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Gesture-based Profiling of Commonplace Lifestyle
and Physical Activity Behaviors

Meeralakshmi Radhakrishnan

Abstract
The widespread availability of sensors on personal devices (e.g., smartphones, smart-

watches) and other cheap, commoditized IoT devices in the environment has opened

up the opportunity for developing applications that capture and enhance various

lifestyle-driven daily activities of individuals. Moreover, there is a growing trend of

leveraging ubiquitous computing technologies to improve physical health and well-

being. Several of the lifestyle monitoring applications rely primarily on the capa-

bility of recognizing contextually relevant human movements, actions and gestures.

As such, gesture recognition techniques, and gesture-based analytics have emerged

as a fundamental component for realizing personalized lifestyle applications.

This thesis explores how such wealth of data sensed from ubiquitously available

devices can be utilized for inferring fine-grained gestures. Subsequently, it explores

how gestures can be used to profile user behavior during daily activities and out-

lines mechanisms to tackle various real-world challenges. With two daily activities

(shopping and exercising) as examples, it then demonstrates that unobtrusive, accu-

rate and robust monitoring of various aspects of these activities is indeed possible

with minimal overhead. Such monitoring can then, in future, enable useful applica-

tions (e.g., smart reminder in a retail store or digital personal coach in a gym).

First, this thesis presents the IRIS platform, which explores how appropriate

mining of sensors available in personal devices such as a smartphone and a smart-

watch can be used to infer micro-gestural activities, and how such activities help

reveal latent behavioral attributes of individual consumers inside a retail store. It

first investigates how inertial sensor data (e.g., accelerometer, gyroscope) from a

smartphone can be used to appropriately decompose an entire store visit into a se-

ries of modular and hierarchical individual interactions, modeled as a sequence of



in-aisle interactions, interspersed with non-aisle movement. Further, by combining

such sensor data from a wrist-worn smartwatch and by deriving discriminative fea-

tures, the IRIS platform demonstrates that different facets of a shopper’s interaction

with individual items (e.g., picking an item, putting an item in trolley), as well as

attributes of the overall shopping episode or the store, can be inferred.

This thesis next investigates the possibility of using a wearable-free sensing

modality for fine-grained and unobtrusive monitoring of multiple aspects of individ-

uals’ gym exercises. It describes the W8-Scope approach that requires no on-body

instrumentation and leverages only simple accelerometer and magnetometer sensors

(on a cheap IoT device) attached to the weight stack of an exercise machine to infer

various exercise gestures, and thereby identify related novel attributes such as the

amount of weight lifted, the correctness of exercise execution and identify the user

who is performing the exercise. It then also experimentally demonstrates the feasi-

bility of evolving W8-Scope’s machine learning-based classifiers to accommodate

the medium-time scale (e.g., across weeks or months) changes in an individual’s

exercise behavior (an issue that has received insufficient attention to date).

Finally, this thesis explores the possibility of accurately inferring complex activ-

ities and gestures performed concurrently by multiple individuals in an indoor gym

environment. It introduces a system that utilizes a hybrid architecture, combining

sensor data from ‘earables’ with non-personal IoT sensors attached to gym equip-

ment, for individual-specific fine-grained monitoring of weight-based exercises in

a gym. Using real-world studies conducted with multiple concurrent gym-goers,

this thesis validates that accurate association of “user-equipment” pairings is indeed

possible, for a majority of common exercises, in spite of the significant signal damp-

ening on the earable. Moreover, it demonstrates how features from the earable and

IoT sensors can be combined to significantly increase the accuracy and robustness

of exercise recognition. In future, the real-time exercise analytics capabilities de-

veloped in this thesis can be used to enable targeted and individualized real-time

feedback on user dynamics and increase user engagement.
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Chapter 1

Introduction

1.1 Improving Daily Lifestyle through Unobtrusive

Technologies

In recent years, there has been an increasing research interest in utilizing sensor data

from personal devices (smartphones and wearables) and Internet-of-Thing (IoT)

sensors to automatically recognize mainstream daily lifestyle activities (e.g., ex-

ercising [25, 77, 89, 141], eating [126, 108, 73] or sleeping [27, 72, 81]). Notably,

the global consumer trends continue to indicate the popularity and growing num-

ber of personal smart devices carried by individuals in their daily life. Reports from

Statista [5] and CCS Insight [7] forecast that worldwide smart wearable device sales

will double by 2022 (with 85 million smartwatches to be sold in 2019 and that in-

creasing to 137 million in 2022). Digitally capturing and automatically sensing

different aspects of human daily lifestyle yield substantial opportunities in leading a

better quality of living (for example, automatically capturing an individual’s work-

out activity may help them to maximize their workout effectiveness) by reducing

human effort, saving time and capturing information otherwise not readily track-

able. In the years ahead, the combination of machine learning, artificial intelligence

(AI) and contextually rich data streams delivered by personal devices and IoT sen-
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sors would provide extensive opportunities to enable exciting real-life applications

that make our lives smarter and easier.

In this thesis, I describe a set of novel techniques and analytics pipeline for in-

ferring fine-grained human actions and gestures and applying machine learning on

such inferences to derive more quantified insights on individuals’ lifestyle activi-

ties. The proposed techniques leverage multiple sensors available in (a) individual’s

personal devices (e.g., smartwatch, earphones) or (b) cheap IoT devices (e.g., iner-

tial sensor units) deployed in the environment or that can be attached to common

objects, or (c) a combination of those two types of devices. In addition to enabling

fine-grained and accurate monitoring of lifestyle activities, I also focus on making

these systems and services unobtrusive, cheap, easy to deploy, convenient to use.

The ability to identify a person’s movements, determine what gestures they may

be performing and profile their overall behavior is especially useful in the wellness

and retail domains. As such, in this thesis, I focus on exploring the possibilities

of recognizing gestures and monitoring other fine-grained aspects of two everyday

lifestyle activities: shopping and exercising. This thesis builds upon several of the

existing mobile/wearable/IoT-based gesture recognition techniques previously (or

contemporaneously) proposed in literature, and demonstrates the judicious use of

a combination of sensors for accurate monitoring of aspects of these two lifestyle

activities, either at finer granularity than previously possible or including attributes

that have previously not been monitored. I also determine the extent to which per-

sonal devices are sufficient for monitoring certain activities, and the additional ad-

vantages and convenience that can arise from the use of simple devices/sensors that

are already deployed in the indoor space for other purposes.

1.2 Motivating Scenarios

From Section 1.1, it is evident that unobtrusive technologies that monitor daily

lifestyle activities will be useful to individuals. To strengthen the case further, let
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us consider these motivating scenarios in different contexts. These scenarios are

derived based on formative studies (i.e., observational studies performed at retail

grocery stories and gyms) conducted at different stages of the research process.

1.2.1 Scenario 1: In-store Retail Insights on Shoppers

Joe runs a grocery store and is planning to reform it as a smart retail store to en-

able smart retail applications, streamline the customer experience and thus, improve

his business (note that this does not involve business process improvements (e.g.,

in terms of logistics, operations, etc.)). He is fascinated by the idea of capturing

shopping actions and browsing behaviors of consumers inside the store, as such

behavior will allow him to improve the customer’s shopping experience–for exam-

ple, by making necessary changes to the store layout or item arrangements, or by

providing proactive recommendations to shoppers who are in a rush. However, Joe

does not wish to make any changes to the store’s IT infrastructure (at least ini-

tially) and would like to realize his vision with minimal expenditure. He consults

an IT firm with expertise in providing sensor-based solutions for retail businesses.

As individuals are increasingly carrying personal devices, such as smartphones and

smartwatches, during their daily lifestyle activities, the IT firm advises Joe of the

high potential in utilizing the sensors embedded in these personal devices to infer

individual level consumer behavior. With the help from the IT firm, Joe develops a

custom smart retail application (which records sensor data from shopper’s personal

devices and also has the capability for shoppers to include their shopping list and

item preferences) for his store. Joe incentivizes the customers with a 5% discount

on their bill to download and use this application.

To realize this scenario, an in-store shopping behavior monitoring system should

be able to perform the following:

• capture sensor data from customer’s smartphone and smartwatch using the

smart retail application,
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• construct generalized shopping gesture recognition models based on the cus-

tomer’s shopping data recorded,

• utilize these models to first determine the movement behavior of the shopper

inside the store (i.e., whether the shopper is in a non-aisle or aisle zone),

• identify shopper’s gestural interactions with items of interest (such as pick-

ing up an item, returning an item back to the shelf, putting an item into the

trolley),

• use these item-level observations (i.e., how many items the shopper placed in

her cart, time spend browsing an item etc.), to understand a shopper’s overall

behavior (for example, whether the shopper is in a hurry, if the shopper is

picking a familiar item etc.),

• obtain longitudinal insights, across multiple store visits, from individual cus-

tomers to build a shopper profile for targeted advertising and smart reminders.

In envisioning this scenario, we believe that our proposed approach of using

data sensed from ‘only’ personal devices of the shopper is an appropriate option

to enable fine-grained, cost-effective and personalized insights based on an indi-

vidual’s shopping behavior. We also believe that our approach has the advantage

of identifying specific item-level interactions compared to other emerging/state-of-

the-art alternatives (e.g., Wi-Fi APs, BLE beacons) which only provides shopper’s

location and interest. Moreover in a scenario like ‘shopping’, individuals are more

likely to be carrying their personal devices and also as most of the significant shop-

ping actions are performed by the arms, a wrist-worn smartwatch would be able to

capture these behaviors in a holistic manner (as opposed to during activities like

‘exercising’ where there is a lot of both upper and lower-body actions are involved

and then a wrist-worn device may not be able to capture the lower-body move-

ments). In addition, this paradigm requires no significant IT capital or operational

investments by the store operator, and might represent one possible approach for
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capturing shopper insights in smaller or regional retail stores in expenditure con-

scious emerging economies (e.g., in Africa or Asia). Additionally, video analytics

using in-store cameras captures behavior of collective buyers but not individuals

or requires extensive and expensive instrumentation (e.g., Amazon Go [1]). In the

future, as Internet-of-Thing (IoT) deployments become more widespread, our pro-

posed technique can be potentially integrated with solutions such as Amazon Go

to enable additional services such as providing real-time promotions or informa-

tion prompts based on the exact item a shopper picked or interacted, checkout-free

shopping experiences.

1.2.2 Scenario 2: Quantified Insights on Weight Stack-based

Gym Exercises

Annie has been going to the gym for the past few months and has recently started

training on an exercise machine with stacked weights. She wants to reduce the

risk of any injury and maximize the effectiveness of her workout by tracking her

daily exercises in an easy and convenient way. However, she is not able to afford

a personal trainer neither does she likes to wear any device on her body while ex-

ercising. She learns from her friend that the weight machines in the gym are now

equipped with some simple sensors, which enables the gym to automatically track

an individual’s exercises and then provide quantified and personalized insights (like

a personalized digital coach). This technology excites Annie, who decides to sign

up and use the personalized Web portal to track her machine exercises and get per-

sonalized feedback. After a few day, Annie is able to see her exercise summary

and the details of her daily workout such as the amount of weight lifted, number of

exercise repetitions/sets for all the exercises she performed on weight machines.

To realize this scenario, the machine exercises monitoring system should be able

to perform the following:

• record and centrally store the sensor data when Annie is performing different
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exercises on the weight stack-based machine,

• extract features and construct personalized models based on Annie’s workout

data,

• when the next time Annie uses the exercise machine, automatically identify

that it is Annie who is currently using the exercise machine,

• infer various insights from her workout such as the time taken to complete a

repetition, the exercise performed (e.g., triceps pushdown), the weight lifted

(e.g., 8kg),

• provide quantified exercise summary and personalized feedback to Annie,

based on the inferred insights, at the end of her workout,

• continue to track Annie’s activities over longer time scales, even though An-

nie’s exercise patterns may change as a result of her evolving physique or

exercise familiarity (e.g., on a certain day if she performs an exercises too

fast or lifts a much heavier weight than her usual) and evolve the models to

adapt to these evolutionary changes in behavior.

In contrast to Scenario 1, in the above scenario of monitoring weight-based ma-

chine exercises in a gym, we propose a wearable-free and unobtrusive approach of

leveraging only cheap IoT sensors attached to the exercising equipment. The choice

of this specific sensing modality is based on the following key reasons: (a) reluc-

tance of individuals to adopt on-body devices during exercise activity (e.g., due to

the discomfort in strapping devices to the body (mainly as people sweat while ex-

ercising) and also because it is inconvenient to carry devices like smartphone on

the body while performing exercises), (b) limitations of wearable devices in cap-

turing both upper and lower-body exercises (e.g., a wrist-worn smartwatch would

not be able to capture patterns of leg exercises) and (c) potential privacy concerns

arising from the use of video sensing techniques. Thus, the main advantage of our
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proposed approach is that without requiring any instrumentation on the individual’s

body and without using video-sensing, it can still obtain detailed insights on the

exercises performed on weight machines. While in our approach we intend to use

simple inertial sensors (e.g., accelerometer and magnetometer on an off-the-shelf

IoT device) to capture the exercising aspects, there are also other potential sensors

that could be used. For example, laser gauges or distance sensors (attached to the

top of the weight stack of exercise machine) could be used to measure the distance

moved by the weight stack as well as the amount of weight being lifted (based on

the change in placement of the pin attachment to the respective weight slab).

1.2.3 Scenario 3: Multi-user Exercises Monitoring in a Gym

Roy is the head of the technology division of the Sports and Wellness Center. This

center focuses on empowering people to live a healthy and active lifestyle and pro-

vides technological solutions to help them. Roy along with his team is currently

in the process of transforming the public gyms to be smart gyms, that provide a

more personalized and engaging experience to the gym users. More specifically,

they want to roll out some technology at all the gyms as a way to capture exercises

performed simultaneously by multiple users, identify what each individual is do-

ing, provide them quantified insights, personalized feedback and corrective actions.

However, he only has a limited budget to make it happen and therefore, procuring

sophisticated exercise machines with in-built sensor technology is not a scalable

option. In addition, gym-goers often utilize smaller equipment, such as dumbbells,

barbells. To extend the quantified analysis of exercises to the potentially hundreds

of such small-form factor gym equipment, it is important to employ only inexpen-

sive sensors. Two other plausible options in front of him are to (i) utilize the video

feeds from surveillance cameras in the gym or (ii) rely on custom-wearable devices

attached to specific parts of the body (e.g., the limbs, chest) with the goal of cap-

turing individual exercise behavior. But based on his interactions with users of the
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gym as well as from discussion with other technology experts, Roy realizes that

each of these technologies has several limitations and special adoption challenges.

For example, deploying video sensors in gym areas are likely to raise privacy con-

cerns; similarly, users are likely to be reluctant to strap on on-body sensing devices

while exercising, unless of course the wearable is already used for other common-

place lifestyle reasons (e.g., earphones for listening to music). To adhere to such

privacy and budgetary constraints, Roy thus has to devise solutions that exclude the

use of video cameras, but can leverage on the attachment of small form-factor sen-

sors attached to individual exercise equipment, such as dumbbells. In the process

of brainstorming various other technologies, Roy came across the recent advances

in “earable” technology, where sensors embedded in ear-worn devices can be used

to monitor different human activities. He is excited by the fact that earphones are

commonly used by exercising individuals and it also can enable personalized and

real-time audio feedback. The team then decides to combine this technology with

their already existing solution of utilizing small form-factor sensors attached to the

exercise equipment to distinguish between multiple people exercising in the gym

and capture fine-grained aspects of each user’s exercising behavior.

To realize this scenario, a smart gym multi-user exercises monitoring system

should be able to perform the following:

• an application to capture sensor data from gym equipment-attached sensors

and personal sensor-enabled earphones of multiple individuals exercising in

the gym,

• establish the association between an individual’s earable device and the cor-

responding gym equipment–i.e., pair a user with the impersonal gym object

which he or she is currently interacting,

• recognize the exercise gestures/movements and identify the type of exercise

performed by each individual using this pair of (earable, equipment) sensor

data,
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• create personalized profile for individual gym users and map their exercise-

specific insights and display their exercise data, summary reports etc. using a

smartphone application or a web portal.

• generate personalized real-time audio-based feedback based on each individ-

ual’s exercising behavior (e.g., alerting the user to slow down if he is going

too fast)

In the above scenario, leveraging a combination of off-the-shelf IoT sensors plus

wearable sensors seem to be an appropriate option to realize a cost effective and a

simple system to enable real-time personalized feedback to individuals. As briefly

discussed earlier, our choice of ear-worn sensors is motivated by the key fact that

they are a more socially acceptable class of wearable devices and people commonly

use earphones while working out in a gym. They are also small in form-factor,

unobtrusive and may not cause discomfort (e.g., from sweating or from restriction

in freely doing the exercises) unlike other kinds of wearable devices (e.g., a smart-

watch or a chest strap) strapped to other parts of the body.

1.3 Pervasive Sensing for Gesture Recognition in

Lifestyle Monitoring Applications

As described in the above motivating scenarios, automated and unobtrusive recog-

nition of various gestures/actions performed as part of daily activities can be ben-

eficial to the individuals (to the end users as well as business owners) in many

ways. Moreover, the availability of multitude of sensors in different devices that

are readily available with the individuals or available in the environment opens up

unprecedented opportunities in realizing several such useful applications. Building

upon previous works that utilizes sensor-based techniques for daily activity moni-

toring, this thesis demonstrates the use of innovative sensing modalities and novel
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machine-learning based analytics pipelines that specifically target these two key ap-

plication domains.

1.3.1 Leveraging sensors on personal devices

The availability of multitude of sensors on our personal devices such as smart-

phones, smartwatches, earphones, now offers the possibility of capturing rich and

varied information of human context. In other words, these personal devices have

become extensions of ourselves (i.e., “what, where, when and why” people do cer-

tain activities). In Section 2.1, I explore the potential of using a combination of

smartphone and smartwatch sensors (e.g., accelerometer, gyroscope, step counter)

to first infer a shopper’s in-store micro-gestural activities, such as “picking up an

item” or “placing it in a shopping cart”. Then, I use the observed pattern of such

gestures to infer a shopper’s higher-level profile, such as “the shopper is in a hurry”

or “shopper is familiar with the store”. We believe that our proposed solutions, for

capturing latent in-store individual behavior are practical and attractive as they can

work without requiring infrastructure support, such as Wi-Fi APs, BLE beacons or

in-store cameras.

1.3.2 Leveraging sensors on IoT devices in the environment

Even though it is likely that our personal devices are with us during most part of our

daily life, there are certain contexts or situations when our smartphones or smart-

watches become inconvenient to carry or are unable to provide comprehensive ob-

servability (e.g., while exercising in a gym). In such cases, tapping the ubiquitously

available, cheap and simple Internet-of-Things (IoT) based sensor devices present

significant opportunities. These devices can be attached to objects that individuals

interact with or can be deployed in the environment. In Section 3.2 and Section 4.1,

I demonstrate the use of magnetometer and accelerometer sensor-equipped cheap

IoT devices that can be attached to either exercise machines or dumbbells to obtain
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fine-grained aspects of an individuals’ weight-based gym exercises.

1.3.3 Fusing sensors from personal and IoT devices

In certain scenarios, simply using data sensed from either the individual’s personal

device or the IoT devices in the environment may not necessarily be sufficient, espe-

cially (i) when there are multiple individuals in the environment, (ii) when individ-

uals do not interact with a very limited set of discrete objects, but interchangeably

use many objects (e.g., dumbbells), and (iii) when the applications need to capture

finer-grained aspects of each individual’s activity, with minimal intrusion, and also

execute real-time interventions. As such, in Section 4.1, I demonstrate the feasibil-

ity of using data sensed from unobtrusive wearables (such as earphones), combined

with sensor data from devices (e.g., inertial measurement units) attached to the ex-

ercise equipment, to identify exercising aspects of multiple people in the gym and

provide them with real-time personalized corrective feedback.

1.4 Key Challenges

In order to realize the aforementioned real-life scenarios of monitoring various ac-

tivities of daily lifestyle by fusing data from multiple sensors, numerous challenges

have to be addressed. I list down some of those challenges below:

1. Accuracy: Accurately recognizing various human actions and gestures per-

formed as part of different activities is vital for ensuring the practical ac-

ceptance of any end-user application. In real-life scenarios, meeting high

accuracy requirements can be challenging and is highly dependent on the ap-

propriate choice of sensors used, amount of training data available and the

classification models used. For example in Scenario 1 (described earlier), the

in-store shopping activity recognition system should accurately segment the

movements and different item-level interactions and gestures of the shopper
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to obtain an overall understanding of the shopping behavior. In this case, ju-

diciously mining the sensor data from both smartphone and smartwatch of the

shopper is important to obtain the required insights accurately. Similarly, it

is important for an exercise recognition application to accurately identify the

different exercises and related aspects. Novel analytics pipelines and sensor

fusion techniques are required to obtain accurate inferences.

2. Sensing at Finer-granularity: The usefulness of several of the lifestyle mon-

itoring applications relies also on the granularity of the information that can

be sensed and the variety of insights that can be provided to the individual.

For example in Scenario 2, the exercise monitoring system needs to identify

each of the exercises and the intensity at which Annie performs exercises in

a gym session in order to provide her a comprehensive exercise summary,

as well as personalized recommendations and feedback. Additionally, such

a system should also be able to monitor exercise-mistakes, both at set-level

and also within a set (e.g., for enabling real-time feedback through a personal

earable device).

3. Robustness to Time Varying Changes in User Behavior: One of the key

aspect of most of the activity monitoring systems is its dependency on user

behavior. However, individual behaviors/styles are prone to changes and most

of the lifestyle monitoring systems are built with training data collected over

relatively short observational periods. In applications such as exercise be-

havior monitoring, it is important for the system to be robust enough to cap-

ture the inherent within-user differences (i.e., adapting the models to medium

time-scale changes in individual behavior).

4. Sensor Location: Another key challenge associated with practical applica-

tion scenarios is the appropriate location and placement of sensor devices.

The sensor devices (either attached to human body or available in the envi-

ronment) can be exposed to noise, interference, and other confounding effects
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caused by nearby objects and users. Additionally, certain applications may re-

quire placement of sensors at locations where it is difficult to comprehensively

capture all required motion patterns. For example, with the unfavorable on-

body placement of earables, it is indeed questionable whether ear-based iner-

tial signals can provide any discriminative information about exercise motion,

especially when such motion is primarily restricted to upper or lower limbs.

Similarly, data obtained from sensors on the top of a weight stack may be

noisy (e.g, interference on the magnetic sensor from the dumbbells carried by

nearby users) and affect the system’s performance.

5. Discriminating Accurately in a Multi-user Environment: In scenarios

where there are multiple people performing various gestures/activities in the

environment and also when using individualized wearable devices are not

readily feasible, it is important to discriminate between individuals to perform

personalized monitoring. For example, in a gym environment where multiple

people are performing different exercises without necessarily wearing multi-

ple on-body devices, we will need to develop solutions that can unobtrusively

distinguish among multiple individuals.

6. Energy Consumption: Minimizing the energy consumed, especially by per-

sonal devices (such as smartphones and smartwatches) while performing the

required sensing to provide accurate and fine-grained activity monitoring is

one of the key challenges in pervasive applications. As these devices have

limited battery capacity and are not merely intended to just perform these an-

alytics, it is important to save their energy to perform other primary tasks.

Some common approaches to minimize the energy overhead is by incorpo-

rating mechanisms such as duty cycling the sensing operation or adaptive

sensing based on certain inferences.

7. Privacy: Although the proposed techniques and solutions in this thesis aims

to minimize the associated privacy concerns (compared to systems that rely
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on video/audio sensing for such fine-grained monitoring), collecting sensor

data, especially, from personal devices naturally raises some level of privacy

concerns. Therefore, it is important to consider the privacy aspects and have

appropriate mechanisms in place to tackle common privacy threats.

This thesis aims to address the first five challenges outlined above.

1.5 Motivating Human Activity Recognition (HAR)

Research

Due to its immense potential in providing personalized support for many differ-

ent applications and fields of study (such as medicine, sociology, human-computer

interaction, or human security), Human Activity Recognition (HAR) continues to

be an area of active research. Researchers have explored different modalities and

proposed techniques that are mobile/wearable sensor-based [66, 135, 27, 33, 84],

vision-based [93, 63, 140, 108], or wireless sensing-based [131, 138, 100, 128]

to obtain varying levels of insights on specific activities of people. Well known

examples include the RiSQ system [84], for identifying smoking gestures using

smartwatch sensors, ThirdEye [99] for tracking browsing behaviors of shoppers

using a smartglass and WiFi, WiSee [96] for whole-home gesture recognition,

WiBreathe [100], a wireless system for estimating human respiration rates etc.

Although several such techniques have been proposed for HAR, there are still

open opportunities and limitations that are not addressed. Existing approaches that

are targeted at detecting specific activities still face several challenges: (a) attain-

ing high performance accuracy even while sensing activities at finer granularity, (b)

being unobtrusive, simple and cheap, (c) robustness in working in real-world con-

ditions and over longer time scales and (d) ability to accurately recognize activities

of multiple individuals in the environment. In this dissertation, I focus on monitor-

ing two key human activities: shopping and exercising and introduce solutions that
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tackle several of these aforementioned challenges not dealt with in prior works in

the similar domain.

1.6 Thesis Statement

Previous sections highlight the opportunities that arise from the availability of dif-

ferent sensors on personal and other IoT devices and some of the key challenges

involved in enabling different lifestyle monitoring applications put forward. In this

dissertation:

I demonstrate that it is feasible to combine novel machine learning-based analyt-

ics techniques with judicious fusion of sensor data from commodity mobile, wear-

able and/or IoT devices to: (a) accurately recognize human shopping and exercise-

related gestures, under real-world diversity and usage artefacts, at finer granular-

ity, (b) use such gestural inferences as building blocks to derive useful and robust

higher-level insights about an individual’s shopping and exercising behavior and,

(c) ensure that such machine learning-based activity inferencing models perform

robustly in the face of medium-term evolution in an individual’s behavior.

This dissertation establishes the thesis through the following steps:

1. First, it presents the opportunities in exploiting the richness of human ac-

tions and gestures involved while performing commonplace daily lifestyle

activities. Using two everyday lifestyle activities: shopping and exercising as

examples, it identifies the complexities and characteristics that are unique to

each activity and determines the design goals and the challenges involved in

realizing such lifestyle monitoring applications at finer granularity.

2. To demonstrate the applicability of using data sensed from multiple personal

devices for fine-grained activity monitoring and user profiling, it then presents
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the IRIS platform that uses standard locomotive and gestural micro-activities

as building blocks to define novel composite features that help classify differ-

ent facets of a shopper’s interaction/experience with individual items, as well

as attributes of the overall shopping episode or the store.

3. It then presents the W8-Scope system that utilizes only a simple, cost-effective

sensor, containing only a 3-axis accelerometer and a 3-axis magnetometer,

mounted on the weight stack of gym exercise machines, to obtain fine-grained

insights into multiple aspects of individual’s gym exercise behavior. To moti-

vate this application and the chosen approach, it presents results of analysis of

both digital gym usage records as well as a survey of 575 gym-goers. More-

over, it also demonstrates that by adopting incremental learning techniques,

W8-Scope can accurately track various facets of exercises over longitudinal

periods, in spite of the inherent within-user differences that occur in exercis-

ing behaviors.

4. Finally, this dissertation explores the possibility of simultaneously extracting

gestural insight of multiple active users, based on a combination of wearable

and IoT sensors. It uses free-weights exercises monitoring of multiple users in

a gym as an example scenario. In particular, it develops novel techniques that

combine inertial data sensed from a common personal lifestyle device (e.g.,

earphones), and IoT devices attached to the exercise equipment to distinguish

between multiple individuals and infer his/her exercising behavior.
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Chapter 2

In-Store Shopper Behavior

In this chapter, I demonstrate the capability of leveraging data fused from multiple

sensors in individual’s personal devices such as a smartphone and a smartwatch to

obtain a detailed understanding of an individual’s in-store shopping behavior. With

real world studies conducted at two retail stores, I validate the proposed approaches

in accurately capturing various item-level gestural interactions of shoppers and how

such inferences can be used to derive further insights on shopper’s behavior.

2.1 Capturing In-Store Retail Insights on Shoppers

Faced with increasing online competition, retail store owners are increasingly in-

terested in the ability to better understand the browsing behaviors and intentions of

consumers inside their physical stores. A variety of technologies, such as Wi-Fi

and BLE beacon-based aisle-level location tracking [118], RFID based asset mon-

itoring [109] and smartglass-based browsing monitoring [99] have been explored

to capture such individual and collective in-store behavior. While these advanced

technologies hold great promise, their cost makes them unlikely to be adopted

widely, especially in low-margin, emerging economy markets (such as India, China

or Brazil) in the near future.

We believe that solutions for capturing latent in-store individual behavior be-
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come much more practical if they can work without requiring infrastructure sup-

port, such as Wi-Fi APs, BLE beacons or in-store cameras. Moreover, as discussed

previously, there is a great potential in tapping the sensors available on personal

smart devices for monitoring individual behavior. Accordingly, this work is mo-

tivated by the following question: “What level of individual consumer behavior

inside a retail store can we reliably infer, by appropriately mining the sensor data

from readily-available personal smartphone & smartwatch devices, without requir-

ing ANY store-level infrastructural support”?

While some of the high-end stores may already have WiFi infrastructure and

in-store cameras, we emphasize that fact that our primary target is to provide a

solution for the low-end stores in emerging economies. There can be cheap in-

frastructure such as BLE beacons that can be utilized; alternately, in the long run,

maybe cloud-operated networked cameras become a cheaper and widely deployed

option. However, using just video-based analytics, it is hard to accurately track an

individual person (e.g., their clothing may change across different days) and person-

alized profiling of shoppers may prove difficult. As mentioned earlier, in this work

we intend to profile individual shoppers and identify their fine-grained shopping

behaviors. Moreover, our proposed solution has the advantage of being privacy-

compliant, as the requisite sensor data is first captured on a user’s mobile device

and thus needs her explicit or tacit consent.

Driven by this objective, I present IRIS (In-store Retail Insights on Shopper),

an infrastructure-oblivious, mobile-cum-wearable based framework for in-store be-

havioral analytics of shoppers. IRIS is motivated by two key hypotheses: (i) A

significant fraction of in-store browsing activities involve gestural interactions with

objects of interest (such as picking up an item in a grocery store, retrieving and

draping on a dress in a clothing store or having a coffee in the middle of a shop-

ping episode), that a wrist-worn smartwatch should help capture; and (ii) A con-

sumer’s interest-level or familiarity level with objects of interest will also be man-

ifested in macroscopic locomotion-related features (e.g., how long a person stood

18



Table 2.1: Taxonomy of attributes affecting individual consumer behaviors inside
physical retail stores

Reference Attributes Examples of Shopping Behavioral Inferences
[113], [12] Locomotive patterns Store coverage, Time spent in store
[113], [12] Gestural Interactions Basket size or number of items purchased
[113] Demographic characteristics Gender-wise differences (e.g., item inspection times)
[74] Cognitive state Shopping intention (e.g., browsers vs buyers),

Decision making styles
[74] Interaction with personal devices Online browsing behavior
[12] Response to sales promotion Impulse buying, Preferred mode of intervention

devices/materials
[12] Method of purchase Mode of payment, Comes alone or accompanied by friends
[65], [113] Store-level attributes (layout, location) Familiarity with store, Crowdedness
[12] Longitudinal characteristics Heterogeneity of shopping trips, Store familiarity,

Bulk shopper

stationary in front of a product), that a smartphone can help sense. Accordingly,

we believe that a combination of smartphone & smartwatch sensor data can provide

unique, hitherto unexplored, behavioral insights about a consumer’s in-store behav-

ior. While in this work our focus is on detecting shopping gestures and macroscopic

locomotion (which contributes the main physical activities while shopping) of con-

sumers inside a retail store, there are also additional aspects (see Table 2.1 for a

taxonomy of individual consumer behaviors compiled based on several prior works

in marketing and retail literature) that help to determine people’s overall behav-

ior in a retail store. For example, understanding a shopper’s cognitive state during

shopping activity would help in identifying their shopping intentions (e.g., whether

shopper has a buying intent or not) [106]. Similarly of interest is to capture a shop-

per’s interaction with their personal smart devices during shopping. Capturing such

information would be helpful to obtain additional insights such as whether she is

comparing the price of a specific item online or is she checking the shopping list to

ensure that she has got all the items needed.

