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A B S T R A C T   

This study examines methods of geographic features recognition from historic maps using CNN and OBIA. These 
two methods are compared to reveal which one is most suitable to be applied to the historic maps dataset of the 
Banda Islands, Indonesia. The characteristics of cartographic images become the main challenge in this study. 
The geographic features are divided into buildings, coastline, and fortress. The results show that CNN is superior 
to OBIA in terms of statistical performance. Buildings and coastline give excellent results for CNN analysis, while 
fortress is harder to be interpreted by the model. On the other hand, OBIA reveals a very satisfying result is very 
depending on the maps’ scales. In the aspect of technical procedure, OBIA offers easier steps in pre-processing, 
in-process and post-processing/finalisation which can be an advantage for a wide range of users over CNN.   

1. Introduction 

The advancement of landscape mapping technology and methods 
has been an evolution over a very long time starting with the first 
attempt at visualisation by the European map makers. The oldest record 
may refer to Pliny’s work (77 CE), Naturalis Historia. This “world in-
ventory” was noticeable in the raising of geographical knowledge, 
mapmaking and cartography in particular the Roman Empire in the 
Flavian age (Bianchetti, 2020). In the next phase, the development of 
numerical approaches increased the precision of the map-making pro-
cedure. This invention can be found in some monumental works done by 
mathematicians, the specific one was Eratosthenes who correlated 
Pytheas’ “Thule” (astronomical information) and distance theory from 
Borysthenes to integrate data of travel and geometrical measurements of 
the sphere (Carman and Evans, 2015). 

Several centuries later, colonisation by the Europeans contributed to 
the depiction of the “other world” outside the continent. For instance, 
the first map of the Caribbean Islands by a European cartographer, Juan 
de la Cosa, conveyed the imagined space such as a gold mine including 
the physical attributes and the local people such as the African rulers, 
the gold traders, and the slaves. Similar situations were depicted in 
Southeast Asia, particularly Indonesia and Myanmar. In general, histo-
rians mention that the maps produced by the Dutch in the golden age 
constituted intrinsic agents of the European powers and were often the 
symbols of acquisition, academics, and gifts to interfere with political 

views or investments (Sutton and Yingling, 2020). The Dutch colonial 
maps of Indonesia shaped the territorialisation of land and resources, 
intertwined with administration, rent-seeking, violence and re-
sponsibility for geospatial knowledge. Meanwhile, mapping by the 
British became a major initiative in shaping the image of the regions in 
Burma (Faxon, 2022). 

In the context of modern research, these colonial maps had trans-
formed into a part of heritage data sources to depict human civilisation 
in the past through map investigation. Many recent studies occupy map 
archives as the main source of their analysis. Andrade and Fernandes 
(2020) interpreted the maps as an irreplaceable primary source of 
geographical and political information from the past. Old maps are 
moreover a source of data in Historic Landscape Characterisation (HLC) 
that has been developed largely in Britain (Turner, 2018). Ekim et al. 
(2021) extracted valuable information on transportation infrastructures 
and spatial distribution of settlements for quantitative and geometrical 
analysis. This spatial information is critical to facilitating 
decision-making in environmental management (Iosifescu et al., 2010). 
The historic maps can be utilised for environmental policy for example 
to calculate the environmental changes such as elevation and land use 
change as conducted by Tortora et al. (2015). They worked on a dataset 
of historical maps of Basilicata, Italy, produced in 1848, 1877, and 1953. 
The analysis resulted in a mutual exchange between the areas of agri-
culture and crops, which was reduced by almost half, giving more space 
to the natural areas. This analysis became a fundamental aspect to 
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develop appropriate policies for territorial management and implement 
actions to safeguard the territory. 

However, in practice, the limitation of human skills to draw the 
geographic features of the maps and integrate them into modern soft-
ware (i. e., GIS) has become a prominent issue in heritage landscape 
analysis and visualisation. The researchers are unable to extract a bulk of 
data in any reasonable amount of time (Godfrey and Eveleth, 2015). For 
this reason, heritage experts and data scientists are investigating the use 
of technology to conceal the gap between manual works and automated 
recognition of spatial features on historic maps. There are two main 
groups of methods for the recognition and extraction of historic maps. 

The first method is utilising neural networks. Uhl (2018) focused on 
the geospatial information extraction using Convolutional Neural Net-
works (CNN) for a scanned map sheet of Boulder, Colorado from 1966 at 
a scale of 1:24,000. The results indicated that although this method 
addresses the main issue of spatial granularity loss caused by the 
training labels at the patch level, the benchmark datasets are still not 
reaching the accurate and abundant training labels at the pixel level. A 
similar method was used by Petitpierre et al. (2021) on the dataset of 
330 maps of Paris compared to 256 maps from all over the world. This 
work highlighted that neural networks are extremely robust in the face 
of figurative diversity. However, the cross-cultural validation revealed 
that greater ease of image segmentation occurred for the Western maps. 

Another implementation of neural networks for image analysis was 
explored by Andrade and Fernandes (2020) to various styles of a historic 
map of Recife, Brazil, in 1808 using Conditional Generative Adversarial 
Networks (cGANs) or Pix2Pix to transfer and combine them with 
ortho-images (from satellite) into a new single image output. This 
method was also investigated by Christophe (2022) with multiple 
samples from simple-styled (Plan maps) to complex-styled maps (old 
Cassini, Etat-Major, or Scan50 BW). The results of these two related 
works indicated that this method is clearly not efficient for old 
complex-styled maps such as Cassini. This is related to the characteris-
tics of the old-styled maps (more cluttered with dark brown and green 
colours and various textures of the papers). Furthermore, this method is 
more about evaluating the global similarity of styled images and inte-
gration to satellite imagery for composing neural image output rather 
than accomplishing the features recognition tasks. 

