete refocusing and this reduction in the signal intensity is given by  

∆S/S=KD2N2v2 

where ∆S= (S-S0), N is the number of rotor cycles during the evolution period, v is the spinning 

speed, D is the dipolar coupling constant and K is the dimensionless constant whose value is 

1.066 [187]. The pulse program of the REDOR is depicted below in figure 36.  
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Figure 36 : Pulse sequence for REDOR. 15N magnetization is prepared by a cross-polarization transfer from protons 

and then evolves under proton decoupling and the influence of two 13C π pulses per rotor period. The first 13C π 

pulse is placed at one-half the rotor period and the second 13C π pulse occurs at the completion of each rotor period. 

A single 15N π pulse replaces the 13C π pulse in the middle of the evolution period and refocuses isotropic chemical 

shifts. The 13C channel is turned on while acquiring spectrum with dephasing. The arrows indicate the no of cycles 

(lo) which corresponds to 51.  
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6.7.3 Results and Discussion 

Tryptophans in the PR sequence are present at positions 34, 58, 74, 83, 98, 149, 159, 127, 197 

and 239. Out of these, tryptophans at residue number 58, 98 and 149 are located in the loop 

region and rest all are in the helical region as shown in figure 37. 

 

Figure 37 : The topology plot of PR amino acid sequence with 10 tryptophans circled in red. The tryptophans in the 

loop region are indicated with a star. 

The primary requirement for assignment with REDOR, the samples need to be specifically 

labeled with 13C at the carbonyl carbon of the (i-1) residue and 15N of the N-H in the amide bond 

of the ith residue, which is tryptophan. With reference to the amino acid sequence, the following 

unique pairs were identified and specifically labeled. 

Table 8: Details of the tryptophan residues in wildtype GPR sequence. 

Residue 

number 

location (i-1) residue 
13C=O 

ith residue     
15N-H 

Designation Sample  

34 Helical Phenylalanine Trptophan Phe-Trp F33-W34 

58 Loop Lysine Tryptophan Lys-Trp K57-W58 

74 Helical Phenylalanine Tryptophan Phe-Trp F73-W74 

83 Helical Valine Tryptophan Val-Trp V82-W83 
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98 Interface Aspartic Acid Tryptophan Asp-Trp D97-W98 

149 Loop Alanine Tryptophan Ala-Trp A148-W149 

159 Helical Alanine Tryptophan Ala-Trp A158-W159 

167 Helical Leucine Tryptophan Leu-Trp L166-W167 

197 Helical Glycine Tryptophan Gly-Trp G196-W197 

239 Helical Isoleucine Tryptophan Iso-Trp I238-W239 
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Figure 38 : 15N CPMAS spectra of α,ε-15N-tryptophan labeled at the backbone as well as in the side chain nitrogen. 
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The resonances in the region between 115-130 ppm belong to the backbone and between 130-140 ppm arise from 

the side chain and are separated with a dashed line. The spectrum was  collected at 600 MHz spectrometer at 280 K 

with a spinning frequency of 10 kHz and contact time of 1500 msec. The spectra is processed with zero line 

broadening. Approx 15 K scans were collected. The chemical shift values are indicated in ppm. 

Figure 38 shows the resolution obtained with CPMAS of α,ε-15N tryptophan spectra, which was 

used as a standard spectra to compare the resolution of different preparations and hence the 

reproducibility of the sample preparations. The spectra shows clear demarcation of resonances 

from the backbone and the side chains regions. The resonances in the region between 115-130 

ppm belong to the backbone and between 130-140 ppm arise from the side chain. 

The REDOR experiments were initially set on a small tripeptide, 13C-15N MLF for optimization 

of all the parameters like the 180º pulses, setting of the carrier frequencies and optimization of 

the number of dephasing cycles. For all these, measurements 51 rotor periods (lo=51), which 

corresponded to dephasing time of ~5.1 µsec, were used after optimization to observe the 

maximum dephasing of the peaks for the 13C-15N spin pair. The outcome of 8 such uniquely 

labeled pairs is discussed below. For the sake of convenience, the results are discussed in two 

groups. 

Group A 

The first group includes assignment of those tryptophan residues where the difference of the non 

dephased spectra and the dephased spectra was absolutely clear as can be seen in the figure 39. 

As indicated before, the spectra are collected first without dephasing and later with dephasing. 

These spectra are recorded under identical set of parameters and then compared. The results of 

the spectra with dephasing showed reduced intensity of the resonance in the 15N CPMAS spectra 

of tryptophan, which was directly bonded to the 13C labeled carbonyl. However, the overall 

shape of the 15N CPMAS spectra remained the same. The difference spectra were derived in 

order to assign the 15N chemical shift value as shown in figure 39. The chemical shift value for 

respective side chains is also reported wherever applicable. 

In case of figure 39 c, the difference spectra shows more than one resonance. From direct visual 

observation of the overlapping of the 2 spectra i. e one with dephasing and other one without, it 

appears that the resonance at 125.16 ppm is the actual difference peak. The other resonances at 

~120 ppm and ~130 ppm can arise from the backbone and the side chain natural abundance 
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respectively. This additionally observed difference peaks could also result from partial 

scrambling of the valine label into isoleucine and leucine, which share the biosynthetic pathway 

with valine, or from the close proximity of the labels in space due to folded nature of protein.In 

context to this, the chemical shift value of 125.16 is most likely but not completely undebateable. 

 

Group B 

This group involves those spin pairs which did not yield clear difference spectra from the non 

dephased and dephased spectra respectively as shown in figure 40. In three of these spectra the 

resolution and signal was not comparable to the earlier group. The probable explanation is 

involvement of scrambling to certain extent, which reduces the dephasing effect. E.g Alanine 

degrading to pyruvate and glutamate, lysine to acetyl Co-A and glycine to serine and pyruvate. 

There is a remote possibility of the slight change in the biochemical preparation and batch-to-

batch variation, which cannot be ruled out completely. However, in effect, this should not 

produce such a significant difference as the crystals can be obtained under wide range of 

conditions and slight insignificant handling error will not make a remarkable impact on the 

spectra. 

 

Other reason could be insufficient number of dephasing cycles to observe the dephasing effect. 

In principle, 51 dephasing cycles have yielded significant dephasing for other samples but it may 

exhibit deviations from spin pair to spin pair. 

 

In all there are 10 tryptophans and at given resolution on 600 MHz, there are only 6 isolated 

resonances in the backbone region. This indicates that the remaining 4 are obscured. In such a 

case, there is very little chance to observe the dephasing even if it is present.  

