3,584 research outputs found

    Extracting curve-skeletons from digital shapes using occluding contours

    Get PDF
    Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Tracking p-adic precision

    Full text link
    We present a new method to propagate pp-adic precision in computations, which also applies to other ultrametric fields. We illustrate it with many examples and give a toy application to the stable computation of the SOMOS 4 sequence

    p-Adic Stability In Linear Algebra

    Full text link
    Using the differential precision methods developed previously by the same authors, we study the p-adic stability of standard operations on matrices and vector spaces. We demonstrate that lattice-based methods surpass naive methods in many applications, such as matrix multiplication and sums and intersections of subspaces. We also analyze determinants , characteristic polynomials and LU factorization using these differential methods. We supplement our observations with numerical experiments.Comment: ISSAC 2015, Jul 2015, Bath, United Kingdom. 201

    Polyhedral Surface Approximation of Non-Convex Voxel Sets and Improvements to the Convex Hull Computing Method

    Get PDF
    In this paper we introduce an algorithm for the creation of polyhedral approximations for objects represented as strongly connected sets of voxels in three-dimensional binary images. The algorithm generates the convex hull of a given object and modifies the hull afterwards by recursive repetitions of generating convex hulls of subsets of the given voxel set or subsets of the background voxels. The result of this method is a polyhedron which separates object voxels from background voxels. The objects processed by this algorithm and also the background voxel components inside the convex hull of the objects are restricted to have genus 0. The second aim of this paper is to present some improvements to our convex hull algorithm to reduce computation time

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation
    • …
    corecore