482 research outputs found

    Sparse reduced-rank regression for imaging genetics studies: models and applications

    Get PDF
    We present a novel statistical technique; the sparse reduced rank regression (sRRR) model which is a strategy for multivariate modelling of high-dimensional imaging responses and genetic predictors. By adopting penalisation techniques, the model is able to enforce sparsity in the regression coefficients, identifying subsets of genetic markers that best explain the variability observed in subsets of the phenotypes. To properly exploit the rich structure present in each of the imaging and genetics domains, we additionally propose the use of several structured penalties within the sRRR model. Using simulation procedures that accurately reflect realistic imaging genetics data, we present detailed evaluations of the sRRR method in comparison with the more traditional univariate linear modelling approach. In all settings considered, we show that sRRR possesses better power to detect the deleterious genetic variants. Moreover, using a simple genetic model, we demonstrate the potential benefits, in terms of statistical power, of carrying out voxel-wise searches as opposed to extracting averages over regions of interest in the brain. Since this entails the use of phenotypic vectors of enormous dimensionality, we suggest the use of a sparse classification model as a de-noising step, prior to the imaging genetics study. Finally, we present the application of a data re-sampling technique within the sRRR model for model selection. Using this approach we are able to rank the genetic markers in order of importance of association to the phenotypes, and similarly rank the phenotypes in order of importance to the genetic markers. In the very end, we illustrate the application perspective of the proposed statistical models in three real imaging genetics datasets and highlight some potential associations

    Statistical methods for gene selection and genetic association studies

    Get PDF
    This dissertation includes five Chapters. A brief description of each chapter is organized as follows. In Chapter One, we propose a signed bipartite genotype and phenotype network (GPN) by linking phenotypes and genotypes based on the statistical associations. It provides a new insight to investigate the genetic architecture among multiple correlated phenotypes and explore where phenotypes might be related at a higher level of cellular and organismal organization. We show that multiple phenotypes association studies by considering the proposed network are improved by incorporating the genetic information into the phenotype clustering. In Chapter Two, we first illustrate the proposed GPN to GWAS summary statistics. Then, we assess contributions to constructing a well-defined GPN with a clear representation of genetic associations by comparing the network properties with a random network, including connectivity, centrality, and community structure. The network topology annotations based on the sparse representations of GPN can be used to understand the disease heritability for the highly correlated phenotypes. In applications of phenome-wide association studies, the proposed GPN can identify more significant pairs of genetic variant and phenotype categories. In Chapter Three, a powerful and computationally efficient gene-based association test is proposed, aggregating information from different gene-based association tests and also incorporating expression quantitative trait locus information. We show that the proposed method controls the type I error rates very well and has higher power in the simulation studies and can identify more significant genes in the real data analyses. In Chapter Four, we develop six statistical selection methods based on the penalized regression for inferring target genes of a transcription factor (TF). In this study, the proposed selection methods combine statistics, machine learning , and convex optimization approach, which have great efficacy in identifying the true target genes. The methods will fill the gap of lacking the appropriate methods for predicting target genes of a TF, and are instrumental for validating experimental results yielding from ChIP-seq and DAP-seq, and conversely, selection and annotation of TFs based on their target genes. In Chapter Five, we propose a gene selection approach by capturing gene-level signals in network-based regression into case-control association studies with DNA sequence data or DNA methylation data, inspired by the popular gene-based association tests using a weighted combination of genetic variants to capture the combined effect of individual genetic variants within a gene. We show that the proposed gene selection approach have higher true positive rates than using traditional dimension reduction techniques in the simulation studies and select potentially rheumatoid arthritis related genes that are missed by existing methods

    Analysis of Biochemical Reaction Networks using Tropical and Polyhedral Geometry Methods

