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Abstract 

The Internet of Things is enabling innovations in the automotive industry by expanding 
the capabilities of vehicles by connecting them with the cloud. One important application 
domain is traffic safety, which can benefit from monitoring the driver’s condition to see 
if they are capable of safely handling the vehicle. By detecting drowsiness, 
inattentiveness, and distraction of the driver it is possible to react before accidents happen. 
This thesis explores how accelerometer and gyroscope data collected using earables can 
be used to classify the orientation of the driver’s head in a moving vehicle. It is found that 
machine learning algorithms such as Random Forest and K-Nearest Neighbor can be used 
to reach fairly accurate classifications even without applying any noise reduction to the 
signal data. Data cleaning and transformation approaches are studied to see how the 
models could be improved further. This study paves the way for the development of driver 
monitoring systems capable of reacting to anomalous driving behavior before traffic 
accidents can happen. 
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1. Introduction 

Our world has been transformed by the rapid developments in technology, and among the 
most auspicious advancements is the Internet of Things (IoT). It has seamlessly connected 
physical objects with the digital world, bringing about plenty of opportunities for 
innovation and improvement for a wide variety of industries. One industry that has seen 
a lot of growth is the smart device industry (Choudhury, 2021). Devices such as fitness 
trackers, smart rings and necklaces, smartwatches, earbuds, and other sensor-equipped 
gadgets have been in demand thanks to their capabilities to monitor various aspects of our 
lives (Choudhury, 2021). With these smart devices it becomes possible to track and 
analyse people’s movement patterns and to provide them worthy insights into their health, 
behaviour, and activities. 

Interest has been growing in tracking and monitoring people’s movement using wearable 
smart devices for use cases such as traffic safety during the past few years. Road safety 
could be improved by reducing the risk of accidents through detecting drivers’ movement 
patterns from real-time data. It is possible to use the data from wearable smart devices to 
identify potential risks, deepen the understanding of driver behavior, and develop 
proactive measures for mitigating the risks associated with dangerous patterns. 

One promising wearable, capable of capturing head orientation data for analysis, is the 
set of eSense earbuds. The earbuds have a microphone, an accelerometer, a gyroscope, 
and a Bluetooth Low Energy (BLE) module capable of bidirectional communication 
(Kawsar, Min, Mathur, Montanari, Acer, et al., 2018; Hossain et al., 2019). These ear-
worn wearables, i.e., earables allow for collecting the driver’s head movement data 
comfortably, conveniently, and unobtrusively. The collected data can then be used to 
classify the head orientation of the driver into left, straight, and right in real time even 
when the vehicle is moving. 

The concept of tracking a person’s movement using wearables revolves around the idea 
of collecting and analyzing data related to their physical activities and behavior. Wearable 
smart devices are equipped with various sensors, such as ones capable of detecting motion 
and vibration which could be used for activity recognition, speech and breathing patterns, 
or possibly facial expressions, and optical sensors that allow monitoring heart rates and 
blood oxygenation (Powar & Beresford, 2019). There are also accelerometers and 
gyroscopes, which can precisely measure parameters like speed, acceleration, and 
orientation. These sensors generate a continuous stream of data that can be analyzed to 
extract valuable insights into a person’s movement patterns. By combining movement 
data with location information obtained through GPS technology, a comprehensive 
picture of the person’s behavior while driving a vehicle can be obtained. 

Traffic and driver safety form a paramount concern in today’s fast-paced and ever-
evolving transportation landscape, with a staggering number of accidents occurring on 
our roads each year and the increasing number of vehicles on the roads. The ability to 
accurately monitor a car driver’s condition can play a crucial role in reducing accidents 
and improving overall road safety. Wearable smart devices provide a unique opportunity 
to assess a driver’s condition in real-time. Factors such as fatigue, drowsiness, distraction 
(Kawsar, Min, Mathur, Montanari, Amft, et al., 2018), and aggressive driving behaviors 
can be monitored by analyzing the data collected from these devices. By detecting early 
signs of driver impairment or risky behaviors, appropriate interventions or alerts can be 
provided to prevent accidents and promote safer driving habits. 
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However, the successful implementation of wearable-based driver condition monitoring 
systems relies heavily on the development of accurate and robust algorithms for analyzing 
the vast amounts of movement data collected. This is where machine learning pattern 
recognition techniques come into play. Machine learning algorithms have shown 
remarkable success in handling complex data and extracting meaningful patterns. By 
training these algorithms on labeled datasets comprising various driving conditions, it 
becomes possible to create models that can accurately classify different driver behaviors 
and conditions, and further to detect anomalies. Then it is only a matter of developing 
responses for detected anomalies or concerns. 

This study is motivated by the need to overcome the limitations of the currently available 
solutions, and to develop a more robust and non-intrusive solution for real-time head 
movement tracking in moving vehicles. I aim to utilize eSense earables to accurately 
detect the driver’s head position. By successfully classifying head orientation using 
eSense earables, the proposed system can facilitate the development of intelligent driver 
assistance systems capable of detecting problems with the driver’s health, capability to 
drive, or inattentiveness of the traffic in real time. The non-intrusive nature of eSense 
earables ensures that the driver’s privacy is preserved, and the real-time capabilities allow 
for immediate responsiveness to potential safety risks. According to Choudhury (2021), 
society has already adopted earables well into people’s everyday lives, and they are not 
as surprising and uncertain technologies as, for example, smart glasses bringing about 
visual augmented reality. 

The outcomes of this research have wide-ranging practical implications across various 
domains, including the automotive industry, transportation services, and driver training 
programs. The accurate tracking of head movements can enhance the effectiveness of 
existing driver assistance technologies, paving the way for safer and more reliable 
autonomous vehicles. Moreover, the insights gained from this study can be leveraged to 
develop personalized coaching systems for drivers, thereby promoting safer driving 
practices. This study also seeks to contribute to the research on earables, which is still in 
early stages as has been noted by Powar & Beresford (2019). 

In this thesis work, I aim to investigate the feasibility and effectiveness of utilizing 
wearable smart devices and machine learning pattern recognition for monitoring a car 
driver’s condition and enhancing traffic safety. More specifically, I am seeking to use 
machine learning on the accelerometer and gyroscope data collected from eSense earbuds 
to determine the head orientation of the person in a moving vehicle. Future research and 
development can use the head orientation information to detect patterns related to the 
driver's well-being and condition and to produce responses to anomalous behaviors. 

This study answers the following research question: 

RQ1 How to effectively classify the head orientation of a car driver into left, 
straight, and right using data from eSense device? 

To answer this research question, several sub-questions (SUB-RQs) have been identified: 

SUB-RQ1.1 What machine learning algorithm would be suitable for addressing 
this classification problem? 

SUB-RQ1.2 How to clean the data before utilizing it for machine learning 
purposes? 
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SUB-RQ1.3 How to transform the data to improve the prediction capabilities of 
the models? 

This thesis is structured as follows: chapter 2 provides an overview of the existing 
literature related to earables and head movement tracking through Inertial Measurement 
Unit (IMU) sensors, along with driver monitoring systems. Chapter 3 presents the 
research approach adopted in this thesis. Chapter 4 presents the findings and the analysis 
conducted, alongside responses to the research questions. Chapter 5 discusses the entire 
study, challenges, contributions, limitations. Lastly, chapter 6 draws the conclusion for 
the thesis. 
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2. Related Work 

In the scope of this thesis, my particular focus lies on identifying head direction using 
sensor data obtained from accelerometer and gyroscope embedded in eSense device. 
Therefore, the related work chapter primarily centers on exploring earables and the 
landscape of their applications. In this section, I also delve into an exploration of various 
research endeavors focused on tracking head movements for diverse purposes, employing 
different methodologies. Lastly, I review the existing literature that focuses on driver 
sensing and explores various tools and approaches employed to identify hazardous 
driving behaviors. 

My objective is to gain insights into the array of head movement tracking and driver 
monitoring techniques and identify the gap in the literature. Furthermore, I aim to uncover 
the challenges encountered during head movement tracking and driver monitoring, along 
with the corresponding strategies employed to address them. By understanding these 
challenges and solutions, I aspire to proactively mitigate their impact or reduce their 
potential consequences in my work. Through this comprehensive investigation, I seek to 
establish a foundation for the successful implementation of my own head movement 
tracking and driver monitoring system while leveraging the valuable lessons and 
experiences derived from prior research efforts. 

2.1 Earables 

The age of earables has emerged (Min, Mathur, et al., 2018a). Earables, ear-worn 
wearable devices (Powar & Beresford, 2019), are a relatively recent concept and have 
significant untapped potential in various research areas (Ferlini et al., 2019). Through 
their placement within the ear, earables have the capability to track not only body 
movement but also specific motions of the head and mouth (Kawsar, Min, Mathur, 
Montanari, Acer, et al., 2018). 

Röddiger et al. (2022) have conducted a systematic literature review on earables and have 
devised a taxonomy of different phenomena that can be detected within, on, or in the 
vicinity of the ear. Carrying out in-depth analysis, Röddiger et al. (2022) discovered 13 
primary phenomena that serve as the basis for all other related phenomena and discuss 
diverse sensors and sensing principles employed to identify these phenomena. Röddiger 
et al. (2022) then categorize the phenomena into four main areas, namely (i) physiological 
monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication 
and identification. This categorization greatly influenced me while constructing this 
particular section. I made an effort to classify each application of earables and their 
corresponding reviewed articles into their respective categories. 

Drawing inspiration once again from Röddiger et al. (2022), Figure 1 presents a summary 
of the main domains, illustrating various phenomena and the corresponding sensors 
employed for their capture. 
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Figure 1. Earable sensing overview. 

In this section, I individually explore the domains presented in Figure 1, thoroughly 
examining studies that I have identified as belonging to each domain. I also provide useful 
insights and details regarding each study. 

2.1.1 Health Care and Well-Being 

Earables have gained significant popularity in the healthcare and well-being field, being 
extensively utilized to address three key dimensions of well-being: physical, mental, and 
social well-being. (Kawsar, Min, Mathur, Montanari, Acer, et al., 2018). 

Researchers have shown considerable interest in dietary monitoring within the realm of 
physical health, as evidenced by the abundance of literature dedicated to this topic. The 
initial phase of dietary monitoring involves detecting eating events, which can be 
accomplished through either an audio-based or motion-based detection approach 
(Röddiger et al., 2022). In a study conducted by Lotfi et al. (2020), the researchers 
examined how effectively the eSense device’s audio and inertial sensors can detect 
chewing events, and to compare the accuracy of each sensing modality. They reported 
that both audio-based and motion-based approaches for detecting eating events are 
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susceptible to signal noise caused by unrelated body movement (Lotfi et al., 2020). In a 
similar study, Bi et al. (2018) introduced Auracle, dietary monitoring system based on 
earable technology that is designed to automatically recognize the specific timing and 
duration of a person’s eating activities. The Auracle seems to be an audio-based eating 
detection system, as it employs a contact microphone positioned behind the ear to capture 
chewing sounds, which are subsequently processed by a customized analog/digital circuit 
board (Bi et al., 2018). Simultaneously, Min, Mathur, et al., (2018b) demonstrated an 
audio-kinetic model that utilizes earable devices to monitor the dietary intake of users. 
The model uses acoustic data, gained from earables, to detect activities related to the 
intake of food, chewing, and drinking (Min, Mathur, et al., 2018b). 

