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Abstract

In this paper we introduce an algorithm for the creation of polyhedral

approximations for objects represented as strongly connected sets of voxels

in three-dimensional binary images. The algorithm generates the convex hull

of a given object and modifies the hull afterwards by recursive repetitions

of generating convex hulls of subsets of the given voxel set or subsets of the

background voxels. The result of this method is a polyhedron which separates

object voxels from background voxels. The objects processed by this algorithm

and also the background voxel components inside the convex hull of the objects

are restricted to have genus 0. The second aim of this paper is to present some

improvements to our convex hull algorithm to reduce computation time.

1 Introduction

An often arising problem in the field of three-dimensional image analysis is the
efficient encoding of the surface of a digital object which is given as a set of voxels.
The most popular approach is that of the triangulation, not only because of the
simplicity of triangles but also because of the existing hardware support for tasks
in the field of computer graphics.

A widely used approach to triangulate voxel objects is the Marching Cubes Al-
gorithm by Lorensen and Cline [1]. It has a very low time complexity, i.e. it is
linear in the number of voxels, which makes this algorithm applicable in practical
tasks. But it has also two important drawbacks. First, the number of generated
triangles is in most cases greater than the number of surface elements (faces) of the
original voxel image and second, the orientation of the triangles is limited to a few
directions. This is not desirable when an approximation of the original object (be-
fore digitization) is needed, which has a smooth surface with a constant curvature,
for example.

Other triangulation methods use a divide-and-conquer approach. The algorithm
described in [2] is applicable not only in 2-dimensional spaces to produce Delau-
nay triangulations, but also in higher dimensions, i.e. also in the 3-dimensional
case. The algorithm separates the input data into two subsets and constructs the
triangulation of the subsets recursively.

Another possibility consists in creating the Voronoi diagram [3] of a set of points
using the duality between Delaunay triangulations and Voronoi diagrams. Efficient
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algorithms for constructing Voronoi diagrams in 2D are well known [4]. The concept
can be easily adopted to 3D.

Sometimes there exists the necessity to generate a more economical surface than
a triangulation. Especially when triangulations would have lots of coplanar trian-
gles, a polyhedral surface (a surface containing faces with more than three edges)
would be much more efficient. The problem of approximating polyhedral surfaces
is also well studied in the field of computational geometry [5, 6, 7].

In [8] we have already shown that for a convex voxel set the convex hull is such
a polyhedral surface. In this paper we present an improvement of this algorithm to
approximate non-convex objects, too.

The formal task to be solved is the following: Given a set V of voxels we want to
create a closed polyhedral surface H containing V with the minimum surface area.
Since there can be more than one polyhedron with the minimum surface area, we
search the one with the minimum number of faces.1 The polyhedral surface H shall
separate object voxels (interior) from background voxels (exterior) in such a way
that no object voxel lies outside H and no background voxel lies inside H. Voxels
lying on H, especially the vertices of the polyhedron, have to be marked as being
object voxels or background voxels. For the first criterion (minimum surface area)
we will only present an approximation here. The second criterion (separation) is
stated to provide the possibility to exactly restore the original voxel set V from the
polyhedron H. An efficient data structure to store the polyhedral surface is the cell
list [10].

In the next Section we present the basic definitions used in this paper. In
Section 3 we shortly present the algorithm for the construction of the convex hull
and we give some new improvements to this algorithm concerning the reduction of
the computation time. The main part of this paper follows in Section 4 where we
present our method to construct polyhedral surfaces for non-convex digital objects
through recursive repetitions of generating convex hulls of subsets of the given voxel
set or subsets of the background voxels. In Section 5 we show some example images
and experimental results. The paper is closed with a conclusion in Section 7 and a
bibliography.

2 Basic Definitions

The algorithm presented here is based on the theory of abstract cell complexes (AC
complexes) introduced to the field of image analysis by Kovalevsky [10]. Most of the
basic notions of this theory relevant to the topic of polyhedral surfaces are gathered
in the Appendix to [8].