The second group of methods is by integration of the Geographic 
Information System (GIS) which was experimented by Guirado (2021) in 
the given area of Cabo de Gata-Níjar Natural Park, Spain, utilising sat-
ellite images from Google Earth with three different spatial resolutions. 
Another experiment referred to Zatelli (2019) for a Historical Cadastral 
Map for the Province of Trento, Italy from 1859. He compared the 
method of Object-Based Image Analysis (OBIA) and Maximum Likeli-
hood Classification (MLC) resulting in a surpassing performance of OBIA 
over the MLC with 98.43% vs 55.8% of accuracy. On the other hand, 
Gobbi (2019) identified several main classes of land use/land cover 
(LULC) using OBIA for three test maps. The output designated the values 
of kappa and overall accuracy ranged from 0.96 to 0.97 and 97%–99% 
consecutively. 

Most of these previous works on geographic features recognition 
concluded that the level of success is highly affected by the character-
istics of the old maps. In particular, the depiction of spatial elements on 
older cartographic images is very different from recent maps. Pchelov 
(2019) identified and systematised the semantics of symbols and em-
blems as the main characteristics of European maps from the 16th – 17th 
centuries. The territories were represented by imaginary heraldry, old 
symbolic designation of geographical phenomena (e. g., symbolic 
topography, buildings, roads, and geomorphological features). 
Compared to maps from the 20th century, maps from the previous 
centuries are more difficult to be interpreted by a computer system 
which can affect the accuracy of the built model in reading the graphics 
from images. This characteristic is related to the emergence of the map, 
which was originally closely related to artistry, especially painting, 
where many schools of landscape painting provide the course of 

cartography at the same time (Rees, 1980). On the other hand, the low 
quality of the archive papers also be affecting factors of the analysis 
performance. Several types of defective conditions (see Fig. 1) such as 
stains or torn edges may decrease the ability of the model to interpret the 
images. 

Although there has been a plethora of research on computational 
image recognition from digital map archives, the predominant studies 
occupied the mainland Europe maps rather than the colonised regions. 
In reality, studying historical maps of the ex-colonies becomes more 
important in this global era. The essence is to uncover the salient spatial 
traces (such as buildings, areas, and place names) in the context of 
decolonisation (Knudsen, 2021). Moreover, the national institutions are 
able to reclaim them as heritage assets of the country. An example of 
colonised regions important to be analysed is the Banda Islands, 
Indonesia. The characteristics of tropical volcanic islands are the main 
difference between the Banda Islands and other regions in Europe that 
have been studied, most of which is land. 

Lape (2002) utilised historic maps of the Banda Islands from 1599, 
1602, and 1615 for retracing the heritage evidence of these islands. His 
invention was highlighting several main results: the shift of settlement 
locations, spatial organisation and the relationships between the set-
tlements and resources for tracing cross-cultural contact and interaction. 
This finding became a critical source to depict the Banda Islands as the 
historical landscape and milestone of the start of the Dutch colonial 
period in the archipelago. At this point, the works of related experts 
(such as anthropologists, archaeologists, and historians) as technology 
users should meet adequate or even advanced tools to facilitate the 
investigation process. Hence, it is essential to examine and evaluate the 
methods of geographic features recognition, particularly in the case 
study of historic maps of the Banda Islands as an example of colonised 
territories. 

This study aims to compare and evaluate the image analysis methods 
of CNN and OBIA in the limitation of historic maps of the Banda Islands 
as well as to give recommendations on the best method to be developed 
for heritage landscape mapping. The results of this comparison of 
methods indicated that in terms of statistical performance, CNN is su-
perior to OBIA with an accuracy value of 0.9270 and 0.9049 respec-
tively. However, from the technical procedure, CNN requires further 
complex processing to be implemented in heritage landscape mapping, 
hence the users of this method need a basis of computer and data science 
to proceed with this analysis. Meanwhile, OBIA has more convenient 
procedures of georeferentiation and training sample creation that make 
the integration with GIS easier for advanced mapping as well as more 
friendly to be used by experts from various related disciplines. These can 
be taken into consideration for users to choose according to the ad-
vantages of each method. 

2. Materials and methods 

2.1. Workflow and dataset 

The scanned images of map archives of the Banda Islands are selected 
with a colour depth is 24 and a resolution is 96 dpi as input to data pre- 
processing such as image enhancements, augmentation, and georefer-
entiation to enhance the quality and quantity of the data. Passing this 
operation, the images will be processed and analysed separately for each 
procedure scheme of CNN and OBIA. The statistical output of perfor-
mance from both methods will be compared and evaluated such as loss 
and accuracy function, precision, and recall displayed in confusion 
matrices. Four historic maps of the Banda Islands are collected from the 
Dutch National Archives for the Indonesian archipelago maps collection. 
These maps constitute the primary source to portray the islands as a part 
of the Dutch colonisation with different periods of making that represent 
various eras and conditions as a heritage landscape. Fig. 2 shows the 
steps and dataset of this research. 

