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ABSTRACT

Ullah, Md Azim. Ph.D. The University of Memphis. May , 2023. Continuous
Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data using Sparse and
Positive-Only Labels. Major Professor: Dr. Santosh Kumar.

Estimating the imminent risk of adverse health behaviors provides opportunities for

developing effective behavioral intervention mechanisms to prevent the occurrence of the

target behavior. One of the key goals is to find opportune moments for intervention by

passively detecting the rising risk of an imminent adverse behavior. Significant progress

in mobile health research and the ability to continuously sense internal and external

states of individual health and behavior has paved the way for detecting diverse risk

factors from mobile sensor data. The next frontier in this research is to account for the

combined effects of these risk factors to produce a composite risk score of adverse

behaviors using wearable sensors convenient for daily use.

Developing a machine learning-based model for assessing the risk of smoking

lapse in the natural environment faces significant outstanding challenges requiring the

development of novel and unique methodologies for each of them. The first challenge is

coming up with an accurate representation of noisy and incomplete sensor data to

encode the present and historical influence of behavioral cues, mental states, and the

interactions of individuals with their ever-changing environment. The next noteworthy

challenge is the absence of confirmed negative labels of low-risk states and adequate

precise annotations of high-risk states. Finally, the model should work on convenient

wearable devices to facilitate widespread adoption in research and practice.

In this dissertation, we develop methods that account for the multi-faceted

nature of smoking lapse behavior to train and evaluate a machine learning model capable

of estimating composite risk scores in the natural environment. We first develop mRisk,

which combines the effects of various mHealth biomarkers such as stress, physical

activity, and location history in producing the risk of smoking lapse using sequential deep

neural networks. We propose an event-based encoding of sensor data to reduce the
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effect of noises and then present an approach to efficiently model the historical influence

of recent and past sensor-derived contexts on the likelihood of smoking lapse. To

circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and

only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by

self-reports), we propose a new loss function to accurately optimize the models.

We build the mRisk models using biomarker (stress, physical activity) streams

derived from chest-worn sensors. Adapting the models to work with less invasive and

more convenient wrist-based sensors requires adapting the biomarker detection models

to work with wrist-worn sensor data. To that end, we develop robust stress and activity

inference methodologies from noisy wrist-sensor data. We first propose CQP, which

quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP

within the inference pipeline improves accuracy-yield trade-offs associated with stress

detection from wrist-worn PPG sensors in the natural environment. mRisk also requires

sensor-based precise detection of smoking events and confirmation through self-reports

to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking

detection model that is robust to the variations in sensor data resulting from orientation

switches in the field.

We train the proposed mRisk risk estimation models using the wrist-based

inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate

the delivery of intelligent smoking interventions to at-risk participants as informed by the

composite risk scores. Our results demonstrate the envisaged impact of machine

learning-based models operating on wrist-worn wearable sensor data to output

continuous smoking lapse risk scores. The novel methodologies we propose throughout

this dissertation help instigate a new frontier in smoking research that can potentially

improve the smoking abstinence rate in participants willing to quit.
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Chapter 1

Introduction

1.1 Overview and Motivation

With more than 8 million deaths per year globally from tobacco use, smoking

remains a leading cause of morbidity and mortality across the world [3]. Considering the

current prevalence rates across the world population, researchers estimate that smoking

can cause upwards of 1 billion preventable deaths in the twenty-first century [4, 5].

Hence, the success of smoking cessation programs (both behavioral and

pharmacological) is of paramount importance. Although most adult smokers (68.0%)

want to quit and more than half (55.1%) have made a quit attempt, the success rate

remains drastically low, with fewer than one in ten (7.5%) adult cigarette smokers

succeeding in quitting each year [6]. Thus, comprehensive multi-disciplinary approaches

toward effective management of factors affecting smoking cessation success remain a

crucial area of research spanning many academic fields. In recent times, emerging

behavioral modification programs that deliver just-in-time smoking interventions

(JITAIs) offer great promise with the ability to pinpoint moments of vulnerability and

fight off smoking relapse [7]. Increasingly powerful mobile health (mHealth) sensing

technologies underpin this adaptive intervention design strategy [8].

Advances in mobile health sensing research coupled with the increasing

availability of smartphones, wearables, and the concurrent rise of cloud and edge

computing have allowed for continuous, remote monitoring of individuals’ health and

wellness factors. Sensors embedded in the edge computing devices such as GPS, inertial

motion sensors (Accelerometer and Gyroscope), and physiological sensors

(Electrocardiogram, Respiratory Inductive Plethysmograph, and Photoplethysmogram)

have enabled the collection of an enormous volume of sensor data. These data streams

often contain unique manifestations of individual behaviors, and researchers have

analyzed them for detecting behavioral events, mental states, and others using machine
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learning models. Examples include physical activity [9], smoking [10], brushing [1],

sleep [11], drinking [12], conversation [13], and eating [14]; health states and conditions

such as mental stress [15], depression [16, 17, 18], epilepsy seizures [19], asthma [20],

and glaucoma [21] as well as contextual factors such as social interactions [13] and

mobility [18]. These machine learning-based detection models infer the events from

unique signatures within the sensor signals, which manifest from an occurrence of the

events themselves. The ability to infer the aforementioned behaviors, individual

contexts, and health status of individuals in the natural environment allows researchers

to represent the current context and status of participants effectively. Thus, designing

and developing effective just-in-time adaptive intervention strategies for behavioral

modification and treatment delivery becomes possible.

In smoking cessation programs, individuals attempt to quit smoking voluntarily

and begin their abstinence period. We term "smoking lapse" as reverting to smoking

during the abstinence period. The first lapse represents a transition from abstinence to

smoking with the majority of all lapses eventuating in a full relapse [22, 23]. We aim to

predict the risk of any impending lapse behavior. The goal is first to identify the at-risk

moments and this will facilitate intervention design and delivery at different points in

time. In contrast to singular events mentioned beforehand, smoking lapse is a

multi-faceted behavior depending on various factors. Such as the inability to inhibit

acting to intense withdrawal, stress arousal, urges/cravings, or failure to self-regulate or

self-control under conducive environmental or situational cues [24]. And, since the

"lapse" phenomenon has not occurred yet, the signatures rooted within sensor signals are

not pronounced. Thus, outputting a risk score of smoking lapse using mHealth sensors

first requires identifying the dynamic risk factors affecting lapse behavior and employing

measures that can detect the occurrence of these factors in the natural environment.

Research [25, 23, 8] have brought into light both the internal and external

factors which influence the onset of smoking lapse resulting in full smoking relapse.
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First, negative affect has been consistently associated with lapse behavior acting as an

internal trigger [26, 27, 28, 29, 23]. Positive affect situations where individuals exhibit

emotionally positive situations can also precede lapse events [29, 23, 27]. Continuous

estimation of stress [15], craving [30] using mobile sensors in the field provide us the

opportunity to passively detect the internal triggers related to positive and negative

affect situations. Second, exposure to external stimuli such as proximity to a bar or

seeing others smoke increases the chances of a smoking lapse [31]. Smoking opportunity

context [32] detects the exposure to smoking spots and represents the situational cues

using GPS sensors. Detecting these risk factors in isolation and triggering interventions

based on the occurrence of any of these predetermined events do not offer a

comprehensive approach to estimating the risk of smoking lapse. We must consider the

combined effects of both the internal and external stimuli, compose both triggers

together using mobile sensors, and represent them accordingly to produce a single

composite risk score.

The mobile sensors we employ must be convenient to wear in our daily lives and,

simultaneously, be able to sense an individual’s context accurately and without

significant gaps in sensing. Wrist-worn wearable sensors are the most suitable option as

they are non-invasive, easy to use, and widely available. The models published in the

literature to estimate the risk factors usually employ more accurate chest-worn sensors.

For example, physiological stress detection models use chest-worn ECG for inferring the

heartbeat timings [15]. Acclimating the stress detection model to work with wrist-worn

PPG sensors requires careful consideration of the initially employed methodologies and

adapting them to fit the new sensing context. A substantial challenge thus stems from

accurately estimating the internal and external triggers using wrist-worn wearables.

Wrist sensors are more susceptible to noise owing to their peripheral placement.

Uncertainties due to improper sensor placement, transient wrist motion, and other

factors introduce important data quality considerations in subsequent inferences.
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Works on predicting the risk of adverse events include risk prediction of adverse

clinical outcomes such as ICU admission [33, 34], mortality [35, 36, 37, 38], and disease

diagnosis [39, 40, 41, 42, 43] as well as adverse events related to public safety and

disasters such as fire [44, 45, 46], accidents [47, 48, 49], flood [50], and wildfire [51, 52].

Our work is unique since we aim to output the risk of adverse behavior instead of

concrete events. Smoking lapse behavior is not wholly and precisely observed as opposed

to an event such as clinical death, fire, or others. Developing a machine learning-based

model for outputting the risk of smoking lapse requires ground truth labels of high-risk

(positive) and low-risk (negative) instances. First, we lack any negative labels of low-risk

moments. Since our observations of the participant’s actions are limited in scope, and

taking into consideration the coping ability even when there is an urge to smoke, we can

not confidently locate low-risk moments within the abstinence period. On the other

hand, if ascertained correctly, precise lapse moments act as the source of ground truth

labels for high-risk moments. However, in contrast to the previous adverse events,

obtaining the precise timing of the lapse is challenging. Earlier research used

retrospective recalls of smoking lapse situations from participants’ memory (sometimes

months old) [28, 53] to construct a coarse time frame of lapse behavior. To circumvent

the limitations owing from autobiographical memory-based reconstruction, Shiffman et

al. proposed the use of Ecological Momentary Assessments (EMAs) [54] for collecting

data on lapse and temptation antecedents close to real-time and in participants’ natural

environment [23]. Even with EMAs, abstinent individuals can only provide a

retrospective self-report of lapse situations, lacking adequate precision for exact

annotations. We depend on sensor-based detection of smoking events to obtain the

precise timing of smoking.

Existing smoking detection models employ one or a combination of sensing

modalities to detect smoking behavior [55, 56]. These studies typically involve data

collection using a constrained lab setup with participants wearing one or more sensors
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placed in a reference position [57, 58, 59, 60, 61, 55, 56, 58, 10, 62]. The constrained

lab environment and the fixed reference position of the inertial sensors limits the utility

of the developed models in the field. Outputting the risk of an adverse behavior like

smoking lapse using convenient wrist-worn wearable sensors requires a working smoking

detection model from wrist-worn inertial motion sensors alone. Variability in sensor

configurations, sensor placement resulting in variability in axes direction, lack of

sufficient training data, and difficulty in collecting reliable ground truths are some of the

many challenges facing the development of a robust smoking detection model from wrist

sensors in the field. Any developed model must be robust to the multitude of

circumstances that affect the accurate detection of smoking events using wrist-based

wearables in the natural environment.

As participants may not wear the sensors at the time of lapse, and the

sensor-based detection models can miss the lapse events, we can not capture the timing

of each smoking lapse. Therefore, we only have sparse positive only labels for training

the risk estimation models. Using these sparse positive-only labels obtained from the

precise detection of smoking events and corroboration through self-reports, we need to

train and optimize our models to recognize the high-risk moments. We must devise a

novel methodology to represent participants’ current and past contexts derived from

noisy sensor data. The model must learn within the constraints of incomplete and sparse

labels present and output risk scores that demonstrate the ability to inform the design

and delivery of just-in-time smoking interventions.

1.2 Problem Statement

We aim to predict the imminent risk of a smoking lapse using mobile and

wearable sensing in individuals’ natural environments. We seek to train a machine

learning-based model capable of continuously producing the risk of smoking lapse using

noisy sensor data from wrist-worn wearables. Solving these problems concerns
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overcoming several challenges. We briefly describe these challenges here and elaborate

on them in Section 1.3

The first challenge involves estimating individuals’ context from noisy sensor data

in the natural environment and using them to learn a lapse risk prediction model.

Characterizing individuals’ current and historical context using mobile sensor-derived

data streams requires developing novel time-series representation methodologies that are

generalizable across different data sources and allow efficient and accurate model

learning. The models selected also need to be appropriate for learning from

multidimensional, multi-faceted sources of information.

The second challenge involves learning the risk prediction model using incomplete

and imprecise ground truth labels. We need concrete and trustworthy labeled data

instances to train our model. We lack negative labels and have only a few positively

labeled samples. Training the risk prediction model in this scenario requires thoroughly

assessing the available labeled and unlabeled data. We must employ novel

methodologies for learning the dynamics of the smoking lapse phenomenon using sparse

positive-only labeled instances.

The third challenge involves the nature of mobile health sensors employed to

passively sense the participants’ physiological, behavioral, and environmental context.

The sensors must be convenient to wear for participants in their daily lives. They should

be less invasive in form and functionality and allow for continuous sensing with minimal

demands on the participants’ behalf. Ensuring that the risk prediction model works with

data collected from conveniently worn sensors is essential to the practical utility of our

developed models and methodologies.

In this dissertation, we propose methods to address the above challenges. We

demonstrate the feasibility of our methods and models with rigorous evaluation of

developed processes using data from real-life smoking cessation field studies.
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1.3 Challenges & Approach

This section elaborates on the specific challenges in achieving our goal. We also

outline the approach we develop to deal with those challenges.

• Representing Individual Context using Noisy Sensor Derived

Observations: Observations of participants’ context and health states using

mobile sensors yield numerous multidimensional streams differing in scale,

frequency, alignment, and other attributes. Several data quality factors, such as

improper sensor wearing, dynamic motion, software glitches, and participant

non-compliance, introduce significant noise within these data sources. The

foremost step in using the mHealth sensor data is transforming the noise-corrupted

data sources into representations of individual health, wellness states, behaviors,

and actions. With substantial diversity in the individual and collective

representation (e.g., frequency, duration, type, etc.), these intermediate streams

also suffer from rapid variability, noise, and discontinuity. Using them to predict

the risk of smoking lapse requires selecting the most suitable model capable of

extracting meaning and learning from the dynamic interactions of these noisy

contexts and their representations. We must explore novel ways of accurately

representing participants’ context that fits our data, selected model, and problem

setup. Moreover, our model should be capable of taking in multivariate input

sources of contextual information from participants’ past and present and produce

a composite risk of smoking lapse.

Our Approach: From the collected sensor data in the natural environment, we

compute the dynamic risk factors representing psychological (e.g., stress),

behavioral (e.g., activity), and environmental (e.g., proximity to a smoking spot)

contexts using state-of-the-art methods from the literature. We call these

"continuous inference streams" since we infer them continuously using trained

machine learning-based models whenever data is available. The continuous
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inference streams are stable, intermediate, and lower frequency representations of

raw sensor data. We then encode the inference streams into events. Events are

sparse locations within the constant inference streams that contain information

about the influence of the underlying risk factor impacting participants’ lives. We

term them as ’events-of-influence’ streams. We compute the homogeneous

statistical representations of continuous inference streams and events-of-influence

time series and train deep learning models to output the risk of smoking lapse.

The deep neural network-based models are used as universal approximators of the

underlying risk dynamics and can exploit temporal and spatial patterns in our

data. Finally, we explore approaches to succinctly capture the historical influence

of recent and past events (i.e., substantial change in any context) to make deep

learning models efficient. First, we summarize the influence of recent and past

events via new features. Second, we explicitly encode the impact of current and

past events as an exponentially decaying function over time. The proposed second

approach, "Decay-aware Temporal Encoding of Heterogeneous Events," replaces

the need for explicit feature engineering and provides a novel way of ingesting the

events-of-influence data into deep machine neural network models for

time-series-based applications in general.

• Learning from sparse positive-only labels: Training and optimizing machine

learning-based models from mobile sensor data requires accurate annotations of

ground truth behaviors, contexts, or actions. For our problem, a smoking lapse

event indicates a high-risk moment in which the participant foregoes abstinence

due to internal and external factors forcing him to revert to smoking. Only these

lapse events allow us to impose annotations of risk levels onto the underlying

sensor signals. We rely on sensor-based detection of smoking lapse events in the

natural environment to detect smoking lapse behavior. Sensor-based detection of

smoking events provides precise timings of the lapse so we can annotate the data
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instances of those moments. However, detecting every smoking lapse behavior is

impossible since participants do not always wear the sensors. Also, the models

used to detect smoking suffer from imperfections leading to missed detections and

false positives. Thus, even with sensor-based detection, we need confirmation

through other means to provide accurate annotations with high confidence. All

these factors culminate in us detecting only a subset of all possible lapse events.

These confirmed lapses are few; thus, we only have sparse positive labels of

high-risk moments. We also have no known method of obtaining labels for

low-risk moments. Since we can have missed lapse events, and participants may

not lapse even when the risk is high, we can not confidently say that participants

were at low risk when smoking was not detected. Thus, a crucial challenge in our

problem is the need to learn risk prediction models using sparse positive-only

labels. Furthermore, since we aim to predict the risk of behavior that has not

happened yet, the signatures within the sensor signals are not pronounced. Hence,

it falls on the adopted models and methodologies to learn the ingrained patterns.

Using only a handful of positive labels and without negative labels, learning a

complex behavioral manifestation within the sensor data is an eccentric and

challenging task.

Our Approach: We detect smoking lapse events using sensor-based smoking

detection models. To further confirm the detected lapses, we use

participant-provided self-reports through EMAs. Both strategies are incomplete in

singularity since EMAs do not specify the timing of smoking lapse, and puffMarker

can suffer from model and sensor imperfections. Hence, we only obtain a small

number of confirmed lapse events, which are the source of positive labels of

high-risk moments. For training our risk prediction model using these labeled

instances, we embrace Positive Unlabeled Learning (PU Learning). We especially

adopt the PU Bagging [63] model learning strategy when provided with positive
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and unlabeled data instances. The PU Bagging approach to model learning

combines a series of classifiers on datasets obtained by perturbing the initial

training set through bootstrap re-sampling with replacement and blending these

classifiers through aggregation. We train our deep neural network model according

to the PU Bagging approach of ensemble model aggregation. We propose a novel

loss function called "Rare Positive Loss" (RP Loss) to optimize our models and

encode the data instances into a representational feature space. RP loss function

is a metric learning loss function that guides the learning process so that our

model accurately represents the positive class and also learns to extract other rare

true positives from the unlabeled class.

• Continuous and Robust Assessment using Convenient Sensors in the

Natural Environment: We aim to develop methodologies that allow for

continuous estimation of lapse risk using noisy sensor data collected from the

natural environment. We also need to employ convenient sensing and inference

mechanisms to ease the burden on participants owing to continuous passive

sensing. Numerous external and internal factors in the natural environment

adversely impact the mobile sensing process and our ability to infer health or

behavior states in the natural environment. These factors are often dynamic and

come entangled with the original sensing medium. Our design of the risk

prediction pipeline involves using several intermediate data streams representing

the participants’ physiological (e.g., stress), behavioral (e.g., activity), and

environmental (e.g., location traces) contexts. To enable wrist-based inference of

smoking lapse risk, we also need a detection model to accurately estimate smoking

events in the natural environment. These intermediate inference streams are

outputs of trained machine learning based-models and suffer from the impact of

the data quality factors, sensing nuances, differences between employed sensors,

and noise elements. These reduce the trustworthiness of the model output to end
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users and ultimately affect the performance of the risk estimation model trained

on top of them.

Our Approach: Our goal is to devise the risk prediction model using wrist-worn

wearable sensors. Individuals are increasingly adopting wrist-worn wearables for

analyzing their health and wellness states. These wearables are easy to wear and

cause less burden on the individuals. They often are equipped with edge

computing abilities, allowing for hosting simple ML models. We want to develop a

smoking risk prediction model that takes inputs from commonly available and

easy-to-wear wrist-based wearable sensors in the natural environment. The first

essential prerequisite of realizing this goal is to adapt the intermediate inference

streams from their native sensing mediums to wrist-based ones. Acclimating the

physiological stress detection model to work with wrist-worn PPG sensors is a

critical step in this direction. Wrist-based PPG data is susceptible to dynamic

fluctuations of signal quality owing to increased peripheral motion and other

nuances of reflective photoplethysmography. To this end, we propose CQP. CQP

is a continuous data quality indicator that can be more deeply integrated into

subsequent inferences to improve their robustness. CQP quantifies the signal

quality of time-varying signals, informs the quality of inference, and allows for an

improved accuracy-yield trade-off for stress inference using wrist-worn PPG in the

field. Inferences using wrist-worn inertial motion sensors also suffer from problems

related to axes orientation switching between different sensors in training and

testing time and variability owing to changes in sensor placement. We use inertial

sensors to infer participants’ activity and smoking behavior in the field. For

activity inference, we train our model using only the magnitude of the

accelerometer sensor. Using the magnitude time series only, the developed model

can be generalized across orientation differences in different devices and study

setups. For robust detection of smoking events in the natural environment, we
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propose rSmoke, an orientation invariant model of smoking detection from the

6-axis accelerometer and gyroscope sensors. rSmoke proposes a methodology to

identify the individual axes configuration for inertial sensors and employs a robust

feature computation and modeling framework for detecting smoking events from

wrist-worn sensors in the field. The orientation invariant approach adopted in the

rSmoke model shows robustness to changes in inertial sensor configuration and

variability in axes orientation resulting from different sensor placements.

1.4 Contributions

In developing the approaches to deal with the challenges mentioned earlier, we

innovate in several key areas. In this section, we enumerate our significant contributions

in devising an end-to-end machine learning-based model capable of continuously

outputting the imminent risk of smoking lapse using mobile sensors in the natural

environment.

1.4.1 Encoding the Decaying Historical Influence of Events

In participants’ natural environment, we use continuous assessments of stress,

activity, and smoking opportunity to characterize participants’ psychological, behavioral,

and environmental contexts. We compute events-of-influence time series from these

continuous inference streams similar to the approaches undertaken in [24]. Events allow

us to observe and encode the historical dynamics of multiple different risk factors.