In addition to their application in dietary monitoring, earables are also utilized in various 
other facets of physical well-being. By incorporating an accelerometer and gyroscope, 
which enables them of capturing head and neck movement, earables can diagnose 
Forward Head Posture and provide corrective posture feedback when identifying 
instances (Radhakrishnan et al., 2021). Furthermore, earables can be used to monitor 
respiratory rates using their built-in IMUs (Roddiger et al., 2019). Moreover, due to the 
correlation between jaw movement and deformations in the shape of the ear canal, the 
use of IMU sensors within the ear canal can enable the detection of jaw clenching and 
teeth grinding (Roddiger et al., 2019). 

Researchers seem to prioritize physical well-being over mental and social well-being, 
resulting in a lack of comprehensive studies dedicated to these domains. Regarding social 
well-being, Min, Montanari, et al. (2018) introduced a cross-modal approach that 
combines audio and physiological data obtained from multi-sensory earables to “detect 
speaking activities, stress and emotion, and participants in the conversation”. The system 
consists of three models, BLE, motion, and audio. The BLE model identifies a potential 
gathering of individuals engaged in conversation and determines the participants 
involved. The motion model detects speaking activities, i.e., determining whether a user 
is engaged in speech or not. The audio model identifies the possibility of a conversation 
taking place (Min, Montanari, et al., 2018). A similar study, but in the context of mental 
well-being, was carried out by Purabi et al. (2019). In their paper, the authors proposed a 
system that leverages earables and machine learning algorithms to develop a real-time 
solution for emotion and trait identification using head movement data. 

2.1.2 Human Activity Recognition 

Movement detected around the ear can be organized into separate categories, providing 
valuable insights into a user’s posture, movement patterns, and the specific activities they 
are involved in (Röddiger et al., 2022). Several studies explore the application of earables 
as a means of collecting comprehensive data on user movement and their involvement in 
specific activities. 

In a study carried out by Hossain et al. (2019), the researchers used accelerometer sensor 
built in eSense device to detect different types of activities associated with head and neck 
motion, including speaking, eating, headshaking, nodding, staying, and walking. They 
explored data classification using both machine learning (such as Support Vector 
Machine, Random Forest, and K-Nearest Neighbor algorithms) and deep learning 
(Convolutional Neural Network) techniques and achieved a high level of accuracy in 
recognition. Similarly, Min, Mathur, et al. (2018a) achieved 0.80 accuracy in detecting 
head motion (nodding, shaking) and a 0.95 F1-score in accurately recognizing movement 
states of a user (stationary, walking, stepping up, stepping down) through the combined 
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use of accelerometer and gyroscope data, employing a k-Nearest Neighbor classifier. To 
assess a user’s understanding of an online lecture, Kim et al. (2021) employed the 
accelerometer and gyroscope data from an earable device to classify whether the user was 
looking at a monitor or down at the desk. Impressively, they achieved F1-scores of 
approximately 0.92 and 0.90 respectively for these classifications. 

The studies mentioned earlier explore the potential of earables in successfully identifying 
diverse activities (Röddiger et al., 2022). However, the capabilities of earables extend 
beyond the identification of simple activities. They also have the ability to discern facial 
expressions. Lee et al. (2019) applied inertial signals captured by an ear-worn device to 
detect two significant facial expressions: smile and frown. They developed three distinct 
learning models, namely hidden Markov models, deep neural networks, and shallow 
models, for automated identification of these facial expressions. Notably, the hidden 
Markov model achieved an impressive F1-score of 0.85 (Lee et al., 2019). Similarly, 
Laporte et al. (2021) used an end-to-end deep neural network to classify five verbal and 
non-verbal activities (nodding, speaking, eating, staying, and head shaking) with an F1-
score of 0.82. 

In addition to detecting movement through an accelerometer and gyroscope, 
EarphoneTrack goes a step further by utilizing both wired and wireless earphones for 
acoustic motion tracking. This innovative approach enables real-time determination of 
users’ movement with an exceptional level of accuracy, measured in millimeters (Cao et 
al., 2020). The researchers devoted their efforts to tackle various challenges associated 
with this methodology, such as addressing self-interference in wired earphones, managing 
frequency offset in wireless earphones, and effectively utilizing the limited bandwidth 
available for acoustic signals (Cao et al., 2020). 

According to Röddiger et al. (2022), navigation can also be accomplished by utilizing the 
inertial sensors within an earable device to precisely monitor users’ position and 
orientation in space and time, eliminating the need for dependency on a GPS connection. 
In this regard, Ahuja et al. (2021) introduced PilotEar, “the first end-to-end earable-based 
inertial navigation system” that effectively gathers motion data from a 9-axis IMU 
(comprising an accelerometer, gyroscope, and magnetometer) embedded in an earable 
device, and transmits this data via BLE for real-time monitoring and analysis. The average 
tracking drift is reported as 0.15 ms for a single earable device and 0.11 ms when 
combining data from both earables (Ahuja et al., 2021). Prior to their study, Matsumura 
& Okada (2019) also explored navigation through earables, but with a different focus. 
The researchers aimed to assess the effectiveness of three-dimensional audio cues 
delivered through earable devices in guiding blindfolded individuals to change their 
walking direction. The results demonstrated that the acoustical manipulation successfully 
minimized deviations and helped maintain a straight walking trajectory in both subtle and 
overt conditions (Matsumura & Okada, 2019). Notably, there is a significant distinction 
between the approaches of these two studies: the former being a kinetic system and the 
latter an acoustic system. 

In addition to their role in classifying physical activities, earables have the potential to 
contribute to the improvement and management of a user’s fitness and health (Röddiger 
et al., 2022). In their study, Prakash et al. (2019) provided evidence of the initial 
feasibility of step counting at the ear, showcasing accurate tracking across various 
walking speeds, including very slow, slow, normal, and running, with a remarkable 95% 
accuracy rate. Furthermore, they proposed a method for detecting and measuring jumping 
as an indicator of a user’s physical health (Prakash et al., 2019). In a similar context, 
earables also have the capability to offer users feedback during physical activities and 
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moreover, evaluate their performance afterward (Röddiger et al., 2022). Radhakrishnan 
& Misra (2019) investigated the utilization of earable devices, commonly used by 
individuals at gyms, to offer personalized and quantified insights and feedback to users 
during their workout routines. Their proposed system involves individuals using earables 
to monitor their activity and physiological context, while the gym equipment is fitted with 
cost-effective IoT sensors to track the motion dynamics of each piece of equipment 
(Radhakrishnan & Misra, 2019). 

2.1.3 Human-Computer Interaction 

The earable platform offers a fascinating opportunity to explore innovative and distinctive 
ways of interaction between humans and computers, thanks to its abundant and varied 
sensing capabilities (Röddiger et al., 2022). Over the past few years, researchers have 
shown significant interest in examining the potential of earables to detect various input 
modes. 

One of the most recent works in the field is carried out by Srivastava et al. (2022). In their 
demo, the researchers presented a technology that employs twin-IMU, positioned behind 
the ear and on the Temporomandibular Joint, to detect commands that are not verbally 
expressed. Their proposed system aims to extract jaw motion signals, identify phoneme 
locations within commands, and reconstruct words using an innovative algorithm. Initial 
findings demonstrated that the suggested system achieves a word recognition accuracy of 
~ 0.95 under noise-free conditions, and ~ 0.93 and ~ 0.91 accuracy during head nodding 
and walking, respectively. An earlier study by Xu et al. (2020) also explored a novel 
approach to identifying input by utilizing the integrated components of standard 
earphones. They introduced EarBuddy, a real-time system that uses the microphone 
embedded in earphones to detect various tapping and sliding gestures on and around the 
ear, achieving an accuracy rate of 0.90 by using deep learning classification techniques 
based on mel spectrograms. 

The studies discussed employ input methods that involve either the mouth (mouth-based 
interaction) or touching areas near the ear (Röddiger et al., 2022). However, according to 
Röddiger et al. (2022), the motion and direction of the head also offer a hands-free method 
of input when the hands are occupied or inaccessible. 

Odoemelem et al. (2019) used head movements, captured by eSense device, as a means 
to manipulate a robot arm. Their proposed system undergoes several procedures during 
its operation. The acceleration data captured by the IMU is converted from the earth’s 
reference frame to the IMU body frame. To address unwanted noise and drift in the 
accelerometer and gyroscope data, filtering techniques like low-pass and high-pass filters 
are implemented accordingly. Calibration is conducted to accommodate variations in 
users’ individual head orientations, and mapping is utilized to associate the estimated 
pitch and roll angles with the corresponding pitch and yaw movements of the robot arm 
(Odoemelem et al., 2019). In parallel with their study, Katayama, Mathur, Van Den 
Broeck, et al. (2019) explored the potential of earable devices for enabling more context-
aware and user-centric conversational agents through the tracking of sound, movement, 
and proximity. they introduce a situation-aware conversational agent that dynamically 
modifies its conversational style, tone, and volume according to the user’s emotional 
state, surrounding environment, social context, and level of activity. This adaptation is 
achieved by analyzing real-time speech patterns, ambient sounds, and body movements, 
obtained from eSense device (Katayama, Mathur, Van Den Broeck, et al., 2019; 
Katayama, Mathur, Okoshi, et al., 2019). 
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The mentioned studies conducted by Odoemelem et al. (2019) and Katayama, Mathur, 
Van Den Broeck, et al. (2019) adopt input mechanisms that utilize head gestures and 
direction, enabling interaction without the need for hands (Röddiger et al., 2022). 

2.1.4 Authentication and Identification 

The classic approach to securing sensitive information on mobile devices revolves around 
utilizing the user’s biometric data, such as fingerprints, for protection (Röddiger et al., 
2022). Several studies have explored the potential of earables for authentication and 
identification purposes. 

The study carried out by Clarke et al. (2020) is one of the notable contributions in the 
means of identification through earables. In their paper, Clarke et al. (2020) introduced a 
sensor fusion approach that correlates the motion of an earable, measured by its 
accelerometer, with the head movement of a user in the camera view to provide private 
audio channels in public settings. In their laboratory experiment, they examined seven 
distinct movements performed at three different speeds. The results demonstrated an 0.86 
accuracy in successfully identifying an individual from a group of 10 participants. Prior 
to their work, Gao et al. (2019) explored the characteristics of the sound of the ear canal 
to develop an earable biometric authentication method. They proposed EarEcho 
authentication system that uses the earpiece speaker and microphone embedded in the 
earphone to enable acoustic sensing, then it utilizes a two-class Support Vector Machine 
classifier to perform the authentication task. By implementing a proof-of-concept 
prototype and conducting tests on 20 participants in different scenarios, the researchers 
found that EarEcho achieved high recall and precision rates for both one-time and 
continuous authentication. 

Despite both mentioned studies utilizing earables for authentication and identification 
purposes, there is a major difference in their approaches. The system introduced by Clarke 
et al. (2020) is motion-based, relying on tracking movements for identification, while 
EarEcho by Gao et al. (2019) is shape-based, leveraging distinctive ear biometrics for 
authentication (Röddiger et al., 2022). Therefore, the sensors used in these systems differ. 
The former employs an accelerometer capable of detecting motion, whereas the latter 
utilizes a speaker and microphone for acoustic sensing. 

