1,348 research outputs found

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Forest cover mask from historical topographic maps based on image processing

    Get PDF
    This study aimed to obtain accurate binary forest masks which might be directly used in analysis of land cover changes over large areas. A sequence of image processing operations was conceived, parameterized and tested using various topographic maps from mountain areas in Poland and Switzerland. First, the input maps were ïŹltered and binarized by thresholding in Hue-Saturation-Value colour space. The second step consisted of a set of morphological image analysis procedures leading to ïŹnal forest masks. The forest masks were then assessed and compared to manual forest boundary vectorization. The Polish topographical map published in the 1930s showed low accuracy which could be attributed to methods of cartographic presentation used and degradation of original colour prints. For maps published in the 1970s, the automated forest extraction performed very well, with accuracy exceeding 97%, comparable to accuracies of manual vectorization of the same maps performed by nontrained operators. With this method, we obtained a forest cover mask for the entire area of the Polish Carpathians, easily readable in any Geographic Information System software

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    An automated mapping satellite system (MAPSAT)

    Get PDF
    Digital data from highly stabilized stereo linear arrays are amenable to simplified processing to produce both planimetric imagery and elevation data. A satellite, called MAPSAT, including this concept was proposed to accomplish automated mapping in near real time. Image maps as large as 1:50,000 scale with contours as close as 20-m interval may be produced from MAPSAT data

    Directory of research and development based on Ordnance Survey small scales digital data

    Get PDF
    Special issue (CISRG - Cartographic Information Systems Research Group) ;

    A Principal Components Analysis-Based Method for the Detection of Cannabis Plants Using Representation Data by Remote Sensing

    Get PDF
    Integrating the representation of the territory, through airborne remote sensing activities with hyperspectral and visible sensors, and managing complex data through dimensionality reduction for the identification of cannabis plantations, in Albania, is the focus of the research proposed by the multidisciplinary group of the Benecon University Consortium. In this study, principal components analysis (PCA) was used to remove redundant spectral information from multiband datasets. This makes it easier to identify the most prevalent spectral characteristics in most bands and those that are specific to only a few bands. The survey and airborne monitoring by hyperspectral sensors is carried out with an Itres CASI 1500 sensor owned by Benecon, characterized by a spectral range of 380–1050 nm and 288 configurable channels. The spectral configuration adopted for the research was developed specifically to maximize the spectral separability of cannabis. The ground resolution of the georeferenced cartographic data varies according to the flight planning, inserted in the aerial platform of an Italian Guardia di Finanza's aircraft, in relation to the orography of the sites under investigation. The geodatabase, wherein the processing of hyperspectral and visible images converge, contains ancillary data such as digital aeronautical maps, digital terrain models, color orthophoto, topographic data and in any case a significant amount of data so that they can be processed synergistically. The goal is to create maps and predictive scenarios, through the application of the spectral angle mapper algorithm, of the cannabis plantations scattered throughout the area. The protocol consists of comparing the spectral data acquired with the CASI1500 airborne sensor and the spectral signature of the cannabis leaves that have been acquired in the laboratory with ASD Fieldspec PRO FR spectrometers. These scientific studies have demonstrated how it is possible to achieve ex ante control of the evolution of the phenomenon itself for monitoring the cultivation of cannabis plantations

    Upgrade of water resources maps from Mato Grosso do Sul State using geotechnologies.

    Get PDF
    The objective of this work is to present the methods used and results obtained in the activities of upgrading water resources maps from Mato Grosso do Sul State. The geographic boundaries of the hydrographic sub-basins or Planning and Management Units (UPG) were upgraded using an algorithm based on D8 (Deterministic Eight-neighbor Method) applied to the Digital Elevation Model (DEM) of the State. The digital hydrographic network was corrected and upgraded from medium resolution satellite images CCD/CBERS-2B, at 1:100,000 scale. The results obtained with these activities constitute a significant improvement on the information of water resources available for the State, although some inconsistencies occurred in the Pantanal flatlands, where minimal or nil height changes jeopardized the analysis of water features, as well as the performance of the algorithm to delimit hydrographic basins. The resulting vector dataset of these upgrading activities is available at SISLA (Interactive System for Environmental Licensing Support), a web tool managed by Mato Grosso do Sul State for the evaluation of environmental licesing processes, which will contribute to improve the management of water resources from this State.NĂșmero especial

    Geographic features recognition for heritage landscape mapping – Case study: The Banda Islands, Maluku, Indonesia

    Get PDF
    This study examines methods of geographic features recognition from historic maps using CNN and OBIA. These two methods are compared to reveal which one is most suitable to be applied to the historic maps dataset of the Banda Islands, Indonesia. The characteristics of cartographic images become the main challenge in this study. The geographic features are divided into buildings, coastline, and fortress. The results show that CNN is superior to OBIA in terms of statistical performance. Buildings and coastline give excellent results for CNN analysis, while fortress is harder to be interpreted by the model. On the other hand, OBIA reveals a very satisfying result is very depending on the maps’ scales. In the aspect of technical procedure, OBIA offers easier steps in pre-processing, in-process and post-processing/finalisation which can be an advantage for a wide range of users over CNN
    • 

    corecore