Located in the Province of Maluku, Indonesia (S40 28–40 39 E129 
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39–130 04), these islands are also known under the name “Spice Islands” 
and consist of eleven small volcanic islands which include Neira, 
Rozengain, Pisang, Lonthoir (Banda Besar), Volcano, Rhun, and Ay. Has 
long been described in European historical records (such as Tomé Pires, 
Anna Forbes, Ridley, and Coolhaas) (Kersapati, 2021), making this re-
gion registered as a permanent delegation of the Republic of Indonesia 
to UNESCO as “The Historic and Marine Landscape of the Banda Islands” 
(UNESCO, 2015). The details of the dataset are described in Table 1. 

2.2. Image enhancements 

Digital archives, especially scanned images such as historic photo-
graphs, paintings, and maps are prone to experiencing problems in terms 
of visual attributes. The inferior conditions of historic documents need 
to be fixed by image enhancement to bring out specific features 
explicitly (Archana, 2016) before considering advanced processing and 
analysis. Some observations from Parkin (2018) postulate that the nu-
merical properties of colour in digital images are requisite for compu-
tational measures and analysis such as hue, saturation, and sharpness. 

A finding from Flachot and Gegenfurtner (2021) suggested that the 
kernels in CNNs tend to be mainly sensitive to changes in hues rather 
than changes in chroma or saturation, while sharpness is inversely 
related to blur which is typically characterised by the spread of edges 
(Yu, 2017) and very crucial in object identification using both CNN and 
OBIA. In this research, the image enhancements are using automatic 
enhancements in Microsoft Photos to cut the processing time by globally 
operating on the entire image without considering image content (Yan, 
2016). This application enables users to edit and adjust the image 
automatically by selecting enhance button in the filter section (Micro-
soft, 2022). Kaufman (2012) in his research highlighted some features 
that were automatically adjusted by this method such as faces, sky as 
well as shadowed salient regions, and then applies a sequence of 
empirically determined steps for saturation, contrast as well as exposure 
adjustment. 

2.3. Training data generation 

The scientific value of old maps is reflected through the identifica-
tion of geographical features such as land and anti-military map 
expression, elements of coastal defence, residential, administrative 
areas, etc (Jiang, 2017). However, in an archaic environment, the spatial 
elements in historic maps tend to be depicted in a non-uniform scheme 
of geographical space (Rees, 1980). There are no standards on what 
should be classified, in other words, this classification relies on the 
human’s interpretation of the given maps. 

For instance, Mahdianpari (2018) organised the land cover into nine 
classes for CNN processing in his study as he referred to Baily (2011) for 
the old cartographic classification of land use in Britain. Meanwhile, 
Skaloš & Engstová (2010) only classified land use into three classes in 
their research. Classification of geographical features is needed to give 
the labels on the trained data based on their appearance on historic 
maps. To uniform the maps produced in different years in this study, the 
classification of geographical features emphasises three main aspects: 
buildings, coastline, and fortress. 

Training models for image classification involve a large number of 
image datasets. This is related to the process of data labelling to 
construct a higher quality performance in particular for CNN analysis. A 
large number of samples is required to extract robust features by mini-
mising the error of estimating the true labels of training images (Yu, 
2017). Generating synthetic pictures can be an alternative to increase 
the number of samples to be trained. 

The creation of artificial images can be performed using data 
augmentation by employing geometric transformations: translations, 
rotations, cropping, flipping, resizing, etc (Wong, 2016). This method 
has proven effective in many fields, such as image processing and object 
recognition (Lashgari et al., 2020). 1440 samples of images are produced 
for this dataset through the augmentation process with the cropped 
patches dimensions of 42 × 42 pixels from the whole of selected historic 
maps as shown in Fig. 3. 

Fig. 1. Comparison between historic maps from previous studies and the Banda Islands. The Banda dataset has different cartographic characteristics of volcanic 
islands and some prominent issues of physical material conditions: (a) adhesive marks; (b) water drop stain; (c) torn edges and uneven colour pigment; (d) fold marks. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2.4. Georeferentiation 

The utilisation of Geographic Information Systems (GIS) in recon-
structing the heritage landscape has been significantly rising in recent 
decades (Gobbi, 2019). Integrating the cartographic images to GIS in 
particular for OBIA needs georeferencing as the prerequisite operation. 
The basis of this process is to find some markable points in the scanned 
images that have equivalents in referred geospatial data. As most object 
recognition tasks in computer vision engage the data labelling process, 
this recognition allows the operator to label points in the image with 
their position in the real world and calculate a mapping of the image into 
a coordinate system (Luft and Schiewe, 2021). 

Several main steps of georeferencing (ESRI, 2022a,b): (1) Aligning 
the raster with control points, involves identifying a series of ground 
control points (GCPs) in x and y coordinates that link locations on the 
raster dataset with locations in the spatially referenced data. In this case, 
the historic maps of the Banda Islands refer to the polygons (in shapefile 
format) of the administrative area of the Banda Islands as a part of the 
Maluku Province, Indonesia. The administrative boundaries, as well as 
the coastline, are identified as linear features of arbitrary geometry that 
can be defined easily by the users (Papakosta et al., 2012). (2) Trans-
forming the raster, after the creation of control points, the raster 
dataset can be transformed to the coordinates of the target data. (3) 

Fig. 2. Workflow and selected colonial maps of the Banda Islands.  

Table 1 
Dataset description.  