2.2 Head Movement Tracking 

In this section, studies that specifically employ IMU sensor data to track head movement 
for various purposes are explored. 

One of the latest works in the domain is the study conducted by Han et al. (2023). In their 
paper, the researchers introduce HeadMon, a state-of-the-art system that predicts riding 
maneuvers to improve safety in micro-mobility, especially for riders wearing helmets. 
HeadMon includes an IMU integrated into the helmet, allowing it to monitor riders’ head 
motion and predict their following actions (Han et al., 2023). In parallel with their work, 
Zhu et al. (2023) propose CHAR, a system that uses IMU data to detect composite hea-
body movements. However, there is a slight difference in the placement of the IMU 
between these two studies. The latter study employs an IMU integrated into the eSense 
device, whereas the former study incorporates an IMU within a helmet. Both studies 
employ machine learning techniques, but they take different approaches. In CHAR, Zhu 
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et al. (2023) develop a multi-task learning network with notably high accuracy rates, 
while in HeadMon, Han et al. (2023) focus on utilizing a deep learning architecture. 

Similar to Zhu et al. (2023), Ferlini et al. (2019), Odoemelem et al. (2019), Radhakrishnan 
et al. (2021), Kim et al. (2020), and Purabi et al. (2019) have all utilized eSense in their 
respective studies to monitor head movements. However, their purposes and approaches 
vary significantly. Table 1 presents a comparison of methodologies and applications 
employed in various studies focusing on head movement tracking. 

Table 1. Methodologies and applications for head movement tracking in different studies. 

Reference Device Used Method Application 

Ferlini et al. (2019) eSense complementary filter detecting visual attention 

Odoemelem et al. (2019) eSense complementary filter controlling a robot arm 

Purabi et al. (2019) 
eSense used the Auto-Weka 

package 
identifying physical 
traits and emotions 

Kim et al. (2020) 

eSense 

random forest 

recognizing the 
perceived level of 
understanding online 
lectures 

Radhakrishnan et al. 
(2021) 

eSense 
custom algorithm detecting FHP 

Han et al. (2023) 
IMU within a 
helmet 

HeadMon model (deep 
learning) 

predicting riding 
maneuvers 

Zhu et al. (2023) 
custom earables 

multi-task learning 
detecting composite hea-
body movements 

Ferlini et al. (2019) and Odoemelem et al. (2019) employ a complementary filter 
technique to accurately track head movements using data from an eSense earbuds. The 
left earbud is equipped with an accelerometer and gyroscope. The choice of the 
complementary filter in both studies was motivated by specific characteristics of these 
sensors. The accelerometer tends to be sensitive to high-frequency noise, requiring the 
implementation of a low-pass filter to mitigate it. On the other hand, the gyroscope suffers 
from drifting over time due to integration, necessitating a high-pass filter. Considering 
these factors, the accelerometer readings, expressed in degrees, and the gyroscope rate 
readings in deg/sec, undergo effective processing through the complementary filter 
(Ferlini et al., 2019; Odoemelem et al., 2019). 

However, tracking head movements using a device that lacks a magnetometer presents a 
difficult challenge due to the absence of a reference point for sensor recalibration and 
estimating the 3D orientation of the tracked object (Ferlini et al., 2019). To address the 
issue arising from the lack of a magnetometer, Ferlini et al. (2019) instruct the study 
participants to wear a pair of left earbuds during the experiments, then they combine and 
average data from both earbuds using a 200ms window. The researchers record head 
movement data in the participants’ ideal condition, standing in silence, as a baseline. They 
then examine how chewing and talking affected the accelerometer and gyroscope signals. 
To detect head motion, they first switch to the quaternions coordinate system to solve the 
problem of gimbal lock, then they employed a complementary filter. The findings of this 
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study reveal that eSense can accurately detect head motions within a few degrees. 
However, the accuracy decreased when participants engaged in talking or chewing 
(Ferlini et al., 2019). 

While Odoemelem et al., (2019) also utilize a complementary filter for head motion 
detection, their study diverges in terms of both purpose and approach from that of Ferlini 
et al. (2019). Odoemelem et al., (2019) present an innovative and economical method for 
real-time control of a robot arm using head movements. The proposed system by 
Odoemelem et al. (2019) undergoes several procedures during its operation. The 
acceleration data captured by the IMU is converted from the earth’s reference frame to 
the IMU body frame. To address unwanted noise and drift in the accelerometer and 
gyroscope data, filtering techniques like low-pass and high-pass filters are implemented 
accordingly. Calibration is conducted to accommodate variations in users’ individual 
head orientations, and mapping is utilized to associate the estimated pitch and roll angles 
with the corresponding pitch and yaw movement of the robot arm (Odoemelem et al., 
2019). 

Another noteworthy study investigating head movement is conducted by Radhakrishnan 
et al. (2021). However, in contrast to the previously discussed studies that primarily rely 
on the complementary filter approach for head motion tracking, Radhakrishnan et al. 
(2021) implement their own custom algorithm for detecting head motion and incorporate 
a low-pass filter to mitigate noise interference. Their objective is to identify and rectify 
inaccurate head positions that may lead to the development of FHP. They illustrate how 
the gyroscope and accelerometer sensors embedded in earables can effectively recognize 
instances when the head is excessively tilted forward for extended periods exceeding 30 
seconds. Subsequently, the device produces appropriate audio feedback to correct the 
posture. Through a preliminary study on a limited scale, they demonstrate the potential 
of their method by achieving exceptional levels of accuracy, with a precision rate of 100% 
and a recall rate of 89%. 

Conversely, Kim et al. (2020) and Purabi et al. (2019) focus on developing machine 
learning models to achieve the objective of tracking head movement. Purabi et al. (2019) 
explore monitoring of head movement using earables to examine the relationship between 
head movement and human attributes as well as emotional conditions. However, they do 
not delve into the specific technical aspects of machine learning algorithms or the 
utilization of eSense devices. The researchers adopt a distinct approach by employing the 
Auto-WEKA package within the Weka software to automatically identify the most 
suitable classification or regression algorithm based on the provided training dataset 
(Purabi et al., 2019). In comparison, Kim et al. (2020) provide a more detailed overview 
of their approach. 

Kim et al. (2020) in their study aim to detect head-related behaviors using in-ear IMU 
data that correlate with online learners’ comprehension levels during virtual lectures. Kim 
et al. (2020) initially seemed to have limited knowledge regarding which head movement 
behaviors were associated with understanding online lectures. Consequently, they 
undertook a systematic approach to identify the specific head movement they were 
seeking to investigate. Kim et al. (2020) discovered that gazing at a monitor and looking 
down at the desk were the key contexts related to understanding. Subsequently, the 
researchers developed a machine-learning model using IMU signals from the earbuds to 
identify behaviors relevant to understanding. They utilized techniques such as feature 
extraction from the IMU signals in both the time-domain and frequency-domain, as well 
as employing Principal Component Analysis and a Random Forest Classifier. The 
performance of the behavior detection model was evaluated through 10-fold cross-
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validation. To address imbalanced data distribution, the synthetic minority oversampling 
technique was applied. The model demonstrated a reasonable detection accuracy, with an 
average F1 score of 0.79. Furthermore, the study reported specific F1 scores for behaviors 
of interest, including gazing at a monitor, looking down at the desk, and other identified 
behaviors (Kim et al., 2020). 

Most of the studies reviewed in this section utilize earables to monitor head movement; 
however, their objectives differ from the objective of this thesis. Specifically, the goal of 
this thesis is to track head movement for the purpose of driver monitoring. The study 
conducted by Han et al. (2023) aligns closely with the present study, yet they employ a 
distinct device; while eSense is explored in this study, they utilize an IMU integrated 
within a helmet. It is worth noting that there is currently a gap in the research as there are 
no studies that utilize earables to track head motion for driver monitoring purposes. This 
gap serves as motivation for this research in this area. 

2.3 Driver Monitoring 

Distraction and lack of focus in vehicle drivers play a crucial role in traffic accidents and 
road collisions, and there is a growing concern that this problem will increase with the 
integration of more technologies in vehicles (Regan et al., 2011). Therefore, it is 
important to develop effective systems for monitoring drivers’ behavior. 

Smartphones and wearables have gained widespread usage in monitoring drivers, as 
evidenced by several studies conducted on their effectiveness; see Table 2. 

Table 2. Systems and devices for driver monitoring in different studies. 

Reference Proposed System Device Used 

H. Jiang et al. (2021) DriverSonar Smartphones 

Yu et al. (2017) D3 Smartphones 

Chen et al. (2015) V-Sense Smartphones 

You et al. (2013) CarSafe Smartphones 

Johnson & Trivedi (2011) Driving Style Recognition Smartphones 

Fan et al. (2022) SafeDriving Wearables 

Huang et al. (2019) MagTrack Wearables 

L. Jiang et al. (2018) SafeDrive Wearables 

To identify careless driving behaviors, Fan et al. (2022) and Huang et al. (2019) use 
wearables. However, the two studies adopt different methodologies. While the former in 
SafeDriving uses data from EMG sensors embedded in smartwatches and develops a 
deep-learning model to detect abnormal behaviors (Fan et al., 2022), the latter in 
MagTrack collects data from magnetic tags worn by the car driver and develops models 
based on analysis and approximation of the collected data to classify the movements of 
the driver's hands and head (Huang et al., 2019). 
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Additionally, Jiang et al. (2018) in SafeDrive combine IMU data obtained from a 
smartphone and wrist-worn device to identify and examine instances of driver distraction. 
SafeDrive implements a semi-supervised machine learning approach to detect distracting 
activities within vehicles. To enhance the precision of detection, L. Jiang et al. (2018) 
incorporate dynamically updated classifiers through the collection of real-time gesture 
data. Furthermore, they leverage smartphone sensing to generate subtle cues that filter 
out abnormal movements and non-distracting hand gestures (Jiang et al., 2018). 

Similarly, Yu et al. (2017), Chen et al. (2015), and Johnson and Trivedi (2011) employ 
smartphones to sense diving behaviors, whilst they concentrate more on the vehicle 
condition. Yu et al. (2017) propose D3 that utilizes accelerometer and gyroscope sensors 
in smartphones to monitor driving behavior and extract distinctive characteristics, then 
trains a machine learning algorithm to create a model that can accurately identify and 
classify abnormal driving behaviors. Chen et al. (2015), on the other hand, designed V-
Sense, “a vehicle steering detection middleware”, that uses non-vision sensors available 
on smartphones to identify and distinguish different types of vehicle maneuvers for 
safety-assistance purposes. Finally, Johnson & Trivedi (2011) present an innovative 
approach that combines Dynamic Time Warping with sensor fusion on smartphones to 
identify and capture driving patterns without relying on external processing. 

