2,789 research outputs found

    Particle Filters for Colour-Based Face Tracking Under Varying Illumination

    Get PDF
    Automatic human face tracking is the basis of robotic and active vision systems used for facial feature analysis, automatic surveillance, video conferencing, intelligent transportation, human-computer interaction and many other applications. Superior human face tracking will allow future safety surveillance systems which monitor drowsy drivers, or patients and elderly people at the risk of seizure or sudden falls and will perform with lower risk of failure in unexpected situations. This area has actively been researched in the current literature in an attempt to make automatic face trackers more stable in challenging real-world environments. To detect faces in video sequences, features like colour, texture, intensity, shape or motion is used. Among these feature colour has been the most popular, because of its insensitivity to orientation and size changes and fast process-ability. The challenge of colour-based face trackers, however, has been dealing with the instability of trackers in case of colour changes due to the drastic variation in environmental illumination. Probabilistic tracking and the employment of particle filters as powerful Bayesian stochastic estimators, on the other hand, is increasing in the visual tracking field thanks to their ability to handle multi-modal distributions in cluttered scenes. Traditional particle filters utilize transition prior as importance sampling function, but this can result in poor posterior sampling. The objective of this research is to investigate and propose stable face tracker capable of dealing with challenges like rapid and random motion of head, scale changes when people are moving closer or further from the camera, motion of multiple people with close skin tones in the vicinity of the model person, presence of clutter and occlusion of face. The main focus has been on investigating an efficient method to address the sensitivity of the colour-based trackers in case of gradual or drastic illumination variations. The particle filter is used to overcome the instability of face trackers due to nonlinear and random head motions. To increase the traditional particle filter\u27s sampling efficiency an improved version of the particle filter is introduced that considers the latest measurements. This improved particle filter employs a new colour-based bottom-up approach that leads particles to generate an effective proposal distribution. The colour-based bottom-up approach is a classification technique for fast skin colour segmentation. This method is independent to distribution shape and does not require excessive memory storage or exhaustive prior training. Finally, to address the adaptability of the colour-based face tracker to illumination changes, an original likelihood model is proposed based of spatial rank information that considers both the illumination invariant colour ordering of a face\u27s pixels in an image or video frame and the spatial interaction between them. The original contribution of this work lies in the unique mixture of existing and proposed components to improve colour-base recognition and tracking of faces in complex scenes, especially where drastic illumination changes occur. Experimental results of the final version of the proposed face tracker, which combines the methods developed, are provided in the last chapter of this manuscript

    An affective computing and image retrieval approach to support diversified and emotion-aware reminiscence therapy sessions