 

From figure 40 A and B it can be seen that there is no difference peak for samples G196-W197 and 

D97-W98. For figure 40.C there are 2 peaks just above noise which appear at 121.48 and 116.81 

ppm respectively. Since this is a sample labeled with Alanine and Alanines appear at position 

A158-W159 or A148-W149 respectively, the assignment is unambiguous. The D part of figure 40 

shows a difference peak at 116.19 ppm. Although this peak is well isolated from the rest of the 
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peaks, the resolution of the spectra is not satisfactory but can be tentatively assigned to K57-W58. 

The location of difference peaks is indicated by dashed lines in the figure 40. 

           A                                                       B                                               C                                                D 

120130 120130 120130 120130
15N  Chemical  shift  

Figure 39 : REDOR spectra for group A. Each data set has 3 spectra. The top one indicates the spectrum without 

dephasing , middle one represents with dephasing and the spectra at the bottom summarizes the difference of the non 

dephased and the dephased spectra. The spectra are recorded on 600 MHz at 280 K with 10 kHz spinning speed. 

Since the amount of sample for each case is different, the number of scans accumulated vary from 25 K to 120 K. A: 

I238-W239, B: F33-W34 or F73-W74 C: V82-W83, D: L166-W167. The resonaces at ~130 ppm in B and C part of the figure 

may arise due to the natual abundance of the side chains (indicated with a red star) and the peak at ~120 in C part 

may arise either due to the natual abundance of the backbone or close spatial proximity of the lables. The chemical 

shift values are indicated in ppm. 

 

6.7.4 Conclusion 
 
In conclusion, with the given resolution of 15N CPMAS spectra it was possible to apply REDOR 

for assignment of tryptophan with specific labeling scheme. In all five tryptophans could be 

assigned unambiguously. They include tryptophan at residues 58, 83, 149, 167 and 239. The 15N 
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chemical shift values of these four tryptophans along with tentative assignment of tryptophan at 

159 position. The assignment of tryptophan 159 is tentative because there is a slight indication 

from the inconclusive MnCl2 exchange experiments for the broadening of peak and also the 

dephasing with REDOR was not conclusive. The dephasing effect for this particular peak was 

observed in 13C carbonyl labeled phenylalanine as well as 13C carbonyl labeled alanine samples 

adding to uncertainty. The final assignment is summarized in the following table. 

 
    A                                                    B                                                C                                               D 

 

120130 120130 120130 120130

15N Chemical  Shift  
Figure 40: REDOR spectra for group B. Each data set has 3 spectra. The top one indicates the spectrum without 

dephasing , middle one represents with dephasing and the spectra at the bottom summarizes the difference of the non 

dephased and the dephased spectra. The spectra are recorded on 600 MHz at 280 K with 10 kHz spinning speed. 

Since the amount of sample for each case is different, the number of scans accumulated vary from 25 K to 120 K. A 

: G196-W197, B :D97-W98, C : A158-W159 or A148-W149, D : K57-W58. The chemical shift values are indicated in ppm. 
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Table 9 : Summary of tryptophan assignments. 
 

Residue 
number 

Sample Location Backbone 
Chemical shift 

 

Side chain 
Chemical shift 

Comments 

Trp 34 / 74 F33-W34 or 

 F73-W74 

helical 121.84 ppm 128.64/129.86 Because there are 2 F-
W pairs, the assignment 
cannot be precisely said 
for a particular F-W 
pair. 

Trp 58 /159 K57-W58 loop 116.19 ppm?? XXX Because there are 2 A-
W pairs, the assignment 
cannot be precisely said 

for a particular A-W 
pair. But there is slight 
indication from D2O 

exchange experiement 
for this assignment. 

Trp 83 V82-W83 helical 125.16 ppm 125.16 
 

Although additional 
difference peak appear 
but after overlapping 

the 2 spectra, the 
reported chemical shift 

value appears to be 
most probable but is 

still ambiguous. 
Trp 149 A148-W149 loop 119.68 ppm XXX 

 
Unambiguous 

assignment 
Trp 159 A158-W159 helical 116.98 ppm ?? XXX 

 
Because there are 2 A-
W pairs, the assignment 
cannot be precisely said 
for a particular F-Apair.

Trp 167 L166-W167 helical 123.42 ppm XXX 
 

Unambiguous 
assignment 

Trp 239 I238-W239 helical 121.81 ppm  
XXX 

Unambiguous 
assignment 

 

6.8 Selective 13C characterization of PR 2D crystals 

6.8.1 U 13C Cysteine 

6.8.1.1 Motivation 
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In some of the studies performed on PR, it is reported that the molecular weight of E.coli 

produced PR was determined to be 36,000, approximately 9,000 more than the 27,000 predicted 

by the DNA sequence as judged by the SDS PAGE analysis. This has been explained on the 

basis of the post-translational modification of one or more of the cysteine residues [188]. 

Cysteine residues appear only thrice in the entire sequence of PR. They appear at residue 

numbers 107, 156 and 175 as shown in figure 41. First two are located in the helical region, 

where as the last one locates in the loop region. Since the number of cysteine residues is limited 

to three, it should be possible to observe individual cysteine resonances in a one dimensional 

experiment. This will help in the evaluation of the extent of resolution with the optimal sample 

preparation and at the same time provide the starting point for the assignment in the homo and 

heteronuclear 2D and 3D spectra in the future experiments. 

 

Figure 41 : The topology plot of PR amino acid sequence with 3 cysteines circled in pink.  

 

6.8.1.2 Conclusion 

From this perspective, the CPMAS spectra for U-13C cysteine in the crystalline preparation were 

measured. It was observed that the CPMAS spectra had significant contributions from the 13C 
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natural abundance, which obscured the precise chemical shift measurements. In order to 

eliminate the background signal from the 13C natural abundance double quantum filtered 

measurements were performed on the same samples. The CPMAS and DQF spectra are shown in 

the figure 42 A and 42 B. respectively. 

Since the PR sequence has just 3 cysteines, it was expected that the individual cysteines would 

be observed in DQF. However, we could not resolve the individual cysteines except for the Cα 

region where 2 peaks were observed. Based on this DQF measurement, we arrive at the 

following chemical shift region for these residues. The carbonyls at 174.75 ppm, Cα at 59.46 and 

61.66 ppm and Cβ at 23.06 and 24.71 ppm respectively.  