Likewise, H. Jiang et al. (2021) and You et al. (2013) use smartphone sensor data to detect 
drivers’ inattention yet employ different methods. DriverSonar by H. Jiang et al. (2021) 
is an acoustic-based system that uses the microphone embedded in a smartphone for 
sensing, while CarSfae by You et al. (2013) is a camera-based system that utilizes front- 
and rear-facing cameras on smartphones human activity recognition. H. Jiang et al. (2021) 
argue that high-risk driving behaviors have unique acoustic characteristics, which serve 
as the foundation for the development of DriverSonar. On the contrary, CareSafe (You et 
al., 2013) employs computer vision to identify dangerous driving actions, specifically 
addressing the limitation of smartphones in processing video streams from both front and 
rear cameras simultaneously. DriverSonar and CarSfae both activate real-time alarms 
through smartphones when detecting dangerous driving conditions. 

Most of the previously discussed studies focused on using smartphones for monitoring 
driving behavior, while the use of wearables for the same purpose has gained attention 
only recently. However, the wearables utilized in these studies are predominantly worn 
on the wrist, such as smartwatches. Notably, no one seems to have explored the use of 
earables for monitoring driver behaviors. In this study, earables, specifically the eSense 
device, are employed to monitor and analyze driver behaviors. 
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3. Methodology 

The main research methodology of this thesis is case study. More specifically, the 
approach is a quantitative exploratory case study that aims to study the effect that car 
movements have on the classification of head orientation. The guidelines provided by 
Runeson and Höst (2009) were used as the basis for planning and carrying out the 
research. 

The next section details the case study approach. It is followed by the sections addressing 
the case description, the explored preprocessing approaches, and the included machine 
learning algorithms, respectively. The description of data preprocessing starts with the 
applied data cleaning process, which is followed by the investigated data transformation 
approaches, including the one signal processing method. One section is dedicated for the 
implementation’s technical details. Afterward, the data collection is described. It covers 
both the data collection that occurred before the thesis work as well as the data collection 
that was carried out as part of the thesis work. Finally, I conclude this chapter with the 
selected methods used for the data analysis. 

3.1 Case Study 

As Runeson and Höst (2009) explained Robson’s description of the purpose of 
exploratory case studies, they are about “finding out what is happening, seeking new 
insights and generating ideas and hypotheses for new research” (Robson, 2002, as cited 
by Runeson & Höst, 2009, p. 135). This was an applicable method for this research as I 
sought to find insight into head position tracking when there is noise present in the data. 
In my case, the noise is brought by the car movements that affect both the accelerometer 
and gyroscope measurements. 

Case study is an empirical method aimed at investigating contemporary phenomena in 
their context (Runeson & Höst, 2009, p. 134). The method allows for gaining insight into 
the desired aspects of the targeted case within a realistic context. The benefit of realism 
comes at the cost of controllability of other variables brought by the context, which 
reduces the generalizability of the results (Runeson & Höst, 2009). All across the study, 
data is collected about the relevant aspects of the case so that statistical analyses can be 
carried out at the end (Wohlin et al., 2003). Although case study can be depicted as a 
merely observational study (Wohlin et al., 2003), my approach takes a slightly more 
modern perspective that overlaps with design science research. The overlap comes from 
the part that in design science research the researcher designs and studies an IT artifact in 
context (Wieringa, 2014). However, the goal of this thesis is not to provide a new artifact 
that can solve the problems addressed by the research questions. Rather, the goal is to 
map and evaluate the effectiveness of machine learning and signal processing solutions 
in tracking head movements despite the noise created by car movements. 

Robson (2002, as cited by Runeson & Höst, 2009) also identified three other purposes for 
case studies: descriptive, explanatory, and improving. As the name suggests, a descriptive 
case study aims to characterize the targeted situation or phenomenon. The difference with 
the explanatory approach is that the explanatory approach is looking for reasons behind 
and affecting the case. The improving case studies, as expected, seek to provide 
improvements to the case from a desired perspective (Robson, 2002, as cited by Runeson 
& Höst, 2009). In addition to these approaches, Klein and Myers (1999, as cited by 
Runeson & Höst, 2009) detail positivist, critical, and interpretive takes on the 
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methodology. The positivist case study takes a quantitative empirical approach by 
forming evidence via measurements and hypothesis testing to generalize results from the 
case to the target population. The critical case study approach seeks to identify “different 
forms of social, cultural and political domination that may hinder human ability” (Klein 
& Myers, 1999, as cited by Runeson & Höst, 2009, p. 135). Finally, the interpretive case 
study gains insight into the case using the participants’ interpretations of their context 
(Klein & Myers, 1999, as cited by Runeson & Höst, 2009). 

According to Runeson and Höst (2009), case studies were initially used mainly for 
exploration, and the descriptive goals were only targeted whenever the cases were more 
unique. 

3.2 Case Description 

The case in this case study consists of head movement data collected from eSense 
earbuds. The movement data is a sequential time series data which includes three axes of 
accelerometer and three axes of gyroscope. There is so called stationary data that is 
collected from a person wearing the eSense earbuds, sitting still, and moving their head 
from left to right and back again. The orientation of the head is labeled into three 
categories: left, straight, and right using a smartphone application. Similarly, the noisy 
data is also labeled but the difference is that it is collected from a person driving a car. 
The movement of the car brings noise to the collected data, which is expected to hinder 
accurate classification. The noisy data is also more heavily imbalanced as the driver of 
the vehicle had mostly faced their head forward during the data collection. The data is 
described in more detail in section 3.6.1 and the results gained directly from this data are 
explained in section 4.1. 

The main use case of the case is to provide an effective head movement tracking solution 
targeting drivers of vehicles. Starting small by simple classification can be useful for 
future studies seeking to build more logic on top of the classifiers. 

The approach for solving the classification problem is machine learning. This entails 
selecting machine learning algorithms to be used as well as planning and developing the 
data cleaning and transformation pipelines. The data cleaning and transformation 
techniques are discussed in section 3.3, and the selected machine learning algorithms are 
introduced in section 3.4. 

As the amount of collected data is low, it was worth exploring the utilization of k-fold 
cross validation. As Dalianis (2018) explains it, in k-fold cross validation the dataset is 
divided into k folds where all but one are used for training and the last one for testing. 
This is repeated k times so that each fold is used for testing once, and an average is 
calculated for the results of these folds (Dalianis, 2018). 

As part of the data cleaning, I have explored leaving out samples with missing values, 
dropping timestamp and coordinate attributes to focus on the accelerometer and 
gyroscope, and undersampling the largest category when using the noisy data. Data 
transformation efforts include splitting the data into constant length sequences of samples. 
This allows smoothening of the dataset as it increases the number of samples by a 
magnitude and decreases the differences between data samples. 
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3.3 Data Preprocessing Approaches 

Multiple data cleaning and transformation approaches were experimented with during the 
development effort. Not all of the approaches described in this section were applied to 
the data every time, however. For example, it made no sense to balance the noisy data 
every time before calculating metrics for it using a model trained with the stationary data. 
The noisy dataset provides a realistic distribution of labels, which the trained models 
should be able to handle if the model is to have any real-world generalizability. This 
section will go through the explored data cleaning and transformation methods. 

3.3.1 Data Cleaning 

As the goal of the work was to explore the machine learning models’ capability to predict 
the head orientation based on accelerometer and gyroscope measurements’, it made sense 
to drop the id, longitude, and latitude columns from the data. As the data was imported 
with sample sequence intact, there was no need to keep the timestamp column either so it 
was also dropped as part of the data cleaning process. The datasets also contained a lot of 
missing samples, which could be seen as rows with zeros for all values. These samples 
were discarded before using the data as they were clear outliers that did not provide any 
value and there was no clear way to replace them with real values without impacting the 
realness of the data. 

3.3.2 Undersampling 

To make more generalizable and useful models from the noisy dataset, the data needed to 
be balanced before training any models with it. The main approach for balancing the 
dataset was randomized undersampling, which means the size of the dataset was reduced 
to a total of 6,915 samples with a distribution ratio of 1:1:1 meaning 33% percentage per 
label. Undersampling was chosen instead of oversampling as the small dataset size could 
bring an unacceptable amount of bias to the models if samples were directly duplicated 
meaning the generalizability would suffer a lot. In addition, generating random noise to 
the duplicated samples would reduce the realism of the data, which in turn might cause 
the models to learn patterns not visible in real world data. With limited data to validate 
the models, oversampling was not adopted as an approach to balance the datasets. 

Two main approaches were chosen for the data transformation. First, a sequencing 
algorithm was developed for splitting the data into more consistent sequences. Second, 
data filtering algorithms were applied to the data both to reduce the dimensions and to 
highlight the orientational value of the data for the machine learning models to harness. 

3.3.3 Data Sequencing 

The developed sequencing algorithm looped through the data samples, building a list of 
them until the label changed. Whenever the label changed, the build list was looped 
through and split to match a desired window length with a desired overlap. Window sizes 
of 5, 10, 15, and 20, and overlaps of 10 were explored. The usage of overlap turned out 
to be difficult as the sequencing algorithm depended on the sequentiality of the data, and 
splitting the data into training and validation sets randomly broke that dependency. The 
data could not be split after the sequencing as that would mean the overlap brings parts 
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of the validation set into the training and testing data and the other way around. Therefore, 
the overlap was not utilized. 

In more technical detail, the data was transformed into a three-dimensional Numpy array. 
However, as the used machine learning algorithms were not able to process this type of 
data, the dimensions had to be reduced back to two by combining the sequences within 
the windows of samples. This means the array size of 3267x10x6 (sample sequences 
times the window size of 10 times the number of columns, which translates to Ax, Ay, 
Az, Gx, Gy, and Gz) for the stationary data was transformed into 3267x60, where the 
accelerometer and gyroscope measurements followed each other sample by sample 
forming one list. The labels were handled separately in another Numpy array to keep the 
data format complexity low. 

3.3.4 Complementary Filter 

It was expected that machine learning by itself may not be a sufficiently efficient solution 
for the classification task given the added challenge of potential noise in data. Therefore, 
the signal processing options were investigated and explored as part of this study. The 
main signal processing algorithm included in the data transformation process is the 
complementary filter (Higgins, 1975) which estimates the orientation of the sensor based 
on sequential gyroscope and accelerometer data. 

The filter was adapted into the code in two ways: As a standalone transformation block 
that works on the data sample by sample and integrated as a configurable option for the 
sequencing algorithm. However, it was quickly noted that the filter reduced the amount 
of data drastically and halved the metrics scores, so it was dropped out completely. Either 
there was an implementation error, or the filter did not work at all with the machine 
learning algorithms or the data. 

3.4 Machine Learning Algorithms 

Three machine learning algorithms were used for exploring solving the classification task. 
These are the Random Forest Classifier (RFC) (Breiman, 2001), Logistic Regression 
(LR) (Cox, 1959), and K-Nearest Neighbour (kNN) (Peterson, 2009). The use of Support 
Vector Machines (SVM) (Cortes & Vapnik, 1995) was also explored, but the training of 
the model took unreasonably long, i.e., over one hour, using the available hardware so it 
was left out of the thesis work for practicality reasons. These algorithms were selected as 
they are suitable for classification tasks, they are capable of supervised learning, and their 
implementations were readily available. In addition, at least the SVM, RFC, and kNN 
algorithms can be considered to be popular shallow classifiers (Lee et al., 2019). 