    Get PDF
    A demĂȘncia Ă© uma das principais causas de dependĂȘncia e incapacidade entre as pessoas idosas em todo o mundo. A terapia de reminiscĂȘncia Ă© uma terapia nĂŁo farmacolĂłgica comummente utilizada nos cuidados com demĂȘncia devido ao seu valor terapĂȘutico para as pessoas com demĂȘncia. Esta terapia Ă© Ăștil para criar uma comunicação envolvente entre pessoas com demĂȘncia e o resto do mundo, utilizando as capacidades preservadas da memĂłria a longo prazo, em vez de enfatizar as limitaçÔes existentes por forma a aliviar a experiĂȘncia de fracasso e isolamento social. As soluçÔes tecnolĂłgicas de assistĂȘncia existentes melhoram a terapia de reminiscĂȘncia ao proporcionar uma experiĂȘncia mais envolvente para todos os participantes (pessoas com demĂȘncia, familiares e clĂ­nicos), mas nĂŁo estĂŁo livres de lacunas: a) os dados multimĂ©dia utilizados permanecem inalterados ao longo das sessĂ”es, e hĂĄ uma falta de personalização para cada pessoa com demĂȘncia; b) nĂŁo tĂȘm em conta as emoçÔes transmitidas pelos dados multimĂ©dia utilizados nem as reacçÔes emocionais da pessoa com demĂȘncia aos dados multimĂ©dia apresentados; c) a perspectiva dos cuidadores ainda nĂŁo foi totalmente tida em consideração. Para superar estes desafios, seguimos uma abordagem de concepção centrada no utilizador atravĂ©s de inquĂ©ritos mundiais, entrevistas de seguimento, e grupos de discussĂŁo com cuidadores formais e informais para informar a concepção de soluçÔes tecnolĂłgicas no Ăąmbito dos cuidados de demĂȘncia. Para cumprir com os requisitos identificados, propomos novos mĂ©todos que facilitam a inclusĂŁo de emoçÔes no loop durante a terapia de reminiscĂȘncia para personalizar e diversificar o conteĂșdo das sessĂ”es ao longo do tempo. As contribuiçÔes desta tese incluem: a) um conjunto de requisitos funcionais validados recolhidos com os cuidadores formais e informais, os resultados esperados com o cumprimento de cada requisito, e um modelo de arquitectura para o desenvolvimento de soluçÔes tecnolĂłgicas de assistĂȘncia para cuidados de demĂȘncia; b) uma abordagem end-to-end para identificar automaticamente mĂșltiplas informaçÔes emocionais transmitidas por imagens; c) uma abordagem para reduzir a quantidade de imagens que precisam ser anotadas pelas pessoas sem comprometer o desempenho dos modelos de reconhecimento; d) uma tĂ©cnica de fusĂŁo tardia interpretĂĄvel que combina dinamicamente mĂșltiplos sistemas de recuperação de imagens com base em conteĂșdo para procurar eficazmente por imagens semelhantes para diversificar e personalizar o conjunto de imagens disponĂ­veis para serem utilizadas nas sessĂ”es.Dementia is one of the major causes of dependency and disability among elderly subjects worldwide. Reminiscence therapy is an inexpensive non-pharmacological therapy commonly used within dementia care due to its therapeutic value for people with dementia. This therapy is useful to create engaging communication between people with dementia and the rest of the world by using the preserved abilities of long-term memory rather than emphasizing the existing impairments to alleviate the experience of failure and social isolation. Current assistive technological solutions improve reminiscence therapy by providing a more lively and engaging experience to all participants (people with dementia, family members, and clinicians), but they are not free of drawbacks: a) the multimedia data used remains unchanged throughout sessions, and there is a lack of customization for each person with dementia; b) they do not take into account the emotions conveyed by the multimedia data used nor the person with dementia’s emotional reactions to the multimedia presented; c) the caregivers’ perspective have not been fully taken into account yet. To overcome these challenges, we followed a usercentered design approach through worldwide surveys, follow-up interviews, and focus groups with formal and informal caregivers to inform the design of technological solutions within dementia care. To fulfil the requirements identified, we propose novel methods that facilitate the inclusion of emotions in the loop during reminiscence therapy to personalize and diversify the content of the sessions over time. Contributions from this thesis include: a) a set of validated functional requirements gathered from formal and informal caregivers, the expected outcomes with the fulfillment of each requirement, and an architecture’s template for the development of assistive technology solutions for dementia care; b) an end-to-end approach to automatically identify multiple emotional information conveyed by images; c) an approach to reduce the amount of images that need to be annotated by humans without compromising the recognition models’ performance; d) an interpretable late-fusion technique that dynamically combines multiple content-based image retrieval systems to effectively search for similar images to diversify and personalize the pool of images available to be used in sessions

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Multi-Sensory Interaction for Blind and Visually Impaired People

    Get PDF
    This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye

    Detecting Falls with Wearable Sensors Using Machine Learning Techniques

    Get PDF
    Cataloged from PDF version of article.Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded

    Modeling Perceptual Trade-offs for Designing HDR Displays

    Get PDF
    Display technology has evolved in pursuit of perceptual pleasure by providing realism and visual impact. The endeavor of the evolution has brought HDR displays to the market. HDR displays, which have become the mainstream display technology recently, are considered not only the present but also the future of displays because of their daunting technical goals: A peak luminance of 10,000 cd/m^2 and near-monochromatic primaries. However, both positive and negative prospects in terms of perceptual aspects for future HDR displays coexist. On the positive side, it is expected that HDR displays will provide better image quality and more vivid color. On the negative side, apart from technical barriers such as production cost and power consumption, HDR displays will induce side effects, for example, observer metamerism, which refers to the phenomenon that color matches for one observer result in color mismatches for other observers. This particular side effect could be a severe issue in HDR displays as their narrow-band primaries likely worsen the color mismatches. Hence, critical to the success of future HDR displays is dealing properly with the perceptual trade-offs. In other words, future HDR display designers need to select physical specifications that maximize perceptual benefits while minimizing adverse effects. This dissertation aims at exploring both potentially positive and negative aspects of future HDR displays, using various perceptual assessments. In particular, the dissertation focuses on two physical factors of a display device: peak luminance and chromaticity color gamut, and the effects of the two factors on related human perception: image quality, observer metamerism, and colorfulness. The ultimate goal of this dissertation is to address the related human perception aroused by the physical factors and propose models to help design future HDR displays. In order to achieve the goal, the dissertation first addresses the image quality trade-off relationship between peak luminance and chromaticity color gamut. A psychophysical experiment was used to develop models to predict equivalent image quality under the trade-off between peak luminance and chromaticity gamut as a function of the perceptual attributes lightness and chroma. Second, a novel approach based on a computational evaluation to investigate potential observer metamerism in HDR displays was explored. This research shows how observer metamerism in HDR displays varies with varying peak luminance and chromaticity color gamut. This research aims at developing a straightforward model to predict observer metamerism in HDR displays based on the computational evaluation. Third, a psychophysical experiment to derive a colorfulness scale for very saturated colors is carried out. This experiment focuses on understanding how the sensitivity of the human visual system responds to highly-saturated colors that extend beyond the stimuli studied in previous research. The colorfulness scale would help both advanced lighting system and display system designers. Fourth, the dissertation suggests an evaluation tool devised based on the observer metamerism and colorfulness scale works that can be utilized to determine the physical specification of HDR displays, maximizing perceptually positive effects while minimizing perceptually negative effects at the same time

    A novel expert system for objective masticatory efficiency assessment

    Get PDF
    Most of the tools and diagnosis models of Masticatory Efficiency (ME) are not well documented or severely limited to simple image processing approaches. This study presents a novel expert system for ME assessment based on automatic recognition of mixture patterns of masticated two-coloured chewing gums using a combination of computational intelligence and image processing techniques. The hypotheses tested were that the proposed system could accurately relate specimens to the number of chewing cycles, and that it could identify differences between the mixture patterns of edentulous individuals prior and after complete denture treatment. This study enrolled 80 fully-dentate adults (41 females and 39 males, 25 ± 5 years of age) as the reference population; and 40 edentulous adults (21 females and 19 males, 72 ± 8.9 years of age) for the testing group. The system was calibrated using the features extracted from 400 samples covering 0, 10, 15, and 20 chewing cycles. The calibrated system was used to automatically analyse and classify a set of 160 specimens retrieved from individuals in the testing group in two appointments. The ME was then computed as the predicted number of chewing strokes that a healthy reference individual would need to achieve a similar degree of mixture measured against the real number of cycles applied to the specimen. The trained classifier obtained a Mathews Correlation Coefficient score of 0.97. ME measurements showed almost perfect agreement considering pre- and post-treatment appointments separately (Îș ≄ 0.95). Wilcoxon signed-rank test showed that a complete denture treatment for edentulous patients elicited a statistically significant increase in the ME measurements (Z = -2.31, p < 0.01). We conclude that the proposed expert system proved able and reliable to accurately identify patterns in mixture and provided useful ME measurements.This work was funded by the Secretaria Nacional de EducaciĂłn, Ciencia y TeconologĂ­a (SENESCYT) of the Government of Ecuador, with budget allocation No. 0099-SPP, http://www.educacionsuperior.gob.ec
    • 

    corecore