Let V be a given set of voxels in a Cartesian three-dimensional space. The voxels
of V are specified by their coordinates. Our aim is to construct the convex hull K

of V and a modification H of K which represents the polyhedral surface of V . We
consider the convex hull and the modified hull as abstract polyhedra according to
the following definition:

Definition AP: An abstract polyhedron is a three-dimensional AC complex con-
taining a single three-dimensional cell whose boundary is a two-dimensional com-
binatorial manifold without boundary. The two-dimensional cells (2-cells) of the
polyhedron are its faces, the one-dimensional cells (1-cells) are its edges and the
zero-dimensional cells (0-cells) are its vertices or points. [8]

1Example: The faces of a cube (squares) can be subdivided into coplanar triangles. The surface
area does not change, but the number of faces increases.
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An abstract polyhedron is called a geometric one if coordinates are assigned to each
of its vertices. We shall call an abstract geometric polyhedron an AG-polyhedron.
Each face of an AG-polyhedron PG must be planar. This means that the coor-
dinates of all 0-cells belonging to the boundary of a face Fi of PG must satisfy a
linear equation Hi(x, y, z) = 0. If these coordinates are coordinates of some cells of
a Cartesian AC complex A then we say that the polyhedron PG is embedded into
A or that A contains the polyhedron PG.

Definition CP: An AG-polyhedron PG is called convex if the coordinates of each
vertex of PG satisfy all the linear inequalities Hi(x, y, z) ≤ 0 corresponding to all
faces Fi of PG. The coefficients of the linear form Hi(x, y, z) are the components
of the outer normal of Fi. [8]

A cell c of the complex A containing the convex AG-polyhedron PG is said to lie

in PG if the coordinates of c satisfy all the linear inequalities Hi(x, y, z) ≤ 0 of all
faces Fi of PG.

Definition CH: The convex hull of a finite set V of voxels is the smallest convex
AG-polyhedron PG containing all voxels of the set V . ”Smallest” means that there
exists no convex AG-polyhedron different from PG which contains all voxels of V

and whose all vertices are in PG. [8]

For the differentiation between voxel sets being convex or not, we need to define
what a convex voxel set actually is.

Definition DCS: A digital half-space is the set of all voxels whose coordinates
satisfy a linear inequality. A digital convex subset of the space is a non-empty in-
tersection of digital half-spaces. [8]

3 Convex Hull

It is well known that every non-convex set can be considered as the sum or the
difference of convex sets. We use this property of non-convex sets to extend our
incremental convex hull computing method presented in [8] to construct an abstract
polyhedron from a non-convex set of voxels by subtracting small convex hulls from
an initial convex hull. This is motivated by the imagination of modelling the surface
through pressing faces of the convex hull onto the voxel object.

3.1 Constructing the Convex Hull

The first step to build a non-convex abstract polyhedron consists in creating the
convex hull of the given voxel object V as described in [8]. The algorithm for
constructing the convex hull consists of two parts: in the first part a subset of
vectors v pointing to voxels must be found which are candidates for the vertices of
the convex hull. The coordinates of the candidates are saved in an array L. The
second part constructs the convex hull of the set L.

From the point of view of AC complexes the given set V is the set of three-
dimensional cells (3-cells) of a subcomplex M of a three-dimensional Cartesian AC
complex A. The complex A represents the topological space in which our procedure
is acting. It is reasonable to accept that M is homogeneously three-dimensional
according to the following definition:
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Definition HN: An n-dimensional AC complex A is called homogeneously n-

dimensional if every k-dimensional cell of C with k < n is incident to at least
one n-cell of C. [9]

The problem of finding the vectors v can be defined as follows: A 0-cell is called
a convex 0-cell iff it is incident to exactly one 3-cell of M (Figure 1). All 3-cells
incident to at least one convex 0-cell are the candidate vectors v. The vectors v are
stored in L.

Figure 1: Four voxels and their convex 0-cells (depicted as black disks). Non-convex
0-cells are depicted as circles. The voxel in the center of the front row is not incident
to any convex 0-cell and thus it is not a candidate vector.

As already mentioned, the second part of our algorithm is that of constructing
the convex hull of the set L of the candidate vectors v found by the first part.

To build the convex hull of L we first create a simple convex polyhedron spanning
four arbitrary non-coplanar voxels v of L. It is a tetrahedron. It will be extended
step by step until it becomes the convex hull of L. We call it the current polyhedron

CP .
The surface of the current polyhedron is represented with the data structure

called the two-dimensional cell list [10]. The cell list of a two-dimensional com-
plex consists in the general case of three sublists. The kth sublist contains all
k-dimensional cells (k-cells), k = 0, 1, 2. The 0-cells are the vertices, the 1-cells are
the edges, the 2-cells are the faces of the polyhedron. Each entry in the kth sublist
corresponds to a k-cell ck. The entry contains indices of all cells incident to ck. The
entry of a 0-cell contains also its coordinates.