200 150 100 50

A

B

13C Chemical  shift  

Figure 42 : U-13C spectra of specifically labeled cysteine. (A) CPMAS spectra (B) DQF spectra. The spectra were 

collected at 280 K with spinning speed of 10 kHz on Bruker 400 MHz spectrometer. Based on the DQF 

measurement carbonyls were asigned to 174.75 ppm, Cα at 59.46 and 61.66 ppm and Cβ at 23.06 and 24.71 ppm 
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respectively. Line broadening of 50 is used for processing of spectra. Approx 2 K and 61 K scans were acquired 

respectively. The chemical shift values are indicated in ppm. 

 

6.8.2 U13 C Histidine 

6.8.2.1 Motivation 

Histidine 75 is the single histidine residue in the entire PR sequence as shown in figure 43 and is 

highly conserved. It has a pka of 7.2 and the protonated and depotonated forms are widely 

separated in the NMR spectra. The deprotonated form resonates at ~250 ppm and protonated at 

~180 ppm. The protonated and deprotonated states of histidine are likely to have an indication 

towards the functionality of PR and the direction of proton pumping in the natural environment 

and hence was investigated. 

 

Figure 43 : The topology plot of PR amino acid sequence with histidine 75 circled in pink. 

 

6.8.2.2 Conclusion 

Similar to the cysteines where the CPMAS spectra had contributions from the natural abundance, 
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the histidine too observed similar effect. As a result the DQF measurement was performed. 

Based on DQF measurements the chemical shift values for histidine were derived and can be 

tentatively assigned to Cα= 56.13 ppm, Cβ=26.72 ppm, Cγ=129.6 ppm, Cδ1= 136.29 ppm, 

Cδ2=113.2 ppm and CO= 176.2 ppm respectively. 

In view of the above stated importance of histidine and its solitary position in the sequence, the 

CPMAS and the DQF spectra were attempted and are shown in figure 44 A and 44 B 

respectively. The poorly resolved side chain resonances correlates well with the similar 

resolution for the 15N histidine and lysine labeled spectra as shown in figure 33. However, it 

should be noted that that there is 6x His tag, which was not cleaved prior to these measurements. 

2060100140180
13C Chemical  shift

A

B

 

Figure 44 : 13C 1D CPMAS spectra of specifically labeled histidine. (A) CPMAS spectra (B) DQF double quantum 

filtered spectra. The spectra were collected at 280 K with spinning speed of 10 kHz on Bruker 400 MHz 

spectrometer. The spectra is processed with line broadening of 100 Approx 2 K and 61 K scans were acquired 

respectively. The chemical shift values are indicated in ppm. 

 

6.9 Uniform 13C characterization of PR 2D crystals 

6.9.1 Uniformly labeled 13C samples  
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6.9.1.1 Motivation 

Based on Electron Microscopy data of PR 2D crystals, it is evident that the protein is in the 

restricted mobility state. As per our initial hypothesis, this restricted mobility and homogeneity 

of the protein should yield well-resolved spectra. In order to observe this, the first step to begin 

was to make U-13C sample and obtain the first picture of the line shapes and the resolution 

obtained with crystalline preparation. This sample preparation and measurement was important 

for the initial optimization of parameters for further experiments.  

 

6.9.2 Approach 

As introduced before, MAS was applied on the samples and Cross polarization and Direct 

polarization spectra were collected at different temperatures. The temperature scan on the U-13C 

samples was performed in order to optimize the measuring parameters. Once the initial 

parameters were optimized selectively labeled and unlabeled samples were measured to 

determine the specific line shapes. 

 

6.9.3 Temperature scan 

The set of CPMAS and DPMAS was acquired over a range of temperatures from 210 K upto 285 

K as shown in the figure 45. The spectra were collected at 210 K, 225 K, 240 K, 260 K, 280 K 

and 285 K respectively. By comparison, between the two spectra at the same temperature, it was 

observed that the pattern of spectra is comparable. This observation indicates that the protein is 

in restricted mobility arrangement. The intensity of signal with CPMAS was approx 1.5 times 

more than that of DPMAS signal.  

When the intensity of the overall signal at different temperatures was compared, it was observed 

that the intensity of signal reduces by a factor of 4 as the temperature was raised from 210 K to 

285 K. The loss of signal intensity at higher temperatures could be explained based on reduced 

CP efficiency due to increasing molecular motion. The trend of reduction in the signal intensity, 

with increasing temperature was similar for CPMAS and DPMAS measurements. 
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150 100 50 150 100 50

A B

13C Chemical  shift

210K

225K

240K

280K

285K

 

Figure 45 : Temperature scan of U-13C PR crystalline samples (A) Cross polarization and (B) Direct polarization 

spectra of U 13C PR 2D crystals over a range of temperature. The spectra were acquired on Bruker 600 MHz 

spectrometer with 10 kHz spinning frequency. A total of 8 mg sample was used and 512 scans were accumulated. 

The spectra clearly indicate increased resolution at higher temperature. The chemical shift values are depicted in 

ppm units and line broadening of 10 is applied for processing. All the spectra are normalized to the carbonyl peak 

intensity at 180 ppm. The chemical shift values are indictaed in ppm.  
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6.9.1.4 Conclusion 

The improved resolution at room temperature is indicative of tight and orderly packing of the 

protein. However, the measurements at higher temperatures are unpractical for long-term 

sensitive measurements due to the risk of dehydration, which may cause protein to denature. In 

order to avoid this unfavorable situation but at the same time not compromising on resolution 

and signal, a temperature of 280 K was chosen as the optimized temperature for further 

measurements. 280 K is just about the freezing temperature so the biological loss to the sample 

for the long term experiments can be delayed if not completely avoided.  

 

6.10 13C labeled samples with different labeling schemes 

6.10.1 Motivation 

The main purpose of using the different labeling schemes is to reduce the spectral overlap and 

the effects from line broadening encountered in uniformly 13C-labeled proteins. The selectivity 

and extent of labeling can contribute to simplification of the NMR spectra. The labeling sites can 

be selectively labeled by supplying specifically 13C-labeled glucose or differentially labeled 

glycerol as the sole carbon source in the expression medium. Certain carbon sites with 13C at 

high levels can be labeled while the other sites remain completely unlabeled. This facilitates 

resonance assignment and the measurement of long-range distances. The differential labeling 

pattern achieved is due to the cyclic nature of the enzymatic reactions, which spread the single 

label in the starting compound to multiple positions in the carbon skeletons of the cascading 

amino acids [189]. 

 

For this, two different kinds of samples were prepared. One was 2-13C glycerol labeled and the 

other one spin diluted or selectively unlabeled sample. Both of these labeling schemes were 

carried out using E.coli expression system. 