We explore the use of the IRIS framework to understand different aspects of

individual-level behavior inside retail grocery stores. A key contribution of our re-

search lies in appropriately decomposing an entire store visit (called a “shopping

episode”) into a series of modular and hierarchical individual interactions, such as

a sequence of “in-aisle” durations, interspersed with “non-aisle” activities. Each

“in-aisle” segment can consist of one or more product-interaction activities, such
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Figure 2.1: Typical sequence of shopper activities in a grocery store

as “picking up item” (P), “putting item in trolley (cart)” (T), or “putting item back

in the aisle” (B). Figure 2.1 visually illustrates such a decomposition. This decom-

position is crucial because it not only helps define the specific atomic “activities”

for which we seek to extract discriminatory features and build classifiers, but also

helps to conceptualize two different levels of individual-level behavior (these will

be further detailed in Section 2.2).

IRIS’ broader vision (not explored in depth in this dissertation) is to use longitu-

dinal observations (across multiple shoppers) of such individual-specific, episode-

level insights, to infer both: (a) Store-Level Properties, such as whether a store’s lay-

out is confusing or if the store lacks the right selection of products (a large number

of shoppers have unproductive shopping episodes) and (b) Individual-Level Per-

sona, such as whether the shopper is always in an hurry while shopping, or how

often she purchases unfamiliar items or visits unfamiliar stores (an indication of her

level of adventurousness).

Even in absence of item-specific knowledge, such insights can enable new ap-

plications such as: (a) targeted advertising: e.g., promotions of newly launched

products preferentially pushed to shoppers whose prior browsing behavior indicates

a propensity to look for unfamiliar products (so-called diversity-seeking behavior);

(b) proactive retail help: e.g., a shop assistant directed to assist the customers who

exhibit an “undecided” purchase pattern (an unusually high number of items picked
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up from, but then returned to, the shelves); or (c) crowdsourced store profiling: IRIS

can be built as a 3rd-party mobile App, as it does not have any interaction with the

store’s IT infrastructure. Accordingly, crowdsourced data from a pool of shoppers

using IRIS can be used to build typical “experience profiles” associated with the

store, for use in recommendation applications. There is a slowly increasing trend of

consumers downloading and using apps that utilize mobile sensing to enhance their

shopping experience [6, 4]. For example, Appadia Mall App, Bleesk App, NearBee

App [6] are some of the retail apps that have become recently popular and being

used by shoppers.

2.1.1 Key Challenges and Research Questions

IRIS’ broad goals require us to address several research questions:

1. Shopping Interaction Recognition: Given sensor data corresponding to a spe-

cific shopping gesture (e.g., putting an item in the cart), what discriminative

features help us identify such gestures? What level of accuracy for individual-

level gesture recognition can we achieve, by intelligently combining sensor

data from both smartphones and smartwatches?

2. Accurate Episode Segmentation: Given that a shopping episode can consist

of a shopper’s interaction with multiple items, and movement across multi-

ple aisles, how do we take the sensor data for the entire episode duration and

then reliably segment it into individual interaction instances (such as in Fig-

ure 2.1)? What are the errors in demarcating the (start, end) times of such

individual interactions?

3. Connecting Interaction-Level Observations to Overall Behavior: Assuming

that we can infer the individual-level interactions of a shopper (i.e., how many

items the shopper placed in her cart, etc.), how reliably can we use such in-

ferences to classify the overall episode-level behavioral attributes (such as

21



whether a shopper was in a hurry or not)? Can such classification be person-

independent, or do shoppers behave differently enough to warrant person-

specific classifiers?

We address these questions, by utilizing a fairly extensive set of user studies

(detailed in Section 2.3), involving 50 distinct shopping episodes, collected from 25

individuals, across 2 different mid-sized retail grocery stores in Bengaluru, India.

Overall, by answering these questions, we show how IRIS can accurately recognize

various aspects of in-store shopping activities and obtain fine-grained insights on

shopper’s item-level interactions, episode-level attributes and store-level attributes.

2.1.2 Key Assumptions and Limitations

As several capabilities can be desired in a smart retail application, we establish

upfront the assumptions taken in IRIS and the functionalities that IRIS does not

currently support. Very specifically, we make the following assumptions:

• The shopper wears a smartwatch in their dominant hand and carries a smart-

phone in their pocket.

• The shopper performs the item-interactions with his/her dominant hand.

• The shopper picks only a single item at a time and puts into the trolley before

interacting with the next item.

• The shopper puts the item into the trolley within the ‘aisle’ itself. When in

‘non-aisle’ zones, the shopper is pushing the trolley and walking.

• There is no active engagement with consumers in non-aisle areas–e..g, there

are no ‘live demonstrations’ by in-store employees which may affect the shop-

per’s browsing and in-store navigation pattern.
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While IRIS supports novel capabilities such as inferring shopper’s item-level in-

teractions and building a personalized shopper profile, it currently has the following

limitations:

• Support for only three shopping gestures: Currently, IRIS detects only “pick-

ing”, “putting an item back” and “putting an item into a trolley” gestures.

However, the capabilities of IRIS can be extended in future to recognize other

shopping gestures such as “inspecting an item”, “trying out an item”.

• Tracking of only gestures performed with dominant hand: As IRIS assumes

that the shopper wears a smartwatch only on their dominant hand, it can only

track gestural interactions performed by that arm. Therefore, in its current

state, IRIS fails to capture actions performed by the alternate arm and also has

limitations in fully supporting multi-arm gestures.

• Does not identify exact item being picked or interacted: As IRIS works with-

out the support of any location-based technologies, it cannot identify the exact

item that is being picked or interacted by the shopper. However ultimately,

when it is combined with such positional or product arrangement information,

we can more accurately capture specific items interacted by the shopper and

enable applications that can provide item-specific deals and reminders.

2.2 IRIS: Architecture and Key Objectives

IRIS’ goal is to uncover shopper-specific and store-level behavioral attributes, both

during a specific shopping episode, and via aggregated observations across a lon-

gitudinal trace of such episodes. As IRIS does not presuppose any support from

the store (e.g., location tracking, maps, PoS data, etc.), it does not attempt to cap-

ture insights such as specific product viewed or bought by a shopper. Instead, our

goal is to infer item-independent aspects of a shopper’s behavior, such as number of

products picked and then returned, movement speed within the store etc.
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2.2.1 Types of individual and store-level insights

One of our long-term goals is to use microscopic gestural-level insights obtained

during a consumer’s interaction with a single product as a “building block”, to help

build progressively deeper insights about both a shopper’s short-term and longer-

term behavioral attributes. In this view, the item-specific insights gained by looking

at a set of sensor data frames (a relatively small duration lasting a few seconds)

can be viewed as elements of a periodic table of in-store shopping behavior; these

elements are then combined in hierarchical fashion to discover the higher-level in-

dividual and store-level attributes. More specifically, we categorize the insights into

three broad bins:

• Item-Level Insights (Individual): These insights describe aspects of an indi-

vidual shopper’s behavior with a specific product (or product type). For example,

based on the time that the user inspects the product, i.e., the interval between a ‘P’

(pick) and the corresponding ‘T’ (in trolley) activity, we hope to learn if this is a “fa-

miliar” product (that the shopper regularly buys without much additional thought)

or an “unfamiliar” one. Similarly, an observation of multiple ‘P’ (picks) and ‘B’

(put backs), before an eventual ‘T’ (trolley), might indicate that the shopper had no

a-priori brand affinity, but instead compared multiple brands before picking a spe-

cific item. These item-level insights are derived primarily based on the “gestural

interactions” attribute, outlined in Table 2.1.

• Episode-Level Insights (Individual & Store): These insights are obtained at the

shopping episode-level (an episode comprises multiple item-level interactions) by

aggregating individual item-level labels/features. They are inferred based on a com-

bination of consumer behavior attributes such as locomotive patterns and gestural

interactions. These insights can capture the episode-level behavior of the shop-

per (e.g., a relatively small number of in-trolley (‘T’) actions, coupled with shorter

“non-aisle” durations, might indicate that the “shopper was in a hurry”). More-

over, the insights can also describe properties of the store itself (i.e., store-level
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attributes)–e.g., unusually slow movement during “non-aisle” segments might indi-

cate that the store was overly crowded.

• Longitudinal Insights (Individual & Store): These insights are obtained by

aggregating observations across a large collection of episodes (independent store

visits), observed over a period of weeks and months. These longitudinal charac-

teristics help to better understand the behaviors of individual shoppers as well as

the properties of a store. At an individual-level, they can help reveal the shopper’s

persona— for example, that the “shopper is always hurried during a weekday visit”

or that “the shopper always shops in bulk”. At a store-level, they can help reveal

the store’s macroscopic properties — for example, that “store X has more (or less

footfall) during specific times or days”.

In this work, given the absence of longitudinal data, we focus only on item and

episode-level behavior of shoppers.

2.2.2 The IRIS Architecture

Figure 2.2: Functional Components & Analytics Flow

Figure 4.1 illustrates the device and backend components of the IRIS frame-

work, as well as the typical flow of the analytics pipeline. Each individual shop-

per carries an on-body smartphone and smartwatch, whose sensor streams capture

25



the individual’s physical movement and gestural activities, over an entire shopping

episode. At the backend, this entire stream is first run through a Segmentation En-

gine, which splits up the entire shopping episode duration into different segments

(time chunks), each corresponding to a single movement or gestural activity. Each

individual chunk is then fed into a hierarchical “Item-level” classifier, which at-

tempts to first classify each chunk as either “in-aisle” vs. “non-aisle”, and sub-

sequently separately classifies different gestures within an “in-aisle” segment into

one of multiple interaction-related labels (e.g., {P, B, T} gestures). This collection

of gestures and movement patterns (from the Item-level classifier) is then collec-

tively analyzed by the Episode-level classifier, to help discern episode-level labels

(e.g., “was the shopper in a hurry?”). Finally, the Longitudinal Classifier operates

at longer time scales, analyzing (a) multiple episodes of the same shopper to deter-

mine “persona-level” attributes, and (b) episodes from multiple in-store shoppers

to determine “store-level” attributes.

2.3 Dataset

We first describe our process of collecting real-world shopping behavioral data.

We conducted a user study with 25 middle-aged volunteers (15 females, 10 males)

recruited from Xerox Research Centre, located in Bengaluru, India 1. The study was

conducted during the period of July-August, 2015. Each participant was asked to

visit two different retail grocery stores in Bengaluru, India (one large and spacious,

the other much more cramped for space) and purchased items from a given shopping

list. We collected 50 shopping episodes from the grocery stores at different times of

the day. Each episode lasted, on average, for about 20 minutes and belonged to one

of 3 distinct types: (i) Engineered List (20 episodes), (ii) Clocked (20 episodes) and

(iii) Discretionary (10 episodes).

1Xerox Research Centre, now Conduent Labs, India – (https://www.conduent.com/
innovation/)
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Engineered List: The participants were given a list of 14 grocery items which

consisted of 4 Frequent-Choice (FC), 4 Infrequent-Choice (IC), 3 Frequent-Specific

(FS) and 3 Infrequent-Specific (IS) items. The items were categorized based on

general consensus after a small survey. For example, egg and bread were frequent

items, while dish-washing soap and Schezwan sauce were infrequent items; “select

a juice of your choice” is an example of a FC item; while “Tropicana Orange Juice–

1 gallon” exemplifies a Specific item. The participants were asked to shop for the

items in the same order as in the list.

Clocked: The objective here was to emulate “hurried” behavior. Hence, we

paired up the participants, gave each a list of 10 items and engaged them in a shop-

ping competition. The participants were informed that the person clocking the least

overall time, while buying all the items listed, would be declared the winner. To

control for differences in familiarity with the shop, all the participants in this exper-

iment were familiarized with the shop and its aisles before the episode started. All

items in the list were open-ended (Choice), and selected “randomly” (by picking

ingredients from arbitrary common recipes).

Discretionary: The objective here was to capture behavior in situations where a

shopper could choose not to buy an item, due to a variety of factors (such as budget

constraints, product unavailability, or deficient quality). The items in the list were

chosen to elicit some of these factors. Sample items included fruits that were out of

season, items with budget constraints which were not feasible, “greens that needed

to be fresh enough”, “red coffee mug with a design they liked”, etc. These are cases

of ‘discretionary purchases’, that depend on the shopper’s qualitative assessment.

The shoppers were unaware of our study objectives; the traces thus capture the

natural behavior of shoppers who earnestly look for a preferred item but may be

unable to find it.
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Table 2.2: List of sensors monitored

Sensors Purpose Device
Accelerometer Speed and patterns in walking and Watch, Phone

hand activities
Gyroscope Rotational and angular information Watch, Phone

during walking and hand activities
Magnetometer Directional information during walking Phone
Step Counter Number of steps directly obtained Watch, Phone

from Google Fit API
Battery Distinguish between zones using Watch
Temperature ambient temperature (e.g., freezer section)
Light Sensor Ambient lighting in the store Watch
Audio Sensor Ambient noise in the store Watch
Heart Rate To study if specific browsing Watch

behavior causes excitement

2.3.1 Sensor Data Collection

Each participant was given a smartphone (running Android v4.3 or above) and a

smartwatch (Android Moto 360). The phone was placed in the right-side pant

pocket facing front, and the watch was worn on the dominant hand (all our par-

ticipants were right-handed). The devices were pre-installed with our custom data

collection apps for the smartphone and smartwatch. The apps recorded data from

the sensors listed in Table 2.2, at the maximum permitted sampling frequencies of

200 Hz (phone) and 25Hz (watch). Some sensors were only exclusive to a sin-

gle device–e.g., the magnetometer was unavailable on the watch, whereas the heart

rate sensor was unavailable on the phone. Ambient sensing (temperature, light and

audio) was more reliable on the watch since the phone was placed inside the pocket.

2.3.2 Ground Truth Collection

The ground truth of a shopping episode was collected by having a person shadow

the shopper (without the shopper’s knowledge). The shadower used an app on his

own device, which enabled him to both record micro-activity labels of the shoppers

(“Picking”, “In Trolley”, “Enter Aisle”, etc.), and to record audio notes, along with

the timestamps (all three devices, i.e., shopper’s phone & watch, and shadower’s
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phone, were time-synchronized). Other non-activity related information, such as

the shopper’s familiarity level with the store or the crowdedness of the store were

captured via a survey filled in at the end of each episode. To ensure uniformity in

ground truth annotation, an item-level interaction was assumed to start after the pre-

ceding “Trolley” label (where the user was pushing a trolley), and continued till the

subsequent “Trolley” label; the interval itself could contain multiple labels, such as

“pick”, “put back”, etc. Note that all our studies (and analyses) make the assumption

that the shopper always uses a trolley, although we believe that the technique can be

extended to other modes (e.g., a shopping basket). We also omit the case whereby

the person does not use a trolley or a basket, since then the person would not be

buying many items and consequently the store operator may have lower interest in

analyzing such behavior.

2.4 Classifying under Perfect Segmentation

As the first step in investigating IRIS, we first seek to extract the discriminatory

features of smartwatch & smartphone sensors, and understand their classificatory

power, to help infer various shopper-experience related item-level and episode-level

properties. More specifically, in this section, we assume that, via some as-yet un-

known mechanism, we have perfect knowledge of the (start, end) times of each

item-level interaction (e.g., the “P”, “B”, “T”, “in-aisle” or “out-of-aisle” activi-

ties), and investigate two questions via a supervised classification approach: (1)

How accurately can we classify each of the distinct item-level interaction activities,

and what features aid this classification? (2) Given knowledge of such item-level

behavior, how accurately can we infer episode-level properties, and what features

(defined over the aggregated item-level interactions) aid this classification?
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Table 2.3: Features for Item-level classification

(1) Mean number of picks
(2) Variance in number of picks
(3) Mean hold time, i.e., duration between picking and putting back
(4) Variance in hold time
(5) Mean duration of time between picking an item for the first time

and putting in trolley (W1)
(6) Variance in W1
(7) Mean Duration between entering an aisle to putting item in trolley (W2)
(8) Variance in W2
(9) Mean Duration between walking in non-aisle to entering an aisle (W3)
(10) Variance in W3
(11) For each time window W1, W2 and W3, following features from phone

accelerometer: mean & variance in magnitude, spectral entropy & energy.

2.4.1 Item-level Shopper Experience Attributes

We start by trying to identify the following four item-level attributes (based on the

shopper’s interaction with that specific item), as insights on these four attributes

help reveal a shopper’s buying preferences and habits: • Frequent Item: An item

that the shopper buys frequently or routinely and is familiar with. • Infrequent Item:

An item that the shopper is less familiar with because he does not buy it as often. •

Specific Item: An item for which the shopper has a-priori knowledge of the specific

brand & product detail. • Choice Item: An item for which the shopper does not

have an a-priori product in mind, but instead needs to view alternative products and

make a choice.

Table 2.3 lists the various features that we used to classify these 4 labels. The

features have a hierarchical structure as follows. Initially, different statistical fea-

tures (similar to that used in [135]) are used to identify each interaction/movement

activity as “P”, “B”, “T”, “in-aisle” and “non-aisle”. While the phone-based fea-

tures help identify the walking/gait-related patterns (e.g., “in-aisle” or non-aisle),

the watch-based features help identify the gestural interactions (“P”, “B”, “T”). Sub-

sequently, features (1-10 in Table 2.3), defined over the interaction and movement

activities, help classify the item-level aspects of shopper experience.
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Features 1-10 were defined to help exploit several intuitive properties of human

behavior that we visually observed across shopping episodes. For example, for ei-

ther a Specific (S) or a Frequent (F) item, we can expect the shopper to perform a

smaller number of picks (P), exhibit smaller hold time (H), as well as have smaller

durations of the time windows W1, W2 & W3. In contrast, for Choice (C) or Infre-

quent (I) items, shoppers will likely exhibit a larger number of pick (P) and put back

(B) gestures and a longer duration of window W1 (as they evaluate multiple items

before converging on a selection). Moreover, for Infrequent items, shoppers will

likely spend more time and effort to locate the item, resulting in larger durations of

windows W2 and W3. Note that the analysis of F vs. I is performed by considering

only those users who were familiar with the store, to avoid the confusion on whether

a shopper’s item-level behavior was due to unfamiliarity with the item or the store’s

layout.

Figure 2.3 shows the values of these features for each of these classes averaged

across all episodes we collected, in order to gain insight into the dataset w.r.t these

features. We see that the data reflects certain intuitive or expected trends. For ex-

ample, compared to S items, C items have a higher mean duration for windows

W1 and W2 (features 5 & 7); similarly, I items tend to exhibit longer durations of

non-aisle movement (feature 9). To understand the ability of these features in clas-

sifying these product-level attributes, we trained J48 decision tree classifiers, along

with Correlation Feature Selection (CFS) to identify the most dominant (discrimi-

natory) features. Note that we trained 3 different classifiers, two binary classifiers

(one each to distinguish between S vs. C and F vs. I) and one quaternary classifier

(to distinguish between the 4 composite labels (FS), (IS), (FC) and (IC)).

Table 2.4 tabulates the results obtained via 10-fold cross validation. We note that

we get almost 100% accuracy (both precision and recall values are over 99% for all

labels)! This is a very encouraging result, especially given that our dataset contains

labels aggregated from 25 users, who we expect have diverse shopping styles and

preferences. These results suggest that the behavioral markers of shoppers are
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Table 2.4: Item-level classification with ground truth. Column 3 uses indices from
Table 2.3

Precision Recall Dominant Features
Frequent 0.997 1.0 (1), (3), (5),(6)
Infrequent 1.0 0.998 (1), (3), (6)
Specific 1.0 0.999 (2), (1), (4), (5)
Choice 0.999 1.0 (2), (1), (4), (5)
Freq-Spec 0.993 0.999 (2), (1), (4), (5)
Freq-Choice 1.0 1.0 (2), (1), (4), (5)
Infreq-Spec 1 0.997 (2), (1), (4), (5)
Infreq-Choice 1 0.998

distinct enough (between {S, C, F, I} products) for us to robustly identify them

from a combination of smartwatch and smartphone sensor data.

To study if there was any gender-specific differences in the shopping behavior

and the respective results, we conducted the analysis separately for males and fe-

males in our dataset. However, we did not observe any notable difference in the

results across the two gender categories. Given that we had only data from 25 shop-

pers, further extended studies with more number of participants (also of varied age

groups) and longitudinal studies with the same shopper are required to indeed con-

firm if any differences exists in the shopping patterns across males and females and

its impact on IRIS technologies.

2.4.2 Episode-level Shopper Experience Attributes

We next focus on inferring the individual-specific episode-level characteristics, such

as whether the shopper was in a hurry (or not) or whether the shopping experience

was productive (i.e., did the shopper find most of the items he was looking for?).

Following the approach used previously, we used J48 binary classifiers and features

1-10 (listed in Table 2.5) to study whether a shopper was “hurried” or not. The data

from 20 hurried (“Clocked”) episodes were combined with 20 non-hurried (“Engi-

neered List”) episodes to perform the HU vs. NH analysis. Figure 2.4 shows the

values of these features averaged across all episodes from our data set, correlating
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Figure 2.3: Values of dominant item-level
features listed and indexed in Table 2.3

Figure 2.4: Values of dominant episode-
level features listed and indexed in Ta-
ble 2.5

as expected with the feature set. With these features, a J48 decision tree binary clas-

sifier yielded an overall precision and recall of 99% each, which are tabulated later

in Table 2.8 for comparison. Features (2), (4) & (9) were the most dominant.

2.4.3 Store-level Shopper Experience Attributes

We finally focus on shop-level attributes–i.e., conclusions that we can derive about

the shopper’s perception or interaction with the overall store. Given our dataset,

we focused on one specific store-level attribute (as this could be corroborated from

the post-episode survey data): was the shopper familiar (FL) or unfamiliar (UFL)

with the store? For this study, we only utilized data from the “Engineered List”

and “Discretionary” episodes. We ignored the “Clocked” episodes as it simulated

a hurried behavior and the shoppers were also familiarized with the store layout.

Out of these 30 episodes, 11 reported they were “unfamiliar” with the store. For

evaluation, we used a balanced set of 11 randomly chosen FL and 11 UFL episodes

of data.

We observe that a shopper’s non-aisle behavior is most indicative of his store-

level unfamiliarity: unfamiliarity results in increased effort (time) in trying to locate

the correct aisle, and the item within the aisle. The feature set in Table 2.5 captures

this behavior: as seen in Figure 2.5, the average values of these features are quite
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Table 2.5: Feature set for determining hurriedness & store familiarity of shopper (*
marks the dominant features)

Attribute Features
Hurried/
Non-
hurried

(1) Mean duration in an aisle, (2)* Variance of duration in an aisle,
(3) Mean duration in a non-aisle, (4)* Variance of duration in a non-
aisle, (5)* Mean step rate in an aisle, (6) Variance in step rate in an
aisle, (7) Mean step rate in a non-aisle, (8) Variance in step rate in a
non-aisle, (9)* Mean hold time, (10) Speed of picking an item (mean
magnitude of watch accelerometer during a pick)

Familiar/
Unfamiliar (1) Total time spent in the shop normalized by the number of items,

(2)* Step rate in non-aisle, i.e., numberofsteps
duration

, (3) Fraction of time
spent in non-aisle, (4)* Mean of duration from entering an aisle to
first pick, (5)* Std deviation of duration from entering an aisle to first
pick, (6) Mean step rate from entering an aisle to first pick, (7)* Std
deviation of step rate from entering an aisle to first pick

Figure 2.5: Mean values of features (across 22 episodes) listed and indexed in Ta-
ble 2.5. All durations are in seconds

distinct between FL & UFL users. As before, we use a J48 decision tree binary clas-

sifier with this feature set, correlation feature selection and 10-fold cross validation.

We achieve 99.99% precision and recall (with (2), (4), (5) and (6) being flagged

as the dominant features), indicating that we are able to very reliably distinguish

between FL and UFL shoppers.

Summary: Our results in this section indicate that IRIS can indeed very reliably

(with accuracies usually above 99%) infer item-level and episode-level aspects of

a shopper’s in-store behavior. However, there is a big caveat: our high accuracy

has been demonstrated (thus far) only under the assumption that the overall sensor
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data has been reliably segmented–i.e., the (start, end) times of each activity label

are correctly known. We next develop novel techniques to perform such automated

and accurate segmentation.

2.5 Automatic Segmentation

The supervised learning discussed in Section 2.4 assumed the use of ground truth

labels to demarcate the time segments corresponding to different activities. Another

key contribution of this work, we now describe how to automatically deduce the

(start, end) times of various labels through a combination of (i) landmarking based

on significant sensor features, to distinguish between non-aisle and aisle zones (ii)

Viterbi decoding to predict the sequence of hand activities and (iii) improving the

precision of this hand sequence prediction by estimating the likelihood of an item

being found using survival analysis models, and utilizing this information to bias

the transition probabilities in a time-dependent markov model.

2.5.1 Differentiating Aisle and Non-aisle zones

The key observation used in landmarking aisle and non-aisle zones is that when

a shopper moves into an aisle to look for an item, there is a marked difference in

the walking speed and hand movement, as he slows down after entering an aisle

of interest. The inter-step interval (i.e., the duration between consecutive steps)

is higher inside an aisle than in non-aisle (note: this assumption is valid if the

aisle is non-crowded); moreover, while a shopper mostly pushes the cart (or car-

ries a basket) in non-aisle, he has a lot more variations in the hand movements

due to various browsing-related actions. Further, the inter step interval for a shop-

ping episode (Figure 2.6) reveals that an aisle zone always begins from the foot

of a peak until the peak; similarly, a non-aisle zone spans from the peak to the

foot. However, the number of peaks spanned, i.e., duration for each zone is vari-

able. Accordingly, using peak and valley detection, we identify all peak-points
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Table 2.6: Feature set for classifying aisles/non-aisle zones and hand/non-hand ac-
tivities

Feature Aisle vs Non-
Aisle

Hand vs
Non-Hand

Mean phone accelerometer magnitude 3 3

Spectral entropy of phone accelerometer
magnitude

3 3

Mean watch accelerometer across x,y,z axes 3(only y,z axes) 3

Spectral entropy of Watch accelerometer
across x,y,z axes

3(only y,z axes) 3

Mean watch gyroscope along x,y,z axes 3(only x-axis) 3

Spectral entropy of watch gyroscope along
x,y,z axes

8 3

Variance in step rate 3 8

(tpeaki) and foot-points (tfooti) of all ramps. In order to determine the duration of

the zones, we use change point detection analysis using a binary random forest

classifier trained to identify aisle and non aisle regions, using statistical features

from phone accelerometer, watch accelerometer and watch gyroscope listed in Ta-

ble 2.6. A sliding window size of 10 seconds was used. The precision and recall

of this classifier model is 0.888 and 0.875, respectively. The reasoning behind the

change point detection algorithm is that the classification probability will drop when

the test set contains mixed data, i.e., data from across different categories. Accord-

ingly, we first gather the features within the window corresponding to the first ramp,

w = [tfoot1 , tpeak1 ] and compute the probability Pr(aisle|featureset(w)) using the

binary classifier. Next we increase the window size to include subsequent peaks,

one peak at a time, until the classification probability drops. Suppose the accuracy

dropped for the window [tfootj , tpeaki ], the region [tfootj , tpeak(i−1)] are marked as

“aisle”. Similarly, next the features in window w = [tpeak(i−1), tfooti ] is used to

compute Pr(nonaisle|featureset(w)), and the window size is incremented to in-

clude subsequent troughs in the acclerometer data until the probability drops, say at

tfootk ; the region [tpeak(i−1), tfoot(k−1)] is then marked as “non-aisle”.

Accuracies for segmenting aisle and non-aisle regions are as shown in Table 2.7.
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The possible reason for higher false positives in classification of non-aisle is be-

cause of the “walk-and-browse” characteristic, i.e., the time instances when a shop-

per continues to walk after entering the aisle, without necessarily slowing down or

picking items to check items. The average offset in time between an actual segment

and predicted segment is around 5 seconds.

2.5.2 Identifying Hand Activities

There are two parts to solving the problem of identifying hand activities, which are

defined as either a Pick (P ), Put Back (B) or In Trolley (T ). The first is to iden-

tify if any hand activity occurred, and if so, the next is to identify which of these

three actions it was. The first part is straightforward by analyzing the gyroscope

data from the smart-watch. Figure 2.7 shows the gyroscope data, after performing

quaternion rotation with respect to a common origin [111], and fitting it to a spline

curve [84]. The value plotted is the normalized product of pitch, roll and yaw. The

figure also shows the ground truth in terms of the times when a hand activity did

occur. We observe that the peaks are a good indicator of a hand activity, with negli-

gible false negatives, but there are a significant number of false positives, resulting

from arbitrary hand movements. To address this, we first run a peak detection algo-

rithm to identify the peaks and then eliminate bulk of the false positives by filtering

out those peaks that occur during non-aisle segment (as described in Section 2.5.1).

For each remaining peak, we compute the features in the window corresponding to

the width of the peak (full-width at half-maximum), and feed it to a random for-

est binary classifier to compute the probability that it is a hand activity based on

a combination of watch gyroscope, watch accelerometer and phone accelerometer

features (Table 2.6). This process yields a precision of 95% and recall of 98% in

identifying a hand activity.

The next step after identifying the existence of a hand activity, is to predict if it

is a P , B or T . We propose using a Viterbi decoding approach on a Hidden Markov
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Figure 2.6: Inter-step interval and corre-
sponding aisle (dark blue) and non-aisle
(light pink) zones

Figure 2.7: Watch gyroscope peaks indi-
cating potential hand activities. The red
dots show the actual hand activities from
ground truth.

Model in order to leverage the inherent sequential nature of gestures in a shopping

episode. The state transition probabilities between P , B and T are computed from

the experimental data. The trellis diagram corresponding to the Viterbi decoding

is shown in Figure 2.8. The emission probability is defined as Pr(FS|l), where

l = P,B, T , and FS = [f1, f2...fn] is the set of features from watch gyroscope and

watch accelerometer (features 3, 4, 5, 6 in Table 2.3), which are the observations in

our HMM. The emission probability is obtained as:

Pr(FS|l) =
Pr(l|FS) ∗ Pr(FS)

Pr(l)
, (2.1)

where Pr(FS) =
∏n

i=1 Pr(fi), since sensor features are independent. The prob-

abilities Pr(fi) and Pr(l) can be obtained from the distribution of the empirical

data. The probability Pr(l|FS) is obtained from the random forest ternary classi-

fier, which is trained to distinguish between P , B and T using the features in FS

(with an average precision and recall of 0.926 and 0.927 respectively).

One salient aspect about this decoding approach is that it avoids onset of cas-

caded prediction failures. This is because, the length of the predicted sequence

is limited to each aisle segment, i.e., the sequence is predicted independently for

each aisle segment, since the activities within each aisle-segments are independent
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Figure 2.8: Trellis diagram corresponding to the Viterbi decoding of hand action
sequences.

of other segments, and this helps contain prediction errors. The performance of

classification is shown in Table 2.7.