The cell list according to this definition contains much redundancy, because it
contains for a pair of two incident cells ck and cm both the reference from ck to cm

and from cm to ck. The redundancy makes the computation faster, because cells
incident to each other may be found immediately, without a search. However, for
the exact reconstruction of the voxel set from the cell list the redundancy can be
eliminated to make the encoding more economical.

The next step in constructing the convex hull is to extend the current polyhedron
while adding more and more voxels, some of which become vertices of the convex
hull. When the list L of the candidate vectors is exhausted, the current polyhedron
becomes the convex hull of M . The extension procedure is based on the notion of
visibility of faces which is defined as follows.

Definition VI: The face F of a convex polyhedron is visible from a cell c, if c

lies in the outer open half-space bounded by the face F , i.e. if the scalar product
(N,w) of the outer normal N of the face F and the vector w pointing from a point Q

in F to c, is positive. If the scalar product is negative then F is said to be invisible

from c. If the scalar product is equal to zero then F is said to be coplanar with c. [8]

To extend the current polyhedron the algorithm processes one voxel after another.
For any voxel v it computes the visibility of the faces of the polyhedron from v.
Consider first the simpler case when there are no faces of the current polyhedron,
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which are coplanar with v. The algorithm labels each face of the current polyhedron
as being visible from v or not. If the set of visible faces is empty, then the voxel
v is located inside the polyhedron and may be discarded. If one or more faces are
visible, then the polyhedron is extended by the voxel v and some new faces. Each
new face connects v with one edge of the boundary of the set of visible faces. A new
face is a triangle having v as its vertex and one of the edges of the said boundary as
its base. All triangles are included into the cell list of the current polyhedron while
all visible faces are removed. Also each edge incident to two visible faces and each
vertex incident only to visible faces is removed.

�
�
�
�

v

Figure 2: The current polyhedron (a cube) being extended by the voxel v as a new
vertex.

In Figure 2 the boundary of the visible subset is shown by bold lines (solid or
dashed). The edges shown by dotted lines must be removed together with the three
faces visible from v. The remaining faces, edges and vertices keep unchanged. The
algorithm repeats this procedure for all voxels in L.

Consider now the problem of coplanar faces. There are three variants to treat a
face coplanar with a new voxel v. The first variant treats coplanar faces as visible
ones. In such a situation the algorithm removes all coplanar faces and replaces them
by new triangles connecting the boundary edges with the voxel v. As a result the
number of coplanar triangles is rather small (see Figure 3).

Secondly, we can treat coplanar faces as invisible ones. In this situation the
algorithm keeps the coplanar faces and creates more and more triangles. For a
large number of coplanar voxels the number of faces created by this method is
large, too (see Figure 4).

Both alternatives, treating coplanar faces as visible and invisible respectively,
require a subsequent step of merging coplanar triangles since our aim is to produce a
polyhedral approximation of the objects surface, but not necessarily a triangulation.
If a triangulation is desired, the step of merging coplanar faces must be omitted.

The third option to handle coplanar faces is a little bit more sophisticated and
treats them neither as visible nor as invisible ones. We call it extension method

since the algorithm has to extend a coplanar face towards the new voxel v. This
procedure is similar to the construction of the two-dimensional convex hull of v and
the coplanar face. The result of this method to treat a coplanar face is a convex
face with more than three edges. The number of generated faces then is as small as
possible (see Figure 5).

In the following we want to present two examples processed with all three vari-
ants to compare computation time and the number of faces generated. The first
example is a cube whose sides are non-parallel to the coordinate planes. Figures 3
and 4 show the results for the first two variants before merging coplanar triangles.
After the merging step all three results are identical (see Figure 5). The second
example is a digital ball (see Figures 6 to 8). The difference between the first two
variants is not as big as in the cube example, but the number of faces generated is
significantly greater than the number of faces generated with the extension method
and the number of faces after merging respectively.
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Figure 3: Convex hull of a cube as a triangulation. Coplanar faces have been treated
as visible ones.

Figure 4: Convex hull of a cube as a triangulation. Coplanar faces have been treated
as invisible ones.
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Figure 5: Convex hull of a cube. Coplanar faces have been treated with the ex-
tension method. After merging coplanar faces of the triangulated convex hull the
result of all three methods looks the same.

Figure 6: Convex hull of a digital ball as a triangulation. Coplanar faces have been
treated as visible ones.
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Figure 7: Convex hull of a digital ball as a triangulation. Coplanar faces have been
treated as invisible ones.

Figure 8: Convex hull of a digital ball. Coplanar faces have been treated with the
extension method.
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Table 1: Comparison of the computation time of the three variants of treating
coplanar faces.