Name Description 

AMH-4722- 
NA 

Title: Map of part of the island of Neira, showing the forts Nassouw 
and Belgica. 
Produced: between 1690 and 1743. 
Dimension: 29.1 in (height); 20.8 in (width). 
Scale: 80 Rhynlandsche roeden (1:3500). 

AMH-4724- 
NA 

Title: Map of the island of Neira showing the Nassouw and Belgica 
forts. 
Produced: 1791. 
Dimension: 57.8 in (height); 50.1 in (width). 
Scale: unidentified clearly, estimated 80 Rhynlandsche roeden 
(1:3500). 

AMH-4729- 
NA 

Title: Fort Hollandia on Lonthor. 
Produced: between 1690 and 1705. 
Dimension: 29.5 in (height); 20.8 in (width). 
Scale: 60 Rhynlandsche roeden (1:2600). 

AMH-6702- 
NA 

Title: Map of the Banda islands. 
Produced: between 1750 and 1796. 
Dimension: 76.3 in (height); 71.2 in (width). 
Scale: unidentified clearly, estimated 1000 Rhynlandsche roeden 
(1:50,000).  
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Interpret the root mean square error, the total error is computed by 
taking the root mean square (RMS) sum of all the residuals to compute 
the RMS error. The RMS indicates the error of ground control points 
(GCPs) caused by the gap between the scanned maps and the referred 
polygons. However, the GCP database is usually obtainable in the pre-
sent aerial photograph, instead of scanned archives. Consequently, the 
georeferencing process of historic maps only shows the x and y co-
ordinates of referred geospatial data and the scanned images due to the 
unavailability of the GCP database on the historic maps (Cléri et al., 
2014). (4) Persist the georeferencing information and save the 
georeferenced images in.tiff format. 

2.5. Experiments 

Experiments on Convolutional Neural Networks (CNN) and Object- 
Based Image Analysis (OBIA) were conducted separately through 
different software. The CNN experiment utilised R with LeNet archi-
tecture, the simplest CNN architecture for object detection. LeNet (refers 
to LeNet-5) is the regular Convolutional Neural Networks (CNN) model, 
developed for grayscale image recognition from the MNIST dataset 
(Pearline & Kumar, 2019). The basis of convolutional networks com-
bines three principles: local receptive fields, shared weights (or weight 
replication), and spatial or temporal subsampling. This is to certify the 
degree of shift, scale, and distortion invariance (Lecun, 1998). This ar-
chitecture is constructed in seven layers as shown in Fig. 4. 

The input layer constituted image samples resized 42 × 42, adapted 
from Uhl (2018) for the implementation of historic maps which need 
more detailed pixels to identify buildings and other spatial traces. The 
first convolution layer employed twenty 5 × 5 filters with stride, s = 1 
and the subsampling layer consisted of the average pooling with 2 × 2 
filters and stride, s = 2 following the first convolution layer. The 
calculation formula for one pixel in the next layer is expressed as follows 
(Albawi et al., 2017): 

net(t, f )= (x.w)[t, f ] =
∑

m

∑

n
x[m, n]w[t − m, f − n] (1)  

where. 
net(t, f): output in the next layer 
x: input image/layer 
w: kernel/filter matrix 
The second convolution had fifty 15 × 15 filters and was followed by 

an average pooling layer with 2 × 2 filters using a stride, s = 2. Rectified 
linear unit (ReLU) activation function is expressed: 

ReLU(x)=max(0, x) (2a)  

d
dx

ReLU(x)= {1 tf x > 0; 0 otherwise} (2b) 

The ReLU activation function effectively diminished the gradient 

vanishing problem, it trained the deep neural network the way of su-
pervision, without relying on the unsupervised layer-by-layer pre- 
training, which significantly improved the performance of the deep 
neural network (Zhang, 2019). The outputs of the second max-pooling 
layer were converted from 2D vectors into 1D vectors. These 1D vec-
tors were inputs to the first fully connected layer and the final layer 
utilised the softmax activation function. A test was conducted on Map1 
to calculate all the parameters involved in this analysis. Table 2 in-
dicates 328,573 parameters from the total layers of CNN using LeNet 
architecture. 

The second experiment was conducted to examine the OBIA per-
formance using ArcGIS Pro. As an alternative to pixel-based image 
classification, the developers of this method claim that object-based 
classification gives higher accuracy and obtrudes characteristic texture 
features which are neglected in conventional classifications (Blaschke 
and Strobl, 2001). This advantage brings OBIA as a reformer since its 
invention where most of the previous studies revealed that the perfor-
mance of OBIA exceeds the results of pixel-based analysis such as 

Fig. 3. Generated training samples from the augmentation process for each determined geographical feature (42 × 42 pixels) on each historic map: buildings, 
coastline, and fortress. 

Fig. 4. LeNet architecture for CNN: 1-layer input, 2-layers convolution, 2- 
layers maxpooling, and 2-layers fully connected. 
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supervised using Maximum Likelihood Classification (Uça-Avcl: 2011; 
Whiteside, 2011) or combination of supervised and unsupervised clas-
sification (Weih and Riggan, 2010). However, the results from Gao and 
Mas (2008) indicated the lower execution of OBIA against pixel-based 
both Nearest Neighbour (NN) and MLC utilising cubic-filtering and 
mean-filtering methods. The differences in the results from various 
previous studies are trying to be proven through this research. 