Table 2.7: Accuracy of automatic segmentation in identifying Aisle, Non-aisle,
Pick, Put-Back and In-Trolley actions

Aisle Non-aisle P B T
Precision 0.9775 0.9051 0.9863 0.9149 0.8200

Recall 0.9669 0.9376 0.9863 0.9053 0.8367

2.5.3 Survival Analysis

We see that the prediction accuracy for T is lower than the other two activities, and

is often mispredicted as B. In order to improve the accuracy, we use the likelihood of

finding the item as an indicator of whether the action would converge in a Put Back

or a Trolley. This probability is obtained by using the Cox Proportional Hazards

model [22], which is a semi-parametric method for adjusting survival rate estimates

to quantify the effect of predictor variables. We chose this model based on the in-

tuition that Trolley actions takes longer, therefore, longer the duration, higher the

chances of T . Accordingly, we estimate the likelihood that an item is found, given

the time taken since the search began (i.e., the last aisle entry or T event, whichever

comes later), with the number of picks as a covariate, i.e., an explanatory or pre-
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dictor variable, that may affect the survival time. Let T be a continuous random

variable representing the waiting time until an item is found. Let f(t) be the prob-

ability density function of T and F (t) = Pr{T < t} its cumulative distribution

function. The survival function S(t) is then defined as the probability that it takes

more than time t to find an item, or in other words, the probability that the failure

event of not finding an item has not occurred by duration t. This is given by:

S(t) = Pr{T ≥ t} = 1− F (t) =
∫ ∞
t

f(x)dx (2.2)

The hazard rate function λ(t), which is the instantaneous rate of occurrence of

the failure event, is defined as:

λ(t) = lim
dt→0

Pr{t ≤ T < t+ dt|T ≥ t}
dt

=
f(t)

S(t)
= − d

dt
logS(t) (2.3)

According to the proportional hazards model, we have λi(t|xi) = λ(t)exiβ ,

where xi is the vector of covariates, β is the coefficient of xi. It is assumed in

this model that the covariates remain constant over time, however the number of

picks is not constant. Hence, we treat each discrete value of number of picks as a

separate covariate, derive a different hazard function for each case, i.e., we derive

λi for xi = 0, 1, 2...8, where the maximum number of picks for a single item that

we have in our data set is 8, and subsequently obtain the corresponding survival

functions. Our analysis shows that the family of survival functions obtained this

way has 81.3% accuracy in predicting the likelihood of an item being found. When

it is time to predict a label for a hand action, we determine the duration τ of the cur-

rent item-episode, i.e., the time between the latest Aisle (or last T) and the start of

the hand action segment, and the number of picks x during this time (as predicted).

From the survival function corresponding to x, with τ as its input, we obtain the

likelihood of the item being found.

If the item is likely to be found (> 0.5), then we bias the sequence prediction

towards a T, or else towards a B. The biasing method is different in each case.

In order to bias towards a Put Back, we multiply the state transition probabilities
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for the transitions into T by Sx(τ). In order to bias towards a T, we make use

of the fact that as the number of B for an item increases, and the item is likely

to be found eventually, the likelihood of a T increases, i.e., there arises a time-

dependent Markov chain. We retain the Markov property by conditioning the states

based on the number of prior Pick-Put Back actions during that item-episode. In

other words, we compute different multiple transition probability matrices where

the probabilities for transitions are conditioned based on the number of prior Pick-

Put Back transitions seen in the current item-episode. In other words, we compute a

family of transition probability matrices {TPMi} , where each matrix TPMi gives

the transition probabilities between Pick, Back, Trolley given there have occurred i

Pick-Put Back prior transitions. Every time the state B is entered from P, a counter

i is incremented by 1, to index into (and hence use) the ith transition matrix TPMi.

Every time state Trolley is entered, the counter is reset back to 1 (for next item).

Using this approach the precision and recall of prediction of T improved by

7.6% and 4.2%, respectively. to 0.8830 and 0.8646, respectively; the precision

and recall of prediction of B improved to 0.9226 and 0.9337.

2.5.4 Attribute Classification with Automatic Segmentation

Finally, we re-ran the supervised learning classification experiments described in

Section 2.4, with the same set of features, but with labels obtained from our auto-

matic segmentation approach instead of ground truth. We compared accuracies of

(a) classification with ground truth labels and (b) classification with a brute-force

approach for automatic segmentation. The basic idea behind this brute force ap-

proach is to use a regular classifier to determine which label a time window belongs

to. Accordingly, we split our data into windows of 10 seconds. We then use the

binary classifier trained with the features in Table 2.6, as discussed in Section 2.5.1

to determine if each window belongs to Aisle or Non-Aisle. Next, for each predicted

aisle segment, we split it into 3 second windows, compute the features in Table 2.3
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Figure 2.9: Trace of actual and predicted labels in the first 15 minutes of a shopping
episode for (a) unhurried, familiar shopper (b) hurried, familiar shopper and (c)
unfamiliar, unhurried shopper.

Table 2.8: Comparison of Classification Accuracy with different approaches

In this table, the columns, P and R represent the precision and recall obtained using our automatic
segmentation approach, P gt and R gt represent the precision and recall obtained from ground truth

labels, P bf and R bf represent the precision and recall obtained with brute force approach.

Attribute P R P gt Rgt P bf R bf
Freq - Infreq 0.921 0.926 0.99 0.99 0.653 0.666
Specific-Choice 0.88 0.89 0.99 0.99 0.553 0.644
Familiar-Unfamiliar 0.92 0.92 0.99 0.99 0.644 0.721
Hurried-Non hurried 0.916 0.922 0.99 0.99 0.693 0.714

for these windows, and use the ternary classifier discussed in Section 2.5.2 to de-

termine if that window belongs to a P , B or T . We decided these window sizes of

10 seconds and 3 seconds after some trial and error, selecting that window which

gave the highest accuracy. This brute-force approach only yielded an average pre-

cision and recall for Aisle/Non-aisle of 71.3%, 73.5%, respectively; and for P , B,

T classification, 50.5% and 38.8%,respectively.

Next we re-ran the attribute classification after automatic segmentation. Ta-

ble 2.8 shows the average classification accuracy for item level and episode-level

attributes, using our automatic segmentation method and brute force approach.
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We see that our segmentation yields very good accuracy. Interestingly, we see

that the accuracy is higher for Frequent vs. Infrequent and Hurried vs. non-hurried,

than the other classification. This is most likely because the dominant features of

these attributes involves non-aisle and picks which are more accurately predicted,

than those that involve trolley and put back labels.

Figure 2.9a shows a sample trace of predicted and actual labels for the first 15

minutes of a shopping episode for a shopper who was not in a hurry and was familiar

with the store; Figures 2.9b and 2.9c show similar traces for unhurried-familiar,

and unhurried-unfamiliar shopper, respectively. Interestingly we can see that these

traits of a shopper are revealed to some extent in the traces. For instance, a hurried

shopper has fewer put backs and an unfamiliar shopper spends longer durations

without interacting with items. We also observe that the classification accuracy of

our framework varies with such profiling. For instance, the accuracy of Put Back

and Non-aisle for hurried shopper is lower than average (87% and 84%), which can

be reasoned that the gestures are performed in a hurry, and the shopper walks fast

in both aisle and non-aisle when in a hurry.

2.6 Additional Applications of Pick Detection

In this Section, I describe how our central idea and proposed approach of leveraging

inertial sensors from a smartphone and a smartwatch to identify shopping gestures

and individual item-level interactions is utilized in other extended applications of

shopping. More specifically, I present the key ideas and my chief contributions in

two other works [98, 107].

2.6.1 Key Ideas & Contributions

As an extension to IRIS, we first proposed an architecture [98] of combining sensor

data from personal wearable-devices and store-deployed IoT sensors (e.g., BLE

beacons) to infer item-interactions and the exact item being picked by a shopper.
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Using various micro-studies on how users interact with objects placed on shelves in

our lab (to crudely mimic similar in-store interactions), we establish two promising

principles: (a) to better identify item-level interactions, we must utilize correlation

between infrastructure and wearable sensor data; and (b) the camera on a wrist-

worn smartwatch can identify a specific product selected by a shopper, but must be

intelligently triggered to conserve energy.

We further proposed a solution, called I4S [107], that also combines multiple

low-energy BLE beacons, mounted on store shelves, with smartphone and smart-

watch sensing to further identify the rack and shelf-level locations from where users

pick specific items. The advantages of this approach is that in addition to identifying

gestural interactions, it can also identify all the items that a shopper interacts with

during the shopping episode. Such solutions are useful for both the shop owner

(in capturing shopper’s browsing interests) and the shopper (in obtaining real time

individualized services).

Both the above ideas rely primarily on accurate identification of “item pick” ges-

tures followed by fine-grained localization of such pickup gestures. This is achieved

based on shopping gesture detection techniques proposed in IRIS based on fusion

of mobile and smartwatch sensors (discussed earlier in Section 2.5.2).

2.6.2 Key Results

Our preliminary studies conducted in a lab setting achieves a 94% accuracy in iden-

tifying an item-picking gesture. Subsequently in I4S , based on evaluation con-

ducted with data obtained from 31 shopping visits at a mid-sized stationary store,

we show that our pick detection approach achieves an accuracy of 92.85% (with a

precision and recall of 92% and 81.5% respectively) using 10-fold cross validation

and an accuracy of 89.18% (with precision of over 88%) when following a person-

independent approach.

These results are based on studies conducted at different settings and with dif-
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ferent set of people, and helps to validate the efficacy of our approach in accurately

identifying shopping gestures.

2.7 Discussion Points

This chapter presents the design and initial prototype of IRIS, a framework for ob-

taining behavioral insights about a shopper’s in-store interactions and behavior,

utilizing only sensing data available from the shopper’s personal smartphone and

wearable device (smartwatch). Results show that, given a trace of an entire shop-

ping episode in representative retail stores, IRIS is able to (i) delineate the (start,

end) times of different in-store interactions, and (ii) utilize various shopping-related

features to characterize such individual in-store interactions – both with very high

(approx. 90%) accuracy. Overall, IRIS operates without any assumption of in-store

infrastructure support or location tracking capability (no Wi-Fi, no RFID, no knowl-

edge of store layout, etc.) and helps to build individualized shopper-profiles. There

are a variety of additional approaches and possibilities in extending this work:

Inferring Multi-arm Shopper Interaction Gestures: In our studies, we have

assumed that the shopper performs all the shopping gestures using their dominant

hand. However, in real shopping scenarios, there will be cases when the shoppers

might be using the alternate arm to pick or put-back the item. In such cases for ex-

ample, if the shopper is wearing a smartwatch on one wrist and a fitness band on the

other hand, the proposed IRIS approach would still be able to capture fine-grained

shopping gestures. Given that it is not that common yet for people to use such

multiple wearable devices, IRIS approach may need to be augmented with alternate

infrastructural sensors for such finer-grained multi-arm gesture differentiations.

As we are primarily targeting those ‘low-end stores’ that do not have budget and

techniques for capital-intensive investments, the preferred technology should be of

low-cost. A plausible approach is to utilize the short-range radar devices which are

becoming cheaper and are likely to become a part of future WiFi installations (e.g.,
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as WiFi moves to 24 GHz, 60 GHz band). Such radar devices can be deployed in the

store shelves/racks to track gestures performed by shoppers in front of the shelves.

These recently emerging short-range radar devices [3] are capable of distinguish-

ing between multiple moving objects in front and maybe able to capture shopping

gestures irrespective of the limb(s) used. An added advantage of using such radar

devices is that it can help capture shopping activities even when the shopper is not

wearing a wearable device and also in cases where multiple users are engaged in

the shopping activities (e.g., two people shopping together where one person pushes

the trolley and other person picks individual items). Another possible way forward

would be to use BLE beacons as a low-cost technology with minimal investment to

attain additional capabilities.

Handling Scenarios of Multiple Individuals Shopping Together: IRIS is de-

signed with the assumption that only a single shopper is visiting the store and per-

forming all the shopping activities. However, there may be scenarios where multiple

individuals visit the store, use the same shopping cart and shop together. In such a

case, multiple shoppers may then ‘inspect’ the product, with one of them doing the

‘pick’ and another one doing the ‘put in cart’ action or one individual may simply

push the cart while another does the picks. While in its current state IRIS would

fail to accurately capture detailed insights in such scenarios, we believe that the

system can be adapted to fuse data from multiple shoppers to properly capture the

distributed shopping actions across individuals. The system should first identify the

‘group’ shopping behavior (e.g., identify 2 individuals shopping together) and then

combine data sensed from personal devices of both shoppers to capture all item-

level interactions. Based on some similarity in the locomotion patterns (e.g., step

rate) and the hand movements involved, we may be able to identify the individuals

who are shopping together.

Another assumption taken in IRIS is that shopper is using a trolley while shop-

ping. We suppose that with minor fine tuning of certain functionalities, our approach

would still work in situations where the shopper is carrying a shopping basket in-
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stead of a trolley. The key changes to be made will be in the strategy of differ-

entiating between aisle vs non-aisle areas. While in the case when a shopper is

pushing the trolley, there is minimal hand movement involved and thus, primarily

leveraging the difference in locomotion pattern (e.g., inter-step interval) would help

in identifying aisle vs non-aisle zones. On the other hand, when the shopper is car-

rying a shopping basket in hand, IRIS would need to distinguish between the hand

movements when walking with a basket in a non-aisle zone and also the actions of

‘putting down basket’ and ‘carrying the basket’ within aisle zones. We believe that

by combining such additional gestural insights and locomotion patterns, IRIS could

adapt to scenarios where the shopper is using a shopping basket. However, when

the shopper is holding the basket in the hand without a smartwatch, it would fail to

capture certain insights and may not be able to achieve similar performance. Using

data captured from multiple wearable devices worn on both arms of the shopper

may then help in improving the performance.

Incorporating Physiological Sensor Data: Physiological sensor data (e.g.,

smartwatches contain embedded heart rate or GSR sensors) can help to addition-

ally infer (or even predict) a shopper’s in-store browsing intent and product-specific

reactions. As a preliminary effort, we observed that using the mean and variance

of heart rate values (captured by our smartwatch) allowed us to obtain a classifica-

tion accuracy of 78% for item-level interactions (such as whether the shopper was

picking a familiar item vs unfamiliar item). This also indicates the potential benefit

in combining inertial sensing data with physiological sensor data to obtain more

detailed inferences on user behavior during shopping activity.

Alternative Methods and Extensions: Given the potential for future applica-

tions in utilizing the insights on shopper’s behavior inside a retail store, researchers

have continued to propose alternative solutions. Here, I discuss some such key ex-

tensions for fine-grained in-store shopper monitoring that were proposed either at

the same time or after IRIS. Shangguan et al. [110] proposed the ShopMiner system

which uses RFID tags attached to individual items (in a clothing store) and exploit
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the backscatter signals of passive RFID tags to identify if the shopper is {looking at,

picking up or turning over} an item and also understand the relative attention they

pay to different items. Unlike IRIS, this system fails to build an individual-level pro-

file, which is an important aspect for personalized shopping applications. However,

IRIS could be augmented by an approach like ShopMiner to identify the exact items

the shoppers interacted with. We exploit the similar idea in building the I4S sys-

tem (explained earlier in Section 2.6). More recently, Zhang et al. [139] proposed

the ShopEye system which identifies three kinds of relations (such as the user-item,

user-user and item-item) in physical stores. Similar to the idea mentioned above,

they utilize a hybrid RFID and smartwatch-based approach to delve into these rela-

tions and capture user behaviors and the item motions. There are also commercial

solutions like Amazon Go [1] which provides a checkout-free shopping experience

to customers, based on combination of video sensing and sensor (e.g., RFID tags)

fusion technologies.

Plausible Additional Factors Affecting Shopper’s Behavior: From our obser-

vations based on real-world user studies conducted at two different grocery stores,

we perceive that the overall store layout and arrangements may potentially mod-

ify some of the behavioral assumptions. For example, the shopper’s locomotion

pattern may vary depending on the size of the store or the area of the aisles and

non-aisles. Additional studies are required to confirm the impact of certain aspects

such as wide vs. narrow aisles or whether stores run promotions (e.g., someone run-

ning a cooking session in a non-aisle area) on the system-level assumptions taken.

In the long-run such factors may also be inferred using the IRIS platform to enable

applications such as crowdsourced store-profiling.

The increasing trend for online or multi-channel search and consumption may

also affect the overall shopping behavior of people–e.g., people may increasingly

perform product research online and just come to the physical store to purchase

specific items. We anticipate that such aspects may affect the shopper’s ‘brows-

ing behavior’ and in turn impact some of our item-level interaction features (e.g.,
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the time taken to pick an item, overall time spent in specific aisles). However, we

believe that the classifier models of IRIS could be evolved to incorporate these addi-

tional factors based on longitudinal observational data of individual shoppers across

multiple shopping episodes.

2.8 Experiences and Lessons Learned

As part of this research, I initially observed individuals’ shopping behavior in mul-

tiple retail grocery stores and conducted several experiments with real users in these

stores. Here I outline some of the key learning points from this work.

• Need to identify other gestures (e.g., inspecting an item): While this work

focuses on identifying three main shopping gestures (pick, put-back, put-

in-trolley), there are additional gestures that are performed by shoppers in

a store. For example, a shopper may pick an item and “inspect” the item for

some time and put it back. Similarly, in certain stores shoppers may “try out”

specific items (e.g., trying out clothes, sunglasses). Identifying variety of such

gestures would help in obtaining additional inferences like the time spent in

inspecting or interacting with items (which may be of interest to the shopper).

• Diversity of gestural interactions: In practical shopping scenarios, the way

certain shopping gestures are performed may vary depending on the object

placement and/or the object size. For example, to pick up an item from the

bottom of a shelf, the shopper may bent down first and then pick the item or

when lifting heavier objects, the shopper may use both the hands together to

get the item. The current gesture recognition model need to be augmented

with sufficient training data (of such instances) to accurately identify similar

gestures under varying conditions.

• Need for multiple wearables: While in our user study, the subjects were asked

to wear the smartwatch on their dominant hand and perform the shopping
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gestures with that hand, there were certain instances when some of them were

using the other hand for picking up items. Similarly, as mentioned in the

previous point there would be scenarios where shoppers would use both their

hands to pick the item. Tackling situations like this would demand for having

multiple wrist-worn wearables on the shoppers and requiring further mech-

anisms to use the sensor data from appropriate wearable or combining data

from both.
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Chapter 3

Gym Monitoring and Digital

Interventions

In this Chapter, I introduce an approach that utilizes only data sensed from a sim-

ple, cheap sensor device attached to the weight stack of an exercise machine for

capturing fine-grained insights of individual’s gym exercise behavior. To motivate

this application and the chosen approach, I first present results of analysis of both

digital gym usage records of 6513 individuals over a longitudinal period as well as

survey of 575 gym-goers in Section 3.1.

3.1 Motivation for Wearable-Free Digital Tracking

of Gym Exercises

Regular physical activity is essential to maintain good health, well-being and to

stay fit [23]. As individuals become more aware of the benefits of engaging in

physical activity, the prevalence of people going to the gym or fitness centers is

on the rise. Recent statistics [115] report that the number of fitness center mem-

berships in the United States has steadily increased over the last decade (with the

membership count reaching 60.87 million in 2017). However, a major challenge

among gym-goers seems to be the longer term adherence to the exercise behavior.
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Prior studies in the behavioral literature [125, 132] have reported that participation

in physical activity is influenced by a diverse range of personal, social, and environ-

mental factors. However, little is known about the severity of the dropout problem,

the temporal patterns exhibited by people who dropout (i.e., cease visiting the gym),

and what other contextual factors seem to affect such individual-level dropout be-

havior.

Additionally, the rapid growth in the market for fitness devices and apps offers

the possibility of providing quantified insights into an individual’s exercise routine

and enabling personalized interventions. Although there has been an explosion of

such mobile applications for promoting healthful behaviors, relatively few have ap-

plied behavioral theory and lack aspects to get wider sustained adoption [57]. A

review of such physical activity apps found that only 2% provided evidence-based

guidelines for gym exercises training and report that these apps follow a one-size-

fits-all approach and people find the recommendations or suggestions provided to

be not helpful [59].

Given these facts, we believe that identifying key enablers for sustained gym

participation, understanding what forms of failures in gym participation exist and

what people desire to overcome such participation is important. Thus, we focus

on studying the exercise habits of people, their temporal consistency or chances of

dropping out and their reasons for quitting gym activity based on two kinds of data

sources: (a) gym visitation data logs of 6513 individuals (captured through card

transaction logs) visiting our University campus gym for a longitudinal period of 16

months and (b) survey of varying demographics of 575 individuals (of which 368

of them are a subset of the 6513 individuals for whom we had the gym visitation

data from our campus gym) who are gym-goers or have stopped going. We also

obtain insights on the desired features and services that people would like to have in

a gym–these insights help us identify possible digital monitoring and intervention

capabilities that may prove more effective in ensuring sustained participation in gym

activities.
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Overall, we believe insights presented in this work on gym user behavior draws

attention to the need for improving the gym experience of people (in maintaining

sustained participation) and helps to identify desired features for future digital in-

tervention tools and motivates our proposed solution (discussed next in Section 3.2)

for unobtrusive and personalized tracking of gym exercises.

3.1.1 Gym Visitation and Survey Dataset

In this work, our broader goal is to first obtain an overall understanding of gym us-

age behavior of individuals, investigate the retention and dropout rates of gym-goers

and identify preferences of people in futuristic digital technologies for gym exercise

tracking. To investigate these factors, we utilize two kinds of data–(a) the gym vis-

itation data of users and (b) survey responses gathered from gym-goers about their

gym usage behavior. Below we describe in detail both the datasets obtained.

3.1.1.1 Gym Visitation Data

We obtained the gym visitation data of users (recorded based on the tap in and tap

out of user ID card at the gym) of our University campus gym for a continuous

period of 16 months from September 2016 to December 2017 (including two fall

terms, one spring term and one summer term). The gym tap-in/tap-out data log

contains details such as the user ID, time of entry and exit for each visit to the gym

and other demographics information such as gender, school of study, user type (e.g.,

undergraduate, postgraduate, exchange student, admin staff, faculty, alumni), year

of study and course code (for students). After initial pre-processing and discarding

of incomplete entries, the dataset we used included 94,188 data records from 6513

unique users who visited the gym during this period. We utilize this dataset to obtain

aggregate usage statistics such as the temporal variation of gym usage pattern across

a day/week/term and the dropout pattern of users, as well as infer factors that may

help promote sustained gym participation.
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3.1.1.2 Gym Survey Data

We next conducted a survey to understand the gym usage behavior of individuals

(e.g., reasons for going to or dropping out from gym, self-rated usage of specific

workout zones or equipment in the gym), preferences or services that would help

improve the gym experience of individuals, usage of fitness apps and key features

desired from such digital tools etc. The survey was hosted in Qualtrics and was

approved by our Institutional Review Board (IRB-18-028-A018(218)). This survey

was conducted in two phases:

• Survey distributed at University gym: Distributed to the students and staff

who visited the campus gym at least once during the academic semester for

which we obtained the gym visitation data

• Survey distributed to the Public: Distributed to the general public members

who goes to a gym.

Both the surveys consisted of 18 common questions (including 15 multiple

choice and 3 open-ended ones). The survey distributed to the general public in-

volved few additional questions (explained later in Section 3.1.1.2.2). The survey

was designed such that the users rated the importance of specific statements under

each question in a 5 point likert scale ranging from “Not at all important” to “Ex-

tremely important”. The survey also gathered other information from the respon-

dents such as the frequency of their gym visits, the duration since the user has been

going to a gym, self-rated usage of specific workout zones and exercise equipment

in the gym, fitness apps used and reasons for liking or disliking those apps.

3.1.1.2.1 Survey at University Gym: The survey was distributed to 1960 users

who are either students or staff in our University campus via email. We utilized the

gym visitation data for one academic term to identify and send the survey to only

those users who visited the campus gym at least once during this term. We obtained
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(a) Gender (b) User Category (c) School of Study (d) Year of Study

Figure 3.1: Demographics of University Gym Survey Participants

responses from 402 users out of which 34 were partial responses. A monetary

compensation of 5$ was offered to the first 250 respondents.

In this survey, the respondents were categorized into three groups based on

whether they (i) visited the gym at University campus, (ii) visited another gym

or (iii) used to go to gym and has dropped out (i.e., ceases to continue gym activ-

ity after 1 or 2 visits). We ensured validity of these responses (at least for group

(i) and (iii)) by comparing against the gym tap-in/tap-out data. While most of the

questions were common to all groups, certain questions designed were targeted at

specific groups.

We only collected the user email id in this survey. Further demographics infor-

mation of the respondents are obtained from the gym tap-in/tap-out data mapped

based on the respondent’s email ids. In Figure 3.1, we report the basic demographic

details of these respondents. Out of the respondents, 220 were males and 148 were

females. 87% of the survey takers were undergraduate students. The highest num-

ber of responses were from the School of Business followed by School of Accoun-

tancy and School of Information Systems, which also corresponds to the school size.

More than half of the survey respondents were freshers and sophomores, who also

comprise the highest percentage of regular visitors at the campus gym.

We present results only based on full responses from 368 respondents. Among

these respondents, 280 of them are regular visitors at our campus gym, 52 of them

used to go to gym and has stopped going now and remaining 36 users goes to public

gyms. Admittedly, this data has a strong demographic bias, as 87% of users are

undergrads and thus likely to be millenials.
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(a) Gender (b) Age Category (c) Employment Status

Figure 3.2: Demographics of Public Gym Survey Participants

3.1.1.2.2 Survey distributed to General Public: This survey was distributed

online and was taken by the members of the general public in Singapore. In total,

we obtained 207 responses, out of which 107 responses were obtained by distribut-

ing the survey to users of a community gym and the remaining 100 responses were

obtained by hosting the survey in Amazon Mechanical Turk (AMT) (with respon-

dent’s location restricted to Singapore). The questions in this survey were similar

to that of the one distributed in the University campus. As we lacked records of any

actual gym visits or electronically captured profiles for these respondents, we also

asked basic demographics questions such as age, gender, employment status. In

this survey, we also included additional questions on the possible futuristic digital

technologies (that would help provide a better gym experience and quantified track-

ing of workout activities to the individuals) and individual preferences and desired

features for such digital tools.

Out of these 207 respondents, 45 of them reported that they used to go to a gym

and has stopped going now. The basic demographics details of these respondents

are as reported in Figure 3.2.

3.1.2 Behavioral Patterns from Gym Visitation Data

We first seek to get a detailed understanding of the visit patterns and behavior

of gym-goers using the University gym visitation data (explained earlier in Sec-

tion 3.1.1.1). More specifically, we intend to study the following questions:

56



1. Do people exhibit regular visit patterns to the gym and does the gym visitation

logs help uncover any temporal patterns in how individuals discontinue their

gym visits?

2. Are there any key contextual factors that seem to affect the likelihood of con-

tinuing to visit the gym vs. dropping out?

(a)CDF of duration of continuous (b) CDF of total no. of visits to the
gym episodes across users gym per user

Figure 3.3: Cumulative distribution of the average time spend by users in gym and
frequency of visit count

To understand the percentage of users who regularly visit the gym as well as

those who dropout after one or two visits, we computed the total gym visit count

per user for the period for which data was available. In our definition, “dropouts”

constitute individuals who cease to continue their gym activity after less than or

equal to two visits within 40 days of their first entry to the gym. We also refer to

another category of individuals, “infrequent visitors” who visit the gym only few

number of times (e.g., less than 10 visits over a 16 month period in our data) and the

difference in days between their successive visits is high (greater than 40 days). The

average time spent by 50% of the users at the gym is found to be about 80 minutes

(see Figure 3.3(a)). A significant 15% of the users also spent more than 2 hours in

the gym. Figure 3.3(b) plots the cumulative probability distribution of the total visit

count of the users. We found out that over 65% of the users (i.e., 4283 out of the
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6513 users) have less than or equal to 10 visits to the gym during the 16 months.

More importantly, the rate of dropout (i.e., users with only 1 or 2 visits) was found

to be 32%. This demonstrates that even in a gym where most of the gym-goers

correspond to the student population, there is a significant set of users who dropout.

Later in Section 3.1.3, we describe some of the key reasons why people discontinue

their gym activity.

3.1.2.1 Acuteness of Dropout & Factors Affecting it

As discussed earlier, we observed that a significant percentage of gym-goers had

only 10 visits or less to the gym (out of which 2071 individuals visited the gym

only once or twice) during 16 months. For those individuals, we wanted to further

investigate their dropout behavior–i.e., do most of them exhibit an early dropout

behavior or are there individuals who also exhibit infrequent visit patterns? To

study this, we first compute the average difference in days between an individual’s

successive visits to the gym and plot the cumulative distribution of it in Figure 3.4.

This helps to distinguish between individuals who dropout from the gym after initial

1 or 2 visits and those who are infrequent visitors to the gym and still have only a

10 visits or less over a prolonged period. We found that 80% of the users dropout

within the first month of visiting the gym and never return (i.e., their difference in

number of days between successive gym visits were ≤ 40).

Figure 3.4: CDF of average difference in days between consecutive gym visits

Given that there is a high percentage of users stopping from visiting the gym,
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we were interested in understanding if there are any distinguishable behavioral pat-

terns between regular gym-goers vs the dropout users. More specifically, we study

two characteristics to see if they show noticeable differences between regulars and

dropouts: (i) visiting the gym alone vs as a group (e.g., with a friend or an exercise

group), (ii) regularity in terms of time of visit to the gym.

3.1.2.1.1 Difference in visit patterns–Groups vs Individuals: From the gym

visitation data logs, we extracted the people who visited the gym as a group (i.e.,

with one or more individuals). For this, we first extracted all user groups whose gym

entry time differences and exit time differences are both within 1 minute–i.e., at an

episode level, identify co-temporal gym visitors. We assume that people entering

and exiting the gym within such short time gap visit the gym together and could

be considered as in a group. Also, such joint visits should occur more than once

to be declared as an actual group. As such, we extracted a total number of 1073

groups after discarding a count of 3416 singleton joint occurrences. Among these,

274 groups ( 25%) repeated five times or more. Also, 88% of these groups are 2

member groups and 10% are 3 member groups. This confirm that there is a trend of

visiting gym as a group among users. Table 3.1 shows the breakdown of the repeated

visit groups characterized by gender and school of study. We observe that 63% of

the groups have members from the same school and 46% of them are female-only

groups.

We next analyze the possible difference in visit patterns of individuals vs. those

who come in groups. We obtained the cumulative distribution of the gym visit count

for individuals vs groups (see Figure 3.5). The CDF plot shows that people going in

groups visit the gym more number of times than people who go alone. Only 18% of

the people who go alone has a visit count greater than 10 whereas for people visiting

in groups it is greater than 45%. This indicate that visiting gym with a friend or as a

group may increase the motivation to continue visiting the gym and thus minimize

chances of dropout.
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Figure 3.5: CDF of visit count for individuals vs groups

All males All females Mixed Same School Different School
% in groups 28.8% 45.9% 25.3% 63.2% 34.7%

Table 3.1: Breakdown of people visiting gym in groups characterized by gender and
school of study

3.1.2.1.2 Regularity in visiting times–Regulars vs Dropout: We next exam-

ined the regularity in the visit pattern of individuals in terms of the time and days

of visit and how it varied between those with a visit count greater than ten and less

than or equal to 10 (i.e., regulars vs dropouts). i.e., Does individuals who continue

to visit the gym regularly also exhibit a regularity in their visit schedule and are the

time periods of visit more irregular for those dropping out? To investigate this, for

each user we first computed the difference in their gym entry time and difference

in the number of days between successive visits to the gym across all their records.

This difference in visiting times is simply expressed as:

∆t = EntryT imei+1 − EntryT imei (3.1)

Figure 3.6(a) plots the CDF of the mean of such differences in time of visit

(i.e., mean of all ∆′ts in minutes) for the two user categories (≤ 10 visits and > 10

visits). For those individuals with visit count > 10, the difference in actual visiting

times is within±2hours for nearly 85% of them (with 34% having a 1hr difference).

However, for those with visit count ≤ 10, the ∆t values were much higher (nearly
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55% had ∆t > 2hrs), indicating greater irregularity in their actual time of visits to

the gym.