Object Computation time
Triangulation Triangulation Extension

(coplanar = visible) (coplanar = invisible) Method
Ball (r = 12) 0,110s 0,210s 0,080s
Ball (r = 16) 1,812s 2,293s 0,971s
Ball (r = 20) 1,932s 5,357s 1,462s
Ball (r = 24) 4,937s 8,072s 3,435s
Cube (a = 5) 0,040s 0,130s 0,010s
Cube (a = 10) 0,180s 8,031s 0,170s

Table 2: Comparison of the numbers of faces created with the three variants of
treating coplanar faces.

Object Number of faces of the convex hull
Triangulation Triangulation Extension

(coplanar = visible) (coplanar = invisible) Method
Ball (r = 12) 140 236 74
Ball (r = 16) 428 492 218
Ball (r = 20) 380 636 170
Ball (r = 24) 524 668 290
Cube (a = 5) 60 204 24
Cube (a = 10) 60 716 22

The examples show clearly that the best way to treat coplanar faces is to use
the extension method since the number of faces created is as small as possible.
The number of faces of the current polyhedron has a significant impact on the
computation time (see Table 1) since the algorithm has to compute the visibility of
every face for every new voxel v.

If a triangulation is desired the best way is to treat coplanar faces as visible ones
since the number of new faces is smaller then the number of faces created with the
method which interprets coplanar faces as invisible ones.

The procedure of adding new faces to the current polyhedron ends after pro-
cessing all candidate vectors in L. With this step the convex hull is completely
constructed and the first part of creating a polyhedral surface of the given voxel
object V ends.

3.2 Reducing computation time through sorting vertex can-

didates

As already shown in the previous section, the runtime of the convex hull creation
algorithm depends considerably on the method of treating coplanar faces. The
computation time spent for the extension of coplanar faces is much less than the
time saved by reducing the number of faces of the polyhedron.

Another runtime reduction can be achieved by a suitable selection of the vertices
of the initial convex hull, i.e. the tetrahedron. The idea is to maximize the initial
polyhedron and also the subsequent hulls to have many vertex candidates, which
are no vertices of the convex hull, already located inside the polyhedron. For those
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vertex candidates the algorithm has to compute the visibility only. Since they are
located inside the current polyhedron, there is no need to extend it, which means
that no new faces have to be created. It is easy to see that this method is promising
only for objects whose convex hulls have few vertices related to the number of vertex
candidates.

For the maximization of the initial hull we first need to have the list L of vertex
candidates sorted lexicographically. This is always the case since L is created by
systematically going through the cell complex to find the candidates. Hence the first
vector ~v1 in L is the one with minimum x-coordinate and minimum y-coordinate
amongst all vectors with this x-value and minimum z-coordinate amongst all with
this y-value. We cannot take the absolute minimum values for all three coordinates
since such a cell does not necessarily belong to the object. The first candidate in
L is also the first one in our new sorted list Ls. The second candidate ~v2 is the
vector with maximum x-coordinate and minimum y- and z-coordinates chosen the
same way as for the first candidate. If there is one vector with minimum x-, y- or
z-coordinate only then the next greater value has to be taken. For the third and
the fourth candidate ~v3 and ~v4 we choose the ones with maximum y-coordinate and
z-coordinate respectively. I.e. the four vertices of the tetrahedron are:

~v1 =





xmin

ymin

zmin



 , ~v2 =





xmax

ymin

zmin



 , ~v3 =





xmin

ymax

zmin



 , ~v4 =





xmin

ymin

zmax





The next four vertex candidates in Ls are chosen in a similar way with maximum
values in their coordinates, i.e.:

~v5 =





xmax

ymax

zmax



 , ~v6 =





xmin

ymax

zmax



 , ~v7 =





xmax

ymin

zmax



 , ~v8 =





xmax

ymax

zmin





With these eight vectors the algorithm produces an octahedron which is ex-
tended with all other candidate vectors of Ls containing the remainder of all cells
of L in the same order.

As already mentioned this method has no benefit for objects whose all candidates
are vertices of the convex hull. Digital balls are examples for such objects. But the
computation time for choosing eight elements from a sorted list is negligibly small
in relation to the advantage of saving a lot of work spent for creating and removing
faces. In the general case, especially when considering non-convex objects, the
number of vertices of the convex hull is significantly smaller then the number of
vertex candidates.

The object in Figure 9 has been created from the sorted list Ls. Coplanar faces
have been treated as invisible faces. With this sorted list Ls the number of faces
of the triangulated convex hull can be reduced from 716 to 622, which leads to a
reduction of computation time from 8,031s to 6,209s.

