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Stable Matchings with Restricted Preferences: Structure and

Complexity

CHRISTINE T. CHENG∗, University of Wisconsin, USA

WILL ROSENBAUM∗, Amherst College, USA

In the stable marriage (SM) problem, there are two sets of agentsÐtraditionally referred to as men and womenÐand each
agent has a preference list that ranks (a subset of) agents of the opposite sex. The goal is to ind a matching between men and
women that is stable in the sense that no man-woman pair mutually prefer each other to their assigned partners. In a seminal
work, Gale and Shapley [16] showed that stable matchings always exist, and described an eicient algorithm for inding one.

Irving and Leather [24] deined the rotation poset of an SM instance and showed that it determines the structure of the
set of stable matchings of the instance. They further showed that every inite poset can be realized as the rotation poset
of some SM instance. Consequently, many problemsÐsuch as counting stable matchings and inding certain łfairž stable
matchingsÐare computationally intractable (NP-hard) in general.

In this paper, we consider SM instances in which certain restrictions are placed on the preference lists. We show that three
natural preference modelsÐ�-bounded, �-attribute, and (�1, �2)-listÐcan realize arbitrary rotation posets for constant values
of � . Hence even in these highly restricted preference models, many stable matching problems remain intractable. In contrast,
we show that for any ixed constant � , the rotation posets of �-range instances are highly restricted. As a consequence,
we show that exactly counting and uniformly sampling stable matchings, inding median, sex-equal, and balanced stable
matchings are ixed-parameter tractable when parameterized by the range of the instance. Thus, these problems can be solved
in polynomial time on instances of the k-range model for any ixed constant k.

CCS Concepts: · Theory of computation→ Fixed parameter tractability; Algorithmic game theory; · Mathematics

of computing→ Matchings and factors.

Additional Key Words and Phrases: stable matchings, restricted preferences, parameterized algorithms, parameterized
complexity, rotation poset
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1 INTRODUCTION

In the last 60 years, the stable marriage problem and its variants have emerged as central topics in economics,
computer science, and mathematics. The basic problem is phrased as follows. Let� and� be two disjoint sets of
� agents, traditionally referred to as men and women, respectively. Each agent has a preference list that ranks (all
or some) members of the opposite sex. The goal is to ind a matching � between� and� such that no� ∈ �
and� ∈� mutually prefer each other to their partners in �. Such a matching is called stable. In their seminal
work, Gale and Shapley [16] proved that a stable matching � always exists and provided an� (�2) time algorithm
for inding one. This run-time has been shown to be optimal in a variety of computational models [18, 40].

While a stable matching instance of size � may have 2Θ(�) stable matchings [27, 32], the Gale-Shapley algorithm
outputs only two kinds of stable matchingsÐthe man-optimal/woman-pessimal and the woman-optimal/man-
pessimal stable matchings. That is, these stable matchings are the best for one group of agents but the worst for
the other group. To address this inequity, researchers investigated various notions of łfairž stable matchings [6ś
8, 13, 20, 22, 25, 28, 32, 35, 39, 46] and studied the problem of counting and sampling stable matchings uniformly
at random [1, 5, 21, 24]. For all of these problems, crucial insights are gained by understanding the combinatorial
structure of the set of stable matchings.

ACM Trans. Econ. Comput.
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In [24], Irving and Leather deined a partially ordered set (poset) associated to each SM instance called the
rotation poset of the instance. The rotation poset encodes the structure of the set of all stable matchings for the
instance. While the set of stable matchings may be exponentially large in the instance size, Irving and Leather
showed the rotation poset has polynomial size and can be computed in polynomial time. Thus, the rotation poset
gives an eicient representation of the set of stable matchings. Conversely, Irving and Leather showed that given
any inite poset P, there is an SM instance whose rotation poset is isomorphic to P. In this case, we say that
such an instance � realizes P.

Many stable matching problemsÐsuch as counting stable matchings and inding certain types of łfairž stable
matchingsÐcan be phrased purely in terms of the rotation poset without explicit reference to the preference
lists themselves. For example, counting stable matchings is equivalent to counting downsets1 in the instance’s
rotation poset. Irving and Leather’s results provide an equivalence between these stable matching problems and
purely combinatorial problems deined on general posets. Subsequent work exploited this connection both to
develop eicient algorithms, as well as to establish the computational hardness of various tasks related to stable
matching. In particular, this approach was used to show that the following tasks are NP-hard: counting stable
matchings [24], computing median stable matchings [6, 7, 46], balanced stable matchings [13] and sex-equal
stable matchings [28, 39].
Given the intractability of these (and other) stable matching problems, we would like to understand which

preference structures constitute łhardž instances. To this end, we consider stable matching instances whose
preference lists are restricted, but nevertheless model situations that arise in practice. Since the complexities
of many tasks are determined by the structure of the rotation poset, we aim to characterize the rotation posets
arising from each restricted class of preferences. We examine the following preference models, deined formally
in Section 2.4:

• In the �-bounded model, each agent’s preference list has length at most � .
• In the �-attribute model, each agent has an associated �-dimensional proile and their preference lists are
determined by applying a linear function to the proiles of their potential partners. The model is motivated,
for example, by online dating sites. In this context, participants are frequently asked an extensive set of
questions. Some answers are used to create a participant’s proile while other answers are used to formulate
a function that ranks possible dates according to the others’ proiles.
• In the (�1, �2)-list model, the men and women can be partitioned into �1 and �2 groups respectively such
that within each group all agents have identical preference lists. When we allow the women (or the men)
to have any kind of preference lists, we refer to the model as the (�1,∞)-list (or the (∞, �2)-list) model.
• In the �-range model, there is an objective ranking for each agent,2 and agents’ preferences difer from the
objective rankings by less than � . More precisely, if an agent � has objective rank � , then all agents of the
opposite sex rank � between � and � + � − 1. This model captures the scenario when participants make use
of łoicial rankings" to create their preference lists. Students, for instance, might use their state’s ranking
of nearby high schools to guide their choices, while the schools might base their preferences according to
the students’ test scores. The participants do not have to copy the oicial rankings exactly; but they cannot
deviate that much from the objective ranks when they make their choices.

The �-bounded model was studied by Immorlica and Mahdian [23]. The other preference models were intro-
duced by Bhatnagar et al. [1], except that the (�1, �2)-list model generalizes Bhatnagar et al.’s �-list model (their
�-list is precisely our (�1, �2)-list model with �1 = �2 = �).

1See Section 2.1 for terminology related to posets.
2Unlike the individual (subjective) rankings, objective rankings may contain ties. See Section 2.4.
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1.1 Our Contributions

In this paper, we characterize the structure of rotation posets arising from SM instances in the models above for
ixed constant values of � . We show that for suiciently large constant � , �-bounded, �-attribute, and (�,∞)-list
preferences all realize arbitrary rotation posets. To this end, we describe a generic procedure that given any poset
P computes (potentially many) SM instances realizing P. We then show that modiications of these instances are
attained in the various preference models while still realizing the same rotation poset P.
On the other hand, we show that rotation posets realized in the �-range model are highly restricted in that

they have bounded pathwidth (see Section 2.5). Using this characterization of rotation posets in the �-range
model, we show that several stable matching problems that are NP-hard in general are ixed parameter tractable
(FPT) when parameterized by � in the �-range model. In particular, for ixed constant � , these problems can be
solved in polynomial time.

Generic instance construction. First, we present a generic construction algorithm that, given any inite poset P,
generates an SM instance � that realizes P. The number of agents of � and the running time of the algorithm is
� (� + �), where � and � are the number of vertices and edges of � (P) respectively (cf. Theorem 3.8).

More precisely, the algorithm takes as input the Hasse diagram3 � (P) of P, and an arbitrary edge coloring
� of � (P) to produce the instance � . Diferent edge colorings � will result in diferent SM instances realizing
P. By using an appropriate coloring � , we can guarantee that the resulting instance � has additional desirable
properties. For example, when � assigns the same color to all the edges of � (P), the algorithm produces an
instance with 4� agents.4 In order to obtain instances � realizable in the �-bounded model, we take � to be a
proper edge coloring of � (P), while for the (�1, �2)-list model, � assigns the color � to all edges leaving node � .

Constructing instances in restricted models. Using the generic construction algorithm, we establish that for a
given P, stable matching instances that realize P can be constructed eiciently for the following preference list
models:

• �-bounded for any � ≥ 3 (cf. Theorem 4.2),
• �-attribute for any � ≥ 6 (cf. Theorem 4.7),
• (�,∞)-list or (∞, �)-list for any � ≥ 2 (cf. Theorem 5.4).

In other words, the above models are łrichž enough that every poset can be realized by some instance in that
model.

Remark 1.1. Irving and Leather’s construction [24] produces incomplete preference lists that realize an arbitrary
poset where the men’s preference lists have lengths at most 3. However, the women’s preference lists can be
arbitrarily long in their construction (for instance if the poset is a chain of length � , some woman will have a
preference list of length �).

Remark 1.2. In [1, Theorem 3.1], Bhatnagar et al. proved that for any ixed instance size � > 2, there is a poset
P realized by a (general) SM instance � of size � that cannot be realized by any �-attribute instance for any
� < �/2. On the other hand, our result for the �-attribute model implies that there is some 6-attribute instance
that realizes P, albeit with an instance size �′ > �. (Some �′ = � (�4) suices.)

Our results for the �-bounded and (�,∞)-list (or (∞, �)-list) models are tight. The rotation posets of instances
in the 1-bounded model can only be the empty poset because all the instances have only one stable matching
while those in the 2-bounded model can only be antichains. Thus, it is perhaps surprising that in the 3-bounded
model all posets can be a rotation poset of some instance.

3See Section 2.
4This construction yields strictly smaller SM instances realizing P than Irving and Leather’s construction [24] when � (P) is a dense graph
because their instance’s number of agents depends on both � and �.
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In the (∞, �)-list model, when � = 1, all the women have the same preference list. This model is equivalent to
the one studied by Irving et al. [26] where they show that all instances from this model have a unique stable
matching. Once again, these instances have the empty poset as a rotation poset. But when � = 2, the women can
have two diferent preference lists. According to our result, a drastic change occurs and any poset can be the
rotation poset of some instance.
As for the �-attribute model, Chebolu et al. [5] proved that instances in the 1-attribute model have paths as

rotation posets. Bhatnagar et al. [1] showed that instances in the 2-attribute model can realize arbitrary star posets
as their rotation posets. We suspect that our result can be improved to show that instances in the �-attribute
model, with some � < 6, can have an arbitrary rotation poset.
Our structural results for the �-bounded, �-attribute, and (�,∞)- and (∞, �)-list models have the following

implications: any łstructuralž stable matching problemÐi.e., any problem whose solution depends only on the
rotation poset of an instanceÐis as hard in these restricted models as the general case. We state two explicit
consequences:

• In the �-bounded (� ≥ 3), �-attribute (� ≥ 6), and (�,∞)- and (∞, �)-list (� ≥ 2) models, #SMÐthe problem
of counting stable matchingsÐis #BIS-complete.5

• In the models above, it is #P-hard to ind generalized median stable matchings.

Characterization of �-range posets. For the �-range model, we prove that there is no ixed constant �∗ such that
every poset can be realized by some instance in the �∗-range model (cf. Corollary 7.10). Instead, we show that the
łrangež of an SM instance � and the pathwidth of a poset are connected in the following sense:

• When � (P) has a path decomposition of width � (see Section 2.5), there is an instance in the � (�)-range
model that realizes P. The instance has � (��) agents and can be constructed in � (�2�2) time where � is
the number of elements in P (cf. Theorem 6.7).
• On the other hand, suppose � is a �-range instance. Then the Hasse diagram � of R(� ) has a pathwidth of
� (�2) (cf. Theorem 7.9). Moreover, a path decomposition of � can be computed in time polynomial in the
instance size, independent of � .

Using this characterization of rotation posets realized by �-range instances, we show that many problems
that are computationally hard for general instances are ixed-parameter tractable (FPT) in the �-range model.
Speciically, we show that the following problems admit FPT algorithms parameterized by the range of the
instance6:

• exactly counting stable matchings (Section 8.1),
• sampling stable matchings exactly uniformly (Section 8.1),
• computing generalized median stable matchings (Section 8.1.1),
• inding balanced stable matchings (Section 8.1.2),
• inding sex-equal stable matchings (Section 8.1.2).

Since every stable matching instance is�-range for some value of� , these results show that the range of an instance
is a valuable parameter through which to study the parameterized complexity of stable marriage problems.

5The class #BIS is the class of counting problems reducible to counting independent sets in bipartite graphs under polynomial-time
approximation-preserving transformations. In [12], Dyer et al. call this class #RHΠ1. However we adopt the convention, common in recent
works, to associate the class #RHΠ1 with its canonical complete problem, #BIS. Dyer et al. conjecture that no #BIS-complete problem has a
fully polynomial randomized approximation scheme (FPRAS), and prove that #DOWN is #BIS-complete.
6Every stable matching instance � is a �-range instance for some value of � . The range of � is the minimum � for which � is a �-range instance.
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1.2 Related Work

Gale and Shapley [16] irst proved that all stable marriage problem (SMP) instances admit stable matchings, and
described an eicient algorithm for inding one. Knuth posed the question of characterizing the structure of
the set of stable matchings as Research Problem 6 in [32] (also in English translation [31]). Irving and Leather’s
work [24] introduced the notion of the rotation poset and showed how it determines the structure of the set of
stable matchings. Using this structural characterization of the set of stable matchings, Irving and Leather showed
that #SMÐthe problem of counting stable matchingsÐis #P-complete, implying that #SM cannot be solved in
polynomial time unless P = NP [47]. Speciically, Irving and Leather demonstrated that counting stable matchings
is equivalent to #DOWN (counting downsets in posets), a problem which was shown to be #P-complete by Provan
and Ball [43]. #DOWN was also shown to be #BIS-complete by Dyer et al. [12], hence Irving and Leather’s proof
also implies the #BIS-completeness of #SM.
The structural properties of stable matchings revealed by Irving and Leather’s work have been exploited in

numerous subsequent works to understand the complexities of various tasks related to the SMP. The classical
book of Gusield and Irving [22] (and references therein) describes some early applications, while the more
recent book of Manlove [35] gives an expansive overview of the SMP and its variants. Recently, Karlin et al. [27]
analyzed novel features of the rotation poset in order to show that any SM instance of size � has at most �� stable
matchings for some constant � , thereby making signiicant progress towards another of Knuth’s longstanding
open problems.
The �-bounded preference model was studied by Immorlica and Mahdian in [23]. They showed that for for

any � , for randomly chosen preferences in the �-bounded model, the proportion of instances with multiple stable
matchings tends to zero as the number of agents increases. This result implies that only a vanishingly small
fraction of �-bounded instances have non-trivial rotation posets. In contrast, our Theorem 4.2 shows that every
inite poset is realized by some �-bounded instance for any � ≥ 3.
Bhatnagar et al. [1] introduced the �-attribute and �-range preference models we study, as well as the �-

list model which our (�1, �2)-list model generalizes.7 They studied the problem of sampling stable matchings
uniformly using the Markov Chain Monte Carlo (MCMC) method, and showed a natural łspouse swappingž
Markov chain can take exponential time to converge to equilibrium. To this end, they showed that these preference
models can realize arbitrarily large łstarž posets for ixed constant values of � . Chebolu et al. [5] showed that
counting stable matchings is #BIS complete in the �-attribute model for any � ≥ 3, as well as the �-Euclidean
model of Bogomolnaia and Laslier [3] (see Section 9 for further discussion of the �-Euclidean model). Thus our
Theorem 4.7 gives an alternative (arguably simpler) proof of Chebolu et al.’s #BIS-hardness result, albeit for the
weaker condition � ≥ 6.

Finding (and verifying) stable matchings with restricted preferences has also been studied in the centralized [33]
and distributed [29] settings. Künnemann et al. [33] showed that for some instances of �-attribute, �-list, �-
Euclidean preference models, stable matchings can be computed in � (�2) time when � = � (1). For � = � (log�),
however, �-attribute and �-Euclidean preferences require Ω(�2) time, assuming the strong exponential time
hypothesis. In the distributed setting, Khanchandani and Wattenhofer [29] study a preference model equivalent
to the �-range model. They show that in this model, a stable matching can be computed in Θ(� · �) distributed
rounds (with each node sending or receiving a single � (log�) bit message each round).