3.4.1 Random Forest Classifier 

RFCs consist of decision tree classifiers as they use a large collection of the latter to 
produce predictions for the class, and finally picking the most common one out of the 
results (Breiman, 2001). However, it is also possible to use random forest for regression 
(Fawagreh et al., 2014). The decision tree classifiers are tree-structured, and they produce 
a prediction for a class when given an input (Breiman, 2001). This is handy as the slightly 
differently built decision trees have different if-else conditions and therefore they can 
provide different logic for choosing the predicted class. During prediction the tree is 
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traversed from the top towards the leaves at the bottom, checking the conditions one by 
one and proceeding with the branch that the condition is true for. Using multiple trees to 
vote on the best guess for the label offers more varied approaches, which in turn mitigates 
any singular biases and faults present within the individual trees’ classification logic. 

The logic behind the random forest classification is straightforward. Each trained decision 
tree is used to produce a classification, and finally, the most common output is given as 
the final class. The decision trees work by starting with the top of the tree condition and 
checking the given sample against it. The next node is selected based on whether the 
condition is True of False. Reaching a leaf node in the tree means a result has been reached 
and the class associated with the leaf is the output of the tree. 

It must also be considered how these random forests are constructed. This process is 
depicted in pseudo-code Algorithm 1 (adopted from Fawagreh et al., 2014). In short, the 
number of trees to be trained for the forest N, the training dataset S, and the features F are 
given to the function, and it will return the list of trained decision trees, i.e., the random 
forest. The bootstrap sampling is used to gain variance in the tree generation logic. By 
considering the features of the chosen sample, the best split feature is determined along 
with the condition border value, which separates the follow-up branches. By looping 
through this node building, more and more of the instances are covered by the branches 
of the tree. When all samples are classified, the tree is complete. 

Algorithm 1. Random forest formation algorithm (adopted from Fawagreh et al., 2014). 

Function random_forest(N, S, F):        (1) 
    RF <- 0 
    for i = 1 -> N: 
        Ti <- Empty decision tree 
        do 
            Sample S out of all features F using Bootstrap sampling 
            Fs <- Create a vector of the S features 
            B(Fs) <- Find best split feature 
            Create a new node in Ti using B(Fs) 
        while not all instances covered 
        Append Ti to RF 
  return RF 

3.4.2 Logistic Regression 

LR is the oldest of the selected approaches, and there is a lot of literature utilizing it for 
solving a wide variety of tasks. The algorithm works by estimating the probabilities that 
a given sample belongs to a class (Géron, 2019, p. 142). The binary classifier form checks 
whether the likelihood of belonging to the positive class exceeds the threshold of 50% in 
which case it would be labeled as such. Similarly, reaching a likelihood of below 50% 
labels the sample as part of the negative class. This point is called the decision boundary 
(Géron, 2019, p. 142). 

In practice, LR works much the same as linear regression in that it computes a weighted 
sum of the input features except that it provides the results of the regression to a logistic 
function and returns the results of that. This function is a sigmoid function, and its 
definition can be seen in Equation 1 (Géron, 2019, p. 142). 
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Equation 1. Logistic function for estimating probability for positive class (Géron, 2019, p. 142). 

 
𝜎(𝑡) =  

1

1 + exp (−𝑡)
 (1) 

For multiclass classification, it is possible to either train multiple binary classifiers or to 
use softmax regression (Géron, 2019, p. 146). It is also possible to use optimization 
algorithms such as the one described by Liu & Nocedal (1989) as solvers for LR. Their 
algorithm improves upon the Broyden-Fletcher-Goldfarb-Shanno algorithm by reducing 
the overhead caused by memory needs using approximation. The Limited-Memory BFGS 
is a quasi-Newton method for solving large scale optimization problems (Liu & Nocedal, 
1989). This is the default solver used by the Scikit-Learn library, so it is the one that has 
been used in this work. According to the Scikit-Learn library’s documentation, the 
algorithm is able to handle many kinds of training data at the cost of decreased 
performance with imbalanced datasets (Pedregosa et al., 2011). 

3.4.3 K-Nearest Neighbour 

The kNN classification algorithm has its roots in 1951 when “Fix and Hodges introduced 
a non-parametric method for pattern classification” (Peterson, 2009). It has since been 
improved by numerous people as the formal properties of the algorithm were investigated 
and defined. In its simplicity, the logic of kNN is that first one sample is picked from each 
different class to be predicted, and then the training begins by picking more and more 
new samples. Each new sample gets classified with the label represented by the majority 
of already classified samples within the K number of nearest samples. The distance to the 
neighbouring samples is calculated using Euclidian distance in the multidimensional 
space (Peterson, 2009). The equation for calculating the Euclidian distance in 
multidimensional space is provided as Equation 2 (Tabak, 2014, p. 150). 

Equation 2. Calculation for Euclidian distance in multidimensional space (Tabak, 2014). 

 𝑑(𝑝, 𝑞) =  (𝑝 −  𝑞 ) + (𝑝 −  𝑞 ) + ⋯ + (𝑝 −  𝑞 )   (2) 

 

3.5 Implementation 

The machine learning solution was developed using Python 3 in a Jupyter Notebook. The 
data was imported from CSV files, and the noisy car data and clean sitting still data were 
separated into different datasets via file name based filtering. All the data files contained 
missing samples that had a correct sequential ID number but for which all data column 
values were 0. 

The Jupyter Notebook was written to be configurable. One cell was written to contain all 
of the global constants, which could then be easily altered to adjust which dataset is used, 
how it is cleaned and transformed, which machine learning algorithms are used, and if 
the models are going to be trained or if the previously trained models are used. This 
simplified the process as it was easy to train the models using an undersampled dataset, 
and then test the models using a different dataset without using undersampling. 
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Each run of the notebook produced metrics to be collected. The number of samples in the 
chosen dataset was one of the most common ones. The number of samples depended on 
whether noisy or stationary dataset was used, if undersampling was applied to it, and how 
many samples were included in a sequence as part of sequencing if sequencing was used. 
In addition, each tested model produced many metrics for evaluating the effectiveness of 
the model on the test data. These data were collected for the analysis of this study. 

The data preprocessing was handled using Pandas and Numpy libraries, visualization was 
done using matplotlib and seaborn, and the machine learning specific algorithms, metrics, 
and model tuning functions were imported from the Scikit-Learn library. The Scikit-
Learn was selected as it is considered easy to use and its implementations of the 
algorithms are considered efficient (Géron, 2019). 

3.6 Data Collection 

This chapter describes how data collection was carried out in this thesis work. The data 
collection for the machine learning models took place before the thesis work and it was 
not carried out by the author of this thesis, so it is described here first. Afterwards, the 
data collection that was performed as part of the machine learning model development 
effort is described. This was done by the author of the thesis. The first data collection 
provided data for the machine learning, and the second data collection provided data for 
the data analysis of this thesis work. 

3.6.1 Data Collection for the Machine Learning 

The data collection for training and testing the machine learning models occurred before 
the work was started on this thesis. The data was collected by a different person than the 
author of this thesis work. 

The data was collected using wireless stereo eSense earbuds. Kawsar, Min, Mathur, 
Montanari, Acer, et al. (2018) describe eSense as “an open and multi-sensory in-ear 
wearable platform for personal-scale behaviour analytics”. The purpose of eSense is to 
have the capability of monitoring various head- and mouth-related actions, in addition to 
observing overall body movement (Kawsar, Min, Mathur, Montanari, Amft, et al., 2018). 

There was a total of six participants. Five of them provided data for the ‘stationary’ 
dataset in which the participants sat still and moved their head between left, straight, right, 
and back again while wearing the earbuds. The data was sent from the earbuds to a mobile 
phone via Bluetooth, and they labeled the data in real time by pressing buttons in a mobile 
application. 

The sixth participant was a driver of a car, and they provided the data for the ‘noisy’ 
dataset. They did not follow the same instructions for turning the head around as the 
participants for the stationary data but rather their head moved according to the real needs 
of the traffic. A passenger was present to perform the data labeling during the drive. The 
driving took place mostly on a Finnish highway, but there were also a few intersections 
with traffic lights. 

The collected data contains 11 columns. The id number is a sequential number looping 
from 0 to 255 through the samples, unix timestamp, the three axes of the accelerometer 
(ax, ay, az), the three axes of the gyroscope (gx, gy, gz), latitude, longitude, and finally 
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the labeled direction for the sample. Due to the duplicative nature of the sequential id 
numbering, it does not provide any value for the machine learning models. The coordinate 
data can also be misleading for machine learning as the models should not be dependent 
on the location. However, it could be used to determine the direction of the movement. 

3.6.2 Data Collection for the Study 

Data was collected by the author of the thesis throughout the study as is customary for 
case studies (Wohlin et al., 2003). The machine learning solutions are the units of analysis 
in this case study. Collected data includes result metrics such as Area Under Receiver 
Operating Characteristic curves, accuracies, recalls, precisions, specificities, F1-scores, 
and confusion matrices (Dalianis, 2018; Handelman et al., 2019). These metrics are 
produced for all of the attempted approaches including variations in selected machine 
learning algorithms, applied data cleaning and transformation efforts. 

The machine learning models were trained and tested systematically. A plan was devised 
to cover different configurations between using noisy and stationary datasets, 
undersampling, and sequencing with different window sizes. Each trained model was also 
validated with the 10-fold cross-validation approach. Trained models were also validated 
with other datasets to see how well they performed with them. For example, a model 
trained with an undersampled noisy dataset was validated also with the imbalanced noisy 
dataset as well as both the imbalanced and undersampled stationary datasets. Section 4.2.2 
provides more details regarding the different runs of the machine learning code. 

Each trained model worked so that with a given input X, a prediction for the label y was 
produced. In the case of my data, X consists of rows of either six values or a multiplication 
of it depending on if sequencing is used or not. These six values form the three dimensions 
for both accelerometer and gyroscope data. The predicted label is the direction. The 
direction has three options: ‘L’, ‘S’, and ‘R’, representing left, straight, and right 
respectively. 

The data needed to be split into training, testing, and validation sets. 80% of the data was 
allocated for training the model, and 20% for testing the final model. In addition, as part 
of the training, 10-fold cross validation was used to produce evaluation metrics scores for 
each trained model. This means that the training dataset was split into ten equal sized 
subsets, and each model was trained so that each of these subsets got to be the validation 
dataset while the others were used for training.  

An example of the collected data can be seen in Figure 2. It begins with a generated 
description of the dataset, which starts with the information gathered from the notebook 
configuration of the run, and it updates as different notebook cells are run and more 
preprocessing steps are applied. After the description, there are sample counts and 
percentages divided label by label so that the distribution and label balance can be seen. 
If undersampling is applied, both the before and after undersampling statuses are 
included. The example in Figure 2 contains only the statistics for the RFC model to save 
space, but every run produced statistics for each of the included models. This section in 
the data starts with a description of the dataset used to train the model, and finally the test 
metrics are printed. All of the metrics mentioning ‘10-fold’ utilize 10-fold cross 
validation. There are also precision, recall, f1-score, and support on a label by label basis 
so that the effects of dataset imbalances on the results can be estimated more easily. 
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Figure 2. An example of collected data. 

Finally, data collected for each tested model is accompanied by a visual confusion matrix 
depicting the actual numbers for how the label predictions took place in relation to the 
actual labels. When a multiclass model was trained, a single confusion matrix that 
contained all of the three labels for each axis was produced. In contrast, whenever the 
one-versus-rest classifier consisting of three binary classifiers was trained, three 
confusion matrices were produced. Each of these matrices considered one of the labels as 
the positive label, and all of the rest as the negative label. This is all due to the practical 
nature of the classifiers, their results, and the ability to map their results into confusion 
matrices. 