    Get PDF
    The field of systems biology makes an attempt to realise various biological functions and processes as the emergent properties of the underlying biochemical network model. The area of computational systems biology deals with the computational methods to compute such properties. In this context, the thesis primarily discusses novel computational methods to compute the emergent properties as well as to recognize the essence in complex network models. The computational methods described in the thesis are based on the computer algebra techniques, namely tropical geometry and extreme currents. Tropical geometry is based on ideas of dominance of monomials appearing in a system of differential equations, which are often used to describe the dynamics of the network model. In such differential equation based models, tropical geometry deals with identification of the metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. The application of such properties in model reduction and symbolic dynamics are demonstrated in the network models obtained from a public database namely Biomodels. Extreme currents are limiting edges of the convex polyhedrons describing the admissible fluxes in biochemical networks, which are helpful to decompose a biochemical network into a set of irreducible pathways. The pathways are shown to be associated with given clinical outcomes thereby providing some mechanistic insights associated with the clinical phenotypes. Similar to the tropical geometry, the method based on extreme currents is evaluated on the network models derived from a public database namely KEGG. Therefore, this thesis makes an attempt to explain the emergent properties of the network model by determining extreme currents or metastable regimes. Additionally, their applicability in the real world network models are discussed

    The poly-omics of ageing through individual-based metabolic modelling

    Get PDF
    Abstract Background Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. Results We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. Conclusions We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells

    Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

    Get PDF
    The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.This study was supported by COST Action CA18131 “Statistical and machine learning techniques in human microbiome studies”. Estonian Research Council grant PRG548 (JT). Spanish State Research Agency Juan de la Cierva Grant IJC2019-042188-I (LM-Z). EO was founded and OA was supported by Estonian Research Council grant PUT 1371 and EMBO Installation grant 3573. AG was supported by Statutory Research project of the Department of Computer Networks and Systems

    Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

    Get PDF
    COST Action CA18131 Cierva Grant IJC2019-042188-I (LM-Z) Estonian Research Council grant PUT 1371The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.publishersversionpublishe

    Bayesian analytical approaches for metabolomics : a novel method for molecular structure-informed metabolite interaction modeling, a novel diagnostic model for differentiating myocardial infarction type, and approaches for compound identification given mass spectrometry data.

    Get PDF
    Metabolomics, the study of small molecules in biological systems, has enjoyed great success in enabling researchers to examine disease-associated metabolic dysregulation and has been utilized for the discovery biomarkers of disease and phenotypic states. In spite of recent technological advances in the analytical platforms utilized in metabolomics and the proliferation of tools for the analysis of metabolomics data, significant challenges in metabolomics data analyses remain. In this dissertation, we present three of these challenges and Bayesian methodological solutions for each. In the first part we develop a new methodology to serve a basis for making higher order inferences in metabolomics, which we define as the testing of hypotheses that are more complex than single metabolite hypothesis tests. This methodology utilizes informative priors that are generated via the analysis of molecular structure similarity to enable the estimation of metabolite interactomes (or probabilistic models) which are organism-, sample media-, and condition-specific as well as comprehensive; and that can serve as reference models for studying perturbations in metabolic systems. After discussing the development of our methodology, we present an evaluation of its performance conducted using simulation studies, and we use the methodology for estimating a plasma metabolite interactome for stable heart disease. This interactome may serve as a reference model for evaluating systems-level changes that occur with acute disease events such as myocardial infarction (MI) or unstable angina. In the second part of this work, we present the challenge of developing diagnostic classification models which utilize metabolite abundances and that do not overfit relatively small sample sizes, especially given the high dimensionality of metabolite data acquired using platforms such as liquid chromatography-mass spectrometry. We use a Bayesian methodology for estimating a multinomial logistic regression classifier for the detection and discrimination of the subtype of acute myocardial infarction utilizing metabolite abundance data quantified from blood plasma. As heart disease is the leading cause of global mortality, a blood-based and non-invasive diagnostic test that could differentiate between MI types at the time of the event would have great utility. In the final part of this dissertation we review Bayesian approaches for compound identification in metabolomics experiments that utilize liquid chromatography-mass spectrometry which remains a challenging problem

    Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

    Get PDF
    The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach
    corecore