The experiments in this section have shown that a significant reduction of the
computation time can be achieved using the concept of treating coplanar faces with
the extension method instead of treating them as visible ones [8]. The preparation
step of sorting the vertex candidates and choosing minimum and maximum coordi-
nate values does not change the methodology of the algorithm, but brings another
runtime reduction of the implementation.
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Figure 9: Triangulated convex hull of the cube created from the sorted list Ls.
Coplanar faces have been treated as invisible ones (cf. Figure 4).

4 Non-convex Sets of Voxels

4.1 Finding Concavities

As already mentioned, the convex hull is a good means to encode the surface of
a convex object. The convex hull of a convex set of voxels (according to Defini-
tion DCS) never contains voxels of the background. If the given voxel object is
not convex, we have to find components of the set of background voxels included
into the convex hull. These components can be cavities, concavities and tunnels [11].

Definition CO: A concavity is a component of background voxels inside the con-
vex hull which intersects exactly one connected set of faces of the convex hull.

Due to this definition a concavity does not have to be a convex protrusion of the
background, i.e. it does not have to be convex.

Definition CA: A cavity is a component of background voxels inside the con-
vex hull, which does not intersect any face of the convex hull.

Definition TU: A tunnel is a component of background voxels inside the con-
vex hull which intersects more than one connected set of faces of the convex hull. If
the tunnel intersects exactly two connected sets it is called a non-branched tunnel.
If the number of connected sets of faces of the convex hull which are intersected by
the component is greater than two, the tunnel is called a branched one.

Here we only deal with concavities and cavities. The latter are a trivial problem
and will be mentioned later on. Tunnels are part of future work.

We use the algorithm described in [12] to find the components of the set of
background voxels inside the convex hull and classify them by the number of the
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connected sets of faces of the convex hull which are intersected by the component.
To check whether a component of background voxels is intersects a set of faces

of the convex hull, we just have to compute the visibility of faces from the 0-cells
of the background component. If every 0-cell of a component has no visible faces
then the component is entirely located inside the hull and thus it is a cavity. If one
or more 0-cells have visible faces or one or more 0-cells are coplanar with a set of
faces then the component intersects the hull, i.e. it is a concavity or a tunnel (see
Figure 10).

F

P

B

CH

C H

Figure 10: Convex hull CH of an object (gray shaded). Some of the 0-cells of the
background voxel component are located outside CH and thus there exists a visible
face.

The components are labeled and thus we can modify the convex hull by treating
one component of background voxels after another.

4.2 Modification of the Convex Hull

After all components of background voxels inside the convex hull are found, we
can modify the convex hull. As already mentioned, the convex hull is a convex
polyhedron. After the first modification we can no longer speak of the convex hull,
because it is no longer a convex polyhedron. Hence we call the modified hull current

polyhedron again until it becomes a polyhedron with the desired properties.
To modify the current polyhedron we first need to know which faces are inter-

sected by the current background voxel component. This can be determined by
using again the notion of visibility. In the previous step we have labeled a compo-
nent if its 0-cells have visible faces and now we label the faces which are visible from
the 0-cells of the current background voxel component. This means that a face F

becomes labeled if the following criteria are all satisfied:

1. The face F is visible from some of the 0-cells of the background voxel compo-
nent or some 0-cells are coplanar with the face F .

2. If there is a 0-cell P outside H and a background voxel B inside or on H with
P ∈ Cl(B), then the projection of B onto the face F is inside the boundary
of F .

3. The 0-cell P does not lie on the boundary of the face F .

We want to mention that the steps of labeling the background voxel components
and labeling the corresponding faces can be merged together.

A topology preserving operation called ”pressing-in” is applied to the set of la-
beled faces (see Figure 11).
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Definition PR: Pressing-in towards a non-empty set of cells located inside a poly-
hedron H is a topology preserving operation which replaces a connected set S1 of
faces of H by a new connected set S2 of faces in such a way that the boundaries of
the sets S1 and S2 are identical. [13]

In the simplest case the set S1 consists of one face only and thus it can be in-
terpreted as the base of a pyramid which has the set S2 as its sides. The apex
of the pyramid (P in Figure 11) is located inside the polyhedron. In the general
case the set S1 consists of several faces and the destination of the pressing-in is not
necessarily a single cell.
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P

b

Figure 11: A cell P inside the polyhedron (a) and the resulting polyhedron after
pressing-in (b).