The parameterized complexity of two NP-hard variants of the SMP were studied by Marx and Schlotter [37, 38].
The irst paper [37] studies the SMP with incomplete preferences and ties, a problem for which inding a maximum
size stable matching is NP-hard [36]. The second paper [38] analyzes the Hospital/Residents problem with couples,
for which it is NP-hard to determine if a stable matching exists. Marx and Schlotter show that the two problems
are ixed-parameter tractable (parameterized by the number of ties, the maximum length, or overall length of ties

7When �1 = 1 or �2 = 1, our (�1, �2 )-model corresponds to łmaster preference listsž (cf. Irving et al. [26]).
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for the former problem, and the number of couples in the latter problem). That is, these problems can be solved
in polynomial time whenever the relevant parameter is a ixed constant (independent of �). For an overview of
parameterized complexity, see [11].

Recently, Gupta et al. [20] considered the parameterized complexity of several other hard variants of the SMP,
parameterized by the treewidth of the łprimal graphž (i.e., the graph of acceptable partners), and the treewidth of
the Hasse diagram of the rotation poset of an instance. In particular, they give FPT algorithms for computing
sex-equal and balanced stable matchings parameterized by treewidth of the Hasse diagram. Combined with our
characterization of the rotation posets arising from �-range preferences in Theorem 7.9, Gupta et al.’s results
immediately imply FPT algorithms for inding sex-equal and balanced stable matchings parameterized by the
range of an instance (cf. Corollary 8.8). In [19], Gupta et al. studied the parameterized complexity of inding a
balanced stable matching, parameterized by the maximum balance that can be achieved.

1.3 Paper Overview

Here we give a high level overview of the remainder of the paper. In Section 2, we give the necessary background
and notation to understand the technical portion of the paper. In order to make our paper as self-contained as
possible, Section 2 contains substantial background on the SMP, especially the structural results of Irving and
Leather. We formally introduce the four models of restricted preference lists studied later in the paper, and give a
brief overview of the results for pathwidth needed in our analysis of the �-range model.

In Section 3, we present the generic construction algorithm ConstructInstance. The construction takes a inite
poset PÐor more speciically, the Hasse diagram of P,� (P)Ðas well as an edge coloring of� (P), and constructs
a stable matching instance whose rotation poset is isomorphic to P. Our generic construction is conceptually
diferent from the construction of Irving and Leather [24], though our analysis is similar to the one described in
Gusield and Irving’s [22, Section 3.8] book for Irving and Leather’s construction.

Section 4 contains our main results for the �-bounded and �-attribute models. The argument for the �-bounded
model is straightforward and makes use of results from Section 3. The geometric approach we take for the
�-attribute model is similar in spirit, but more general than Bhatnagar et al.’s construction. Our key technical
tool is Gale’s construction of łneighborly polytopesž [15].
In Section 5, we develop our main result for the (�,∞)-list model by irst constructing an instance with

incomplete preference lists using ConstructInstance. We then embed the men’s lists into two complete preference
lists (while completing the women’s preference lists arbitrarily) and show that the rotation poset of the new
instance is the same as the original instance.
Sections 6 and 7 present our main results for the �-range model. In Section 6, we begin with a width-� path

decomposition of � (P), the Hasse diagram of poset P. We tweak ConstructInstance so that it incorporates the
path decomposition into the construction of a stable matching instance. We then expand each agents’ preference
list into a complete one, making sure that the instance has range � (�). In Section 7, we study instances in
the �-range model and show that a path decomposition of width � (�2) can be eiciently computed for their
rotation posets. In Section 8, we show how the path decompositions can be used to obtain FPT algorithms for
several computationally hard problems: counting and uniformly sampling stable matchings, and inding a median,
sex-equal, and balanced stable matchings.

Finally, the paper concludes with Section 9 which discusses related questions and directions for future work.

2 BACKGROUND AND PRELIMINARIES

In the classical version of the stable marriage problem, a stable matching instance � = (�,� , �) consists
of a set of � men � and a set of � women� together with their preferences � . For each� ∈ � , � contains a
preference list �� that is a total ordering of� , and symmetrically each� ∈� has a corresponding preference

ACM Trans. Econ. Comput.
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list �� that is a total ordering of� in � . For each � ∈ � ∪� , we refer to �� (1) as �’s most preferred partner, �� (2)
as �’s second most preferred partner etc. If � = �� (�), we say that � assigned � a rank of � and write �� (�) = � .
Throughout this paper, we assume that � = |� | = |� | is the size of the instance.

Amatching � of � is a set of � man-woman pairs such that every agent is part of exactly one pair. Suppose
(�,� ′), (�′,�) ∈ � with� ≠�′ and � ≠ � ′. We call (�,�) a blocking pair of � if� and � mutually prefer
each other to their partners in �; that is, �� (�) < �� (� ′) and �� (�) < �� (�′). We say that � is a stable

matching if it has no blocking pairs. Gale and Shapley’s seminal paper proved that every stable matching
instance � has a stable matching [16]. Moreover, they presented an algorithm that inds a stable matching of � in
� (�2) time (assuming preferences can be accessed and compared in unit time).

A common extension of the stable marriage problem allows for the number of men and women to be diferent
and for each agent � to have a preference list that ranks only a subset of acceptable partners from the opposite
group (i.e., the agents may have incomplete preference lists). The agents� and� form an acceptable pair

if the two agents are acceptable to each other. For such an instance, a matching � is now a set of acceptable
pairs such that each agent is part of at most one pair. We call (�,�) a blocking pair of � if (i) it is an acceptable
pair, (ii)� is either unmatched or prefers� to his partner in � and (iii)� is either unmatched or prefers� to his
partner in �. Once again, a matching is stable if it has no blocking pairs. Like the classical case, every instance in
this setting has a stable matching and the Gale-Shapley algorithm can easily be modiied to ind one. Furthermore,
a well-known result by Gale and Sotomayor [17] (cf. [44]) states that every stable matching of the instance has
the same number of pairs and matches exactly the same set of agents.
To streamline our discussion, we shall use SM instances to refer to instances in both the classical version

and its extension to incomplete preference lists. When we consider instances in the classical case only, we shall
say that the SM instances have complete preference lists. On the other hand, when we consider instances with
incomplete preference lists, we shall assume that the preference lists of all agents are consistent (that is, � is
in �’s preference list if and only if � is in �’s preference list). To simplify notation, we assume throughout the
paper that the numbers of men and women in each instance � are equal, and denote the size of the instance
as � = |� | = |� |. The assumption that |� | = |� | is satisied for all of our constructions in Sections 3ś6. The
assumption is only (potentially) restrictive in Section 7, where we analyze the structure of rotation posets in the
�-range model. Nonetheless, the arguments presented in Section 7 do not rely upon the assumption |� | = |� |,
so the results in that section hold for the general case as well.

In general, an SM instance can have many stable matchings. We say that a pair (�,�) is a stable pair if it is
part of some stable matching of the instance. We also say that� and� are each other’s stable partners. The
Gale-Shapley algorithm can produce only two types of stable matchings. In its man-oriented version, the output
is theman-optimal stable matching, which is also the woman-pessimal stable matching. That is, every
man is matched to his best stable partner while simultaneously every woman is matched to her worst stable
partner. In the woman-oriented version, the output is the woman-optimal stable matching, which is also the
man-pessimal stable matching and deined accordingly.

2.1 Posets and DAGs

A partially ordered set or poset P = (�, ≺) consists of a set � and a binary relation ≺ on the elements of �
that is antisymmetric and transitive.8 Two posets P = (�, ≺) and P′ = (�, ≺′) are isomorphic if there exists
bijection � : � → � satisfying � ≺ � ⇐⇒ � (�) ≺′ � (�). The Hasse diagram of P is the directed acyclic graph
� (P) = (�, �) such that

� = {(�,�) ∈ � × � | � ≺ � and no � satisies � ≺ � ≺ �} .

8Throughout the paper, we will assume that all posets have a inite number of elements.
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A subset � ⊆ � is a downset (also a closed subset or an order ideal) of P if for every � ∈ � and � ∈ � such that
� ≺ � then � ∈ � . That is, if � ∈ � then every predecessor � of � is also in � .

We extend the above terminology to directed acyclic graphs (DAGs). Let� = (� , �) be a DAG. We call a subset
� ⊆ � a downset of � if for every � ∈ � and � ∈ � such that there is a path from � to � (i.e., � is an ancestor of
�) then � ∈ � . We denote the number of downsets of � by down(�).

The transitive closure of DAG � = (� , �) is another DAG � ′ = (� , �′) such that (�, �) ∈ �′ if and only if
there is a path from � to � in� . In the later parts of the paper, instead of the Hasse diagram of a poset P = (�, ≺),
we will work with a DAG � = (�, �) so that the transitive closures of � and � (P) are exactly the same. That is,
with slight abuse of notation, their transitive closure is P. We note the following.

Observation 2.1. Let� and� ′ be two DAGs whose transitive closures are exactly the same. Then � is a downset
of � if and only if � is a downset of � ′.

In the problem #DOWN, we are given a poset P and the goal is to count the number of distinct downsets of P.
The above observation implies that if � is a DAG whose transitive closure is P, then down(� ) is exactly the
number of downsets of P.

2.2 The Rotation Poset

To explore all the stable matchings of an instance � , we need to consider its rotation poset, described below.

Deinition 2.2. Let � be a stable matching of SM instance � . Let � be a circular list of man-woman pairs from �:

� = (�1,�1), (�2,�2), . . . , (�ℓ ,�ℓ ).
We say that � is a rotation exposed in � if for all � = 1, 2, . . . , ℓ ,��+1 is the irst woman on�� ’s preference list
after�� who prefers�� to her partner��+1 in � (where by convention�ℓ+1 =�1). That is, for all � we have:

• ��+1 prefers�� to��+1, and
• there is no� with ���

(�� ) < ���
(�) < ���

(��+1) such that� prefers�� to her partner� in �.

If � = (�1,�1), . . . , (�ℓ ,�ℓ ) is a rotation exposed in �, then we can form the elimination of � , denoted � \ � ,
as follows:

� \ � = � \ {(�� ,�� ) | � = 1, 2, . . . , ℓ} ∪ {(�� ,��+1) | � = 1, 2, . . . , ℓ} .
The matching � \ � is another stable matching. In fact, Irving and Leather showed that every stable matching �

can be obtained by starting from the man-optimal stable matching �0 and eliminating a sequence of rotations.
More formally, they proved the following.

Lemma 2.3 (Irving & Leather [24]). Let � be a stable matching of SM instance � . Then there exists a sequence of
rotations �0, �1, . . . , ��−1 and stable matchings �0, �1, . . . , �� = � such that �0 is the man-optimal stable matching
and, for each � , �� is a rotation exposed in �� , and ��+1 = �� \ �� . Moreover, the set {�0, �1, . . . , ��−1} uniquely
speciies �.

We denote as �(� ) the set of all rotations exposed in any stable matching of � . Lemma 2.3 shows that every
stable matching � of � can be associated with a unique subset �� ⊆ �(� ) consisting of rotations that must be
eliminated to obtain � from �0 (the man-optimal matching). For example, �0, corresponds to the empty set while
the woman-optimal stable matching, �� , corresponds to �(� ). Not all subsets of �(� ), however, correspond to
some stable matching of � . To characterize which ones do, Irving and Leather deined a poset structure on �(� ) as
follows.

Deinition 2.4. Suppose �, � ′ ∈ �(� ). We say � precedes � ′ and write � ≺ � ′ if for every stable matching � in
which � ′ is exposed, we have � ∈ �� . That is, � ≺ � ′ if � was eliminated in every stable matching in which � ′ is
exposed.
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Theorem 2.5 (Irving & Leather [24]). Let � be an SM instance. Then R(� ) = (�(� ), ≺) is a poset. Moreover, there
is a one-to-one correspondence between the stable matchings of � and the downsets of R(� ).

We refer to R(� ) as the rotation poset of � . In [25], Irving et al. showed that a DAG whose transitive closure is
the rotation poset R(� ) can be computed in time � (�3). This runtime was improved to � (�2) by Gusield in [21].

Theorem 2.6 (Gusield [21]). Given any SM instance � of size �, a DAG � (� ) whose transitive closure is R(� )
can be computed in � (�2) time.

We shall call � (� ) the rotation digraph of � . Since the transitive closure of � (� ) is R(� ), we note that the
Hasse diagram of R(� ) is in fact a subgraph of � (� ).
Example 2.7. Consider the SM instance shown below.

�1 : �1 �2 �3 �4

�2 : �2 �4 �1 �3

�3 : �3 �4 �2 �1

�4 : �4 �2 �3 �1

�1 : �2 �1 �3 �4

�2 : �3 �1 �4 �2

�3 : �4 �1 �2 �3

�4 : �1 �3 �4 �2

It has four stable matchings:

�0 = {(�1,�1), (�2,�2), (�3,�3), (�4,�4)}
�1 = {(�1,�2), (�2,�1), (�3,�3), (�4,�4)}
�2 = {(�1,�2), (�2,�1), (�3,�4), (�4,�3)}
�3 = {(�1,�4), (�2,�1), (�3,�2), (�4,�3)}

where �0 is the man-optimal stable matching and �3 is the woman-optimal stable matching. It has three rotations:

�1 = (�1,�1), (�2,�2)
�2 = (�3,�3), (�4,�4)
�3 = (�1,�2), (�3,�4).

The rotation poset R(� ) and digraph � (� ) constructed by Gusield’s algorithm are depicted in Figure 1.

Fig. 1. The rotation poset (let), R(� ) and the DAG � (� ) (right) computed by Gusfield’s algorithm. The edge labels in � (� )
indicate the łrulež associated with the edgeÐsee Remark 2.8

The correspondence between the stable matchings of � and the downsets of R(� ) are as follows: �0 with ∅, �1
with {�1}, �2 with {�1, �2}, and �3 with {�1, �2, �3}.
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Let � = (�1,�1), (�2,�2), . . . , (�ℓ ,�ℓ ) be a rotation of SM instance � . When � is eliminated from a stable
matching, each�� is matched to��+1 or, equivalently, each�� is matched to��−1. We say that � moves�� down

to��+1 because�� prefers�� to��+1. If� is strictly between�� and��+1 in�� ’s preference list, we also say that
� moves�� below� . Similarly, � moves�� up to��−1 because�� prefers��−1 to�� . If� is strictly between
��−1 and�� in�� ’s preference list, � moves�� above�.

Remark 2.8. The rotation digraph � (� ) is deined by adding edges according to the following rules [22, Sec-
tion 3.2]. (We have labeled the edges of � (� ) in Figure 1 with the rules that were used to create the edges.)

Rule 1. Suppose (�,�) is in rotation � . If � ′ is the (unique) rotation that moves � to � , then there is a
directed edge from � ′ to � .
In the previous example, there is an edge from �1 to �3 because of (�1,�2) and an edge from �2 to �3
because of (�3,�4).

Rule 2. Suppose (�,�) is not in rotation � . If � ′ is the (unique) rotation that moves � above�, � is the
(unique) rotation that moves� below� and � ′ ≠ � , then there is a directed edge from � ′ to � . Note that
for these steps to happen,� is in � ′ while� is in � .
In the previous example, there is an edge from �1 to �2 because of (�4,�2). Rotation �2 was not exposed
in �0 because�4 prefers�2 to�3 and�2 prefers�4 to�2. Rotation �1 moves�2 above�4. Only when �1
is eliminated is �2 exposed and �2 moves�4 below�2 to�3. There is also an edge from �2 to �3 because of
(�1,�3). Rotation �2 moves�3 above�1 while rotation �3 moves�1 below�3.

The two rules above can be thought of informally as the reasons for the precedence relation among the
rotations of � . In Section 3, we shall use Rule 2 extensively to create SM instances (whereas Irving and Leather’s
construction forces precedence between rotations by appealing to Rule 1).

2.3 Realizing Posets as Rotation Posets

Given a poset P, we say that an SM instance � realizes P if the rotation poset of � , R(� ), is isomorphic to P.
Irving and Leather showed the following fundamental result.

Theorem 2.9 (Irving & Leather [24]). Let P be a poset whose Hasse diagram has � vertices and � edges. There
is an SM instance � that realizes P. Moreover, the number of agents of � is � (� + �) and the instance � can be
constructed in � (� + �) time.

Together, Theorems 2.5 and 2.9 show that counting stable matchings and the downsets of a (inite) poset are
essentially equivalent: any instance of one problem can be eiciently reduced to an equivalent instance of the
other.

In order to show that an SM instance has a particular rotation poset, it will be useful to have a criterion under
which two SM instances � and � ′ have isomorphic rotation posets. We describe a suicient condition below that
is partly based on Irving and Leather’s notion of łshortlists" [24].

Deinition 2.10. Let � = (�,� , �) be an SM instance. Let � ∈ � ∪� . The symmetric shortlist of �, �� , is the
sublist of �� consisting of agents � such that

• � is the man-optimal or woman-optimal stable partner of � or � lies between these two partners in �� , and
• � is the man-optimal or woman-optimal stable partner of � or � lies between these two partners in �� .

We shall use � (� ) to denote the set containing all agents’ symmetric shortlists.