In general, three major phases were carried out as shown in Fig. 5 for 
the OBIA scheme in this study: (1) raster segmentation; (2) classifier 
training; (3) classification and accuracy assessment. Some parameters 
should be fulfilled while segmenting an image such as spectral and 
spatial detail with valid values ranging from 1.0 to 20.0. Spectral detail 
is the level of importance given to the spectral differences of features in 
an image. Smaller values result in more smoothing and longer process-
ing times. Spatial detail set the level of importance given to the prox-
imity between features. A higher value is appropriate for a scene where 
the features of interest are small and clustered together. In contrast, 
smaller values create spatially smoother outputs. Minimum segment size 
parameters were set to determine the minimum mapping unit (in pixels) 
and best-fitting neighbour segment (ESRI, 2022a,b). In the next step, the 
creation of samples for a specific classifier was required as representa-
tive sites for all the classes were classified on the maps; otherwise, the 
default classification schema was from the 2011 National Land Cover 
Database (NLCD 2011). 

As a standard parametric procedure, it is suggested that each class 
should be represented by a statistically significant and equivalent 
number of training samples with a normal distribution to produce reli-
able results (ESRI, 2022a,b). The total number of training samples was 
360 polygons, divided into four classes (90 polygons for each class): 
buildings, coastline, fortress, and ‘other’. This number was implemented 
for each map in the dataset. So, the total number of samples was 1440 
polygons. The Maximum Likelihood algorithm used in this analysis 
classified pixels on multivariate probability density functions (pdf) for 
each established class. Statistical properties of training images from 
ground reference data were typically used to estimate the pdfs of the 
classes by assigning each unidentified pixel to the class with the highest 
probability at the pixel location with a decision rule (Lee and Warner, 

2004), denoted as follows: 

p(X|ωc)p(ωc) ≥ p(X|ωi)p(ωi) (3)  

where. 
p(X|ωc): probability density functions (pdf) of X, given that X is a 

member of class c 
p(ωc): a priori probability of class c in the image 
X: the spectral multivariate vector 
i: class number among the m number of classes in the image 
The final stage was performed by classifying the image based on the 

trained classifier and creating the confusion matrix to evaluate the 
model. Repetition of the training procedure is possible to perform if the 
previous accuracy level shows unsatisfying results. 

2.6. Accuracy assessment 

Once a classification model is established, an assessment is needed to 
evaluate the overall effectiveness of the learning models (Chefira and 
Rakrak, 2021). In image classification of historic maps, accuracy 
assessment is also important for exploring model generalisation and 
transferability to new data and/or geographic extents (Maxwell et al., 
2021). Evaluation of the classification model’s performance is divided 
into some criteria: Accuracy, Precision, Recall, and F1 score. The 
calculation is expressed as follows: 

The overall model performance: 

Accuracy=
(

TP + TN
TP + FP + FN + TN

)

(4) 

The accuracy of the positive predictions: 

Precision=
(

TP
TP + FP

)

(5) 

The coverage of the positive sample: 

Recall=
(

TP + TN
TP + FN

)

(6)  

And the harmonic recall-precision average: 

F1score=
(

2 × Recall × Precision
TP + FP + FN + TN

)

(7) 

True Positive (TP), False Negative (FN), False Positive (FP) and True 
Negative (TN) measure variables are used to rate the performance of 
correct and incorrect predictions. Table 3 shows the standard confusion 
matrix for binary class predictions to describe the performance of CNN 
and OBIA models. Rows represent the instances in the reference (actual) 

Table 2 
Parameters calculation for the total layers.  

Layer (type) Output Shape Param # 

conv2d_1 (Conv2D) (None, 38, 38, 20) 1520 
max_pooling2d_1 (MaxPooling2D) (None, 19, 19, 20) 0 
dropout_2 (Dropout) (None, 19, 19, 20) 0 
conv2d (Conv2D) (None, 5, 5, 50) 225050 
max_pooling2d (MaxPooling2D) (None, 2, 2, 50) 0 
dropout_1 (Dropout) (None, 2, 2, 50) 0 
flatten (Flatten) (None, 200) 0 
dense_1 (Dense) (None, 500) 100500 
dropout (Dropout) (None, 500) 0 
dense (Dense) (None, 3) 1503 
Total params: 328,573 
Trainable params: 328,573 
Non-trainable params: 0  

Fig. 5. Image processing for OBIA, consists of three main phases: segmentation, training, and classifying.  

Table 3 
Standard confusion matrix.   

Reference (0) Reference (1) 

Predicted (0) True Positive (TP) False Positive (FP) 
Predicted (1) False Negative (FN) True Negative (TN)  
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binary class, while each column represents the instances in the predicted 
binary class. 

Another statistical measure used to compare the performance of CNN 
and OBIA is Cohen’s kappa statistics. Many researchers claim this 
measure is very good to handle both multi-class and imbalanced class 
problems, particularly in the image classification model (Widmann, 
2022). The kappa is expressed as follows: 

K =
P0 − Pe

1 − Pe
= 1 −

1 − P0

1 − Pe
(8)  

where. 
P0: the observed agreement 
Pe: the expected agreement 
This measure tells how much better the performance of created 

classifier over the performance of a classifier that simply guesses at 
random according to the frequency of each class. This is the advantage to 
overcome the imbalanced samples of images. Cohen’s kappa is always 

less than or equal to 1. Values of 0 or less, indicate that the classifier is 
useless. There is no standardised way to interpret its values. According 
to Landis and Koch (1977), a value < 0 is indicating no agreement, 
0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as 
substantial, 0.81–1 as almost perfect agreement (McHugh, 2012). 