However, encoding the historical context through sparse and episodic events-of-influence

streams for training machine learning models is not straightforward. We employ two

methods of representing the events-of-influence time series.

First, we represent the events data using features proposed in the literature [24]

and propose to train a long-short-term-memory (LSTM) based deep neural network

model( see Chapter 3.5.1). The choice of deep models aligns with their incredible

popularity and success in encoding multivariate time-varying input data sources for

applications such as forecasting, classification, and others. The deep neural network
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articulates and brings into light the temporal, spatial, and interaction effects of

underlying risk factors and produce a composite risk score. Moreover, a deep model

allows us to employ customized data representations appropriate for our use case.

Hence, for the second approach, we propose "Decay-aware Temporal Encoding of

Heterogeneous Events," a novel encoding mechanism for the events-of-influence time

series(see Chapter 3.5.2). The proposed encoding method traces the residual effects of

recent and past events into the present using exponential decay functions. Therefore, it

allows us to represent the historical contexts of participants. The encoding method fits

appropriately with the temporal dimension of the LSTM model and removes the

necessity of adopting explicit feature engineering approaches. We utilize participant

phenotyping to estimate the degrees of freedom of our proposed encoding mechanism

and train another deep neural network model (see Chapter 3.5.2). Results show that the

second approach, the proposed event encoding scheme to capture the historical contexts

in conjunction with the LSTM-based deep neural network, improves the accuracy of

simulated just-in-time interventions compared to existing approaches.

1.4.2 Rare Positive Loss Function to Learn from Sparse Positive-only Labels

Our choice of deep neural network-based models allows for extracting higher-level

patterns within the data and creating an accurate representation space of the training

instances. We focus on optimizing this representational space with the available ground

truth instances. The key to this approach is designing a loss objective appropriate for

guiding the model learning process. Our proposed loss function, Rare Positive Loss (RP

loss, see Chapter 3.6.2), is novel and works along two competing dimensions of model

optimization within the constraints of positive unlabeled learning. First, we want to

create a representational feature space in which positive data points create a tight

cluster. We call this "Positive Class Dispersion." Ensuring ideal positive class dispersion

alone is trivial for the model by merging all the input instances into a single point in the

feature space. With the second condition, we constrain such development. Alongside the
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positive class dispersion, we also want to ensure that the learned representation space of

the positive class can only include a small portion of the unlabeled class. We call this

the "Rarity of Unknown Positives Within Unlabeled Class." The overall loss function is a

numerical combination of these two dimensions. Our results show that the proposed loss

function outperforms more popular metric learning-based loss objectives unsuited to our

cause. We obtain the best result when learning the model using the proposed event

encoding methodology in conjunction with the RP loss function.

1.4.3 Integrating Data Quality to Improve Inferences from Noisy Sensor

Data

Ongoing research in the mHealth domain seeks to infer continuous measures of

physiological states and events from PPG sensors that are now integral components in

smartwatches and activity trackers. This dissertation aims to develop a continuous

smoking risk estimation model using convenient wrist-worn sensors. An essential

prerequisite of fulfilling this goal is to enable robust inference of physiological stress

levels using PPG data collected from wrist-worn sensors. However, persistent and

dynamic noise elements in the PPG data make it particularly challenging and require

novel, innovative methods. In Chapter 4, We proposed an approach to estimating PPG

data quality using supervised learning and showed how the resulting continuous data

quality indicator, CQP (see Chapter 4.7), can be more deeply integrated into subsequent

inferences to improve accuracy-yield trade-offs for both the computation of individual

features and complex high-level inferences such as stress. We devise a new approach

toward auxiliary estimation and deep integration of signal quality metrics to inform and

improve inference quality, accuracy, and robustness. Our results show that integrating

signal quality levels within the inference mechanism enhances the accuracy and

robustness of continuous inference from wrist-worn PPG sensor data. The resulting

PPG-based stress model allows us to envisage the development of a smoking lapse risk

estimation from conveniently-worn wrist-based wearables.
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1.4.4 Making Smoking Detection Robust to Orientation Switches

We need a smoking detection model to accurately detect smoking events from

wrist-worn inertial sensor data in the natural field environment to enable wrist-based

estimation of smoking lapse risk. Smoking detection methods built on wrist-worn

wearable sensors typically assume a fixed configuration of the inertial sensor on the

wrists. They ensure this by constraining their data collection environment to the

laboratory and enforcing compliance by using only one type of sensor with a fixed

orientation. However, in the natural environment, these assumptions seldom hold. For

example, the accelerometer x-axis in one sensor can be the y-axis in a different sensor.

Even when the general axes are the same, the direction of the same individual axis can

differ between sensors. Also, for the same sensor, the direction of inertial movement in

inertial sensors can change dynamically owing to different sensor placements. Existing

methods of smoking detection do not address these concerns and therefore lack the

robustness to changes in sensor configurations and axes orientation. We propose

rSmoke, an orientation-invariant approach to smoking detection that is robust to

orientation switches in the field. Using the distribution of the sensor data in times of

walking, we propose methods to identify the general direction of each axis in an inertial

sensor. The proposed methodology of individual axis identification allows us to match

the sensor configurations of different types of sensors. Once matched, we can align the

configurations to a reference point. Once the general directions of the individual axes

are known with respect to a reference direction, we proceed to identify the exact

direction of the individual sensor axes using the same distribution. We propose methods

to dynamically identify the exact direction and align the inertial accelerometer sensor’s

lateral axis (axis parallel to the direction of gravity). We also note the difficulty in

finding the exact direction of the other two sensor axes. We base our feature

computation and smoking puff candidate identification methodology on these findings to

allow for the computation of robust features from inertial sensor data. Therefore, the
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developed rSmoke model is resilient to changes in sensor orientation resulting from

different sensor types or variability in sensor placement.

1.5 Dissertation Outline

In this dissertation, we propose end-to-end methodologies to develop a machine

learning model capable of continuously outputting the imminent risk of smoking lapse

using mobile sensors in the natural environment. We design and evaluate our methods

with data from a real-life smoking cessation field study. This section outlines the

chapters that bring our envisaged goals to fruition through the developed methods and

processes.

Chapter 2 presents the background in form of the published literature related to

our problem. We categorize the literature into distinct areas of research to showcase the

different sub-problems we tackle for developing the smoking lapse risk prediction model

from wrist-worn sensors.

Chapter 3 presents mRisk, a computation model for sensing the imminent risk of

smoking lapse behavior using chest-worn mobile sensors. In this work, we propose an

event-based encoding of sensor data to reduce the effect of noises and then present an

approach to efficiently model the historical influence of recent and past sensor-derived

contexts on the likelihood of smoking lapse. Next, to circumvent the lack of any

confirmed negative labels (i.e., time periods with no high-risk moment), and only a few

positive labels (i.e., detected adverse behavior), we propose a new loss function. We use

1,012 days of sensor and self-report data collected from 92 participants in a smoking

cessation field study to train deep learning models to produce a continuous risk estimate

for the likelihood of an impending smoking lapse. The risk dynamics produced by the

model show that risk peaks an average of 44 minutes before a lapse. Simulations on

field study data show that using our model can create intervention opportunities for 85%

of lapses with 5.5 interventions per day.

Chapter 4 presents approaches to enable robust inference of stress and activity
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from noisy wrist-worn sensor data. We first propose CQP, a machine learning based

data quality indicator which informs the quality of inference from time-varying signals

and is fitting for integration within the stress inference process. In this work, we propose

an approach to estimating PPG data quality over short time windows using supervised

learning and show how the resulting continuous data quality indicator, CQP, can be

more deeply integrated into subsequent inferences to improve their robustness. Using

28,000+ labeled PPG segments, we show that CQP detects segments with acceptable

data quality with 95% balanced accuracy compared to 80% using previous data quality

measures. We integrate CQP inside the PPG-based stress detection pipeline and

thoroughly evaluate our proposed methods for robust inference from wrist-worn sensor

data. Using paired ECG and PPG data from both lab (n = 36) and field studies (n =

105), we show that integrating CQP into the PPG stress detection pipeline can

significantly improve accuracy-yield trade-offs.

Chapter 5 presents methodologies for smoking detection from wrist-worn inertial

sensor data. We identify the challenges associated with smoking detection in the natural

environment using wrist-worn IMU sensors. These challenges include variability in sensor

configurations, sensor placement resulting in differences in axes orientation, lack of

sufficient training data from the natural field environment, and difficulty in the collection

of reliable ground truths. We propose rSmoke, an orientation-invariant approach to first

identifying the axes configuration for inertial sensors in the wild. rSmoke builds upon the

existing works on smoking detection using mobile health sensors and proposes a robust

feature computation and modeling framework for detecting smoking events from

wrist-worn sensors in the wild. Our proposed methodology includes a novel smoking

episode construction scheme that allows for the representation and identification of

smoking episodes from noisy and spurious smoking puffs. We test our model in two

smoking cessation research studies employing different inertial sensors. Our model

provides superior performance compared to the existing works and shows robustness
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when dealing with differences in sensor types, configurations, and orientation. We

leverage the developed rSmoke model to more accurately detect the smoking lapse

events of abstinent smokers in their post-quit period. This allows us to develop the

smoking lapse risk estimation model using wrist-worn sensors presented in Chapter 6.

Chapter 6 combines previous chapters to develop continuous smoking risk

estimation models from wrist-worn sensors. We use data from another smoking

cessation research study where participants wore chest and wrist sensors in their natural

environment. We first apply the continuous inference models presented in Chapter 4 to

passively estimate dynamic risk factors using wrist-worn sensor data. Next, we apply the

rSmoke smoking detection model from Chapter 5 to capture smoking lapse events

representing ground truth high-risk moments in the post-quit smoking abstinence period.

Finally, we train the smoking lapse risk estimation models proposed in Chapter 3. To

simulate our model’s ability to deliver intelligent smoking interventions to abstinent

participants, we propose a new online intervention delivery mechanism based on risk

episodes. The simulation results demonstrate that wrist-worn sensors perform similarly

to chest-based ones in delivering just-in-time adaptive smoking interventions. The novel

modeling ideas proposed in Chapter 3 also contributes towards improved performance in

our study with different sensing modalities. Chapter 6 fulfills the ultimate objective of

this dissertation by developing continuous smoking lapse risk estimation models from

wrist-worn sensors.

Finally, Chapter 7 presents the concluding remarks and also discusses several

exciting future research directions stemming from our dissertation.
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Chapter 2

Literature Review

2.1 Introduction

The primary goal of this dissertation is continuous estimation of smoking lapse

risk in the natural environment using convenient wrist-worn sensor data. Our path

toward achieving this goal involves solving multiple distinct research problems. The

approaches to these problems allow us to conceive and materialize a comprehensive set

of methods for achieving our primary goal. This chapter provides an overview of the

relevant literature on each problem we tackle. We build upon these prior works of

distinct research areas to design and develop our solution.

In Chapter 3, we devise an end-to-end set of methods for estimating the risk of

smoking lapse from chest-worn sensors. First, we delineate the works related to

assessing the risk of different kinds of adverse events relevant to our problem of

estimating the risk of smoking lapse. We contrast the uniqueness of smoking lapse

behavior compared to other adverse events. Second, we identify the risk factors that

impact smoking lapse behavior during abstinence. Next, we embrace established

approaches to continuously estimate these risk factors from passive sensors in the

natural environment. Using state-of-the-art models from literature, we employ

continuous inference models to estimate stress, activity, and proximity to smoking spots

using chest-worn ECG, Accelerometry, and smartphone-based GPS sensors, respectively.

The estimates of these risk factors in the natural environment act as input to our

proposed lapse risk estimation models. To adapt the developed models to work with

convenient but noisier wrist-worn sensors, we developed methodologies for robust

inference of stress and activity from wrist-worn sensor data. Chapter 4 presents a

general set of methods for continuous inference of stress from wrist-worn PPG sensors in

the natural environment. Differing from the existing approaches in the literature, we

propose our method of first quantifying the quality of PPG signals and integrating it
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within the stress inference process to improve accuracy, robustness, and feasibility for

deployment in real-life scenarios. To enable wrist-based estimation of smoking lapse risk,

we need a smoking detection model from wrist-sensors to detect smoking events from

inertial sensor data in the field. Chapter 5 proposes rSmoke model, an

orientation-invariant approach to first identifying the axes configuration for inertial

sensors in the wild. Finally Chapter 6 trains the wrist based smoking lapse risk

estimation models using inferences from the developed wrist-based models.

This chapter aims to construct an informed background of our approaches and

methodologies. We hope to present the state of existing literature before delving into

the details of our proposed methods.

2.2 Predicting the Risk of Adverse Events

Several works deal with predicting the risk of adverse events. We can further

categorize these events into two subtypes - events related to clinical/health outcomes

and events concerned with public safety and disasters. Works on predicting adverse

clinical health outcomes include predicting mortality [35, 36, 37, 38], ICU

admission[33, 34], disease diagnosis [39, 40, 41, 42, 43], clinical sepsis [64, 65], and

others. Predicting risk of adverse public safety events include property fire

hazards [44, 45, 46], flood [50], road accidents [47, 48, 49], and wildfire [51, 52], and

others. Our problem is unique since we aim to output the risk of an adverse behavior

instead of events mentioned so far. Adverse clinical or public safety events are fully

observed in nature. Thus, researchers can obtain precise ground truth labels of positive

and negative classes for training machine learning-based models to predict or forecast

these events. A smoking lapse, on the contrary, can not be precisely observed with the

same exactness or precision. To detect smoking lapses in the field, we depend on

sensor-based detection of smoking events using hand-to-mouth gestures. We also need

to confirm the detected smoking events from retrospective self-reports collected using

EMAs close to the smoking time. A combination of sensor-based detection and
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confirmation through EMA reports culminates in us obtaining only a subset of possible

lapses. These detected lapses provide sparse positive labels of high-risk moments that

we use to train our models. Also, the absence of the mentioned clinical and public

safety-based adverse events in time indicates that the risk of those events was low, and

these moments act as the source of negative labels in the field. Since participants do not

always wear the sensors and may not lapse even when there is an urge to smoke

(indicating a high-risk moment), we have no way of knowing the exact times when

participants were at low risk of lapse. Thus, compared to the existing works on

predicting the risk of adverse events, we only have a sparse set of positive labels for

high-risk moments and no labels for low-risk moments. The influence of the input

variables on the risk of smoking lapse is also not as clearly understood compared to

adverse clinical or public safety events.

Our work in Chapter 3 closely relates to the dissertation authored in [24]. To our

knowledge, [24] ideates the possibility of smoking lapse risk estimation from mobile

sensor data. Similar to their approach, Chapter 3 uses continuous inference of risk

factors in the natural environment using chest-worn mobile health sensors and builds a

machine learning-based end-to-end model for lapse risk estimation. However, we extend

and improve their approach in multiple different ways. First, We propose to train

long-short-term-memory (LSTM) based deep neural network models to articulate and

bring into light the temporal, spatial, and interaction effects of underlying risk factors

and produce a composite risk score. The LSTM-based model chosen for our problem

shows superior performance compared to the traditional models (e.g., Random Forest)

employed by authors in [24]. Second, in line with the ability of deep models to ingest

customized data representation, we propose a novel event encoding methodology to

represent the historical context by accumulating the residual effects of past events.

Finally, we propose a novel loss function to improve the performance of a

positive-unlabeled learning-based smoking risk prediction model. Nevertheless, we
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borrow from their work to identify the risk factors and use continuous inference models

to estimate them from chest-worn sensors in Chapter 3. The following two sections -

Section 2.3 and Section 2.4 delve into the published literature related to identifying and

detecting risk factors impacting smoking lapse risk in the natural environment. We

include them for completeness purposes to present our overall goal of estimating the risk

of smoking lapse using convenient wrist-worn sensors.

2.3 Identifying the Risk Factors of Smoking Lapse Behavior

Research [25, 23, 8] have brought into light the factors which influence the onset

of smoking lapse resulting in full smoking relapse. Negative affect have been consistently

associated with lapse behavior acting as an internal trigger [26, 27, 28, 29, 23]. Positive

affect situations where individuals exhibit emotionally positive situations can also

precede lapse events [29, 23, 27]. Exposure to external stimuli such as proximity to a bar

or seeing others smoke increases the chances of a lapse behavior [31]. The factors

influencing lapse behavior can be categorized into two broad categories [25]. First is the

internal precursors or the physiological/emotional states such as stress, urge,

self-regulatory capacity, and others. For example, high-stress levels and low

self-regulatory capacity may increase the risk of a smoking lapse [23, 66, 67]. The

second category relates to environmental or social cues conducive to lapse behavior in

the abstinence period. For example, increased availability of cigarettes in specific

locations or seeing others smoke can significantly increase the chances of an imminent

smoking lapse [23, 68]. The impact of these events on smoking lapse has been

extensively studied using self-reports. The methods employed in these works to analyze

self-reports are not readily transferable to sensor data. Nevertheless, these works

educate us on the diverse nature of specific risk factors that can be used as inputs to

predict the imminent risk of smoking lapse behavior.
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2.4 Detection of Risk Factors Using Mobile Sensors

Continuous estimation of the imminent risk of a smoking lapse requires passive

detection of the associated risk factors using mobile and wearable sensors. These risk

factors represent the participants’ internal and external context in the natural

environment and allow our model to learn the dynamics of smoking lapse provided with

the context variables. Advances in mobile and wearable sensing have enabled the

development of computational models to detect individuals’ health and wellness states.

Published works on detecting stress [15] use wearable physiological sensors such as ECG

and Respiration to detect stress levels by computing cardiac and heart rate variability

features from individuals’ heartbeat dynamics. Smartphone-based GPS sensor data have

been used to detect trajectories of depression for individuals in their natural

environment [18, 16]. Researchers have utilized the physiological and inertial sensing to

continuously estimate the craving [30], alcohol consumption [69], and cocaine

intake [70]. Human activity and gait recognition using inertial motion units

(Accelerometer and Gyroscope) is an established field with decades of incremental

improvements in research contributing to the integration and adoption by industry in

commercial smartwatches and fitness trackers [71]. Smoking opportunity context [32]

detects the exposure to smoking spots and represents the situational cues using GPS

and Motion sensors. We leverage these works to employ continuous inference models of

stress, activity and smoking opportunity contexts. Detecting these risk factors in

isolation and triggering interventions based on the occurrence of any of these

predetermined events do not offer a comprehensive approach to estimating the risk of

smoking lapse. We must consider the combined effects of both the internal and external

stimuli, compose both triggers together using mobile sensors, and represent them

accordingly to produce a single composite risk score. We develop our smoking risk

estimation model using various sensor suites deployed in real-life smoking cessation

studies. We first build an end-to-end smoking risk estimation model using chest-worn
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sensors. We compute the inference streams (stress, activity, and smoking opportunity

contexts) using ECG and Accelerometry data from the AutoSense [72] chest-worn sensor

suite and smartphone-collected GPS sensor data. We also rank the contributions of

features representing different risk types using Explainable AI.

We propose to develop the smoking risk estimation model using convenient

wrist-worn sensors. To achieve this goal, we must continually infer stress and activity

levels using data from wrist-based sensors. Hence, we develop methods for robust

continuous inference using wrist-worn sensor data. We focus on stress detection using

wrist-worn PPG sensors since detecting stress from noisy PPG sensor data in the natural

environment is challenging and requires significant adaptation of the existing approaches

for stress detection from wearable ECG data.

2.5 Continuous Inference of Stress and Activity Using Wrist-worn Sensors

To achieve our stated goal of smoking risk estimation from wrist-worn sensor

data, we must be able to infer stress and activity using wrist-worn PPG and inertial

motion sensors in the field. We borrow existing literature to develop a deep neural

network model of human activity recognition. Deep learning-based human activity

recognition models have gained incredible popularity owing to their ability to learn from

multi-dimensional wearable motion sensor data and accurately distinguish between

complex human tasks [73]. Convolutional Neural Networks (CNN) offers an efficient

deep model architecture for activity classification in the wild [74, 75]. We train a

CNN-based activity recognition model for each 20-second data segment using publicly

available WISDM dataset [76].

Inferring stress from PPG depends on accurately assessing cardiac, and heart rate

variability (HRV) features from wrist-worn PPG signals. Due to their peripheral

placement, dynamic wrist motion, and irregular attachment of wrist-worn sensors to the

point of contact, PPG sensing in the natural environment suffers from various external

noises and confounds. Therefore, robust stress inference from noisy wrist-worn PPG in
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the natural environment first requires decision-making on the state of the input PPG

signal to contain valid information about participants’ heart rate dynamics. Substantial

works exist on using PPG to estimate simple features of cardiac activity such as heart

rate [77, 78, 79, 80, 81, 82, 83]. These past works show that PPG data can yield

assessments of heart rate under controlled conditions that are as accurate as ECG and

such methods are currently deployed in a variety of commercial off the shelf devices. A

significant body of work also assesses more complex physiological and behavioral states

and related activities based on cardiac features. This includes work on atrial fibrillation

[84, 85], cocaine use [86, 87, 88], sleep apnea [89], and stress [90, 91, 92, 15, 93, 94].

However, these works have largely focused on deriving features from data provided by

wearable ECG devices. Indeed, complex applications like arrhythmia detection and

cocaine use detection that use ECG morphological structure cannot be easily adapted to

PPG sensing as PPG data do not reflect the detailed morphological structure captured

by ECG. In the case of stress specifically, early works focused on using ECG to identify

cardiac features that correlate with elevated stress levels [95, 96, 97, 98, 99, 100]. These

works led to the identification of ECG-derived HRV features as essential indicators of

stress. These features are statistics of the inter-beat interval time series, making them

amenable to assessment using wearable PPG devices. More recent studies have shown

that HRV features can be accurately derived from PPG sensor data under controlled

conditions [101]. The problem of stress detection from PPG data has subsequently

been considered in several lab-based studies [102, 103, 104]. In [104], stress is detected

in 20-second windows using peak-to-peak intervals from finger PPG and temperature

recorded from the thermal back camera in a smartphone. These studies prove that PPG

signals carry the information needed to assess stress levels when data of sufficient quality

can be obtained.