Here’s a simple fact about symmetric shortlists.

Proposition 2.11. Let � = (�,� , �) be an SM instance. For any agent �, � is part of � (�) if and only if � is part
of � (�).

ACM Trans. Econ. Comput.



12 • Christine T. Cheng and Will Rosenbaum

Example 2.12 (Example 2.7 continued). The shortlists of the instance are shown below.
�1 : �1 �2 �3 �4

�2 : �2 �1

�3 : �3 �4 �2

�4 : �4 �2 �3

�1 : �2 �1

�2 : �3 �1 �4 �2

�3 : �4 �1 �3

�4 : �1 �3 �4

We will rely heavily upon the following result, a restatement of [22, Theorem 1.2.5].

Lemma 2.13 (Cf. [22, Theorem 1.2.5]). Let � = (�,� , �). Let � ′ be obtained from � be replacing each agent’s
preference list �� with their symmetric shortlist �� ; i.e., � ′ = (�,� , � (� )). Then � and � ′ have identical rotation
posets and stable matchings.

Corollary 2.14. Let � = (�,� , �) and � ′ = (�,� , � ′) such that � (� ) = � (� ′). Then � and � ′ have the identical
rotation posets and stable matchings.

Corollary 2.15. Let � = (�,� , �) be an SM instance with incomplete preference lists. Let � ′ = (�,� , � ′) be
obtained from � by adding to the end of each incomplete preference list its missing agents. Then � and � ′ have
identical rotation posets and stable matchings.

Proof. First, we note that running the man-oriented Gale-Shapley algorithm on � and � ′ returns the same
man-optimal stable matching �0. Similarly, running the woman-oriented Gale-Shapley algorithm on � and � ′

returns the same woman-optimal stable matching �� . This means that the łextra" agents added to complete the
preference lists will not be a part of the symmetric shortlist of � (� ′) and � (� ) = � (� ′). By Corollary 2.14, the result
follows. □

Both Corollary 2.14 and 2.15 will be useful in Sections 3ś6 where our goal is to construct an SM instance that
realizes a poset P but whose preference lists obey certain properties. Our strategy is to irst create a łsmallerž
SM instance � that realizes P. We then expand each agent’s preference list into a complete list while making sure
their symmetric shortlists stay the same. Thus, the new SM instance still realizes P.

2.4 Restricted Preference Models

Let � , �1 and �2 be positive integers. We now describe the four models of restricted preference lists that we will
study in the paper. SM instances in the �-bounded model have incomplete preference lists (unless � = �) while
those in the �-attribute, (�1, �2)-list and �-range have complete preference lists.

�-Bounded Preferences. An SM instance � has �-bounded preferences if each agent’s preference list has length
at most � . We denote the family of �-bounded SM instances with � men and � women by Bound(�, �), and
Bound(�) = ⋃

�∈Z+ Bound(�, �).

�-Attribute Preferences. An SM instance � has �-atribute preferences if each agent � ∈ �∪� has an associated
vector ®� ∈ R� and linear function �� : R� → R. We refer to the pair ( ®�, ��) as �’s proile. The preference list
of � is constructed from the proiles of the agents from the other group as follows: � has �� (1) = �1, �� (2) =
�2, . . . , �� (�) = �� if and only if9

�� ( ®�1) > �� ( ®�2) > · · · > �� ( ®��).
We denote the family of �-attribute SM instances with � men and � women by Atr(�, �), and Atr(�) =
⋃

�∈Z+ Atr(�, �). Figure 2 illustrates an example of 2-attribute preferences.

9We assume that �� ( ®� ) ≠ �� ( ®�′ ) for all ®�′ ≠ ®�, so that preferences are strict (without ties).

ACM Trans. Econ. Comput.



Stable Matchings with Restricted Preferences: Structure and Complexity • 13

Fig. 2. An illustration of 2-atribute preferences. In this example, the four men �1,�2,�3, and �4 are associated with
vectors ®�1 = (2, 3), ®�2 = (3, 1), ®�3 = (1, 1), and ®�4 = (4, 2), respectively. If a woman � is associated with the linear
function �� (�,�) = � +�, then her corresponding preference list is�4,�1,�2,�3, because �� ( ®�� ) = 6, 5, 4, 2 for � = 4, 1, 2, 3,
respectively. The dashed lines in the figure show the level sets for �� (�,�) = 6, 5, 4, 2.

(�1, �2)-List Preferences. An SM instance � has (�1, �2)-list preferences if the men and women can be partitioned
into at most �1 and �2 groups, respectively, such that all agents within each group have the same preference
lists. If the women or men can be partitioned into an arbitrary number of groups, we say that the SM instance
has (�1,∞)-list preferences and (∞, �2)-list preferences respectively. We denote the set of SM instances with
(�1, �2)-list preferences and � men and � women by List(�1, �2, �), and List(�1, �2) =

⋃

�∈Z+ List(�1, �2, �).
We note that the (�, �)-list model is equivalent to the �-list model of Bhatnagar et al. [1] while the (1,∞)-list

and (∞, 1)-list models correspond to stable matchings with łmaster listsž that Irving et al investigated in [26].

�-Range Preferences. Consider an instance � with complete preferences. For each pair of agents �, � of the
opposite sex, let �� (�) denote �’s rank of �Ði.e., the position in which � appears in �’s preference list. For a
woman� ∈� , herminrank andmaxrank are, respectively, the minimum and maximum rank that she appears
in any man’s preference list:

min rank(�) = min
�∈�

�� (�) and max rank(�) = max
�∈�

�� (�).

The min rank and max rank of a man� are deined analogously. The range of � is

Range(� ) = max
�∈�∪�

(max rank(�) −min rank(�)) + 1.

We say that � has �-range preferences if Range(� ) ≤ � .
Intuitively, Range(� ) gives a measure of how similar the agents’ preferences are. When � = 1, all men and

women (respectively) have the same preferences, while all instances � of size � have Range(� ) ≤ �. We denote the
family of �-range SM instances with � men and � women by Range(�, �) and Range(�) = ⋃

�∈Z+ Range(�, �).
Note that every SM instance � is in Range(�) for � = Range(� ). Moreover, Range(� ) can be computed in� (�2)

time by computing the minrank and maxrank of each agent individually.
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2.5 Pathwidth

Here we briely review some fundamental results regarding pathwidth, and adapt them to our discussion of
�-range preferences in Sections 6 and 7,

Deinition 2.16. A path decomposition of graph � = (� , �) is a sequence (�1, �2, . . . , �� ) of subsets of � such
that:

(1)
⋃�

�=1�� = � ,
(2) for each edge {�, �} ∈ �, there exists � ∈ [� ] such that �, � ∈ �� ,
(3) for all �, �, � ∈ [� ] with � ≤ � ≤ � , we have �� ∩ �� ⊆ � � .

The width of the path decomposition is width(X) = max� |�� | − 1. The pathwidth of � , denoted pw(�), is the
minimum width over all path decompositions of � .

We extend the deinition of pathwidths to directed graphs and posets.

Deinition 2.17. Let � be a directed graph. The pathdwidth of � is simply the pathwidth of the undirected
version of � . Let P be a poset, and � (P) its Hasse diagram. The pathwidth of P is pw(P) = pw(� (P)).

Remark 2.18. Suppose (�1, �2, . . . , �� ) is a path decomposition of� . Item 3 above implies that for each vertex
� , there is an interval �� ⊆ [� ] such that � ∈ �� if and only if � ∈ �� . By item 2, if {�, �} ∈ �, then we must have
�� ∩ �� ≠ ∅. Thus, � is a subgraph of the interval graph10 deined by the intervals {�� | � ∈ � }. For �� = [��, ��],
we say that � is added to the decomposition at index �� , and removed at index �� + 1.

Deinition 2.19. Let X = (�1, �2, . . . , �� ) be a path decomposition of graph � . We say that X is a nice path
decomposition if |�1 | = 1, |�� | = 0 and for all � ∈ [� − 1], we have |�� △��+1 | = 1. That is, when X is nice, exactly
one vertex is added or removed at each index.

Lemma 2.20. Let � be a graph with � vertices. Suppose X = (�1, �2 . . . , �� ) is a path decomposition of � of
width � . Then � has a nice path decomposition Y = (�1, �2, . . . , �� ) of width � with � = 2�. Moreover, Y can be
computed from X in time � (��).

Proof sketch. Let X = (�1, �2, . . . , �� ) be a path decomposition, and deine �0 = ∅. For each index � =

0, 1, . . . , � − 1, let Δ� = ��△��+1 denote the symmetric diference of �� and ��+1. If |Δ� | = 1, then exactly one
element was added or removed between �� and ��+1, as desired. Otherwise, if |Δ� | > 1, insert a sequence of
|Δ� | − 1 sets between �� and ��+1 where each set is formed by removing a single element from �� \��+1 or adding
a single element from ��+1 \ �� . The resulting path decomposition Y has length � = 2� because every vertex
except the unique element in �1 is added exactly once, and every element is removed exactly once. □

The following seminal result of Bodlaender shows that computing the pathwidth and optimal path decomposi-
tions of a graph is ixed parameter tractable.

Theorem 2.21 (Bodlaender [2]). Let� be a graph and let � ∈ N be a constant. There is an algorithm that decides
whether pw(�) ≤ � in � (� (�) |� |) time. If pw(�) ≤ � , then the algorithm outputs a path decomposition X of�
of width � .

The next corollary is immediate from Theorem 2.21 and Lemma 2.20.

Corollary 2.22. For any graph � , a nice path decomposition of � can be computed in time � (� (�) |� |) where
� = pw(�) and � is some function depending only on � .

10Recall that an interval graph on a family I of intervals is the graph� = (I, � ) where {� , � } ∈ � if and only if � ∩ � ≠ ∅.
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3 A GENERIC CONSTRUCTION

Let P be a inite poset and let � (P) = (� , �) be its Hasse diagram. An edge coloring � of � (P) assigns each edge
� ∈ � a color � (�) ∈ Z+. In this section, we describe a simple algorithm, ConstructInstance, that given the Hasse
diagram � (P) and an edge coloring � returns an SM instance � = � (P, �) whose rotation poset is isomorphic
to P. The number of agents in � and the running time of the algorithm are linear in the size of � (P). In the
later sections, we will demonstrate the remarkable versatility of ConstructInstance. By choosing appropriate
edge colorings and tweaking some of its parts, we show that the algorithm is capable of producing SM instances
whose preference lists have all kinds of properties.

Let� = [�] = {1, 2, . . . , �}. Like Irving and Leather [24], our goal is to create rotations �1, �2, . . . , �� so that the
mapping � (�) = �� for � ∈ [�] is an isomorphism from P to R(� ). Here, we provide a high-level description of
ConstructInstancewhile pseudo-code is provided in Algorithm 1. Figure 3 shows an illustration of the algorithm’s
output for a poset P that will serve as a running example for the remainder of the paper. We ind it instructive to
view an SM instance as being deined on the primal graph � = (� ∪�, � ), where {�,�} ∈ � if and only if�
and� form an acceptable pair. The preferences are then deined by having each agent rank its incident edges in
the primal graph.

Let � (P) = (� , �) be the Hasse diagram of a poset P, and let � : � → Z
+ be an edge coloring. The structure of

� corresponding to the SM instance constructed by ConstructInstance(� (P), �) is as follows. For each vertex
� ∈ � , there is a corresponding cycle �� in� of length at least 4 (i.e., with at least two men and the same number
of women). For each (directed) edge (�, �) ∈ �, there is a corresponding (undirected) edge between a woman in
�� and a man in �� . The coloring � determines the size and the identities of the agents in each cycle, as well as
the identities of the endpoints of edges between cycles (see Algorithm 1). Speciically, let �� denote the set of
colors of edges incident to � in � (P). For technical reasons, if there are fewer than two edge colors incident to � ,
we add additional colors to �� to ensure |�� | ≥ 2; cf. Lines 5ś9. Each cycle �� contains one man and one woman
for each distinct color � ∈ �� . For (�, �) ∈ �, an edge between �� and �� connects the woman in �� and man in
�� corresponding to the color � ((�, �)). This speciies the structure of the primal graph � .
The preferences on the edges of � are deined as follows. Each cycle �� in � supports two perfect matchings,

one of which is preferred by all men in �� (cf. Lines 12ś14), the other of which is preferred by all women in �� (cf.
Lines 20ś29). If an agent in �� has a neighbor in some cycle �� with � ≠ � (added in Lines 15ś19), the agent will
prefer this neighbor łin betweenž their two neighbors in �� . In the following lemmas, we show that if preferences
are deined in this way, then (1) each cycle �� corresponds to a rotation in the SM instance, (2) every rotation in
the SM instance corresponds to �� for some � , and (3) that �� is exposed in a stable matching if and only if all
rotations �� for which there is an edge between a woman� ∈ �� and man� ∈ �� have been eliminated. Thus,
the SM instance realizes P.

Conceptually, our construction difers from that of Irving and Leather. In their algorithm, a man��,� and a
woman ��,� are created for every edge (�, �) ∈ �, and��,� participates in the rotations �� and �� to enforce
the precedence relation between the two rotations. That is, there is an edge from �� to �� in the rotation poset
because of Rule 1 in Remark 2.8. In our construction, however, the edge is present in the rotation poset because
of Rule 2 in Remark 2.8 and the pair of agents behind the rule is (��,�,��,�) which, incidentally, is not a stable
pair of the instance.

Notation 3.1. For a ixed poset P, element � ∈ P, and edge coloring � , �� ⊆ Z
+ denotes the set of colors

associated with � . That is, �� contains the set of colors of edges incident to � .11 We denote �� = |�� |, the number
of such colors. We choose an arbitrary cyclic ordering of �� , and denote this ordering by �� : [��] → �� . That is,

11In later sections, we include additional colors in�� . This modiication does not afect the correctness of the algorithm.

ACM Trans. Econ. Comput.



16 • Christine T. Cheng and Will Rosenbaum

Algorithm 1 ConstructInstance(� = (� , �), �) where � = � (P) is the Hasse diagram of poset P and � is an
edge coloring of � that uses colors from Z

+. The algorithm constructs an SM instance � (P, �) whose rotation
poset is isomorphic to P.
1: Assume � = {1, 2, . . . , �}.
2: for all � = (�, �) ∈ � do

3: add � (�) to the sets �� and ��

4: end for

5: for � = 1 to � do

6: if |�� | < 2 then
7: add colors 1 and/or 2 to �� so |�� | = 2
8: end if

9: end for

10: � ←
{

��,1

�

� � ∈ �1
}

∪
{

��,2

�

� � ∈ �2
}

∪ . . . ∪
{

��,�

�

� � ∈ ��

}

11: � ←
{

��,1

�

� � ∈ �1
}

∪
{

��,2

�

� � ∈ �2
}

∪ . . . ∪
{

��,�

�

� � ∈ ��

}

12: for all��,� ∈ � do

13: add��,� and��,� to each other’s preference lists
14: end for

15: for all � = (�, �) ∈ � do

16: � ← � ((�, �))
17: add��,� to the front of��,� ’s preference list
18: add��,� to the end of��,� ’s preference list
19: end for

20: for � = 1 to � do

21: let �� be some ordering of the colors in ��

22: {We shall refer to the �th element in the ordering as �� (�) and use �� to denote |�� |.}
23: �� ← (��� (1),�,��� (1),�), (��� (2),�,��� (2),�), . . . , (��� (�� ),�,��� (�� ),�)
24: {Note that �� is a circular list.}
25: for � = 1 to �� do
26: add��� (�+1),� to the end of��� (� ),� ’s preference list
27: add��� (� ),� to the beginning of��� (�+1),� ’s preference list
28: end for

29: end for

�� (1) is the łirstž color in �� , �� (2) is the łsecond,ž and so on. Finally, given a color � ∈ �� , we denote its łnextž
and łpreviousž colors in �� by �+ and �− , respectively.12 That is, if � = �� (�), then �+ = �� (� + 1) and �− = �� (� − 1).

Lemma 3.2. Let � = � (P, �) be the SM instance created by ConstructInstance(� (P), �). Let �0 and �� denote
the man-optimal and woman-optimal stable matchings of � respectively. Then

�0 =
{

(��,�,��,�)
�

� � ∈ ��, � ∈ [�]
}

and

�� =
{

(��,�,��+,�)
�

� � ∈ ��, � ∈ [�]
}

=
{

(��−,�,��,�)
�

� � ∈ ��, � ∈ [�]
}

where �+ and �− are respectively the colors to �’s next and previous colors in the (cyclic) ordering �� of �� .