We perform the pressing-in by constructing a polyhedron around the background
voxel component. As mentioned in the Introduction, we want to apply our convex
hull algorithm recursively to modify the convex hull of the voxel object. This means
that we now create the convex hull of the background voxel component and modify
it again and again until there are no object voxels outside the polyhedron and no
background voxels inside it. To do so we have to combine the cell lists of the
current polyhedron and that of the current polyhedron of the background voxel
component. But this is not trivial. Definition PR implies that we can identify faces
of both polyhedra, but this is not possible in the general case (see Figure 12a).

To avoid identifying faces of these two polyhedra, which do not have identical
boundaries, we do not construct the convex hull of the background voxel component
independently. A more precise approach consists in spanning the convex hull by
starting with the labeled faces of the current polyhedron. This means that we
span an initial polyhedron with this set of faces and a voxel of the background
component, which lies on the inside of the set of labeled faces (Figure 12b). This
initial polyhedron can be extended in the same way as the tetrahedron being the
initial convex hull. The result is the convex hull of the set of labeled faces and the
set of voxels of the background voxel component lying inside the polyhedron before
applying the pressing-in operation (Figure 12c).

Another problem is that of the recognition of 0-cells outside a non-convex poly-
hedron, because faces of such a polyhedron can be visible from 0-cells inside a
non-convex polyhedron. Therefore we need another method than the visibility ap-
proach to decide for each 0-cell whether it is located in the inside or not. An easy
approach is to compute a ray from the current 0-cell to a point which is certainly
outside the polyhedron (i.e. a point on the boundary of the space) and just to
count the number of intersections of the ray with the polyhedron. If this number
is odd then the current 0-cell lies inside. This method is of course only applicable
for polyhedra with no self-intersections, but since we only deal with binary voxel
images, self-intersections do not appear.

At this stage of the modification we have the current polyhedron and a second
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Figure 12: (a) Convex hull CH of a given set of voxels and the convex hull CHbvc

of the background voxel component. Two 0-cells c0

1
and c0

2
of the background voxel

component are located outside CH. (b) Initial convex hull of the set of background
voxels created from a fixed face (bold line). (c) Resulting convex hull CHbvc of the
background voxels.

smaller polyhedron which has a connected set of faces in common with the first
one (see Figure 13a). Now we perform our idea of recursivity by interpreting the
second polyhedron as the current polyhedron and we change the roles of object
and background voxels. Now we can apply the same algorithm to the new current
polyhedron and thus we search for object voxels inside this polyhedron for which
we have to do a pressing-in. This leads to a protuberance to the outside of the first
polyhedron.

a

CH

CH

rand

bvc

b

Figure 13: CH and CHbvc with a common face (a) and the resulting polyhedron
after the modification step (b).

The result of the algorithm is a polyhedron Ĥ which separates object voxels from
background voxels meaning that no object voxel lies outside Ĥ and no background
voxel lies inside Ĥ (see Figure 13b). Voxels lying on Ĥ, especially the vertices of Ĥ,
have to be marked in the cell list as being object or background voxels to preserve
the possibility to reconstruct the object from the cell list of Ĥ.

As already mentioned in Section 4.1, the algorithm can also deal with cavities,
because it is a trivial problem. According to Definition CA cavities have no connec-
tion to the outer surface of the polyhedron and thus we can independently compute
the convex hull of this background voxel component and modify it, if the cavity is
a non-convex one. After applying the algorithm to the cavity we have to change
the orientation of the normal vectors of the faces to ensure that they point to the
outside of the surface of the voxel object, which means that they point to the inside
of the cavity.

Given an object represented as subcomplex S of an AC complex A the modifi-
cation algorithm can be summarized as follows:
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create H=CH(S)

if H separates S and A\S {
return H

} else {
modify polyhedron(H)

return H

}

function modify polyhedron(H) {
find concavities inside H

for each concavity S’ {
create CH(S’)

if CH(S’) separates S’ and A\S’ {
merge H and CH(S’)

} else {
change roles of object and background voxels

modify polyhedron(CH(S’))

}
}
return H

}

Algorithm 1. The modification algorithm.

It is easily seen from the algorithm pseudocode that the complexity of this
method not only depends on the number of voxels but also on the number of con-
cavities and their degree of non-convexity (see Section 4.3). A complete study on
the complexity of the algorithm will be given in Section 6.