Two recent studies have also investigated the ability to detect stress in the field

setting based on PPG stress detection models learned in the lab setting [105, 106].
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In [105], authors use a combination of several sensing modalities included in the

Empatica E2 device for detecting stress in the laboratory and consider context-aware

modeling of stress in the natural environment with (n = 5) participants. This work

details the accuracy of using PPG and other signal modalities, such as skin temperature

and electrodermal attachment from the wrist, as a replacement for more obtrusive

chest-based sensors such as ECG or respiration. Our work complements these works by

showing that the accuracy of stress inference can be substantially improved by

incorporating data quality into the stress inference model.

Our key innovations include the development of a supervised learning-based

data-quality indicator for PPG data in the wild and integrating this developed data

quality indicator within the stress inference process. Much prior work has also dealt with

the problem of corruption of PPG signals owing to hand or wrist motion. They focus on

removing PPG segments affected by motion artefacts using conventional or adaptive

filtering techniques [107, 108, 109], template matching [110], wavelet

transformation [111, 112], independent component analysis [113] and empirical mode

decomposition [114]. Much of the existing work on PPG signal restoration is based on

motion data collected from finger-based PPG sensors in bedside vital sign monitoring

applications where motion is usually limited compared to the natural field environment.

We incorporate the established knowledge of motion-induced corruption in PPG signal

when estimating heart rate information in the frequency domain using [82]. However,

our proposed approach indicates corruption due to motion and other factors in real-life

field conditions, such as loose attachment, ambient light, power-line interference, and

others. In contrast to most existing work’s limited and constrained settings, we collect

data in both lab and field settings. The developed signal quality metric allows us to

apply relative weighting to different locations of the PPG signal without discarding them

altogether. This weighting mechanism diminishes the impact of transient noise and

improves the robustness of computed cardiac and heart rate-based features from PPG

26



signals. As a result, the accuracy and robustness of down-the-line inferences from the

computed features improve substantially.

2.6 Smoking Event Detection Using Wrist-only Sensors

A wrist-only smoking event detection model is essential for developing and

deploying a smoking lapse risk estimation model from wrist sensors. Existing works on

smoking event detection in the field mainly rely on detecting smoking puff events and

constructing valid smoking events from the detected smoking puff events. Detection of

smoking puffs from wrist-only sensors mostly focuses on hand-mouth of gestures of

smoking puffs. Various works have addressed the detection of smoking behavior using

wrist-worn inertial sensors. These published studies usually collect lab data from

participants with one or more sensors placed into a reference

position [57, 58, 59, 60, 61, 55, 56]. However, the utility of smoking detection models

developed on lab settings can be limited when deployed to field conditions. Challenges

such as variability owing to changes in sensor mounting, sensor placement, and various

other factors limit their utility when applied to data collected from the natural

environment. Some studies have collected data from the natural field

environment [58, 10, 62] with some supervision. However, the developed models make

assumptions about the position of wrist sensors on participants’ wrists and are

vulnerable to the mentioned challenges. Researchers have also explored using other

sensors in conjunction with wrist sensors to enhance the performance of smoking puff

detection. Respiration sensors (RIP) alone [55, 56] or in combination with inertial

accelerometers [10, 115] help smoking puff detection by identifying cigarette smoke

inhalation and exhalation characteristics. However, Respiration sensors are chest-worn

and place an increased burden on participants to wear a chest-belt device daily. In [61],

authors mounted inertial sensing units inside a smart lighter to better distinguish the

smoking puffs. Researchers have also advocated using 9-axis IMU units containing

quaternions to more accurately estimate the trajectory of hand motion [58]. In [116],
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researchers deployed a chest-worn thermal-sensing wearable system that captures spatial,

temporal, and thermal information around cigarettes and the wearer to passively detect

smoking events throughout the day. Works involving novel sensing schemes to detect

smoking behaviors are ongoing to improve any developed models’ accuracy and practical

utility. Our work focuses on developing a smoking detection methodology using wrist

sensors alone. We identify the key limitations of existing smoking detection models when

used in the natural field environment and address those challenges to improve the

existing works of smoking detection using wrist sensors alone. We develop our methods

using smoking data from a natural field environment. Our study setup of training data

collection from participants in their natural environment without the supervision of

sensor placement and no external control is a first in this research area. We propose an

orientation-invariant approach to identify and dynamically align the sensor axes. Finally,

we extend the scope of existing smoking puff detection-based models by proposing a

novel methodology of smoking episode construction from spurious detected puffs. Our

methodology of smoking event detection using machine-learning-based models

significantly improves the performance of overall smoking detection. It also adds to our

ability to select different operating points based on the application-specific necessity of

the developed models.

2.7 Orientation-Invariant Approaches to Dealing with Inertial Sensor Data

Studies employing wrist-worn sensors typically assume sensor attachment at

pre-determined positions and orientations with no change over time. This is seldom the

case in the natural environment, where many situations induce dynamic changes in

sensor placements and orientations. These studies also employ a single inertial sensor

(such as Apple Watch) across the whole study, with the developed methods developed

and evaluated on data collected from the same sensors. With the ever-increasing

popularity of commercial smartwatches fitted with inertial sensors, any developed model

must be robust to a change in inertial sensor type and continue operating with the same

28



level of accuracy. Hence, developing methods invariant to sensor orientation and

orientation changes is paramount. Sensor orientation invariant methods have previously

been explored in daily activity recognition from wearable sensors [117, 118, 119, 1, 120].

We can broadly categorize the existing works into three separate categories. The first

involves collecting representative data from wearable sensors worn in multiple

orientations and applying similarity search-based methods to identify the current

orientation of the wearable sensor relative to training data [1, 121]. In [1], authors

collect labeled training data for 4 possible orientation configurations and do a similarity

search based on distribution distance and the distance of the principal component to

assign the correct orientation configuration to a window of inertial sensor data. In [121]

researchers consider four different orientations for a 3-axis accelerometer on the waist

and employ a nearest-neighbor (1-NN) classifier to estimate current orientation. The

second category involves the usage of separate sensors along with an accelerometer and

gyroscope to orient the sensor coordinate frames to the Earth’s coordinates. Researchers

used a magnetometer and quaternions to transform sensor coordinates to Earth’s

coordinates [119, 122]. These two categories of work do not fall within our scope since

they require additional sensing schemes [119] and labeled training data [1] to achieve

orientation invariance. The final category of work related to orientation-invariant inertial

sensor data processing involves transforming the inertial sensor data streams into an

orientation-invariant representation. A straightforward method of obtaining orientation

invariance is calculating each tri-axial sensor’s Euclidean norm (magnitude) and using

the magnitude sequence instead of the individual axis

components [123, 124, 125, 126, 127, 128]. The magnitude remains the same even

when the sensor is placed at different orientations. We follow this methodology for

activity detection from wrist-worn accelerometers in Chapter 4. However, magnitude

time series do not preserve the fine-grained information of the individual sensor axes

necessary for detecting complex activities such as smoking. In [129, 130], authors
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estimate the gravity vector’s direction by averaging the acceleration vectors in the long

term. Next, the amplitude of the acceleration along and perpendicular to the gravity

vector are used for activity recognition. This method is analogous to transforming the

tri-axial sensor into a bi-axial one. In [117], authors propose transforming 3-axis sensor

data to a 9-axis orientation-invariant time-domain sequence. Existing works that propose

transforming the inertial sensor data into an intermediate representation have also

employed Principal Components Analysis [131] and Singular Value Decomposition [117]

to transform sensor data into the same number of dimensions as the original data. Using

the transformation-based methods for step-by-step explainable smoking detection using

wrist-worn inertial sensor data has some limitations. The individual sensor axes lose

meaning when transformed into a different system of coordinates. For example, in

smoking detection, the candidate puff segments are generated from changes in the

gravity axis, and spurious segments are filtered out based on roll values which indicate

the angular rotation around the gravity axis [10]. We aim to preserve and utilize this

domain information related to the smoking detection problem in proposing an

orientation-invariant method of smoking detection. The existing methods also assume

that the sensor remains the same across the duration of the study. The transformations

assume that the x,y, and z axes will remain the same for a single sensor type. However,

variability in sensor configurations due to changing sensor hardware or firmware can

switch the individual axes. In contrast to the related works, our orientation in-variance

approach tackles two problems. We propose methods to identify the configurations of a

given wrist-worn sensor using the distribution of the accelerometer sensor signals during

moments of walking. Next, we propose to align the sensor axis corresponding to the

gravity line in real time. We base our methods on addressing the limitations facing

existing smoking detection methods using wrist-worn inertial sensors in the natural field

environment.
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2.8 Learning from Sparse Positive-only Labels

Traditional supervised classifiers usually need concrete positive and negative

samples for training. In our case, we only have no labels for the negative class (low-risk

state) and only a few positively labeled samples from smoking detection and

confirmation through self-reports. For such scenarios, a different learning framework

called Positive-Unlabeled (PU) have been developed [132, 133].

In the classical PU learning algorithm [134], a standard binary classifier is trained

from the nontraditional positive-unlabeled setup. They show that a classifier trained on

positive unlabeled examples learns probabilities that differ from the actual conditional

probabilities of being positive by only a constant factor, equivalent to the likelihood that

a positive sample is labeled in the given data set. Using different weights for false

Negatives vs. false Positives in training has also been proposed for solving the classical

PU-learning problem. For instance, the biased SVM approach in [135] solves the

PU-learning problem by using soft margin SVM while giving high weights to false

negative errors and low weights to false positive errors. The authors also used weighted

logistic regression models to classify text by considering all unlabeled instances as

members of the negative class with appropriate weights [136]. However, these classic PU

learning algorithms work only under the strong assumption that the set of labeled

examples is a uniformly random subset of the positive examples (or the positive-label

samples are ‘selected completely at random’ (SCAR)). For scenarios like ours where the

SCAR assumption does not hold, the PU-bagging [63] or ensemble PU learning [137]

have been proposed. The idea is to estimate a series of classifiers on datasets obtained

by perturbing the original training set through bootstrap re-sampling with replacement.

Finally, an aggregation technique is applied to combine these classifiers. We adopt

PU-Bagging [63] to train our smoking risk estimation models similar to [24]. We

augment the training of base classifiers at each iteration of bagging by using a proposed

novel loss function. Our proposed loss function is related to automatically estimating the
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proportion of positive data instances within the unlabeled set of instances. Often known

as the class prior, this proportion is assumed to be known for training models in

positive-unlabeled learning [138]. Works relating to estimating this proportion falls

within the Mixture Propagation Estimators (MPEs) category [139, 140, 141]. MPEs

estimate the fraction of positives among the unlabeled examples, and PU-learning

incorporates this estimate into a scheme for learning a binary classifier [141].

Post-processing approaches of MPE and PU learning employed in DedPul [140] depend

on heuristics based finetuning of the output of positive-unlabeled classifiers. Authors

also proposed Best Bin Estimation (BBE) first to produce a consistent estimate of the

mixture and then integrated it with an iterative model training approach of PU

Learning [141]. The use of non-convex loss functions [142] and added

regularization [143] have also been employed to learn classifiers for PU learning. We

complement these works by proposing a metric learning-based loss function to enable

learning accurate PU classifiers using the PU-Bagging [63] approach of model learning.

Our loss formulation includes the mixture proportion term as a hyperparameter and

provides pathways for selecting the optimal value in training times.

2.9 Chapter Summary

This chapter provided a detailed overview of the literature concerning our

problem. We first categorized our overall goals to construct multiple major

sub-problems. We described the state-of-the-art methods or strategies for each problem.

From now on, we present our completed works in Chapter 3, Chapter 4, Chapter 5, and

Chapter 6. The methodologies implemented in these following chapters are inspired by

the latest works mentioned herein.
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Chapter 3

mRisk: Continuous Risk Estimation for Smoking Lapse from Noisy Sensor

Data with Incomplete and Positive-Only Labels

3.1 Introduction

Interventions delivered on a mobile device are an important tool to improve

health and wellness via behavior change such as for smoking cessation. Decades of

research in pharmacological and behavioral intervention methods have improved the

success rate of quit attempts, but they still hover near 30% [144]. Knowing when the

participant is at-risk of an adverse behavior can enable the exploration of whether and

how well delivering targeted interventions at moments of risk can improve efficacy. For

example, [145] presented a context-aware method to deliver timely interventions by

sensing the exposure to geolocation-based smoking cues.

To detect the high-risk moments of an imminent adverse event, it is important

to identify the dynamic risk factors that influence the occurrence of the adverse event.

Prior research [25, 23, 146] has shown that these risk factors can be divided into two

categories. First are the ‘external’ stimuli, i.e., environmental/social cues conducive to

lapse (e.g., proximity to a bar or seeing others smoke may increase the risk of a smoking

lapse). Second are the ‘internal’ stimuli such as stress or craving that may increase an

individual’s vulnerability to lapse. Depletion of coping capacity during exposure to risk

factors may result in a lapse.

Behavioral science suggests that just-in-time interventions, aiming to prevent a

lapse, should adapt to both dynamically varying internal and external factors to provide

optimal support at the right moment [146]. The emergence of sensors in wearables and

smartphones has made it possible to passively detect dynamic changes in internal risk

factors (e.g., stress [15, 147] and craving [30, 70]). Dynamic changes in the external risk

factors for smoking lapse can also be detected passively using GPS and activity sensors

(e.g., visits to smoking spots [32]). Deriving a composite risk score that reflects the
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dynamically varying levels of risk continuously can provide new opportunities to optimize

both the timing and contents of interventions via micro-randomized trials [148].

Substantial work has been done in estimating risk scores for other kinds of

adverse events. They include mortality [35, 36, 37, 38], ICU admission [33, 34], disease

onset [39, 40, 41, 42, 43], fire hazard [44, 45, 46], flood [50], wildfire [51, 52], and road

accidents [47, 48, 49]. The use of deep learning models helps obtain a composite risk

score that encodes the underlying collective predictive power of all the input risk factors.

For training and testing these models, carefully curated and labeled input data with

timestamps of adverse event occurrences are used. All data not labeled to correspond to

an adverse event are usually treated as negatively-labeled (i.e., low-risk). For example,

when predicting mortality in ICU from large-scale electronic health records data (e.g.,

MIMIC-II), each of the 4,000 patients is either in the mortality (534 in Class 1) or the

survival class (3,466 in Class 2) [35].

Estimating a composite risk score for adverse health-related behaviors poses three

new challenges. First, continuous sensor data collected from wearables and smartphones

to capture risk factors of adverse behaviors in the natural environment are usually noisy

and incomplete [149]. This may be due to lack of firm attachment (e.g., proximity of

pulse plethysmography (PPG) sensor to the skin in smartwatches that are used to detect

stress and craving), intermittent noises (e.g., motion-induced deterioration of PPG data

due to frequent wrist movements), and confounds (e.g., elevated physiology during

recovery from physical activity may be confused with stress response). Second, for

adverse behavioral events such as a smoking lapse, capturing the precise timing of each

smoking lapse may not be feasible, as sensors may not be worn at the time of a lapse or

the lapse events may not be accurately detected due to the imperfection of machine

learning models that are used to detect smoking events via hand-to-mouth gestures [10].

Therefore, only a few positive events (i.e., smoking lapse in a cessation attempt) are

available. Third, confirmed negative labels can be assigned to a block of sensor data
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corresponding to a prediction window only if the entire time period is confirmed to have

no high-risk moment. As not all high-risk moments may result in a lapse, labeling a

block of sensor data to the negative class is difficult for such events.

In this chapter, we address each of the three challenges noted above. We first

encode the noisy sensor data in the form of events that represent the psychological (e.g.,

stress), behavioral (e.g., activity), and environmental contexts (e.g., proximity to a

smoking spot). Second, each of these contexts has substantial diversity in their

representation (e.g., frequency, duration, type, etc.). We compute their homogeneous

statistical representations to use them in training deep learning models. Third, we

explore two approaches to succinctly capture the historical influence of recent and past

events (i.e., substantial change in any context) to make deep learning models efficient.

In the first approach called Deep Model with Recent Event Summarization (DRES), we

summarize the influence of recent and past events via features. In the second approach

called Deep Model with Decaying Historical Influence (DDHI), we explicitly encode the

influence of recent and past events as an exponentially decaying function over time. We

refer to both models as mRisk model choices. Fourth, we address the challenge of

sparse and positive-only labels via the Positive-Unlabeled (PU) framework, which allows

for model training with positive-only labels. However, PU frameworks usually train

models by giving higher weights to the positive samples and use a spy dataset (that has

a small number of both positive and negative samples) for evaluation [150]. But, we do

not have access to even such a small spy dataset. Therefore, we design a new loss

function (called Rare Positive (RP)) to train the mRisk model choices and use the

concept of the rarity of the positive class for evaluation.

We train and test the two models on a real-life smoking cessation dataset. We

evaluate the performance of the two models via the risk characteristics they produce and

their ability to create intervention opportunities prior to each confirmed smoking lapse

moment. We find that 85% of lapses can be intervened upon with about 5.5
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interventions per day. By analyzing the risk dynamics around lapse moments, we

discover that risk usually peaks 44 minutes prior to a lapse. Finally, we use SHAP [151]

to explain the influence of different contexts on lapse risk and find that recent visit to a

smoking spot has the highest influence on risk, followed by stress.

3.2 Smoking Cessation Study and Data Description

We introduce smoking cessation, describe the smoking cessation study, and the

resulting data used in modeling. The Institutional Review Board (IRB) approved the

study, and all the participants provided written consent.

3.2.1 Smoking Cessation Research

Smoking is the leading preventable cause of mortality, causing 7 million deaths

globally each year [152]. Therefore, extensive research has been done to support

smoking cessation and to understand the smoking lapse process to improve rates of

successful quitting. When a smoker attempts to quit smoking (i.e., abstain), withdrawal

symptoms due to nicotine deprivation trigger several physiological and behavioral

changes such as increase in stress, anxiety, concentration impairment, and

craving [23, 67]. These changes can be further accentuated by certain situational or

environmental influences such as exposure to smoking cues (e.g., proximity to a

cigarette point of sale) or social triggers (e.g., drinks with friends) [23, 153]. These

physiological and/or situational events constitute a high-risk situation for a smoking

lapse. Individuals who are unable to cope with the acute challenges of high-risk

situations, transition from abstinence to a smoking lapse [154]. In most cases, the first

lapse eventually leads to full relapse [155, 22]. To capture risk factors for a smoking

lapse that can be passively detected from wearable sensors and used for continuously

estimating lapse risk, we conducted a new smoking cessation study.
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3.2.2 Participants

Participants were recruited in a number of ways. First, recruitment flyers were

posted in public areas such as college campuses, community clinics, churches, and in

local restaurants and bars in Houston. Advertisements were placed in local newspapers

and on radio. In person recruitment was implemented as needed to promote enrollment,

or if requested by groups or institutions that have a population who is likely eligible and

interested. The recruited participants went through the informed consent process during

their initial (baseline) lab visit.

We use data from 170 enrolled participants (76 female), all 18+ years of age,

with a mean age of 49.158± 12.99 years. All participants were African-American,

residents of a city in the USA, smoked at least 3 cigarettes per day, and were motivated

to quit smoking within the next 30 days of the start of the study. All of them agreed to

wear the sensor suite. Participants were excluded if they had a contraindication for the

nicotine patch (e.g., participants at risk of heart attack, angina, and other related health

problems), active substance abuse or dependence issues, physically unable to wear

equipment, pregnant or lactating, or currently using tobacco cessation medications.

3.2.3 Study Protocol

Interested participants were invited to an in-person information session where

they were provided with detailed information about the study. Once enrolled at the

baseline visit, participants picked a smoking quit date. They visited the lab during which

they were trained in the proper use of the sensor devices and how to respond to

questionnaires in the form of Ecological Momentary Assessments (EMA) via a

study-provided smartphone. They wore the sensors for 4 days during the pre-quit phase.

On their set quit date, participants returned to the lab. Then they wore the

sensors for 10 more days during the post-quit (or smoking cessation) phase. At the end

of 10 days (14 days from the study start), participants returned to the lab and

underwent biochemical verification of their smoking status. The participants were
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compensated for completing in person visits — $30 each for Visits 1, 2, and 3, $80 for

Visit 4, and $60 for Visit 5. They were further compensated at the rate of $1.25 for

completing each smartphone survey if they wore the on-body sensors and/or collected

usable sensor data at least 60% of the time since the last phone survey, and $0.50,

otherwise for completing each smart phone survey. The participants were also

reimbursed for parking or bus tokens to defray the cost of traveling to the project site.

3.2.4 Wearable Sensors and Smartphone

Participants wore a chest band (AutoSense [72]) consisting of electrocardiogram

(ECG) and Respiratory Inductive Plethysmography (for respiration) in their natural

environment for up to 16 hours per day. We use the physiological data for continuous

stress inference. To capture physical activity context, AutoSense included a 3-axis

accelerometer. The participants also wore a wristband with 3-axis accelerometers and

3-axis gyroscopes on both wrists. Participants carried the study-provided smartphone

with the open-source mCerebrum software [156] installed. The study smartphone was

used to communicate with the wearables and collect self-reports via EMAs. The

smartphone collected GPS data continuously at a rate of 1 Hz. We use the GPS data

for detecting significant locations. The GPS data was extracted from the phone at the

end of the study. All data from wearable sensors, EMAs, and GPS were stored in a

secure server with the open-source Cerebral-Cortex [157] software installed.