6.10.1.1 2-13C Glycerol labeled samples 
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Isotope labeling is primary requirement for sequence specific resonance assignment and for 

estimation of distance restraints and torsion angle. Limited by the poor efficiency of the 15N-13C 

polarization transfer and the limited resolution of the proton spectra, 13C -13C homonuclear 

restraints are of utmost importance for the structural determination. These measurements are 

obscured in the fully labeled 13C samples by dipolar truncation [190, 191]. There are several 

ways to overcome this effect but a combination of recoupling method and dilution of 13C spin 

with differential labeling is attempted [192]. 

For our measurements, 2-13C Glycerol was used as a label to reduce the spectral overlap by 

reduction of dipolar truncation effect and for observation of long-range interaction. For further 

discussion, this sample shall be referred to as “2-13C Glycerol labeled PR”. The detailed labeling 

pattern expected to be observed with 2-13C glycerol labeling is shown in the following picture 

46.  

 
Figure 46 : Differential labeling patterns with 1-3 13C glycerol and 2 13C glycerol. The green colour corresponds to 

the degree of 13C labeling pattern obtained by growth on [1,3-13C] glycerol; the opposite labeling pattern, obtained 

by growth on [2-13C] glycerol, is represented in red. In cases with mixed labeling, the percentage label from [2-13C] 

glycerol and [1,3-13C] glycerol for a particular atom is represented using relative red/green coloring. This picture is 

taken from [152]. 
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Figure 47 : Comparison of different labeling schemes with U-13C spectra of PR in 2D crystalline arrangement. (A) 

U- 13C sample measured on Bruker 600 MHz spectrometer at 280 K and a spinning speed of 10 kHz. For processing 

zero line broadening is applied and approx 100 K scans were accumulated. (B) 2 13C-Glycerol labeled measured on 

Bruker 600 MHz spectrometer at 280 K and a spinning speed of 10 kHz. For processing zero line broadening is 

applied and approx 100 K scans were accumulated. (C) Selectively unlabeled sample measured on Bruker 600 MHz 

spectrometer at 280 K and a spinning speed of 10 kHz. For processing zero line broadening is applied and approx 
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100 K scans were accumulated (D) U-13Csample measured on Bruker 850 MHz spectrometer at 280 K and a 

spinning speed of 10 kHz. For processing zero line broadening is applied and approx 100 scans were accumulated. 

The region between the 0-70 ppm indicates the aliphatic region. Between 100 -150 ppm indicates the aromatic 

region and rest is the carbonyl region. The chemical shift values are shown in ppm. The boxed region displays 

detailed picture of the aliphatic region of the corresponding spectra. 

 

6.10.1.2 Selectively unlabeled U-13C Glucose labeled sample 

Selectively unlabeled or reverse labeling scheme was first reported for studying the 

phenylalanine residues of the protein [193]. The positive side effects of the reduced labeling are 

simplification of the assignment of the long-range correlations and an overall improved 

resolution as a result of suppressing homonuclear one-bond J-couplings. The dipolar truncation 

effect also plays an important role for simplification of the spectra. For preparation of such spin-

diluted samples unlabeling of 9 amino acids was carried out. These include Alanine, Glycine, 

Isoleucine, Leucine, Phenylalanine, Serine, Threonine, Valine and Tyrosine. For further 

discussions this sample shall be referred to as “U-13C spin diluted sample” 

Figure 47 indicates the comparative spectral resolution with different labeling schemes. The 

boxed region highlights the aliphatic regions in the corresponding 1D CPMAS spectra on the 

left. 

 
 

6.10.1.3 13C -13C 2D Homonuclear correlation measurements on U-13C labeled 
samples 

6.10.1.3.1 Motivation 
13C-13C 2D homonuclear experiments measure the through space correlations and have the 

ability for assignment of all carbon resonances of one amino acid residue as well as long distance 

restraints with a single measurement. Such experiments rely on dipolar coupling for the 

magnetization transfer in a distance dependent manner between nuclei. These homonulclear 

measurements are widely popular as it is comparatively easier to set up the experiment and 

sidetracks the problems associated with the measurement of 1H signals and low efficient 

magnetization transfers between 13C and 15N nuclei. 
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6.10.1.3.2 Approach 

Rotational resonance NMR provides a unique approach for obtaining high-resolution structural 

data in membrane systems and has been used to establish intermolecular contacts [194]. It is an 

established method for long range distance measurements in reconstituted membrane proteins 

[195]. It is a homonuclear recoupling technique under MAS where through space dipole dipole 

coupling is reintroduced and hence measured without application of any specific radio frequency 

pulse [196]. The primary goal of the rotational resonance experiment is to determine the dipolar / 

coupling constant from which the internuclear distance may be calculated. Carbon–carbon 

separations as large as 6.8Å have been successfully determined. Under rotational resonance 

condition the chemical shift difference between the two homonulear spin ω1 and ω2 is equal to 

nωR and the rotational resonance condition is represented as 

nωR=(ω1-ω2) 

where n=+1,+2,ωR is the sample spinning speed and ω1 and ω2 are the isotropic resonant 

frequencies of spins 1 and 2 respectively. 

Under this specified condition, the dipolar coupling interaction is reintroduced but just between 

spins 1 and 2. The need of reintroduction of dipolar couplings say for 13C-13C arises because of 

the low gyro magnetic ratio of 13C and because of the fact that 13C- 13C dipolar couplings are of 

the order 2 kHz which cannot be detected at higher spinning speed [196]. At rotational resonance 

the 13C-1H dipolar couplings aid the 13C spectral overlap which is needed for magnetization 

transfer [197]. The rotational resonance condition is applied for time “t” which is equal to the 

integral number of rotor periods to allow exchange of magnetization between the two spins. The 

constant wave irradiation has to match the multiples of the spinning speed. The line shapes 

obtained can be simulated and the values of homonuclear dipolar constants can be calculated. 

The basic pulse sequence of DARR is shown in figure 48. 
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X

CP

1H

90o

SPINAL-64CW RECOUPLING

90o 90o

t1 t2mix

 
Figure 48 : DARR pulse sequence indicating the first 90º pulse on proton channel, followed by cross polarization 

where the magnetization is transferred to the X nuclei. Weak proton decoupling occurs during the heteronuclear 

evolution time. The 90º pulse on X nuclei transfers the magnetization to the z-axis. After second mixing time, the 

90º pulse flips the magnetization back to the X-Y plane. Finally, the signal is detected with proton decoupling. 