12While �+ and �− depend both on�� and the permutation �� , we suppress �� from the notation, as it will always be clear from context.
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Fig. 3. On the let is the Hasse diagram of a poset P with four elements whose edges are all colored 1 (indicated by green).
Thus �1 = �2 = �3 = �4 = {1, 2}. On the right is the graph corresponding to SM instance created by ConstructInstance,
while the preference lists of the agents are shown below. The men are represented by nodes outlined in blue and the women
by nodes outlined in red. The colors on the edges indicate preference. The blue and red edges correspond to acceptable
partners added in Lines 12ś14 and Lines 20ś29 respectively. The green edges correspond acceptable partners added in
Lines 15ś19 and meant to enforce the (also green) edges of the Hasse diagram of P. The man-optimal matching consists of
the blue edges, while the woman-optimal matching consists of the red edges. The rotations in the instance are alternating
red-blue cycles. Notice that no green edge corresponds to a stable pair, but the green edges enforce the partial order of
rotations in R(� ). For example, rotations �2 and �3 are only exposed in a stable matching � in which�1,1 is matched with
�2,1 (her most preferred partner)Ði.e., a matching in which �1 has been eliminated.

Proof. In the preference lists created by ConstructInstance, the irst choice of each man��,� is��,� (Lines 12ś
14). Thus the matching �0 is a perfect matching assigning each man to his most preferred partner, which is clearly
stable. On the other hand, the irst choice of each woman��,� is��−,� (Lines 20ś29). Again, no two women have
the same irst choice, so �� is the woman-optimal stable matching. □

Remark 3.3. For our discussion below, it is helpful to also express �0 and �� in terms of the circular lists �� for
� ∈ [�]. Recall that �� = |�� |, and �� : [��] → �� is a cyclic ordering of colors in �� with �� (�) indicating the
color in the �th position of the ordering. Then we have

�0 =

�
⋃

�=1

{

(��� (� ),�,��� (� ),�)
�

� � ∈ [��]
}

and

�� =

�
⋃

�=1

{

(��� (� ),�,��� (�+1),�)
�

� � ∈ [��]
}

=

�
⋃

�=1

{

(��� (�−1),�,��� (� ),�)
�

� � ∈ [��]
}

.
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Lemma 3.4. Let � = � (P, �) be the SM instance created by ConstructInstance(� (P), �). Let �1, �2, . . . , �� be
the circular lists deined in Line 23 of the algorithm. Without loss of generality, assume 1, 2, . . . , � is a topological
ordering of the vertices of � (P). Then for � = 1, . . . , � , � � is a rotation exposed in the stable matching ��−1 so
that �� = ��−1/�� is also a stable matching of � . Moreover, �� = �� so the set {�� | � = 1, . . . , �} contains all the
rotations of � .

Proof. We prove the irst part of the lemma by induction on � . Notice that for every man ��,� , his most
preferred partner is his man-optimal stable partner,��,� , while his least preferred is his woman-optimal stable
partner, ��+,� . Any women added by the algorithm in Lines 15 to 19 are between these two women. Consider
vertex 1 in � . There are no edges entering 1 because it is the irst vertex in the topological ordering. Thus,
Lines 15ś19 do not add any women to��,1’s list for any � ∈ �1. That is,��,1’s list consists of just��,1 followed
by��+,1. Therefore,

�1 = (��1 (1),1,��1 (1),1), (��1 (2),1,��1 (2),1), . . . , (��1 (�1 ),1,��1 (�1 ),1)
is a rotation exposed in �0, hence �1 = �0/�1 is a stable matching of � .

Now assume that for � = 1 to � − 1, �� is a rotation exposed in the stable matching ��−1. Thus, � �−1 is a stable
matching of � . Let us now prove that � � is a rotation exposed in � �−1. First, we note that

� �−1 =
�−1
⋃

�=1

{

(��� (� ),�,��� (�+1),�)
�

� � ∈ [��]
}

∪
�
⋃

�=�

{

(��� (� ),�,��� (� ),�)
�

� � ∈ [��]
}

.

That is, every��,� is matched to his woman-optimal stable partner if � ≤ � − 1 and to his man-optimal stable
partner if � ≥ � .
Next, consider��,� , � ∈ � � . His preference list consists of ��,� , followed by zero or more women added by

Lines 15ś19, and ends with��+, � . The women added by Lines 15ś19 are of the form��,� where (�, �) is an edge
of � and � = � ((�, �)). But � precedes � in � so it follows by the inductive hypothesis that ��,� is matched to
��−,�Ðher woman-optimal stable partnerÐin � �−1. Thus, she does not prefer��,� to her current partner in � �−1.
But��+ � does prefer��,�Ðher woman-optimal stable partnerÐto her current partner��+, � in � �−1. Hence,

� � = (�� � (1), � ,�� � (1), � ), (�� � (2), � ,�� � (2), � ), · · · , (�� � (� � ), � ,�� � (� � ), � )
is a rotation exposed in � �−1 so � � = � �−1/� � is a stable matching of � .

By induction, the irst part of the lemma is true. It is easy to see that �� = �� , which was obtained by eliminating
all the rotations in the set {�� | � = 1, . . . , �}. Since �� can only be obtained by eliminating all rotations in R(� ), it
follows that R(� ) = {�� | � = 1, . . . , �}, as desired. □

Remark 3.5. For each � ∈ [�], let �� =
{

��,�

�

� � ∈ ��

}

∪
{

��,�

�

� � ∈ ��

}

. Lemma 3.4’s characterization of the
rotations of � means that every agent in �� is part of only one rotation: �� . Moreover, eliminating �� will shift
each agent from their man-optimal stable partner to their woman-optimal stable partner.
The above property highlights the simplicity of SM instance � . In every stable matching of � , each agent is

matched to either their man-optimal or their woman-optimal stable partner. But we note that it does not imply
that a matching where every agent is paired to either their man-optimal or their woman-optimal stable partner
is a stable matching of � . For example, for any �, � ∈ [�], if � precedes � in P, then there is no stable matching
where the agents in �� are matched to their man-optimal stable partners while the agents in �� are matched to
their woman-optimal stable partners.

Remark 3.6. We also note that Lemma 3.4 applies to every topological ordering � of the vertices of � . Let � (�)
denote the �th element in the ordering. Let �0 = �0. Then for � = 1, . . . , � , �� (� ) is exposed in the stable matching
��−1 and �� = ��−1/�� (� ) .
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Lemma 3.7. Let P be a inite poset, � (P) = (� , �) its Hasse diagram, and � an arbitrary edge coloring of � (P).
Let � = � (P, �) be the SM instance created by ConstructInstance(� (P), �). Then the relation � (�) = �� is an
isomorphism between P and R(� ).

Proof. We have already established that P and R = R(� ) have the same number of elements. Let � ′, � be
elements of P. We will now argue that � ′ is a predecessor of � in P if and only if ��′ is a predecessor of �� in R.
Assume � ′ is a predecessor of � . Then there exists a sequence �0 = � ′, �1, �2, . . . , ��−1, �� with �� = � , such

that � � is an immediate predecessor of � �+1 for � = 0, . . . , � − 1. Let � � = � ((� � , � �+1), the color assigned to edge
(� � , � �+1) in� (P). Then, by construction, each�� � ,� �

is in the preference list of�� � ,� �+1 , and�� � ,� �+1 prefers�� � ,� �

to his woman-optimal stable partner. He is also in�� � ,� �
’s preference list and she prefers him to her man-optimal

stable partner. By Lemma 3.4 the only rotation that contains�� � ,� �
is �� �

. Thus, in order for �� �+1 to be exposed
in a stable matching �, �� �

must be eliminated. Since this is true for � = 0, . . . , � − 1, it follows that ��′ has to be
eliminated before �� is exposed. In other words, ��′ precedes �� in R. By the same argument, if � is a predecessor
of � ′ then �� precedes ��′ in R.

So the only case we have to consider is when � ′ and � are incomparable in P. In this case, there is a topological
orderings �1 and �2 such that � ′ occurs before � in �1, while � occurs before � in �2. From Lemma 3.4 and Remark 3.6,
there is a stable matching where � ′� is eliminated but not �� and another stable matching where �� is eliminated
but not ��′ . Thus, �� and ��′ are not comparable in R(� ). □

Theorem 3.8. Let P be a inite poset and � (P) = (� , �) be its Hasse diagram with � = |� |, and � = |� |. Then
� = � (P, �)Ðthe SM instance created by ConstructInstance(� (P), �)Ðrealizes P. It has � (� + �) agents and it
can be constructed in � (� + �) time.

Proof. By Lemma 3.7, we know that � realizes P. ConstructInstance creates at most 2×max(2, deg(�)) agents
for each � ∈ [�]. Thus, the total number of agents is at most 2(2� + 2�) = � (� + �). Creating �� for � ∈ [�]
takes � (deg(�) + 1) time, so all lists are formed in time � (∑�∈� (deg(�) + 1)) = � (� + �). Creating the agents,
and adding their man-optimal and woman-optimal stable partners take � (� + �) time in total. Finally, adding
their acceptable partners in Lines 15ś19 takes � (�) time. Each iteration of the outer for loop in lines 20 to 29
takes � ( |�� |) time so altogether the for loop runs in � (∑� |�� |) = � (� + �). Thus, the total running time of
ConstructInstance is � (� + �). □

Some of the agents in the SM instance created byConstructInstance have incomplete preference lists. If desired,
each incomplete preference list can be completed by appending its missing agents at the end of the list. By
Corollary 2.15, the SM instance will realize the same poset.

Corollary 3.9. Let P be a inite poset and � (P) = (� , �) be its Hasse diagram with � = |� |, and � = |� |. Then
there exists an SM instance � (P) of size � = 2� that realizes P, and � can be constructed in time � (� + �) given
� (P).

Proof. Let � assign each edge of � (P) the color 1. Then �� = {1, 2} for each � ∈ [�]. The instance � (P, �)
realizes P. It has � men and � women where � = 2� and can be constructed in time � (� + �) time. □

Remark 3.10. The runtime of our construction in Corollary 3.9 matches that of Irving and Leather’s construction
in [24]. Our construction also yields an instance � whose size (i.e., number of agents) is dependent only on �

whereas Irving and Leather’s is dependent on � and the number of bottom and top nodes of � (P). Thus, our
construction gives a quadratic improvement when � = Ω(�2) (for example when � (P) is a directed complete
bipartite graph).
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4 �-BOUNDED AND �-ATTRIBUTE PREFERENCES

In Corollary 3.9, we showed that applying our generic construction, ConstructInstance, with the trivial edge
coloring � (�) = 1 for all � ∈ � yields an SM instance with a small number of agents (� = � (�)). In this section,
we show that by taking � to be a proper edge coloring13, ConstructInstance computes an SM instance in which
all preference lists have length at most 3Ði.e., a 3-bounded instance. Thus we can apply Theorem 3.8 to show that
for any inite poset P, there is a 3-bounded SM instance realizing P. A proper edge coloring of any graph � can
be computed in linear time, so the 3-bounded SM instance realizing P can be computed in linear time as well.
Next, we show that the 3-bounded instances constructed by ConstructInstance as above can be eiciently

transformed into 6-attribute instances realizing the same rotation poset. Thus, 6-attribute preferences realize all
inite posets. More generally, our reduction shows that for any �-bounded SM instance, there is a 2�-attribute
instance in which all agents’ rankings of their irst � acceptable partners are the same as the �-bounded instance.

4.1 �-Bounded Preferences

Let � be an edge coloring of a directed graph � = (� , �). We say that � is a proper in-coloring of � if for every
vertex � ∈ � and any two edges � and �′ entering � , � (�) ≠ � (�′). Similarly, � is a proper out-coloring of � if
for every vertex � ∈ � and any two edges � and �′ leaving � , � (�) ≠ � (�′). We then say that � is a super coloring
of � if it is both a proper in- and out-coloring. The following proposition shows that given a proper in-coloring
(respectively, out-coloring), ConstructInstance produces an SM instance in which the men (respectively, women)
have preference lists of length at most 3.

Proposition 4.1. Let � = � (P) be the Hasse diagram of poset P and � be an edge coloring of � . Let � = � (P, �)
be the SM instance created by ConstructInstance(�,�). The men’s preference lists in � have length at most 3 if
and only if � is a proper in-coloring while the women’s pereference lists in � have length at most 3 if and only if
� is a proper out-coloring.

Proof. Consider an agent��,� with � ∈ ��, � ∈ [�]. By construction, the length of��,� ’s preference list is
determined by the edges entering � that � has colored � . In particular,��,� ’s preference list has length ℓ + 2 if and
only if there are ℓ such edges. Thus,��,� ’s preference list has length 3 if and only if � assigned exactly one edge
entering � the color � . This property holds for all men if and only if � is a proper in-coloring.
Next, consider an agent ��,� with � ∈ ��, � ∈ [�]. The length of ��,� ’s preference list is determined by the

edges leaving � that � colors � . Using the same argument as above, we conclude that all women’s preference list
have length at most 3 if and only if � is a proper out-coloring. □

We can now prove that 3-bounded SM instances can realize any inite poset.

Theorem 4.2. Let P be a inite poset. Then there is an SM instance � (P) ∈ Bound(3) that realizes P. Moreover,
given the Hasse diagram � = � (P) with � vertices and � edges, � (P) has� (� +�) agents and can be constructed
in � (� + �) time. Thus, all inite posets can be eiciently realized by instances in Bound(�) for any � ≥ 3.

Proof. According to Proposition 4.1, it suices to ind � that is a super coloring of� so that ConstructInstance
produces a 3-bounded SM instance. So let � assign edges of � pair-wise distinct colors from [�]. It takes� (� +�)
time to create � . ConstructInstance will run in � (� + �) time to create an SM instance � (P, �) that is 3-bounded
and has � (� + �) agents. □

13Recall that an edge coloring is proper if for every vertex �, no two edges incident to � have the same color.
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Fig. 4. The 3-bounded instance (right) formed by taking � to be a proper edge coloing of the Hasse diagram (let) of a poset
P. The simplicial complexes associated with the instance on the right are depicted in Figure 5.

4.2 �-Atribute Preferences

Recall that for an SM instance in Atr(�), every agent � is assigned a proile ( ®�, ��) such that ®� ∈ R
� and

�� : R� → R. Agent �’s preference list is then derived by applying �� to all agents � of the opposite gender and

ranking them in descending order according to �� ( ®�). Below, we show how an instance � ∈ Bound(3) can be
converted into an instance � ′ ∈ Atr(6) such that � and � ′ have isomorphic rotation posets. Since we know from
Theorem 4.2 that every inite poset can be realized by some instance in Bound(3), the same holds for Atr(6).

The idea behind our construction of the proiles is the following. Consider an embedding of the set� into R
6

such that� is in convex position14 (i.e., no ®� lies inside of the convex hull of� \ { ®�}). Let �� ⊆ R
6 denote

the convex hull of� . Suppose the points ®�1, ®�2, ®�3 form a 3-face of the polytope �� . Then there exists a linear
function � : R6 → R such that � ( ®�1) = � ( ®�2) = � ( ®�3) > � ( ®�) for all ®� ∈� , ®� ≠ ®�1, ®�2, ®�3. By choosing a
suiciently small perturbation �̂ of � , we can ensure that in fact

�̂ ( ®�1) > �̂ ( ®�2) > �̂ ( ®�3) > �̂ ( ®�).
Thus, if a man� ∈ � takes �� = �̂ , he will rank�1,�2,�3 as his top three choices. Our argument is to show
that for any SM instance � ∈ Bound(3), there exist embeddings of� and� in R

6 such that every triple of women
(respectively, men) form a 3-face as above. Thus, each man� can choose �� so that his irst (at most) 3 preferred
partners according to �� agree with his preference list in � . From this, it is easy to show that the constructed
instance in Atr(6) has precisely the same stable matchings as � .

Remark 4.3. Our construction of 6-attribute instances from 3-bounded instances generalizes the technique used
in Bhatnagar et al.’s construction of 3-attribute preferences that realize star posets [1]. They further describe a
modiication showing that, in fact, the same rotation posets can be realized in the 2-attribute model. We believe

14We abuse notation and associate� with the set of embedded points in R
6.
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Fig. 5. We can associate simplicial complexes � (let) and� (right) for the 3-bounded SM instance depicted in Figure 4.
Each face in the complexes corresponds to a set of agents appearing together in some agent’s preference lists. For example,
the men

{

�1,1,�2,1,�1,2
}

form a face on the let, because they all appear on�2,1’s preference list. For this example, both

complexes are planar. Therefore, they can be embedded in convex position on the surface of the sphere in R
3. Thus, the

rotation poset can be realized in the 3-atribute model. In general, Gale’s construction implies that any (� − 1)-dimensional

complex (in particular, those associated with a �-bounded SM instance) can be embedded in convex position in R
2� .

that a similar dimension reduction argument may allow one to reduce the dimension of our general embedding,
thus showing that �-attribute instances realize all inite posets for some � < 6.

Themain technical tool we require is a result of Gale [15], who showed that the cyclic polytopes in 2ℓ-dimensional
space are ℓ-neighborly.