3.2.5 Determining the Smoking Lapse Time

The participants reported smoking events via Ecological Momentary Assessments

(EMA). For uniform coverage, the day was divided into 4 blocks. The first three blocks

consisted of 4 hours each, with remaining time assigned to the last block. In each block,

up to 3 EMAs were triggered with a minimum separation of 30 minutes between

successive prompts. Irrespective of the source (random or triggered by the detection of

stress or smoking), each EMA included the following questions, ‘Since the last

assessment, have you smoked any cigarettes?’, ‘How many cigarettes did you smoke?’,
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‘How long ago did you smoke the cigarette?’, and ‘How long ago did you smoke the

most recent cigarette?’ and ‘How long ago did you smoke the first cigarette?’, if

multiple cigarettes were smoked.

The precise time of smoking lapse is needed to label the corresponding sensor

data to belong to a positive class. To pinpoint the time of a smoking lapse, we utilize

the puffMarker [10] model that detects smoking episodes using a machine learning model

trained to identify deep inhalation and exhalation from a RIP (Respiratory Inductive

Plethysmography) sensor and hand-to-mouth gestures from 6-axis inertial sensors (3-axis

accelerometers and 3-axis gyroscopes) worn on both wrists. But, some smoking episodes

may not be detected (due to model imperfections, sensor non-wear, etc.) as well as some

non-smoking events (e.g., eating popcorn that involves similar hand-to-mouth gestures)

may be falsely detected as smoking episodes. Hence, we also use smoking labels

provided by the participants in EMA’s. For training the mRisk model, we only use those

detected smoking episodes that are also supported by participants’ self-reports in EMAs.

The time point from which a smoker is actively attempting to abstain from

smoking is called the quit time. Although any smoking event after quitting is considered

a smoking lapse, situations when a newly abstinent smoker promptly resumes abstinence

after the initial smoking event are regarded as slip-ups. The resumption of usual

smoking after quitting is considered a full relapse, and end of the current quit attempt.

The time interval between quitting and the onset of full relapse is the abstinence period.

Based on prior research [158], we consider three (3) consecutive days of smoking after

the first smoking lapse as the onset of full relapse, and end of the abstinence period. We

use all confirmed smoking events during the abstinence period as the positive class.
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3.2.6 Data Selected for Modeling

Some of the physiological data was not of acceptable quality due to sensor

detachment, loose attachment, persistent and momentary wireless loss between the

phone and the sensor. Using the methods presented in [149], we identify sensor data of

acceptable quality and use them in our modeling.

Out of 170, eight (8) participants completed the pre-quit phase, but did not

return for the post-quit. Additionally, eleven (11) participants were unable to complete

the entire study. Hence, we were left with 151 participants who completed the study. As

we use cross-subject validation, we ensure uniformity and sufficiency of continuous

inference data. Therefore, we select participants based on the following two criteria.

First, the participants have a minimum of three hours of stress and activity inferences

each day (this produces sufficient stress and activity data for model development).

Second, the participants have GPS data for consecutive days across the pre-quit and

post-quit days (this allows us to derive sufficient location history for model

development). As a result, 59 participants were excluded. The 92 remaining participants

wore the AutoSense chest band for an average of 14.63 hours per day. From these

participants (1, 012 person-days), we obtain a total of 11, 268 hours of stress data (11.13

hours each day) and 14, 066 hours of activity data (13.89 hours each day) for model

development. We also obtain a total of 17, 569 hours of location data (17.36 hours each

day) and 3, 719 completed EMAs (out of 5, 210, 71.38% completion rate). Out of 92

selected participants, 56 have puffMarker-detected lapses also confirmed by EMA.

3.3 Problem Setup and Formulation

3.3.1 Problem Formulation

Our goal is to develop a model that can process the continuous data from sensors

in wearable devices and smartphones and obtain a score that can indicate the risk of

lapse at each moment, providing new intervention opportunities to maintain smoking

abstinence. To formulate our problem, we introduce some terms and definitions.
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Fig. 3.1: Internal state and external cues from an observation window and prior to it are
used to estimate the risk of a smoking lapse during the prediction window. The
intervention window between the observation and prediction windows gives an

opportunity to deliver an intervention.

Following the setup from [159], an Observation Window (Ow) is a fixed-length

time interval such that data collected in this time window and any historical context

prior to it are used to estimate the likelihood of the target adverse event occurring in an

upcoming Prediction Window (Pw) (see Figure 3.1). We introduce a gap after the end

of an observation window and before the start of a prediction window, which we call the

Intervention Window (Iw), where an intervention might be beneficial in preventing the

adverse event predicted to occur in the Prediction Window. We slide all windows over

the continuous stream of sensor data with an offset of 1 minute.

Problem: Given the time series of sensor data and the timing of some smoking

lapses from a population of abstinent smokers, train a model M that can accurately

estimate the risk of lapse in a prediction window Pw for an abstinent smoker, using the

sensor data observed up to and including the corresponding observation window Ow,

such that the proportion of all prediction windows estimated to have a high-risk of lapse

is minimized.
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3.4 Robust Computation of Psychological, Behavioral & Environmental

Context

We apply existing trained models to accelerometry, ECG, Respiration, and GPS

data to capture the following psychological, behavioral, and environmental contexts of

users, as continuous inference streams (see Figure 3.2a).

Stress: As stress can influence a smoking lapse, we obtain a continuous

assessment of physiological stress arousal by applying the cStress model [15]. cStress

computes a set of features from one-minute windows of ECG and respiration data and

produces a likelihood that the user is exhibiting stress arousal in the captured

physiological response. We apply the cStress model on our smoking cessation field study

ECG and respiration data to generate stress likelihood every five seconds from

overlapping, i.e., sliding minute windows to get a smoother time series. The cStress

model produces a value between 0 and 1 that we call our stress inference stream.

We handle short episodes of missing data in the stress inference stream (due to

noisy data, confounding physical activity, or recovery from physical activity), by applying

the k-nearest neighbor-based imputation [160].

Activity: Movement such as transition from inside to outside of a building can

expose a user to potential environmental triggers of a smoking lapse (e.g., corner of a

building designated as a smoking spot). Therefore, we obtain an assessment of

non-stationary or active state for each minute. We utilize the 3-axis accelerometer

sensor embedded in AutoSense for activity detection (of the torso) using the model

presented in [149].

Location History: Change in location can expose a user to major environmental

cues such as tobacco point of sale or bars. Therefore, we obtain a continuous

assessment of change in a participant’s location. We adapt the context mining

approaches used in [32] to derive location history, dwell places, and transitions from raw

GPS data. First, we de-noise the GPS data via median filtering [161] as the gap between
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consecutive GPS points is much less than fifty meters even at a speed of 100 kilometers

per hour due to the sampling rate of 1 Hz in our GPS data. We perform median filtering

by substituting a GPS sample point with the median of temporal predecessor points

from a window length of 2 minutes (i.e., 120 predecessor points). This step produces a

continuous inference stream of location history (time, latitude, and longitude). Finally,

we employ spatio-temporal clustering to derive the start and end times at dwell places

(both significant and transient) or transition from one place to another.

3.4.1 Robust Representation of the Current Context

The current context, i.e., measures of stress, activity, and location history inferred

from the observation window, are heterogeneous as they are sampled at different rates,

and transitions can happen dynamically. Although not as noisy as the raw sensor data

they are derived from, they still suffer from noise, discontinuity, and rapid variability due

to model imperfections, sensor non-wear, data quality issues, and confounding events.

To address these issues and obtain a homogeneous and robust representation of

the current context that can be used to train a deep learning model, we compute

statistical features of continuous inference streams. Such aggregate statistical measures

have more robustness to noise compared to raw inferences themselves.

We use 13 statistical functions to compute features from the stress stream.

These functions compute the elevation (80th, 90th, and 95th percentiles), reduction

(20th, 10th, and 5th percentiles), dispersion (interquartile_range and skewness), central

tendency (median), shrinkage (range between [20th, 10th] and [20th, 5th] percentiles), or

accumulation (range between [80th, 90th] and [80th, 95th] percentiles) from a window of

inferences. Given an observation window (ti, ti+w) of length w = |Ow| minutes, we have

a maximum of 12 ∗ w stress state data points, since an assessment is produced every 5

seconds. We compute stress features as follows. Thirteen (13) statistical features are

obtained from the stress stream from ti to ti+w. The same functions are also applied to

the consecutive difference between the successive stress likelihoods in the window. To
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account for day-specific within-person variability, we compute the statistical features

(called baseline features) from day-long stress stream up to ti+w (we use until_obs to

abbreviate ‘until the end of observation window’). Finally, we capture the average

deviation of stress (from the daily mean) at the current window.

We compute the fraction of time active in the current window from the activity

stream in an observation window. From the location stream in the observation window,

we compute a binary indicator to check if the current location is a smoking spot (=1) or

not (=0). Next, we compute the distance to the nearest smoking spot. Finally, we

compute the fraction of time spent stationary at a place, the fraction of time spent in

transition in the current window and the current speed.

In total, we compute 46 features from the three inference streams, called the

Continuous Inference Features.

3.4.2 Encapsulating History via Events-of-Influence

A key question for the mRisk model is how to describe the influence of context

on lapse risk over time. Continuous measures of factors such as stress are likely to have

only proximal impact on risk, which is modeled by the temporal interval between the

observation and prediction windows. However, significant contextual events, such as

period of extremely high stress, may have a degree of influence over a significantly

longer interval of time. We, therefore, define events of influence, which are specific

contextual events occurring at discrete moments in time, and model their influence on

risk prediction. Hence, our next challenge is how to succinctly capture the influence of

these historical contexts so that the model may be able to estimate the degree of their

influence and how it may wane over time. We encapsulate the historical contexts by

computing events-of-influence streams (see Figure 3.2a) from the corresponding

continuous inference streams as was done in [24].

Event-of-influence stream is a sequence of irregularly spaced events derived from

the continuous inference stream. An event represents a location in time, which likely
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(a) Sensors and extracted events used for
model development.

(b) A stress stream with a stress event.

Fig. 3.2: (a) Sensors and extracted events used for model development (b) A stress
stream with a stress event

impacts the participant’s current and future actions. Each event comprises of one or

more attribute values, a start time, and an end time, represented as <list of values,

start, end>. The type of attribute values in different events-of-influence stream can be

numerical, binary, or categorical. Specifically, we compute three events-of-influence

streams.

Stress Events

The model presented in [160] applies a moving average convergence divergence

(MACD) method to detect the increasing or decreasing trend and the inflection point

(or the peak) in the stress likelihood time series based on short-term and long-term

exponential moving average. This method clearly marks each stress event’s start and

end times, defined as the interval containing the increasing-trend interval followed by a

decreasing-trend interval. Each stress event has the following attributes — the stress

duration, which is defined as the time interval between the start and end of a stress

event (in Figure 3.2b, we observe a stress event of 14.75 minutes) and the stress density,

which is defined as the area under the stress stream divided by the stress duration (in

Figure 3.2b, we observe a stress event with density of 0.445). Each stress event is

represented by <stress density, stress duration, start, end>. Finally, the model applies a

threshold based on the stress density to determine which events are stressful and which

are not. We note that stress or non-stress events are only detected from those segments
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of sensor data that are of acceptable quality and not confounded. In our data, on

average, we detect 2 to 9 stressful events per day with a mean density of 0.242 and a

mean duration of 10.747 minutes.

Activity Events

We employ the following approach to detect the activity events from the activity

stream. We cluster the contiguous active and stationary windows together to construct

the active and stationary events, respectively. Each activity event is represented as

<binary indicator of 1, duration, start, end>. In our data, on average, we detect 12

activity events per day with a mean duration of 2.70 minutes.

Visitations to Smoking Spots

Smoking spots are those places where participants are observed to have smoked,

smoking is usually allowed, and cigarettes are available. We employ the spatio-temporal

context mining methods described in [32] to locate the two categories of smoking spots

(personal and general smoking spots) from participant’s location history and smoking

patterns.

Visitations to smoking spots are recorded as events-of-influence. We adapt the

method from [32] to detect a visitation to a smoking spot (when a participant dwells for

at least 6.565 minutes with the distance of 30m from the centroid of a smoking spot).

Each visitation to smoking spot event is represented as <semantic type, duration of

stay, start, end>, where we consider the following semantic types for our analysis,

smoking outlet, retail store, gas station, or a bar (usually cigarettes are available at these

location types), start is the arrival time to and end is the departure time from the

smoking spot. Duration of stay at a smoking spot is computed as the difference between

the departure and the arrival time. In our data, on average, we detect about 1 visitation

to smoking spots per day with a mean stay duration of 12.48 minutes.
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3.5 mRisk: Modeling Imminent risk of lapse

In developing the mRisk model, we aim to discover a suitable representation of

the event-of-influence time-series and find the role of continuous context variables within

the observation window in predicting the lapse risk. We first opt for traditional feature

representation of the event time-series. We use several features from [24] to summarize

the influence of events on modeling the lapse risk phenomenon. We term this model

Deep Model with Recent Event Summarization (DRES). In an alternate approach, we

hypothesize that events have a decaying influence over time on the risk of lapse. We

explicitly model the decaying influence using exponential decay functions. Furthermore,

we incorporate knowledge from the patient sub-typing domain [162] to enable

end-to-end model learning, with both dynamically changing instance variables and static

variables reflecting an aggregate phenomenon. We refer to this model as Deep Model

with Decaying Historical Influence (DDHI).

3.5.1 Deep Model with Recent Event Summarization (DRES)

For the DRES model, we represent the event-of-influence Using features. These

features complement the statistical features obtained from the observation window

described in Section 3.4.1. The architecture of the DRES model also includes the

encoding of the recent past with a stacked observation window-based design. We

present the features used to summarize the events-of-influence and the model

architecture in the following.

Events-of-Influence Representation using Features

We use 15 events-of-influence features to capture the temporal dynamics of the

psychological, behavioral, and environmental events from the recent past. These

features are extracted from three events-of-influence streams corresponding to an

observation window.

• Stress Events: We compute average duration & density of stress events within

current window, time since the previous stress event, duration & density of the
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previous stress event. Additionally, we compute the average duration & density of

stress events, and fraction of time in the stressed state until the observation

window.

• Activity Events: We compute time since the previous activity event and duration

of the previous activity event. Additionally, we compute the average duration of

activity events and fraction of time in an active state until the observation window.

• Visits to Smoking Spot Events: We compute time since last visit to a

smoking spot and average duration of stay at smoking spots. We also compute

the fraction of time spent at smoking spots until the observation window.

Feature Set

We compute 61 total features from the continuous inference and

event-of-influence streams. We also include the hour of day (using one-hot encoding) as

a feature based on prior work [68] which shows time may affect the occurrence of a

smoking lapse. In total, we compute 62 features per observation window for the DRES

model development. We adopt per-participant standardization to account for

between-person differences and introduce feature baselines to incorporate within-person

variability or individual biases in features.

DRES Model Architecture

The idea behind the DRES model is that all the features computed in each

observation window can be represented in a time-lagged fashion to accurately estimate

the risk of lapse likelihood in the prediction window. Figure 3.3 shows the overall

architecture of DRES model. Here, Xt refers to the feature vector computed from an

observation (i.e., time-lagged) window starting at time t. We use the tabular features

nf = 62 from each observation window. Next, we stack features from nl previous

observation windows, with the size of the input instance being nl × nf . The nl

observations provide information on the temporal evolution of features in the recent past
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Fig. 3.3: Overall architecture of the Deep Model with Recent Event Summarization
(DRES)

(hence, the term Recent in DRES). The efficacy of DRES model depends on the ability

of hand-crafted features to properly encapsulate the spatial-temporal-behavioral cues

useful in predicting lapse. Since DRES model utilizes regularly sampled feature vectors

stacked together in time, we use a simple Convolution plus LSTM architecture. The

model’s overall architecture consists of two convolutional layers, one recurrent LSTM

layer, three fully connected layers, and a single node sigmoid layer. The convolution

layers help to extract micro-features in a local neighborhood followed by an LSTM layer

which captures temporal patterns of the micro-feature sequence. The recurrence in the

LSTM is operating along the nl lagged windows. The penultimate fully connected layer

is followed by an L2 normalization layer to normalize the input vectors to unit norm.

Finally, the output of the final fully connected layer is passed through a single node with

a sigmoid activation function to generate the lapse likelihood.

3.5.2 Deep Model with Decaying Historical Influence (DDHI)

For the DDHI model, we explicitly model the decaying influence of a past event.

For the current context, we continue to use the statistical features from Section 3.4.1.

But, we observe that the proposed event of influence features in the DRES model rely

heavily on the usefulness of specific features calculated and are limited to only

incorporating the most recent past events and the average information. We propose an

alternative event encoding approach that allows for encoding of multiple past events and
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enables the model to learn from not only recent events but also the accumulated effect

of past on participants’ psychological and contextual state without explicit feature

engineering. First, we provide the rationale for the development of our proposed

methodology. Next, we formally define the encoding procedure and the various design

choices involving the model architecture.

Modeling Rationale

Lapse risk may be influenced by not only recent internal and external events but

also by the accumulated history of exposures, with the influence waning over time. To

model this behavioral element, we need to efficiently represent the stimuli received by

the participants from earlier time points. In estimating the risk of imminent adversarial

behavior, our goal is to directly account for the current influence of past events,

weighted by their position in time. The event-of-influence streams are also unique in

their discrete nature of non-aligned multi-modal observation. The unique aspects of

event modeling make it challenging to directly apply the current deep-learning modeling

approaches to our scenario.

Modeling with time-series data requires encoding previous states as time

progresses. Long-Short Term Memory Networks (LSTMs), Time-Aware LSTM

networks [162], and attention-based LSTMs [43] have all been used successfully to

model time series data. They have produced state-of-the-art results in time-series

problems such as mood forecasting [163], mortality prediction [164], and intervention

delivery [159]. Transformers [165] with the self-attention mechanism has proven highly

successful in modeling long-term dependencies for sequential data, enabling learning of

large sequence models for multivariate long-term forecasting [166].

In our case, to capture the historical influence, the model needs to learn from the

events-of-influence streams. Different events-of-influence streams have observations at

different times with scant alignment between them. To properly capture the historical

influence, we need to be able to learn from these multiple irregular time series from
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further in the past. We also need the model to learn from mutual interaction of multiple

past event types by aligning their decaying effect in a future time, which is not yet

handled well in current models. To efficiently model long-range temporal interactions of

irregularly sampled non-aligned observations, we want a model where the temporal delay

can be explicitly designed because it’s a key aspect of our problem.

Therefore, we propose a decay-aware temporal embedding of heterogeneous past

events to encode their residual effects in predicting the lapse risk. We represent each

event using a standard set of attributes and use the encoding approach to propagate the

effects of past events. In this way, we aim to create a temporal projection of any past

event in times of future inference. Our proposed methodology transforms event data

using an exponential decay function before feeding it to an LSTM layer. The LSTM

layer provides a simple way of handling the time-dependency within the current

observation of limited length. To estimate effective exponential decay factors and

weights for different event attributes, we adopt the patient phenotyping approach from

the EHR domain [162]. We analyze the feasibility of grouping our participants using

global aggregate context variables from the pre-quit period and use the grouped

representation as a key input variable in the model.

Decay-aware Temporal Encoding of Heterogeneous Events

We represent a single event using a vector of k attributes, B = [β1, β2, ..., βk]

alongside the time of event t. For example, stress events can be represented using, the

time of event t, density β1, duration β2, peak amplitude β3 and other factors. These

attributes are determined by the event type. For example visit to smoking spots is an

indicator event with no density information present. We represent a single event of type

e (e.g., stress, visit to smoking spots, activity) using the tuple (t, Be = [βe
1, β

e
2, ..., β

e
k]).

We aggregate the contributions of k different attributes of an event in a single numerical

value using a linear function,

f(Be) =
1

k

k∑
i=1

µe
iβ

e
i (3.1)
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Here, µe
i is the weight coefficient associated with the ith attribute, βe

i . We standardize

each attribute to be within the range [0, 1] and estimate the weight coefficients using

sigmoid function — 0 ≤ µe
i ≤ 1. The division by the number of attributes k ensure that

0 ≤ f(Be) ≤ 1 for all event types with different number of attributes.

To represent an event from the past (t1, Be) at a future time t ≥ t1, we assume

an exponential decay function of a constant rate αe with f(Be) representing the initial

quantity from (3.1). Thus, the contribution of the event from time t1 at a future time t

becomes f(Be)e−αe(t−t1). Exponential models are widely used to model decay in natural

phenomenon such as drug absorption [167], recovery times from physical activity [160],

among others.

Thus, given n past events of Type e, (t1,Be
1), (t2,B

e
2), (t3,B

e
3), ..., (tn,B

e
n), we

aggregate the effects of all past events at time t as ŝet with

ŝet =
n∑

k=1

f(Be
k)e

−αe(t−tk)I(t ≥ tk), (3.2)

where I(t ≥ tk) is an indicator function equal to 1 if t ≥ tk and 0, otherwise. The

parameter αe controls the rate of decay of an event of type e as we progress in time. We

directly feed the time-series Ŝe
t−w:t of different event types (stress, activity, smoking spot

visits) to the model together with statistical features from the current window Ow to

allow the model to learn from accumulation of past events. Since Equation 3.2 can be

computed at any time in future, we can maintain the regular time intervals required for

a simple LSTM to operate on.

Our embedding depends on effective estimation of the parameters α,

[µ1, µ1, ..., µk] for each event type. We assume that these three parameters act as

variables specific to global contexts. For example, we assume that the decaying rate of

influence of stress on lapse risk does not change from one stress event to another and is

similar for a set of homogeneous participants (i.e., phenotype). Thus, estimation of the
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parameters α, [µ1, µ1, ..., µk] depends on identifying the degrees of freedom on which

each participant is homogeneous.