3.7 Data Analysis 

The data analysis of this thesis work is mainly quantitative as the collected data is 
quantitative. The main part of the analysis consists of the comparison between different 
model evaluation metrics. The different models can be evaluated directly against each 
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other as the metrics are the same. It must be noted that a perfect score is often misleading 
and there is likely a problem with the model. In addition, a lower score does not 
immediately equal a worse model, as the sample size must also be taken into account. 
The realism of the dataset also affects the perceived validity of the model. Good results 
with the stationary dataset do not directly translate into a good model, as the goal of the 
study is to find characteristics for a model that can generalize to conditions similar to the 
noisy dataset. 

The data analysis also considers the confusion matrices, which say the other half of the 
story. While evaluation metrics scores provide a view into the effectiveness of a model, 
the confusion matrix illustrates the mistakes the model makes. 
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4. Results 

The results chapter is divided into three parts. The first one describes the insight gained 
from the data during investigation of the data and its visualization, as well as the 
development of the approach applied to preprocessing. Later, the results related to the 
trained machine learning models are explained. The third and final part ties in the findings 
into answering the research questions. 

4.1 Data Inspection and Visualization 

This subsection reports the initial results from inspecting the dataset both quantitatively 
in terms of label distribution and by visualizing the different axes of accelerometer and 
gyroscope against one another. 

4.1.1 Overview of the Datasets 

Table 3 shows the distribution of the samples between the labels both for the stationary 
and the noisy data. As it turns out, there are almost twice as many samples in the noisy 
dataset compared to the stationary dataset. The distribution is also more heavily 
imbalanced in the noisy dataset. The imbalance comes from contextual factors: The driver 
of the car is facing straight ahead most of the time when they are driving in the traffic. 
The slight imbalance in the stationary data comes from the practical implementation of 
how the data was collected. The participants were asked to move their head to face from 
left to right and back again during the data collection sessions. As the head faces straight 
forward in between the left and right stages, the activity provides more labels for the 
transition stage of facing forward in comparison to the two extremities. 

Table 3. Distribution of labels in the data. 

Dataset Label Number of samples Percentage of samples 

Stationary 

Straight 13,793 41.3% 

Right 9,818 29.4% 

Left 9,787 29.3% 

Total 33,398 100.0% 

Noisy 

Straight 56,682 91.6% 

Left 2,911 4.7% 

Right 2,305 3.7% 

Total 61,898 100.0% 
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4.1.2 Scatter Matrices 

The labeled scatter matrices for accelerometer and gyroscope values (see Figures 3 and 
4) highlight the effects of the different axes on each other. Each column pair is drawn into 
a scatter plot with colours highlighting different labels. This provides insight into label 
distribution between the different parts of the two-dimensional plane. In an ideal scenario, 
there could be different clusters in the data so that each color would have its own cluster 
and there is a clear empty area between the clusters. The classification between the labels 
would then be as easy as either defining or training an algorithm to classify the samples 
based on the closest cluster. However, this was not the case with the datasets in question. 
The labels seem to be scattered all around the value ranges with some slightly different 
focus in the coloring in some areas visible here and there. As it makes no sense to provide 
a scatter plot from a column with itself, the data distribution across the value range is 
drawn for each of the labels spanning from the top left to the bottom right of the scatter 
matrix chart. 

 

Figure 3. Labeled scatter matrix for accelerometer and gyroscope values in the stationary data. 
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Figure 4. Labeled scatter matrix for accelerometer and gyroscope values in the noisy data. 

Somewhat interestingly the stationary dataset exhibits a clear dominance of the blue 
coloring, which portrays the ‘straight’ label. In the noisy dataset, the dominance seems to 
be on the green ‘right’ label. The previously mentioned ideal case of forming clusters in 
the scatter matrices is present in some of the plots for the noisy data but the label 
distribution keeps the same form as all the other ones so there is no clear distinction that 
one cluster is for a given label and another is for another. For example, the plots between 
the X and Y accelerometer axes and all of the gyroscope axes seem to portray this pattern 
of clustering samples into different islands within the plane. The Z axis of the 
accelerometer does not have such clustering. The accelerometer X axis seems to produce 
three clusters for each of the gyroscope axes, whereas the accelerometer Y axis produces 
only two. 

Regarding the accelerometer Z axis against the gyroscope X axis, however, it is visible 
that there is a strand of red spanning across the data cluster indicating a possibility for 
finding a reasonably simple classification logic recognizing ‘left’ from the other 
directions. It is also possible to include a third dimension to these scatter plots to better 
understand the effects of the different axes on each other. These were also explored, but 
the computational resources required to run interactive 3D scatter plots in a browser 
caused major performance issues, which hindered analysis too much, and therefore these 
were left out of the scope of the work. 

It is clear from the scatter plots that the X and Y axes of the accelerometer have non-
linear correlations in the noisy dataset, but this is not the case for the stationary dataset. 
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However, in the stationary dataset, there seems to be some linear correlation visible 
between the gyroscope’s X and Y axes. 

Overall, the scatter matrices do not provide a clear answer to how the samples could be 
easily categorized correctly between the labels. There are some minor indications that it 
might be possible to include a third column for the third dimension so that 2D planes 
could be drawn to separate different labels from one another with reasonable accuracy. 

The results on this part are not certain, and therefore there is no clear answer to be found. 
However, it must be noted that these matrices only provided the two-dimensional 
perspective into what kinds of value ranges the columns had in relation to each other. 
While these value ranges showed that there are both linear and non-linear correlations 
visible, the label colours pointed out that these correlations do not provide an easy way 
to predict the directions of the samples using elementary algebra. Fortunately, machine 
learning models may be able to find patterns from data that are not as clear to the human 
eye. 

4.2 Machine Learning Models 

This section starts off by explaining issues encountered with splitting the dataset, how 
these issues were resolved to preface the state of the data given to the machine learning 
models. Moving on from data preprocessing, general information regarding the trained 
models is presented, and the rest of the section provides the analysis of the results. 

4.2.1 Splitting the Dataset 

The data preprocessing turned out to be more complicated than was anticipated due to the 
need to split the dataset. It would be good to split the data into training and testing sets 
before working with any models so that working on improving the models should not 
learn any bias that could compromise the generalizability of the final testing. Otherwise, 
it could be that the models learn to produce highly accurate results both with training and 
testing data, but they fail to be accurate with other real-world data afterwards. Most of 
the training data can then be used for training the model, and the rest can be used for 
model validation. When the models have been fine-tuned to achieve sufficient results, the 
test set can be used to test the final models. 

There was a problem related to sequencing, however. Data could not be split into training 
and testing data randomly before running the sequencing algorithm as that would break 
the sequencing logic that depends on the sequential time series nature of the data. Making 
the split by taking, for example, the desired percentage for the test set from the end of 
each participant’s data could bring bias into the split as the participants may have acted 
differently towards the end of the data collection. The solution for this problem was to 
perform sequencing before doing the data split, which complicated data storage, 
processing, and dataset selection logic in the code as different sequencing window sizes 
were used. 

4.2.2 General Information 

A total of 44 runs of training and testing on the models were executed for the final 
evaluation of the effects of the different data cleaning and transformation approaches. 
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Twelve different models were trained, and they were tested on both datasets with different 
data preprocessing steps. Two of the test runs only loaded the datasets into memory, 
deleted N/A values from them, visualized the contents, dropped timestamps and 
coordinates, and stored backups of them into variables for further runs. 

With the small sample size, it is important to consider many factors when assessing a 
model’s performance. The following metrics were calculated for model evaluation: 
accuracy, precision, recall, f1-score, balanced accuracy, and jaccard scores. More 
specifically, each of these was calculated using 10-fold validation, and macro, micro, and 
weighted averaging approaches were all used separately. Micro averaging calculates 
metrics on the binary confusion matrix formed by adding each class' confusion matrices’ 
values together, macro averaging calculates an unweighted mean for the labels. Finally, 
the weighted averaging builds on top of the macro approach by considering the label 
imbalance using label counts as support weights (Pedregosa et al., 2011). In addition, 
label-wise precision, recall, f1-score, and their support were calculated to provide insight 
into possible problems with dataset imbalance. 

The hyperparameters were not tweaked on any of the models as model fine-tuning was 
declared out of scope for the work. RFCs were trained with 100 estimators, LR was 
configured to have a 5,000 as the maximum number of iterations, and the optimal value 
of K for kNN was searched from [0..100] using mean accuracy of 5-fold cross validation. 

4.2.3 Analysis 

This section contains the analysis of the different machine learning models’ performance. 
The first subsection provides a preface to the analysis by explaining the general results 
between the models trained with the noisy and the stationary datasets, as well as the 
structure of the upcoming tables. The second section introduces the most effective models 
and assesses their performance while comparing the effect of the undersampled dataset 
to the imbalanced one. The third section brings up the observations related to the effect 
of different data sequencing algorithm window sizes on the effectiveness of the model. 
Finally, the section concludes with results related to how the data analysis suffered from 
the collected misleading metrics and how they were dealt with. 

4.2.3.1  Preface to the Analysis 

The stationary models and tests on models trained with noisy data did not perform well, 
lowering the metrics scores close to those of a random classifier, and sometimes even 
worse than that. This means that only the models trained and tested with noisy datasets 
performed well enough to be included in the reporting here. They are also well 
representative of the realistic usage scenarios for which the datasets likely consist of 
similar data. It should be noted, however, that each sensor is an individual in the sense 
that there can be minor calibration differences in how a sensor collects data. As such, it 
can be difficult to generalize a trained model for another sensor if the differences between 
the sensor model’s individuals are too high. 

Tables 4 and 5 contain a few preprocessing configurations alongside metrics collected 
from the model evaluation on testing data. The tables contain a lot of data, but there are 
some key takeaways to consider here, and the most significant values are bolded to draw 
attention. It is often easy to reach values close to perfect classification for one label, but 
it should not come at the cost of the other labels’ classification. Attention is given to the 
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significantly reduced or increased prediction power visible in the metrics. The ‘left’ and 
‘right’ labels are given more priority than the ‘straight’ as there is more data for the latter 
and the former are seemingly more difficult to classify correctly at times. 

Let us first consider the format of the tables before taking a look at the insight they hold. 
The tables display quick summaries of the metrics related to the tested models. Each 
model trained with undersampled data was also tested with data that had not been 
undersampled, and the same applies the other way around. This divides the row into two 
subrows. To get a better view into the possible effects of imbalance on the model, the 
calculated metrics were divided label by label, which divides both of the sub-rows into 
three sub-sub-rows. There is only one value per row on the model column as the model 
was only trained with the first sub-row data, and the trained model was then tested with 
the both sub-rows’ data one after the other. 