Deinition 4.4. For any positive integers ℓ and �, consider the vertex set �2ℓ,� ⊆ R
2ℓ deined by

�2ℓ,� =
{

(�, �2, �3, . . . , �2ℓ )
�

� � ∈ [�]
}

.

Then the 2ℓ-dimensional cylic polytope of order �, �2ℓ,� , is deined to be the convex hull of �2ℓ,� .15

Gale [15] showed that the 2ℓ-dimensional cyclic polytopes have the remarkable property of being ℓ-neighborly:
every subset � ⊂ �2ℓ,� of size ℓ forms an ℓ-face of �2ℓ,� . More speciically, Gale proved the following lemma.

Lemma 4.5 (cf. [15, Theorem 1]). Let �2ℓ,� be a cyclic polytope and let � = {®�1, ®�2, . . . , ®�ℓ } be any set of ℓ
distinct vertices in �2ℓ,� . Then there exists a linear function � : R2ℓ → R such that for all ®�� , ®� � ∈ � , (1) we have
� (®�� ) = � (®� � ), and (2) for all vertices ®� ∉ � , � (®�) < � (®�� ).

Gale [15] constructs the function � above as follows. For each ®� � ∈ � , write ®� � = (� � , �2� , . . . , �2ℓ� ), and consider
the function

� (�) =
ℓ

∏

�=1

(� − � � )2 = �0 + �1� + · · · + �2ℓ−1�2ℓ−1 + �2ℓ . (1)

Setting ®� = (�1, �2, . . . , �2ℓ−1, 1) ∈ R2ℓ , a straightforward argument shows that � ( ®�) = −®� · ®� gives � (®� � ) = �0 for

all ®� � , and � (®�) < �0 for every vertex ®� ∉ � . In particular, computing the vector ®� can be performed in time� (ℓ2)
by simply performing the multiplication in (1). By choosing a suiciently small perturbation of the function � of
the conclusion of Lemma 4.5, we obtain the following corollary. We give a self-contained proof, in particular to
demonstrate that the desired functions � can be eiciently constructed.

15The proof of Corollary 4.6 implies that�2ℓ,� are in convex position, hence the set vertices of �2ℓ,� is precisely�2ℓ,�
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Corollary 4.6. Let �6,� be a cyclic polytope and let � = {®�1, ®�2, ®�3} be any set of 3 distinct vertices in �6,� . Then
there exists a linear function � : R6 → R such that

� (®�1) > � (®�2) > � (®�3) > � (®�)
for all vertices ®� ∉ � . The function � can be computed in constant time from the set � .

Proof. In order to give an explicit construction of a function � as in Corollary 4.6, consider the function

�(�) = (� − �1)2 (� − �2 + �2)2 (� − �3 + �3)2 = �0 + �1� + · · · + �5�5 + �6, (2)

where �2, �3 > 0 are constants to be chosen later. Setting ®� = (�1, �2, . . . , �5, 1) we obtain
�( �) = ®� · ( �, �2, . . . , �5, 1) + �0.

Thus, it suices to compute suitable constants �2, �3 such that

�(�1) < �(�2) < �(�3) < �(�) (3)

for all � ≠ �1, �2, �3 (where as above, we take ®� � = (� � , �2� , . . . , �6� )). Indeed, then taking � (®�) = −®� · ®� gives the desired
result. Observe that from the deinition of �, we immediately obtain

�(�1) = 0

�(�2) = (�2 − �1)2 (�22) (�2 − �3 − �3)2

�(�3) = (�3 − �1)2 (�3 − �2 − �2)2 (�23)
�(�) = (� − �1)2 (� − �2 + �2)2 (� − �3 + �3)2 .

Taking �2, �3 ≤ 1/4 (so that, for example, (� − �2)2 > 1/2), we obtain the following inequalities:

0 < �(�2) ≤ �22�
4 (4)

1

2
�23 ≤ �(�3) ≤ �4�23 (5)

1

4
< �(�). (6)

By taking �2 =
1
4�4 and �3 =

1
2�2 , we obtain

�22�
4
=

1

16�4
<

1

8�4
=
1

2
�23

and �4�23 =
1
4 , hence Equation (3) is satisied. Since (2) contains� (1) terms, the coeicients � can be computed in

time � (1) from � . This gives the desired result. □

We are now ready to prove the main result of this section.

Theorem 4.7. Let P be a poset whose Hasse diagram � (P) has � vertices and � edges. There is an SM instance
� ′′ (P) ∈ Atr(6) with � (� + �) agents that realizes P. Moreover, given � (P), the proiles of the agents in � ′′ (P)
can also be computed in � (� + �) time. Thus, all inite posets can be eiciently realized by instances in Atr(�)
for any � ≥ 6.

Proof. Let � = � (P) be the 3-bounded instance constructed by ConstructInstance(� (P), �), where � is any
proper edge coloring of � . We create an Atr(6) instance � ′′ = � ′′ (P) with exactly the same agents as � (P) as
follows. Let � be the number of men (and women) in � . Arbitrarily label the men and women as�1,�2, . . . ,��
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and�1,�2, . . . ,�� respectively. For each�� ∈ � and�� ∈� , we assign a proile vector in R
6 corresponding to

the �th vertex of the 6-dimensional cyclic polytope �6,� :

®�� , ®�� = (�, �2, �3, �4, �5, �6).
Now let ���

and ���
denote�� ’s and �� ’s preference lists in � . We assume that

�

����

�

� =
�

����

�

� = 3 by possibly
adding another arbitrary person to the end of these preference lists. For ���

= ��1 ,��2 ,��3 assign the proile
function ���

to be the function asserted by Corollary 4.6 such that

���
( ®��1 ) > ���

( ®��2 ) > ���
( ®��3 ) > ���

( ®�) for all� ∈� \ ���
.

Thus, the preference list of �� in � ′′ consists of the same list in � followed by other women. The women’s
preference lists are deined analogously. Again, the preference list of each woman�� in � ′′ consists of the same
list in � followed by other men. By Corollary 2.15, � ′′ realizes the same rotation poset as � , namely P.
Finally computing � takes time � (� + �). Given � , each proile (�, ��) can be computed in time � (1) by

Corollary 4.6. Therefore, the overall runtime is � (� + �), as desired. □

Remark 4.8. The constructionwe describe generalizes in the followingway: given any SM instance � ∈ Bound(�),
we can construct an instance � ′ ∈ Atr(2�) such that each preference list in � ′ is obtained by appending the
missing agents to the end of the incomplete preference lists in � . We only give full details for the � = 3 case, as
this is suicient to prove Theorem 4.7.

5 �-LIST PREFERENCES

For this section, we will prove that (2,∞)-list (or, equivalently, (∞, 2)-list) SM instances realize every inite poset.
We will start by creating an SM instance using ConstructInstance where the incomplete preference lists of each
man is a sublist of one of two distinct complete lists of women. We then assign the complete lists as preference
lists for the men and append the women’s preference lists with missing men so they become complete.16 Hence,
the men can be divided into two groups and the men in each group have the same preference list while the
women can be divided into any number of groups with the same property.

To arrive at the right SM instance for posetP, we will have to label the vertices of� = � (P)ÐtheHasse diagram
of PÐin a particular way and tweak how ConstructInstance is implemented. We describe the speciications and
their implication below.

• Label the vertices of � so that (�, � − 1, . . . , 1) is a topological ordering. This means every (directed) edge
(�, �) has � > � .
• For each edge (�, �) of� , let � ((�, �)) = �. Thus, � is a proper in-coloring since all edges entering a particular
node are assigned diferent colors.
• Add the color � + 1 to �� for every � ∈ [�]. Such an addition creates 2� more agents and expands the
rotations, but does not afect the fact that if the input to the algorithm is (�,�), the output � (P, �) still
realizes P.
• Process the edges in � in Lines 15 to 19 in lexicographically decreasing order. Thus, if a woman’s preference
list contains men diferent from her woman- and man-optimal stable partners, the subscripts of the other
men in her preferences are lexicographically increasing.
• Finally, for each � ∈ [�], let �� be an ordering of �� so that the colors are listed from smallest to largest.
Notice that � + 1 is the last color on this list.

We now analyze the preference lists of the agents.

16Interestingly, the incomplete preference lists of the women are also sublists of two distinct complete lists of men. The (2, 2)-list instance
resulting from setting the men’s and women’s preferences both to such complete preferences does not generally realize the original rotation
poset, however.
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Fig. 6. Illustration of the instance created by ConstructInstance for the edge-colored Hasse diagram depicted on the let.
The vertices labeled 4, 3, and 2 correspond to the colors blue, red, and green, respectively. Orange is used to depict the łextraž
color 5. The white nodes in �4 correspond to the color 1 being added in Lines 5ś9 of ConstructInstance. The incomplete
preference lists of the agents are indicated below the figures. The łmaster" preference lists for the men and women are
indicated on the botom.

Lemma 5.1. For each man��,� , � ∈ �� and � ∈ [�], the preference list of��,� is

��,� : ��,� ��+,� or ��,� : ��,� ��,� ��+,� .

Furthermore, if � ≠ � + 1, the subscripts of the women in his list are lexicographically increasing. If � = � + 1, then
��,� ’s preference list has length two, and the subscripts of the women in his list are lexicographically decreasing

Proof. By Proposition 4.1,��,� ’s preference list has length at most 3 since � is a proper in-coloring. If he has
a woman on his list diferent from his man-optimal and woman-optimal stable partners, then there is an edge
(�, �) colored � so that��,� is his second choice. But by the way � is deined � = �. Thus, the preference list of
��,� is of the form described in the proposition.

By our choice of �� , if � ≠ � + 1, then � < �+. Furthermore, if ��,� is ��,� ’s second choice, then � < �

because (�, �) = (�, �) is an edge of the graph. Thus, when � ≠ � + 1, the subscripts of the women in��,� ’s list
are lexicographically increasing. On the other hand,��+1,� ’s preference list has length 2 since there is no edge
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assigned the color �+1. Furthermore, �+ < �+1 so the subscripts of the women in��+1,� ’s list are lexicographically
decreasing. □

Lemma 5.2. For each woman��,� , � ∈ �� and � ∈ [�], the preference list of��,� is

��,� : ��−,� ��,� when � ≠ � and ��,� : ��−,� (
{

��,�

�

� (�, �) ∈ �
}

) ��,� otherwise.

Here, (
{

��,�

�

� (�, �) ∈ �
}

) orders the men so that their subscripts are lexicographically increasing. If the subscripts
of the men in��,� ’s list are not lexicographically increasing then � = min�� so that �− = � + 1.

Proof. From Lemma 5.1, we know that only women of the form��,� can be part of a man’s preference list
where she is neither his man-optimal nor woman-optimal stable partner. Thus, for��,� with � ≠ � , her preference
list consists of her woman-optimal stable partner,��−,� , followed by her man-optimal stable partner,��,� . But for
��,� , she can have other men in her preference list and they are of the form��,� such that (�, �) ∈ �. Since these
men were added to the front of ��,� ’s list so that their subscripts are lexicographically decreasing, the sublist
(
{

��,�

�

� (�, �) ∈ �
}

) has subscripts that are lexicographically increasing. Furthermore, the subscript of��,� is
lexicographically larger than all the men because if (�, �) ∈ � then � > � .
The last observation follows from the fact that if � = min�� , then �− = � + 1 but when � ≠ min�� , then �− < �

because of how we chose �� . □

Deinition 5.3. Let � (P) be the SM instance constructed by the speciic implementation of the algorithm
ConstructInstance(�,�) described above. Let theirst group ofmen be��1 =

{

��,�

�

� � ≠ � + 1, � ∈ [�]
}

and the
second group be��2 = �\��1. Similarly, denote the irst group ofwomen as��1 =

{

��,�

�

� � ≠ min color in ��, � ∈ [�]
}

and the second group as ��2 =� \��1.

Theorem 5.4. Let P be a inite poset. There is an SM instance � (P) that realizes P such that every man’s
preference list is a sublist of two complete lists of women and every women’s preference list is a sublist of two
complete lists of men. Moreover, given the Hasse diagram � = � (P) with � vertices and � edges, � (P) has
� (� + �) agents and can be constructed in � (� + �) time.

Proof. Set the irst list for men ��1 as the complete list of the women� in which the subscripts of the women
are lexicographically increasing. Set the second list ��2 as the complete list of the women in which the women
in

{

��+1,�
�

� � ∈ [�]
}

appear irst followed by the remaining women. For each subgroup, the subscripts of the
women are again lexicographically increasing. (See Figure 6). Let the lists for women ��1 and ��2 be constructed
analogously as ��1 and ��2 respectively.
By Lemma 5.1, the preference list of every man in ��1 is a sublist of ��1 while those in ��2 is a sublist of

��2. Similarly, by Lemma 5.2, every woman in ��1 and ��2 have preference lists that are sublists of ��1 and
��2 respectively.

Since � (P) is the output of ConstructInstance(�,�), it realizes P. We also noted that adding � + 1 to each ��

increases the number of agents by 2� so � (P) still has� (� +�) agents. The only detail we have to verify is the time
it takes to implement the speciications on top of the � (� + �) running time of ConstructInstance. Topologically
sorting � takes � (� + �) time. Properly coloring each edge (�, �) of � so that � ((�, �)) = � takes � (�) time.
Adding � + 1 to each �� takes � (�) time. Processing the edges (�, �) in � in Lines 15 to 19 in lexicographically
decreasing order can be done by radix sort. There are � edges and �, � ∈ [�] so the radix sort can be performed in
� (� + �) time. Finally, we can simultaneously sort all �� ’s by creating pairs (�, �) for each � ∈ �� and sorting
them lexicographically using radix sort. We note that |�� | ≤ deg(�) + 2 so∑� |�� | ≤ 2� + 2� . It follows that there
are� (� + �) pairs to sort. Since � ∈ [�] and � ∈ [� + 1], radix sort will again take� (� + �) time. Thus, even with
the ive extra speciications, � (P) can be constructed in � (� + �) time. □
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Let us now consider the SM instance �� (P) obtained from the SM instance � (P) by assigning each man in
��1 the list ��1 and each man in ��2 the list ��2. For each woman, let her preference list be the one in � (P)
followed by an arbitrary ordering of the missing men.

Lemma 5.5. The man-optimal stable matching of �� (P) is �∗ =
{

(��,�,��,�)
�

� � ∈ ��, � ∈ [�]
}

. That is, �� (P)
and � (P) have the same man-optimal stable matching.

Proof. Let � = ��1, the sequence of men whose subscripts are lexicographically increasing. Let �ℓ denote the
ℓ th man in the sequence. We run the man-oriented Gale-Shapley algorithm using � . In particular, we let each man
�ℓ make a series of proposals and get engaged before we move on to �ℓ+1. Of course it’s possible that at the later
stages of the algorithm �ℓ becomes free because his iancee rejects him. We shall show though that this situation
never happens.
Consider �1 =��,� , the man with the lexicographically least subscript among all the men. Since each � ∈ [�]

has |�� | ≥ 2, we know � < � + 1. Thus, the preference list of��,� is ��1, and the irst woman on ��1 is ��,�

because the subscripts of the women in ��1 are also lexicographically increasing. No one has proposed to��,�

yet so she will accept��,� ’s proposal. Assume that for ℓ ′ ≤ ℓ − 1, �ℓ ′ is temporarily matched to his partner in �∗.
We will show that the same is true for �ℓ .

Suppose �ℓ =��,� such that � < � + 1. Again, his preference list is ��1. He will propose irst to women of the
form��,� such that (�, �) < (�, �). By assumption,��,� is matched to��,� . According to Lemma 5.2, the only men
��,� will prefer to��,� will be��+1,� or have subscripts lexicographically less than��,� ’s. In other words, ��,�

does not prefer��,� to��,� so she will reject him. Hence,��,� will eventually propose to��,� who will accept his
proposal because she is free.

Suppose �ℓ =��+1,1. His preference list is ��2 so the irst woman on his list is��+1,1. He will of course propose
to her and she will accept it because no one has proposed to her yet.

Finally, let �ℓ =��+1, � such that � > 1. Again, his preference list is ��2. He will irst propose to women��+1,�
such that � < � . By assumption,��+1,� is matched to��+1,� . According to Lemma 5.2, the only man that��+1,�
prefers to��+1,� is of the form��,� with � ≠ � + 1. Thus,��+1,� will reject��+1, � ’s proposal. He will eventually
propose to��+1, � and she will accept the proposal because she is free.

By induction, the man-oriented Gale-Shapley algorithm will match all men��,� to��,� so �∗ is the man-optimal
stable matching of �� (P). By Lemma 3.2, �∗ is also the man-optimal stable matching of � (P). □

Theorem 5.6. Let P be a inite poset. There is an SM instance �� (P) with (2,∞)-list preferences that realizes P.
Moreover, given the Hasse diagram � = � (P) with � vertices and � edges, �� (P) has� (� +�) agents and can be
constructed in � ((� + �)2) time.