Phenotyping Participants for Parameter Estimation

Patient sub-typing is grouping of patients to address the heterogeneity in the

patients, to enable precision medicine where patients are provided with treatments

tailored to their broadly unique characteristics [162]. We group participants based on

observations from the pre-quit period so that the model can be applied to a user right

from the moment they quit when no post-quit data is available. The features we use

include gender, age, average stress density, duration and count per day before quitting,

average frequency and duration of visits to smoking spots prior to the quit period, and

average activity event count and duration per day. We term them phenotype features

since they provide relatively stable information (i.e., trait) about the participants. We

aim to cluster the participants into a small number of groups.

Clustering: Our clustering of participants based on their phenotype features is

guided by three questions — which clustering algorithm to use, which features

contribute most towards a grouping of the participants, and how many clusters are

appropriate. We experiment with partition-based traditional k-means algorithm and

hierarchical clustering approaches. Both methods perform similarly in our data. We

vary the number of clusters for obtaining the most appropriate clustering. For identifying

the features which are most useful in grouping the participants into different clusters, we

select silhouette score [168] as the evaluation criterion. First, we re-scale the features to

fall within the same range between 0 and 1. Next, we measure the silhouette score of

removing a single feature at every iteration and remove the feature which contributes

negatively toward the overall clustering. This recursive feature elimination process allows

for identification of the most important features necessary for grouping the participants.

Finally, we apply the k-means clustering with appropriate number of clusters for

extracting groups of similar participants. Using number of clusters equal to 4, we obtain
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Fig. 3.4: Architecture of the Deep Model with Decaying Historical Influence (DDHI)
that uses an explicit model of decaying influence of past events that are expected to

wane over time

the best result with all the features contributing positively. The centroid of each cluster

is used to estimate the parameters α, [µ1, µ1, ..., µk].

DDHI Model Architecture

Figure 3.4 shows the overall architecture of the end to end DDHI model. The

phenotype features are first used for clustering the participants. The mean of each

cluster is then used to output three global context specific parameters (α, µ1, µ2) for

each event type using a feed forward layer. The centroid of each cluster represents all

the participants belonging to that cluster. The centroid is passed as an input through an

intermediate feed forward layer. α, [µ1, µ1, ..., µk] are weights of nodes with sigmoid

activation function which are fully connected to the mentioned intermediate layer. Using

the appropriate parameters for each event type, the event log in the memory are then

transformed to form the event encoded time-series Ŝstress, Ŝactivity, and Ŝsmk_spot. Let

the length of the current observation window be equal to w with rightmost time t.

Then, we output the event of influence encoded time-series for r separate event types
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within the current observation window as Ŝevent1, event2, ..., eventr
t−w:t ∈ Rw×r, where ŝstresst−w:t

measures the aggregate effect of all past stress events in the current time window t− w

to t. The features from continuous inference streams along with the hour of day are

used in a lagged fashion with multiple observations of nf = 47 features. With nl such

lags, a single instance of lagged features is Xt−nl:t ∈ Rnl×nf . Two separate LSTM

networks are trained on top of the lagged features Xt−nl:t and Ŝstress, activity, ..., smk_spot
t−w:t .

We flatten the outputs of LSTM into planar nodes, concatenate the two separate

representations and feed it to a multi-layer feed-forward neural network.

3.6 Learning From Sparse & Positive only Labels

Our goal is to estimate the risk of a smoking lapse during the abstinence period

from continuous sensor data in the natural environment. We segment the sensor streams

using sliding (by 1 minute) candidate windows consisting of the observation,

intervention, and prediction windows. We assign a positive-label (high-risk of lapse) to

observation windows only if the corresponding prediction windows overlap with a

smoking lapse time, otherwise, the observation windows are unlabeled. Recall that we

only consider a lapse to have occurred if it is detected by puffMarker and supported by

an EMA. Using either of them alone is insufficient since self-report does not pinpoint the

accurate timing of smoking lapse, and puffMarker can produce false positives. As a

consequence, our available ground truth labels are sparse, and we only have positive

(high-risk) labels available.

3.6.1 Positive Unlabeled (PU) Learning

As we only have access to a subset of positively-labeled data and a larger class of

unlabeled data which may consist of many lapse events that were either missed by

puffMarker, missed by EMA, or missed by both, we adapt positive-unlabeled (abbreviated

as PU) learning methods to train the mRisk model choices. PU learning [132] is a

variant of the classical supervised learning setup where the assumption is that the data

contains positive-labeled or unlabeled samples, which may contain positive (high-risk of
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lapse) or negative (low-risk of lapse) samples. We employ class-weighted base

estimators in the PU learning framework to address the class imbalance.

As we mark an observation window with a positive label if the corresponding

prediction window overlaps with the smoking lapse time, the traditional assumption that

positively-labeled data is selected completely at random (SCAR)) does not hold.

Therefore, we use the PU-bagging or ensemble PU learning approach [63] that is

independent of the SCAR assumption and use leave-one-participant-out-cross-validation

(LOPOCV).

Researchers previously employed PU learning methodology to train classical

machine learning models for estimating the risk of smoking lapse [24]. Adopting a

similar approach, we train deep neural networks using the PU Bagging approach of

model learning. We propose a novel loss function, Rare Positive Loss to train our

models. The evaluation section (see Table 3.1) documents the gain in performance

using our proposed model training approaches.

3.6.2 Rare-Positive (RP) Loss Function

Key to training deep learning models is a suitable loss function that the model

can use to optimize the representation. Contrary to the typical supervised learning

setup, where concrete ground truths are available for both positive and negative classes,

we only have access to a subset labeled positives (i.e., high-risk moments). All the other

samples are unlabeled and consist of positives (i.e., lapses missed by puffMarker and/or

EMA) and negatives (low-risk moments); we assume that the proportion of positive

instances is rare in the unlabeled class. We want to guide the learning process so that

the model learns an accurate representation of the positive class and learns to extract

other rare true positives from the unlabeled class.

Design of the RP Loss Function

In designing the RP loss function, we aim to achieve two key goals. First, we

want to create a representational feature space in which positive data points are
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clustered together. This is trivial for the model to do by coalescing all the input

instances into a single point in the feature space. Hence, the second condition needs to

be designed, which constraints such development. Our second competing goal is to

ensure that the learned representation space of the positive class can only include a

small portion of the unlabeled class, as positive instances are expected to be a rare

occurrence in the unlabeled class. To formulate the two components of our proposed

loss function, we let S denote the set of all samples, Sp the set of all positively-labeled

samples sp and Su the set of all unlabeled samples su, with S = Sp ∪ Su.

Positive Class Dispersion (P ): We adopt the definition of consistency as

proposed recently in [169], to minimize intra-class variations, but apply it only to the

positive class (Sp). Our goal is to reduce the mutual dispersion of the positive instances

for forming dense clusters. As in [169], our data is also collected by wearables in the

noisy field environment, and hence are impacted by outliers. To reduce the impact of

outliers, we also define dispersion of the positive class (Sp) in terms of a robust

aggregate function.

Consistency of sip ∈ Sp is the average distance of its representation from the

representation of all other points sjp ∈ Sp, i ̸= j, in the model’s feature space, i.e.,

C(sip) = d(sip, Sp), using the definition of average distance in the feature space

from [169]. It was shown in [169] that this definition of distance is differentiable and

hence suitable for use in loss function and leads to faster convergence (for noisy data

collected by wearable devices). Now, consistency of the positive class is defined as an

aggregated function, ψ, of all the point consistencies within the class. Within a

mini-batch of data UMB ∈ S, positive class dispersion, P is defined as

P = ψ
(
{C(sip)}sip∈UMB∩Sp

)
(3.3)

Similar to [169], we also select a percentile measure for ψ. But, in contrast with [169]
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that uses non-overlapping windows of data, we need to produce a risk score for each

minute and hence use overlapping windows, sliding each minute. Consequently a

positive event (i.e., a confirmed lapse) is contained in all overlapping observation

windows whose prediction window (e.g., 60 minutes long) contains the positive event.

One positive event a day can result in 10% (60 out of 600 minutes of sensor wearing a

day) of the data labeled as high-risk. Therefore, we use 80th percentile of the point

consistency values of the positive class to obtain robustness, while respecting rarity of

the positive class. Minimizing P ensures that the positive instances pack tightly in the

deep representations space.

Rarity of the Unknown Positives Within Unlabeled Class (R): Given

the assumption of rarity of positive samples in the unlabeled class, the tight cluster

produced for the positive class (by minimizing P ) should only contain a small portion of

the unlabeled class. For this purpose, we define the rarity metric R as the proportion of

unlabeled samples whose average distance from the samples of positive class are at most

P .

Let d(siu,Sp) denote the average distance of the representation of unlabeled

sample siu ∈ Su from the representation of all positive instances sjp ∈ Sp in the model’s

feature space. We define an indicator function

I(siu) =


1 d(siu,Sp)) ≤ P

0 otherwise.

Our goal is to limit the number of unlabeled instances for whom the above indicator

function outputs 1. For this purpose, given a mini-batch of data instances UMB ∈ S, we

define the rarity metric R as follows.

R =

∑
siu∈UMB

I(siu)

|UMB ∩ Su|
(3.4)
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Minimizing R amounts to reducing the proportion of unlabeled instances which fall

within the cluster of positive instances and minimizing P constraints the positive

instances to form a tight cluster itself.

We compose our overall Rare-Positive (RP) loss function as follows so the model

can concurrently optimize both positive dispersion (P ) and rarity (R) measures.

LRP = γP + (R− ϵ)2, (3.5)

where ϵ is the expected proportion of unknown positives we assume to be present within

the unlabeled class. (R− ϵ)2 denotes the squared distance of the rarity metric R from a

fixed ϵ value. We choose the quadratic function in favor of an absolute error for two

reasons. First, quadratic error term is continuously differentiable. Second, we want the

penalty for an error to increase in proportion to the magnitude of the error itself.

We conduct experiments to find the best value of ϵ from our dataset. The γ

value is a scaling hyper-parameter for scaling two terms with different units. Since, we

L2 normalize the deep vectors to have unit norms before distance calculation, their range

is similar to the range of proportions (0, 1). We choose γ = 0.5 for our experiments.

The Loss Function

For training the mRisk model, we employ the joint supervision of cross-entropy

loss (to derive risk likelihood between 0 and 1) and RP loss. More specifically, our

overall loss objective is

L = LCE + λLRP , (3.6)

where LCE is cross-entropy soft-max loss [170] and we use λ (= 0.2) to balance the

effect of two loss functions.
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(a) (b) (c)

Fig. 3.5: P and R values when using different values of ϵ in the RP loss function,
compared with that from using Triplet loss

3.7 Optimization, Evaluation, and Explanations of mRisk Model Choices

We first determine the best value of the hyper-parameter ϵ to optimize the

proposed RP loss function. Second, we compare the performance of our two proposed

models by analyzing the risk characteristics each model produces. Third, we design

simulation experiments to evaluate how successful the models are in creating

intervention opportunities prior to each confirmed lapse. Fourth, we visually analyze the

risk dynamics produced by mRisk before and after lapse moments. Finally, to

understand the major factors driving the lapse risk produced by the mRisk model, we

explain the influence of features on the model performance using Shapley values [151].

3.7.1 Loss Function Optimization and Evaluation

We experiment with different choices of ϵ (which denotes the expected

proportion of rare positives within the unlabeled class) on positive class dispersion (P )

and rarity metric (R) to determine its best value. We also compare with Triplet

loss [171], a widely used traditional loss function used in deep learning. Figure 3.5 shows

the results when we train the models by combining the stated loss functions with

cross-entropy loss. We make several observations. As each model is trained with

mini-batches, we first analyze the distribution of P and R for different choices of ϵ. We

observe that the model achieves lowest deviations (or spread) in P and (R− ϵ)2 for

ϵ = 0.35. We take this as an indication that for this value of ϵ, the model is able to

60



consistently find the best representation to separate out positives (including unknown

positives in the unlabeled class) from the negatives (all in the unlabeled class). We get

another supporting indication of it by observing that the value of P is the lowest for this

choice of ϵ. We see from Figure 3.5c that when ϵ increases from 0.2 to 0.35, the weight

assigned to the (R− ϵ)2 component of the RP loss function reduces because

0 ≤ (R− ϵ) ≤ 1. After this value, ϵ gets farther away from the true proportion of

positives in the unlabeled class (see Figure 3.5b), making it harder for the model to find

a suitable representation. Therefore, we hypothesize that for ϵ = 0.35, the model is able

to find a representation to form the tightest cluster of positives while allowing unlabeled

positives. We use ϵ = 0.35 for all experiments.

We next observe from Figure 3.5b that at ϵ = 0.35, the proportion of unlabeled

positives is 24.68% of the unlabeled data (i.e., R). We use EMA reported lapses that

were not used in model training (as they were missed by puffMarker) to estimate the

proportion of positive class in unlabeled data. Each EMA where one or more lapses was

reported, indicates a 2-hour lapse window where participants recall having smoked. If

these hours are considered to represent high-risk moments, they constitute 17.8% of all

unlabeled hours of data. As the high-risk moment is considered to precede a smoking

lapse, the entire 2-hour window may not constitute high-risk moments, while hours

where no lapse was reported may also consist of high-risk moments, this is only a crude

estimate based on available sources of imprecise labels. Nevertheless, the two estimates

lie within 7% of each other.

We also observe that treating the unlabeled data as negatively labeled and using

Triplet loss to maximize its separation from the positive class results in a representation

that produces slightly higher values of P as the RP loss function (especially for

ϵ = 0.35). But, as the model is forced to maximally separate positives from the

unlabeled class, it ends up admitting a larger proportion of unlabeled data (about 45%)

in the positive cluster. Using a model trained with such a loss function will require a
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(a) Behavior of lapse detection
accuracy.

(b) Proportion of samples labeled
high-risk.

(c) Distribution of risk
scores.

Fig. 3.6: Evaluating mRisk model choices on PU-labeled data

higher number of interventions to achieve a given recall rate (i.e., intervention delivered

prior to a detected lapse event) as compared with the RP loss function.

3.7.2 Evaluating mRisk Model Choices by Their Risk Characteristics

We train the two mRisk model alternatives using only sparse positive labels.

Lack of unambiguous negative labels of low-risk moments diminishes our options of

computing traditional metrics such as F1 score, AUROC, and others. Thus, we opt for

measuring the performance of the models in predicting the detected lapse events. If the

model outputs a high-risk probability for a confirmed smoking lapse, we consider it an

accurate prediction.

However, if we classify every data-point as high-risk, we would achieve 100%

accuracy. In a traditional supervised learning setup, we measure the false positives,

which gives us a measure of the cost of using/deploying any developed model. Since we

can not measure the false positive rate directly, we propose to measure the cost of our

model indirectly. At every decision point, we treat the percentage of assessment

windows determined to be high-risk as the cost of a specific model. This indirectly

captures the user burden posed by a model in real-life where a high-risk moment may

trigger an intervention to reduce the likelihood of a lapse.

We also note that considering any data-point as high-risk requires specifying a

decision threshold (TL) within the probability scale. If the model outputs a probability
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≥ TL, we consider it a high-risk moment, and low-risk, otherwise. We select a value of

TL to achieve a lapse detection accuracy of 80% and report the inference cost.

Results

Figures 3.6a and 3.6b together captures the trade-off between lapse detection

performance and the inference cost for using different values of the decision threshold

(TL). Figure 3.6a shows the steep drop-off in detection accuracy for both the mRisk

model choices as we increase the value of the decision threshold. The drop-off in

accuracy is comparatively less steep for the DDHI model when compared to the DRES.

For achieving a minimum of 80% lapse detection performance, the decision threshold

values are 0.28 for the DRES model and 0.31 for DDHI. The corresponding inference

costs are 33.61% and 24.50% for DRES and DDHI respectively. Thus, for the same

lapse detection performance, we obtain a 9% improvement in the inference cost by using

the DDHI model. Figure 3.6c shows the distribution of the lapse likelihoods produced by

both models. Both models have the desirable right-skewed distribution, as we expect a

majority of moments to represent a low risk.

3.7.3 Evaluating mRisk Model Choices via Simulated Delivery of

Risk-Triggered Interventions

For our next evaluation of the two models, we train a baseline machine learning

model and evaluate how successful the models are in creating intervention opportunities

prior to each confirmed lapse. We design simple simulation experiment where

interventions are delivered when the risk for lapse rises above a pre-determined threshold

(TL) (see Section 3.7.2). To limit intervention fatigue [172], no new interventions are

triggered until intervention gap (IG) minutes have elapsed since the last intervention,

assuming the impact of an intervention lasts at least this long.

Since we use a prediction window of 60 minutes, we use IG = 60 minutes. We

note that introducing an intervention gap changes the direct relationship between the

risk threshold and the frequency of interventions observed in Section 3.7.2. Although the
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choice of TL and IG will depend on the characteristics of the dataset, preferences of the

smoking intervention researcher, and other real-life constraints (e.g., no intervention

when driving or when in meetings), we analyze the performance of the mRisk model

choices in the simple scenario when the intervention delivery only depends on TL and IG

to show its expected behavior. Keeping IG set at 60 minutes, we vary TL to observe the

performance of each model at different frequency of interventions per day.

Evaluation Metric

For each model, we estimate the probability that an intervention opportunity is

available ahead of a lapse event. For this purpose, we use only the confirmed lapse

moments, i.e., positive labels. The proportion of lapse events occurring within 60

minutes (i.e., prediction window) of an intervention is called the Intervention Hit Rate

(IHR)

Intervention Hit Rate (IHR) measures the probability that an intervention

opportunity is provided by mRisk ahead of each lapse event, i.e., within our prediction

window (Pw). More formally, we first choose a value for risk threshold, TL = c to

achieve a desired frequency of interventions per day. An intervention opportunity at time

t is created if the risk produced by mRisk, r(t) exceeds c and at least IG (intervention

gap) minutes have elapsed from the most recent intervention moment. Let

I(u) = {ti1(u), ti2(u), ti3(u), ...} be the set containing the timings of interventions for a

user (u). Let L(u) = {tl1(u), tl2(u), tl3(u), ...} be the precise time of a lapse events for

user u (confirmed by EMA and Puffmarker). We consider the lapse event at time tlk(u)

to be intervened (or covered or hit) if ∃j : tij(u) ≤ tlk(u) : t
l
k(u)− tij(u) ≤ Pw. The IHR

can then be defined as

∑
u |∀k : ∃j : tij(u) ≤ tlk(u) : t

l
k(u)− tij(u) ≤ Pw|∑

u |L(u)|
.
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We note that tij − tij+1 > IG, i.e., no successive interventions are at least IG minutes

apart. Therefore, there exists a unique j for each lapse moment, if IG ≥ Pw.

As launching an intervention at every allowable moment can trivially achieve a

100% IHR, but at the cost of a high intervention frequency, we measure the participant

burden via intervention frequency and determine IHR for different values of intervention

frequency per day. For a given intervention frequency, a better model should have a

higher IHR.

Experiment Setup

We simulate with an intervention frequency range of [3, 7] per waking day to

evaluate mRisk model choices — DRES and DDHI — in creating intervention

opportunities. We also train a Random Forest Model using the PU Bagging Framework,

named PU-Bagging RF [24], to act as a baseline. This model accepts the feature vector

used in the DRES model, and produces a risk score for each observation window.

To vary the intervention frequency per day for the PU-Bagging RF, DRES and

DDHI models, we vary the risk thresholds. In addition to evaluating the performance of

the three models on IHR, we also compare the difference in IHR when using the new RP

loss function versus Triplet Loss in both mRisk model choices. To evaluate the impact

of phenotyping idea in the DDHI model, we experiment with different number of

phenotypes, including no phenotypes. Finally, as learning the personal smoking spots for

each new user requires collecting and analyzing pre-quit data, we evaluate the gain in

performance when this data is used in modeling.
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Table 3.1: Intervention Hit Rate at Different Frequencies of Intervention for Different
Models

IHR at Different Frequencies of Intervention
Model Loss Function 3 3.5 4 4.5 5 5.5 6 7 Mean IHR

PU-Bagging RF [24] — 0.30 0.37 0.49 0.64 0.70 0.75 0.75 0.76 0.60
DRES Triplet loss 0.44 0.51 0.57 0.68 0.74 0.78 0.84 0.93 0.69
DRES RP loss 0.46 0.55 0.64 0.74 0.76 0.78 0.84 0.93 0.71
DDHI Triplet Loss 0.51 0.59 0.65 0.71 0.73 0.80 0.85 0.86 0.71
DDHI RP loss 0.50 0.62 0.68 0.74 0.76 0.85 0.89 0.93 0.74

DDHI Without Personal Smk. Spots RP loss 0.47 0.51 0.55 0.60 0.66 0.75 0.80 0.91 0.66

Results

Table 3.1 shows that DRES and DDHI outperform the baseline PU-Bagging RF

model, DDHI outperforms IHR, and RP Loss outperforms Triplet Loss. The last row in

Table 3.1 shows that not using personal smoking spots results in a substantial drop in

performance of both models.