4.2.3.2  The Most Effective Models 

For each of the included algorithms, Table 4 presents the most effective configurations 
and the contrasting configuration regarding the utilization of data undersampling for the 
models. Accuracy is a simple metric to evaluate the models, so let us consider the average 
of the scores for how the model performed with and without undersampling. It is clear 
that RFC is the most effective of the three (average accuracy 0.96), followed by kNN 
(average accuracy 0.83), and LR is the least effective one (average accuracy 0.65). It must 
be noted that accuracy tells one part of the story, and it is also necessary to consider the 
label-wise metrics to see how the model manages with the imbalanced dataset. Looking 
at the lowest label-wise metrics, each model’s lowest metric was the ‘right’ label’s recall 
(0.59 for RFC, 0.47 for kNN, and 0.11 for LR). Whereas RFC and kNN had better metrics 
overall for the model trained on an imbalanced dataset, LR benefited from the balanced 
dataset more. 

One noteworthy point is that for RFC and kNN the balance between the trained and tested 
models’ accuracy remained reasonable (0.01 and 0.15 accuracy loss respectively), but for 
LR the model trained on the imbalanced dataset performed a lot worse with the 
undersampled data (0.55 accuracy loss). This is because that model seemed to learn the 
bias that comes with the imbalance, as can be seen from the model’s incredibly low recall 
scores (0.01 - 0.02) for the smaller labels. 

It seems that both for RFC and kNN it makes sense to work directly with the imbalanced 
dataset, as the scores remain high even when testing with the undersampled dataset. The 
precision of the label ‘straight’ had the lowest score for both of the models when tested 
with the undersampled dataset with values of 0.87 and 0.53 respectively. In contrast, the 
model trained on the undersampled dataset did not adapt well to the imbalanced dataset 
as can be seen from the decreased precision score, which went from 0.89 down to 0.31 
for label ‘left’ with RFC and from 0.82 to 0.22 for the same label with kNN. 

While all of the trained models in the Table 4 have some high scores (each of them 
achieved at least 0.97 with at least one metric for a label), only the RFC trained on the 
imbalanced dataset seems to produce acceptable results all around (average between all 
label-wise precisions and recalls for both datasets at almost 0.90) for reliable 
classification. The worst of the metrics is the recall for the smaller labels which falls 
below 0.60, but even this score is at an acceptable level considering a random classifier 
would produce around 0.33. 
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Table 4. Most effective models for each algorithm. 

Dataset 
Under-

sampling 
Model Accuracy Direction Precision Recall 

F1-
score 

Support 

Noisy 

No 

RFC 

.96 
L 
R 
S 

.95 

.91 

.97 

.61 

.59 
1.0 

.74 

.72 

.98 

450 
348 

9,106 

Yes .95 
L 
R 
S 

1.0 
1.0 

0.87 

.93 

.92 
1.0 

.96 

.96 

.93 

1,844 
1,844 
1,844 

Noisy 

Yes 

RFC 

.88 
L 
R 
S 

.89 

.88 

.88 

.92 

.94 

.79 

.91 

.91 

.83 

376 
367 
364 

No .82 
L 
R 
S 

.31 

.32 
1.0 

.97 

.99 

.81 

.47 

.48 

.89 

2,329 
1,844 

45,345 

Noisy 

No 

kNN 

.95 
L 
R 
S 

.82 

.79 

.96 

.50 

.47 

.99 

.62 

.59 

.97 

450 
348 

9,106 

Yes .70 
L 
R 
S 

.97 

.98 

.53 

.55 

.55 
1.0 

.70 

.70 

.69 

1,844 
1,844 
1,844 

Noisy 

Yes 

kNN 

.80 
L 
R 
S 

.82 

.78 

.81 

.79 

.86 

.76 

.80 

.82 

.78 

376 
367 
364 

No .76 
L 
R 
S 

.22 

.24 

.99 

.82 

.84 

.75 

.34 

.38 

.85 

2,329 
1,844 

45,345 

Noisy 

No 

LR 

.92 
L 
R 
S 

.66 

.40 

.92 

.12 

.01 
1.0 

.20 

.02 

.96 

450 
348 

9,106 

Yes .37 
L 
R 
S 

.96 

.92 

.34 

.10 

.01 
1.0 

.19 

.01 

.51 

1,844 
1,844 
1,844 

Noisy 

Yes 

LR 

.65 
L 
R 
S 

.73 

.63 

.61 

.68 

.70 

.58 

.70 

.66 

.59 

376 
367 
364 

No .57 
L 
R 
S 

.15 

.11 

.97 

.71 

.71 

.56 

.24 

.19 

.71 

2,329 
1,844 

45,345 

It is important to also test the models trained on undersampled data without 
undersampling to see how well they work on realistic label distributions. Overall, models 
trained with noisy data seemed to perform better on noisy data than on stationary data, 
and models trained with stationary data seemed to perform better on stationary data than 
on noisy data. 

4.2.3.3  Exploring the Sequencing Window Sizes 

Splitting the samples in the dataset into sequences, i.e., sequencing, was done with the 
goal of increasing the effectiveness of the trained models as the amount of data per sample 
increased. The sequencing algorithm is described in more detail in the implementation 
section. As the sequencing can be done with different window sizes, there was a need to 
assess which window size would be the most appropriate. The window sizes were 
explored by training an RFC model on the imbalanced noisy dataset using sequencing for 
each included window size. The explored window sizes were 5, 10, 15, and 20. Similarly 
processed dataset but with undersampling was used to test the model as well. Table 5 
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shows quantitative data on the effectiveness of different sized sequencing windows for 
the dataset when using the RFC algorithm. 

One important factor noticeable with the different window sizes displayed in Table 5 is 
that the support values keep going down as the window is increased. This happens 
because the number of samples decreases significantly as a larger number of dataset 
samples are required for producing a single sequenced sample. 

It also seems that the recall of the ‘left’ label is linearly decreasing (0.39, 0.31, 0.24, 0.21) 
as the window size is increased. The ‘right’ label also decreases from 0.40 to 0.24 with 
the jump from window size 5 to 10, but there is an increase afterwards to 0.28 and further 
to 0.29. The accuracy remains more or less the same (max difference of 0.09) for all 
window sizes. Overall, it seems that the scores are either slowly decreasing or remaining 
the same as the window size is increased. This is also supported by considering both the 
lowest (0.39, 0.24, 0.24, 0.21) and the averages (0.71, 0.65, 0.64, 0.60) of label-wise 
values for precision and recall. These values have been visualized in Figure 5. The trend 
is clearly mainly negative as the window size is increased. As an additional aspect to 
consider, the decreased number of samples used for training and verification bring about 
bias regarding generalizability of the model. 

Considering the window size of 5, the model does not seem to be as effective as without 
the sequencing. The difference in accuracy is 0.02, and the biggest drop is for the label-
wise metric for ‘left’ which drops from 0.61 to 0.39. Gathering multiple samples into one 
does not seem to be the way to go when improving the effectiveness of the model. 

Table 5. Sequencing window size exploration. 

Dataset 
Under-

sampling 

Sequencing 
(Window 

size) 
Model Accuracy Direction Precision Recall 

F1-
score 

Support 

Noisy 

No Yes (5) 

RFC 

.94 
L 
R 
S 

.77 

.73 

.95 

.39 

.40 

.99 

.52 

.52 

.97 

103 
90 

2,277 

Yes Yes (5) .81 
L 
R 
S 

1.0 
1.0 

0.81 

0.89 
.88 
1.0 

.94 

.94 

.90 

455 
455 
455 

Noisy 

No Yes (10) 

RFC 

.92 
L 
R 
S 

.68 

.73 

.93 

.31 

.24 

.99 

.42 

.37 

.96 

68 
45 

1,120 

Yes Yes (10) .89 
L 
R 
S 

1.0 
1.0 

0.76 

.83 

.85 
1.0 

.91 

.92 

.86 

224 
224 
224 

Noisy 

No Yes (15) 

RFC 

.92 
L 
R 
S 

.59 

.82 

.93 

.24 

.28 

.99 

.34 

.42 

.96 

42 
32 

747 

Yes Yes (15) .89 
L 
R 
S 

1.0 
1.0 

0.76 

.83 

.84 
1.0 

.91 

.92 

.86 

148 
148 
148 

Noisy 

No Yes (20) 

RFC 

.93 
L 
R 
S 

.45 

.70 

.94 

.21 

.29 

.98 

.29 

.41 

.96 

24 
24 

566 

Yes Yes (20) .90 
L 
R 
S 

1.0 
1.0 

0.77 

.85 

.84 
1.0 

.92 

.92 

.87 

109 
109 
109 
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Figure 5. Sequencing window size metrics. 

The exploration of the window sizes for the data transformation sequencing algorithm 
provided some insight into their effect on the results. Increasing the window size reduced 
the number of samples both due to using more of the data for a single sample but also as 
more of the naturally smaller sequences were dropped with the size increases. The smaller 
sample sizes lessen the generalizability of the models. Figure 6 shows the confusion 
matrix of a window size 5 sequenced undersampled noisy data tested on a similarly 
sequenced imbalanced noisy model. For comparison, Figure 7 shows the exact same 
situation except for the difference of not using sequencing at all. 

 

Figure 6. RFC with undersampled and sequenced (window size 5) noisy dataset on an 
imbalanced noisy model. 
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Figure 7. RFC with undersampled noisy dataset on an imbalanced noisy model. 

4.2.3.4  Misleading Metrics and Imbalanced Learning 

The data analysis was hampered by some of the collected model performance metrics. It 
seemed that the metrics present the model’s effectiveness as higher than it actually was. 
It became necessary to consider all collected metrics to gain the overview of how the 
model actually performs. As per realizing this at an early stage, the data collection was 
refined to include many different metrics to capture different aspects of the models’ 
performance. This section is dedicated to highlight some of the treacherously one-sided 
pictures painted by the collected metrics along with other metrics that fill the missing 
pieces, leading to revealing the real effectiveness of the model. 

Often most of the calculated metrics indicated that the trained model was good (with 
metric values 0.80-0.95), but the label-wise metrics and the confusion matrices told the 
real result. One example of these misleading metrics is shown as Figure 8. Based on the 
confusion matrix, the model is clearly not a good one. The ‘right’ label is predicted 
correctly well enough (representing 1331 predictions, which is the highest value in the 
matrix), but there are a lot of misclassifications, e.g., 1040 for ‘straight’ classified as 
‘right’ and 856 for ‘left’ classified as ‘straight’, and the diagonal top-left to bottom-right 
is not the most represented. Fortunately, the low label-wise metrics raise some suspicion 
of the model’s effectiveness. 

Another finding is that models trained with noisy data and tested with stationary data 
often steered towards predicting straight and left. One example of this is a LR model 
shown in Figure 9, which classified only one sample as ‘right’ and even that one was 
actually ‘left’. It was also difficult to assess the validity of models when the testing data 
was really imbalanced and the confusion matrix displayed the correct classifications as 
the highest cases, but there are some major misclassifications for the smaller labels. One 
example of such a case is the RFC model confusion matrix is shown in Figure 10. 
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Figure 8. An example confusion matrix of a bad model. 

 
Figure 9. LR model neglecting to predict ‘Right’. 

 
Figure 10. RFC tested with an imbalanced dataset. 
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There were also often generalizability issues related to models trained with the 
imbalanced noisy dataset as the models learned to predict ‘straight’ and neglecting the 
two other labels. These models may have fared well against the matching test set, but the 
results suffered when an undersampled noisy dataset or stationary dataset was used. 