We also computed the difference in number of days between successive visits

and the exact days of visits for both category of users. We observed that people

who visit the gym more number of times exhibit regularity in the days of visit to

the gym (i.e., for example, an individual visiting the gym every two days or visiting

only every Wednesdays). On the contrary, the individuals who had fewer visits

barely exhibited any consistency in their visiting days or have longer gaps between

successive visits. For example, from Figure 3.6(b) we can see that more than 40% of

users with visit count≤ 10 have a gap of more than 30 days between their successive

visits (i.e., visited gym only once a month), whereas 78% of them with visit count

> 10 visited the gym at least once every two weeks.

(a) CDF of mean difference in visiting (b) CDF of mean difference in number of
times between successive visits days between successive visits

Figure 3.6: CDF of regularity in visiting time/days for those with visit count > 10
and visit count ≤10

3.1.2.2 Key Takeaways:

• About 32% of people drop out or quit gym activity after 1 or 2 visits. Among

these 80% of them completely stopped visiting the gym within their first

month of visit.

• Going to gym in a group and following a regular gym schedule might reduce
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dropout and improve chances for sustained participation.

3.1.3 Insights from Survey on Gym User Behavior

Having obtained an understanding of the underlying behavior and visit patterns of

individuals in a gym (characterizing a high rate of dropout), we next seek to primar-

ily study the key reasons why people quit gym activity. We also intend to understand

individual preferences and desired features that they would like to see in gyms for a

better experience. From the survey responses gathered from 575 individuals (across

different demographics), we aim to answer the following questions:

1. What are the key reasons why people discontinue and quit activity in a gym?

2. What are the desired features that people think would help in continuing their

gym activity and improve their overall gym experience?

3. How valuable would it be for the users to have access to a personal trainer

at the gym and what are the various things that a personal trainer could help

them with?

4. What does individuals feel about the efficacy of existing fitness apps and

wearable devices? Do they have any specific preferences in the technology

they want to use while exercising in a gym?

Although the surveys were conducted in multiple phases, when presenting the

results we combine the responses from all surveys, and highlight any differences

in responses among different demographics, when applicable. Also, several of the

questions in the survey were matrix table questions (i.e., ones that allow to ask and

rate about multiple items in one question) with a 5-point likert scale rating. As

such, when presenting the results, for each item in the multiple choice question,

we combine the response count for the first two and last two scales (i.e.,“Extremely

important” & “Very important” and “Not at all important” & “Slightly important”)

and ignore the neutral response (e.g., “Moderately Important”).
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Figure 3.7: Survey response ratings on the reasons for quitting gym activity (x-axis
labels sorted in descending order of importance)

Figure 3.8: Survey response ratings for desired features/services to continue partic-
ipation (x-axis labels sorted in descending order of importance).

3.1.3.1 Dropout Reasons & Desired Features to Continue Gym Participation

Out of the 575 survey respondents, 98 of them ( 17%) indicated that they used to go

to gym and has stopped going now (or dropped out). In the survey, we specifically

asked them the reasons for dropping out as well as the services that could help them

to continue going to the gym.

As expected, ”lack of time” is rated by 55% of the respondents as the main

reason for quitting activity at the gym. More interestingly, ”lack of knowledge
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in using gym equipment” (40.39%) and ”lack of personal trainer” (38.43%) were

among the top five reasons rated as important by the dropout users. This result

holds across all the demographic groups (e.g., young, middle-aged, elderly) and

suggests the two areas that could be improved to help the gym-goers. When asked

about the services that would be important to the dropout users when deciding to

continue going to the gym, the top response (46%) indicated a preference for “more

variety of exercise machines”. However, interestingly, ”providing personal training

recommendations” and ”having a friend to accompany” were the next two common

responses, rated as equally important by 39% of the users. The results of these two

questions are as shown in Figure 3.7 and Figure 3.8 respectively. All the percentages

reported are computed by combining the yellow and green blocks within each item

in the x-axis of the plots.

Figure 3.9: Services expected from a personal trainer (x-axis labels sorted in de-
scending order of importance).

3.1.3.2 Need for a Personal Trainer

In the survey, we also included a question on the value of having access to a personal

trainer in the gym and the key services that people would like to receive from a

personal trainer. Having access to a personal trainer at the gym was rated as highly
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valuable by 44% of the respondents and another 22% of them rated it as moderately

valuable. In Figure 3.9, we show the response ratings of the services that a personal

trainer could provide. The survey responses also show that for 78% of the users

across all demographics rate, ”help with correcting body forms/postures” as the

most important service a personal trainer could help them with. Other top-rated

services from a personal trainer were to help with setting a personalized exercise

regimen (68%) and to teach how to perform specific exercises (67%).

3.1.3.3 Usage of Fitness Apps

The next key question in the survey was to understand individual’s affinity towards

using a fitness application while exercising. To this question, 20% of the respon-

dents stated that they are already using a fitness application, 63% expressed interest

in using an app in the future and 17% responded that they stopped using fitness

app(s). More importantly, over 70% of the people reported that they would be

highly interested to use a fitness app that performs quantified exercise tracking and

provides personalized feedback and corrective actions while exercising in a gym.

People think that such recommendations would help make their exercise routine

more effective and safer. As reported in the survey, some most common apps used

by the individuals include Apple Health, Samsung S Health, JEFIT and RunKeeper

and the commonly used wearable devices include Apple Watch, FitBit and Garmin.

Individuals primarily used these fitness apps/devices to keep track of their cardio

exercises, step count, heart rate and calories burnt. The people (97 out of 575) who

discontinued using fitness apps reported the top reason to be apps not having met

their expectations as the provided recommendations were too generic and not useful.

Some of them also commented that using apps while exercising was a distraction

from actual workout.
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Figure 3.10: Preference of Wearable vs Machine Sensor-based technologies for
people in different age groups

3.1.3.4 Adoption of Digital Technologies

The survey distributed to the public gym users also included a question on the pref-

erence of using a futuristic gym technology (which is either wearable OR a ma-

chine sensor-based technology) that can automatically track all the gym exercises

performed and provide personalized quantified insights. From the 207 responses

obtained, 59.9% (124 of those users) indicated an unwillingness to adopt wearable-

based technology and preferred the machine sensor-based approach. Notably, 82%

of the users in the age group above 55 years were reluctant to adopt wearables, in-

dicating a special adoption challenge among the elderly. This is also in accordance

with the fact of digital aversion and the lower likelihood of using technology among

elderly [30]. Figure 3.10 plots the preference for different age category of people.

In general, the main reasons for the aversion towards wearable-based approach in-

clude: (i) the discomfort of wearing on-body devices and not wanting to use such

devices while exercising, (ii) the inconvenience of requiring to wear multiple such

devices for proper exercise tracking, (iii) forgetting to wear those devices and (iv)

not wanting to spend money on wearables. Several of them who preferred the wear-

able approach over the machine sensor-based approach reported that they already

own a wearable device and prefer it as it is more personalized and can also be used

to track physical activities performed outside the gym.
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3.1.3.5 Key Takeaways from the Survey:

The major takeaways from the survey are following:

• Top 5 dropout reasons– lack of time, lack of knowledge in using gym equip-

ment, preferring some other workout, lack of personal trainer and lack of

enjoyment.

• Providing personal training recommendations and having a friend to accom-

pany are rated among the top services that could help the dropout users in

getting back to the gym.

• 78% of the respondents reported that correcting form/posture is considered as

the best service a personal trainer could help them with.

• 63% of the respondents are interested in using a fitness app and 20% are

already using one.

• Nearly 60% of the individuals indicated a reluctance to use wearable devices

while exercising, mainly due to the discomfort and intrusive nature of it.

3.2 Fine-grained, Practical Monitoring of Weight

Stack-based Exercises

Given that retention or ‘stickiness’ for gym-based workouts remains a significant

challenge based on prior studies [17] as well as our analysis of longitudinal gym

data (described in the last section), there is a strong need for better mechanisms

to support sustained gym participation. Moreover, an increased interest in gym

regimens has also led to an increase in related injuries: between 1990-2007, over

970,000 people were treated in emergency rooms for weight training-related in-

juries, an increase of nearly 50% during the 18-year study period [55]. As such,

solutions for automated, quantified and fine-grained tracking of gym activities (to
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Figure 3.11: Common Weight Machines in Gym

maximize the workout effectiveness and reduce risk of injuries) are of high value

in the fitness domain. The rapid growth in the market for IoT devices/sensors now

offers the possibility of more quantified insights into a person’s exercise routine,

such as the type and intensity of exercise performed or the individual’s exercise

form/posture, with such insights enabling more personalized interventions such as

exercise or corrective postural recommendations.

Most approaches for such quantitative capturing of an individual’s workout ac-

tivities rely primarily on either body-worn, wearable devices (e.g., [78, 141]) or

infrastructure-driven video sensing [45]. Each approach has different potential

drawbacks: (a) usability: wearable devices may not be readily adopted by the casual

gym-going population (specifically, our survey (described earlier in Section 3.1.1.2)

with 207 users in community gyms revealed that 60% were not in favor of using

wearables), and a single wearable device may not be sufficient (e.g., wrist or arm-

worn sensors cannot help track leg or hip exercises); or (b) privacy: video capture of

workouts may be viewed as overly intrusive in public gym environments. Moreover,

the efficacy of the techniques are typically evaluated over relatively short observa-

tional periods (e.g., 1-2 gym sessions).

We thus propose and evaluate a specific novel form of wearable-free and non-

intrusive monitoring of gym exercises performed using weight stack-based ma-
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chines. We hypothesized that such wearable-free monitoring might have some

benefits–e.g., it might prove easier to deploy to some demographic segments. This

justification is supported by empirical results provided in Section 3.1. Such weight

stack machines (Figure 3.11) are widely used to perform activities for a variety of

muscle groups. Our main intention to focus on the monitoring of exercises per-

formed on “weight stack-based machines” is primarily due to the fact that other

common exercise machines (e.g., treadmills, elliptical) already have monitoring that

is in-built into the machines and moreover, there is an increase in weight training

related injuries in the recent past [55]. It is worth reinforcing, at the outset, that the

proposed approach requires no user instrumentation and utilizes only a simple, low-

cost sensor device (with accelerometer and magnetic sensor) mounted on the weight

stack (as illustrated in Figure 3.12), such that the sensor moves, dominantly along

the vertical axis, during exercises. By applying an appropriate machine learning-

based inferencing pipeline, we infer various exercise-related aspects simply from

the exercise motion-driven variations in the sensor readings, in spite of the limited

mode of observability (only vertical motion), noise and other user-specific artifacts.

Our method extends prior work, on weight machines instrumented with multiple

sensors (e.g., Jarvis [97]), with novel sensing pipelines to identify the user & the

weight used and to accommodate medium time-scale changes in individual exercise

patterns.

Given our minimalist approach (a single sensor, mounted at a single point) and

the expected diversity in the range and type of exercises that different individuals

perform, this work explores two fundamental research questions:

1. Can we build an inferencing pipeline, using data from only one simple

weight-stack mounted sensor (which moves only vertically) to provide mean-

ingful, multi-dimensional, fine-grained insights into the underlying exercise

routine, such as ‘amount of weight lifted’ or ‘which user is performing the

exercise’? And, how does our accuracy compare with a wearable-based alter-
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Figure 3.12: Multi-Purpose Cable Pulley Machine & Proposed Sensor Placement
on the Weight Stack

native which directly tracks an individual’s limb motions?

2. Is the inferencing pipeline, typically built through supervised learning based

on labeled gym activity data collected over 1-2 sessions, robust enough to

capture the medium-term evolution in an individual’s gym activities? If not,

how can the pipeline be modified, using incremental learning approaches, to

ensure that it is able to robustly track the changes, over a span of months, in

how an individual performs specific exercises?

Using a set of initial validation studies performed using a commonplace multi-

exercise “cable pulley” weight machine, we develop a multi-stage pipeline (called

W8-Scope1) to infer multiple novel facets of an exercise. We then conduct multiple

larger-scale user studies across 2 distinct gyms (as described later in Section 3.4).

Across these two gyms, we collected data from 50 participants performing 14 dif-

ferent exercise types with diverse weights, contributing 1728 sets of exercise data,

over 103 distinct sessions, to validate the efficacy of W8-Scope approach.

3.3 W8-Scope : Overall Goals and Approach

W8-Scope’s broader goal is to quantify various attributes related to exercising in
1pronounced Weight-Scope
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a gym or a fitness facility. The gym-goers are interested in tracking their exer-

cises, number of sets/repetitions, weight lifted etc. to understand their performance

progress [62]. A review of physical activity apps found that only 2% provided

evidence-based guidelines for resistance training [59]. Automatically logging the

exercise performed, as well as the amount of weight lifted, helps users (especially

novice or intermediate users who lack knowledge about the proper exercise posture

or use of gym equipment) to track their exercise routine, progress and performance.

A fitness monitoring application can integrate such monitoring based insights to

provide personalized insights, such as : (a) Is the user committing more mistakes

when performing shoulder exercises compared to exercises targeting other muscle

groups? (b) Is the user training the same set of muscles repeatedly across different

sessions? The application can then identify specific areas that a user needs to im-

prove, or provide specific recommendations to help prevent serious injuries. In this

work, we focus on the following facets:

1. identifying the amount of weight used

2. identifying the exercise performed

3. identifying possible incorrect patterns of performing the exercise

4. identifying which user is performing the exercise (the assumption being that

each user has a unique signature while performing a specific exercise)

3.3.1 Design Goals and Challenges

Design Goals: One of our key goals is to devise a wearable-free and non-intrusive

monitoring approach–i.e. infer the facets mentioned above without instrumenting

the user’s body with any wearable device. Our decision to avoid wearables is influ-

enced not just on prior work [87] that suggests possible inconvenience from such

devices, but also based on a survey that we conducted on gym-goers (explained

earlier in Section 3.1.3). Also, for tracking the full range of typical gym exercises,
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wrist-worn devices are unable to track leg exercises, and one needs to adopt multi-

ple wearables, placed on multiple limbs. Unlike previous approaches that have used

infrastructural video sensing [45, 42] for exercise monitoring, we follow a non-

invasive and less privacy sensitive approach. Specialized fitness facilities or gyms

with advanced and expensive equipment (with built-in sensors) would have the ca-

pability of monitoring different exercise-related attributes. However, our goal is to

also provide a simple and cost-effective solution. As such, we propose to use one or

few simple small form-factor sensor devices mounted externally (i.e., after-market)

on the top plate of a weight stack to infer the exercise and related attributes. Such

an approach does not interfere with the normal usage of the exercise machine and

enhances user convenience by not requiring the user to carry any on-body sensors.

Unlike the Jarvis system [97] which also works using a machine-attached sensor,

our approach of attaching the sensor on the weight stack of the machine helps to

also identify the amount of weight that is lifted in addition to tracking other aspects

of exercising. We evaluate our proposed approach on 7 different weight machines

(including a multi-purpose “cable pulley” weight machine and six other machines

that are dedicated for specific exercises).

Practical Challenges: Our proposed novel sensing mode using one measurement

range for exercise monitoring poses the need for us to tackle several practical chal-

lenges: (i) Given that the sensor is attached to the weight stack of the cable pulley

machine, distinguishing between different exercises becomes more challenging due

to the movement of the weight stack, which can be similar across all exercises. This

requires us to identify additional sensor-based features that could differentiate ex-

ercises; (ii) As the sensor is placed on the weight stack itself, it is thus exposed

to noise, interference, and other confounding effects caused by nearby objects and

users; (iii) Magnetic sensor is very sensitive to several environmental factors, in-

cluding metallic equipment (e.g., dumbbells) carried by other gym-users; (iv) Dif-

ferent users perform the same exercise differently, based on the specific manner of

execution, expertise in weight training exercises, physical strength and body build;
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(v) Users exhibit inherent “drift” in exercising style across longitudinal time peri-

ods.

3.3.2 Overview of Final Design

We utilize a combination of accelerometer and magnetometer sensor streams from

the weight-stack attached sensor to uncover various attributes of a set of weight-

training exercises performed on the weight machine, while addressing the chal-

lenges described earlier. In our approach, to identify the amount of weight that is

lifted, we mainly leverage the magnetic sensor data as the amount of magnetic field

experienced by the sensor varies with different amounts of weight. We also com-

bine features from accelerometer data to disambiguate magnetic sensor data which

might look similar for different weights lifted to different heights. We then use a

combination of features, extracted from both accelerometer and magnetic sensor,

that is fed into a multi-stage classifier pipeline to identify the exercise performed2,

detect anomalous or incorrect exercise executions and also identify the user who is

performing the exercise. Figure 3.13 shows an overview of W8-Scope’s workflow.

Figure 3.13: Overview of W8-Scope’s Workflow.

2Note that such exercise differentiation is needed only for multi-purpose equipment.

73



3.4 Dataset

We conduct extensive studies and experiments with 50 users performing a variety of

exercises on weight stack-based exercise machines under varying conditions. The

data collection was performed in multiple phases at two different gym facilities (a

University gym and a Community gym). The collected data included 3 distinct types

of studies:

• Controlled Study: Conducted in the University gym, users were instructed

to perform specific exercises with specific weights–these studies were used to

identify relevant discriminative features and build the W8-Scope classification

models.

• Real-World Study: Conducted at both the University and Community gyms,

users exercised as per their own will–these studies, conducted in short-lived

sessions, establish the real-world accuracy of W8-Scope.

• Real-World, Longitudinal Study: Conducted in the University gym, this effort

involved a subset of real-world users being monitored across multiple weeks

& months–the results helped in the design and evaluation of W8-Scope’s in-

cremental learning technique.

For the studies, we focus on a class of 14 exercises (listed in Table 3.2) that

target different muscle groups and that the gym trainers indicated to be among the

most popular exercise choices. At University gym, we monitored ten exercises per-

formed using a weight stack-based “cable-pulley” multi-purpose equipment (shown

in Figure 3.11). This machine has a set of 20 free-weights (each weighing 2.5kg,

except the top-most slab (1.25kg)), and permits at least 30 different weight training

exercises [21]. Figure 3.14 shows the position of the exerciser and the weight stack

during the upward motion of these ten exercises. In the Community gym, we uti-

lize six dedicated single purpose weight machines for performing exercises such as

leg curls, leg press, triceps pushdown, biceps curls, chest press and shoulder press.
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Table 3.2: List of Exercises and their corresponding primary muscle groups targeted

Exercise Name Primary Muscle Groups
Triceps Pushdown Triceps
V-bar Pulldown Lats
Biceps Curls Biceps
Standing Cable Lifts Abdominals
Bent Over Side Lateral Shoulders
Seated Cable Rows Middle Back
Single-arm Cable Crossover Chest
Cable Rope Rear-Delt Rows Rear-Delt/Shoulders
Upright Cable Row Traps
Seated Two Arms Wrist Curl Forearms
Shoulder Press Shoulders
Chest Press Chest
Leg Press Quadriceps
Leg Curls Hamstrings

Figure 3.14: The exerciser’s positions for first 10 exercises (performed on a multi-
purpose cable pulley machine) listed in Table 3.2 in order.

These machines have varying number of weight slabs, weighing 7.5kg each. The

users vary the cable heights and the amount of weights (adjustable using a pin) to

perform various exercises.

We initially used a CC2650STK Sensortag device [121] developed by Texas

Instruments (TI) to attach to the weight stack of the cable pulley equipment. How-

ever, after initial experimentation we replaced it with an iPhone 8 (at the University

gym) as the accelerometer readings from the sensor tag turned out to be noisy and
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Table 3.3: Summary of Data Collected and Results Obtained for the Controlled
Studies

Experiment Variations Total no.
of sets

Validation
Results

[Different Weights]
(with 3 exercises)

9 weights w=(3.75, 6.25, 8.75, 11.25, 13.75,
16.25, 18.75, 21.25, 23.75) kg for 3 exercises
(biceps, triceps, lats); height as per user choice

54 99.41%

[Different Exercises]
(with 2 weights)

10 exercises (biceps, shoulders, abs, traps, middleback,
forearms, chest, rear-delts, triceps, lats) with 2 weights,
w=(3.75, 6.25) kg

40 98.74%

[Different Heights]
(with 1 exercise & 3 weights)

Lats exercise in which weight stack was lifted to
4 different heights (6cm, 12cm, 18cm, 24cm) for 3
different weights,w= (3.75, 8.75, 13.75) kg

12
Mean error of
±1.15cm

[Different Sensor Positions]
(with 2 exercises & 19 weights)

Lats and middleback exercise performed with sensor
at 4 positions (top and bottom center, top left and right
corner) for weights varied from, w= 3.75kg to 48.75kg

38
98.96%

(with top &
bottom sensors)

[Different Mistakes]
(with 6 exercises & 1 fixed weight)

1 correct and 2 incorrect executions (pull too fast,
release too fast) for 6 exercises (abs, biceps, triceps,
lats, chest, shoulders) with weight=3.75kg

108 97.34%

unreliable. We leverage the 3-axis accelerometer and 3-axis magnetometer sensors,

sampled at a frequency of 50 Hz, from the iPhone 8 device. Note that, iPhone 8 is

just used as a proof-of-concept and alternate sensors suffice. In fact, at the publicly

accessible Community gym, where we could not leave the iPhone 8 attended, we

have used an alternative multi-sensor device (DA14583 IoT Sensor3). We attach the

sensor device to the top-most slab of the weight stack. This is a non-contact area of

the user and did not affect the normal use of the equipment in any way.

3.4.1 Initial Validation Study

For the feasibility studies, we conducted a variety of experiments using the cable and

pulley exercise equipment in our campus gym, over various controlled conditions

across several days. The studies were conducted with multiple subjects including

professionally trained gym staffs and other gym-goers. The key parameters that

were varied in the study are: (i) the exercise performed, (ii) the amount of the

weight lifted, (iii) the range of motion of the weight stack, (iv) different positions of

placement of the sensor device, and (v) correctness of performing the exercise. In

total, we collected 252 sets of exercise data (where a set is the number of cycles of

reps completed; an exercise set in our study consisted of 10 reps, unless otherwise

3DA14583 IoT Sensor – (https://www.dialog-semiconductor.com/iotsensor)
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specified) for different combinations of these parameters across 8 subjects (5 males,

3 females). Out of the 8 subjects, six of them are trained gym instructors and two

are novices in weight training. All the exercise sessions were video recorded for

ground truth purpose. Table 3.3 summarizes the experiments and the data collected

as part of the controlled studies.

3.4.2 Real World Study

We performed user studies at our University gym and a Community gym in three

different phases. The studies were approved by our Institutional Review Board

(IRB-18-064-A052-M1(618) and IRB-18-153-A007(119)). For the user study at

University gym, we recruited 35 (23 males, 12 females) university students and

staff, who were in the age group of 21-35 years. For the study at the Community

gym, 15 (9 males, 6 females) participants (age varying from 18 to above 60 years)

were recruited. The subjects in both study included those with novice, intermediate

and expert levels of expertise (self-rated) in resistance training.

3.4.2.1 Overall Study Procedure

Prior to data collection, each weight stack exercise machine was instrumented with

a sensor, capturing both accelerometer and magnetometer sensors at 50Hz. The

participants who agreed to take part in the study were required to visit the gym and

perform a set of specified exercises. The participants were first briefed about the

study and also shown videos of the exercises that they were required to do. At the

University gym, the participants were also given a smartwatch (LG-Urbane), to be

worn on their dominant hand, where a custom application captured accelerometer

and magnetometer data (50Hz sampling frequency).

All exercises performed by participants were video recorded for obtaining the

ground truth. From the experimenter’s observation as well as based on the exer-

cise videos collected, we found that the exercising style, pace, range of motion of
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Table 3.4: Summary of real-world exercise dataset collected from University gym
and Community gym.

Study1 univ Study2 comm
No. of participants 35 (23 males, 12 females) 15 (9 males, 6 females)
Age Variation 21–35 years 18–65 years
Self-rated expertise 13 (Novice); 16 (Intermediate); 6 (Expert) 9 (Novice); 3 (Intermediate); 3 (Expert)

No. of exercises 10 (targeted muscles: forearms, biceps, triceps, chest,
abs, shoulders, rear-delts, lats, traps, middleback)

6 (targeted muscles: biceps, hamstrings,
chest, quadriceps, shoulders, triceps)

No. of sets of exercises

Total 1148 sets of 10 reps each
320 sets (6 weights for 3 exercises from 18 subjects)
588 sets (10 exercises with 2 weights from 30 subjects)
240 sets (4 incorrectness for 2 exercises from 30 subjects)

Total 180 sets of 10 reps–
2 sets each of 6 exercises (with
weights of subject’s choice)

Variation of weights 6 weights (3.75kg to 16.25kg) Weights used varied from 5kg to 80kg

Incorrect exercise variations 4 (pulling too fast, releasing too fast, pulling half
way through, lifting heavier weight) N/A

Average duration of exercise
session across subjects 48 minutes 19 minutes

Aggregated duration across
all sessions 36 hours 50 minutes 5 hours 46 minutes

the weight stack, body posture varies across subjects. The number of sets and rep-

etitions are as recommended by gym trainers and also as suggested in resistance

training guide for healthy adults from the American College of Sports Medicine

(ACSM) [83]. Note: In the user study, for every exercise set, we collected data for

10 repetitions each (unless otherwise specified). The participants were advised to

take breaks (as required) in between exercise sets and were allowed to perform the

exercises at a pace they are comfortable with. If subjects were not familiar with

a certain exercise, it was first demonstrated to them by a gym trainer. Other than

for the simulated incorrect executions, the subjects were not given any other special

instructions and so, performed exercises naturally. An exercise session per subject

ranged from about 35 to 55 minutes for Study1 univ and for 12 to 24 minutes

for Study2 comm. For participating in the study, we provided each participant a

monetary compensation of $10.

3.4.2.2 Study in University Gym (Study1 univ)

At our University campus gym, we conducted the user study with the multi-exercise

cable pulley equipment in two phases. In the main study (Study1 univ), we fo-

cused on collecting data for different exercises, different weights and simulated

incorrect executions from 35 subjects. Among these, 30 participants performed:
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(i) 2 sets each of the ten exercises (listed in Table 3.2), (ii) 3 sets of two exer-

cises (triceps and lats) in a simulated manner such that they made mistakes such

as “pulling too fast”, “releasing too fast” and “lifting only half through”, and (iii)

1 set of the same two exercises by “lifting heavier weights”. We ensured that all

participants could easily simulate the mistakes in a safe and controlled manner by

using a lighter weight of 3.75kg. For lifting the heavier weight case, they were

asked to choose a weight that they perceived as heavier than normal but within their

comfort zone, separately for both triceps and lats exercise, and perform as many

reps (up to a maximum of 10) that they could comfortably perform. This set of data

was collected to mainly understand if users are more prone to committing mistakes

(e.g., ‘releasing too fast’, ‘lifting only halfway’ and other ‘postural mistakes’) when

lifting heavier weights. For obtaining data for different set of weights, 18 out of the

35 participants performed three exercises (namely, triceps, biceps and lats exercise)

by varying it to 6 different weights (from 3.75kg to 16.25kg). In total, we collected

1148 sets of exercise data. The details of this study are tabulated in column 2 of Ta-

ble 3.4. For each of the 1148 sets of data obtained from the weight stack- attached

sensor, we also obtained sensor data from a smartwatch worn by the participant

while exercising. This data is obtained to compare the performance of our proposed

W8-Scope approach to that of a more common and straightforward wearable-based

solution.

3.4.2.3 Study in Community Gym (Study2 comm)

As the university gym involved mostly student participants utilizing a single “multi-

purpose” cable pulley machine, we utilized a community, publicly-accessible gym

to obtain data from other demographic groups (e.g., working adults) and from dif-

ferent dedicated weight stack-based exercise machines. In this study (referred to

as Study2 comm), we collected data from 15 subjects (who widely varied in their

age, employment status, ethnicity and expertise in weight training) performing 2

sets each of 6 different exercises (with weights of their choice) on the dedicated
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Table 3.5: Summary of real-world longitudinal exercise dataset collected from Uni-
versity gym

Study3 long
No. of participants 10 (7 males, 3 females)
Age Variation 21–35 years
Self-rated expertise 4 (Novice); 4 (Intermediate); 2 (Expert)

No. of exercises 5 (targeted muscles: triceps, biceps, abs,
middleback, rear-delts)

No. of sets of exercises

Total 400 sets of 10 reps–
2 sets each of 5 exercises
(with weights of subject’s choice)
on 4 different sessions

Variation of weights Weights used varied from 3.75kg to 43.75kg
Average duration of exercise
session across subjects 14 minutes

Aggregated duration across
all sessions 8 hours 20 minutes

weight stack machines. The targeted weight machines include the ones for per-

forming triceps pushdown, biceps curls, chest press, leg curls, leg press and shoul-

der press exercises. In total, 180 sets of exercise data were recorded (see Table 3.5

for summary).

Figure 3.15: Longitudinal Study Period

3.4.2.4 Longitudinal Study in University Gym (Study3 long)

In both Study1 univ and Study2 comm, the users performed exercises in a single

session. We further conducted a multi-session study (Study3 long) with a subset

of 10 users from the subject pool of Study1 univ. In addition to the original ses-
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Table 3.6: A high level summary of the main items discussed in Section 3.5 and the
key takeaways from each.

Items Discussed Key Takeaway
(Sections 3.5.1, 3.5.2): Accelerometer and magnetic
sensor patterns for various exercises and the key
observations supporting our system design.

Magnetic sensing, together with accelerometer-based
height estimation, estimates ‘weight lifted’.

(Sections 3.5.1.1, 3.5.1.2): Techniques to segment individual
repetitions and compute novel features on it.

Novel features derived–displacement of the weight stack,
repetition velocity, time taken to complete a repetition.

(Section 3.5.4): The multi-stage classification pipeline used
in realizing the various facets of W8-Scope exercise
monitoring approach.

Various facets derived–weight lifted, exercise type, mistakes
made and user identification.

(Section 3.5.4.1): Results of different W8-Scope components
based on the initial validation studies.

Accuracies for different components: Repetition count-98%,
Weight lifted–99.4%, Exercise detection–98.7%,
Mistakes identification–97.3%, user identification–99.1%

sion, these users performed exercises on 4 additional days (separated by a week);

furthermore, there was a gap of over 3 months between the original session and

these 4 sessions (Figure 3.15 illustrates the study period). In each of these session,

the participant performed 5 exercises (namely, triceps, biceps, abs, middleback and

rear-delts) with weights of their choice, resulting in a total of 400 sets of exercise

data (details listed in column 4 of Table 3.4).

3.5 Design and Implementation of W8-Scope

To design W8-Scope, we first seek to get a detailed understanding of how the ac-

celerometer and magnetic sensor data varies, as the weight stack moves while per-

forming different exercises on a cable pulley machine. Table 3.6 summarizes the

the key items discussed and the takeaways and insights that led to the final design

of W8-Scope.

3.5.1 Accelerometer Sensor Analysis

We first inspected the accelerometer data recorded from the sensor attached to the

free-weights stack while performing each of the first ten exercises mentioned in Ta-

ble 3.2. We observed that the accelerometer z-axis data clearly shows the variation

with each repetition and also varies across the 10 exercises, indicating the possibil-

ity of using an accelerometer to distinguish between exercises. The absolute value,
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Figure 3.16: Steps involved in counting repetitions and computing displacement

mean change and variation of the magnitude of acceleration and time taken per rep-

etition varies across different exercises. Moreover, this also depends on the user

and the pace at which an exercise is performed. In our controlled study data, the

average time taken to complete one repetition across exercises is about 2 seconds

(±0.69 seconds standard deviation).

