20 research outputs found

    The Reversal Ratio of a Poset

    Get PDF
    Felsner and Reuter introduced the linear extension diameter of a partially ordered set P\mathbf{P}, denoted \mbox{led}(\mathbf{P}), as the maximum distance between two linear extensions of P\mathbf{P}, where distance is defined to be the number of incomparable pairs appearing in opposite orders (reversed) in the linear extensions. In this paper, we introduce the reversal ratio RR(P)RR(\mathbf{P}) of P\mathbf{P} as the ratio of the linear extension diameter to the number of (unordered) incomparable pairs. We use probabilistic techniques to provide a family of posets Pk\mathbf{P}_k on at most klog⁥kk\log k elements for which the reversal ratio RR(Pk)≀C/log⁥kRR(\mathbf{P}_k)\leq C/\log k, where CC is a constant. We also examine the questions of bounding the reversal ratio in terms of order dimension and width.Comment: 10 pages, 2 figures; Accepted for publication in ORDE

    Big Ramsey degrees using parameter spaces

    Full text link
    We show that the universal homogeneous partial order has finite big Ramsey degrees and discuss several corollaries. Our proof uses parameter spaces and the Carlson-Simpson theorem rather than (a strengthening of) the Halpern-L\"auchli theorem and the Milliken tree theorem, which are the primary tools used to give bounds on big Ramsey degrees elsewhere (originating from work of Laver and Milliken). This new technique has many additional applications. To demonstrate this, we show that the homogeneous universal triangle-free graph has finite big Ramsey degrees, thus giving a short proof of a recent result of Dobrinen.Comment: 19 pages, 2 figure

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    It is well known that every stable matching instance II has a rotation poset R(I)R(I) that can be computed efficiently and the downsets of R(I)R(I) are in one-to-one correspondence with the stable matchings of II. Furthermore, for every poset PP, an instance I(P)I(P) can be constructed efficiently so that the rotation poset of I(P)I(P) is isomorphic to PP. In this case, we say that I(P)I(P) realizes PP. Many researchers exploit the rotation poset of an instance to develop fast algorithms or to establish the hardness of stable matching problems. In order to gain a parameterized understanding of the complexity of sampling stable matchings, Bhatnagar et al. [SODA 2008] introduced stable matching instances whose preference lists are restricted but nevertheless model situations that arise in practice. In this paper, we study four such parameterized restrictions; our goal is to characterize the rotation posets that arise from these models: kk-bounded, kk-attribute, (k1,k2)(k_1, k_2)-list, kk-range. We prove that there is a constant kk so that every rotation poset is realized by some instance in the first three models for some fixed constant kk. We describe efficient algorithms for constructing such instances given the Hasse diagram of a poset. As a consequence, the fundamental problem of counting stable matchings remains #\#BIS-complete even for these restricted instances. For kk-range preferences, we show that a poset PP is realizable if and only if the Hasse diagram of PP has pathwidth bounded by functions of kk. Using this characterization, we show that the following problems are fixed parameter tractable when parametrized by the range of the instance: exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings.Comment: Various updates and improvements in response to reviewer comment

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    In the stable marriage (SM) problem, there are two sets of agents–traditionally referred to as men and women–and each agent has a preference list that ranks (a subset of) agents of the opposite sex. The goal is to find a matching between men and women that is stable in the sense that no man-woman pair mutually prefer each other to their assigned partners. In a seminal work, Gale and Shapley showed that stable matchings always exist, and described an efficient algorithm for finding one. Irving and Leather defined the rotation poset of an SM instance and showed that it determines the structure of the set of stable matchings of the instance. They further showed that every finite poset can be realized as the rotation poset of some SM instance. Consequently, many problems–such as counting stable matchings and finding certain “fair” stable matchings–are computationally intractable (NP-hard) in general. In this paper, we consider SM instances in which certain restrictions are placed on the preference lists. We show that three natural preference models?k-bounded, k-attribute, and (k1, k2)-list–can realize arbitrary rotation posets for constant values of k. Hence even in these highly restricted preference models, many stable matching problems remain intractable. In contrast, we show that for any fixed constant k, the rotation posets of k-range instances are highly restricted. As a consequence, we show that exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings are fixed-parameter tractable when parameterized by the range of the instance. Thus, these problems can be solved in polynomial time on instances of the k-range model for any fixed constant k
    corecore