4.3 Answering the Research Questions 

The goal of this study was to explore how head movement data collected from a driver of 
a car can be used to predict their head orientation in relation to the car. Specifically, the 
research question is: How to effectively classify the head orientation of a car driver into 
left, straight, and right using data from eSense device? The selected approach of using 
machine learning to achieve this classification problem raised the question of which 
algorithms to use and, more importantly, which of them would be the best fit. This 
question was realized as the first subquestion in the format: What machine learning 
algorithm would be suitable for addressing this classification problem? 

As the available data is in the raw format, there was a clear need to clean it before training 
or testing models with them. Naturally, this need prompted the question of How to clean 
the data before utilizing it for machine learning purposes? This was selected as the 
second subquestion. The third subquestion was added to consider improving the found 
solutions by exploring options with the data transformation: How to transform the data 
to improve the prediction capabilities of the models? Together, the answers to these sub-
questions provide us with a selection for a machine learning model, steps for cleaning the 
data before using the model, and suggestions related to how the data could be transformed 
for increasing the effectiveness of the classification, as desired by the main research 
question. 

SUB-RQ1.1 What machine learning algorithm would be suitable for addressing this 
classification problem? 

The first sub question is concerned with which algorithm is the most suitable one for the 
task. Based on the results, it is clear that out of the algorithms included in the study, the 
most suitable one is Random Forest Classifier. It produced the most effective models, 
providing the highest values for the calculated metrics on average. Depending on the data 
preprocessing steps, the K-Nearest Neighbor algorithm was close to being as suitable as 
RFC, but most often the kNN algorithm failed to find accurate edges for correct 
classifications. The LR algorithm performed decently under optimal conditions but failed 
to generalize at all. 

SUB-RQ1.2 How to clean the data before utilizing it for machine learning purposes? 

The second sub-question is about data cleaning. It should first be noted that the data needs 
to be read into relevant data structures, which can be provided for the machine learning 
algorithms. In the case of running Python within a Jupyter Notebook, and using the Scikit-
Learn library for machine learning, this means that the data must be transformed into 
either a Pandas DataFrame or a Numpy Array. Both data formats were explored. The 
DataFrames could retain more column metadata for the sample by sample model training 
but they did not allow for two-dimensional arrays. To sequence the data into these two-
dimensional arrays, Numpy Arrays were used. Three-dimensional arrays would have 
been optimal for representing the sequences of samples within the data, but there seems 
to be no way to achieve this using the tools used in this work. 
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As for the exact answer to the question, there was little need to clean the data before using 
it for training the models and predicting with them. It was only necessary to delete the 
rows with missing data. To make the models focus on the meaningful pieces of data, the 
columns ID, timestamp, latitude, and longitude were dropped. This allowed the models 
to only see the accelerometer and gyroscope values, which reduced the dimensions of the 
data to an acceptable level. It was possible to train the models with a reasonable amount 
of resources, and the model accuracies were adequate. Improvements could be made to 
the models’ effectiveness by undersampling the data before training the models with 
them, but this was not necessary for producing good models. 

SUB-RQ1.3 How to transform the data to improve the prediction capabilities of the 
models? 

The last sub-question considers improving the models’ prediction power via data 
transformation. A complementary filter was tested but it had such large negative effects 
on the metrics scores it was not considered a viable option past that. 

After experimenting with data sequencing and different window sizes, it seems that the 
grouping of samples into sequences does not affect the models’ prediction accuracies. 
Due to the small sample size, larger sequence window sizes led to even smaller training 
and testing datasets, which reduces the credibility of the models’ generalizability. The 
metrics scores seemed to go down as the window size was increased, but the confusion 
matrices maintained mostly the same proportions and distributions. The window size of 
five data samples per training dataset sample provided the most optimal models with a 
reasonable amount of generalizability. However, the non-sequenced models seemed to 
provide similar if not better results overall. Sequencing might have a more positive impact 
on the models if the dataset was larger as then the reduced number of samples would 
become more negligible. 

RQ1 How to effectively classify the head orientation of a car driver into left, straight, 
and right using data from eSense device? 

With the sub-questions answered, I can conclude that the head orientation of the driver of 
a moving vehicle can be classified using machine learning algorithms trained with the 
data from eSense wearables worn by the driver. More specifically, the collected data 
should contain accelerometer and gyroscope values, and missed values should be deleted. 
Splitting the data into sequences might improve the models’ prediction power, but it can 
be difficult to sequence real-world data into sequences so that all included samples have 
the same expected label. In other words, sequencing real-world data in real-time will 
likely end up producing sequences that contain samples from moments in time where the 
driver’s head is facing different directions, yet the sequences should be labeled with only 
one direction. 
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5. Discussion 

The discussion section is divided into four subsections. The first subsection gathers up 
challenges faced in conducting this study. The second subsection highlights the gap in the 
literature paving the way for the third subsection which answers how this thesis 
contributes to filling the gap. The discussion section concludes with the limitations of this 
work. 

5.1 Challenges 

The data collection process for building the dataset of this study involved participants 
wearing eSense earbuds to track their head movement while seated and during driving. 
However, one of the primary challenges encountered in this study was the lack of direct 
monitoring during data collection. This introduced a significant limitation as the 
researcher of this study had limited control over the collection process. Inconsistencies 
and variations in data collection procedures could have occurred, potentially impacting 
the overall quality and reliability of the data. Without direct oversight, it was challenging 
to ensure that participants followed consistent protocols, such as maintaining stable head 
positions during data acquisition or accurately labeling their head movements. 
Consequently, uncertainties may arise regarding the validity and accuracy of the collected 
data, which may affect what the models learn from the training data. 

Another significant challenge associated with data collection conducted without direct 
monitoring was the potential introduction of biases and subjectivity. In this study, labeling 
of head movement was performed by individuals who were not under the direct 
supervision of the researcher. This introduced the possibility of variations in labeling 
criteria and interpretations among different labelers. Each labeler may have applied their 
own judgment and criteria, leading to inconsistencies in the categorization of head 
movement. This subjectivity may have influenced the overall analysis and interpretation 
of the data. 

As part of the development effort, there were several concerns related to the development 
of the sequencing algorithm and splitting the dataset into training, testing, and validation 
datasets. As previously described, there was the problem of sequencing the data into 
windows with overlaps. The sequential nature of the data required that the data could not 
be split randomly into the different datasets, or the sequences would break, and splitting 
afterward could mean that overlap brings the same exact samples into multiple datasets 
which introduces a bias. With the increasing overall complexity of the sequencing 
algorithm, some bugs were also introduced. Fortunately, these bugs caused major shifts 
in the label distributions and the accuracies of the trained models, which raised suspicions 
that led to fixing the algorithm implementation. 

5.2 Earables in Traffic Safety: An Emerging Frontier 

The concept of earables is a fairly recent one, and it seems to have entered academic 
literature during the past few years (Powar & Beresford, 2019). Therefore, there is still 
plenty to explore with different application domains for them. Many studies have already 
used machine learning to classify situations and activities and also signal processing 
techniques (Ferlini et al., 2019; Odoemelem et al., 2019) to track head orientations. 
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Application domains such as ergonomics, healthcare, and navigation have already seen 
studies related to them. However, there were not many papers discussing traffic safety. It 
seems that the work on adopting the earables for improving traffic safety has not seen a 
lot of interest as of yet. In a way, this study is really contributing to the existing research 
in this domain. 

5.3 Contribution 

The results of this thesis work support the notion that it is not necessary to apply signal 
processing to reduce the noise present in the dataset collected in moving vehicles. It seems 
that the machine learning algorithms are able to find the patterns even from the noisy data 
and to provide acceptable metrics scores for the classifiers. Out of the included machine 
learning algorithms, RFC gains yet another study supporting its capability to produce 
effective models for this type of classification task. This result may be part of steering the 
future research into leaving out algorithms such as the LR from the approaches to explore. 
Overall, the results are in agreement with previous research, and therefore supportive of 
the current scientific knowledge and understanding of the topic. 

5.4 Limitations 

As the study was conducted on a particular case, there is some loss level of control which 
impacts the generalizability of the results (Wohlin et al., 2003; Runeson & Höst, 2009). 

The size of the dataset used for training and testing the models was small, and it got 
reduced even more as undersampling was applied to balance the data. The achieved 
evaluation scores of the models could have been improved by further fine-tuning the 
models via hyperparameter optimizations. This limits the potential of the outcome but 
provides some generalizability of the results as the trained and tested models are more 
comparable as the hyperparameters remain the same across the test runs. 

The lack of knowledge regarding the gender distribution of the participants in the data 
collection process raises an important consideration. Considering gender as a potential 
factor influencing head movement patterns is crucial, as it may introduce variability in 
the data. The lack of information regarding gender distribution limits a comprehensive 
understanding of the influence of gender on the findings. Future studies should aim to 
collect data with proper gender representation to account for these potential effects. 
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6. Conclusion 

The goal of this thesis work was to contribute to improving traffic safety by facilitating 
future research on head movement tracking of drivers of vehicles. Informed by the 
previous research, an approach was chosen for applying a machine learning pipeline to 
clean and transform the dataset into a format that can be used to train effective models. 
The primary research question was to find an effective way to classify the head orientation 
of a car driver into left, straight, and right. 

Dropping of missing values and unnecessary columns, undersampling, and sample 
sequencing were explored as part of the data cleaning and transformation effort. Random 
Forest Classifier, K-Nearest Neighbor, and Logistic Regression classifiers were trained 
and evaluated for solving the classification task. One of the main findings is that the RFC 
performs the best out of the tested algorithms for this classification task given the datasets 
and tested data preprocessing options. k-NN achieved the second-best results closely 
following RFC’s metrics, and Logistic Regression provided mostly unusable classifiers 
except for ideal scenarios in which they operated reasonably. 

Based on the results it is proposed to train RFC directly on the labeled imbalanced data 
from the vehicles. Undersampling the dataset to provide a balanced label distribution 
seemed to decrease the effectiveness of the model. Sequencing was also considered to be 
both difficult to implement in a real environment and to decrease the effectiveness of the 
predictions. The sequencing showed some promise with comparable results to sample-
by-sample classification, so it might be that with a larger dataset, the results on the 
effectiveness of sequencing could have been different. 

The effectiveness of the RFC trained with a heavily imbalanced noisy dataset was an 
interesting finding that highlights how the algorithm is able to learn meaningful patterns 
for correctly classifying even the smallest of labels. It would not be difficult to achieve 
high metrics with any classifier on such data but achieving reasonable metrics when 
considering the smaller labels’ metrics is not always possible. 

This study joins the previous research with the common characteristic of lacking a 
comprehensive dataset. As such, the results should be taken with the consideration of 
lowered generalizability, and future research should seek to gather up a more extensive 
dataset before attempting to replicate or improve upon the results of the previous studies. 
The effectiveness of sequencing could also be re-evaluated with a more favorably sized 
dataset. 

In terms of broadening the scope, future research could consider carrying out model 
refinement via hyperparameter tuning and moving from left, straight, and right 
classification into a two-dimensional coordinate space for displaying the head orientation. 
It could also be worth exploring if more accurate and robust results would be reached if 
the problem of head orientation tracking in a moving vehicle could be solved using 
physics and math instead of machine learning. The future research could also embark on 
building on top of the head orientation detection models to start the work on driver 
condition recognition. 
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