3.5.1.1 Identifying and Counting Repetitions:

To segment and count individual repetitions in an exercise set from accelerome-

ter data, the following approach is taken (shown in repetition counting block in

Figure 3.16). The raw accelerometer data is initially passed through a low pass

filter. From the filtered acceleration data (for z-axes), we obtain the local maxima

and local minima–i.e., points around which all other neighboring samples are low-

er/higher by δ (empirically set to 60% of the highest/lowest sample amplitude for

our work). As certain repetitions were observed to have multiple peaks and val-

leys, an additional constraint on a minimum time threshold ∆T (empirically set to

2 secs) between successive peaks is used to avoid over counting. The time segment

between two consecutive valleys is assumed to represent one repetition.

3.5.1.2 Computing the Range of Motion of Weight Stack

During our feasibility studies, we observed that one of the evident difference be-

tween exercises is in terms of the height to which the weight stack could be lifted

(for the same amount of weights used). For example, when performing the shoul-
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(a) Correct execution (b) Pull weights too fast (c) Release weights too fast

Figure 3.17: Variation in accelerometer readings while performing Triceps Push-
down exercise (a) correctly & (b) by pulling weights too fast & (c) by releasing/s-
lamming down the weights fast

ders exercise, the subject’s arm has a wider range of motion (starting from a bottom

lower level, the arms are stretched out at shoulder level), thereby lifting the weight

stack to a higher level. The amount of time taken to complete a repetition also

varies across different exercises. In addition, the weight stack’s range of motion of

the weight and the inter-repetition time vary for different amounts of weight lifted

(e.g., lifting heavier weights would take longer time). To compute the weight stack

displacement (outlined in Figure 3.16), we first extracted the z-axis acceleration sig-

nal, integrated it using cumulative trapezoidal integration4 to obtain velocity, then

low-pass filtered and then integrated again to obtain the displacement. As shown in

Section 3.5.4.1, this approach results in a mean displacement error of 1.15 cm.

3.5.1.3 Understanding Quality of Exercise Repetitions

To understand the feasibility of identifying mistakes while exercising, we first con-

sulted the professional trainers in our campus gym to understand the common mis-

takes that people make while training with the weight machines. As reported by the

gym trainers, (a) pulling or releasing the weights too fast, or (b) lifting the weight

only half way through corresponded to some “common mistakes” made by novice

users. However, in certain workouts, explosive training techniques are employed to

4cumtrapz() function in pracma package of R – (https://cran.r-project.org/web/
packages/pracma/pracma.pdf)
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Figure 3.18: Variation in magnetic field for a sample of 6 exercises performed with
weight, w = 6.25kg

improve or sustain muscle activation. In such cases, pulling the weight stack too

fast or having only a smaller range of motion are legitimate means of power train-

ing. However, based on our interactions with multiple professional gym trainers,

we understand that such techniques are used principally by expert athletes looking

to target specific muscle groups. For our target group of novice/intermediate users,

such patterns are almost always “mistakes” that can be corrected through explicit

feedback.

As a preliminary study, we focused on collecting data for 6 different resistance

training exercises (listed in Table 3.2) targeting abs, biceps, triceps, lats, shoulders

and chest muscles. We collected data from 6 trainers at the gym for 3 sets of 10 reps

of each exercise. Out of the 3 sets, they were instructed to perform one set correctly

and two sets incorrectly–i.e., pull the weights too fast or release the weights too

fast. We found (e.g., see Figure 3.17) that the accelerometer data contains visible

signatures, that can help distinguish between such correct and incorrect execution

patterns (as shown later in Section 3.5.4.1).
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(a) Variation in magnetic field for 9 sets of 10 (b) Expected “U-shape” of the magnetic
repetitions of lats exercise with weights per set readings as the amount of weights
varied between w = 3.75kg and w = 23.75kg. is varied from minimum weight
(The number on top of each set shows the mean (3.75kg) to maximum weight

value (µT) of the magnetic field when lifting (48.75kg).
specific weight).

Figure 3.19: Variation in magnetic field for different weights

3.5.2 Magnetic Sensor Analysis

We also studied how the magnetic field, sensed by a magnetometer, varies when

performing different exercises using the cable pulley weight stack machine. We

found that the magnetic field indeed varies as the weight stack goes up and down,

indicating individual repetitions of each exercise. Figure 3.18 shows the distinct

pattern of the magnetic field for the ten exercises performed with a weight, w =

6.25kg.

3.5.2.1 Variation in Magnetic Field for Different Amounts of Weight Lifted:

More interestingly, when we analyzed the data collected from the magnetometer

for the same exercise performed with different set of weights, we observed that the

magnetic field changes as a function of weight lifted. To understand this analyti-

cally, consider the weight stack has a set of m weight slabs, each slab with mass=w.

Let di be the distance of the ith slab from the sensor, while at rest, and let D be the

distance (height) moved by the set of K (K ≤ M weight slabs that are lifted). In

Equation (3.2), we represent magnetic field strength, B as a function of K. We can

break this up into the part of the weight (the K slabs) that moves up (leaving the

85



slab-sensor distance unchanged) and the part (the M − K slabs) that don’t move

(leading to an increase in the slab-sensor distance).

B =
K∑
i=1

wi
d2i

+
M∑
i=K

wi
(D + di)2

(3.2)

Mathematically, the magnetic field of any body is inversely proportional to the

square of the distance. Accordingly, as illustrated in Figure 3.19(b), the magnetic

field at the zenith should exhibit a U -shape curve, initially decreasing (as k in-

creases from a small value) but then eventually increasing (as the first term begins

to dominate when k becomes larger), as a function of the weight lifted.

Figure 3.19(a) shows the variation in magnetic field while performing 10 repe-

titions each of lats exercise with 9 different set of weights ranging from 3.75kg to

23.75kg. The figure is annotated (in red color) with the mean value of the magnetic

field as experienced by the sensor when lifting varying amount of weights. Ini-

tially as the amount of weight is increased, the strength of the magnetic field keeps

decreasing, thus making it easier to distinguish between the lighter weights. How-

ever, at higher weight values, the differentiation in the magnetic field is less pro-

nounced (e.g., the mean magnetic field is -255µT when lifting either w = 21.25kg

or w = 23.75kg).

3.5.2.2 Magnetic Field for Different Weight Stack Heights:

Given that the magnetic sensor shows distinguishable trends for the different exer-

cises and for different amounts of weight lifted, we wanted to answer the question:

would just a magnetic sensor on the weight stack suffice or are there indeed cases

where the magnetic sensor would be unable to distinguish between “weight=w1,

height=h1” and “weight=w2, height=h2” combinations? We conducted an experi-

ment in which lats exercise was performed with 3 different weights (3.75kg, 8.75kg,

13.75kg) lifted to 4 different controlled heights (6cm, 12cm, 18cm, 24cm). We

observed that the change in magnetic field for weight, w = 8.75kg and height,
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Table 3.7: Features extracted from each time window of accelerometer and magne-
tometer data

The Count represents the number of signal axes on which the feature is computed. For example,
count=4 means features are extracted on the x-axis, y-axis, z-axis and the magnitude of the signal
and count=1 means features are extracted on the z-axis of the accelerometer signal (as it showed

clear variations pertaining to the exercise motion).

Feature Count Description

Mean 4
Average of the values for the time window for each axes and the Euclidean
norm (magnitude) of the signal

Max 4 Maximum value in a time window for each axis and signal’s magnitude
Min 4 Minimum value in a time window for each axis and signal’s magnitude
Range 4 Total change in values within the time window for each axis and signal’s

magnitude
Variance 4 Variance of the values in a time window for each axis and magnitude of signal
Spectral Entropy 4 Normalized information entropy of the FFT components of each axis and

magnitude of signal
Spectral Energy 4 Mean value of the square of the FFT coefficients of the signal for each axis

and magnitude value
Mean crossing rate 4 Number of times the values cross the mean of the time window
Covariance 3 Covariance between each pair of axes of the sensor
Correlation 3 Correlation between each pair of axes of the sensor
Repetition Time 1 Average time taken to complete a repetition in a exercise set
Repetition Height 1 Average height to which the weight stack was lifted within a set
Repetition Velocity Mean 1 Average of the speed with which the weight stack was lifted in a set
Repetition Velocity Std.dev 1 Standard deviation of the speed with which the weight stack was lifted in a set

h = 6cm looked very similar to that of w = 13.75kg and h = 24cm (mean and

total changes being approx. 45µT and 32µT respectively for both cases). This

shows that pure magnetic sensor alone can provide ambiguous results, and that both

magnetic and accelerometer sensor data are thus needed to accurately distinguish

between different weights lifted during different exercises.

3.5.3 Sensor Data Analysis: Key Takeaways, Data Processing

and Features

Based on our controlled experiments and data analysis, our major takeaways are: (i)

the weight stack movement is clearly identifiable from the magnetometer data, (ii)

the accelerometer sensor can provide an accurate estimate of the precise exercise-

related movements, with distinct z−axis patterns for different exercises, (iii) using

the accelerometer data, it is possible to derive two useful features: the time taken to

complete a repetition as well as the height to which the weight stack is lifted, and

(iv) the variation in the magnetometer readings can be used to identify the amount
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of weight that is being lifted (in conjunction with the displacement height estimate

obtained from accelerometer data).

Accordingly, we use both the accelerometer and magnetic sensor data to iden-

tify various exercise-related attributes. Both streams of sensor data per individual

exercise set are first pre-processed to remove any outliers. The pre-processed sen-

sor data is divided into frames of length w (w = 2 seconds, based on the observed

duration of a single repetition). On each frame of the signal, we first extract statis-

tical features. The features were computed for each axis as well as magnitude of

both accelerometer and magnetic sensors. Using methods described earlier in Sec-

tion 3.5.1, we also compute repetition-based features such as average time taken to

complete a repetition in an exercise set, average height to which to the weight stack

was lifted during each exercise, and the average & standard deviation of speed with

which the weight stack was lifted and brought down. The complete set of features

used in our classifier models is listed in Table 3.7.

3.5.4 The W8-Scope Classification Pipeline

Based on the insights gathered from the sensor data analysis, we develop the W8-

Scope classification pipeline that leverages on specific features that are extracted

from the accelerometer and magnetometer sensor data. Using these sensor-based

features, we first identify the amount of weight lifted and then identify the exer-

cise performed. Subsequently, in logically-parallel steps, we detect incorrectness

in specific exercise execution and distinguish between the users performing same

exercise.

Initially, we tested performance of various classifiers (SVM, Decision Trees,

Random Forest) in Weka [43] for classifying the different weights using the window-

based features extracted from data collected during the controlled study for different

weights experiment (explained in Section 3.4.1). We first tuned the parameters of

the different models on our dataset and selected the parameters that gave the best
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Figure 3.20: Pipeline of classifying the amount of weight lifted, exercise performed,
user performing the exercise and incorrect exercise executions made

performance for each model. We then evaluated the performance of the parameter

tuned machine learning models using 10-fold cross validation and found that the

best classification performance was achieved with Random Forest (RF) Classifier

(with number of trees= 60). Hence, we used RF classifier throughout our multi-

stage pipeline–this is consistent with prior works (e.g., [46, 127]) that also found

RF classifiers to be more accurate for sensor-based exercise monitoring.

The key components in the classification pipeline (see Figure 3.20) are as fol-

lows:

• Amount of Weight Lifted Identification – We train a weight classifier us-

ing the parameter tuned random forest classifier. The weight classifier pro-

vides the classification of the different weights and the distribution of con-

fidence values for the set of weights (i.e., the probabilities that weight =

[w1, w2, w3, w4, w5, w6]) for each instance.

• Exercise Identification – For the exercise classifier, we follow a soft decoding

approach, that is to feed in the results from the prior classifier as a new feature

vector to the existing set of features, i.e., we use the probability distribution

of weights classification, instead of using only the ‘most likely’ label for the

weights. The exercise classification is performed on the new feature set with

the parameter tuned RF classifier.
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• Detecting Mistakes in Exercise Execution – After identifying the exercise, we

attempt to detect the mistakes made, at a per-repetition level. (This is neces-

sary as users may incorrectly execute only a subset of the multiple repetitions

in a set.) We first segment acceleration and magnetic sensor signals corre-

sponding to the upward and downward motion of the weight stack during a

repetition using techniques described earlier in Section 3.5.1.1. We also ob-

tain the velocity and displacement corresponding to each transition. Instead

of using a fixed window size, we now extract the statistical features on frames

representing individual transitions for four signals (acceleration, velocity, dis-

placement and magnetic). We also feed in the output of the exercise classifier

as a new feature, by taking majority output labels during a set. Note, as shown

in Figure 3.20, this implies that mistake classification is not real-time–i.e., it

is only performed retrospectively, after the user has completed an entire set

(usually lasting 30-40secs). On the new set of features extracted, we again

used a RF classifier to classify the commonplace mistakes such as “pulling the

weight stack too fast”, “releasing fast or slamming down the weight stack”,

“lifting the weights only half-way through”.

• User Identification – This component is used to distinguish between users

performing the same exercise on the cable pulley weight machine. For this

purpose, we used the initial set of features used for weight classification and

split it into exercise-specific feature files, subsequently building a per-exercise

classifier that attempts to predict the exercising user, given an entire exercise

set.

3.5.4.1 Controlled Study Results

We now present summarized results of the different W8-Scope components, eval-

uated on controlled studies performed initially with a small set of explicitly-

instructed users (explained earlier in Section 3.4.1). As these studies do not cap-

90



Table 3.8: Average error (in cm) in displacement computation for varying heights
to which weight stack is lifted

Actual Height 6 cm 12 cm 18 cm 24 cm
Average Error ±0.67 cm ±0.87 cm ±1.1 cm ±1.96 cm

Table 3.9: Controlled Study –Summary of performance accuracy (using 10-fold
cross validation) for each classifier using individual sensors as well as combination
of both sensors

Weight Exercise Mistakes User
Only Accelerometer 77.49% 91.53% 90.43% 93.41%
Only Magnetometer 92.96% 79.37% 83.85% 87.65%
Accelerometer and Magnetometer 99.41% 98.74% 97.34% 99.12%

ture the natural gym activities (e.g., the weight variations across exercises, the se-

quence/mix of exercises performed), the results here are meant primarily to quanti-

tatively differentiate the capabilities of the magnetic vs. accelerometer sensor, and

to establish the accuracy of several of the key W8-Scope features (rather than the

inferred outcomes).

Repetition Counting: Based on the 94 sets (containing 940 repetitions) of data

collected from the different {weights,exercise} combinations, we ascertain that the

repetition counting mechanism (Section 3.5.1.1) achieves an accuracy of 98% in

counting the 10 repetitions in each set.

Weight Stack Displacement: We studied the accuracy of displacement estima-

tion (i.e., how much did the weight stack move during a repetition?), using the

data collected from controlled lats exercises, where the participant lifted the weight

stack to four different heights (6cm, 12cm, 18cm and 24cm) for three different

weights (3.75kg, 8.75kg and 13.75kg). We observed an average estimation error of

±1.15cm compared to the ground truth height. Table 3.8 shows the breakdown of

the average error in displacement computed for each height.

Weight Amount: We utilized the data collected from 54 sets (from two subjects)

for three exercises (biceps, triceps and lats), with weights varying from 3.75–

23.75kg. The RF classifier achieves an accuracy of 99.41% (yielding an aver-
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age precision of 0.992 and recall of 0.994) in distinguishing between the 9 set of

weights. In contrast, the accuracy for weight classification using only magnetic

and only accelerometer sensors were 92.96% and 77.49% respectively, showing the

importance of fusing multiple sensing modalities.

Exercise Detection: Using the data collected for 2 sets each of 10 different ex-

ercises, we found that using only accelerometer and only magnetic sensor based

features result in an exercise classification accuracy of 91.53% and 79.37% respec-

tively, whereas the joint use of features results in an overall performance accuracy

of 98.74% (with an average precision of 0.988 and recall of 0.987) in distinguishing

between exercises.

Identifying Mistakes: We used the W8-Scope pipeline (Section 3.5.4) to perform

a multi-class classification {correct, incorrect-pull fast, incorrect-release fast} on

the data provided by 6 gym staff, which included deliberate mistakes in exercise

execution. The performance accuracy achieved when using only accelerometer,

only magnetometer and combination of both sensors were 90.43%, 83.85% and

97.34% respectively.

Distinguishing Users: Using the data collected from 8 subjects (48 exercise sets),

we found that W8-Scope can distinguish users (i.e., distinguish between the 8 users

performing a specific exercise) with an accuracy of 99.12% (precision of 0.991 and

recall of 0.993) when using a combination of both sensor features, with the accuracy

dropping to 93.41% and 87.65% when only accelerometer or magnetometer features

are used.

Summary: Table 3.9 summarizes the key numerical insights. Our controlled stud-

ies show that W8-Scope can be promising (accuracy of over 97% using 10-fold

cross validation) in realizing each of the attributes in W8-Scope, and that combin-

ing both accelerometer and magnetic sensor based features helps to increase system

accuracy.
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3.6 Real-World W8-Scope Evaluation

We now present the performance evaluation of W8-Scope, along with insights

gained, based on real world, naturalistic exercise data collected from two gyms: (a)

a University gym, that is equipped with a single multi-purpose machine and is pri-

marily used by university students, and (b) a Community gym that contains multiple

exercise-specific machines and is used by a wide variety of neighborhood residents.

We focus on the primary attributes of interest {Weight Used, Exercise Performed,

User Identity, Mistake Identification}, studying W8-Scope performance under real-

world conditions. For the University gym, we also compare our proposed approach

against that obtained via a wearable (smartwatch). Intuitively, a smartwatch should

be able to more accurately distinguish between the different weight training exer-

cises performed as the range of motion of the arm (including the orientation, starting

and ending positions of arm) vary for different exercises. We also present additional

behavioral insights obtained from manual annotation of exercise videos.

3.6.1 Counting Repetitions

The time taken to complete a repetition and also the displacement of the weight

stack are used as features in our classification model. As computing these features

require accurate segmentation and counting of individual repetitions in a set, we

first evaluate the performance of repetition counting.

Using 908 sets of data collected from different weights and different exercises

experiment in Study1 univ, we obtained a performance of 97% in accurately

counting the 10 repetitions per set. Out of the 28 incorrectly counted sets (that

caused 3% error in counting reps), 12 sets are off by±1, 9 sets are off by±2, 4 set

are off by ±3, 2 sets are over counted by 4 and 1 set is under-counted by 5. W8-

Scope under-counted the repetitions primarily for the forearms exercise, because the

range of motion of the weight stack was too short to show evident peaks in acceler-

ation data. Over counting of repetitions happened mainly when the subject moved
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Table 3.10: Performance of identifying the amount of weight lifted – weight stack
vs. wearable sensor

Weight Classification Accuracy Precision Recall
10-fold CV using Weight Stack Sensor Data 97.5% 0.978 0.971
LOOCV using Weight Stack Sensor Data 93.75% 0.937 0.938
10-fold CV using Smartwatch Data 84.37% 0.822 0.845

the weight stack up and down in the beginning of the set while they were prepping

to get started. For the 180 sets of additional data collected from Study2 comm,

the repetitions were accurately counted for 177 sets ( 98% accuracy), indicating that

this estimation was accurate across gym environments.

3.6.2 Amount of Weight Lifted Identification

We evaluate the performance of weight classification on different weights’ data ob-

tained from Study1 univ. Based on 10-fold cross validation with RF classi-

fier (which outputs the dominant label observed across all the repetitions in a set),

we achieved an accuracy of 97.5% in distinguishing between six set of weights,

w=[3.75, 6.25, 8.75, 11.25, 13.75, 16.25] in the weight stack, with the classifi-

cation error confined to the heavier weights – 13.75kg and 16.25kg.

We also performed a leave-one-subject-out cross validation (LOOCV) in which

the weight-classification model was trained with data from all users, except the test

user, and then tested on the data from test user. Using this approach, we obtained an

average accuracy of 93.75%, with a precision of 0.937 and recall of 0.938 in clas-

sifying the weights, i.e., the mean percentage error was 6.25%, with the maximum

error (11%) in recalling weight, w=16.25kg.

We also evaluated the performance of weight-classifier on the smartwatch

data. For this, we obtained an overall accuracy of 84.37% (precision=0.822 & re-

call=0.845) for classifying six different weights. Clearly, a weight-stack mounted

sensor is able to identify the weight lifted more accurately than a hand-worn sensor.

Table 3.10 presents the summary of results from weight classifier.
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Figure 3.21: Confusion Matrix of Exercise Classification (with Study1 univ
data)

3.6.3 Identifying the Exercise Performed

University Gym: We first evaluate the accuracy of classifying the 10 exercises

(performed on the multi-purpose cable pulley machine) from 588 sets of data col-

lected from 30 subjects in Study1 univ. Using the approach explained earlier

in Section 3.5.4, we performed a 10-fold cross validation with Random Forest clas-

sifier and obtained a performance accuracy of 96.93%, with a precision of 0.962

and recall of 0.969, in classifying the exercises. This is a mixed person model as it

includes training data from all the users for all the exercises. From the confusion

matrix (Figure 3.21), we found that the classification errors occurred primarily dur-

ing middleback, rear-delts and biceps exercises, due to the higher within-exercise

variability across users.

As expected, we obtain a higher accuracy of 98.75% in classifying the exercises

when evaluated with the smartwatch data. From the smartwatch data, the misclas-

sifications were mainly between (i) traps & biceps exercise and (ii) shoulders &

abs exercise due to their similar range of arm movements. Table 3.11 further shows

that the exercise classification accuracy is roughly comparable, for the wearable vs.

weight stack sensor.

Using InfoGainAttributeEval in Weka, we further evaluated the features with

the highest information gain. We utilized this attribute evaluator to study the worth

of each feature by measuring the information gain (or in other words, how each fea-
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Figure 3.22: Average time taken
to complete repetition per exercise
across all subjects

Figure 3.23: Average height to which
weight-stack was lifted per exercise
across all subjects

ture contributes in decreasing the overall entropy) with respect to the output class.

A good attribute is the one with most information gain (i.e., reduces most of the

entropy). We found that the repetition-height and repetition-time (both of which are

derived from accelerometer data) were the most distinguishing features in exercise

classification. To illustrate this, Figure 3.22 plots the distribution of the average

time per repetition of each exercise across all 30 subjects. For most users, abs ex-

ercise took the longest time to complete (≥2.65 secs), followed by chest exercise

(approx. 2.3 secs). The triceps exercise took the least amount of time per repetition

(≤2 secs). Similarly, Figure 3.23 plots the boxplot of the variation of the height

to which the weight stack was lifted for each of these 10 exercises. As mentioned

earlier, the highest range of motion of the weight stack is for shoulders exercise and

the least is for forearms exercise.

Community Gym: To further evaluate the exercise classification accuracy, we an-

alyzed the Study2 comm data, where users performed exercises using exercise-

specific weight machines. We applied a 10-fold CV approach, where the data con-

sisted of exercises performed across all the 6 machines. W8-Scope achieved an

accuracy of 97.79% (precision=0.978, recall=0.982) in classifying the 6 exercises

performed by 15 subjects. With a leave-one-exercise-set-out cross validation ap-

proach, the accuracy drops slightly to 94.4%.
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Table 3.11: Performance of identifying the exercise performed – weight stack sensor
data vs. smartwatch data using 10-fold cross validation

Exercise Classification Accuracy Precision Recall
Study1 univ Weight Stack Sensor Data 96.93% 0.962 0.969
Study2 commWeight Stack Sensor Data 97.79% 0.978 0.982
Study1 univ Smartwatch Data 98.75% 0.987 0.986

3.6.4 Detecting Exercise Mistakes

For evaluating the performance of this component, we utilized the data collected

for four variations of incorrect executions of two exercises (triceps and lats) from

30 subjects in Study1 univ. We also included the data from one set of correct

execution for each exercise. The four incorrect variations included 3 explicit com-

monplace errors: {pulling too fast, releasing too fast, lifting only half-way} and one

implicit error: “lifting too heavy a weight” (which is known to result in improper

exercise dynamics). This last set was curated from subjective feedback provided by

each participant, whenever they indicated that the amount of weight was ‘too heavy’

for them.

As explained earlier in Section 3.5.4, we extracted features on signals (accel-

eration, velocity, displacement and magnetic) corresponding to individual repeti-

tions and labelled them with one of the four labels – {Correct, Pull Fast, Release

Fast, Lift Half Way}, based on our ground truth. We first performed a multi-class

classification to understand if we could distinguish between these three mistakes

that are made while performing the cable pulley exercises. We obtained an over-

all performance accuracy of 96.75% in classifying the mistakes. On performing a

leave-one-subject-out cross validation (LOOCV), we observed a sharp drop in ac-

curacy to 79.2% (precision=0.78; recall=0.82). The performance drop in LOOCV

is explained by the fact that mistakes are often person-specific, with mistakes for

one person appearing very similar to the correct execution by another user–e.g., the

weight stack motion dynamics for a tall user lifting half way are very similar to a

short user performing correct lifting. Given this observation, one possible approach
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Table 3.12: Performance of identifying the mistakes made – weight stack sensor
data vs. smartwatch data using cross validation

Mistakes Classification Accuracy Precision Recall
10-fold CV using Weight Stack Sensor Data 96.75% 0.968 0.967
LOOCV using Weight Stack Sensor Data 79.2% 0.78 0.82
10-fold CV using Smartwatch Data 96.46% 0.965 0.965

to improve the mistakes classification performance could be to include some user-

specific features (e.g., height of the user or body built). However, we did not have

such information about the participants in our subject pool and thus, this is not ex-

plored further in this dissertation. Similar studies performed using the smartwatch

data result in a mistake classification accuracy of 96.46% (Table 3.12 shows the

detailed comparisons), indicating that the weight stack sensor is equally effective in

capturing such typical mistakes.

3.6.4.1 Additional Insights into ‘Typical Mistakes’:

Because our long-term goal is to provide individuals actionable feedback to cor-

rect mistakes, we also performed manual annotation of the exercise videos (which

provide “ground truth”) to understand a few additional characteristics of such mis-

takes. Table 3.13 details the various fine-grained insights that we gained from this

analysis.

1. Does lifting ‘too heavy a weight’ result in disproportionately higher mistakes

(e.g., ‘releasing too fast’, ‘lifting only halfway’, ‘making postural mistakes’)?

For this purpose, we manually annotated the 60 ground truth videos recorded,

across 30 subjects, for the triceps and lats exercises performed with “heavy

weight”. The annotation was performed separately for the two individual

transitions (upward and downward) of each repetition. We observed that,

out of the 584 repetitions from 60 sets of lifting heavy weight, the subjects

committed some kind of mistake (details listed in Table 3.13) during 93 rep-

etitions across 21 sets (35% of heavy sets). Also, compared to exercise sets
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performed with lighter/comfortable weight, on an average the time taken to

complete one repetition for triceps and lats exercises has also increased by

0.65 seconds. We used the previously trained mistake-classifier model and

provided the data from the sets which had manually labelled ‘mistake labels’

as a test set. We obtained an overall accuracy of 81% (precision=0.84; re-

call=0.80) in classifying the two mistakes (‘lift half way’, ‘release too fast’).

In contrast, applying the same classifier to the 120 sets (of the same 30 users)

which involved lighter weights resulted in the identification of mistakes in 57

repetitions across 14 sets (11.6% of non-heavy sets). This strongly suggests

that mistakes in exercise motion dynamics are significantly more likely when

gym-goers attempt to exercise with heavier weights.

2. Are mistakes isolated (singletons) in a set, or do they consistently manifest

across an entire set? To answer this question, we randomly selected 10 sub-

jects and manually annotated 197 videos of their 10 exercises performed nat-

urally with two different weights (3.75kg, 6.25kg). Out of the 197 exercise

sets, 64 reps within 20 sets (10%) across 6 subjects had incorrect executions

(i.e., had at least one rep with any of the 3 mistakes: ‘pulling too fast’, ‘releas-

ing too fast’, ‘lifting only halfway’). Moreover, mistakes are often repeated:

75% of the incorrect sets (15 out of 20) had 3-5 consecutive incorrect repeti-

tions. Moreover, the W8-Scope classifier was able to correctly identify 83%

of the mistakes performed in these manually-curated sets.

Key Takeaway: Our analyses suggests that W8-Scope can be used to reliably iden-

tify the majority of instances (repetitions) within an exercise set/session where a

user makes commonplace “motion dynamics-related” errors. Such knowledge can

then be used to tailor useful actionable feedback: e.g., observations of more frequent

mistakes during shoulders exercise likely indicate weak shoulder muscles, and the

gym-goer may be recommended additional shoulder exercises. However, our purely

weight-stack based approach does not currently provide insights into other postural
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Table 3.13: Insights into Typical Mistakes that people make – Observations from
exercise videos

Key Observations Supporting Evidence

People tend to make more mistakes while lifting heavy weights
35% of heavier weight lifted sets had mistake –
lift half way (62 reps), release too fast (31 reps)

Postural mistakes such as “hunching the back”, “leaning forward”,
“moving elbow during triceps exercise”, “swinging body during
lats exercise” are commonly made while lifting heavy weights

41% of heavy weight sets had mistakes with body
postures – hunch (33 reps), lean forward (16 reps),
move elbow (54 reps), swing body (67 reps),

People tend to mistakes constantly in an exercise set
75% (15 sets) of the incorrect sets had 3-5 consecutive
reps that were incorrect

Most mistakes are made towards the end of an exercise set
and in the second set of the same exercise

90% of incorrect sets have mistakes made from rep 6
and onwards

Lifting the weight half way through followed by
releasing the weight too fast were the prominent mistakes

Out of 64 incorrect reps – lift half way (48 reps),
release too fast (10 reps), pull too fast (6 reps)

Most number of mistakes were made while performing
shoulders exercise followed by chest and abs exercises Incorrect reps: Shoulders (53%), Chest (17%), Abs (12%)

mistakes that may be committed by novice users.

3.6.5 Identifying Users Performing Exercises

W8-Scope’s final component helps to distinguish between the different users per-

forming the same exercise. Table 3.14 summarizes our numerical results.

University Gym: Applying the ‘User Classifier’ across the 30 university gym users

results in a classification accuracy (using 10-fold cross validation) of 98.97%. Out

of the 10 exercises, the classification errors are primarily confined to the shoulders,

forearms, middleback and triceps exercises. On more careful inspection, we found

that the users who were typically mis-classified had highly similar repetition-based

features– i.e., having similar range of motion for the weight stack and taking the

same amount of time to complete a repetition. By ranking the features based on its

information gain, we found the most significant features to include: (a) repetition

time, displacement height and velocity for the accelerometer sensor, and (b) mini-

mum, maximum and energy of the 3-axes, for the magnetometer sensor. In contrast

to W8-Scope, user identification using the wrist-worn smartwatch data provided a

slightly higher accuracy of 99.31% (precision=recall=0.99). This is anticipated, as

a wrist-worn smartwatch should be able to capture a greater range of arm motion,

and thus acquire the exercise-specific movement differences across different users.

Community Gym: W8-Scope’s ‘User Classifier’ achieves an accuracy of 98.74%

100



Table 3.14: Performance of user identification – weight stack vs. smartwatch

User Classification Accuracy Precision Recall
Study1 univ Weight Stack Sensor Data 98.97% 0.989 0.988
Study2 commWeight Stack Sensor Data 98.74% 0.985 0.987
Study1 univ Smartwatch Data 99.31% 0.993 0.99

(precision=recall=0.98), when applied to the case of 15 users who performed 180 to-

tal sets of 6 different exercises. Note that the Community gym-goers were more di-

verse (in terms of various demographic factors and gym expertise). Our results thus

demonstrate that W8-Scope can indeed be applied robustly to distinguish among

users, across a wide variety of demographics.