We want to mention that our algorithm has an important drawback. At this
level of development it is not able to deal with a class of objects whose surfaces
have a genus greater than 0 or whose background voxel components have a surface
with a genus greater than 0, such as tori or mushrooms. This is justified by the
fact that the pressing-in does not work for a set of faces composing a cycle. We are
currently working on an improvement of our algorithm to solve this problem.

The correctness of the algorithm can be shown as follows: the first step to
create a polyhedral surface Ĥ which separates the voxels of a given object S and
its complement A \ S is to compute the convex hull CH(S). The correctness of
the convex hull algorithm has already been shown in [8]. When the convex hull
is computed two cases can occur: (1) CH(S) does not contain any voxel of the
set A \ S and thus it is convex and (2) CH(S) contains voxels of A \ S. In the
first case the convex hull is a polyhedron which separates the voxels since no voxel
of S lies outside CH(S) and no voxel of A \ S lies inside and thus the algorithm
stops here. In the second case the algorithm detects the class of the background
voxel components and if these components are concavities it modifies the convex
hull using the concept of pressing-in. This procedure moves all voxels of a concavity
S′ to the outside of the current polyhedron P through a substitution of faces of P

with a new set of faces which lies completely inside P . This is done recursively for
each concavity. In each step the algorithm deals with a current polyhedron P and
a second smaller polyhedron P ′ lying completely inside P . The second polyhedron
is smaller than the first one in the sense that it includes a fewer number of voxels.
This means that by reducing the number of voxels in the current polyhedron the
number of recursive steps is finite and the algorithm stops after a finite number of
steps with a separating polyhedron P̂ as its result.
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4.3 Degree of Non-Convexity

In Section 4.1 we already presented a classification of non-convex objects regarding
the number of connected sets of faces of the convex hull into concavities, cavities and
tunnels. The number of such components of background voxels inside the convex
hull can be used as a measure to express the complexity of the object. But solely
using this measure does not distinguish between components of different complexity.
For a good classification of the complexity of the objects we need a second measure
which expresses the intricacy of the background voxel components.

For this purpose we introduce the degree of non-convexity, defined as follows:

Definition NK: The degree of non-convexity Gnc(S) of a non-convex subcomplex
S of an AC complex A is defined recursively:

1. For every convex object S it holds:

Gnc(S) = 0 (1)

2. The degree of non-convexity of an object S which is non-convex and contains
exactly one component S′ of background voxels, is greater by one than the
degree of non-convexity of S′:

Gnc(S) = Gnc(S
′) + 1 (2)

3. The degree of non-convexity of an object S which is non-convex and contains
more than one components of background voxels, is greater by one than the
maximum degree of non-convexity of its background voxel components:

Gnc(S) = max
i

{Gnc(S
′

i
)} + 1 (3)

Table 3 presents some examples for objects with different degree of non-convexity.
The examples are only 2-dimensional, but the concept is similar in the 3-dimensional
case.

Since the degree of non-convexity is defined without being restricted to concav-
ities, it can be applied to all three classes of background voxel components.

5 Examples

We have implemented the described algorithm and we have tested it with several
objects of different size and complexity.

One simple example is presented below in Figure 14-17 to show how intermediate
and final results look like.

Figure 14 (left) shows the voxel object. The voxels are interpreted as cells of
an Euclidean complex and thus they are represented as small cubes. The object
consists of 4949 voxels. On the right hand side of Figure 14 there is the convex hull
CH surrounding the voxels, i.e. the centers of the cubes. The convex hull consists
of 288 faces, 530 edges and 244 vertices.

The convex hull CH of the given voxel object includes one component of back-
ground voxels. The convex hull CHbvc of these background voxels is shown on the
left in Figure 15. It is created by starting with a set of 9 connected faces of CH.
Finally it consists of 32 faces and it is surrounding 835 background voxels, but also
424 object voxels.

In this situation we apply our algorithm to the polyhedron shown in Figure 15
(left). We interpret the set of background voxels now as the set of object voxels
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Table 3: Some examples for objects with different degree of non-convexity
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Gnc(S) = 0 since CH(S) does not
contain any components of background
voxels.

CH(S’)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Gnc(S) = 1 since CH(S) contains ex-
actly one component S′ of background
voxels with Gnc(S

′) = 0.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Gnc(S) = 1 since both concavities
inside CH(S) have a degree of non-
convexity of 0.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Gnc(S) = 2 since the concavity inside
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Gnc(S) = 2 since the maximum degree
of non-convexity of all concavities inside
CH(S) is 1.
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with the 424 object voxels as the set of background voxels inside the polyhedron.
The background voxels are composing two components. The convex hulls of these
components are shown on the right of Figure 15.