Proof. Consider �� (P), which clearly has (2,∞)-list preferences. It was constructed from � (P) which realizes
P. In particular, the women’s preference lists in �� (P) is exactly like that in � (P) followed by an arbitrary ordering
of the missing men. We will now argue that the two instances have identical shortlists. If so, by Corollary 2.15,
they have identical rotation posets and, consequently, �� (P) also realizes P.
We showed in Lemma 5.5 that �� (P) and � (P) have the same man-optimal stable matching. They also have the

same woman-optimal stable matching. This is the case because we constructed � (P) using ConstructInstance
which lists every woman’s woman-optimal stable partner as the irst person in her preference list. This property
holds in �� (P). Thus, when we run the woman-oriented Gale-Shapley algorithm, the result will be the same for
both instances.

For ease of discussion, let �� and ��� denote the symmetric shortlists of agent � in � (P) and �� (P) respectively.
It is easy to verify that �� is exactly the preference list of � in � (P). For a woman� , her preference list in �� (P)
consists of her preference list in � (P), which ends with her man-optimal stable partner, followed by the missing
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men. Thus, ��� does not have the missing men. On the other hand, every man’s preference list in �� (P) contains
his preference list in � (P) as a sublist. So if a man� is part of �� , he will remain so in ��� . Thus, �

�
� = �� .17

Next, consider a man�. From our discussion above, we know that �� is a sublist of ��� . If the latter contains a
woman� ′ that is not in �� , then ���′ should have�. But we proved that ���′ = ��′ so� is in ��′ , which means
� ′ is in �� . A contradiction. Therefore �� = ��� .

Constructing � (P) takes� (� +�) time. Creating ��1 and ��2 takes� (� +�) time. But completing the women’s
preference lists take � ((� + �)2) time so constructing �� (P) takes � ((� + �)2) total time. □

Let ��′ (P) be the SM instance obtained from � (P) by assigning each woman in ��1 the list ��1 and each
woman in��2 the list ��2. Then for each man, let his preference list be the one in � (P) followed by an arbitrary
ordering of the missing woman. We leave it up to the reader to verify that ��′ (P) and � (P) will have the same
woman-optimal stable matching. Consequently, one can show that ��′ (P) is an SM with (∞, 2)-list preferences
that realizes P. Like �� (P), it has � (� + �) agents and can be constructed in � ((� + �)2) time.

6 FROM PATH DECOMPOSITIONS TO �-RANGE PREFERENCES

Recall that an SM instance � is in Range(�) if for all agents � ∈ �∪� , we have max rank(�)−min rank(�) ≤ �−1
(see Section 2.4). For notational simplicity, we will denote f (�) = min rank(�). Thus � ∈ Range(�) if and only if
for all� ∈ � and� ∈� we have

f (�) ≤�� (�) ≤ f (�) + � − 1, and

f (�) ≤�� (�) ≤ f (�) + � − 1. (7)

In this section, we describe an algorithm for constructing a �-range SM instance � realizing a given poset P.
Unlike the previous sections, the �-range construction is no longer dependent only on P. Rather, the �-range
construction additionally requires a nice path decomposition X = (�1, �2, . . . , �2� ) of � (P) as input, and the �
for which � ∈ Range(�) depends on the width of X. Speciically, if X has width � , then the instance � = �� (P) we
construct will satisfy � ∈ Range(� (�)). The path decomposition X determines the color set �� for each vertex � ,
and its width afects the number of agents created as well as the range of the agents’ rankings. Thus, the smaller
� is, the more similar are the preference lists.

The basic idea of the construction is as follows. Given a poset P and path decomposition X = (�1, �2, . . . , �2� )
of � (P) of width � , we associate a set of � ( |�� |) = � (�) agents with each �� . If an element � ∈ P is contained
in �� , ��+1, . . . , � � , then there is a corresponding rotation containing one man-woman pair from each �ℓ with
� ≤ ℓ ≤ � . If � (P) contains a directed edge (�, �) with ℓ the minimum index satisfying �, � ∈ �ℓ , then the
preferences of the agents corresponding to � and � in �ℓ enforce that � must be eliminated before � is exposed.

We irst construct an instance, �1 (P), realizing P with incomplete preferences, such that each agent � associated
with a set �� only has acceptable partners associated with sets � � satisfying |� − � | ≤ 2. We then form an instance
�2 (P) in which each � appends all other agents associated with ��−2, ��−1, . . . , ��+2 to her preference lists. Finally,
we complete each �’s preferences by inserting all agents associated with�1, . . . , ��−3 to the front of her preference
list, and appending all agents associated with ��+3, . . . , �2� to the end of her preference list. Intuitively, the
resulting instance � is in Range(� (�)) because two men (say) can only disagree on the relative ranks of two
women� and� ′ if� and� ′ are associated with �� and � � ( respectively) with |� − � | ≤ � for some constant � ;
for any �, � satisfying � < � −� , all men prefer� associated with �� to� ′ associated with�� . Thus, all rankings
of all agents agree up to � (��) = � (�)Ði.e., � ∈ Range(� (�)).

17Note that we don’t have to worry about ��� having more men than �� because all the men between the woman-optimal and man-optimal
stable partners of � are part of �� .
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6.1 Creating �1(P) and �2(P)
Let [�, �] = {�, � + 1, . . . , �} and ℓ = � − � + 1. The bitonic sequence corresponding to [�, �] is a permutation
(�1, �2, . . . , �ℓ ) of its elements such that |�� − ��+1 | ≤ 2 for � = 1, . . . , ℓ (and �ℓ+1 = �1). That is, any two consecutive
numbers in the (circular) sequence difer by at most 2. For example, (3, 5, 7, 6, 4) is a bitonic sequence for [3, 7].
In general, we can construct a bitonic sequence for [�, �] by starting at � and incrementing each number by 2
until we reach � − 1 or �, then adding the largest number that is not part of the sequence yet (� or � − 1), and
decrementing each number by 2 until we reach � + 1. Bitonic sequences will play a role in our implementation of
ConstructInstance.

We will once again make use of ConstructInstance to create the SM instance with the following speciications:

• For each edge (�, �), let � ((�, �)) = min {� |�, � ∈ �� }.We know that � ((�, �)) is well-deined because X is
a path decomposition of � .
• For each � ∈ [�], let �� = [��, �� + 1] where �� = min {� | � ∈ �� } and �� = max {� | � ∈ �� }. Since there is
some �� such that � ∈ �� , notice that |�� | ≥ 2 for every � ∈ [�]. Moreover, every color assigned to some
edge incident to � is in �� . Thus, we are efectively skipping Lines 2 to 9 of Algorithm 1. (Note that for
this section, we shall also use � instead of � to refer to the colors in �� as the colors are indices in the path
decomposition X.)
• For each � ∈ [�], let �� be a bitonic sequence of �� .

We refer to the instance created by the above speciication of ConstructInstance(� (P), �) as �1 (P). Figure 7
illustrates the construction for a poset with pathwidth 2.

Proposition 6.1. The SM instance �1 (P) realizes P. It has � (��) agents and it can be constructed in � (�� + �)
time, where � is the width of XÐthe nice path decomposition of � (P)Ðand � and � are the number of vertices
and edges of � (P) respectively.

Proof. Since �1 (P) was constructed by ConstructInstance, the SM instance realizes P. Let us now compute
the instance’s number of agents. For each � ∈ [�] and each � ∈ [��, �� + 1], the algorithm creates two agents��,�

and��,� . By deinition, �� is the index when � is added to the path decompositionX while �� + 1 is the index when
� is removed from X. Now X is a nice path decomposition so at most one vertex is removed at index � , � ∈ [2�]. It
follows that, for a ixed � , the number of women��,� with � ∈ [�] is at most |�� | + 1 ≤ (� + 1) + 1 = � + 2 because
X has width � . The same bound holds for the number of men��,�, � ∈ [�]. Thus, the total number of agents is at
most 2� × 2(� + 2) = � (��).
Finally, let us consider the running time of the algorithm with the speciications. Creating the agents and

adding their man-optimal stable partners into their preference lists takes � (��) time. Adding their acceptable
partners based on each edge of � (P) takes � (�) time. Finally, for each � ∈ [�], creating �� based on the bitonic
sequence for [��, �� + 1] and adding the agents’ woman-optimal stable partners into their preference lists take
� ( |�� |) time. But � (∑� |�� |) = � (��) since each man and each woman is part of exactly one rotation. Thus,
constructing �1 (P) takes � (�� + �) time. □

Proposition 6.2. In the SM instance �1 (P) the following are true:

(i) For��,� , � ∈ ��, � ∈ [�], every woman� �,∗ that appears in his preference list has | � − � | ≤ 2.
(ii) For��,� , � ∈ ��, � ∈ [�], every man� �,∗ that appears in her preference list has | � − � | ≤ 2.

Proof. The preference list of��,� starts with��,� followed by women of the form��,� such that (�, �) ∈ � and
� ((�, �)) = � and then ending with��+,� . But |�+ − � | ≤ 2 because �� is a bitonic sequence of [��, �� + 1].

For ��,� , her preference list starts with ��−,� , followed by men of the form ��,� such that (�,�) ∈ � and
� ((�,�)) = � and then ending with��,� . Again, |�− − � | ≤ 2 because �� is a bitonic sequence of [��, �� + 1]. □
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Fig. 7. Example of our �-range construction using the poset P as our running example. The top diagram shows the Hasse
diagram � (P). The top right gives a path decomposition of � (P) of width 2. Each edge (�, �) in � (P) is labeled with the
minimum index � such that �, � ∈ �� . We also show the bitonic sequence �� for each set �� of indices. The botom image
shows the incomplete preferences computed by �1 (P). As before, men are depicted as blue nodes, while women are depicted
as red. The men prefer blue to green to red edges, while the women prefer the edges in the opposite order.

For � ∈ [2�], let�� =
{

��,�

�

� � ∈ ��

}

. Similarly, let�� =
{

��,�

�

� � ∈ ��

}

. The above proposition implies that for
every man� ∈ �� , the women in his preference list is a subset of

�� =
⋃

{

��

�

� � ∈ [2�], | � − � | ≤ 2
}

.

Similarly, for each woman� ∈�� , the men in her preference list is a subset of

�� =

⋃

{

� �

�

� � ∈ [2�], | � − � | ≤ 2
}

.

We create �2 (P) from �1 (P) by appending to each��,� ’s preference list in �1 (P) the missing women in �� . Similarly,
we append to each��,� ’s preference list in �1 (P) the missing men in �� .

Proposition 6.3. In �2 (P), for � ∈ �� and � ∈ [�],��,� ’s preference list contains all women in �� while ��,� ’s
preference list contains all men in �� . Moreover, �2 (P) realizes P.

Proof. The irst part of the proposition is true by construction. Applying the same argument we used to prove
Corollary 2.15, �1 (P) and �2 (P) have identical shortlists. Thus, like �1 (P), the instance �2 (P) also realizes P. □
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6.2 Creating �� (P)
We now derive �� (P) from �2 (P) as follows: for each��,� , we create a preference list that has the following
structure:

��,� : �1 �2 · · · ��−3 ��,� ’s preference list in �2 (P) ��+3 · · · �2� .

For each � ∈ [1, � − 3] ∪ [� + 3, 2�], the women in�� are arranged so that their subscripts are lexicographically
increasing. Similarly, for each woman��,� , her preference list has the following structure:

��,� : �1 �2 · · · ��−3 ��,� ’s preference list in �2 (P) ��+3 · · · �2� .

Again, the men in � � , � ∈ [1, � − 3] ∪ [� + 3, 2�] are arranged so that their subscripts are lexicographically
increasing. Hence, agents from each group will have similar, but nonetheless distinct complete preference lists.

Lemma 6.4. �� (P) ∈ Range(9(� + 2)).
Proof. Fix��,� ∈�� . Recall that �� (��,�) is the rank assigned by� to��,� . In what follows, we analyze

min�∈� �� (��,�) and max�∈� �� (��,�) as their diference will determine the range of �� (P). By convention,
the smaller the value of �� (��,�), the more desirable she is to�. Thus, when �� (��,�) is small, we say that�
ranked her high; conversely, when �� (��,�) is large,� ranked her low.
The smallest index � so that��,� ∈ � � is � − 2. Thus, for all men in�1 ∪�2 ∪ . . . , ��−3, the rank of��,� in their

preference lists is the same and is equal to |�1 | + |�2 | + . . . + |��−1 | + |� ′� | + 1 where� ′� contains the women in
�� with subscripts lexicographically less than��,� .

However, a man in��−2 can rank��,� as high as |�1 | + |�2 | + . . . + |��−5 | + 1 because��,� ∈ ��−2. It is easy to
see that none of the men in��−1 ∪�� ∪ . . . ∪�2� can provide a higher rank for��,� .

Using the same analysis, a man in��+2 can rank��,� as low as |�1 | + |�2 | + . . . + |��+4 | and no man can give
her a worse ranking. Thus, in �� (P) the diference between the worst possible and the best possible rank of��,� is

|��−4 | + |��−3 | + . . . + |��+4 | − 1 ≤ 9(� + 2)
because, as we already noted in the proof of Proposition 6.1, each |�� | ≤ � + 2. By setting f (��,�) to the best rank
it received from a man, we have now shown that the range of the rankings of each woman is at most 9(� + 2). A
similar analysis holds for the range of the rankings of each man in the women’s preference lists. □

Lemma 6.5. The man-optimal stable matching of �� (P) is �∗ =
{

(��,�,��,�), � ∈ ��, � ∈ [�]
}

. That is, �� (P) and
�1 (P) have the same man-optimal stable matching.

Proof. We shall prove the above lemma like Lemma 5.5. Let � be the sequence of men whose subscripts are
lexicographically increasing. We then run the male-oriented Gale-Shapley algorithm on � . For our purposes, it is
useful to think of � as consisting of men from�1, followed by men from�2, etc. and ending with men from�2� .
By doing induction on � ∈ [2�], we will prove that each man��,� ∈ �� has��,� as his man-optimal stable partner.

Our basis step involves�1 ∪�2 ∪�3. Let��,� be a man from one of the sets; i.e., � = 1, 2 or 3. Notice that his
preference list in �� (P) begins with his preference list from �2 (P) followed by women from��+3∪��+4∪ . . .∪�2� .
But his preference list from �2 (P) begins with his preference list from �1 (P) followed by some arbitrary ordering
of the missing women from �� . Finally, �1 (P) was constructed by ConstructInstance so his preference list begins
with��,� . Thus,��,� will propose to��,� irst and she will accept because no one has proposed to her yet.
Assume that for ℓ ′ ≤ ℓ − 1 all men�ℓ ′,� ∈ �ℓ ′ is temporarily matched to �ℓ ′,� . Let us now consider a man

�ℓ,� ∈ �ℓ . Recall that his preference list in �� (P) has the following structure:

�ℓ,� : �1 · · · �ℓ−3 �ℓ,� ’s list in �1 (P) (missing women in �ℓ ) �ℓ+3 · · · �2� .

ACM Trans. Econ. Comput.



32 • Christine T. Cheng and Will Rosenbaum

When he proposes to some women��,� ∈�1 ∪�2 ∪ . . . ,�ℓ−3, she is already matched to��,� by assumption.
But in��,� ’s preference list in �� (P), all the men in�ℓ are ranked lower than��,� , which is the last man in her
preference list in �1 (P), so she will reject�ℓ,� . If��,� ∈�ℓ−3, for example, her preference list looks like the one
below:

��,� : �1 · · · �ℓ−6 ��,� ’s list in �1 (P) (missing men in �ℓ−3) �ℓ · · · �2� .

Thus,�ℓ,� will propose to the irst woman in his preference list in �1 (P), which is�ℓ,� . She is currently free and
will accept his proposal. So�ℓ,� is temporarily matched to�ℓ,� . We emphasize that this is true for every man in
�ℓ .
By induction, we have shown that �∗ =

{

(��,�,��,�), � ∈ ��, � ∈ [�]
}

is the man-optimal stable matching of
�� (P). □

Lemma 6.6. �� (P) and �1 (P) have the same woman-optimal stable matching.

Proof. The women’s preference lists in �� (P) were constructed from �1 (P) like the men’s preference lists.
In particular, every woman ��,� ’s most preferred partner in �1 (P) is her woman-optimal stable partner��−,�

(just like��,� ’s most preferred partner in �1 (P) is his man-optimal stable partner��,� .) Let � ′ be the sequence of
women whose subscripts are lexicographically increasing. Applying the same analysis as the proof of Lemma 6.5,
we can show that running the the woman-oriented Gale-Shapley algorithm on � ′ will result in a stable matching
that matches each woman��,� to��−,� . □

Theorem 6.7. Let � (P) be the Hasse diagram of a inite poset P with � vertices and � edges. Let X =

(�1, �2, . . . , �2� ) be a nice path decomposition of � (P) whose width is � . Then there exists an SM instance
�� (P) ∈ Range(� (�)) that realizes P. �� (P) has � (��) agents and can be constructed in � (�2�2) time.