3.6.6 Performance: W8-Scope vs Smartwatch Approach

Using the Study1 univ data, we compared (and summarize in Table 3.15)

the performance of each component of W8-Scope with that of an alternative

smartwatch-based approach. Key results include: (a) A weight-stack mounted sen-

sor is able to identify the weight lifted more accurately than a hand-worn sensor

(overall accuracy of 84.37%, precision=0.822 & recall=0.845); (b) The smartwatch

achieves slightly higher accuracy (98.75%) for exercise classification. (b) As ex-

pected, because of its ability to track the 3D arm motion precisely, the smartwatch

has a slightly better accuracy of 99.31% (precision=recall=0.99) in identifying the

user. (c) For identifying the exercise performed or any mistakes made, the perfor-

mance of W8-Scope and the smartwatch is roughly comparable.

The overall accuracy of inferencing is high and comparable to that achieved

by a wearable sensor based approach, demonstrating that a cheap non-intrusive

weight stack sensor could substitute for a wearable sensor in accurately monitor-

ing individual-specific exercise characteristics. Our evaluation also confirms the

validity of the proposed approach across varying demographics of users and across

different types of weight machines.
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Table 3.15: Summary of performance accuracy – W8-Scope vs Smartwatch

W8-Scope
Approach

(Study1 univ)

W8-Scope
Approach

(Study2 comm)

Smartwatch
Approach

(Study1 univ)
Weight Classification 97.50% N/A 84.37%
Exercise Classification 96.93% 97.79% 98.75%
Mistakes Classification 96.75% N/A 96.46%
User Classification 98.97% 98.74% 99.31%

3.7 Medium Time-Scale Robustness: Adapting W8-

Scope Classifiers

Results in Section 3.6 demonstrate W8-Scope’s accuracy in tracking weight, exer-

cise type and performing user. However, achieving these levels of accuracy in prac-

tice may prove to be elusive as our presented results were based on the use of train-

ing and test data from coterminous (or closely spaced in time) sessions. It is natural

to ask whether W8-Scope’s supervised learning approach will continue to provide

high performance accuracy over medium-timescales (e.g., across weeks or months),

especially as an individual’s exercise pattern may be expected to evolve over such

time periods. This may especially be a concern for exercise and user classifica-

tion (which depend on the exercise-driven motion dynamics of the weight-stack), as

opposed to weight determination (whose features are not really user-dependent).

To validate the robustness of our approach across exercise activities that are

spaced weeks apart, we first use the data from first two sessions of Study3 long

(i.e., 10 users performing 5 exercises, across 2 different weeks) as the test set, ap-

plying our previously trained models with Study1 univ data (i.e., from 30 users

performing 10 exercises). (Note: As illustrated in Figure 3.24, Study1 univ and

Study3 long are separated by a gap of over 3 months, with each of the 4 ses-

sions in Study3 long occurring in 4 consecutive weeks.) For these two sessions,

we obtained an accuracy of 90.5% for weight classification, 78.3% for exercise

classification and 75.2% for user classification, when the classifier outputs are as-
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certained per-set (using the “dominant-label” output across all the repetitions of an

exercise set). This drop in classification accuracy especially for exercise (previ-

ously 96.9%) and user classification (previously 98.9%) suggest that a single-shot

training of W8-Scope classifiers may indeed be inadequate in accommodating the

evolutionary (medium timescale) changes in an individual’s exercise patterns. To

confirm that this accuracy loss is predominantly due to medium time-scale changes

in individual exercise behavior, we trained new classifiers using the first two ses-

sions of Study3 long data and tested using the last two sessions. We obtained

an accuracy of 93.1%, 89.8% and 90.4% for weight, exercise and user classification

respectively, which are comparable to our results (on single sessions) in Section 3.6.

Figure 3.24: Incremental Learning with Longitudinal Exercise Data

3.7.1 Incremental Learning

To better incorporate such temporal evolution in the motion dynamics of individual

exercises, we propose an enhanced Incremental Learning-based W8-Scope frame-

work. Under this approach (Figure 3.24 illustrates the specifics, using “exercise

classification” as an example, for our dataset), the labeled training data for the

initially-trained W8-Scope classifier is continually augmented with those unlabeled
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Table 3.16: Comparison of Medium Time-scale W8-Scope’s performance (with and
without incremental learning).

Weight Exercise User
Without Incremental Learning 90.5% 78.3% 75.2%
With Incremental Learning 95.1% 90.2% 87.4%

exercise samples on which the classifier has high confidence. Very specifically, our

W8-Scope instance starts off with the initial labeled training set (theStudy1 univ

data). As an individual visits the gym, W8-Scope classifies the observed exercise

activities, and then chooses the subset of such activity instances whose classifica-

tion probability exceeds a given threshold t. These “highly confident” samples are

then used to augment the training set, and the classifier is retrained (on a per-weekly

basis)–in Figure 3.24, step 2 (indicated within dotted circle) shows the process of

augmenting the training data set with the ’highly confident’ instances of recently-

collected exercise data.

The performance of such incremental learning obviously depends on the right

choice of the threshold t. Intuitively, very low values of t will result in the addition

of many noisy, likely mis-classified, samples in the training set. Conversely, very

high values of t will lead to the incorporation of ‘clean’ samples, but might suffer

from data paucity. Through empirical evaluation, we found that t = 0.6 provides

an appropriate choice between these two extremes.

3.7.2 Performance Results with Incremental Learning Strategy

We present below the changes in the performance of W8-Scope, after adopting

this incremental learning strategy–i.e., the classification accuracy of activities per-

formed during weeks 3 & 4 of Study3 long, based on a classifier augmented

using ‘highly confident’ activity samples from weeks 1 & 2.

Weight Classification: The accuracy of weight classification was 95.1%, with

a precision and recall of 0.942 and 0.958 respectively. We observed that the classi-

fier performance was poorer for certain heavier weights (e.g., 36.25kg, 43.75kg).

104



This is due to both the inability of a single magnetic sensor to perform fine-grained

differentiation of heavier weights, as well as the lack of sufficient training data for

heavier weights (most users exercise with lower weights).

Exercise Classification: We achieved an average set-level accuracy of 90.2%,

with a precision of 0.881 and recall of 0.923, in classifying the 5 exercises in the

test set. When we analyzed the confusion matrix, we found that biceps exercise

and middleback exercise were the ones typically mis-classifed, as they exhibited the

greatest variability in the way these exercises were performed (e.g., high variance

in repetition time, repetition height etc.) across various sessions and individuals,

with individuals often also performing them incorrectly– e.g., not keeping the elbow

fixed during biceps curls exercises.

User Classification: We achieved an accuracy of 87.4% (with a preci-

sion=0.845 and recall=0.893) for discriminating among the 10 users (from a training

subject pool of 30 total users) participating in Study3 long. The somewhat lower

values of user classification accuracy were often due to significant changes in an in-

dividual’s exercise style observed from the video feeds–e.g., when performing the

middleback exercise, a subject initially used a bench to sit and perform the exer-

cise, while in latter sessions, the user performed the same exercise while sitting on

the floor and thereby altering the weight stack’s overall range of motion. Based on

our interactions with gym instructors, we gathered that such change in exercise be-

havior and postures are not commonplace for most individuals–i.e., this particular

individual’s behavior was likely an isolated case.

Table 3.16 shows the comparative performance of W8-Scope without and with

incremental learning strategies. Overall, there was an increase of approx. 12% in

the accuracy of classifying exercises and users after reinforcing the existing training

set with highly confident samples from newly collected exercise data. These results

suggest that as long as individual users visit the gym reasonably frequently (e.g.,

once every 1-2 weeks), W8-Scope can evolve its classifier models to capture the

evolutionary changes in the individual’s exercise motion dynamics.
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3.8 Discussion Points

In this Chapter, I described the design and evaluation of W8-Scope, a system which

can obtain quantified insights on various exercise-related attributes. We introduce

a novel sensing mode (a combination of magnetometer & accelerometer) and sen-

sor location (on top of a weight stack plate) for monitoring weight training exer-

cises. Through extensive user studies conducted with 50 subjects in two real gyms,

we consistently obtained an accuracy of 95%+ across all attributes, including the

weight used, exercise performed, mistakes made and exercising user. We also show

the need to adapt the classification model to accommodate real-world, longitudinal

changes in user exercising behaviors, and show that an incremental learning-based

approach provides sufficient robustness to our classifiers. Here, I outline additional

preliminary investigations, extensions and open opportunities for this line of work.

Additional Sensors on Stack: In certain extreme cases, additional sensors on

the weight stack may offer finer-grained discrimination. For example, we conducted

an experiment with two sensors (one at the top and another at the bottom center of

the weight stack), where an expert gym staff member performed V-bar pull down

and Seated cable rows exercises with heavier weights on the cable pulley equipment.

We collected data for 19 sets of 8 repetitions each for both the exercises, with the

weights varied from 3.75kg to 48.75kg (which is the maximum weight). When we

analyzed the data, we found that the magnetic sensor attached on top slab shows

clear trend for individual repetitions until a weight equal to 38.75kg, whereas the

z-axes of the magnetic sensor attached to the bottom showed discernible variation

when a weight of 18.75kg or higher was lifted. Consequently, we observed that,

across the entire range of weight slabs, the use of both top and bottom sensors

results in a weight classification accuracy of 98.96%, compared to 92.81% and

87.12% when one considers only the top or bottom sensor, respectively.

Extension to Additional Gym Equipment: Prior work [32] has shown the

potential of using RFID tags attached to dumbbells to track the type and quality of
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dumbbell exercises. To study the possible application of the W8-Scope approach

to other gym equipment, we conducted a small study with 4 users (2 sets, 10 reps)

performing 6 different exercises (biceps curls, triceps extension, frontal raise, lateral

raise, squats and lunges) using a sensor-attached dumbbell. By utilizing only the

accelerometer sensor data, we obtained an exercise classification accuracy of 85%;

however, user identification using this data proved more challenging. While these

initial results look promising, we believe that additional strategies such as fusing

data from wearable sensors or 3D tracking of the trajectory of the dumbbell would

be required to track different exercise types, capture varying exercising styles and

to scale to more number of users. This problem is further explored and discussed in

Chapter 4.

Alternative Methods and Extensions: There are other recent works which

tackles the similar problem of monitoring gym exercises of individuals. Bian

et al. [19] introduced a wearable, body capacitance-based sensor for recognizing

and counting seven different gym exercises. Unlike other wearable-based systems

(which tracks only upper-limb exercises or uses multiple body-worn sensors), this

system can track full body exercises just by using a single sensor attached to a body

part which is not directly involved in the activity’s movement. Guo et al. [41] uses

WiFi CSI information to analyze workouts within a home/work environment. How-

ever, these WiFi-based systems may not work in a multi-user gym environment and

in non line-of-sight scenarios. The GymCam [56] system leverages a single camera

to track multiple people exercising simultaneously and recognize their exercise type

and repetitions. However, this system does not identify the user and cannot track

certain aspects of exercising such as the weight lifted or mistakes made.

Identifying incorrect body forms/postures: Weight training requires the user

to adhere to specific exercise techniques as well as body forms/postures. Although

our proposed approach can track incorrect exercise executions, it is not possible to

infer the postural mistakes using only the weight-stack based sensor. To overcome
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this, we could extend W8-Scope by combining it with video-based contour tracking

of participants, using either normal RGB or privacy-preserving thermal cameras.

Such sensor fusion would allow us to track incorrect body postures and provide

corrective feedback to prevent serious injuries.

Simpler Alternatives for User Recognition: While in this Chapter we present

an approach for accurately recognizing the user performing a specific exercise, it is

worth noting that there could be other easier alternatives to achieve this goal. The

latest exercise machines come equipped with ‘scanners’ or ‘keycode entry’ (which

is low-cost), which could allow for easier user identification.

Impact of Alterations to Gym Equipment: In this work we show that individ-

uals’ exercise behavior may evolve over time and such changes could be captured

by approaches such as incremental-learning. Another factor that may possibly con-

fuse our classifiers would be due to certain artefacts on the gym equipment itself.

For example, replacing the cables of the exercise machine with newer ones may

make it much stiffer, and consequently, it may affect the way individuals perform

the weight training exercises. Additional investigations are required to better un-

derstand the impact of such practical situations and explore ways to accordingly

fine-tune our approaches.

Interleaved Usage of Equipment: From field observations, we noted that

weight stack machines occasionally saw “interleaved usage”–e.g., two users would

perform their sets alternately. Our decision to perform exercise classification and

user identification on a per-set basis are driven by this observation. In particular,

we do not perform any additional ‘majority voting’ across sets. Of course, different

users might also alter the settings of the weight stack during their exercises–such

additional features might help to further improve our ability to discriminate among

distinct users.

Enabling Near Real-time Analytics: In W8-Scope, all the analytics are per-

formed in an offline manner. To obtain similar insights in a real-time manner, addi-
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tional fine-tuning and tackling of system level challenges need to be done. An im-

portant aspect is to minimize the latency of the system in capturing various insights

and enabling real-time suggestions. For example, currently even though W8-Scope

performs ‘mistakes classification’ at a per-repetition level, it may not be feasible to

provide the corrective feedback at the appropriate time (i.e., right after the repetition

in which the person committed a mistake). However, a plausible approach would

be to first detect all the mistakes in exercise execution and then give suggestions in

a retrospective manner (e.g., the system could report that during rep #4 and rep #5,

the user performed the exercise only half way through) at the end of the set. Such

kind of feedback would still be useful as individuals could take in this feedback and

improve their performance during subsequent exercise sets.

3.9 Experiences and Lessons Learned

In this work, my research involved significant field experiments with real users in

two gym facilities. Given these are ‘semi-public spaces’, there were several chal-

lenges in conducting clean experiments. These span from (i) recruiting various

subjects of different expert levels (in weight training), age-group, gender, (ii) get-

ting them to perform all the procedures and follow all the protocols as part of the

user study, (iii) difficulty in using the gym equipment continuously for experiment

purposes as it is also used in tandem by other gym users. These issues were more

evident in the Community gym. In addition to these experiences, I also learned sev-

eral lessons as part of conducting these user studies at the gyms. I briefly describe

below some such lessons learned from this work.

• User classification is hard with just IoT data: Using only data obtained from

non-personal IoT sensors (attached to exercise machine), it is difficult to dis-

tinguish between the different users performing various exercises on the same

machine. Exercise behavior of individuals varied across sessions and often

times the machine learning model was getting confused between users. More-
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over, cross-validation approach ignores the behavioral evolution and does not

help in accurate longitudinal tracking.

• Practical difficulties in mounting sensors on machines: While mounting sen-

sors on the top of the weight stack was fairly easy and problem-free, securely

mounting sensors on the bottom of the weight stack was more difficult. Dur-

ing the small scale studies conducted with sensors mounted on both the top

and bottom of the weight stack, there were multiple instances where the sen-

sor was falling off from the bottom of the stack. Also, at the community gym,

mounting sensors even at the top weight slab was quite difficult as (i) the

machine had a plastic outer shielding and inserting the sensor on the weight

stack through the small opening was cumbersome and, (ii) the top surface of

the weight stack was slightly curved and affected the firm placement of the

sensor.

• Difficulty in getting unusual data (e.g., heavy weights): Getting adequate data

for exercises performed with heavier weights (e.g., 40kg or more) was dif-

ficult. Only the experienced gym staff or others who are experts in weight

training could participate in studies involving such heavier weights. As such,

most of our training data constitutes only those lower weights (with which

majority of the participants could exercise with) and is not sufficient for ac-

curate classification of all range of weights.
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Chapter 4

Enabling Effective User Engagement

during Gym Exercises

Extending on the work described earlier in Chapter 3, in this chapter I demon-

strate the capability of using a popular, widely-used class of “in ear” devices to

unobtrusively monitor weight-based exercises performed concurrently by multiple

individuals in a gym. The work in this chapter is also motivated by feedback from

users and potential technology adopters (e.g., executives from Singapore’s SportSG

government agency) that they would prefer solutions that went beyond just weight

machines and covered other weight equipment (e.g., dumbbells and barbells). Com-

pared to other class of wearables such as wrist, head or torso-worn devices, ear-worn

devices have the added advantage of (a) being unobtrusive, (b) being widely used by

gym-goers and (c) the ability to enable real-time audio-based feedback. I present

a system based on a hybrid approach that utilizes sensor data from ‘earables’, fused

with sensor data from non-personalized IoT devices attached to gym equipment

(similar to as utilized in W8-Scope approach) to capture fine-grained exercising be-

havior of individuals. As I will show, this hybrid approach is necessary because: (a)

due to its unfavorable in-ear location, it is very difficult to solely use earable devices

to accurately infer the exercise-related limb movements, and (b) it is equally diffi-

cult to identify the individuals using a specific gym equipment, solely using sensors
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on such non-personal objects. In this chapter, I primarily discuss the system design

and evaluation and also some key open opportunities that we are actively pursuing.

4.1 Monitoring Weight-based Gym Exercises of Mul-

tiple Concurrent Users

While there has been a rapid increase in the market for fitness devices and apps, rel-

atively few solutions offer quantified and personalized feedback on an individual’s

overall exercise-related activities [59]. Also as discussed earlier in Chapter 3, ex-

isting technologies for fine-grained, individualized exercise tracking typically uti-

lize video-based sensing [127], WiFi CSI information [41], or on-body wearable

devices [25, 78]–each of these solutions continue to face challenges in real-world

adoption. For example, video-based sensing generates significant privacy concerns,

WiFi solutions suffer from poor accuracy in the presence of multiple individuals

(e.g., at a gym) and individuals are reluctant to adopt custom wearable devices,

unless the wearable device is already a part of an individual’s lifestyle.

Motivated by these observations, we investigate the possibility of tapping on

ear-worn (‘earable’) devices (such as in-ear earphones) as a possible means of cap-

turing, and, subsequently, transforming a user’s exercise related activities. Earables

offer a compelling and attractive mass-market wearable platform ( [114] reported

a global sale of 368 million headphones and headsets in 2018). Moreover, they

are also commonly used during gym activities (e.g. for listening to music while

working out). They also offer the advantage of supporting real-time, personalized

audio-based feedback (often preferred to alternative text-based feedback [76])–for

example, to rectify incorrect exercising behavior or to motivate continuation of de-

sirable activities.

Key Challenge: The big drawback of earables, of course, is their unfavorable on-

body placement: it is indeed questionable whether ear-based inertial signals can
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provide any discriminative information about exercise motion, especially when such

motion is primarily restricted to upper or lower limbs. Research on earable-based

activity recognition has been confined to inferring (a) characteristics of eating or

drinking [18], both of which obviously manifest in head motion, and at a stretch, (b)

high-level locomotive activities [82], which also involve overall body displacement.

In this work, I introduce a novel, low-cost solution for earable-based, individual-

specific fine-grained monitoring of gym exercises in real world scenarios, where

multiple individuals are exercising concurrently. Our key insight is that earable-

based sensing, in isolation, is too noisy and weak to directly offer accurate recogni-

tion of gym activities. To overcome this limitation, we propose a hybrid architecture

(to be elaborated in Figure 4.1), consisting of:

• Individuals wearing wireless earphones embedded with sensors (e.g., inertial

sensors, heart rate sensor) that capture their activity and physiological context.

• Individual gym equipment (e.g., dumbbells, weight machine) attached with

cheap IoT sensors that capture the motion dynamics of each equipment.

Given this architecture, the problem then morphs to (a) first establishing an as-

sociation between an individual’s earable device and the corresponding gym equip-

ment, and (b) then using this pair of (earable, equipment) sensor data to infer fine-

grained aspects of the exercise being performed. For the exercises performed on the

weight machines, we allude to the point that W8-Scope-based user identification is

not enough in this case. The idea here is that there may be multiple machines and

different people are simultaneously exercising on different weight machines and in

order to distinguish between concurrent users, such user-equipment association is

required. While not part of this thesis, our overall vision also involves the generation

of personalized real-time audio-based feedback (acting as a “virtual personalized

exercise coach”), to the exercising individual, based on such fine-grained insights.

Using real-world studies conducted with multiple users concurrently perform-

ing weight-based exercises in a gym, we demonstrate the efficacy of the proposed
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Figure 4.1: System Architecture

approach. Overall, our work also provides early evidence of the promise of earable

devices as a platform for capturing fine-grained context of individuals exercising in

a gym.

4.2 System Architecture

Prior works [62, 87] as well as our survey insights (described earlier in Section 3.1.3

of Chapter 3) reveal that gym-goers are interested in automatically tracking their ex-

ercise behavior and prefers to obtain personalized feedback on their performance.

Past literature is, however, silent on the preferred timescales and frequency for such

feedback–e.g., whether users would prefer to receive feedback during the ongo-

ing repetitions in a set, at the end of individual sets or collectively at the end of

an entire exercise session. As such, a future smart gym application should have

the following capabilities: (i) distinguish between multiple people exercising si-

multaneously in the gym, (ii) unobtrusively monitor exercises performed by each

individual and obtain deeper insights on various facets of exercising, (iii) provide

personalized feedback to the individuals to improve the exercise effectiveness and

prevent injuries.

For realization of such a smart gym application, we assume that individuals exer-

cising in the gym are using earables and the exercise equipment/machine is attached

with cheap IoT sensor devices. The earables are equipped with a microphone, iner-
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tial sensors (accelerometer, gyroscope), bio-sensors (heart rate, body temperature)

and are paired to a smartphone. The IoT device attached to the exercise equip-

ment (e.g., dumbbells, barbells, weight machines) have embedded accelerometer,

gyroscope and magnetometer sensors. A custom built smartphone application has

a Sensor Recorder process that records the sensor data from both the devices and

a Send Data module that periodically transmits the sensor data to a backend server

over the WiFi network. This App also has a Feedback Receiver that receives audio

inputs/feedback from the server and relays it to the earables.

The backend server executes the required smart gym analytics components. In

the backend, there is a Sensor Listener module for obtaining sensor data from both

the earable and the equipment-sensor. Once the sensor data is obtained, the Sig-

nal Correlator module checks for the correlation between the earable sensor stream

and equipment sensor stream to determine who is working out with which exercise

equipment. The correlated sensor data pairs are then fed to the Exercise Analytics

module, which identifies the type of the exercise performed and determines more

fine-grained aspects such as the exercise intensity, correctness, heart rate variation

for different exercises. Then, the Feedback Determiner module utilizes these ana-

lytics to determine the appropriate timing and the audio feedback to be sent to the

earable device.

Figure 4.1 illustrates the architecture of the system with the sensor devices,

server components and flow of the analytics pipeline. In this work, we mainly

focus on the two components outlined in red-dotted lines. Note: For a clear repre-

sentation, the figure depicts only a single-user scenario. In a practical setting, there

will be multiple people exercising and thus multiple streams of both dumbbell and

earable sensor will be streamed simultaneously to the backend sever.
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4.3 Dataset

We conduct real-world studies, at our University gym, in which the participants

performed a variety of weight-based exercises. The studies were approved by our

Institutional Review Board (IRB-19-088-A078(919)). For the study, we recruited

12 (8 males, 4 females) university students and staff. Each study session involved

multiple individuals performing exercises concurrently.

Sensor Devices Used: For obtaining sensor data, we used the following devices:

(i) eSense Earable device1, which the subjects wore on their left ear, (ii) Cosinuss

One2 earphone, worn by subjects on their right ear and (iii) a multi-sensor device

(DA14583 IoT Sensor3) to attach to the exercise equipment (e.g., dumbbells, ex-

ercise machines). For the eSense earable, we used only the left-side earbud which

has the capability to stream inertial sensor (accelerometer and gyroscope) data as

well as receive audio inputs. The Cosinuss One device has in-built sensors to record

heart rate and body temperature. These devices are paired with a smartphone and

we developed an android application that simultaneously connects to these devices

over Bluetooth Low Energy (BLE) and records sensor data and ground truth labels

such as exercise performed, set count and amount of weight lifted.

Targeted Exercises: For the study, we focused on collecting data for 9 different ex-

ercises (listed in Table 4.1). This involved six free-weights exercises performed with

dumbbells (both upper and lower body exercises) and three exercises performed on

weight-based machines (we utilize a multi-purpose cable pulley machine).

Overall Study Procedure: Prior to data collection, the gym equipment (dumbbell

and weight machine) was instrumented with the DA14583 IoT Sensor device. The

subjects who consented to participate in the study visited the gym and they were

first briefed about the study procedures. The participants were given the eSense

1eSense– http://www.esense.io/
2Cosinuss One– https://www.cosinuss.com/products/one/
3DA14583 IoT Sensor – (https://www.dialog-semiconductor.com/iotsensor)
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Table 4.1: List of exercises and targeted primary muscle groups

Exercise Name Primary Muscle Group Exercise Equipment
Biceps Curls Biceps Dumbbells
Triceps Extension Triceps Dumbbells
Lateral Raise Shoulders Dumbbells
Side Bend External/Internal Obliques Dumbbells
Goblet Squats Quadriceps Dumbbells
Lunges Glutes, Hamstrings, Quadriceps Dumbbells
Standing Cable Lifts Abs Cable Pulley Machine
Bent Over Side Lateral Shoulders Cable Pulley Machine
Upright Cable Row Traps Cable Pulley Machine

earable (to be worn on their left ear) and the Cosinuss One (to be worn on their right

ear).

A study session involved multiple users (varying from 2 to 4) who performed

each exercise set concurrently. In a session, the subjects performed 3 sets of 10

repetitions of each of the 9 exercises. Note: for the cable pulley machine exercises,

data was collected only when two people were exercising concurrently. Out of the

three sets of each exercise in a session, the subjects concurrently performed the

“same” exercise for 2 sets and for the last set, they alternated between “different”

exercises. When performing each exercise set, all the subjects (exercising simulta-

neously) started exercising at the same time. However, the exercise set ending times

varied depending on each individual’s exercise pace. Overall, we collected 680 sets

(of 10 reps each) of exercise data. All exercises performed by participants were

video recorded for obtaining the ground truth. On an average, an exercise session

per subject lasted for about 48 minutes. For participating in the study, we provided

each participant a monetary compensation of $10. Table 4.2 summarizes the details

of the user study.

Additional Small-scale Study: In addition to the actual user study, we also con-

ducted a small-scale study at the gym to collect data for additional variety of free-

weights exercises as well as for heavier weights. The main motivation for this study

is to understand the role of earables in distinguishing between exercises with simi-
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Table 4.2: Summary of real-world multi-user concurrent exercise dataset collected
from University gym

Study at University gym
No. of participants 12 (8 males, 4 females)
Age Variation 21-40 years
Self-rated expertise 5 (Novice); 7 (Intermediate); 3 (Expert)

No. of exercises
6 dumbbell exercises (3 upper-body, 3 lower-body)
and 3 weight-machine exercises

No. of concurrent users

Concurrent user count varied from 2 to 4
2 users only (374 sets)
3 users only (162 sets)
4 users only (144 sets)

No. of sets of same/different
exercise performed concurrently

Same exercise (452)
Different exercises (228)

Total no. of exercise sets 680 sets (10 repetitions each)
Average duration of exercise
session across subjects 48 minutes

lar dumbbell kinetics (e.g., Squats and Deadlifts) as well as exercises with different

body postures (e.g., lying down for Weighted Crunch). For this study we recruited

two people (in different sessions) who were well-experienced in weight-based train-

ing. In this session, they performed 6 different exercises namely, (a) Seated Bar-

bell Shoulder Press, (b) Inclined Chest Flyes, (c) Dumbbell Triceps Kickback, (d)

Weighted Crunch, (e) Barbell Deadlifts and (f) Alternating Bicep Curls. Compared

to the previous set of dumbbell exercises which all had a “standing” posture, these

exercises either have a “seated” or “lying down” posture or uses barbells instead

of dumbbells. Both subjects performed 3 sets of 10 repetitions of each exercise.

Additionally, they also performed 2 sets of 8 reps each of both Biceps Curls and

Lateral Raise exercises with heavier weights (both 10kg and 14kg). In this study,

we collected a total of 44 sets of data.

4.4 Earable-based Inertial Sensing for Exercise Ac-

tivity Recognition

We focus on answering the following key research questions:
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Figure 4.2: Raw (blue) and filtered
(green) signals from Dumbbell (top)
and Earable (bottom) for Lunges ex-
ercise

Figure 4.3: Raw (blue) and fil-
tered (green) signals from Dumbbell
(top) and Earable (bottom) for Lat-
eral Raise exercise

• Does the accelerometer on the ear-worn sensor device show any discernible

pattern for the common weight training exercises performed by individuals in

a gym?

• Can we correlate the sensor data from the ear-worn device and the equipment-

attached device to distinguish between individuals?

• Does the use of earable plus equipment data help improve the accuracy and/or

robustness of exercise recognition?

We next describe our overall approach of analyzing sensor data and deriving

various insights on the exercises performed concurrently by multiple individuals in

the gym.
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4.4.1 Sensor Data Analysis and Insights

We first inspect the accelerometer data recorded from the eSense left earbud and

the equipment sensor. As expected, the equipment accelerometer showed clear and

varying patterns for most of the exercises. For the earable, as any ‘exercise-related’

perturbations, if they exist, will be minor and may get swamped by various other

macro-movements, we first pre-process and filter the sensor data. For this, we an-

alyze the typical ‘exercising frequency’ of various exercises from the equipment

sensor pattern. We observe that on an average the time taken to complete one rep-

etition of a dumbbell/machine exercise is about 2− 2.5 seconds. As such, we use

a fourth order Butterworth band pass filter with a lower cut off frequency of 0.4 Hz

and a higher cut off frequency of 4 Hz to filter both streams of sensor data.

Figure 4.2 and Figure 4.3 shows sample plots of the magnitude of the raw and

filtered sensor signals for Lunges and Lateral Raise exercises respectively. We find

that exercises which involve larger body movements (e.g., lunges, squats, abs exer-

cise on machine) exhibit clear patterns in the earable signal for each exercise repeti-

tion. However, for certain upper-arm exercises (such as biceps curls, lateral raise),

variations are not clearly evident in the time-domain earable signal. This makes the

problem both promising and challenging and requiring further analysis of both time

and frequency domain of the signals.

As such, we propose to obtain Continuous Wavelet Transform (CWT) of the

signals. We choose to use wavelet decomposition instead of other frequency do-

main techniques such as Fourier Transform or Power Spectral Density because of

its ability to obtain both temporal and frequency resolution of the analyzed signal.

Performing the signal decomposition at both temporal and frequency resolution is

important for us to identify at “what” frequencies, variations occur in the signal

and “when” it occurs, further for accurate inference of exercise-related motion dy-

namics. We use the Morlet wavelet and vary the scales from 1 to 100. Figure 4.4

plots the scalogram (which is the absolute value of the CWT coefficients of a signal,
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Figure 4.4: Continuous Wavelet Transform of Dumbbell (left) and Earable (right)
Signal for Side-Bend Exercise

plotted as a function of time and scale) of one set of Side Bend exercise. From the

figure, we can see that the individual exercise repetitions have their energy concen-

trated between scales 60 to 100. We observe similar trends for other exercises as

well.

4.4.2 Identifying the Correct User-Equipment Associations

In our targeted gym scenario, multiple users would perform exercises simultane-

ously and the smart gym application should monitor exercise and provide person-

alized feedback to each individual. As such at the server side, we would receive

multiple streams of both earable and equipment signals and therefore, our primary

goal is to identify the correct pairs of {earable−equipment} sensor streams to

determine who is exercising with which equipment. Algorithm 1 outlines the steps

taken to determine the association between the earable and equipment signals.