3. Results and discussion 

3.1. Image segmentation 

Image segmentation for CNN was created by assigning each label of 
determined classes from the image samples of geographical features. 
The comparison between the area traces of the output and the original 
images can be seen in Fig. 6. The lines created by the LeNet algorithm 
are distinguishable for features of buildings and fortress on Map1 and 
Map2, while the fortress is difficult to be observed on Map3 and Map4. 
The coastline is also slightly difficult to determine, especially in the 
upper left part of Map1, Map2, and some scattered parts on Map4. This is 

Fig. 6. Image segmentation for CNN shows some areas depict clear traces, while some others show very dense areas. This is affected by the texture and uneven colour 
of the maps. Image segmentation for OBIA shows that the second experiment gives the best result for image classification by eliminating some excessive spectra yet 
retaining the essential details of images. The first experiment loses many details of geographic features, while the third experiment complicates the classification 
process of images. The OBIA segmentation results are rotated due to the process of georeferencing and hence have a slightly different appearance than the map 
samples and CNN segmentation output. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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indicating that the CNN model learned to distinguish the areas from the 
classes based on the colour and texture (Uhl, 2018). The complexity of 
the visual components of the maps can also be observed in the 
smoothness of the boundaries of the building areas which show rugged 
patterns on Map1 and Map3, while the building areas on Map2 and 
Map4 reveal soft and smooth surfaces. 

In OBIA classification, image segmentation plays a significant role. 
The main task of OBIA segmentation is to simplify a complex image into 
homogeneous areas followed by analysing and classifying the objects. In 
other words, the image segmentation process aims to eliminate the 
unnecessary elements associated with per-pixel classification to create 
objects representing spatial features classes (Grippa, 2017). Some pa-
rameters were required to construct an image segmentation: spectral 
detail, spatial detail, and minimum segment size which were set 
differently in three experiments. In the first experiment, the spectral 
detail and spatial detail are set at 12 and min. Segment size = 20. In the 
second test, spectral detail and spatial detail are set at 17 and min. 
Segment size = 10. In the third experiment, spectral detail and spatial 
detail are set at 20 and the minimum segment size = 40. 

The results for the three experiments of creating OBIA segmentation 
as well as the function of parameters and image quality are shown in 
Fig. 7. Based on the experiments, the three segmentation parameters had 
different effects on the quality of segmentation output and were signif-
icantly visible on all maps. Quality in this context is defined as the 
proportion between missing and added pixel values from its original 
pixels and evaluated by the level of change of this proportion. In the 
results of the first experiment, a small spectral and spatial value gives an 
overgeneralisation of the image. Thus, many parts (pixels) are missing 
from objects. On the other hand, too high spectral and spatial values give 
very diverse segmentation (oversegmentation), producing almost the 
same output as the original image so that objects cannot be distin-
guished clearly. Meanwhile, a large minimum segment size value con-
tributes to blurry image results, while a small value provides more 
detailed results. 

The graph on the left shows that the spectral detail reached its 
maximum quality on a scale of 17. The addition of the spectral value 
inversely decreased the image quality and objects were more difficult to 
distinguish. The graph in the middle illustrates the relationship between 
spatial detail and quality. The spatial detail gained its maximum quality 
on a scale of 17, relatively similar to spectral detail. However, there was 
a slight difference in that adding the spatial detail value after the peak 
gave maximum results for small-scale maps that require a very high level 
of detail to be able to identify objects. In contrast, increasing the value of 
spatial detail after the peak point on large-scale maps reduced image 
quality due to objects becoming more complicated to identify. Mean-
while, the chart on the right explains the effect of minimum segment size 
on output quality. A smaller segmentation value contributed to the 

higher quality of outputs. On the other hand, a large segment size value 
resulted in poor image quality by reducing the sharpness of the output. 

3.2. Accuracy assessment and evaluation 

The loss and accuracy functions are cardinal to be evaluated from the 
built CNN model. The loss describes how well or poorly the model 
performs after each iteration of optimisation, while the accuracy tells us 
about the performance of the algorithm to predict the given images. 
After the first iteration, the loss reduced (approximately to 0) and the 
accuracy increased to the highest point of approximately 100%. Several 
hyperparameters were set for optimisation: learning rate = 0.01, decay 
= 1e-6, momentum = 0.9, batch = 20, validation split = 0.2, and epochs 
= 100. The number of epochs was adapted from Pearline & Kumar 
(2019) who revealed that the model stabilised for 100 epochs, while the 
increase of epochs number (200, 300, 400, 500) did not contribute 
significantly where the loss keeps increasing and accuracy did not 
improve. 

An illustration of the loss and accuracy curve for the validation set is 
shown in Fig. 8. The speeds of convergence were different for each map. 
Map1 and Map3 reached convergence around the 5th epoch. Map2 and 
Map4 showed the opposite performance where Map2 is slower (at the 
15th epoch), while Map4 is faster (less than at the 5th epoch). This 
difference in behaviour was potentially due to the complexity level of 
the geographic features of each map. 

