229 research outputs found

    Vehicle license plate detection and recognition

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Zhihai He.In this work, we develop a license plate detection method using a SVM (Support Vector Machine) classifier with HOG (Histogram of Oriented Gradients) features. The system performs window searching at different scales and analyzes the HOG feature using a SVM and locates their bounding boxes using a Mean Shift method. Edge information is used to accelerate the time consuming scanning process. Our license plate detection results show that this method is relatively insensitive to variations in illumination, license plate patterns, camera perspective and background variations. We tested our method on 200 real life images, captured on Chinese highways under different weather conditions and lighting conditions. And we achieved a detection rate of 100%. After detecting license plates, alignment is then performed on the plate candidates. Conceptually, this alignment method searches neighbors of the bounding box detected, and finds the optimum edge position where the outside regions are very different from the inside regions of the license plate, from color's perspective in RGB space. This method accurately aligns the bounding box to the edges of the plate so that the subsequent license plate segmentation and recognition can be performed accurately and reliably. The system performs license plate segmentation using global alignment on the binary license plate. A global model depending on the layout of license plates is proposed to segment the plates. This model searches for the optimum position where the characters are all segmented but not chopped into pieces. At last, the characters are recognized by another SVM classifier, with a feature size of 576, including raw features, vertical and horizontal scanning features. Our character recognition results show that 99% of the digits are successfully recognized, while the letters achieve an recognition rate of 95%. The license plate recognition system was then incorporated into an embedded system for parallel computing. Several TS7250 and an auxiliary board are used to simulIncludes bibliographical references (pages 67-73)

    An Efficient Method for Number Plate Detection and Extraction Using White Pixel Detection (WPD) Method

    Get PDF
    Intelligent transport systems play an important role in supporting smart cities because of their promising applications in various areas, such as electronic toll collection, highway surveillance, urban logistics and traffic management. One of the key components of intelligent transport systems is vehicle license plate recognition, which enables the identification of each vehicle by recognizing the characters on its license plate through various image processing and computer vision techniques. Vehicle license plate recognition typically consists of smoothing image using median filter, White pixel detection (WPD), and number plate extraction. In this work an efficient White pixel detection method has been describing a license plates in various luminance conditions. Mostly we will focus on vehicle number plate detection along with the white pixel detection method we will use median filters and Line density filters to increase the detection accuracy for number plate. Subjective and objective quality assessment parameters will give us robustness of proposed work compared to state of License Plate Detection(LPD) techniques

    Identifikasi Plat Nomor Kendaraan Berbasis Mobile Dengan Metode Learning Vector Quantization

    Full text link
    — Owner of car or motorcycle often need some vehicle-related information such as vehicle tax information, the due date and the date of expiry of the vehicle registration tax. Such information should be presented with an easy and fast. In this study, we develop a mobile based application to facilitate users to access information based on the number of vehicles motor vehicle that taken directly using the camera. Number of vehicles identified by the method of Optical Character Recognition (OCR) and Automatic Number Plate Recognition (ANPR). The identification process begins with taking images through a mobile camera. Furthermore, the process of segmentation, feature extraction and character recognition process. To recognize the characters on the number plate of vehicles, the classification process is carried out using Learning Vector Quantization (LVQ). In the test, obtained an average accuracy of 95.32%. Number plate of vehicles that have been identified, sent to the SAMSAT website to obtain information in the form of vehicle tax, tax due dates and other information

    An approach to license plate recognition in real time using multi-stage computational intelligence classifier

    Get PDF
    Automatic car license plate recognition (LPR) is widely used nowadays. It involves plate localization in the image, character segmentation and optical character recognition. In this paper, a set of descriptors of image segments (characters) was proposed as well as a technique of multi-stage classification of letters and digits using cascade of neural network and several parallel Random Forest or classification tree or rule list classifiers. The proposed solution was applied to automated recognition of number plates which are composed of capital Latin letters and Arabic numerals. The paper presents an analysis of the accuracy of the obtained classifiers. The time needed to build the classifier and the time needed to classify characters using it are also presented

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Research of Indonesian license plates recognition on moving vehicles