We first obtain the wavelet transform of the sensor signals. The CWT coef-

ficients are computed at different scales for each of the filtered earable and equip-

ment sensor streams. After performing CWT, we obtain a wavelet coefficient matrix
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Algorithm 1 Association of Earable-Equipment Sensor Streams
1: Input: Ne Earable Sensor streams (E1, E2, E3,...); Nd Equipment Sensor

streams (D1,D2,D3,...)
2: Output: CPairings: {E1D1, E2D2, E3D3,...}
3: fE, fD ← NULL {Initialize filtered signals list}
4: scales← range(1, 100) {Define scales for wavelet decomposition}
5: W ← NULL {Initialize weights vector to hold pair-wise linear sum of feature

values}
6: CPairings ← NULL
7: forX , Y inNe,Nd do
8: fE ← bandpassfilter(X, lc, hc) {Lower cut off, lc=0.4Hz, Higher cut off,

hc=4Hz}
9: fD← bandpassfilter(Y, lc, hc)

10: end for
11: for e in fE do
12: for d in fD do
13: CWTe ← computeContinuousWaveletTransfrom(e, scales)
14: CWTd← computeContinuousWaveletTransform(d, scales)
15: dCored ← dCov(CWTe,CWTd)√

dV ar(CWTe)dV ar(CWTd)
{Distance correlation between

two CWTs}
16: PE, TE ← segmentRepetitions(e) {Segment repetitions and obtain peaks

and troughs in signal}
17: PD, TD← segmentRepetitions(d)
18: for (pei, tei), (pdj , tdj) in (PE , TE), (PD, TD) do
19: pkGaped = Distance{pei − tei, pdj − tdj}
20: pkAligned = Distance{pei, pdi} + Distance{pej, pdj}
21: end for
22: Wd,e =

∑
(dCored,µ pkGaped, σ pkGaped, µ pkAligned, σ pkAligned)

{Normalized linear sum of features}
23: end for
24: end for
25: CPairings = min

∑
d

∑
eWd,eXd,e {Hungarian algorithm to obtain the

pairings}
=0
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from both sensor streams of all exercising individuals. Next, we compute distance

correlation between all the possible pairs of the coefficient matrices. The distance

correlation is a measure of dependence between random vectors and is obtained by

dividing the distance covariance of two matrices by the product of their distance

standard deviations [120].

In addition to the wavelet features, we also compute temporal features such

as: (i) peak gap and (ii) peak alignment from the earable and equipment sensor

streams. For example, imagine a dumbbell time series that has a peak and trough

(for 1 repetition) at times td1 and td2 respectively. Similarly, say te1 and te2

are the peak and trough of the earable signal. Our intuition behind the peak gap

feature is that the time difference between peak and trough of the two streams (i.e.,

{td1−td2, te1−te2}) should match in case of the sensor streams that corresponds

to an individuals’ exercise set. In other words, a correct {equipment, earable} pair

should have a low distance in such ‘time domain distance’ measures. Similarly, the

peak alignment feature is based on our observation from the data that for majority

of the exercises we considered, the peaks/troughs from individual repetitions occur

at the same time on both the equipment and earable signals. Thus, the correct pair

should have a lower peak alignment distance.

To compute these temporal features, we first perform repetition segmentation

and counting on the signal (on the band-pass filtered sensor signals) and identify the

crests and troughs of individual repetitions. The peak gap feature is defined as the

distance between the crest and trough of the signal. We obtain a distance measure

per repetition and compute the mean and standard deviation across all repetitions

for both the equipment and earable signal. Then the difference of those peak gaps

between all pairs of signals is computed as the final feature. The peak alignment

feature determines if the peak time instants align between two sensor streams and

is computed as the time difference between the peaks of each pair of equipment and

earable signal. We compute the mean and standard deviation across repetitions for

this feature as well.
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Figure 4.5: Steps involved in identifying the Correct {Equipment-Earable} Pair

Once the wavelet and temporal features are extracted, we compute the normal-

ized linear sum of these features. To identify the correct {earable-equipment} pair,

we utilize the Hungarian algorithm [64] for bipartite graph matching. We assign

the linear sum of features from different {earable-equipment} pairs as ‘confidence

scores’ or ‘weights’ of the bipartite graph. i.e., Our matching logic is defined as

a problem instance (described by a matrix W ), where each W [d, e] is the cost of

matching vertex d of the first partite set (an “equipment”) and vertex e of the second

set (an “earable”). The goal is to find an assignment of ‘equipment’ to ‘earable’ of

minimal cost. Formally, X[d, e]=1 iff row d is assigned to column e. Then the

optimal assignment has cost:

C = min
∑
d

∑
e

Wd,eXd,e (4.1)

such that each row is assignt to at most one column, and each column to at most one

row. The advantage of this ‘matching’ technique is that it can be easily extended

to scenarios with a larger number of concurrent users and also incorporate practi-

cal situations where all exercising individuals may not be wearing earable devices

(for example, in such cases, we would obtain M earable and N dumbbell sensor
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Figure 4.6: Steps involved in identifying the Exercise Type

streams (M < N )). The classic assignment problem can be generalized to such

scenarios using inexact bipartite matching techniques (where the cost matrix is rect-

angular). Figure 4.5 depicts the various steps involved in determining the correct

{equipment-earable} pairs.

4.4.3 Identifying the Exercise Performed

Once the correct equipment-earable pairs are determined, the next step is to identify

the exercise performed by each individual. We use a supervised Random Forest

(RF) classifier trained on features extracted from both the equipment and earable

signals (Figure 4.6 depicts the various steps involved). The features are extracted

on signals corresponding to individual repetitions from both the earable and equip-

ment sensors. The features computed include statistical time and frequency domain

features (similar to as proposed in [135]) on the signal as well as the continuous

wavelet transform of the signal. We then utilize correlation-based feature subset se-

lection [44] to determine individual predictive ability of each feature and the degree

of redundancy between them. We then train the RF classifier on a subset of features

that are highly correlated with the output class while having low inter-correlation

values. We also train models with only features extracted from either the equipment
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Table 4.3: Summary of performance evaluations conducted.

Evaluation Importance
Performance of Association

Multiple concurrent users
(Section 4.5.1)

To study the correct user-equipment association for different
number of concurrent users (N={2,3,4}).

Same vs Different exercises
(Section 4.5.1.1)

To study association performance when ‘same’ vs ‘different’ exercises
are performed concurrently.

Association features
(Section 4.5.1.2) To study the discriminatory power of different features and its combination.

Different types of exercises
(Section 4.5.1.3) To understand the variation in association performance per exercise.

Amount of repetition data
(Section 4.5.1.4)

To get a sense of the feasibility and robustness of early, real-time
recognition and corrective feedback.

Inexact association
(Section 4.5.1.5)

To capture real-world environments where there is a mix of people
with and without earables.

Different start times
(Section 4.5.1.6)

To understand association performance in real-life scenarios where users
don’t actually start exercising at the ‘exact’ same time.

Performance of Identifying Exercise Performed
Equipment only vs Earable
only (Section 4.5.2.1)

To study performance of exercise classification when only either of
the equipment or earable sensor data is available.

Other exercise types
(Section 4.5.2.2)

To study exercise classification performance for other kinds of
free-weights exercises.

sensor or the earable to investigate the efficacy of using earable + equipment data

for improved accuracy and/or robustness of exercise recognition. This is explained

later in Section 4.5.2.1.

4.5 Real-World Evaluation

In this section, I present the performance evaluation of our approach, along with

insights gained, based on real world exercise data (described earlier in Section 4.3)

collected from our University gym. Table 4.3 outlines a high-level overview of the

different performance evaluations conducted and the significance of those.

4.5.1 Performance of Identifying the Correct User-Equipment

Pairs

We first evaluate how our proposed approach of associating the correct earable with

the equipment (e.g., dumbbell) performs with naturalistic real world multi-user gym

data. We study the association accuracy for varying number of concurrently exercis-
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Figure 4.7: Overall accuracy of association when N={2,3,4} people perform exer-
cise concurrently

ing individuals (i.e., with all N individuals starting each set simultaneously). Note

again, for our study, we variedN from 2 to 4. Using the 680 sets (i.e., 374, 162 and

144 sets ofN={2,3,4} concurrent users respectively) of data collected, we obtained

an overall association accuracy of 88%, 65% and 45% in identifying all the correct

pairs whenN={2,3,4} respectively. We also looked at the performance of correctly

identifying at least 1 pair (for 3 user cases) and at least 1 or 2 pairs (for 4 user cases).

Our approach obtained an accuracy of 32% each in partially identifying the correct

pairs. So, overall 12.2%, 3.5% and 22.5% cases of N={2,3,4} had all the pairs

incorrectly identified. Figure 4.7 plots the performance accuracy of our approach.

We performed further analysis to understand the impact of different factors such as

the exercise-specific characteristics, importance of specific features.

4.5.1.1 Association Accuracy for Same vs Different Exercises Performed Con-

currently

We next investigate if there is any notable difference in the association accuracy

when people were performing same vs different exercises concurrently. For this pur-

pose, we analyzed the association accuracy separately for the exercise sets belong-

ing to these two categories. Figure 4.8 and Figure 4.9 plot the association accuracy

for “same” exercise set and “different” exercise sets. We found that the associa-

128



Figure 4.8: Association accuracy
when N={2,3,4} people perform the
same exercise concurrently

Figure 4.9: Association accuracy
when N={2,3,4} people perform dif-
ferent exercise concurrently

tion accuracy was significantly better (especially for 3 and 4 user cases where there

was an improvement of >10%) when people were performing different exercises

together.

4.5.1.2 Discriminatory Power of Wavelet vs Temporal Features

We next study the discriminatory power of the two category of features: (a) wavelets

and (b) temporal in determining the correct user-equipment pair. We obtain the as-

sociation accuracy for cases when only wavelet features and only temporal features

were used. We observe (see Figure 4.10) that wavelet-based features have slightly

better discriminative power ( 10% higher accuracy) than the temporal features. This

study also confirms that combining both set of features helps in significantly im-

proving the performance accuracy.

For the continuous wavelet transform (CWT) features, we further investigated if

any specific scales of the CWT has higher predictive ability. We computed the as-

sociation accuracy across individual scales of the CWT and found that scales in the

range of 70-100 obtained the highest performance (as shown in Figure 4.11). This

shows that CWT at lower scales did not have any information value and performing

wavelet decomposition only for higher scales (i.e., lower frequencies) was enough

to obtain the same accuracy. We also observe that, on an average, the correct pair
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Figure 4.10: Association accuracy for
different features

Figure 4.11: Association accuracy for
different scales of CWT

of signals (i.e., from same user’s dumbbell and earable) have high correlation value

over 0.71.

4.5.1.3 Association Accuracy for Different Exercises

To understand the variation in performance accuracy for different type of exercises,

we obtained the pairing accuracy for each of the 9 exercises independently and plot

it in Figure 4.12. We observe that the 3 upper-body exercises (namely, biceps curls,

triceps extension and lateral raise) had the lowest performance especially when the

number of concurrent users were more than two. This is primarily because these

exercises involve very limited head motion and the earables does not clearly capture

exercise motion dynamics unlike the lower-body exercises like lunges or squats.

4.5.1.4 Impact of the Amount of Repetition Data on Association Performance

As our broader goals involve providing real-time feedback to the individuals while

they are exercising, we next study the impact of amount of exercise repetition data

required for accurate pairing. In Figure 4.13, we plot the association accuracy by

varying the number of repetitions data used for pairing from 1 to 10. When two users

are exercising concurrently, we found that the number of repetition instances did not

have any significant impact on the overall performance achieved, showing that early,

real-time pairing is possible. However, in cases of 3 and 4 concurrent exercisers,
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Note: The association performance of Abs, Shoulders and Traps exercises (performed on weight
machine) were evaluated only for two user scenarios as the weight machine could only be used by

two people concurrently

Figure 4.12: Association accuracy across the 9 different exercises for N={2,3,4}
people exercising concurrently

there was a notable drop in accuracy if only initial few (1 to 4) repetitions’ data was

used for our matching algorithm.

To further understand the cause for a drop in association accuracy when only

data from initial few reps were used, we inspected the data for some cases where

the ‘associations’ were incorrect. We observe that as repetitions progresses, there

is divergence in time synchronization even when all concurrent users starts exercis-

ing at the exact same time. This causes the temporal features (e.g.,peak alignment)

of the concurrent users to be very similar during the initial few repetitions, thus

Figure 4.13: Amount of repetition
data used vs Association accuracy

Figure 4.14: Acceleration patterns
of two users concurrently performing
lateral raise exercise.
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Figure 4.15: Association accuracy with Inexact Matching

confusing the association logic when only data from first few reps are used. Fig-

ure 4.14 shows a sample time series of the dumbbell data for two users concurrently

performing lateral raise exercise where the rep alignment starts to diverge after few

initial reps.

4.5.1.5 Association Accuracy with Inexact Matching

In practical situations, there may be cases where not all exercising individuals would

be wearing an earable device or not all gym equipment is attached with a sensor de-

vice. We evaluate the robustness of our matching technique (with inexact bipartite

matching) in such scenarios. To study this, we randomly removed 1 to 3 streams of

earable or dumbbell signals at a time and obtained the association accuracy. Fig-

ure 4.15 shows the comparison of the association accuracy for the cases when either

the earable or dumbbell was “missing” to that of “exact” matching (i.e., when no

sensor streams are missing). We observe that association accuracy is ≈ 80% or

more when only one or two sensor streams are missing. However, when three of

either the earable or dumbbell sensor streams are missing, the accuracy drops to

about 69%. Overall, there was a drop in accuracy of about 5-18.5% when one to

three streams of ‘earable’ data was missing and a drop of about 3-18% when one to

three streams of ‘dumbbell’ data was missing.
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Figure 4.16: Dumbbell (D1, D2) and Earable (E1, E2) accelerometer sensor patterns
of 2 users concurrently performing Squats exercise.

Table 4.4: Cost matrix for bipartite matching obtained based on the linear weighted
sum of the features (obtained from the 4 sensor streams of two conncurent users) as
weights .

D1 D2
E1 0.54 0.84
E2 0.72 0.69

As an illustrative example, we show a case where our association approach

failed with inexact matching (i.e., either of the dumbbell or earable sensor streams

were missing). Figure 4.16 plots the dumbbell (blue and orange lines) and ear-

able (grey and yellow lines) accelerometer time-series of two subjects concurrently

performing squats exercise. In this case for both subjects, we observe that at the

beginning of the exercise set, the peaks in the ‘earable’ signal occur slightly be-

fore the ‘dumbbell’ signal and then gradually aligns with each other towards the

end. Table 4.4 shows the cost matrix obtained based on the linear weighted sum of

wavelet-based distance correlation and temporal features. Using our ‘perfect’ as-

sociation logic (i.e., when all four sensor streams are present) and with Hungarian

assignment with (that minimizes the weights), D1 is correctly matched with E1

and D2 is matched with E2. However in the case of ‘inexact’ matching (when

one of the signals is missing), the association logic gets confused and is unable to

correctly identify the right pair. For example, in the simulation when E2 (yellow
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line) was missing, instead of matching E1 (grey line) with D1 (blue line), it was

incorrectly associated with D2 (orange line). We found that {D2, E1} pair had

lower values of ‘time domain distance’ measures (i.e., the mean peak gap and mean

peak alignment values) compared to the correct {D1, E1} pair, leading to incorrect

association.

4.5.1.6 Association Accuracy for Different Start Times

In our user study, the concurrent exercisers were asked to start exercising at the

exact same time. However, this is an artificial and pessimistic scenario: in real-

ity, even concurrently exercising users are likely to start their sets with slight time

differences. To understand the performance of our approach in such situations, we

simulate such a situation by perturbing the start time of each individual by small

∆ values. The value of ∆ varied from 0 to 2 seconds (as an individual exercise

repetition takes about≈ 2 seconds) with steps of 0.5 seconds. Then for the exper-

iment, for each ∆, we choose different values uniformly from [0, ∆] to shift the

start times. We repeat this experiment 5 times with different random seeds.

Figure 4.17 shows the accuracy of identifying all the distinct pairs for different

values of start time perturbation of each individual in a group. We found that with

increased variation in the start time of different concurrently exercising individuals,

the association accuracy improves slightly. While there was only an increase of

≈4% in the case N=2 users, the improvement in association accuracy was higher

for N={3,4}–i.e, up to 6% for N=3 and up to 9% for N=4 concurrent users.

With a perturbation of 2 seconds in starting time, incorrect-pairing percentages for

N={2,3,4} cases were 7.6%, 28.6% and 45.7% respectively. With this experiment,

more number of lateral raise exercise sets became correctly associated. However,

both biceps and triceps exercise sets continued to have several incorrect pairings.

Similar to our previous observation, the poor performance for these exercises are

due to the inability of the earable device in capturing the accurate exercise motion

pattern, which is because of the minimal head movements involved while perform-
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Figure 4.17: Association accuracy with perturbed start times of concurrent exercis-
ing individuals

ing these exercises.

4.5.2 Performance of Identifying Exercise Performed

We next evaluate the accuracy of classifying the 9 exercises (dumbbell and machine

exercises). We divided the dataset into train (75%) and test (25%) sets. As explained

earlier in Section 4.4.3, we trained a Random Forest classifier and performed 10-

fold cross-validation on the training dataset. We obtained an accuracy of 92.3% with

a precision and recall of 0.92 and 0.919 respectively in classifying the exercises.

We then utilized the 10-fold cross-validated model and supplied the test set. On the

test set, the model achieved an accuracy of 85.2% (precision=0.856, recall=0.849)

in classifying the exercises. Figure 4.18 shows the confusion matrix of exercise

classification. On inspecting the confusion matrix, we found that the classification

errors occurred mainly for the following exercises: triceps pushdown & lateral raise

(dumbbells) and bent over side lateral (shoulder exercise on machine), which has

comparatively lesser head movements involved. ‘Lunges’ exercise achieved the

highest performance with a precision of 0.944 and recall of 0.956.
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Figure 4.18: Confusion Matrix of Classifying the 9 Exercises

Table 4.5: Performance of identifying exercise performed for different modalities
of sensor data used

Both Sensors Only Equipment Sensor Only Earable Sensor
10-fold CV Accuracy (%) 92.3% 86.84% 60.46%
Test set Accuracy (%) 85.2% 78.63% 54.56%

4.5.2.1 Exercise Classification with Only one of the Sensor Modality

We next investigate the performance of exercise classification when only either of

the dumbbell or earable sensor data is used to train the model. On the test set, we

obtain an average accuracy of 78.63% and 54.56% by considering only dumbbell or

only earable data, respectively. Although the average accuracy obtained with ear-

able is quite low, we observe that earable-based sensing has higher predictive power

in identifying certain exercises. For example, the precision of lunges exercise is

≈ 0.78 with earables. Whereas the precision with just dumbbells is only 0.65 and

with combined features from both sensors the overall precision for lunges signif-

icantly increases to 0.94. This shows that combining both dumbbell and earable

data helps to increase the performance of classifying exercises. Table 4.5 presents

the summary of results.

We also obtained the classification accuracy for the weight stack-based exercises

using just (a) earable and (b) IoT sensors. Note that the model is trained with data

from all 9 exercises (6 dumbbells, 3 weight machine exercises). The three weight
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stack-based exercises (targeting abs, shoulders, traps muscles) obtained an accuracy

of 59%, 45% and 52% with only earable data. With just the IoT sensor (on the

weight stack), the model achieves an accuracy of 86% for abs, 77% for shoulders

and 90% for traps exercises. We observe that there is a notable drop in the accuracy,

especially for the abs and shoulders exercise, compared to that we achieved with the

W8-Scope approach (98%, 97% and 96% respectively for these three exercises as

described earlier in Section 3.6.3 of chapter 3). This drop in accuracy is due to two

main reasons: (i) in this approach we leverage only the accelerometer data, while

W8-Scope uses a combination of both accelerometer and magnetometer sensor data

for exercise classification and, (ii) we did not use the weight stack displacement-

based features (e.g., the height to which or the speed with which the weight stack

was lifted) in this case.

The purpose of leveraging magnetic sensor data in W8-Scope approach was to

mainly determine the amount of weight lifted. This was not applicable in the case of

dumbbells and moreover, it would have been more useful to have a magnetometer

in the ear-worn devices. When the ‘earable’ hardware evolves with additional sens-

ing capabilities, it will be worth to explore if there is any added advantage in using

magnetic sensor data in more accurately distinguishing the different exercises. Be-

sides, we could not directly compute displacement-based features for dumbbell ex-

ercises and we utilized a common model to distinguish between all exercises (both

dumbbells and weight machine exercises). For obtaining the range of motion of

the dumbbells, additional strategies such as 3D tracking of its trajectory would be

required.

4.5.2.2 Classifying other Variety of Exercises

With the additional data collected from a set of different free-weights exercises (de-

scribed in Section 4.3), we evaluate the performance of our exercise classification

approach. To the dataset, we also included data corresponding to the 6 dumbbell

exercises (from the user study) by randomly choosing equal samples to obtain a
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balanced data set of 12 different exercises. Using 10-fold cross validation, we ob-

tain an accuracy of 89.2% with a precision of 0.90 and recall of 0.88 in classifying

the 12 exercises. Among these exercises, shoulder press and deadlifts had the lowest

performance of 80% and 77.2% respectively. For example, the ‘Deadlifts’ exercise

was getting confused most with ‘Squats’ exercise as their exercise motion dynam-

ics were very similar. Overall this evaluation shows that our approach is robust in

tracking a variety of weight-based exercises. This study also confirms that we need

both earable plus equipment data to distinguish robustly across a wide variety of

exercises as using only dumbbell or only earable achieved an accuracy of just 75%

and 52% respectively.

4.6 Discussion Points

While initial results are promising, there are several other aspects and open ques-

tions that we are actively pursuing to make this vision an eventual reality. We dis-

cuss below some of those key points as well as observational takeaways based on

the real-world studies conducted.

Real-time audio feedback: Providing personalized feedback on the exercise

progress and correctness could help improve exercise effectiveness as well as retain

motivation to continue exercising. Prior studies [76] have reported that “auditory

feedback” is ranked top among feedback features based on a review of physical ac-

tivity apps. Based on real-time sensing and analysis of the multi-modal sensor data,

we intend to provide incremental feedback in the form of short audio instructions or

“beep” sounds, based on the performance and progress of users. The system could

also provide positive, motivating feedback after completing each exercise set and at

the end of the gym workout for the day. Motivated by prior work [82], we shall also

investigate if we can use music to regulate the ‘exercise tempo’ of users.

Integrating physiological sensor data: Besides inertial sensor data, additional
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physiological signals (e.g., heart rate or breathing rate) from earables may enable

more sophisticated monitoring or intervention strategies. For example, the physio-

logical data could reveal the user-perceived intensity of the current exercises and

enable the delivery of appropriate corrective feedback–e.g., alerting the user to

slow down if the heart rate exceeds the maximum active heart rate. More inter-

estingly, such physiological signals may provide additional temporal markers for

better matching of {earable-equipment} pairs, especially for exercises with imper-

ceptible head motion–e.g., if the inhalation/exhalation times match with the exercise

repetition dynamics.

Improving performance with additional sensors: Future earable devices may

also come equipped with a magnetic sensor. We thus pose the question: “Can the

in-ear magnetic sensor represent any signal variations that may occur when the ex-

ercising equipment (e.g., dumbbell) is brought towards the ear while performing

certain exercises (e.g., biceps curls)?”. If it does, then fusing the magnetic sensor

data with accelerometer data would help in improving association accuracy as well

as in more accurately identifying certain exercise types. Similarly, an in-ear vibra-

tion sensor may help to capture very weak and minute head movements that are

specific to certain exercises.

Extending to other exercise types and scenarios: In this work, we focus only

on weight training exercises (both free-weights and machine weights). However,

we believe that the ear-worn sensing platform can be used to monitor other types

of gym exercise (e.g., cardio, body-weight exercises) and other outdoor exercises

or sports. Additionally, the proposed approach of real-time sensing of activities

and bio-signals using in-ear sensors can also be extended to other lifestyle activities

such as monitoring cognitive state and well-being of people in office environments.

Effect of weight lifted on variations in repetition pattern: From our user

studies, we observed that people lifting heavier weights seem to get tired and

thereby increase the repetition period. This could also be a way to infer ‘mistakes’ as
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the quality of exercise repetitions are degraded as the exercise set progresses. Simi-

larly, we observed that when lifting heavier weights, individuals are prone to make

comparatively more head movements during certain upper-body exercises (e.g., lat-

eral raise) and the earable accelerometer is able to capture the exercise repetition

peaks more clearly in such cases.

Exercises performed simultaneously: In the user studies conducted at our

campus gym, we made all the subjects to start exercising at the exact same time.

Anecdotally, we found that while there are multiple people (in pairs or small groups

of 3 or 4) performing the same free-weights exercises concurrently, they do not nec-

essarily start at the “exact” same time, thus simplifying the association problem.

However, we believe that this may not be the case for group exercise classes and

people’s exercising patterns would be more time synchronized during such sessions.

Possible Additional Ways to Improve Performance: While incorporating ad-

ditional sensor modalities is one way to improve the system performance, it may

negatively impact the practicality of the approach (e.g., in terms of cost, form factor

or deployment constraints). Therefore, in order to enhance the accuracy of associ-

ating the correct user and equipment pairs, a more practical approach is to devise

additional features from existing sensor modalities. Capturing the ‘range of mo-

tion’ of the exercising equipment based on the inertial sensors (e.g., based on fea-

tures such as the variance of the gyroscope) could be a potential feature that might

aid in differentiating concurrent users’ sensor streams. We suppose that individ-

uals would exhibit a difference in their exercising motions (e.g., difference in the

ways how arms are extended during a biceps curls exercise). For example, in cases

where multiple individuals are concurrently performing the ‘same’ exercise, using

the 3D trajectory of the exercising equipment as a feature in the association logic

may have a better discriminatory power compared to temporal features which would

be indistinguishable in cases where people are exercising in perfect time synchrony.

Similarly, by combining features extracted from the ear-worn accelerometer sensor
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might help to identify additional head movements that may vary across individuals

exercising concurrently.

4.7 Experiences and Lessons Learned

While experiments and user studies described as part of the research outlined in this

Chapter were also conducted in a real gym (similar to as in Chapter 3), I found these

particular user studies to be more cumbersome and involving new challenges and

experiences. These challenges pertain to the added difficulty involved in conducting

experiments with multiple concurrent participants. Additional care and attention

were required to conduct all the experiments in a clean manner and to synchronize

the study procedures across multiple individuals. I briefly describe below some of

the lessons learned from this work.

• Careful managing of multiple devices during the user study: As part of these

studies, we used a dedicated smartphone each (with our data collection app) to

record the data from the earable and equipment sensor used by one individual.

As such, mainly for the sessions involving more than two concurrent users,

it needed special care and attention in handling say, four smartphone apps at

the same time and in ensuring time synchronization. We had to discard some

of the initial data recorded either because the clocks were not synchronized

across all phones or when the individuals did not start exercising simultane-

ously.

• Appropriate fitting of the earbud matters: In the user study, there were in-

stances (with 3 subjects) when the earbud fell off from the ear during an ex-

ercise set and all the users had to repeat the specific set. This was due to the

inappropriate fitting of the earbud for certain subjects. This could be more

problematic in our future scenarios where we intend to utilize physiological

sensor data recorded from the earbud. Such physiological signals may not
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even get recorded properly if the earbud is not properly fitted.
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Chapter 5

Literature Review

Mobile phone sensing has emerged as a paradigm catering to multiple sectors such

as healthcare, social networks, safety, environmental monitoring, transportation and

retail. Wearable sensing has simultaneously evolved as a technology that enables

human activity recognition at a finer granularity [33]. There is also an alternate

body of research that focuses on leveraging only infrastructural sensors such as

WiFi, video cameras or other IoT sensors deployed in the environment to capture

detailed insights on individual’s daily life activities. Activities in common daily life

are often executed as a sequence of tasks each involving a specific gesture or interac-

tion with daily artifacts. As gesture and fine-grained activity recognition lies at the

foundation of all my contributions, I will first discuss some of the key works on per-

vasive sensing for gesture and interaction recognition. In this dissertation, my core

contributions are in sensing gestures and various aspects of two common daily life

activities – (a) shopping and (b) exercising. Therefore, I will present works which

focus largely on monitoring shopping and exercise activities using disparate sens-

ing modalities and compare our proposed approaches against those. I also present a

summary of prior works in the behavioral literature on individual’s exercise adher-

ence and dropout behavior as well as digital tools proposed to motivate and support

gym activity of individuals.
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5.1 Gesture Recognition in Various Daily Lifestyle

Activities

The feasibility of mobile sensing for human activity recognition has been well

explored in literature [66, 135]. Human activity and gesture recognition is the

core technology that enables a numerous number of applications in diverse areas,

such as health care monitoring [26, 69], sleep monitoring [27, 72, 80], elderly

care [58] and fitness tracking [34, 51]. There are also other class of applications

which require gesture tracking in even finer granularity such as for touchscreen-

based gesture input [16], pointing based interaction [90] and handwriting recogni-

tion [9]. Park et al. [85] proposed an adaptive threshold based segmentation tech-

nique for recognition of custom gestures during immersive lifestyle activities. Sev-

eral works [10, 108, 122] demonstrate the detection of drinking and eating gestures

using sensors from body-worn devices, RisQ system [84] depict how sensor data

collected from an inertial measurement unit can be used to detect smoking ges-

tures. While Blank et al. [20] studied the classification of Table Tennis strokes by

instrumenting a racket with accelerometer and gyroscope sensors, Tran et al [130]

proposed a technique for early recognition of table tennis gestures.

5.2 In-Store Shopping Activity Recognition

Unobtrusive monitoring of shopper’s behavior inside physical retail stores presents

interest for both the academic society and also for the marketing and private sector.

There are also numerous case studies [47, 112, 14] on shopper/mall-level shopping

behaviors which are typically confined to specific stores or demographics of shop-

pers. Several works [136, 99, 106] have explored the use of mobile or wearable

sensors in unobtrusively monitoring the in-store shopper behavior. Our work uti-

lizes a combination of such mobile and wearable sensing to uncover deeper insights

into a shopper’s in-store behavior. Unlike community-based personalized activity
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models [67], our work attempts to infer shopper behavior in a generalized setting

where no shopper-specific training data is available. To the best of our knowledge,

our work is among the first to utilize a mobile phone and smartwatch concurrently

to infer item-level interactions of shoppers inside stores. The proposed approach

does not pose any privacy concerns, is agnostic to user demographics and also does

not require shopping history of users to infer shopping experience.

Table 5.1 provides a critical evaluation of the pros and cons of the proposed

approach, IRIS against other alternative approaches in the literature for shopping

activity recognition.

5.2.1 Mobile, Wearable and IoT Sensor-based Shopping Activ-

ity Monitoring

The interesting problem of studying the shopping time in stores is presented in

[136], where a phone-based shopping tracker uses motif groups to identify move-

ment trajectories and transforms the problem of monitoring shopping time as a

classification problem. ThirdEye [99], uses image, inertial sensor, and WiFi data

crowd-sourced from shoppers wearing smart glasses to track the physical brows-

ing of shoppers. Sen et.al [106] proposes a person-independent activity recognition

technique, CROSDAC, which uses smartphone based sensor (accelerometer, com-

pass) data and WiFi, to identify the shopping intent of users. Lee et al. [68] presents

an automated computing framework using smartphones designed to provide com-

prehensive understanding of customer behavior. Kanda et al. [52] uses a sensor

network based on laser finders to predict people’s shopping behaviours by cluster-

ing their accumulated trajectories.
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5.2.2 Infrastructural Sensor-based Shopping Activity Monitor-

ing

Researchers have explored the use of video-based sensing for understanding various

activities of shoppers in physical retail stores. Popa et al. [91] proposed a Kinect-

based system for assessing shopping related actions. Based on the silhouette data

from Kinect, they studied various in-store interactions such as whether the shopper

is picking an item, trying on an item or interacting with the shopping cart. Liciotti

et al. [70] also proposed an automated, integrated system that infers shopper be-

haviour from an RGB-D camera system. Another work [92] utilized the video feed

from surveillance system to first identify the path taken by the shoppers inside a

store and derived features to infer shopper’s buying interest and the opportunities

for making sales. Trinh et al. [124] proposes a finite state machine based approach to

infer hand-activities in video-based retail surveillance. While these works leveraged

video data for understanding shopper’s activities or behavior, Zhang et al. [140] uti-

lized the video data to study the social influence on shopping by extracting features

which affect shopping such as the frequency of touch interactions with items, the

trajectory taken inside retail stores. A global optimization framework based on bi-

nary quadratic programming (BQP) that seamlessly integrates appearance, motion

and complex interactions between hands in video-based retail surveillance is pro-

posed in [123]. Despite the fact the video-based approach is more straightforward

in directly tracking all the actions and interactions of the shoppers inside a store,

it poses privacy concerns as well as would fail to monitor the all the activities of a

shopper due to occlusions, which would happen especially in case of a small or a

crowded store.