 

6.10.2 Results and Discussion 

6.10.2.1 U-13C uniformly labeled samples 
Initial optimization of the parameters was carried out on 13C labeled glycine. Thereafter the fine 

optimization of the parameters was done on the sample itself. For arriving at the best appropriate 

mixing time for the 13C-13C homonuclear measurements, a set of DARRs with different mixing 

time were recorded and analyzed prior to the actual measurements. The different mixing times 

used for the buildup curves were 25 ms, 50 ms, 75 ms, 100 ms, 125 ms, 150 ms, 175 ms, 200 ms, 

250 ms, 300 ms, 800 ms and 1.2 sec. From these experiments, using the python scripts 

(developed by Dr. Jacob Lopez, personal communication) the buildup curves for a set of 3- 5 

cross peaks were calculated for the spin diluted as well as the 2-13C glycerol labeled samples as 

shown in figure 49 A and 49 B. The buildups are clearly seen in the analysis and a range of 

optimal mixing times was calculate as shown in figure 50. Based on these buildup curve 

analysis, the optimum mixing time for U-13C was calculated to be ~125 msec. For calculation of 

the buildups representative cross peaks from different parts of the spectra were selected and are 

explained in the following figure and legend. 
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Figure 49 : Overview of the 2D DARRs used for calculation of the buildups. A) spin diluted uniformly 13C labeled 

PR 2D crystals B) 2 13C -Glycerol labeled PR 2D crystals. The DARRS displayed were used for buildup curves and 

were acquired with 300 ms mixing time and measured at 280 K at a 10 kHz MAS spin rate. The spectrum was 

acquired with 1956 points in the direct dimension and 128 points in the indirect dimension. Both spectra were 

measured at 600 MHz spectromter using TPPI and 128 transients per slice. For processing exponential line 

broadening of 20 Hz in the direct dimension and a squared sine modulation in the indirect dimension was applied. 

The cross peaks used for calculation of buildup curves were selected from different regions of the spectra. E.g. red 

blocks indicate the cross peaks between the aliphatic regions and green represent the cross peaks between the 

aromatics and blue cross peaks between either a) carbonyls and aliphatic region or b) aromatics and aliphatics. The 

chemical shift values are indicated in ppm. 

 
 
 
 
 
 
 
 

Cα-Cα Cα-Aromatic Cα-CαC’-Cα 
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Figure 50 : Overview of diagonal and cross-peak buildup at different mixing times fitted using the full matrix 

approach for the “2-13C glycerol PR labeled” sample. Horizontal axes represents in individual graphs represent the 

mixing time from 25 msec to 1.2 sec. The vertical axes represent the diagonal and cross-peak volumes scaled 

individually from 0 to 1 for each graph. The filled red circles show measured peak volumes while the dotted blue 

line represents the best fit to the data points using the full matrix analysis. The diagonal peaks are represented by the 

grey boxes and the green boxes indicate the buildup pattern for the selected cross peak. 
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Figure 51 : 2D 13C-13C DARR experiment on uniformly labeled 13C labeled 2D crystalline PR with 125 msec mixing 

time. The DARR was measured at 280 K and 10 kHz spinning speed. The spectra were acquired in phase sensitive 

mode on Bruker 850 MHz spectrometer. The spectrum was acquired with 1796 points in the direct dimension and 

256 points in the indirect dimension. 512 transients were collected per slice. The spectrum was processed with 

exponential line broadening of 20 Hz in the direct dimension and a squared sine modulation in the indirect 

dimension. Only positive contour levels are shown. The chemical shift values are indicated in ppm. 

 

The 2D DARR spectra with 125 msec mixing time acquired on 850 MHz spectrometer with 

U13C labeled PR 2D crystalline preparation is shown in figure 51. The spectra shows improved 

resolution as compared to the earlier spectra, which were measured on 600 MHz. However direct 
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comparison is not possible because the earlier mixing time was in the range of 25 msec. This 

short mixing time is known to yield interaresidue crosspeaks. Further comparison with the earlier 

2D spectra shows some improvement in the resolution especially in the aliphatic region. The 1D 

spectra recorded at 850 MHz spectrometer have already shown to have improved resolution in 

the aliphatic region as shown in figure 47. Similarly, it was expected that the spectral overlap 

would be reduced to certain extent in the 2D DARRs. In some regions especially for alanines, 

isoleucine, serines, threonines and the glutamic acid, which are normally well separated, showed 

slight improvement as shown in the figure 52, 53, 54 and 55. Figure 52, 53, 54 and 55 are 

regions extracted from the figure 51 and have different contour levels. 

The alanines, isoleucines and particularly glutamic acid had earlier shown no spectral resolution. 

The best observed resolution was in the region of glutamic acid. where almost all the 7 glutamic 

acid could be resolved as shown in figure 55. The serine and threonines showed no traces of 

existence in the previous spectra with shorter mixing time. However, they could be well 

observed with the 2D DARRs recorded on 850 MHz spectrometer with 125 msec mixing time. 

 
Figure 52: Section of 2D DARRs acquired on 850 MHz spectrometer at 280 K and 10 kHz spinning speed with 125 

msec mixing time. The section displays the alanine region. The spectra were acquired in phase sensitive mode on 

Bruker 850 MHz spectrometer. The spectrum was acquired with 1796 points in the direct dimension and 256 points 

in the indirect dimension. 512 transients were collected per slice. The spectrum was processed with exponential line 

broadening of 20 Hz in the direct dimension and a squared sine modulation in the indirect dimension. Only positive 

contour levels are shown. The chemical shift values are indicated in ppm. 

 



Chapter 6-Solid State NMR characterization of PR 2D crystals 
--------------------------------------------------------------------------------------- 

142 | 174 

 
Figure 53 : Section of 2D DARRs acquired on 850 MHz spectrometer with 125 msec mixing time at 280 K and 10 

kHz spinning speed. The section displays the isoleucine region. The experimental details are same as figure 52. 

 

 
Figure 54 : Section of 2D DARR acquired on 850 MHz spectrometer with 125 msec mixing time at 280 K and 10 

kHz spinning speed. The section displays the serine and the threonine, and region for threonines is boxed. The 

experimental details are same as figure 52. 
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Figure 55 : Section of 2D DARRs acquired on 850 MHz spectrometer with 125 msec mixing time at 280 K and 10 

kHz spinning speed. The section displays the glutamic acid region. The experimental details are same as figure 52. 

 

6.10.2.2 13C spin diluted sample 
The preparation of spin diluted sample has been already discussed in materials and method 

section 2.2.1.18. In short, 9 amino acids were selectively unlabeled. The purpose behind 

selective unlabeling was to reduce the spectral overlap by eliminating the cross peaks due to 

amino acids that are more abundant and hence obscure the cross peaks between comparatively 

less abundant residues. For this purpose all the amino acids which occur more than 10 times in 

the amino acid sequence were unlabeled. The 2D DARR was acquired based on the optimum 
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mixing time as a result of build up curve analysis. The spectra was collected with 125 msec 

mixing time and is shown in figure 56. 