Table 3.2: Intervention Hit Rates obtained from DDHI model with different number of
phenotypes

IHR at Different Frequencies of Intervention
No. of Phenotypes 3 3.5 4 4.5 5 5.5 6 7 Mean IHR

No Phenotyping 0.53 0.56 0.59 0.70 0.74 0.77 0.88 0.93 0.71
2 0.52 0.58 0.66 0.70 0.71 0.81 0.89 0.93 0.73
4 0.50 0.62 0.68 0.74 0.76 0.85 0.89 0.93 0.74
6 0.51 0.62 0.64 0.71 0.76 0.81 0.87 0.93 0.73
8 0.52 0.60 0.65 0.71 0.75 0.81 0.83 0.93 0.73

Table 3.2 shows the effect of phenotyping in the DDHI model. We observe that

increasing the number of phenotypes improves IHR, achieving a peak IHR for four (4)

phenotypes suggesting it as the optimal for our dataset. As the DDHI model with RP

Loss function outperforms other models, we select this as the mRisk model in

subsequent experiments. We select 5.5 interventions per day, as it provides the largest

jump in IHR. We also find that for this choice, the risk crosses the threshold

approximately 32 minutes prior to the lapse moment, on average, providing half an hour

window to intervene prior to a lapse.
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(a) (b)

Fig. 3.7: (a) Shows the EMA items corresponding to smoking report by individuals, (b)
Intervention Hit Rate at 5.5 int. per day when considering a certain duration of EMA

response as positive lapse

3.7.4 Evaluating mRisk Model Performance on Training-Independent EMA

Labels

In the preceding evaluation (in Section 3.7.3), we only used those lapses reported

in EMAs that was also detected by Puffmarker providing us with precise moment of

lapse, in estimating the intervention hit rate (IHR). These labels were also used in the

model training. For a more independent evaluation of the mRisk model, we use a new

source of lapse labels from our field data that was not used in training or testing of the

model. These are lapses reported in EMA’s that were missed by puffMarker (due to lack

of sensor data or model failure). Figure 3.7a shows an EMA that participants fill out to

report recent cigarette smoking lapses. If users report smoking, they are asked to report

the time of smoking and the amount of cigarettes they have smoked. If they report

smoking more than one cigarette, they are also asked to report the timing of the first

and most recent cigarette. We use three questions related to reporting the time of

smoking events — ‘How long ago have you smoked?’, ‘How long ago you smoked first

cig’, and ‘Most Recent cig how long ago?’.

As Figure 3.7a shows, participants indicate a 2-hour time window. When an

EMA report of lapse is missed by puffMarker, we are unable to determine the precise

moment of lapse and can only locate it in a 2-hour lapse window. Therefore, these

labels are not used in training the models. In the absence of precise lapse moment, we
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consider the entire lapse window as the potential lapse time. For example, if at time t, a

participant reports smoking a cigarette ‘4 - 6 Hours’ ago, we label t− 6 Hours to t− 4

Hours as containing a smoking event. The actual lapse event may occur anywhere in a

specific lapse window, and hence the high-risk moments (that are assumed to precede a

lapse) may occur at different portions of the 2-hour lapse window.

We adopt the following approach for computing the intervention hit rate for

EMA-reported lapses. Let tint denote the time when the estimated risk produced by the

pre-trained mRisk model crosses a prespecified threshold (corresponding to an expected

5.5 interventions per day) and triggers an intervention. Let [tEMA, tEMA + 2H] denote

the lapse window based on the participant’s EMA response. We say that the

intervention delivered at time tint has preceded a lapse if the prediction window

[tint, tint + Pw] has an overlap with [tEMA, tEMA +∆]. Here, ∆ denotes the duration of

time since the start of the 2-hour lapse window considered as high risk. If ∆ = 60

minutes, then only the first hour of the 2-hour lapse window is considered to be

high-risk. If ∆ = 120 minutes, then the entire lapse window is considered high-risk. We

assume that risk is high prior to a lapse and low afterwards, which is confirmed by our

subsequent analysis (see Section 3.7.5).

We use 2-hour lapse windows that have risk scores available from the mRisk

model at least 30 minutes (depending upon the availability of sensor data, including

imputed data for short periods of missing sensor data). This results in a total of 615

lapse windows reported in 336 EMA’s that are used in this analysis.

We vary the value of ∆ from 60 to 120 minutes and report the intervention hit

rate in Figure 3.7b corresponding to 5.5 interventions per day. We observe that IHR

increases from 0.78 and saturates at 0.98 for ∆ = 100 minutes, indicating that most

high-risk moments are contained within the first 100 minutes of the 2-hour lapse window.

As the actual lapse moment and the actual high-risk moment may vary from instance to

instance, the IHR reported here may represent an overestimation. Nevertheless, this
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Fig. 3.8: Lapse Likelihood produced by the DDHI model with lapse, intervention and
EMA report times shown with vertical lines. We only include those EMAs in which the

participants confirmed that the last time they smoked was 0-2 hours ago.

analysis shows that the mRisk model may enable the delivery of an intervention prior to

most self-reported lapses, even at the rate of 5.5 interventions per day.

3.7.5 Rise/Fall in Risk Levels Produced by mRisk Before/After Lapse

Moments

As the mRisk model produces a continuous risk score, we visually analyze the

rise and fall in the risk scores before and after lapse moments. We first apply the mRisk

model post-facto on daylong data from a participant in Figure 3.8a. The moment of

lapse from puffMarker is shown together with the time when the accompanying

self-report of lapse was recorded. We make several observations.

First, we observe that for the case when both detected and reported lapse are

available (see Figure 3.8a), the reported time is 29.33 minutes after the actual lapse in

this instance. In other instances, this time gap may be higher or lower. This ambiguity

in determining the actual timing of lapse makes it difficult to use self-reported lapses

(not supported by sensor-based detection) for model training or testing.

Second, in Figure 3.8a the lapse is preceded by a high-risk episode as estimated

by the mRisk model. We further observe that as time gets closer to the lapse moment,

the risk decreases. We also observe that once lapse occurs, the risk falls further, perhaps

due to satiation of smoking urge.

Third, we observe two high-risk windows in the entire day. The mRisk model can
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guide the delivery of an intervention prior to the risk reaching its peak during both the

high-risk episodes.

Figure 3.8a only shows the variation in risk score around one lapse moment for a

single participant. To see if there is a general pattern of risk rising prior to lapse and

falling immediately before and after the lapse moment, we aggregate the risk scores

across all lapse moments from all participants. Figure 3.8b shows the mean lapse risk

(with a confidence interval of 90%) before and after a smoking lapse. The mean risk

score is also plotted. We observe that generally, the risk score is around the mean level.

But, it rises and peaks around 44 minutes prior to a smoking lapse. The risk then

decreases as the time approaches the lapse moment, falling below the mean level at the

time of lapse, and falling even further after the lapse moment. We note that even

though the observed variability may diminish when data from different lapse instances

are pooled, due to the risk peaking at different times for different lapse instances, we

still see a robust pattern at the population scale.

3.7.6 Understanding the Role of Context in Estimating Lapse Risk via

Model Explanations

For the mRisk model to be trusted by intervention researchers [173], we analyze

the behavior of the mRisk model in terms of the influence of the three major

sensor-derived contexts (i.e., stress, activity, and location) on the lapse risk. We utilize

the SHapley Additive exPlanations (SHAP), a game theory-based algorithm that can be

employed to explain global and local feature importance for a fitted machine learning

model [151]. SHAP explains a prediction by assuming that each feature value of the

instance is a player in a game and the final prediction is a payout. Based on coalition

game theory principles, the algorithm assigns payouts to players depending upon their

contribution to the total payout. Players cooperate in the coalition and receive specific

profits. In our case, the payout is the prediction of the risk of lapse for a single instance.

The profit is the actual prediction for this instance minus the average prediction across
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Fig. 3.9: Global Feature Importance showing top 10 features for DRES model using
Deep SHAP

all instances. The Shapley value is the weighted marginal contribution of a feature

across all the possible coalitions. Features with large absolute Shapley values are more

important.

We approximate the Shapley values for each input node of the DRES using the

Deep SHAP method proposed in [151]. Deep SHAP builds upon DeepLIFT [174], which

is a local additive feature attribution method for approximating the conditional

expectations of SHAP values using a collection of background samples (training data,

see [175] for details). Using Deep SHAP, we first obtain the Shapley values of each

input instance (nt × nf , nf = 62) of the mRisk model. We then average the Shapley

values of each feature along the time axis. Finally, Shapley values of all instances across

all participants are aggregated to interpret the collective impact of the input features on

the model (i.e., global feature importance).

Observations from Global Feature Importance

Figure 3.9 shows the impact of top 15 features on the mRisk model output,

ranked by their Shapley values, averaged over all iterations. The top features are
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distributed across multiple contexts — visiting smoking spots, stress, activity, and hour

of day. The most influential feature (time since last visit to smoking spot and fraction of

stay duration at smoking spots until obs) indicate that exposures to smoking spots

influences lapse risk. Average duration of activity events until obs also has significant

influence. We hypothesize that spending more time moving around increases the chance

of exposure to environmental cues of smoking, which may increase the risk of lapse.

We observe that 9 out of the 15 features are related to stress. These include

skewness of stress likelihood until obs, fraction of time stressed until obs, and average

density of stress events until obs. We hypothesize that frequency and duration of

high-stress likelihood so far in the day influences the risk of lapse. We also observe the

event-of-influence features, which encode the temporal dynamics of recent contexts,

outrank the continuous inference features. This observation underscores the importance

of suitably representing the events-of-influence time series in a deep modeling framework

that utilizes these contexts for learning.

3.8 Discussion, Limitations, and Future Works

Although this work uses a specific application of smoking lapse and a specific

real-world dataset, the many interesting challenges encountered in modeling and the

proposed ideas to address them may be applicable in the continuous estimation of risk in

related domains such as the risk of lapse when quitting excessive drinking, abstaining

from addictive substances (e.g., cocaine), controlling overeating, overcoming suicide

attempts, among others. Like smoking, each of these adverse behaviors occurs in the

natural environment. Similar to smoking lapses, they are influenced by both internal

states and external cues. Mobile sensor data can passively track risk factors for each of

these, but they are likely to be similarly noisy. Finally, the timing of a subset of adverse

events may be obtained, but getting unambiguous negative labels is similarly difficult.

The mRisk model proposes a new end-to-end framework for model development

that may be adaptable to continuously estimate the risk of other adverse behaviors. It
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presents approaches to incorporate the influence of both recent and past events captured

from imperfect machine learning models applied to noisy sensor data and proposes a

new loss function with customizable parameters to train a model for continuous risk

estimation. It also proposes approaches for evaluating modeling choices in the absence

of unambiguous negative labels by using the limiting of intervention burden in place of

negative models to guide the model optimization. It also shows an approach for

evaluating the expected utility of such risk models in a simulated delivery of

interventions.

3.8.1 Key New Insights

For estimating the risk for smoking lapse in newly abstinent smokers, the mRisk

model led to several new insights. First, it helped determine the proportion of unlabeled

data that is likely to represent a high-risk. Second, we find that determining the

personal smoking spots during the pre-quit period and using them in risk estimation can

lead to substantial improvement in the model performance. Third, via visual analysis of

the continuous risk estimates produced by the mRisk model, we find that lapse risk

peaks about 44 minutes prior to an impending lapse, providing sufficient opportunity to

intervene. Fourth, we find that 85% of lapses can potentially be intervened upon with

only 5.5 interventions per day. Finally, via explanation, we find that recent exposure to

smoking spots has a large influence on the lapse risk together with being physically

active and a high likelihood of recent stress.

3.8.2 Limitations and Future Works

This work is only a first step towards continuous estimation of risk for adverse

behaviors using mobile sensors that can be used in real-life field settings. It has several

limitations that present exciting opportunities for future research for both computing

and health researchers. First, many smoking lapses captured in EMAs could not be used

in our model development or evaluation as they were not detected by puffMarker,

preventing a precise determination of the time of lapse. The EMAs locate the past
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smoking events (sometimes more than one) within a 2-hour long window. This does not

allow a determination of which segments of sensor data within this 2-hour window

correspond to moments prior to a lapse and can be labeled high-risk. Future work can

explore novel ideas to make use of these temporally-imprecise label sources to further

improve the model.

Second, future work can also explore ways to identify moments of low risk via

EMA responses and use them to train the usual two-class models. Third, this work shows

the direct applicability of the presented mRisk framework to estimate the risk of smoking

lapse. Applying it to other datasets of smoking cessation may require adaptation of

some parameters such as the ϵ value in the RP loss function and the choice of

percentiles in deciding the value of P . Future work can explore how well the mRisk

framework may be used to estimate the risk of other adverse behaviors (e.g., alcoholism,

drug addiction, etc.) that also have noisy data and incomplete and positive-only labels.

Fourth, the mRisk model achieves a good recall (IHR) using only the stress,

location, and activity features. Future work can boost the performance further by

supplementing them with craving, self-efficacy, presence of other cues such as noisy

locations, graffiti, and other situational indicators that may affect the risk of lapse.

Another idea to improve the model performance may be to use self-report data from

EMAs in the context of research studies that collect EMAs for other purposes. Fifth, our

simulation of intervention delivery only uses an intervention gap to avoid fatigue from

frequent interventions. Future work can improve its real-life applicability by

incorporating other constraints such as users’ receptivity [176] and availability [177].

Sixth, our evaluations assume that interventions can be delivered as soon as

high-risk moments are detected if permitted by other constraints. But, how the

detection of high-risk moments can be used to deliver the most efficacious intervention

requires a just-in-time-adaptive-intervention (JITAI) optimization trials (e.g.,

micro-randomized trial) [148] to determine the best conditions (e.g., high-risk, moderate
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risk, or low-risk) and the best corresponding combination of the intervention content,

mode of delivery, and the adaptation mechanisms for personalizing the intervention to

the individual based on his/her contexts. Seventh, risk scores produced by mRisk can

potentially be used to evaluate the impact of interventions that target stress reduction,

location exposure via geofences, nicotine medications, and others in reducing the lapse

risk. Eight, the risk scores along with the driving factors can be presented to newly

abstinent smokers at the end of the day to help them understand their vulnerabilities

better. Finally, mRisk is an offline model, computed only from observational data after

data has already been collected. However, to be widely used for sensor-triggered mobile

intervention during micro-randomized trials, future work can implement an online version

of the mRisk model to run on wearable devices or smartphones. Only then can the

model be used to trigger real-time mobile interventions based on the online prediction of

the risk of a lapse in the natural environment of the participants. These make for

exciting future research agenda for the computing and health research community.

3.9 Chapter Summary

The majority of chronic diseases can be prevented or better managed by

improving health-related behaviors. Automated detection of risky contexts via mobile

(and wearable) devices provides a new opportunity to improve the success rate with

behavior modification. But, the overall risks depend on a multitude of factors, including

internal states, personal behaviors, and environmental cues. Many of these factors can

now be detected by applying machine learning models on data collected by wearable

devices and smartphones. But, the challenge is noise in the data collected and lack of

unambiguous labels of low- and high-risk moments. This work provides a new framework

to estimate the overall risk of adverse behaviors despite noisy data, no labels of low-risk

states, and availability of only a subset of high-risk states. It shows the successful

application of this model on smoking cessation dataset, opening the doors for exciting
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new opportunities in the design and delivery of efficacious behavioral interventions to

help people live healthier lives.
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Chapter 4

Robust Inference of Human States from More Convenient, but Noisier Wrist

Sensor Data

4.1 Introduction

In Chapter 3, we developed "mRisk," - a continuous smoking risk estimation

model using mobile health sensors in the wild. We employed the chest-based

AutoSense [72] sensor suite to continuously collect ECG and Inertial Motion data from

participants in their natural environment. The ECG data is first processed to compute

human heartbeat intervals (RR intervals). Next, we calculate cardiac and heart rate

variability features from the RR interval time series with a sliding window approach.

Finally, using a machine learning-based model, we transform the feature sets to

continuous assessments of participants’ physiological stress levels in the natural

environment [90, 91, 92, 15, 93, 94]. A variety of wearable ECG devices have also been

used to develop continuous detection models for a range of complex activities and

behaviors that require cardiac-related features such as the detection of drug

use [88, 87, 86], craving [30] and pain [178, 179].

The chest-worn IMUs (Accelerometer and Gyroscope) directly estimate the

participants’ torso movement, and we use them to compute participants’ activity levels.

The activity time series represents the behavioral context of the participants. Stress,

activity, and proximity to smoking spots (from smartphone GPS) are the inputs to the

prediction models. A limitation of the mRisk model development approach presented in

Chapter 3 is the use of chest-based wearable sensors to infer these physiological (e.g.,

stress), behavioral (e.g., activity), and environmental (e.g., proximity to smoking spots)

contexts. Platforms like AutoSense [72] achieve reliable attachment and minimal signal

noise by using adhesive electrodes that are not comfortable for extended use. It

essentially limits the platform to research use cases. Other platforms like the Zephyr

Bioharness [180] achieve improved wearability levels by using conductive fabrics instead
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of adhesive electrodes. Such devices have been used in athletic performance monitoring

and research studies. However, the resulting variable attachment results in lower overall

signal quality. In addition, the chest belt form factor is still not practical for long-term,

continuous monitoring outside research studies. Therefore mRisk models based on

chest-worn sensors offer limited practical utility with reduced potential for successful

deployment in smoking cessation programs. To realize the broader potential of the

methods and models developed in Chapter 3, we must be able to develop risk prediction

models using convenient and easy-to-use devices and sensors. Hence, adapting the

mRisk models to work with wrist-based sensors instead of chest-based ones is essential.

Enabling continuous smoking risk estimation from wrist-based sensors using mRisk first

requires robust inference of participants’ stress and activity levels using data collected

from wrist-worn sensors alone.

The last decade of research in the ubiquitous computing community has seen a

drive towards the continuous detection of increasingly complex activities and behavioral

states using devices that are increasingly unobtrusive and more practically deployable,

both for use in research studies and everyday life. Decades of research on human activity

recognition using wearables IMU sensors have given rise to an established set of

methodologies for computing activity levels from participants in their daily lives. Intertial

motion sensors fitted in wrist-worn wearables have seen widespread adoption in consumer

health analytics owing to their ability for caloric estimation, human activity, and mobility

pattern recognition. We borrow from this vast literature to develop a deep neural

network-based human activity recognition model using accelerometer data collected from

the wrist. However, contrary to activity recognition from the wrist, inferring stress is

more complex. Computing heart rate variability and cardiac features from

lower-frequency and noisier wrist-worn Photoplethysmography (PPG) is more challenging

than chest-based wearable Electrocardiogram (ECG) devices. The Apple Watch (and

similar devices) [181] provides an alternative to chest belt-based ECG sensing in a very
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different part of the design space that achieves greatly improved usability through a

wristband form factor. However, the Apple Watch is optimized to produce short ECG

strips suitable for diagnosing arrhythmias. It requires the user to touch the watch’s

crown (which functions as an electrode) throughout the sampling process - implying the

user must interrupt their normal activities to collect ECG samples. As a result, this

approach is unsuitable for continuous, ubiquitous monitoring applications. By contrast,

wrist-worn fitness trackers and smartwatches that include a Photoplethysmography

(PPG) sensor (e.g., FitBit and Garmin fitness trackers, WearOS watches, the Apple

Watch [182]) can produce continuous PPG data without any intervention from the user.

PPG sensors take optical measurements from the skin surface and sub-surface to

capture synchronous blood volume changes in the micro-vascular bed of tissues [183].

The signal PPG sensors produce thus is based on pulse transit dynamics at the wrist.

This signal can be used to infer features of the pulse train, such as heart rate and heart

rate variability (HRV). However, owing to its placement on the wrist and different signal

dynamics, any inference from wrist-worn sensor data must navigate the challenges

emanating from the differences between the two domains (chest vs. wrist). We briefly

describe the three broad challenges with regards to adapting continuous inference

models from the chest to wrist sensor domain. These challenges highlight the necessity

of a distinct inference mechanism when using wrist-based sensor data.

Adapting Inference Models from Chest to Wrist

There are three essential distinctions between wrist-worn sensors and chest-based

ones. The first is the wrists’ location in the human body’s periphery. Thus, sensing

cardiac parameters becomes challenging owing to distance, and we have to make

indirect measurements from the wrist. For example, chest-based ECG sensors directly

assess the electric potential generated in the heart’s lower ventricles. In contrast,

wrist-based PPG sensors make heartbeat assessments from changes in blood volume in

the wrist due to heartbeats. The second distinction concerns the degree of motion.
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Compared to chest sensors, wrist sensors are susceptible to the significant movement of

wrists which is dynamic and often unpredictable. Finally, a vital component of the sensor

data collection concerns their attachment to the point of contact. Chest sensors usually

employ sticky electrodes or conductive fabric-based chest-belt to attach themselves.

Wrist sensors, on the other hand, are worn like watches. The firmness and placement of

the watch-type sensor vary a lot from person to person, contributing to substantial

changes in data quality. In the natural environment, dynamic wrist motion compounds

these attachment concerns, thus restricting our ability to collect clean and reliable sensor

data from wrist sensors. These challenges contribute to dynamic signal quality

fluctuations of wrist-sensor data. The changes in signal quality significantly impact the

robustness of inferences further down the line. Thus, quantifying the collected data’s

reliability is necessary before hypothesizing any subsequent inference mechanism on top

of them. In translating an inference model from chest to wrist, we must consider two

key elements: the ability of the sensing medium to collect reliable data for further

inference and the accuracy of the inference itself.

This chapter aims to develop methods for robust inference of stress and activity

using wrist-worn PPG and Accelerometry data. We first describe the activity recognition

model we developed using labeled accelerometer data. We borrow from established

literature on human activity recognition and develop a deep neural network model for

muti-class activity recognition. Next, we focus our discussion on developing

methodologies for continuous stress assessment from wrist-based PPG. We first establish

the necessity of signal quality assessment of wrist-sensor collected PPG data. Next, we

create a supervised learning-based data quality metric and integrate it within the stress

assessment module. This approach makes it possible to satisfy the two critical

requirements of continuous inference from wrist-sensor collected data. First, we assess

the usability of the data to make reliable stress inferences by quantifying the signal
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Fig. 4.1: Confusion Matrix of Activity Classification in WISDM dataset

quality level. Second, we improve the accuracy of stress inference itself by integrating

our developed signal quality metric within the stress assessment methodology.

4.2 Activity Recognition From Wrist-worn Accelerometry

Wrist-fitted accelerometer sensors continuously capture the motion of the wrists

in three orthogonal directions. We use inertial motion sensor data from wristwatches to

compute participants’ activity levels. Since activity is directly related to this motion, as

presented in the IMU data, its inference is not highly susceptible to signal quality

fluctuations and the quality of activity inference. We use a deep neural network based

human activity recognition model. Deep learning models have become very popular for

activity recognition due to their ability to encode and represent noisy sensor data to

classify complex tasks [73]. Convolutional Neural Networks (CNN) offers the most

efficient deep model architecture for activity classification in the wild [74, 75].