Additionally, researchers have explored the use of RF-based approaches in un-

derstanding shopping behavior of people. ShopMiner [110] is an RFID-based sys-

tem to infer the aggregated shopper interaction patterns with specific items in a

physical clothing store. They utilized the difference in phase readings of RFID tags
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attached to individual items when shoppers are looking at an item, picking up an

item or turning over an item. This approach requires attaching RFID tags to every

item and also does not capture individual-level shopper profile and item interactions.

Zeng et. al [138] utilized the Channel State Information of WiFi signals to infer a

shopper’s locomotive state (walking vs. standing) and location within a store. Lee

et al. [68] also employs a WiFi based approach to recognize the store and analyze

shopper’s trajectory within a shopping mall. There are also commercial companies

such as Euclid Analytics [35] that rely on sensing WiFi transmissions from shop-

per’s smartphone to capture and analyze their in-store movements. Although WiFi

based approaches can assist in identifying customer specific in-store movements, it

cannot identify finer gestures and activities such as whether shopper picked an item

or added an item to the cart. In contrast to these effort, our proposed IRIS system

does not require any specific infrastructure support and rely primarily on sensors

from individual shopper’s mobile and wearable devices to obtain fine-grained in-

sights on in-store activities.

5.3 Exercise Activity Recognition

Given the increasing emphasis on physical health and fitness, there has been a rapid

surge in the market for fitness devices, applications and solutions. In this section, I

focus on describing the relevant works in the domain of “exercise-monitoring” using

mobile, wearable, infrastructural sensors to obtain quantified insights into different

facets of a person’s exercise routine and compare our approach against those.

Table 5.2 provides a comparison of the performance, pros and cons of the pro-

posed W8-Scope approach against other alternative approaches for gym exercises

monitoring. Note here that: (a) the accuracy comparisons for different components

(across different works in the literature) shows a fair comparison as the attributes

(e.g, repetition count, exercise type) captured are somewhat similar, (b) columns

with ‘N/A’ means that the corresponding works do not capture those insights and
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hence, have no evaluation provided. For example, automatically determining the

“amount of weight lifted” during weight machine exercises is a novel capability

shown in our W8-Scope approach, which no existing works have evaluated previ-

ously.

5.3.1 Mobile, Wearable and IoT Sensor-based Exercise Moni-

toring

Most of the existing works [141, 32, 111, 75] on exercise monitoring has focused on

segmenting exercises, recognizing exercise types and counting the repetitions of the

exercise performed using either wearable or machine-attached sensors. Chang et

al. [25] were one of the first to propose a wearable solution for tracking the type and

repetition count of free-weight exercises, using multiple accelerometer sensors at-

tached to a user’s workout glove and waist. Another personalized approach [61], uti-

lizes multiple body-worn sensors, together with sensors attached to the dumbbells,

to detect anomalies in performing bicep curl exercises. MyHealthAssistant [104] is

a system for classifying gym exercises using accelerometers attached on the hand,

arm and leg. RecoFit [78] is also a wearable system based on an arm-worn inertial

sensor to segment exercise and non-exercise periods and to detect different weight

training and strength training exercises. Similarly, MiLift [111] is a smartwatch-

based system that performs automatic segmentation and tracking of both cardio and

weightlifting workouts. Mortazavi et al. [79] presented an approach to determine

the best single sensor axis on a smartwatch for recognizing and counting repetitions

of free weight and body weight exercises. Zhou et al. [141] proposed a wearable

fabric pressure sensor system that measures the muscle movement, action and rep-

etition of four different leg machine exercises. Burnout [75] is a sensor-embedded

clothing to estimate skeletal muscle fatigue during isometric and isotonic exercises.

Pernek et al. [89] developed a hierarchical algorithm, based on data from a wear-

able accelerometer attached to the upper body of subjects, to recognize intensity
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of strength training exercises. MyoBuddy [46] presents an approach to distinguish

between different amounts of barbell weights using EMG signals recorded from an

arm-worn EMG band. There are also other emerging apps and wearables such as

TrackMyFitness [129] and Atlas Wristband [2] that auto-detects exercises, records

repetitions and tracks workout progress. Unlike all these approaches which require

the user to have some body-worn device, we propose a novel form of wearable-free

and non-intrusive monitoring of a class of gym exercises.

There is an alternate body of prior work that assesses exercise characteristics us-

ing devices or sensors attached to different parts of the exercise machine. Moller et

al. [77] explored the use of a smartphone-based trainer for assessing quality break-

down of exercises performed on a balance board. FEMO [32] is a platform for moni-

toring dumbbell exercises using passive RFID tags attached to individual dumbbells.

As FEMO tracks dumbbell movements using RF signals, its performance could be

affected by interference arising from the movement of other individuals in a multi-

user gym. Sundholm et al. [119] developed a pressure sensor mat that recognizes

and counts repetitions of 10 common strength training exercises performed on a

mat. More recently, the Jarvis system [97] utilizes multiple IoT sensors, attached to

different moving parts of exercise machine to segment repetitions, recognize exer-

cise type and provide feedback to the user through a VR headset. Closest in spirit

to our work, Jarvis also uses wearable EMG sensors to incorporate muscle activa-

tion activity as part of the feedback. In contrast, our approach uses a single sensor

device mounted on a novel location (the weight stack) to support novel capabili-

ties such as identifying the user performing the exercise and the amount of weight

lifted (besides exercise recognition); we also consider the challenge of evolving the

classifiers over medium time-scales.
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5.3.2 Infrastructural Sensor-based Exercise Monitoring

Prior work has explored the use of WiFi [134, 41] and infrastructure-driven video

sensing [45, 42, 127] for exercise activity recognition. SEARE [134] is a recent

work that uses a WiFi based system and CSI waveform-based features for distin-

guishing between 4 different exercises. Similarly, Guo et al. [41] also introduce

an approach that uses CSI information from WiFi infrastructure to provide work-

out interpretation and identify individuals exercising in a shared space within a

home/work environment. However, these WiFi based systems may not work in a

multi-user gym environment and in non line-of-sight scenarios. Havens et al. [45]

proposed a technique for image-based contour tracking of spine and shoulder of

the subjects from videos of treadmill exercises. A recently proposed system, Gym-

Cam [56] leverages a single camera to track multiple people exercising simulta-

neously and recognize their exercise type and repetitions. However, this system

does not distinguish between users and also do not track other aspects of exercis-

ing such as the weight lifted, mistakes made. While, a less invasive approach [50]

explores the use of thermal-imaging and optical flow techniques to estimate en-

ergy expenditure during treadmill exercises. Several works have used the Microsoft

Kinect sensor for pose estimation and for tracking upper and lower body during

simple rehabilitation exercises. Gonzalez-Ortega et al. [39] developed a 3D vision-

based system to track the trajectories of human body parts during psychomotor ex-

ercises. Similarly, Dao et al. [31] present a system for monitoring the kinematics of

exercises performed by elderly people during rehabilitation exercises. Another ap-

proach [42] uses the Kinect sensor to quantify the performance of squatting exercise

using model-based metrics. Velloso et al. [127] presents a comparison of wearable

sensor and Kinect model-based approaches for qualitative recognition of weight

lifting exercises. All of these vision-based methods pose privacy concerns and are

also highly dependent on external environment, such as adequate light and line of

sight conditions. In contrast, we propose an alternative approach that is simpler to
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deploy, cost-effective and more privacy-friendly.

5.4 Behavioral Literature on Exercise Adherence &

Digital Interventions

In this section, I present prior works that have studied the exercise adherence and

dropout patterns of individuals and also provide a review of existing digital tools and

technologies that are proposed by researchers to sustain motivation of exercisers as

well as provide quantified insights into the exercise routine.

5.4.1 Studies on Exercise Adherence and Dropout

Trost et al. [125] present a review of the earlier literature that provide evidence re-

lating to the personal, social, and environmental factors associated with physical

activity. Similarly, Berger et al. [17] describe the aspects of psychological well-

being that are influenced by physical activity and the factors that influence exercise

participation. Existing works [105, 132, 53] have investigated the adherence behav-

ior of people in specific exercise programs/physical activities and have reported that

several factors (such as social support, guidance from staff, tangible health benefits)

influence individual’s motivation to continue in the program. Certain works have

focused on understanding both the adherence and dropout behavior of specific user

groups such as older adults (age above 50) [116], only women [48], low income

groups [133], from various exercise programs. The works that specifically studied

gym-goers [29, 54], have focused solely on understanding the motives of people for

joining or continuing at the gym and not clearly identified the reasons to dropout.

Pridgeon et al. [95] conducted a small scale study where they interviewed 14 gym-

goers about their experiences in maintaining and dropping out of gym. Zarotis et

al. [137] studies age-specific reasons to dropout from gym for different category of

users. Most of these studies are purely interview-based or survey-based and con-
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ducted on a smaller scale of users. In this work, we present a more systematic

study and provide quantified insights based on the actual digitally captured traces

of individual-level gym visits, identify the key reasons for dropout and characterize

some features that seem to affect dropout propensity.

5.4.2 Techniques to Improve Exercise Behavior

Prior works in the behavioral and sports science literature have proposed several

techniques such as providing entertainment at the gym [15, 11], giving incen-

tives [117], interventions with information of peer’s gym attendance [103, 28] to

sustain motivation of individuals to continue exercising. Although, mechanisms

such as incentives tended to improve behavior during the intervention, findings were

mixed on whether the observed improvements were sustained after incentives were

removed. Hence, further research is required to derive appropriate mechanisms that

are more personalized and can keep individuals motivated to persist their gym ac-

tivity.

5.4.3 Digital Tools to Support Gym Activity

In the recent years, several commercial mobile applications (e.g., Trackmyfit-

ness [129], JEFIT [49]) and wearable devices (e.g., Apple Watch, Nike Fuelband)

have spawned in the fitness space with the goal to digitally track and encourage

physical activity among individuals. However, a review of such physical activ-

ity apps found that only 2% provided evidence-based guidelines for gym exercises

training and people find it not helpful [59]. There are also other works in the litera-

ture [24, 86, 37] that have proposed technologies for motivating and digital training

during physical activities. Some of these approaches are based on health behaviour-

change theories exploring features for motivating people to exercise. Patel et al. [87]

study the contextual influence of digital technologies’ use and non-use while exer-

cising in gym based on interviews and participant observation. More recently, Rubin
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et al. [101] study the adoption factors of wearable technology in health and fitness

space, specifically from a South African consumer perspective and identified that

individuals did not enjoy using on-body devices during physical activity. This is

similar to our finding from the survey conducted with gym-goers.

5.5 Ear-worn Sensing for Activity Recognition

Most of the prior works have explored the use of microphones in ear-worn devices

to capture chewing sounds [10] and eating episodes [18], not many has explored the

use of inertial sensors on ear-worn devices for complex activity recognition. Atal-

lah et al. [13] proposed using an ear-worn accelerometer for gait monitoring while

exercising on a treadmill. Nirjon et al. [82] proposed the ‘MusicalHeart’ system

which uses a sensor-equipped ear-worn device that monitors heart rate and provides

music recommendation based on user’s activity levels. Gil et al. [38] developed

a prototype of an ear-worn device that can measure cardiovascular and sweat pa-

rameters during physical exercise. In recent preliminary efforts, researchers have

explored the potential of in-ear sensing for robust step counting [94], head-motion

tracking [36] and more interestingly, for monitoring breathing rate [102]. In-ear

inertial-sensing based respiration rate monitoring is of specific interest to us because

combining such inferences on an individual’s breathing pattern during exercise ac-

tivity along with the head movement patterns (captured by the earable) might help in

improving the performance of the associating the earable with the exercising equip-

ment. For example, it would be interesting to see (i) if the inhalation/exhalation

times match with the exercise repetition dynamics and, (ii) if the breathing patterns

change during certain exercise sets (e.g., people may breathe heavily when lifting

heavy weights).
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5.6 Unobtrusive Device-Free Gesture Recognition

Recently, a new class of gesture recognition systems have spawned that utilizes

wireless signals to track humans and identify their gestures [96, 131, 8, 71]. E-

eyes [131] utilizes the WiFi channel state information (CSI) values to recognize

gestures such as showering, brushing teeth etc. WiSee [96] is a WiFi based whole

home sensing and gesture recognition and leverages the minute Doppler shifts and

multi-path distortions that occur with these wireless signals from human motion in

the environment. It works up to when 3 users are in the same room and recognize

coarse-grained gestures. Soli [71] is a miniature FMCW radar that detects touch-

less gesture interactions (sub-millimeter motion) of hand and uses a universal set of

gestures to control devices. WiGest [8] utilizes RSSI changes, requires no training

and achieves fine-grained gestures recognition for control of a specific user mobile

device. However, a key limitation of these WiFi based gesture recognition is that

none of them can recognize gestures that are simultaneously performed by multiple

individuals in the environment.

5.6.1 Simultaneous Gesture Recognition of Multiple Users

Here I discuss some of the recent works that have tackled the problem of recogniz-

ing gestures performed simultaneously by multiple individuals in an indoor envi-

ronment (not pertaining necessarily to shopping or exercise activities) using device-

free approaches. Works such as [40, 60] have done some preliminary work in

using UWB radars for multiple moving person tracking. However, they do not per-

form any user identification and tracking of the gesture performed. Peng et al. [88]

presents preliminary results on recognizing gestures of multiple users using range-

Doppler information from an FMCW radar. Recently proposed WiMu [128] system

is the first one to track simultaneous gestures of multiple users. In WiMu, the effects

of simultaneous movements of multiple users on CSI values are mathematically

modeled to first detect that some users have performed gestures simultaneously,
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then identify the start and end times of the gestures and generate virtual samples of

various combinations of those gestures. The main advantage of the system is that

they do not require the users to provide training samples for all possible gesture

combinations. However, the system only identifies predefined gestures performed

simultaneously by multiple users and do not determine which user performed which

gesture. It also cannot recognize continuous gestures. In Chapter 4, we demonstrate

a hybrid approach of combining data sensed from unobtrusive wearable devices and

cheap IoT sensors attached to the exercise equipment for monitoring of exercises

performed simultaneously by people in a gym.
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Chapter 6

Conclusion and Future Directions

In this chapter, I conclude this dissertation by summarizing the main contributions

and outlining some of the possible extended use cases of the proposed technologies

and key future directions.

6.1 Summary of Contributions

In this dissertation, I demonstrate the potential of leveraging sensors available in

individual’s personal devices or the sensors in cheap IoT devices that can be attached

to objects in the indoor environment or their combination to both accurately and

unobtrusively infer fine-grained aspects of daily lifestyle activities of individuals.

IRIS : In Chapter 2, I described the IRIS platform that uses standard locomotive and

gestural micro-activities as building blocks to define novel composite features that

help classify different facets of a shopper’s interaction/experience with individual

items, as well as attributes of the overall shopping episode or the store. IRIS utilizes

inertial sensors on personal devices such as a smartphone and a smartwatch to infer

micro-gestural activities and latent behavior of individual consumer behavior inside

a retail store. We make the following key contributions:

1. Robust and Accurate Segmentation: I develop a novel, hierarchical seg-

mentation algorithm to accurately delineate the (start, end) times of different
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item-level interaction gestures, and aisle vs. non-aisle movements, over the

entire duration of a store visit. With experiments conducted with 25 shoppers

across 50 real-life grocery shopping episodes, we show that this technique is

both robust (any mis-classifications never cascade beyond the current aisle)

and accurate (it identifies gesture start and end times with mean errors of

only 4.2 seconds, and achieves an overall 92% item-level gesture recognition

accuracy).

2. Accurate Recognition of Item-Level Interaction & Gesture-based Shop-

ping Activities: We show that IRIS can identify a variety of locomotive

gestures (especially the {pick, put-in-trolley, put-back} gestures mentioned

before), by appropriately using inertial sensor (accelerometer & gyroscope)

based features from a smartwatch and a smartphone. Using these gestures

as building blocks, we also subsequently infer item-level interactions such as

whether the shopper buys the item frequently or knows specifically what he

wants, using novel high-level features. All these classifications yield accura-

cies of over 90%.

3. Accurate Prediction of Episode Attributes: As the highest level of infer-

ence, we also utilize aggregate features (the item-level interaction history,

plus in the in-aisle and non-aisle movement history) to build classifiers to es-

timate episode-level attributes, (such as “was the shopper in hurry?, and “did

the shopper find the items he wanted?”), achieving accuracies of over 92%.

W8-Scope: Chapter 3 describes the W8-Scope system which provides an unobtru-

sive and low-cost way to gather fine-grained, individual-specific insights into the

exercise routines (including mistakes made) on a common class of weight stack

machines. The key contributions made in this work involve the following:

1. Novel Sensing Mode and Sensor Location for Exercise Monitoring: We

propose the use of a simple device, combining a 3-axis accelerometer and 3-
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axis magnetometer sensor, mounted rigidly to the top plate of a weight stack

to obtain fine-grained insights about the different exercises being performed.

2. ‘Weight Stack Sensor’ as a Viable Discriminator of Exercise Characteris-

tics: Using a set of validation studies performed using a commonplace multi-

exercise “cable pulley” weight machine, we develop a multi-stage pipeline

(called W8-Scope), combining magnetic and motion features, to infer multi-

ple novel facets of exercises.

3. Real-world Demonstration of W8-Scope: With real world (in-the-wild)

studies with regular gym-goers at two separate gyms: (a) a University gym

and (b) a Community gym (open to the public), across 50 subjects performing

14 different exercises with a wide range of weights over 103 distinct sessions

in these two gyms, we show that W8-Scope can identify the weight used with

an accuracy of 97.5%, identify the exercise performed with 96.9% accuracy,

detect commonplace mistakes made while exercising with 96.7% accuracy

and also distinguish the user performing the exercise with over 98.7% ac-

curacy (for a class of weight exercises and with co-terminuous training/test

data).

4. Longitudinal Tracking & Incremental Learning: By adopting incremental

learning techniques (that utilizes only highly confident samples to continu-

ally update the classifiers), W8-Scope can also accurately track these various

facets of exercise over longitudinal periods, in spite of the inherent within-

user differences that occur in exercising behaviors. Utilizing such approaches,

we achieve an overall performance improvement of 12%, resulting in an ac-

curacy of 90.2% for classifying exercises and 87.4% in distinguishing users

over medium time-periods (12-15 weeks).

Finally, Chapter 4 presents a system that tracks weight-based exercises per-

formed by multiple concurrent users in a gym and enables real-time audio-based
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corrective feedback to each exercising individual. In this work, we make the fol-

lowing key contributions:

1. Earables as a platform for capturing fine-grained exercising aspects: We

introduce the vision of using ear-worn devices as the preferred, mass-market

wearable platform, for both (a) individualized, fine-grained monitoring of

gym exercise activities, and (b) subsequent real-time, context-aware feedback

on exercise dynamics.

2. Novel, hybrid architecture for multi-user gym environments: We pro-

pose a low-cost solution that utilizes a hybrid architecture combining earables

plus smart object/IoT on exercise equipment together for “superior activity

recognition”. We develop a matching technique that leverages novel temporal

and wavelet-based features and inexact bipartite matching techniques to iden-

tify which individual is working out with which equipment (i.e., the correct

{equipment, earable} pair).

3. Real-world evaluation of proposed approach: Using 680 sets of real-world

exercise data obtained with multiple people exercising concurrently, we show

that: (a) our matching technique can achieve an accuracy of 88%, 65% and

45% in identifying all the distinct pairs when N={2,3,4} people are simul-

taneously performing weight-based exercises, and (b) by combining inertial

sensor data-based features from both earable and equipment sensor, we can

accurately identify the exercise performed (among 9 distinct choices) with

85% accuracy.

6.2 Future Directions

In this dissertation, I described novel systems and solutions for pervasive applica-

tion scenarios that leverage on the judicious use of sensors on personal devices in
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combination with emerging infrastructure-based IoT devices to capture detailed in-

sights of human lifestyle. I believe that the techniques developed and lessons learnt

while building these systems will have deeper impact on the design of future ubiq-

uitous systems and applications. Below I describe some of the possible extensions

and future research directions:

Extended Shopping Applications & Scenarios: Real-time determination of the

specific item being selected by shoppers in a store can be used for other types of

consumer-specific alerts. Consumers today can use their mobile devices to obtain

instant information (e.g., customer reviews, product ratings or price comparisons)

from online sources. At present, such information retrieval typically requires man-

ual input– i.e., the shopper must either upload a picture or a product specification to

the online service. Real-time wearable+IoT analytics offers the possibility of mak-

ing such retrieval unobtrusive. For example, if the item picked up by the shopper

turns out to have ingredients to which the shopper is allergic, a product alert ap-

plication can proactively alert the shopper to such inadvertent selections. Similar,

more accurate tracking of the numbers selected, for a specific item, might alert the

shopper to possible promotions and deals that she may be unaware of. For example,

if a particular brand of apples has a “3 for $2” offer (with a unit price of $2), a

deal detective application can automatically alert the shopper about the promotional

offer, if it detects that she has selected only 2 apples.

Additional Use-cases of IRIS Technologies: I believe that the gesture recognition

technologies developed using the combination of sensor data from a smartphone

and smartwatch can be extended to other application domains such as elderly care,

smart manufacturing. For example, applications for monitoring the well-being of

the elderly can utilize the IRIS technologies to automatically track gestures/activities

(e.g., drinking water, regular in-take of medicines or other locomotive activities).

Similarly, in a manufacturing setting, smartwatches worn by factory workers can be

used to track their activities in a PCB-manufacturing/assembling environment. This
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will help in potential applications for early-tracking of mistakes made by workers

in assembling the unit (e.g., certain tasks are meant to be done with one hand or

sequentially and using both hands would be flagged as a potential violation).

Device-free Recognition of Multi-user Gestures & Behaviors: The techniques

and solutions proposed in this dissertation are primarily based on the fusion of in-

ertial sensor data from personal and infrastructural IoT devices. More recently,

there has been a significant attention on wireless or device-free gesture recognition

systems that utilizes Wi-Fi, sound signals, etc.–such approaches have the advantage

that they do not require the individual to carry any electronic device, but instead rely

on the signal variations (e.g., channel state information (CSI) from Wi-Fi) induced

by human movements. However, a key limitation of the prior works on gesture

recognition is that they are intended for scenarios involving only a single individual

and such solutions fail to work when multiple users simultaneously perform some

gestures. To overcome this limitation, I pose the question: Given the deployment

of multiple short-range radar devices in the indoor space, can we accurately iden-

tify that multiple individuals are present in the indoor space and are simultaneously

performing some gestures/activities and also identify gestures of each individual us-

ing analytics techniques that utilize both the data from multiple short-range radars

and from low-power wearable devices?

In-ear Sensing of other Activities: As sensory earables are increasingly becoming

popular, it opens up new opportunities and challenges in the space of personal-

scale human sensing applications. For example, inertial sensors in earables could

be used to build a toothbrushing application that would detect (based on micro head-

movements) if all areas inside the mouth are brushed properly and provide real-time

corrective audio-based feedback otherwise. Such an application would especially be

useful for the kids. Most of the in-ear sensing applications are based on inferences

derived from head-motion patterns. So, I ask can we use such motion signatures to

accurately track an individual’s “gazing direction” and enable interactive applica-
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tions and how does the performance compare to that of other state-of-the-art gaze

tracking techniques? I believe earables also has a huge potential in enabling several

health sensing applications (e.g., monitoring breathing patterns).
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Appendix

Survey Questionnaire Distributed in University Cam-

pus

1. Do you go to a gym?

# Goes to SMU Gym

# Goes to another gym

# Used to go to gym, has stopped going now

2. If you have stopped going to a gym (or dropped out), what made you stop?

Please rate each of the below reasons on a scale of 1 to 5 (1 for “Not at all

Important” and 5 for “Extremely Important”)

• Don’t see the benefits

• Lack of social support

• Lack of enjoyment

• Lack of knowledge in using gym equipment

• Lack of personal trainer

• Lack of time

• Initial overhead in getting to the gym

• Fatigue from over-training
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• Not meeting goals/expectations from the workout

• Medical reasons

• Prefer some other workout (e.g., running, yoga, zumba, martial arts, free

hand exercise at home)

• Only dieting for now

• Going to another gym or fitness center

3. Rate the services that would be important for you when deciding to continue

going to the gym. (Rate each of the below statement on a scale from 1 to 5 (1

for “Not at all Important” and 5 for “Extremely Important”)

• Having a friend to accompany you

• More entertainment at the gym

• Personal training recommendations

• Availability of exercise classes (e.g., Yoga, martial arts, aerobics)

• Provide more awareness about fitness

• Provide nutritional tips and suggestions

• More variety of exercise machines

• Provide motivational tips to continue going to gym

4. What else would help you to continue going to the gym or to improve your

experience at the gym. Please tell as much as you can about what would help

you continue using the gym.

5. How do you self-rate your gym usage? Please select all options that apply to

you.

2 Cardio Zone (Campus Green level)

2 Mezzanine level Green (Free weights) Zone
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2 Mezzanine level Blue (Functional Training) Zone

2 Mezzanine level Red (Strength Conditioning) Zone

6. How often do you visit the Gym?

# Less than once a month

# Once a month

# Once in two weeks

# Once a week

# Twice a week

# Thrice a week

# More than three times a week

7. I’ve been going to a gym (any gym) regularly for the last ...

# Less than a month

# 1-3 months

# 4-6 months

# 7-11 months

# 1 year

# 2-4 years

# 4+ years

8. Rate your reasons for going to the gym (For each of the below statement,

choose a scale point from 1 for “Not at all true for me” to 5 for “Completely

True for me”).

• Enhance your athletic/sport performance

• Train for muscle building/power lifting
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• Lose weight

• Maintain my physical health and well-being

• Improve my body shape and appearance

• To manage stress and tension

• Medical reasons

• Meet people and socialize

• For fun and relaxation

• For the challenge and excitement of participation

• To be fit and stay healthy

9. Please indicate for each of the below mentioned exercises, how often you do

it. Rate on the scales: ‘On Each Visit’, ‘On Most Visits’, ‘Infrequently’, ‘Very

Rarely’, ‘Never’.

• Cardio exercises (on treadmill, elliptical, exercise bike)

• Weight training using the weight machines (leg press, shoulder press

etc.)

• Weight training using free weights

• Free-hand or mat exercises (push-ups, crunches, sit-ups etc.)

• Circuit training (Intense combination of the above routines repeated

multiple times)

• Group Exercise Classes (Dance, Zumba, Yoga, Pilates, etc.)

10. Which are the machines that use during your gym workout sessions? Please

select *ALL* options that apply to you.

2 Treadmill

2 Elliptical
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2 Exercise bikes

2 Lateral Trainer

2 Cable pulley machine/exercises

2 Core trainer

2 Rowing machine

2 Ground Base Combo Decline (Arm exercises)

2 Chest Press/Lateral Pull Down

2 Deadlifts machine

2 Shoulder/Upper-back exercise machine

2 Chin up/Bench press machine

2 Squats/Deadlift/Military Press machine

2 Jump trainer

2 Free-weights with dumbbells (please specify what exercises)

2 Free-weights with barbells and plates (please specify what exercises)

2 Floor/mat exercises (please specify what exercises)

2 Other machines/exercises (please specify)

11. Would you prefer to use a fitness app/wearable that monitors your exercise

form during your workout and provides personalized feedback on your form

as well as suggesting corrective actions and alternative exercises (with the

goal of making your exercise routine more effective and / or safer)?

# Already using an app

# Maybe (interested to use in the future)
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# No or Stopped using

12. If you are already using a fitness app, please mention the app name. Also list

the key features in the App that you find useful/use.

13. If you are interested to use a fitness app in future, what would you want to

mainly use it for ? Rank the below listed features (by scrolling and reordering

the options) in your order of preference (i.e., based on what values to you

most when deciding to use a fitness app).

• Set personalized goals and exercise regimen

• Automatically track all exercises performed and provide summary re-

ports

• Provide personalized feedback or suggestions (e.g., specific muscle

groups that user need to train more)

• Identify mistakes (e.g., incorrect use of gym equipment, incorrect body

postures) made while exercising and provide corrective feedback

• Provide nutritional tips

• Teach you how to perform specific exercises

14. If you are not using (or stopped using) a fitness App, please specify your

reasons. (Rate each of the below statement on a scale from 1 for ”Not at all

true of me” to 5 for ”Extremely true of me”)

• Do not want to use any device (phone, wearables)

• Used apps did not meet expectations (too confusing, time consuming)

• Provided suggestions were too generic

• Hidden cost (expensive premium features)

• Apps are intrusive (not comfortable with sharing data)
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• Other (please specify)

15. How valuable would it be for you to have access to a personal trainer? Rate

on a scale from 1 “Not at all valuable” to 5 “Extremely valuable”

16. What are the various things that you think a personal trainer can help you

with? (Rate each of the below statement on a scale from 1 to 5 (1 for “Not at

all Important” and 5 for “Extremely Important”)

• Discuss your personal needs and assess fitness

• Help to set short-term and long- term goals

• Help with setting a personalized exercise regimen

• Teach you how to do the exercises

• Help with correcting form/posture

• Provide motivation during exercising

• Provide nutritional tips and meals plans

• Other (please specify)

17. Please provide your SMU email address.

Survey Questionnaire Distributed to General Public in

Singapore

This questionnaire was distributed in public gyms in Singapore and also hosted in

Amazon Mechanical Turk. The questions in this survey were mostly similar to that

distributed in the University campus. Therefore, for a succinct presentation, below I

present only the additional questions that were included in this version of the survey.
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1. Would you prefer to wear a wearable device (such as a smartwatch/smartband,

VR head display) that monitors your exercise form during your workout and

provides personalized feedback on your form as well as suggest corrective ac-

tions and alternative exercises (with the goal of making your exercise routine

more effective and / or safer)?

# Yes, I use a wearable device while exercising

# No or Stopped using

# May be (interested to use in the future)

2. If you are already using a wearable fitness tracker, please mention the

wearable device name. Also list the key reasons why you use it or the key

features that you find useful/use.

3. If you are not using (or stopped using) a Wearable fitness tracker, please spec-

ify your reasons. (Rate each of the below statement on a scale from 1 for ”Not

at all true of me” to 5 for ”Extremely true of me”)

• Do not want to use any device as it causes inconvenience while exercis-

ing.

• Wearable devices that I tried were not useful (did not track any useful

info).

• Did not provide any personalized recommendation based on data that

was tracked.

• Not comfortable with tracking and sharing of exercise data).

4. Imagine that a futuristic technology can perform fine-grained monitoring and

tracking of your exercises performed in a Gym and provide you with person-

alized feedback on your form as well as suggest corrective actions and alter-
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native exercises (with the goal of making your exercise routine more effective

and / or safer).

The technology could be either (i) a wearable-based solution with on-body

sensors (e.g., a wristband, smart clothing) or (ii) solution based on simple IoT

sensors (of small form-factor) attached to the exercise machines itself (i.e., no

instrumentation on body). Which approach would you prefer and why?

# Wearable approach (*Please specify why you prefer this approach over

the other.)

# Machine-based sensor approach (*Please specify why you prefer this

approach over the other.)

5. Please select your gender.

# Male

# Female

# Do not wish to specify

6. Please select your age group.

# 18-20

# 21-25

# 26-30

# 31-35

# 36-40

# 41-45

# 46-50
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# 51-55

# 56-60

# 61-65

# Above 65

7. What is your current employment status?

# Employed Full time

# Employed Part time

# Self-employed

# Student

# Homemaker

# Retired
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