 
Figure 56 : 2D 13C-13C DARR experiment on selectively unlabelled 2D crystalline PR. The DARR was measured at 

280 K and 10 kHz spinning speed with 125 msec mixing time. The spectra were acquired in phase sensitive mode on 

Bruker 850 MHz spectrometer. The spectrum was acquired with 1796 points in the direct dimension and 256 points 

in the indirect dimension. 64 transients were collected per slice. The spectrum was processed with exponential line 

broadening of 20 Hz in the direct dimension and a squared sine modulation in the indirect dimension. Only positive 

contour levels are shown. The chemical shift values are indicted in ppm. 

 

For comparison of the reduced spectral overlap the detailed picture of the aliphatic region is 

displayed in figure 57 A for the U-13C labeled sample and 57 B for the selectively unlabeled 

sample for the same mixing time of 125 msec. It is clear that there is a reduction in the spectral 
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overlap. However all the animoacids, which were finally labeled, had similar range of chemical 

shift values and hence individual identification of group types was not possible. 

               
Figure 57 :  13C-13C homonuclear correlation DARR spectra for uniformly labeled 13C PR 2D crystals and 13C spin 

diluted PR 2D crystals. The data was acquired with 125 msec mixing time. The spectrum is same as described as 

figure 51 and figure 56 and here only aliphatic region is shown. 

 

6.10.3 Conclusions 
In principle it is possible to achieve a good signal to noise with feasible number of scans and 

increments in the indirect dimension. This is achieveable because of the dense packing the 

protein in the 2D crystalline state. The improved resolution as judged by the resolution of 7 

glutamic acids in the 2D DARR spectra are encouraging as it can be inferred that the individual 

amino acids can be resolved despite seven transmembranous overlapping helices. The selective 

unlabeling for reduction in the spectral overlap can be successfully applied, however for such 

unlabeling, aminoacids with well-separated chemical shift region should be chosen. 

In the light of these measurements, it appears that the high resolution spectra for PR 2D crystals 

is achievable. However, more efficient labeling schemes are required for further characterization. 

Improvements can be made biochemically by removing the slight impurities, which might have 

hindered better crystal formation. Since the 2D crystallization can be achieved under wide range 

of conditions, further modification of these conditions e.g. crystallization without the histag, 

crystallization with different variants of PR or crystallization using special lipids as described by 

A B 
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Liang et al [109] can be a good starting point. In the light of data presented in this thesis, there is 

an explicit evidence for inhomogeniety in the protein. Further attempts involving trials to achieve 

a completely homogenous sample prior to the crystallization would be worth the efforts. 
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Appendix  
 
Abbreviations 
 

ATP   Adenosine Tri Phosphate 

CaCl2    Calcium Chloride  

DAG   Diacyl glycerol 

DGK   Diacyl Glycerol kinase 

DTT   Dithiothreitol 

EDTA   Ethylenediaminetetraacetic acid 

EGTA   Ethylene glycol tetraacetic acid 

MgCl2   Magnesium Chloride  

Na(CH3COO)  Sodium Acetate 

NADH   Nicotinamide Adenine Dinucleotide Phosphate 

NiCl2   Nickel Chloride  

NMR   Nuclear Magnetic Resoance 

PA   Phosphatidic Acid 

PEG   Poly Ethylene Glycol 

PIPES   1,4-piperazinediethanesulfonic acid 

Zn(CH3COO)2  Zinc Acetate  

 
Motivation 
 

The major focus of this project was to attempt for 2D crystallization of Diacyl Glycerol kinase, a 

small membrane protein from Salmomella typhimurium, to obtain an optimal sample preparation 

and set up 3D crystallization trials, which could later be used for structural and functional studies 

with solid state NMR. 

This protein was a one of the targets of ProAMP project, which aimed at structural and 

functional characterization of small membrane protein targets. The inherent idea was to focus on 

small membrane protein for complete proteomic, bioinformatics and functional analysis for 

prediction of relevant targets in pathogens. It also included implementation of 2D and 3D 

crystallization screens with the selected target and development of novel NMR techniques to 
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obtain structural and functional information in either solid state or liquid state NMR methods.  

 

Diacyl glycerol kinase 

DGK is a typical membrane protein and it has 3 alpha helical transmembranous regions [198]. It 

has a conserved catalytic domain and an array of other conserved motifs that are thought to play 

a role in lipid-protein and protein-protein interactions in various signaling pathways. 

Functionally it phosphorylates the second-messenger DAG to phosphatidic acid. Since DAG is 

regenerated at the (plasma) membrane, DGK is therefore believed to be activated there [199]. 

The functionally active unit of DGK is thought to be a trimer [200]. This protein has virtually no 

detectable sequence homology to other kinases and lacks sequence motifs typically present in 

enzymes catalyzing phosphoryl transfer [201, 202]. The molecular weight of this smallest known 

kinase is 13 kDa and number of amino acid residues are 122. The protein is over-expressed in 

E.coli to yield ~30 mg of protein per liter of culture [203]. The topology plot of the protein is 

shown in figure 58.  

 

Figure 58 : Topology plot of Diacyl glycerol kinase. The SwissProt sequence accession number is P0ABN1. 

 

Cytoplasmic side 

Extracellular side 
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3D crystallization 
Previous attempts with DGK from E.coli were successful in obtaining 3D crystals but they did 

not diffract. However, these 3D crystals yielded well resolved NMR spectra [204]. In context to 

this, initial trials for 3D crystallizations for DGK from Salmonella typhimurium were attempted 

with the intention of obtaining 3D crystals, which could be used for structural and functional 

studies with solid state NMR and if further improvements in sample  preparation would be 

possible. For setting up the 3D crystallization trials, the sitting drop method was employed.  

 

Principle of sitting drop crystallization 
The sitting drop vapor diffusion technique is generally used for the crystallization of 

macromolecules. A drop composed of a mixture of sample and reagent is placed in vapor 

equilibration with a liquid reservoir of reagent. Typically, the drop contains a lower reagent 

concentration than the reservoir. To achieve equilibrium, water vapors leave the drop and 

eventually lands up in the reservoir. When water leaves the drop, the sample experiences super 

saturation. Both the sample and reagent increase in concentration as water leaves the drop for the 

reservoir. Equilibration is reached when the reagent concentration in the drop is approximately 

the same as that in the reservoir. 