We train a CNN based activity recognition model for each 20-second data

segment using publicly available WISDM dataset [76]. In WISDM, 51 participants

performed 18 different activities while wearing accelerometers on their dominant wrists.

Based on the amount of periodicity and variations present in different activity labels, we

merge similar activities to obtain the following classes — Stationary, Walking, Stairs,

Sports, and Exercise. Stationary refers to segments where the variation is minimum and

encompass labels such as sitting, standing, typing and others. Walking incorporates
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activities when there is gait information present, with those involving Stairs separated

out. Sports refers to activities which consist of a mixture of stationary and sudden burst

of active segments. These include playing, catching, dribbling, etc. Exercise includes

activities of high magnitude such as jogging, running and cycling. Although periodicity

is observed in the data segments for both Exercise and Walking, the two are different

based on the magnitude of variations present.

For generalizing across orientation differences in different devices and study

setups, we train the model using only magnitude of accelerometer data. Using 20% of

each participants data as testing set, our model achieves an accuracy of 0.96 and a

weighted F1-score of 0.96. Figure 4.1 shows the confusion matrix.

4.3 Robust Stress Inference from Wrist-worn PPG

Inferring stress from PPG depends on accurately assessing cardiac, and heart rate

variability (HRV) features from wrist-worn PPG signals. However, due to their peripheral

placement, dynamic wrist motion, and irregular attachment of wrist-worn sensors to the

point of contact, PPG sensing in the natural environment suffers from various external

noises and confounds. These noise elements become ingrained within the signals,

diminishing their ability to reliably estimate the necessary cardiac and HRV features. It

negatively impacts the quality of any subsequent inferences on top of PPG data.

Therefore, robust stress inference from noisy wrist-worn PPG in the natural environment

first requires decision-making on the state of the input PPG signal to contain valid

information about participants’ heart rate dynamics. In this section, we first establish

the need to assess wrist-worn PPG data quality. We elaborate on the sources of noise

present for wrist-based PPG data and the resultant challenges that manifest in PPG

signal processing. We then describe the accuracy-yield tradeoff principle that applies to

the continuous stress inference from wrist-worn PPG data in the natural environment.

Next, we present the ideas behind the deep integration of signal quality metrics inside

the stress inference module. Our methods leverage the benefits of continuous PPG
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signal quality assessment in the natural environment and develop a robust stress

inference pipeline from noisier wrist-worn PPG data.

Due to the optical nature of PPG sensing, PPG signal quality strongly depends

on the sensor’s attachment. In particular, the sensor’s motion in the direction orthogonal

to the skin surface can generate noise in the measured PPG waveform with amplitudes

that can be as large as actual pulse transits. Unfortunately, periodic wrist motion due to

walking and other forms of physical activity can result in significant noise in the time

domain and strong noise components in the frequency domain that overlap with the

typical range of valid heart rates. This noise can make analyzing PPG data more

challenging as PPG signal quality can vary significantly over a day due to periods of

physical activity and short periods due to transient hand motions that occur during

other activities of daily living.

Notably, the difficulty in overcoming these challenges depends on the monitoring

task of interest. In particular, different monitoring applications will have different

sensitivities to the noise level in PPG data. For example, inference for heart rate from

raw PPG data is relatively insensitive to noise. The dominant frequency in the PPG

waveform over a given time window (e.g., one minute) will yield a reasonably robust

estimate of heart rate unless there are significant noise components in the frequency

domain due to periodic motion. Corruption due to motion at the wrist can be dealt with

by leveraging actigraphy data collected at the wrist to determine when motion levels are

low enough that PPG signal quality is likely to be in an acceptable range. This leads to

a natural tradeoff between monitoring yield (defined as the number of minutes in which

the system can produce usable inferences) and the accuracy of the monitoring output.

Completely ignoring data quality considerations will generally result in the maximum

yield and the lowest accuracy output. Restricting a system to produce results only when

there is no motion will generally result in the lowest yield and the highest accuracy
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output. The yield-accuracy tradeoff principle applies regardless of the monitoring task,

as it is inherent to the PPG sensing modality under real-world deployment conditions.

To ensure reliable stress inference from wrist-worn PPG data facing the

challenges mentioned herein, we emphasize the importance of developing an accurate

and efficient PPG data quality metric that quantifies the amount of noise in the PPG

signal irrespective of the sources. Since noise in PPG signals can often be transient, the

ability to accurately and efficiently identify the level of corruption lets us determine the

times of varying reliability and increased data uncertainty.

Assessing the signal quality levels also allows us to apply relative weighting to

different locations of the PPG signal without discarding them altogether. This weighting

mechanism diminishes the impact of transient noise and improves the robustness of

computed cardiac and heart rate-based features from PPG signals. As a result, the

accuracy and robustness of down-the-line inferences from the computed features improve

substantially. Therefore, we propose integrating our developed signal quality metric

within the stress inference mechanism. We thoroughly evaluate our developed

signal-quality aware stress model in both lab and field environments. Our results show

significant improvement in the accuracy of stress inference from wrist-worn PPG data

compared to existing approaches. We also outline the improved accuracy-yield tradeoff

profile of our developed stress inference pipeline.

4.4 Our Approach & Key Contributions

In this chapter, we first propose a new PPG data quality indicator for short time

windows developed using supervised learning, which we refer to as CQP (for See Quality

of PPG ). We then show how CQP can be extended to longer time intervals and more

deeply integrated into subsequent inferences to improve their robustness. The CQP data

quality indicator is learned via an auxiliary classification task where the inputs are

features extracted from a five-second segment of PPG data to capture potential rapid

variation in PPG data quality. The goal is to decide if each segment is of acceptable
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quality. A probabilistic classifier is used, and as a result, the CQP data quality indicator

carries an interpretation corresponding to the probability that a segment of data is of

acceptable quality. Using 28,000+ labeled PPG segments collected in the field, we show

that CQP detects segments with acceptable data quality with 95% balanced accuracy

compared to 80% using previous data quality measures. To assess the quality of longer

segments (e.g., one minute) while being robust to incomplete data, we investigate

different methods for aggregating the base CQP indicator over time.

To demonstrate the utility of CQP in complex inference tasks, we conduct a

detailed case study comparing a PPG-based stress detection pipeline to an ECG-based

pipeline. This study leverages unique paired ECG and PPG data from a lab study

(n = 36 participants) and a field study (n = 105 participants). As in prior work using

ECG, the primary PPG features of interest for this task are related to heart rate

variability (HRV). As we will show, tasks that require more detailed PPG data analysis,

such as the extraction of HRV feature from inter-beat time series, will typically exhibit a

worse yield-accuracy profile than simpler statistics such as heart rate. However, our

results indicate that higher PPG quality levels as given by CQP result in more accurate

inference for all features investigated in this work. We then show how the CQP data

quality indicator can be more deeply integrated into the PPG stress inference pipeline

using a combination of minimum quality thresholding and quality-weighted feature

computations, resulting in significantly improved accuracy-yield trade-offs.

We begin with a discussion of related work. We then describe the unique data

sets we use in this work. Next, we turn to the development of the CQP model and its

evaluation in the stress detection case study. We conclude with a discussion of limitation

and future directions.
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4.5 Related Work on PPG Signal Quality Assessment in Light of

Physiological Event Inference

In this section, we discuss related work on PPG data quality assessment and the

use of PPG data in physiological event inference.

4.5.1 Quality assessment of PPG Data

The majority of prior work on data quality assessment for PPG data applies to

PPG sensors worn as a clip on the finger in clinical applications. Early work on PPG

signal quality assessment developed thresholds on PPG morphological features to assess

signal quality [184, 185]. PPG pulses were detected using repeated Gaussian filtering

before applying thresholds on cross-correlation between consecutive pulse segments

in [186]. Adaptive thresholding methods were developed to make quality assessments

more robust. In [187], researchers used a beat-by-beat annotation of ‘good’ and ‘bad’

PPG pulse peaks to devise an online approach to classifying individual beats using a

thresholding approach. In [95], authors use morphological characteristics with temporal

variability information in the signal time series to assess the signal quality. However,

classification based on thresholds developed on raw PPG signal still suffers from false

beats, missing data, and significant beat variations in the field. Also, these works focus

on binary assessment of acceptable PPG data, which leads to significant reduction of

data volume in real life field conditions.

A number of approaches leverage template matching methods. For example,

dynamic time warping (DTW) has been used to align each pulse beat to a running

template for extracting signal quality indices in [188, 189, 110, 95]. By contrast, we

focus on computationally simpler classification models applied to extracted features.

More recent work [190] investigated the effect of using a combination of several

signal quality indices: perfusion [191], kurtosis [192], skewness [193], relative power,

zero crossings, entropy, and the matching of systolic wave detectors. They manually

annotated 106 PPG recordings each 60 seconds long into three distinct classes:
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excellent, acceptable, and unfit. A ‘Skewness index’ was reported as the optimal quality

feature, outperforming the perfusion index and other indices. ‘Skewness’ was further

used by [194] as the single signal quality metric for designing an optimal filter for PPG

signals.

Thresholds on motion derived from inertial sensors have also been used as a

binary indicator for accepting PPG segments for further analysis [195, 179]. Considering

motion as one of the indicators of signal quality, [196] proposed an accelerometer-based

signal quality index. Similarly, [197] uses near-wrist and far-wrist based motion

classification to remove segments of PPG affected by motion. Another work [198] uses

accelerometer-based motion detection to ignore PPG segments affected by motion. We

show that single indicators such as skewness or motion alone are insufficient to

accurately identify acceptable segments of PPG data.

Several supervised machine learning approaches to signal quality assessment have

also recently been proposed [190, 199, 200, 201, 202]. [190, 200] classify 60 second

windows, while [199] classify 30 seconds. As window size increases, these methods miss

the dynamic instantaneous fluctuations of signal quality. To be able to capture

variations of signal quality as much as possible, we use 5 second windows to annotate

signal quality. We also show the effect of aggregating assessed signal quality into longer

windows. Further, most past work is based on a limited set of PPG data collected in

controlled settings. This limits the sources of noise and opportunity to capture variations

in signal quality deterioration present in real life conditions in the field. We annotated

28,086 PPG segments from 12 participants in the field setting and use these data to

learn the proposed CQP PPG data quality indicator.

4.5.2 Using Signal Quality to Restore or Repair PPG Data

Much prior work has also dealt with the problem of corruption of PPG signals

owing to hand or wrist motion. They focus on removing PPG segments affected by

motion artefacts using conventional or adaptive filtering techniques [107, 108, 109],
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template matching [110], wavelet transformation [111, 112], independent component

analysis [113] and empirical mode decomposition [114].

Much of the existing work on PPG signal restoration is based on motion data

collected from finger-based PPG sensors in bedside vital sign monitoring applications

where motion is usually limited compared to the natural field environment. We

incorporate the established knowledge of motion induced corruption in PPG signal when

estimating heart rate information in the frequency domain using [82]. However, our

proposed approach is also indicative of corruption not only due to motion but other

factors prevalent in real life field conditions such as loose attachment, ambient light,

power-line interference, and others. In contrast to the limited and constrained settings

employed by most existing work, we collect data in both lab and the field setting. Our

results show that in the field setting, inferences from PPG data can decrease sharply in

accuracy as a function of quality compared to the lab setting.

4.5.3 Signal Quality for Physiological Event Inference

Prior work on inference for physiological events also often uses thresholds on

signal quality to select data further analysis. For example, [203] used frequency

thresholds to remove PPG segments affected by motion and noise and only use

unaffected segments to identify coronary artery disease. Similarly, [204] used adaptive

thresholds to remove noise and motion-affected PPG segments during a pre-processing

step for estimation of mental distress from PPG. Work on atrial fibrillation detection

[196, 205, 206] also uses thresholded indicators of signal quality to remove low-quality

segments. Past work on stress assessment, drug use detection, and pain detection from

PPG similarly excludes noisy segments of PPG data [103, 88, 179]. We propose a

method that uses both quality weighting and quality thresholding to produce an

improved yield-accuracy trade-off compared to only using quality thresholding as

investigated in these past approaches.
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(a) Lab study protocol (b) Chest Band (c) Wrist Band

Fig. 4.2: Lab study protocol and devices used for data collection. The chestband
consists of ECG, respiration, and accelerometers. The wrist device consists of 3 channels

of PPG, accelerometers, and gyroscope.

4.6 Datasets

Our goal in this chapter is to learn a data quality indicator for wrist-worn PPG

and evaluate its accuracy and utility when integrated into complex real-world inference

pipelines. We compare to established approaches based on ECG data. To enable this

work, we leverage data sets collected via unique studies that include paired ECG and

PPG data collected in both the lab and the field settings. As noted in the introduction,

we use stress detection as a case study. Thus, the lab study specifically collects data

under a controlled stress inducement protocol. This provides unambiguous stress labels

for training and testing stress detection models. The field study provides ecologically

valid data from PPG and paired ECG. We compare the output of PPG-based models to

those of ECG-based models in the field to assess the performance of PPG-based models.

Both studies were approved by the local Institutional Review Board and all participants

provided written consent. We now describe details of the devices, study protocol, and

data collected.

4.6.1 Devices

In both studies, participants wore a chest-band device that included ECG,

respiration, and accelerometer sensors. Participants in both studies simultaneously wore

identical wristband devices on both wrists that included a PPG sensor and 6-axis inertial

sensors. Data was collected and transmitted to study servers via a smartphone. We

describe the devices below.
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• Chest-band Device: The device consits of a flexible chest belt (see Figure 4.2b)

with a two-electrode ECG sensor, respiratory inductive plethysmography (RIP)

sensor for measurement of relative lung volume, and a 3-axis accelerometer to

assess the motion of the torso. The sampling frequency of sensors is 100 Hz for

ECG and 25 Hz for both respiration and accelerometer in the lab. In the field, the

sampling frequencies are 64 Hz for ECG, 21.33 Hz for both respiration and

accelerometer.

• Wristband Device: In both lab and field, the collection of PPG was performed

using two wristband (one worn on each wrist), as shown in Figure 4.2c. It

captures PPG signals in 3 different LED channels (red, infrared and green) using

two receivers along with a 3-axis accelerometer and gyroscope. The sampling

frequency is 25 Hz for all the sensors in all settings.

• Smartphone: The wristband and the chestband sensors transmit the collected

sensor data wirelessly to an Android smartphone in real-time via Bluetooth Low

Energy (BLE). The smartphone timestamps all received sensor data. Timestamp

correction of received bytes occurs in the smartphone software [156]. The

smartphone software uploads data to the cloud wherever bandwidth is available.

Participants in the field study were provided with a study phone configured with

all the necessary software.

4.6.2 Study Protocols

The protocol for the lab study was designed to replicate stress situations and was

conducted in a controlled environment. The field study was designed to investigate the

role of stress and environmental cues (detected by sensors) in triggering smoking lapse

in newly abstinent African American smokers [30, 207].
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Lab Study Protocol

The lab study protocol is based on [208], which showed that cardiovascular and

neuro-endocrine adjustment to public speaking and mental arithmetic exhibit stress

response in physiology. The protocol replicates that of [15]. The study was designed to

subject participants to three types of validated stressors — socio-evaluative (public

speaking preparation & delivery), cognitive (mental arithmetic), and physical (dipping

hands in ice cold water) in a repeated measure design. The study consisted of a 30

minute baseline period where participants were asked to sit and rest. The

socio-evaluative challenge consisted of a preparation phase (4 minutes) and a speech

delivery phase (8 minutes). The cognitive challenge components consisted of a mental

arithmetic session of increasing difficulty (4 minutes). Finally, for the physical challenge,

participants were asked to submerge their hand in ice cold water for 90 seconds. Lab

study sessions ended with a 30 minute stress recovery session. Participants were given

instructions before each session. Figure 4.2a shows the sequential lab study session

design. The tasks depicted in red have been shown to induce stress-related physiological

changes [208], whereas tasks in green represent rest or recovery time periods. Each

distinct rest and stress period was timestamped to create ground-truth labels for each

minute of the session similar to [15]. Instruction periods between the consecutive tasks

are not taken into consideration for ground-truth labels.

Field study Protocol

The participants for the field study were recruited for a smoking cessation

research project. To be eligible, participants had to be smokers for two years, have no

ongoing medical or psychiatric illness, and have a willingness to quit. After being

enrolled at the baseline visit, participants were trained in the proper use of the sensor

devices and how to respond to questionnaires in the form of Ecological Momentary

Assessments (EMA) via mobile phones. The participants wore both the chest and wrist
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Table 4.1: Description of data from the Lab & Field Studies

Participant Information Data Volume (hours)
Chest (ECG) Wrist (PPG, ACL)

Total Acceptable Left Right
Study No. of Participants Participants Selected Age Total Not Irrecoverable Total Not Irrecoverable
Lab 39 36 — 122 39 66 43 66 43
Field 131 105 52.19±11.43 18,850 4,706 16,245 10,430 15,879 10,069

sensor suites during waking hours. Each participant was enrolled in the study for 14

days. The participants were compensated for their time and effort.

4.6.3 Data Collected

Table 4.1 summarizes the data collected in both studies. Participants for the lab

study were recruited via printed advertisement (e.g., flyers, local weekly periodicals),

online advertisement using social media and list groups, announcement in classrooms,

and word of mouth. A total of 39 unique participants completed the lab study consisting

of a single session. Three of the 39 participants had no usable data and hence were

excluded from further analysis. From the remaining 36 participants in the lab, we have

132 hours of PPG data belonging to lab protocol sessions from both wrists combined

(66 hours from right wrist, 66 hours from right wrist). After excluding irrecoverable

segments (segments from which heart rate information can not be recovered, see

Section 4.7.3 for more details), we retain 43 hours of acceptable PPG data from left

wrist and 44 hours from right wrist. We get 39 hours of acceptable ECG data.

The field study recruited participants via print advertisement (e.g., flyers, local

weekly periodicals) and advertisement on radio. The phase of the study with paired ECG

and PPG data enrolled 131 unique participants, of which 21 participants withdrew from

the study. Out of the remaining 110 participants, we have paired ECG & PPG data from

105. The mean age of the participants is 52.19 years with a standard deviation of 11.43

years. From these participants, we have 16,245 hours of PPG data collected from the

left wrist and 15,879 hours of PPG data from the right wrist. After filtering out

irrecoverable segments and only including the days when we have at least 1 hour of

recoverable data present (necessary for stress inference that needs baseline data for
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day-specific normalization), we have data from 1,095 unique participant days belonging

to 105 participants. Total recoverable PPG data amounts to 10,430 hours from the left

wrist and 10,069 hours from the right wrist. We have 18,850 hours of ECG data in the

field study, out of which chest sensor was worn on the body for 7,604 hours. Amongst

the on-body hours, we have acceptable ECG data for a total of 4,706 hours. Around

3,000 hours of ECG data is unusable due to intermittent packet loss and loose

attachment of electrodes. We use these data to learn and evaluate the proposed PPG

data quality index.

4.7 CQP Data Quality Model

We first describe the data pre-processing, feature extraction, data labeling,

learning and evaluation of the proposed CQP model for inferring PPG data quality over

five-second windows, which we refer to as CQP-5. We then turn to the question of

leveraging CQP-5 to define a PPG data quality indicator over 60 second windows,

CQP-60.

4.7.1 Windowing Data for Quality Assessment

The first step in the assessment of signal quality is to select the size of window

to which data quality assessments should be ascribed. Selecting a longer window size

will increase the quality variation within the window, whereas smaller window sizes may

not contain enough data to assess signal quality reliably. We use the recommendation

from [194] that suggests a minimum of 5 seconds as the necessary window size to

accurately discriminate acceptable segments from unacceptable segments. Five second

windows also gives us sufficient frequency and time resolution to calculate heart rate

information within individual windows. We thus begin by developing the base CQP

model, CQP-5 for five second windows of PPG data. We subsequently turn to the

problem of how to aggregate the output of CQP-5 over longer windows and develop

CQP-60, which provides a data quality index for one minute (60 second) segments of
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data. CQP-5 and CQP-60 are both used in the stress inference task. We next discuss

data pre-processing steps for the CQP-5 model.

4.7.2 Preprocessing PPG Data

Before assessment of signal quality, we clean the PPG data by filtering out

high-frequency noise. We employ a 64th order Finite Impulse Response Butterworth

bandpass filter for removing high-frequency noise. This filter retains frequencies ranging

from 0.4 Hz to 3.5 Hz (24 - 210 BPM). Using bandpass filtering allows us to filter out

contributions from external noise sources which are prevalent in unwanted frequencies

while not affecting the information content from the pulse variations associated with

heart activity.

PPG signals collected under uncontrolled field conditions can also have large and

rapid variability in amplitude due to varying proximity to skin and the resulting response

of the gain controller included in the sensor hardware. Therefore, to make amplitude

variations more consistent, we normalize the PPG data using quartile-based

normalization. We normalize each 5 second PPG segment by centering it using the

median value over the interval and scaling it using the inter quartile range. If X =

[x1, x2, . . . xk] denotes a PPG segment of length k in a particular channel, then we

normalize X using the transformation shown below:

Xnorm =
X −Q2(X)

Q3(X)−Q1(X)
, (4.1)

where Qn denotes the nth quartile. Normalization reduces the effects of outliers within a

segment and standardizes the computed features. The inter quartile range and the

median as measures of spread and location are selected instead of the more common

Z-transform as they are more robust to outliers.
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4.7.3 Identifying and Isolating Irrecoverable PPG Segments

As with many applications of wearable sensors, it is possible for the data

expected in PPG signals to be missing or so corrupted by noise that the data are not

usable. We refer to segments of time where this is the case as being irrecoverable.

These may correspond to situations when the sensor is not worn leading to missing data,

where there is high momentary noise, or when the sensor is worn too loosely to capture

pulse peaks. Therefore, as our next data processing step, we detect and remove

irrecoverable windows of data.