A confusion matrix was generated to quantify the uncertainty of the 
image segmentation created by the CNN model as shown in Fig. 9 (left). 
The matrices were created by comparing the prediction results of the 
images to the labelled trained samples. The total number of samples was 
360 images for each map with an equal division of buildings = 120, 
coastline = 120, and fortress = 120. Buildings and coastline gave a good 
result of 33.33% for all maps. This means that from the 120 images of 
buildings and 120 images of coastline, the algorithm correctly predicted 
all of the images to be of buildings and coastline. On the other hand, the 
fortress tended to be more difficult to predict as it shows a value of less 
than 33.33% on all maps. On Map1, Map2, and Map4, the model made 
the most errors by predicting fortresses as buildings, while on Map3, the 
error tended to predict the fortress as coastline. 

A confusion matrix for the OBIA model (shown in Fig. 9 right) was 
generated based on the pixel-wise comparison between prediction re-
sults and manually recognised samples. The classes outside the three 
main geographic features (buildings, coastline, and fortress) must be 
defined as "other". This shows that the spatial approach in OBIA iden-
tifies all areas on the map into their respective classifications. 

The total number of samples was 360 images for each map with an 
equal division of buildings = 90, coastline = 90, fortress = 90, and other 
= 90. Buildings and coastlines were classes that provide the highest 

Fig. 7. Function of parameters for OBIA segmentation and quality of generated images: spectral detail, spatial detail, and minimum segment size. Spectral detail 
gives a maximum quality at a rate of 17. A higher rate of spatial detail gives better quality for small-scale maps. In contrast, the quality decreases after the maximum 
rate of 17 for large-scale maps. A lower minimum segment size contributes to a higher quality of images. 
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accuracy on Map1, Map2, and Map3 with a percentage of approximately 
25% of total samples, while on Map4, the percentage of all classes that 
were correctly predicted tends to be lower. This indicates that the errors 
resulted from the prediction bias of these classes with the "other" class. 
The difference in the level of prediction accuracy of the model was high 
potentially related to the scale at which large-scale maps (Map1, Map2, 

and Map3) had higher accuracy than small-scale maps (Map4). 
The class-specific accuracy measures were evaluated by precision, 

recall, and F1 score. The precision measures the percentage of correct 
images, the recall evaluates the model, and the F1 score combines the 
precision and recall (Zeya, 2022). Precision is calculated by dividing the 
True Positives and all the Positives. For this case, that would be the 

Fig. 8. The value of loss and accuracy as a function of epochs for the CNN model test.  

Fig. 9. Confusion matrices of the four maps for CNN (left) and OBIA (right), displayed in per cent of the total trained images.  
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measure of one class of geographic features that are correctly identified 
as its true class divided by all the correctly predicted classes. Meanwhile, 
recall measures the model correctly identifying True Positives (Huilgol, 
2022). Thus, for all images that were identified as actually their true 
classes, recall tells how many times the model correctly identified the 
images as true classes of geographic features. 

Table 4 shows the precision, recall, and F1 score for each class of 
geographic features on each map for CNN and OBIA. The evaluation for 
CNN indicates that buildings and coastline on all maps had high preci-
sion and recall (the recall value of these two classes was 1). The high 
precision value relates to a low false positive rate, and the high recall 
relates to a low false negative rate. In contrast, the fortress assigned a 
high value for precision (1) yet a lower recall value in particular for 
Map1. This shows that the classifier was returning accurate results but 
failed to return some of the positive results. For the case of Map1, the 
recall value of 0.6250 given by the fortress indicates that the model was 
going to miss around 40% of the identified fortress images as True 
Positive. Instead, they could be identified as buildings or coastline. 
Furthermore, the F1 score as the harmonic mean of recall and precision 
indicates a good model with a value of approximately 1 for each class of 
geographic features on each map. 

For the OBIA evaluation, the model gave a good performance. The 
precision value on Map3 produced a maximum rate of 1 for all classes 
and the highest recall value was on Map1 with a maximum rate gener-
ated by coastline and fortress. The F1 score result reveals that the model 
works well with an overall value of approximately 1. 

3.3. Comparison of methods 

Analysis of images from CNN and OBIA gives different results. 
Various factors such as spatial information contained in the map affect 
the level of difficulty of the machine in reading and redrawing according 
to the determined classification. The physical condition of the historical 
map when it is scanned is also an important factor, particularly for 
image segmentation. Excellent segmentation is only possible to be pro-
duced by the traditional method of computer vision (such as CNN) for 
good-quality images with large and homogeneous corpora (Muhs, 
2016). In other words, inflexibility occurs for any image analysis, 
particularly for historic maps and the users should rely on some 
consideration of what is the best method to be implemented on their 
dataset. Hence, the researchers need precise knowledge of the nature 
and the visual characteristics of the maps: size, shape, texture, colour, 
etc (Graeff and Carosio, 2002). 

The method of CNN has a major weakness in reading shape, espe-
cially if the object being analysed has a complex or diverse shape, in this 
study such as the corners of the fortress. Some previous research also 

reported some similar troubles in detecting morphological features such 
as lines (Miao, 2013) or closed polygons (Miyoshi, 2004). Reconstruc-
tion algorithms are required to solve the problem of incomplete lines, 
due to the degradation of the document or graphical choices (e.g., 
dashed lines) (Mello, Costa, & J., 2012). Furthermore, the information 
overlay as a common feature in cartographic images inhibits the 
extraction process of the geometries. 