The left image in Figure 16 shows the polyhedral surface after applying only the
first modification of the convex hull, which corresponds to the unification of CH

and CHbvc, where the set of labeled faces is removed. This polyhedron includes no
voxels of the background, but two sets of object voxels are located on the outside
of the polyhedron.

On the right hand side of Figure 16 the resulting polyhedron after all modifica-
tion steps is presented. The resulting polyhedron consists of 300 faces, 566 edges
and 268 vertices.

Figure 17 shows the triangulation of this object with the Marching Cubes
method. It consists of 5184 triangles.

Figure 14: Example ”pac-man”. Left: The voxel object. Voxels are depicted as
small cubes. Right: Convex hull of of the centers of the small cubes.

Figure 15: Left: Convex hull of the background voxels lying inside the convex hull
of the given object. Right: Convex hulls of the object voxels lying inside the convex
hull of the background voxels.

One of our primary goals concerning this algorithm is the efficiency of the en-
coding. Therefore we have compared the results of our algorithm with that of the
Marching Cubes triangulation method, which is very often used in practical appli-
cations. As already mentioned in [8] we assume that 4.5 integers have to be saved
for each triangle within this method. Our algorithm produces a non-redundant cell
list containing 3 integers per vertex (its coordinates) and NFi

integers per face,
where NFi

is the number of vertices of face i. Table 4 presents the obtained values
for the memory requirements.
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Figure 16: Left: Polyhedron after subtracting the convex hull of the background
voxels only. Right: Resulting polyhedron after all modification steps.

Figure 17: Marching Cubes triangulation of the object of Figure 14.

Table 4: Comparison of the memory requirements of the cell list and those of the
triangulation for the example of Figure 14

Faces Vertices Integers
to be saved

MC-triangulation 5184 ∼2592 23328
Modified Convex Hull 300 268 1936
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6 Complexity

6.1 Complexity of the convex hull algorithm

O’Rourke has shown that the complexity of an incremental convex hull algorithm in
three dimensions is O(v2), where v denotes the number of vertices of the polyhedron
[4]. Our method is also an incremental algorithm and all vertices of the convex hull
are voxels of S and therefore the complexity of the algorithm can be considered as
O(n2), where n denotes the number of voxels of S.
Intuitively one could presume that the algorithm has linear time complexity since
it has to run through the list L of voxels only once when spanning the convex hull.
But during the steps of the extension procedure the number of faces to be tested
increases linearly and leads to the overall time complexity of O(n2).

6.2 Complexity of the modification algorithm

Let n be the number of voxels of the object S, k the number of concavities inside
CH(S) and m = Gnc(S) the degree of non-convexity of S (see Section 4.3). The
complexity of the modification algorithm is composed of the following parts: Inside
the modify polyhedron subroutine (see Algorithm 1) we have to find the concav-
ities, which can be done going twice through the list of all voxels, i.e. in O(n)
time. For each of the k concavities we have to create the convex hull. As already
mentioned this is of order O(n2). Merging polyhedra as well as changing roles of
object and background voxels has a complexity of O(n). Since modify polyhedron

is called recursively the complexity of the whole routine is O(m · k · n2), but in
practice it can be observed that it behaves as one of quadratic complexity since m

as well as k are much less than n.

7 Conclusion

In this paper we present a new algorithm for computing a polyhedral surface ap-
proximating a 3-dimensional digital object represented as a set of voxels. The
resulting polyhedral surface is an abstract polyhedron which is a particular case of
an abstract cell complex. The polyhedron is encoded by the non-redundant version
of the well-known 2-dimensional cell list which is a good tool to save topological
and geometric information efficiently and without redundancy. The cell list also
provides the possibility to exactly reconstruct the voxel object.

Furthermore we present some improvements to our convex hull algorithm which
lead to faster computation through sorting the list of vertex candidates. We also
discuss the three variants to treat coplanar faces and we show that the extension
method is the fastest one. Some examples for triangulated convex hulls are pre-
sented.

With the classification of background voxel components inside the convex hull
and the degree of non-convexity we introduce a measure to distinguish between
non-convex objects of different complexity.

The algorithm presented in this paper still needs further development. There are
some drawbacks, especially the one mentioned in Section 4.2, concerning surfaces
with a genus greater than 0. Also the labeling criteria are still under investigation.

The algorithm can be applied in a variety of tasks. Especially in the field of 3-
dimensional image analysis and computer graphics it can be used to visualize voxel
sets by polyhedra and to store large sets of voxels efficiently and without any loss
of information.
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