Proof. In Lemma 6.4, we established that �� (P) ∈ Range(9(� + 2)). According to Lemmas 6.5 and 6.6, the SM
instances �� (P) and �1 (P) have the same man-optimal and woman-optimal stable matchings. By construction,
every agent � has the same set of agents between their man-optimal and woman-optimal stable partners in �� (P)
and �1 (P). It follows that the two instances have identical symmetric shortlists. By Corollary 2.14, they also
have identical rotation posets. From Proposition 6.1, �1 (P) realizes P and has � (��) agents so �� (P) does too.
Finally, constructing �1 (P) takes � (�� + �) time but assigning each agent a complete preference list in �� (P)
takes � ((��)2), which is the bottleneck. Thus, the running time of � (�2�2) follows. □

Corollary 6.8. Let P be a inite poset on � elements with pathwidth pw. Then there is an SM instance � with
� ∈ Range(� (pw)) that realizes P. � can be constructed in time � (� (pw)�2 + pw2 �2) for some function �

depending only on the pathwidth of P.
Proof. By Corollary 2.22, a nice path decomposition X of � (P) can be computed in time � (� (pw)�2). The

desired result then follows from Theorem 6.7. □

7 FROM �-RANGE PREFERENCES TO PATH DECOMPOSITIONS

In the previous section, we showed how starting with a inite poset P with pathwidth � , we can construct an SM
instance �� (P) ∈ Range(9� + 2). In this section, we show that the connection between P’s pathwidth and the
range of the SM instance created is not incidental: if � ∈ Range(�) then R(� ) has a path decomposition of width
� (�2) that can be constructed eiciently.

Throughout the section, we assume the SM instances have complete preference lists. As previously noted, we
also assume for notational convenience that |� | = |� | = �. The results in this section, however, do not rely on
this latter assumption and hold as well for the general case in which the numbers of men and women may difer.
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We begin by noting that every SM instance belongs to Range(�, �) for some � ∈ [1, � − 1]. Let Range(� ) denote
the smallest such � for which � ∈ Range(�). The parameter Range(� ) can be thought of as a similarity measure
of the preference lists of the agents. The smaller Range(� ) is, the more alike the agents’ preferences lists are to
each other. As remarked in Section 2.4, computing Range(� ) can be done eiciently. The following lemma is a
formal statement of the discussion in Section 2.4.

Lemma 7.1. Given an SM instance � of size �, computing � = Range(� ) and the minrank function f can be done
in � (�2) time.

Let � ∈ Range(�). Our goal in this section is to create a path decomposition for � (� ), the rotation digraph of � ,
whose width is � (�2). Since the Hasse diagram of R(� ) is a subgraph of � (� ), it follows that the pathwidth of
R(� ) is also � (�2). Towards bounding the pathwidth, we will assign each rotation � ∈ R(� ) an interval that is
based on the minranks of the agents in the rotation and then show that the maximum number of intervals that
contain a particular � ∈ [1, �], where � is the size of � , is � (�2).

We now present a series of structural results leading to our main result, Theorem 7.9. To orient the reader, we
give a brief overview of the results. Our irst structural result, Proposition 7.2, bounds the number of agents with
minranks at most � for instances � ∈ Range(�). Using this result, we show that for all stable pairs (�,�), the
minranks of� and� cannot difer too much (Lemma 7.3).18 As a consequence of Lemma 7.3, we argue that (1)
adjacent men (say)�� ,��+1 in any rotation � must have similar minranks (Corollary 7.4), and (2) no agent can
have many stable partners. Hence each agent cannot be part many rotations (Corollary 7.5).

Combining these structural results, Theorem 7.9 follows by showing that not too many (� (�2)) rotations can
łoverlapž in the sense of containing agents with similar minranks (cf. Deinition 7.6 and Lemmas 7.7 and 7.8). In
particular, the structural results imply that a simple and eicient procedure yields a path decomposition of � (� )
of width � (�2)Ða construction we leverage for our algorithmic results in the following section.

Proposition 7.2. Let � ∈ Range(�, �) with minrank function f . Then for all � ∈ [�]
� ≤ |{� ∈� | f (�) ≤ �}| ≤ � + � − 1, and

� ≤ |{� ∈ � | f (�) ≤ �}| ≤ � + � − 1. (8)

Proof. Wewill show that the bounds for |{� ∈� | f (�) ≤ �}| are correct. The second set of inequalities follow
by interchanging the roles of the men and women.
Recall that every man�’s ranking function �� : � → [�] is a bijection. Now, consider a woman � with

f (�) ≤ � . According to (7), �� (�) ≤ � + � − 1. If |{� ∈� | f (�) ≤ �}| > � + � − 1, �� will have to assign at least
two women with f (�) ≤ � the same rank, contradicting the fact that �� is a bijection.
On the other hand, suppose |{� ∈� | f (�) ≤ �}| < � so that |{� ∈� | f (�) > �}| ≥ � − � + 1. Every woman

� with f (�) > � will have �� (�) > � according to (7). Thus, �� will have to assign at least � − � + 1 women
the ranks � + 1, . . . , �, which again contradicts the fact that �� is a bijection. It follows that the bounds for
|{� ∈� | f (�) ≤ �}| hold. □

Lemma 7.3. Let � ∈ Range(�, �) with minrank function f . Then for any stable pair (�,�) of � ,
|f (�) − f (�) | ≤ 2� − 2. (9)

Proof. We will show that
f (�) ≤ f (�) + 2� − 2. (10)

The proof of the other inequality is identical, interchanging the roles of� and� .

18Lemma 7.3 generalizes the result that instances with master preferences (i.e., with � = 1) have a unique stable matchingÐthe matching in
which stable partners both have the same (min)rank.
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Let � be a stable matching of � such that (�,�) ∈ �. To prove (10), we shall bound �� (�) below using f (�)
and above using f (�). The former is straightforwardÐby (7), f (�) ≤ �� (�). For the latter, we consider the
number of women� ′ that� prefers to� , which we know is �� (�) − 1. Each such woman� ′ must be matched
to a man�′ that she prefers to�. Now, by (7), ��′ (�) ≤ f (�) + � − 1 so f (�′) ≤ ��′ (�′) < f (�) + � − 1. The
number of men that will satisfy this property is bounded by

|{�′ | f (�′) ≤ f (�) + � − 2}| ≤ f (�) + 2� − 3. (11)

It follows that� prefers at most f (�) + 2� − 3 women to� so

f (�) ≤ �� (�) ≤ f (�) + 2� − 2,
whence (10) follows. □

Proposition 7.2 and Lemma 7.3 have the following consequences, which will be useful in our description of
rotation posets arising from SM instances with �-range preferences.

Corollary 7.4. Let � ∈ Range(�, �) with minrank function f . Suppose

� = (�0,�0), (�1,�1), . . . , (�ℓ−1,�ℓ−1)
is a rotation of � . Then for all � = 0, 1, . . . , ℓ − 1, we have

|f (�� ) − f (��+1) | ≤ 4� − 4, and

|f (�� ) − f (��+1) | ≤ 4� − 4. (12)

Proof. Let � be exposed in the stable matching � of � . Then (��+1,��+1) ∈ � while (�� ,��+1) ∈ � \ � . Applying
Lemma 7.3 twice (along with the triangle inequality) gives

|f (�� ) − f (��+1) | = |f (�� ) − f (��+1) + f (��+1) − f (��+1) |
≤ |f (�� ) − f (��+1) | + |f (��+1) − f (��+1) |
≤ 2(2� − 2),

as desired. □

Corollary 7.5. Let � ∈ Range(�, �). Then each agent in � has at most 5� − 4 stable partners. In particular, each
agent can appear in at most 5� − 5 rotations.
Proof. Assume the minrank function of � is f . Let us prove the result for a man�. Let�� denote his stable

partners in � . By Lemma 7.3, all women� ∈�� satisfy

f (�) − 2� + 2 ≤ f (�) ≤ f (�) + 2� − 2. (13)

By Proposition 7.2, we have

|{� ∈� | f (�) ≤ f (�) + 2� − 2}| ≤ f (�) + 3� − 3.
Similarly, Proposition 7.2 implies that

f (�) − 2� + 1 ≤ |{� ∈� | f (�) < f (�) − 2� + 2}| .
Combining the previous two expressions, the number of women� satisfying (13) is at most

(f (�) + 3� − 3) − (f (�) − 2� + 1) = 5� − 4.
Except for his partner in the women-optimal stable matching,� appears with each of its stable partners in a
rotation. Thus,� can be part of at most 5� − 5 rotations. □

We now deine the interval that will be assigned to each rotation of � .
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Deinition 7.6. Let � = (�0,�0), (�1,�1), . . . , (�ℓ−1,�ℓ−1) be a rotation of � ∈ Range(�, �) with minrank
function f . Deine the extent of � , denoted ext(�), as the interval

[fmin (�) − 2� + 1, fmax (�) + 2� − 1]
where

fmin (�) = min
0≤�≤ℓ−1

{f (�� ), f (�� )} and fmax (�) = max
0≤�≤ℓ−1

{f (�� ), f (�� )} .

Lemma 7.7. Let � ∈ Range(�, �) and � (� ) be the rotation digraph of � . Suppose (�, �) is a directed edge in � (� ).
Then there exists � ∈ [�] such that � ∈ ext(�) ∩ ext(�).

Proof. Let f be the minrank function. The DAG � (� ) contains an edge (�, �) only when Rule 1 or 2 of
Remark 2.8 is satisied. We consider the cases corresponding to these rules below.

Case 1. If Rule 1 applies, then there exists� ∈ � and�,� ′ ∈� such that (�,�) ∈ � and (�,� ′) ∈ � . Since
� appears in both � and � , we have f (�) ∈ ext(�) ∩ ext(�), as desired.

Case 2. Suppose Rule 2 applies. Then there exists� and� such that� is part of the rotation � while� =��

is in the rotation � = (�1,�1), (�2,�2), . . . , (�ℓ ,�ℓ ) and
�� (�� ) < �� (�) < �� (��+1). (14)

We know that f (�� ) ≤ �� (�� ). Since�� is a stable partner of�, by Lemma 7.3

f (�) − 2� + 2 ≤ �� (�� ). (15)

On the other hand,��+1 is also a stable partner of�. From the proof of Lemma 7.3 we also know that

�� (��+1) ≤ f (�) + 2� − 2. (16)

Combining (14), (15) and (16) gives

|�� (�) − f (�) | ≤ 2� − 2. (17)

Finally, applying the triangle inequality and the deinition of �-range preferences, we obtain

|f (�) − f (�) | ≤ |f (�) − �� (�) | + |�� (�) − f (�) |
≤ (� − 1) + (2� − 2)
= 3� − 3.

Since [f (�)−2�+1, f (�)+2�−1] ⊆ ext(�)while [f (�)−2�+1, f (�)+2�−1] ⊆ ext(�), |f (�) − f (�) | ≤ 3�−3
implies that ext(�) ∩ ext(�) ≠ ∅.

Thus, for all edges (�, �) in � , we have ext(�) ∩ ext(�) ≠ ∅, as desired. Now we note that the non-empty
intersection can happen in three ways:

• [fmin (�), fmax (�)] ∩ [fmin (�), fmax (�)] ≠ ∅
• [fmax (�), fmax (�) + 2� − 1] ∩ [fmin (�) − 2� + 1, fmin (�)] ≠ ∅ or
• [fmax (�), fmax (�) + 2� − 1] ∩ [fmin (�) − 2� + 1, fmin (�)] ≠ ∅.

In each case, some � ∈ [�] has to be part of this intersection since the minranks of all agents are in [�]. □

Lemma 7.8. Let � ∈ Range(�, �) and integer � ∈ [�]. Then there are at most 50�2 rotations � such that � ∈ ext � .
Proof. Let f be the minrank function. Consider the set {�1, �2, . . . , �ℓ } of rotations whose extents contain � .

That is, for all � we have � ∈ ext � � . By the deinition of ext, for each � � , there exists an agent � � in � � such that
�

�f (� � ) − �
�

� ≤ 2� − 1 (18)
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Following the proof of Corollary 7.5, the number of women that satisfy (18) is at most 5�−4. Similarly, the number
of men that satisies the same inequality is at most 5� − 4. Thus, at most 10� − 8 agents satisfy the inequality. But
each such agent can be part of at most 5� − 5 rotations. Therefore, ℓ ≤ (10� − 8) (5� − 5) = 50�2 − 90� + 40 ≤ 50�2

when � ≥ 1. □

We now present the main result of this section.

Theorem 7.9. Suppose � ∈ Range(�, �) and R = R(� ) is its rotation poset. Then pw(R) ≤ 50�2.

Proof. Let � ∈ Range(�) have minrank function f . Let � = � (� ) = (� , �). Consider the sequence X =

(�1, �2, . . . , ��) deined by

�� = {� ∈ � | � ∈ ext(�)} .
We claim that X is a path decomposition of � . We argue that each of the three conditions in Deinition 2.16 are
satisied:

(1)
⋃�

�=1�� = � holds because each rotation � ∈ � has a non-empty extent, and intersects the interval
{1, . . . , �}.

(2) For each edge {�, �} ∈ �, there exists � ∈ [�] such that �, � ∈ �� . This holds by Lemma 7.7.
(3) For all �, �, � ∈ [�] with � ≤ � ≤ � , we have��∩�� ⊆ � � . To see this, suppose � ∈ ��∩�� . Then �, � ∈ ext(�)

by the deinitions of �� and �� . Therefore, � ∈ � � , because ext(�) is an interval, as desired.

By Lemma 7.8, X has width at most 50�2. Thus, � has pathwidth at most 50�2. And since the Hasse diagram of
R, � (R), is a subgraph of � , it follows that � (R) has a path decomposition whose width is at most 50�2. Thus,
R also has pathwidth at most 50�2, the desired bound. □

Corollary 7.10. There is no constant � such that every poset can be realized by an instance in Range(�).

Proof. For any positive integer �, there is a tree �� whose pathwidth is at least � [45]. Take any vertex �

of �� and orient all edges away from � and call the new directed acyclic graph ®�� . Notice that the transitive
reduction19 of ®�� is itself since �� contains no cycles. Let P� be a poset whose Hasse diagram is ®�� . By deinition,
the pathwidth of P� is equal to the pathwidth of ®�� , which is at least �. Let � be a ixed constant. By Theorem 7.9,
every SM instance � in Range(�) has a rotation poset whose pathwidth is at most 50�2. Thus, if � > 50�2, no
instance in Range(�) can realize P� . □

Given an SM instance � , Algorithm ConstructPathDecomposition incorporates the steps from the discussion
above to create a nice path decomposition for � (� ), the rotation digraph of � , whose width is � (�2) where
� = Range(� ).

Corollary 7.11. Given an SM instance � of size �, there exists an � (�2� + �2)-time algorithm that computes the
rotation digraph � (� ) and a nice path decomposition X of � (� ) with width at most 50�2, where � = Range(� ).

Proof. Gusield’s algorithm takes � (�2) time to compute � (� ) (Theorem 2.5). Computing � and objective
function f also takes� (�2) time (Lemma 7.1). Determining ext(�) takes� ( |� |) time so doing this for all rotations
takes � (∑� |� |) = � (�2) because each man-woman pair can be in at most one rotation. Computing the path
decomposition (�1, �2, . . . , ��) takes� (�2�) since each |�� | ≤ 50�2 according to Theorem 7.9. Finally converting
(�1, �2, . . . , ��) to a nice path decomposition takes � (�2�) time (Lemma 2.20). Thus, the total running time of
ConstructPathDecomposition is � (�2� + �2). □

19Recall that the transitive reduction of a DAG� = (� , � ) is the DAG� ′ = (� , �′ ) formed by removing all edges (�, �) from � such that
there exists a path of length at least 2 from � to � in� .
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Algorithm 2 ConstructPathDecomposition(� = (�,� , �)). Construct rotation digraph � (� ) and nice path
decomposition X = (�1, �2, . . . , ��) of width � (�) where � = Range(� ).
1: Compute � (� ) using Gusield’s algorithm (Theorem 2.5).
2: Compute � = Range(� ) and the minrank function f (Lemma 7.1).
3: for all rotations � ∈ � (� ) do
4: fmin (�) ← min {f (�) | � ∈ �}
5: fmax (�) ← max {f (�) | � ∈ �}
6: ext(�) ← [fmin (�) − 2� + 1, fmax (�) + 2� − 1]
7: end for

8: Initialize all the sets in (�1, �2, . . . , ��) to empty sets.
9: for all rotations � ∈ � (� ) do
10: for all � ∈ ext(�) ∩ [1, �] do
11: Add � to ��

12: end for

13: end for

14: Convert (�1, �2, . . . , ��) into a nice path decomposition (Lemma 2.20).