OBIA seemingly appears to patch these certain issues in recognising 
spatial images that could not be solved by CNN. Image segmentation 
gives much improvement by suppressing isolated pixels and small 
clusters. Thus, classification error resulting from high within-object 
variance was efficiently controlled by this method (Grippa, 2017). The 
differences between image analysis using segmentation and without 
segmentation are shown in Fig. 10. However, this method comes with a 
prominent disadvantage in that the segmentation process consumes a 
large amount of device memory. 

The final result of geographic features recognition using OBIA (see 
Fig. 10) shows that the spatial patterns were well drawn on large-scale 
maps (Map1, Map2, and Map3). On Map1 and Map2, clean polygons 
depicted the coastline, fort Belgica in the north and fort Nassouw in the 
south with buildings in the surrounding area. On Map3, Fort Hollandia 
was a landmark with buildings and coastline around. However, the 
small-scale map (Map4) required a more complex refinement process to 
remove inappropriate polygons. The image output was also less clear, 
especially in very small parts such as fortresses and buildings, while the 
coastline was identified well. 

During the operation, the image segmentation by OBIA may be 
experiencing issues of oversegmentation or undersegmentation. Carleer 
et al. (2005) argued that oversegmentation is preferable to under-
segmentation, as the former can be corrected during classification, 
contrary to the latter. Furthermore, Csillik (2017) highlighted that 
oversegmentation, as long as it remains at an admissible level, could be a 
minor issue in regard to the final classification result. The refinement 
process answers the final classification tasks that enable the users to 
manually reclassify the conflicting classes caused by errors during the 
automatic classification process by deleting or moving the inappropriate 
feature classes based on their class number attribute. For example, if 
there are some buildings polygons which should be coastline, this error 
can be fixed by changing the classes in the polygons’ attributes (e. g., 1 
for buildings and 2 for coastline) then the inappropriate buildings 
polygons’ classes are changed from 1 to 2 and the classification will be 
changed as well. 

Table 5 shows the comparison of CNN and OBIA based on the ex-
periments. In terms of the statistical measure of performance, CNN is 
surpassing OBIA both in accuracy (0.9270 vs 0.9049) and kappa sta-
tistics (0.8906 vs 0.8731). This indicates that CNN’s classification model 
is better at predicting images than the OBIA model although both 
methods tend to acquire high value. On the other hand, the OBIA 
method offers a more convenient way to extract geographic information 
from historic maps. These two contrary results should be taken into 
account in determining the tools based on user types and knowledge 
requirements of computer and data science. For this case study, OBIA is 
the preferable method that can be implemented by related experts such 
as archaeologists and historians for heritage landscape mapping of the 
Banda Islands. Other advantages of the OBIA method is training sample 
creation. The training sample plotting on the maps simplifies the process 
of training data generation whereas, in CNN analysis, this step should be 
done via data augmentation. 

4. Conclusions 

This study discusses CNN and OBIA as alternatives to geographic 
features recognition from historic maps for the heritage landscape of the 
Banda Islands, Indonesia. The importance of heritage landscape explo-
ration from cartographic images rising along with the advancement of 
digital technology. In particular, the historic maps of the Banda Islands 

Table 4 
Evaluation matrix for CNN and OBIA.   

CNN OBIA 

Precision Recall F1 Score Precision Recall F1 Score 

Map1 
Buildings 0.7742 1.0000 0.8727 0.9556 0.9885 0.9718 
Coastline 0.9231 1.0000 0.9600 0.9889 1.0000 0.9944 
Fortress 1.0000 0.6250 0.7692 0.8333 1.0000 0.9091 
Map2 
Buildings 0.8511 1.0000 0.9196 0.8222 0.9367 0.8757 
Coastline 0.9449 1.0000 0.9717 0.9667 0.9886 0.9775 
Fortress 1.0000 0.7667 0.8679 0.9222 1.0000 0.9595 
Map3 
Buildings 0.9756 1.0000 0.9876 1.0000 0.9778 0.9888 
Coastline 0.9524 1.0000 0.9756 1.0000 0.9778 0.9888 
Fortress 1.0000 0.9250 0.9610 1.0000 0.8222 0.9024 
Map4 
Buildings 0.9023 1.0000 0.9486 1.0000 0.6111 0.7586 
Coastline 0.9231 1.0000 0.9600 0.8824 1.0000 0.9375 
Fortress 1.0000 0.8083 0.8940 1.0000 0.7444 0.8535  
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as the colonised region have very different characteristics and condi-
tions compared to ancient maps of Europe and this becomes a critical 
aspect which must be considered in the selection of relevant methods for 
spatial information extraction. 

The results indicate that in terms of accuracy, CNN gives a better 
value than OBIA. Buildings and coastline draw excellent results for CNN 
analysis, while fortress seemed to be more difficult to be interpreted by 
the model. On the other hand, OBIA generates a very satisfying result for 
detailed accuracy of all feature classes (buildings, coastline, and 
fortress). However, OBIA results depend also on the resolution of the 
digital images because segments with a large number of pixels are easier 
to classify. This is very sensitive to the image segmentation process 
where the suitable segmentation result will give better output quality. 

Although CNN’s accuracy and kappa statistics are generally better 
than OBIA’s, OBIA’s image classification method has other advantages 
that CNN does not provide, such as georeferentiation, training sample 
plotting, and image segmentation which can be set up easily through a 
wizard. This makes OBIA easier to operate by various groups of related 
researchers. This gives consideration to each method to be selected ac-
cording to the user’s requirements and the historic maps dataset. 
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