    Get PDF
    The recognition of the characters in the license plate has been widely studied, but research to recognize the character of the license plate on a moving car is still rarely studied. License plate recognition on a moving car has several difficulties, for example capturing still images on moving images with non-blurred results. In addition, there are also several problems such as environmental disturbances (low lighting levels and heavy rain). In this study, a novel framework for recognizing license plate numbers is proposed that can overcome these problems. The proposed method in this study: detects moving vehicles, judges the existence of moving vehicles, captures moving vehicle images, deblurring images, locates license plates, extracts vertical edges, removes unnecessary edge lines, segments license plate locations, Indonesian license plate cutting character segmenting, character recognition. Experiments were carried out under several conditions: suitable conditions, poor lighting conditions (dawn, evening, and night), and unfavourable weather conditions (heavy rain, moderate rain, and light rain). In the experiment to test the success of the license plate number recognition, it was seen that the proposed method succeeded in recognizing 98.1 % of the total images tested. In unfavorable conditions such as poor lighting or when there are many disturbances such as rain, there is a decrease in the success rate of license plate recognition. Still, the proposed method's experimental results were higher than the method without deblurring by 1.7 %. There is still unsuccessful in recognizing license plates from the whole experiment due to a lot of noise. The noise can occur due to unfavourable environmental conditions such as heavy rain

    Fuzzy and Neural Network Based License- Plate Localization and Recognition

    Get PDF
    ABSTRACT: This paper presents the extraction of vehicle license plate information from a sequence of various images. ALPR is used in the presence or absence of a database in various applications such as, toll payment, etc. The proposed technique implements the CAN image by using a camera and to extract the license plate from the image based on various characteristics, such as the boundary, the color, or the existence of the characters. Thus it is not suitable for location of variable number plate. Finally to recognize the extracted characters by template matching by using neural networks and fuzzy classifiers. KEYWORDS: vertical edge detection algorithm (VEDA), scale-invariant feature transform(SIFT), dynamic programming(DP). Observing the notion of cars and do not belong in a parking garage. I.INTRODUCTION Automated By eliminating the parking as expedited which is the need for human confirmation of parking passes. The organization of the paper is mentioned as follows. In section II, a detailed review of ALPR Technique. Section III , illustrates the various algorithms used in ALPR Technique. Section IV features out the proposed method. Section V and VI narrates the experimental and simulation results and Section VII concludes the paper and defines the future works. ISSN (Print Vol. 3, Issue 3, March 2014 Copyright to IJAREEIE www.ijareeie.com 8144 II. ALPR TECHNIQUE ALPR is known by several other names, including Automatic Number Plate Recognition (ANPR), Automatic Vehicle Identification (AVI), Car Plate Recognition (CPR), License Plate Recognition (LPR), and Lecture Automatique de Plaquesd' Immatriculation (LAPI). Other name of ALPR are followed as car plate recognition, automatic vehicle identification, and optical character recognition for cars Optical character recognition, usually abbreviated as OCR, is conversion by electronic and mechanical of scanned images which may be of writing by hand, or printed characters and numbers into machine-encoded format of characters and numbers. It is widely used as a form of data entry from some sort of original paper data source, whether documents, sales receipts, mail, or any number of printed records It is a common method of digitizing printed characters and numbers so that they can be electronically searched, stored more compactly, displayed on-line, and used in machine processes such as machine translation, textto-speech and text mining[6]- Early versions needed to be programmed with images of each and every texts at a time implied on a single font. "Intelligent" systems with a greater degree of recognition accuracy for most fonts are now common III. ALGORITHMS USED IN ALPR TECHNIQUE The ALPR system comprising of four levels from the input image results during the extraction of a license plate number. The first level is the location of an image of a car by utilizing a camera. Vol. 3, Issue 3, March 2014 Copyright to IJAREEIE www.ijareeie.com 8145 The second level is the extraction of a license plate from the given input image based on the following features as boundary, existence of the characters and the color. The third level is the character extraction and segmentation of license plate. The final level is the recognization of character extraction by the matching of templates such as fuzzy classifiers. This paper illustrates the procedural types of various algorithms, They are as follows: A. Block converter Block converter is the converter ,which is used to convert the image to sub blocks from the sub block , use selected box only for segmenting the number plate. The block-based method is also presented in which the blocks with greater magnitude edges are visualized as areas of license plate. Vol. 3, Issue 3, March 2014 Copyright to IJAREEIE www.ijareeie.com 8146 B. Otsu The number plate consist of fore ground information and back ground data. In this algorithm the necessity of numbers only utilize the threshold segmentation. C. State-of-Art It is the feature based process. Training data convert to feature points. Feature point only depends upon the shape of the training image. Then it is compared to the number plate feature points Backgrounds of license plate and characters has varying colors, possessing opposite binary values in the binary image. Horizontal projection of used to extract the characters along with noise removal and analyzing the simplicity. To convert grayscale im-age into a binary image by using a threshold operation. There are basically two types of threshold operation

    Video content analysis for intelligent forensics

    Get PDF
    The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild
    • …
    corecore