145 research outputs found

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit

    Real-time head movement tracking through earables in moving vehicles

    Get PDF
    Abstract. The Internet of Things is enabling innovations in the automotive industry by expanding the capabilities of vehicles by connecting them with the cloud. One important application domain is traffic safety, which can benefit from monitoring the driver’s condition to see if they are capable of safely handling the vehicle. By detecting drowsiness, inattentiveness, and distraction of the driver it is possible to react before accidents happen. This thesis explores how accelerometer and gyroscope data collected using earables can be used to classify the orientation of the driver’s head in a moving vehicle. It is found that machine learning algorithms such as Random Forest and K-Nearest Neighbor can be used to reach fairly accurate classifications even without applying any noise reduction to the signal data. Data cleaning and transformation approaches are studied to see how the models could be improved further. This study paves the way for the development of driver monitoring systems capable of reacting to anomalous driving behavior before traffic accidents can happen

    SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data

    Get PDF
    Machine learning and deep learning have shown great promise in mobile sensing applications, including Human Activity Recognition. However, the performance of such models in real-world settings largely depends on the availability of large datasets that captures diverse behaviors. Recently, studies in computer vision and natural language processing have shown that leveraging massive amounts of unlabeled data enables performance on par with state-of-the-art supervised models. In this work, we present SelfHAR, a semi-supervised model that effectively learns to leverage unlabeled mobile sensing datasets to complement small labeled datasets. Our approach combines teacher-student self-training, which distills the knowledge of unlabeled and labeled datasets while allowing for data augmentation, and multi-task self-supervision, which learns robust signal-level representations by predicting distorted versions of the input. We evaluated SelfHAR on various HAR datasets and showed state-of-the-art performance over supervised and previous semi-supervised approaches, with up to 12% increase in F1 score using the same number of model parameters at inference. Furthermore, SelfHAR is data-efficient, reaching similar performance using up to 10 times less labeled data compared to supervised approaches. Our work not only achieves state-of-the-art performance in a diverse set of HAR datasets, but also sheds light on how pre-training tasks may affect downstream performance

    Inferring Meal Eating Activities in Real World Settings from Ambient Sounds: A Feasibility Study

    Get PDF
    Copyright ©2015 ACMDOI: 10.1145/2678025.2701405Dietary self-monitoring has been shown to be an effective method for weight-loss, but it remains an onerous task despite recent advances in food journaling systems. Semi-automated food journaling can reduce the effort of logging, but often requires that eating activities be detected automatically. In this work we describe results from a feasibility study conducted in-the-wild where eating activities were inferred from ambient sounds captured with a wrist-mounted device; twenty participants wore the device during one day for an average of 5 hours while performing normal everyday activities. Our system was able to identify meal eating with an F-score of 79.8% in a person-dependent evaluation, and with 86.6% accuracy in a person-independent evaluation. Our approach is intended to be practical, leveraging off-the-shelf devices with audio sensing capabilities in contrast to systems for automated dietary assessment based on specialized sensors

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    A study of deep neural networks for human activity recognition

    Get PDF
    Human activity recognition and deep learning are two fields that have attracted attention in recent years. The former due to its relevance in many application domains, such as ambient assisted living or health monitoring, and the latter for its recent and excellent performance achievements in different domains of application such as image and speech recognition. In this article, an extensive analysis among the most suited deep learning architectures for activity recognition is conducted to compare its performance in terms of accuracy, speed, and memory requirements. In particular, convolutional neural networks (CNN), long short‐term memory networks (LSTM), bidirectional LSTM (biLSTM), gated recurrent unit networks (GRU), and deep belief networks (DBN) have been tested on a total of 10 publicly available datasets, with different sensors, sets of activities, and sampling rates. All tests have been designed under a multimodal approach to take advantage of synchronized raw sensor' signals. Results show that CNNs are efficient at capturing local temporal dependencies of activity signals, as well as at identifying correlations among sensors. Their performance in activity classification is comparable with, and in most cases better than, the performance of recurrent models. Their faster response and lower memory footprint make them the architecture of choice for wearable and IoT devices

    The Extent and Coverage of Current Knowledge of Connected Health: Systematic Mapping Study

    Get PDF
    Background: This paper examines the development of the Connected Health research landscape with a view on providing a historical perspective on existing Connected Health research. Connected Health has become a rapidly growing research field as our healthcare system is facing pressured to become more proactive and patient centred. Objective: We aimed to identify the extent and coverage of the current body of knowledge in Connected Health. With this, we want to identify which topics have drawn the attention of Connected health researchers, and if there are gaps or interdisciplinary opportunities for further research. Methods: We used a systematic mapping study that combines scientific contributions from research on medicine, business, computer science and engineering. We analyse the papers with seven classification criteria, publication source, publication year, research types, empirical types, contribution types research topic and the condition studied in the paper. Results: Altogether, our search resulted in 208 papers which were analysed by a multidisciplinary group of researchers. Our results indicate a slow start for Connected Health research but a more recent steady upswing since 2013. The majority of papers proposed healthcare solutions (37%) or evaluated Connected Health approaches (23%). Case studies (28%) and experiments (26%) were the most popular forms of scientific validation employed. Diabetes, cancer, multiple sclerosis, and heart conditions are among the most prevalent conditions studied. Conclusions: We conclude that Connected Health research seems to be an established field of research, which has been growing strongly during the last five years. There seems to be more focus on technology driven research with a strong contribution from medicine, but business aspects of Connected health are not as much studied

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform
    corecore