8 ALGORITHMIC IMPLICATIONS

We now describe FPT algorithms for several computationally hard stable matching problems parameterized by
Range(� ). The results rely on Theorem 7.9 and Corollary 7.11, as well as FPT algorithms in [9, 20].

8.1 Counting and Sampling Stable Matchings

In a companion paper [9], we prove the following results:

Theorem 8.1 ([9]). Let� be a directed acyclic graph with � vertices. Given � and a simple path decomposition
X of � of width � , there is an algorithm that computes the number of closed subsets of � in � (2���) time.

Theorem 8.2 ([9]). Let� be a directed acyclic graph with � vertices. Given � and a simple path decomposition
X of � of width � , there is an algorithm that returns a downset of � sampled uniformly at random in time
2� (� )�� (1) .

Corollary 8.3. Let � be an SM instance of size � and � = Range(� ). The number of stable matchings of � can be
computed in � (250�2

�2� + �2) time.

Proof. By Corollary 7.11, we can compute the rotation digraph� (� ) and a simple path decomposition of� (� )
of width at most 50�2 in � (�2� + �2) time. By Theorem 2.5, the number of stable matchings for � is down(� (� )),
which we can compute in time � (250�2

�2�) by Theorem 8.1. Thus, computing the number of stable matchings of
� can be done in � (250�2

�2� + �2) time. □

Corollary 8.4. Let � be an SM instance of size � and � = Range(� ). There is an algorithm that samples the stable
matchings of � uniformly at random in 2� (�

2 )�� (1) time.

Proof. Again, we compute� (� ) and a simple path decomposition of� (� ) of width at most 50�2 in� (�2� +�2)
time. By Theorem 8.2, we can sample a downset � of � (� ) uniformly at random in time 2� (�

2 )�� (1) . Since there
is a one-to-one correspondence between the downsets of� (� ) and the stable matchings of � , it follows that the
stable matching � formed by eliminating all the rotations in � from the man-optimal stable matching �� is a
stable matching of � chosen uniformly at random. Computing � from �� and � takes � (�2) time. □
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8.1.1 Finding Median Stable Matchings. For SM instance � , letM(� ) contain all the stable matchings of � and
� = |M(� ) |. For each stable matching � ∈ M(� ) and for each agent �, let � (�) denote �’s partner in �. Sort the
multiset of agents {� (�), � ∈ M(� )} from �’s most preferred partner to �’s least preferred partner. The agent(s)
in the middle of this sorted list is referred to as the (lower or upper) median stable partner of �.20 Amedian

stable matching is a stable matching where every agent is paired with a median stable partner.
Teo and Sethuraman [46] were the irst to recognize that every SM instance � has a median stable matching.

Cheng [6, 7] showed that median stable matchings of � are also remarkable in that they are exactly the median
elements in the lattice of stable matchings of � . That is, their average distance to all the stable matchings of � is
minimal.21 Thus, median stable matchings are fair in a very strong sense. She also characterized these stable
matchings in terms of the rotations of � and used it to show that computing a median stable matching is #P-hard.

Theorem 8.5 (Cheng [6, 7]). Suppose an SM instance � has � stable matchings. For each rotation � of � , let ��
denote the number of downsets of� (� ) that contain � . When � is odd, � has only one median stable matching
and it corresponds to the downset

{

�
�

��� ≥ (� + 1)/2
}

.

On the other hand, when � is even, every median stable matching of � corresponds to the downset of the form
{

�
�

��� ≥ (� /2) + 1
}

∪ � where � ⊆
{

�
�

��� = � /2
}

.

Corollary 8.6. Given SM instance � of size �, a median stable matching of � can be computed in 2� (�
2 )�� (1) ,

where � = Range(� ).

Proof. Our starting point is once again the rotation digraph � (� ) and a nice path decomposition X of � (� )
whose width is � (�2). These structures can be constructed in � (�2� + �2) time. By Corollary 8.3, we can then
compute � , the number of stable matchings of � in 2� (�

2 )�� (1) time.
Next, for each rotation � , let Anc(�) consist of � and its ancestors in � (� ). Notice that every downset of � (� )

that contains � is of the form Anc(�) ∪� where � is a downset of � (� ) \ Anc(�). Thus, �� = down(�� ), where
�� = � (� ) \ Anc(�). To compute �� , we irst construct �� and a nice path decomposition X� for �� from � (� )
and X. This will take � (�2 + ��) time. Then we use them to compute down(�� ) in 2� (�

2 )�� (1) . So the total time

for computing �� is 2� (�
2 )�� (1) .

We now have the ingredients for computing a median stable matching of � . We start by inding �� , the
man optimal stable matching. Then we determine the set � =

{

�
�

��� ≥ (� + 1)/2
}

. By Theorem 8.5, the stable
matching obtained by eliminating � from �� is a median stable matching. These steps take � (�2) time.
The bottleneck for our procedure is the computation of � and �� , � ∈ � (� ). It follows that the running time is

2� (�
2 )�� (1) . □

8.1.2 Finding Sex-Equal and Balanced Stable Matchings. Given a stable matching � of � , the satisfaction of an
agent � with � can be represented by �� (� (�)), the rank of �’s partner in �. The total satisfaction of the men

and women with � then are �� (�) =
∑

�∈� �� (� (�)) and �� (�) =
∑

�∈� �� (� (�)) respectively. A natural
strategy for computing a fair stable matching of � is to create a measure for � that captures how fair � is to the
agents of � .

20If the number of agents is odd, there is a unique median stable partner, whereas if the number of agents is even, there are two median
stable partners: the upper and lower stable partner.
21In a poset P, the distance between two elements � and �, � (�, �) , is deined as the length of the shortest path between � and � in the
undirected version of � (P) . Thus, the total distance of � to all elements of P is

∑

� � (�, �) and the average distance of � to these elements

are computed similarly.
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In the sex-equal stable marriage problem (SESM), the fairness measure of � is

� (�) = |�� (�) − �� (�) |
and the goal is to ind a stable matching of � whose SESM fairness measure is as small as possible. Kato [28]
showed that SESM is NP-hard.

In the balanced stable marriage problem (BSM), the fairness measure of � is

� (�) = max {�� (�), �� (�)} .
The goal this time is to ind a stable matching of � whose BSM fairness measure is as small as possible. Feder [13]
showed that BSM is NP-hard.
Gupta et al. [20] recently considered the parametrized complexity of several hard variants of the SMP

parametrized by the treewidth of the rotation poset. Speciically, they proved the following result.

Theorem 8.7 (Gupta et al. [20, Theorem 3]). The sex equal and balanced stable matching problems are both
solvable in time � (2tw�6) where tw is the treewidth of the rotation poset of the SM instance of size �.

Since the pathwidth of a graph is an upper bound to its treewidth, Theorem 8.7 together with Theorem 7.9
immediately gives the following corollary.

Corollary 8.8. Let � be an SM instance of size � and � = Range(� ). Then computing a sex-equal and balanced
stable matching for � can be done in time 2� (�

2 )�6.

9 DISCUSSION AND QUESTIONS

Eicient poset representations. In Corollary 3.9, we show that given a poset P with � elements, our generic
construction can produce an SM instance realizing P with � = � (�) agents. On the other hand, since an SM
instance with � agents can have only � (�2) rotations, any instance realizing P must have Ω(√�) agents. Can
this gap be closed?

Question 1. For a given poset P (or family of posets), what is the smallest SM instance realizing P?
If P has an antichain of size �, then � = Ω(�) is necessary. To see this, observe that if �1, �2, . . . , �� is an

antichain, then the agents in the rotations must be pair-wise distinct. If P has a maximal antichain of size � (�), it
is not clear whether P is realizable with � (�) agents.

Counting stable matchings in graphs. Our �-bounded model is equivalent to SM instances deined on (bipartite)
graphs with maximum degree at most � . Thus Theorem 4.2 implies that #SM remains #BIS-complete even when
restricted to graphs with maximum degree 3. Since graphs with maximum degree 2 (i.e., 2-bounded instances) are
disjoint unions of paths and cycles, #SM can be solved on 2-bounded instances in polynomial time. (Paths have
unique stable matchings, and each cycle can support 1 or 2 stable matchings.) Thus #SM has a sharp hardness
threshold in the �-bounded model at � = 3. Interestingly, #BIS shows a similar threshold around � = 6: counting
independent sets in bipartite graphs of maximum degree � ≥ 6 is #BIS-complete [4], while instances of maximum
degree � ≤ 5 admit an FPRAS, even if vertices on only one side of the bipartition obey the degree bound [34].
Recently, Curticapean et al. [10] considered other parameterized variants of #BIS, and showed that the variants
admit eicient ixed-parameter algorithms in bounded-degree graphs.

It would be interesting to see if #SM becomes easy in any łnaturalž restricted graph class.

Question 2. For what families of (bipartite) graphs can #SM be computed or approximated eiciently? Can #SM
be eiciently computed in planar graphs? Graphs of bounded genus? What rotation posets can be realized by
these restricted instances?
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It seems likely that planar SM instances (i.e., instances where the graph � of acceptable partners is planar)
realize a restricted family of rotation posets. To see why, note that every rotation corresponds to a cycle in� , and
a rotation � can be immediate predecessor of � ′ only if either the corresponding cycles intersect, or there is an
edge connecting a node in one cycle to a node in another. This restriction seems to limit what rotation posets are
realizable by planar instances. For example, we believe that a poset P whose Hasse diagram is a suiciently large
complete bipartite graph minus a perfect matching cannot be realized by any planar instance. Does the family of
rotation posets realized by planar SM instances admit a clean description? Can such a characterization be used to
solve structural SM problems more eiciently than the general case?

Incomplete preferences and ties. The �-attribute, (�1, �2)-list, and �-range preference models can also be used to
describe SMI instancesÐthat is, SM instances with incomplete preferences. Speciically, an SMI instance arising
from one of these models is an instance for which every preference list is a sub-list of an instance in the model
with complete preferences. Our construction for the (�1, �2)-list model in Section 5 has the property that there
are two master preferences for each gender such that all (incomplete) preference lists are sub-lists of one of the
two master lists. Thus, every inite poset is realizable in the SMI variant of the (2, 2)-list model. Since complete
preferences are a special case of SMI instances, our �-attribute construction also implies that SMI �-attribute
preferences realize all inite posets.

Question 3. What rotation posets can be realized in the SMI variant of the �-range model?

These restricted preference models can also be generalized to allow for preferences with ties: that is, an agent
may be indiferent to a choice of several partners. It is well-known that many stable marriage problems become
intractable in instances with both incomplete preferences and ties (see, e.g., [36]).

Question 4. Consider SM instances with ties and incomplete preferences. What stable matching problems
remain NP-hard when restricted to instances arising from the �-attribute, (�1, �2)-list, or �-range models?

�-attribute and Euclidean Preferences. Theorem 4.7 characterizes the rotation posets realized in the �-attribute
model for � ≥ 6, but does not say anything about Atr(�) for � ≤ 5.

Question 5. What rotation posets are realized by Atr(�) for � = 2, 3, . . . , 5?

We conjecture that Atr(�) realizes arbitrary rotation posets for any � ≥ 3. This conjecture is consistent
with the results of Chebolu et al. [5], who show that #SM is #BIS-complete in the �-attributed model for any
� ≥ 3. Our use of cyclic polytopes in Section 4.2 to establish Theorem 4.7 is wasteful in the sense that cyclic
polytopes give much stronger guarantees than our result actually requires. Indeed, the construction allows us to
embed any 2-dimensional simplicial complex into R

6 in convex position. However, our argument only requires
that the 2-dimensional faces of the complexes corresponding to preference lists output by ConstructInstance
be embedded in convex position. Thus it seems that a more careful analysis of the output of ConstructInstance
could establish Theorem 4.7 for smaller values of � .
Chebolu et al. [5] and Künnemann et al. [33] also consider the �-Euclidean preference model deined by

Bogomolnaia and Laslier [3]. In this model, each agent is also associated with a point in R
� . Preferences are

determined by the Euclidean distance between the points: � prefers agents in order �1, �2, . . . , �� where �1 is
�’s nearest agent, �2 the second nearest, and so on. Chebolu et al. [5] showed that #SM is #BIS complete in the
�-Euclidean model for � ≥ 2.

Question 6. What rotation posets are realized in the �-Euclidean model?

We suspect that �-Euclidean preferences realize arbitrary posets for a relatively small ixed constant � .
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Künnemann et al. [33] also consider an asymmetric version of the �-Euclidean model in which each agent
� has two associated points in �� : a position ®�� and an opinion ®�� . The agent � ranks agents in order of their
position’s distance to �’s opinion. That is � ranks �1 with ®��1 closest to ®�� irst, and so on.

Our 6-attribute construction can be modiied to realize arbitrary rotation posets in the asymmetric 6-Euclidean
model. In the modiied construction, the positions of each� ∈ � and� ∈� are the same as the embedding in
Section 4.2 (i.e., each agent corresponds to a vertex of a cyclic polytope). If�1,�2,�3 appear on� ’s preference
list in the 3-bounded instance constructed by ConstructInstance, then she can choose her opinion ®�� so that (the
positions of) ®��1 , ®��2 , and ®��3 are the three closest positions to ®�� as follows. Let ®�� denote the circumcenter of

the triangle in the plane determined by ®��1 , ®��2 , and ®��3 , and let ®�� ∈ R6 be the vector deined immediately

after (1), so that − ®�� is an outward facing normal vector for the plane containing ®��1 ,�2, and�3. Thus, for

any point � ∈ R6 of the form ®� = ®�� − � ®�� with � ∈ R, the points�1,�2 and�3 are all equidistant from ®�. By
choosing � suiciently large, we can ensure that, in fact, ®��1 , ®��2 and ®��3 are the three closest points in� to ®�.
By taking ®�� to be a slight perturbation of such a ®�, we can ensure that for all� ≠�1,�2,�3, we have

�

�®��1 − ®��
�

�

<

�

�®��2 − ®��
�

�

<

�

�®��3 − ®��
�

�

< | ®�� − ®�� | .
That is,� ranks�1,�2, and�3 (in that order) ahead of all other men. As with the 6-attribute case, repeating the
procedure for all men and women is suicient to prove that the corresponding asymmetric 6-Euclidean instance
realizes the same rotation poset as the underlying 3-bounded instance.

�-list Preferences. While Theorem 5.4 characterizes the rotation posets realizable by (�1,∞)-list SM instances,
it does not say anything about (�1, �2)-list preferences for constant �2, nor the original �-list preference structure
of Bhatnagar et al. [1].

Question 7. What rotation posets can be realized in the (�1, �2)-list model for �1, �2 < �?

We suspect that for �1 = �2 = 2, the rotation poset is restricted, but we are unsure of how to prove even this
seemingly simple fact. We note that Künnemann et al. [33] had similar diiculty with the �-range model, and
posed as an open question whether or not 2-list preferences admit an � (�2)-time algorithm for inding a stable
matching.

�-range Preferences. Our construction in the proof of Theorem 7.9 shows that every �-range instance has a
rotation poset whose pathwidth is at most 50�2. Can this bound be improved?

Question 8. What is the maximum pathwidth of R(� ) for � ∈ Range(�)? Is it Ω(�2)? Or can our � (�2) upper
bound be improved to, say, � (�)?

Distributed Stable Matchings. The stable marriage problem has a natural interpretation as a distributed problem,
where each agent is represented by a processor and agents communicate via point-to-point communication. In fact,
the Gale-Shapley algorithm [16] has a natural interpretation in such a computational model. It is straightforward
to show that inding a stable matching requires a number of rounds proportional to the network diameter, even
when there are no constraints on local computation and communication (i.e., in the LOCAL model described
in [42]). If pathdwidth is restricted to � (log�) bits per edge per communication round (i.e., the CONGEST
model [42]), inding a stable matching still requires Ω(√�) rounds, even in networks of diameter � (log�) [30].
Can stable matchings be found faster in distributed models of computation if the preferences are restricted?

Question 9. Consider the distributed stable marriage problem in which each agent is represented by a processor.
How many communication rounds are needed to ind a stable matching if the preferences are assigned according
to the �-attribute, (�1, �2)-list, or �-range models?
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We note that łalmost stablež matchings can be computed in � (1) rounds in bounded-degree networks [14]
and log� (1) (�) rounds in general networks [41]. The work of Khanchandani and Wattenhofer [29] shows that
stable matchings in the �-range model can be computed with less total communication than the Gale-Shapley
algorithm.
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