 

Figure 59: Picture depicting the principle of sitting drop crystallization. Courtesy: http://www.hamptonresearch.com 

 

In a 24 well microtitre plate at a given time several crystallization conditions were set. Typically 

in one well 4.5 µl of 5 mg/ml of protein, 3 µl of buffer and 1 µl of dATP from a stock solution of 

100 mM in water was added. This mixture was placed on the central cavity/well and the outer 

well contained 500 µl of the same buffer. The plates were sealed and incubated at room 

temperature. After 2 days, some crystals were observed as shown in the figure 60. 

 



Appendix 
--------------------------------------------------------------------------------------- 

150 | 174 

The composition of different buffers used for crystallization trials is given below. 

1. 50 mM Sodium formate (pH 3,5) or  Sodium acetate (pH 4,5) buffer 

2. 22.5% PEG 400 (v/v) 

3. 15 mM CaCl2 or MgCl2 

4. 10 mM Zn(CH3COO)2 or NiCl2 

 

Results 

The 3D crystallization of DGK from S.typhimurium was taken up as a side project and hence 

only few trials were carried out. As an outcome of the 3D crystallization trials, we obtained 3D 

crystals in 6 of the following conditions. Although the crystals were observed with low power 

light microscope in the microtitre plates, they were small for the 3D crystallographic analysis. 

One of these crystals obtained in condtion “A” was checked for diffraction pattern at Max Planck 

Institute of Biophysics, Frankfurt. However, the crystal failed to give any diffraction pattern. 

 

 

 
 

Figure 60: 3D Crystallization Trials of DGK from Salmonella typhimurium. 
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 The different conditions used for the screen are summarized in the following table. 

Table 10: Summary of 3D crystallization screens for DGK. 

Legend Crystallization Condition 

 

A  50 mM Sodium Formate + 15 mM MgCl2+ 10 mM NiCl2 +22.5% PEG 400 

 

B 50 mM Sodium Formate + 15 mM CaCl2+ 10 mM NiCl2 +22.5% PEG 400 

 

C 50 mM Sodium Formate + 15 mM MgCl2 + 10 mM Zn(CH3COO)2 + 22.5% PEG 400 

 

D  50mM Sodium Acetate + 15 mM CaCl2 +10 mM NiCl2+ 22.5% PEG 400 

 

E  50 mM  Sodium Formate +15 mM CaCl2 + 10 mM Zn(CH3COO)2 +22.5% PEG 400 

 

F 50 mM Sodium Acetate +15 mM MgCl2 + 10 mM Zn(CH3COO)2 +22.5% PEG 400 

 

 

2D crystallization 
The major aim of screening for 2D crystallization was to obtain an optimal reconstitution 

protocol where the membrane protein is orderly arranged in the lipid bilayer and is functionally 

active. Earlier it has been shown that well diffracting 2D crystals can provide a structural model 

for membrane proteins based on cryo-electron microscopy [96]. The motivation for 2D 

crystallization was 2 fold. First to obtain well diffracting 2D crystals for structural analysis by 

cryo-electron microscopy and second to achieve optimum concentration of protein for solid state 

NMR spectroscopic analysis for structure determination [152]. The orderly arrangement of 

protein is also likely to aid in the resolution of the solid state NMR spectra by achieving narrow 

line widths [205]. 

 

For this purpose, a detailed 2D crystallization screen was planned and subsequent screening with 

electron microscopy was carried out. There were different screens based on known physical and 
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chemical parameters, which are known to influence the process of 2D crystallization such as 

temperature, pH, salts, concentration and additives [108]. An over view of these screens is 

provided in the following table. 

Table 11: Summary of 2D crystallization screens for DGK. 

Parameter  Analyzed range of parameter  

Temperature  4°C, 20°C, 30°C, 37°C 

pH of dialysis buffer 3, 4, 5, 6, 7, 8, 9, 10, 11 

Concentration of protein  1-3 mg/ml 

Detergents for solubilization of lipid DPC, DDM,OG 

Lipids E.coli Lipids, DOPC 

Divalent Salts (concentration range (mM)) MgCl2 (5,10, 25, 50, 100) 

Monovalant salts (concentration range (mM)) NaCl (50, 100, 250) 

Dialysis duration(days) 3, 5, 7, 10, 15 

Detergent : lipid (mol ratio) 1:1, 1:2 

Buffers (20 mM, 50 mM, and 100mM) Acetate, Formate, Hepes, Phosphate 

Additives Glycerol (10%, 20%) 

Mode of detergent removal Biobeads, Dialysis 

Protein : Lipid ( mol  ratio) 1:15, 1:25, 1:50, 1:100 

 

The different screens based on the above listed parameters and the given range of concentrations 

was tested and was individually examined with electron microscopy. However, a combination of 

multiple parameters was also used. 

 

Results 

As an outcome of the different 2D crystallization screens, we obtained a reconstitution protocol 

for dense packing of the protein in the lipid bilayer. The electron micrographs showed multiple 

stacking of the lipid layers, which can be attributed to either excess of lipid or the salt 

concentration of the buffer used for reconstitution. The protein was not crystallized, however the 

extent of dense packing of the protein can be observed in the corresponding freeze fracture 

picture in figure 63 D. No large, isolated sheets or vesicles which were suitable for cryo electron 

microscopy were obtained. 
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Based on all the 2D crystallization attempts the optimum dialysis condition has following 

parameters. Buffer containing 40 mM Na(CH3COO), 10 mM MgCl2, 0.2 mM DTT, 3 mM NaN3, 

20 % Glycerol with pH of 4.5 and at temperature ~ 20ºC and protein concentration of 1 mg/ml.  

When screened for activity, with the activity assay described in materials and methods section, 

the samples which were reconstituted with 20% glycerol gave maximum activity as compared to 

the samples reconstituted without glycerol. From the additive screen it was conclusive that 20% 

glycerol was required for optimal reconstitution. The specific activity was measured at different 

points of dialysis and different salts in the dialysis buffer. The bar plot displaying the effect of 

different salt concentrations for day 5 dialysis is shown in figure 61 and figure 62. 
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Figure 61 : Specific activity of DGK under different reconstitution and salt conditions with 20% glycerol in the 

dialysis buffer. The legends in the picture indicate the different Protein : Lipid ratio used for analyzing the specific 

activity at day 5 under different salt conditions. The maximum specific activity is observed at protein to lipid ratio of 

1:15 and with only 10 mM MgCl2 concentration in the buffer containing 20% glycerol in the sodium acetate buffer 

at pH 4.5.  
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Figure 62 : Specific activity of DGK under different reconstitution and salt conditions without glycerol in the 

dialysis buffer. The legends in the picture indicate the different Protein: Lipid ratio used for analyzing the specific 

activity at day 5 under different salt conditions. The maximum specific activity is observed at protein to lipid ratio of 

1:100 and with 10 mM MgCl2 concentration in the buffer without glycerol in the sodium acetate buffer at pH 4.5. 

 

When screened for activity, with the routine activity assay, the samples, which were 

reconstituted with 20% glycerol, gave maximum activity as compared to the samples 

reconstituted without glycerol. From the additive screen it was conclusive that 20% glycerol was 

required for optimal reconstitution. The corresponding incorporation of protein was analyzed 

with freeze fracture and has been explained in the following figure 63. 
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Figure 63 : Freeze fracture pictures of DGK. A: Protein aggregates with no glycerol in the dialysis buffer. B: 

incorporation of protein with 5% glycerol in the dialysis buffer. C: incorporation of more amount of protein with 

10% glycerol in the dialysis buffer and finally D: presence of multiple stacks of incorporated protein with 20% 

glycerol in the dialysis buffer. The protein precipitate or corporation is highlighted in black squares. 

 

Conclusions 
For the available data, it can be concluded that the DGK from Salmonella typhimurium can be 

densely reconstituted in the lipid bilayers but it does not form 2D crystals. However, this dense 

packing of the protein in the lipidic environment can be used for solid state NMR measurements. 



Appendix 
--------------------------------------------------------------------------------------- 

156 | 174 

The 3D crystallization of protein takes place under different set of conditions but the crystals do 

not diffract. These nano crystals could also serve as solid state NMR samples for improved 

spectral resolution. 

 

Material and Methods 

DGK expression 
Expression of wild type DGK was essentially done as described below. His-tagged DGK (Swiss- 

Prot sequence accession number P00556) was over-expressed in BL (21). Cells from a fresh 

plate were inoculated in the LB medium with Ampicillin to a final concentration of  100 μg/lit. 

The cells were grown at 37ºC at 220 rpm in LB medium to an Optical Density (at 600) of 0.8. 

The cells were then induced with 200 μg/ml of IPTG and were grown further for 3-4 hours. The 

harvesting of cells was carried out by centrifugation at 6500 rpm at 4ºC for 15 mins. 

 

Solubilization and purification 
For solubilization, the cells are resuspended in 50 ml of Buffer A (50 mM Na2HPO4, 300 mm 

NaCl, pH 7.5) with 1 tablet of protease inhibitor and 3% (w/v) OG. The system is kept stirring at 

4ºC for 2 hours for isolation of protein from inclusion bodies. After which, it is centrifuged for 

30 mins at 10,000 rpm while at 4ºC. In the mean time, the Ni NTA is equilibrated with buffer A. 

After equilibration of the resin, the supernatant containing the detergent solubilized protein is 

incubated with the resin for 2 hours on ice for purification with the help of 6x His tag. Thereafter 

the column is loaded and washed with wash buffer with (1.5% of OG with 0.03 M Imidazole in 

buffer A) and then with (0.5% of DPC in buffer A). Finally, the protein is eluted with the elution 

buffer (0.5% of DPC with 2M Imidazole in buffer A). 

Absorbance= ε*c*l 

Where “ε” is the extinction coefficient of the protein (2.3), “c” the concentration of protein in 

mg/ml and “l” the path length of the cuvette (0.3). 

The normal yield of protein in LB medium was ~4-5 mg/ml and ~10 mg/lit in defined medium. 

The purity of protein was verified with the SDS PAGE gel and the protein was approximately 

over 95% pure. 
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Reconstitution 

The detergent solubilized protein was subjected to reconstitution using various screens. Several 

conditions for optimal reconstitution were tested with electron microscopy and the best condition 

can be summarized as dialysis in buffer containing 40 mM Na(CH3COO), 10 mM MgCl2, 0.2 

mM DTT, 3 mM NaN3, 20% Glycerol with pH of 4.5 and at temperature ~ 20ºC. The protein 

concentration is adjusted to 1mg/ml; protein to lipid mole ratio is 1:25 and DPC: DOPC molar 

ratio used is 2:1. 

 

Activity assay  
DGK activity was determined by a linked-enzyme assay [206, 207]. In which, the DGK reaction 

is linked to the conversion of NADH to NAD+ by pyruvate kinase and lactate dehydrogenase. 

DGK activity is monitored by oxidation of NADH to NAD+ with the corresponding decrease in 

NADH absorption at 340 nm. Pyruvate kinase and lactate dehydrogenase were added to the 

assay buffer and incubated at 30ºC for 5 min before the addition of DGK. The change in NADH 

absorption at 340 nm was monitored by using a Jasco UV/Vis spectrophotometer. The assays 

were initiated by adding DGK to assay mixtures containing pH 6.8 buffer (60 mM PIPES, 50 

mM LiCl, 0.1 mM EDTA, 0.1 mM EGTA), 1 mM phosphoenolpyruvate, 3 mM ATP, 2.6 mM 

sn-1,2-dihex-anoylglycerol, 20 mM Mg2+ (acetate salt used), 0.25 mM NADH, and 20 units each 

of lactic dehydrogenase and pyruvate kinase (from a glycerol-containing stock). The 

concentration of the reaction mixture was so adjusted that the DGK catalyzed step in the cascade 

was rate limiting. The maximum activity obtained with the reconstituted samples was 

~35µmol/mg/min. 

 

Once the protein was successfully reconstituted, the amount of active protein was estimated by 

calculating the specific activity using the activity assay. The activity of the protein is calculated 

by means of activity assay. Where 100 µl of assay buffer is added to 5µl of linking enzymes 

which is a mixture of pyruvate kinase and lactate dehydrogenase. This mixture is incubated at 

30ºC for 5 mins and then 1µl of the reconstituted protein is added. The calculations are done as 

follows. 

 ∆Abs/min= slope of the graph 
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Extinction coefficient value for NADH is 6.22 x 103 m-1cm-1. 

 

The value of slope in units of ∆Abs/min can be obtained from the spectra for the given cuvette 

thickness, which in this case is 3 mm and needs to be converted for 10 mm to obtain the activity 

in molar units. The value is then converted to unit of moles by multiplying the molar units with 

the entire volume of the reaction mixture i.e. 106 µl. usually this value is expressed in 

µmoles/min. Finally, to obtain the values for the specific activity, the activity in µ moles/min is 

divided by the protein concentration. 
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