We operationalize the concept of irrecoverable windows of data via spectral

analysis. Specifically, if there are no power spectral peaks at all within the heart-rate

frequency range (0.8 - 2.5Hz), we deem the segment to be irrecoverable. The

motivation for this definition stems from that fact that when it is violated, standard

spectral methods for heart rate estimation would fail to identify a heart rate value for

the segment [83].

To compute the condition, let S(f) be the normalized power spectrum calculated

using the Welch’s method [209]. We let I(fp) indicate whether fp is a peak in the power

spectrum as defined below. We consider a PPG segment to be irrecoverable if∑fmax

f=fmin
I(f) = 0.

I(fp) =


1, if d

df

∣∣∣
f=fp

S(f) = 0 and S(fp) ≥ c ·maxf S(f)

0, otherwise

(4.2)

We select the threshold c empirically from our data. In [210], the authors considered

any potential peak in power spectral density as a spectral peak if its amplitude was at

least 30 percent of the maximum. Our goal is for this stage to have a low false negative

rate and a high true positive rate for identifying segments that are recoverable. We

select c = 0.1 for our experiments, which provides sufficient leeway to accept noisier
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segments that may still be usable. The signal quality model is applied to all segments

that are not deemed to be irrecoverable and can be used to provide a second layer of

more fine-grained thresholding. We next turn to a discussion of feature extraction for

the quality assessment model.

4.7.4 PPG Signal Quality Features

Several features have been proposed to assess the quality of PPG signals in prior

research [190, 201, 199]. They can be classified into two types: those based on

time-domain representation and those based on frequency domain representations.

Time-domain features include perfusion index, skewness, kurtosis, zero crossings,

standard deviation, mean, median, and inter-quartile range. These features mostly define

the shape and symmetry of the distribution of PPG values within a time window.

Perfusion index is defined by the relative range of bandpass filtered PPG compared to

raw value and is used in commercial smart-watches [211]. In terms of frequency domain

metrics, we focus on relative power defined as the ratio of the power spectral density

(PSD) in the heart rate frequency band compared to the PSD in the overall signal.

In [190] skewness was found to be the the optimal signal quality index for classification

of PPG signals collected from finger-based PPG sensors in the lab environment.

We select four features for our model that are not easily affected by potential

sources of between-person variability (such as skin color). They are skewness, kurtosis,

relative power, and standard deviation of normalized PPG segments. Skewness measures

the symmetry in the distribution of PPG data within a window. Kurtosis measures the

probability in the tail of PPG data distribution within a window. Standard deviation of

PPG segments normalized by quantiles according to (4.1) is used as a robust metric to

measure per sample deviation. We use relative power to measure the contribution of

frequencies belonging to the heart rate range relative to those outside that range.

Relative power is defined in [190] as Rpower =
∫ fmax

fmin
S(f)df/

∫∞
0
S(f)df , where S(f) is

the normalized power spectrum. We select fmin = 0.8Hz and fmax = 2.5Hz corresponding
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to 48 BPM and 150 BPM respectively, the frequency band where we expect heart rates

to be located under normal conditions.

We also consider inertial motion features used in studies employing commercial

watches, which cease sampling of PPG signals or discard it from further analysis when

sufficient motion is present [105, 195]. We evaluate this approach compared to the

proposed approach and also consider using these features in the proposed model. In the

next section, we turn to the question of annotating PPG data segments with data

quality labels for use in data quality model learning.

4.7.5 PPG Data Quality Labeling

To train and test a classifier for assessing the quality of PPG data collected in

the natural field environment, we take a similar approach to [194]. We annotate

five-second windows of field data with labels from the set {Acceptable, Undecidable and

Unacceptable} for subsequent analysis. We define these three classes below. Figure 4.3h

shows the relationship among the classes (including the irrecoverable class defined

earlier) in a Venn diagram.

• Unacceptable for analysis: We consider a PPG segment unacceptable if no

prominent systolic peak is present in the time domain as well as the absence of

PPG pulses with appropriate morphology and corresponding lag relationship with

the ECG R peaks. There can be scenarios where spectral peaks are present in the

heart rate frequency range. But, their contribution to time-domain periodicity is

quite limited.

• Acceptable for analysis: If a PPG segment is not unacceptable, we look into

the time-domain representation of the segment. If there is a dominant beat

morphology containing systolic peaks, which corresponds to at least two full PPG

pulses of duration between 400 ms and 1,250 ms and systolic peaks show

correspondence with ECG R peaks, we consider the segment as acceptable.
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Fig. 4.3: Figures a-g show annotation of single channel PPG windows with respective
power spectral density plot on top. The vertical lines in the top subplot show the heart
rate frequency range. Spectral peaks inside and outside this range are colored separately.
Figures (a) and (e) show acceptable segments, (b) and (f) show undecidable segments,

(c) and (g) show unacceptable segments and (d) shows irrecoverable segments
Figure (h) shows the intersection of different classes assigned to windows through a Venn

Diagram. Irrecoverable subclass is shown inside a gap within the Unacceptable class.

• Undecidable: If PPG segment cannot be categorized based on the classes as

mentioned above, we label it as undecidable. Annotation into undecidable class

gives space for the ambiguity generated by the presence of quasi-periodicity in the

time domain. A non-prominent spectral peak in the frequency domain can

represent periodicity in the time domain. However, the interpretation of the

time-domain peak as acceptable warrants the presence of a PPG pulse of the

required duration (400ms to 1,250ms). Also, to confirm the presence of a PPG

pulse, we need a prominent systolic peak that can be attributed to the pulse. The

systolic peaks also need to be in sufficient agreement with ECG R peaks. In such

cases, it may not be clear if the PPG data are valid or not.

The annotation was performed by two independent annotators. The annotators

based their label decisions on visualizations of a normalized time-domain representation

and a power spectral density representation of the raw PPG data, since these

representations are closer to the feature values that a model will subsequently access
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Table 4.2: Inter-rater distribution statistics for calculation of kappa statistic κ

Acceptable Undecidable Unacceptable
Acceptable 6202 1127 371
Undecidable 1422 5570 1662
Unacceptable 269 1548 9915

than the raw PPG data. To aid in the labeling process, each segment of PPG data also

has a corresponding segment of ECG data displayed. The inclusion of ECG facilitates

the annotation of PPG segments and provides clean reference information to the

annotators. Example visualizations for each class are shown in Figure 4.3.

After discarding all the irrecoverable PPG segments, we randomly select 28,086

single-channel 5-second PPG segments (for a total of 2,340 minutes, or 39 hours) from

12 participants in the field, each of length 5 seconds. We normalize each window

according to (4.1). Two independent annotators classified each instance according to

the guidelines mentioned above. We compute the inter-rater agreement between the two

annotators using Cohen’s kappa value. The unweighted kappa coefficient calculated

using [212] is 0.652 with a 95% confidence interval range of (0.645, 0.659). This is

considered a substantial agreement. Also, this is significantly better than the value of

0.48 reported in [190] based on 106 PPG segments. We note that the inclusion of an

Undecidable class gives us some leeway when faced with an ambiguity of labeling

windows into binary classes of acceptable and unacceptable. We next describe the

CQP-5 model learned using these labeled data.

4.7.6 The CQP-5 Model for Assessment of PPG Data Quality Over

Five-Second Windows

The goal of the CQP-5 model is to provide a continuous signal quality index such

that higher values of the index correspond to data of that are increasingly likely to be of

acceptable quality. We frame this as a binary classification problem where Acceptable is

the positive class and Unacceptable and Undecidable are collapsed together to form the
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negative class. The probability of the positive class then corresponds to the required

signal quality index.

The CQP-5 model is applied to five-second segments of data. We consider all of

the features described in Section 4.7.4 including Skewness, Kurtosis, Relative Power, and

Standard Deviation computed from the PPG data, as well as standard deviation of

accelerometer magnitude computed from the associated actigraphy data. We consider

learning the CQP-5 model using two different model classes: logistic regression with ℓ2

weight decay (LR-CQP-5) and decision trees (DT-CQP-5). For logistic regression we

optimize the regularization hyper-parameter. For the decision tree model class, we

optimize the criteria to split a node in a decision tree. To account for the imbalance in

classification we optimize the class weight parameter for both logistic regression and

decision tree. We perform hyper-parameter optimization using a grid-search cross

validation approach.

We select the logistic regression and decision tree model classes as

computationally efficient linear and non-linear models instead of more sophisticated

model classes as we are seeking a computationally-efficient classifier that can be easily

deployed in the field for frequent real-time assessment of PPG signal quality with limited

resources. In the next section, we look at the performance of both models.

4.7.7 Five-Second PPG Data Quality Classification Experiments

In this section, we evaluate the performance of the proposed CQP-5 model

compared to a range of simpler threshold models computed from individual features. As

noted in the previous section, we use Acceptable as the positive class and group together

Unacceptable and Undecidable as the negative class. Further, any instances where there

was disagreement between the annotators were placed in the negative class. This

resulted in 1,978 instances of the positive class and 11,893 instances of the negative

class. We use a 66/34 train-test split and apply 10-fold stratified cross-validation within

the training set to optimize hyper-parameters.
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The specific models that we consider are listed below. The threshold classifier

(TC) models learn a lower and upper threshold on a single feature to discriminate the

positive class from the negative class. For any feature with value f , we find two

thresholds α and β such that when α ≤ f ≤ β the output is positive and otherwise the

output is negative. We find the values of α and β for each feature by optimizing the

balanced accuracy using 10 - fold stratified cross validation applied to the training data.

• TC-Sk-5: A threshold classifier model based on skewness of the PPG data.

• TC-Kr-5: A threshold classifier model based on kurtosis of the PPG data.

• TC-RP-5: A threshold classifier model based on relative power of the PPG data.

• TC-SDP-5: A threshold classifier model using the standard deviation of the PPG

data.

• TC-SDA-5: A threshold classifier model using the standard deviation of

accelerometer magnitude.

• DT-SDA-5: A decision tree model using the standard deviation of accelerometer

magnitude.

• LR-CQP-5: The CQP-5 model based on the logistic regression classifier.

• DT-CQP-5: The CQP-5 model based on the decision tree classifier.

Results comparing these models are shown in Table 4.3. We find that the model

based on Skewness only (TC-Sk-5) has the lowest F1 and balanced test accuracy.

Interestingly, this feature was found to be optimal when detecting the quality of a

finger-clip based PPG sensor in a controlled environment [190]. Of the four

single-feature PPG -based models tested, TC-RP-5 based on realtive power achieves the

best test F1 score at 0.8.
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Table 4.3: PPG Signal Quality Model Performance on 5-second Segments

10-Fold Stratified Cross Validation Training Results Testing Results
Model F1 Score Balanced Accuracy Precision Recall F1 Score Balanced Accuracy Precision Recall

TC-Sk-5 0.5 0.71 0.35 0.89 0.5 0.71 0.35 0.89
TC-Kr-5 0.74 0.85 0.7 0.79 0.74 0.84 0.69 0.78
TC-RP-5 0.8 0.88 0.76 0.84 0.8 0.87 0.75 0.85
TC-SDP-5 0.6 0.6 0.42 0.98 0.6 0.6 0.42 0.98
TC-SDA-5 0.57 0.74 0.5 0.66 0.57 0.74 0.5 0.67
DT-SDA-5 0.64 0.77 0.64 0.64 0.68 0.8 0.66 0.69
LR-CQP-5 0.89 0.95 0.82 0.96 0.89 0.95 0.82 0.96
DT-CQP-5 0.91 0.94 0.91 0.91 0.92 0.95 0.91 0.93

Next, we evaluate the classification performance when using motion features

alone. We can see that these models (TC-SDA-5 and DT-SDA-5) outperform the

skewness feature, but are substantially worse than the PPG relative power model

(TC-RP-5). The lower performance when using motion features alone may be because

even though motion may reduce the quality of PPG signals, several other factors can

decrease the quality of PPG signals such as loose attachment and ambient lighting.

Lastly, we turn to the proposed models: LR-CQP-5 and DT-CQP-5. We can see

that both of these models, which leverage all features, significantly outperform the other

models. Of the two models, the decision tree model obtains the best test F1 value at

0.92 and ties the logistic regression model for test balanced accuracy at 0.95. Due to

the poor performance of the motion features when used individually, we performed an

ablation study to determine the effect of removing the motion features. This resulted in

the DT-CQP-5 obtaining exactly the same performance as when motion features are

used. As a result, in the remainder of this paper, we use DT-CQP-5 computed using

PPG features only to provide the 5-second data PPG quality index CQP-5. Before

turning to the derivation of a CQP data quality indicator for longer segments, we first

experiment with how CQP-5 performs on the task of stratifying heart rate inferences by

data quality.
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Fig. 4.4: Signal Quality Classification Results.Figure (a) shows train and test ROC for
CQP model, test ROC for skewness and inertial motion using decision tree model.

Figure (b) shows train and test confusion matrices for two classes:
Undecidable/unacceptable, and acceptable. Training confusion matrix is obtained after
10 fold-stratified cross validation applied to training data. Figure (c) shows the error

distribution in heart rate estimation in different bins of signal quality likelihood for each
5-second segment of PPG data.

4.7.8 Five-Second Instantaneous Heart Rate Estimation Experiments

In this experiment, we consider an application of the CQP-5 model to the

problem of instantaneous heart rate computation. Starting with the IEEE signal

processing cup in 2015 [78], there has been a surge of work on heart rate estimation

from PPG. Several of these methods [83, 79, 213, 214, 77] use spectral analysis of PPG,

assisted by inertial signal analysis. For the classical spectral peak detection, we adopt

the model from [82]. Power spectral density of input PPG channel is calculated using

Welch’s method [209] and the spectral peak frequency (calculated using (4.2))

belonging to heart rate range (0.8Hz - 2.5Hz) with maximum amplitude, and not

considered as motion artifact, is selected as the output heart rate frequency. The

frequency axis is linearly related to heart rate in beats per minute, i.e., HR = 60 ∗ f ,

where f is the dominant peak frequency in Hz. Mean RR interval in milliseconds is

calculated using the formula MeanRRint =
60000
HR

. Figure 4.4a shows the error

distribution for PPG-based heart rate estimation in different CQP-5 data quality bins for

each 5-second segment of PPG data with heart rate calculated from ECG beat to beat

interval used as ground truth. Results are shown for 8,900,962 windows from 46
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participants in the field. As expected, the median, maximum and spread in errors

decreases monotonically as a function of the CQP-5 data quality indicator.

4.7.9 The CQP-60 Index for Assessment of PPG Data Quality Over

Sixty-Second Windows

Inference for higher-level health states typically uses a larger window of data than

the 5-second intervals the CQP-5 model is based on. For example, past work on stress

inference uses one minute window of data [15]. In this section, we address the problem

of computing a data quality index over longer time intervals. As described earlier, the

CQP-5 model outputs the probability that a 5-second window of data is of acceptable

quality. While we could apply the same methodology to define a model over longer

windows of data, there can be sufficient variation in data quality within longer windows

that this approach would lack flexibility for. Instead, we consider aggregating the output

of the CQP-5 model through time to define the signal quality of longer windows. In this

section, we focus specifically on 60-second windows and define the CQP-60 index.

To derive the CQP-60 index, we first compute the output probability of the

CQP-5 model for 5 second windows within the larger 60-second segment. We slide the 5

second window by 2.5 seconds, resulting in 50% overlap between adjacent 5-second

windows. This results in 23 overlapping 5-second windows within each minute. Each 5

second window contains three channels of data. CQP-5 is applied independently to each

channel and we dynamically select the channel with the highest signal quality for

subsequent computation. However, some 5-second windows of PPG data within the

larger one minute window can also be unavailable for analysis due to being labeled as

irrecoverable in earlier stages of processing. A one-minute window of PPG data is

considered to have a quality of -1 if less than p percentage of expected windows are

present. ECG-based stress models use p = 66% [15]. We instead select p = 50% since

irrecoverable data occurs fairly frequently in our PPG field data.

For one-minute windows of data with at least p = 50% of data points available,
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we compute the CQP-5 model’s probability output over the available data and then

aggregate the obtained values to form a quality index for the overall minute of data. We

consider several possible aggregation functions including the minimum, median, and

mean of the available CQP-5 outputs in the window. We refer to these index values as

Mean-CQP-60, Median-CQP-60 and Min-CQP-60. In the next section, we evaluate

these three options on a range of PPG feature computations relevant to stress detection

to select an optimal aggregation function.

4.7.10 60-Second PPG Feature Computation Experiments

To select an appropriate aggregation function, we compute each of the CQP-60

index variants described in the previous section (Mean-CQP-60, Median-CQP-60 and

Min-CQP-60) for each minute of PPG field data. We also use the corresponding PPG

field data to compute a variety of useful PPG features of different complexity. We assess

the correlation between the output of the PPG-based computation of these features and

the ECG-based computation of the same features over the same windows using both lab

and field data stratified by minimum data quality using each CQP-60 model variant. We

deem one aggregation function to be better than another to the extent that its

corresponding 60-second quality index provides a better yield-correlation trade-off.

The features we use in these experiments are useful for a variety of tasks,

including inference for stress. For first order features, we compute the heart rate and

80th and 20th percentile of the mean RR interval timeseries in a minute. For

second-order features, we compute the interquartile range (IQR) and high-frequency

energy (0.3-0.4 Hz). We select these features because they are discriminative for stress

inference [15]. As the signal quality threshold increases, the amount of data that meet

the threshold decreases. Therefore, we also compute the data yield corresponding to

each of these thresholds. To observe the lab to field generalizability, we compute the

correlation and yield for both lab and field data.

Table 4.4 and Table 4.5 present the results of this experiment in lab and field
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Table 4.4: Correlation of Minute level HRV features computed from PPG in Lab

Lab
Data

Quality
Index

Threshold Feature Correlation Yield

Heart
Rate

80th
Percentile

20th
Percentile

IQR HF
Energy

Percent
Reduction

in
Yield

Mean-
CQP-60

≥ 0.0 0.69±0.22 0.68±0.23 0.71±0.21 0.43±0.16 0.44±0.17 100.00±18.50
≥ 0.1 0.69±0.21 0.71±0.22 0.74±0.20 0.45±0.17 0.44±0.16 91.40±19.32
≥ 0.2 0.79±0.20 0.77±0.21 0.76±0.21 0.44±0.17 0.49±0.18 77.99±20.44
≥ 0.3 0.86±0.20 0.85±0.20 0.81±0.21 0.52±0.20 0.51±0.18 66.88±20.17
≥ 0.4 0.88±0.14 0.87±0.16 0.84±0.19 0.56±0.20 0.58±0.16 58.55±19.40
≥ 0.5 0.91±0.15 0.91±0.17 0.85±0.22 0.57±0.23 0.63±0.17 50.55±18.64
≥ 0.6 0.93±0.15 0.92±0.19 0.85±0.18 0.66±0.22 0.69±0.18 44.54±17.66
≥ 0.7 0.95±0.08 0.93±0.11 0.91±0.15 0.72±0.19 0.70±0.16 38.28±16.17
≥ 0.8 0.96±0.12 0.93±0.19 0.95±0.12 0.72±0.20 0.74±0.20 31.99±12.89

Median-
CQP-60

≥ 0.0 0.69±0.22 0.68±0.23 0.71±0.21 0.43±0.16 0.44±0.17 100.00±18.50
≥ 0.1 0.81±0.20 0.83±0.21 0.76±0.21 0.43±0.18 0.48±0.18 74.10±21.07
≥ 0.2 0.84±0.19 0.86±0.19 0.81±0.18 0.49±0.19 0.54±0.16 64.74±20.25
≥ 0.3 0.88±0.16 0.88±0.17 0.84±0.19 0.54±0.19 0.57±0.16 58.36±19.48
≥ 0.4 0.89±0.16 0.89±0.17 0.83±0.18 0.56±0.20 0.59±0.16 54.83±18.81
≥ 0.5 0.91±0.15 0.90±0.18 0.86±0.21 0.57±0.23 0.62±0.17 50.49±18.70
≥ 0.6 0.93±0.16 0.92±0.19 0.85±0.21 0.61±0.21 0.64±0.16 47.03±18.49
≥ 0.7 0.92±0.15 0.91±0.19 0.85±0.19 0.61±0.21 0.64±0.15 44.97±17.82
≥ 0.8 0.94±0.09 0.92±0.12 0.89±0.16 0.69±0.17 0.69±0.18 40.73±17.41

Min-
CQP-60

≥ 0.0 0.69±0.22 0.68±0.23 0.71±0.21 0.43±0.16 0.44±0.17 100.00±18.50
≥ 0.05 0.97±0.15 0.93±0.20 0.95±0.15 0.73±0.18 0.72±0.17 27.22±10.95
≥ 0.1 0.97±0.22 0.94±0.21 0.95±0.23 0.72±0.23 0.74±0.22 23.37±10.00
≥ 0.15 0.97±0.14 0.94±0.18 0.95±0.16 0.75±0.21 0.75±0.22 21.89±8.19
≥ 0.2 0.96±0.13 0.95±0.19 0.96±0.11 0.80±0.18 0.78±0.22 21.94±7.00

respectively. We make several interesting observations that can inform the selection of

appropriate signal quality aggregate function as well as specific operating thresholds.

First, using Mean-CQP-60 and Median-CQP-60 result in a significantly higher yield than

Min-CQP-60. For example, the yield at quality level 0.2 for Min-CQP-60 is the same as

that for quality level of 0.8 for Mean-CQP-60. This can be explained by the fact that

minimum threshold is quite stringent as for any minutes to qualify, all five-second

sub-windows must individually meet the same threshold. Second, we observe that among

Mean-CQP-60 and Median-CQP-60, the performance is similar, with marginally better

yield for Median-CQP-60. But, Mean-CQP-60 exposes a larger range of correlations and

yield and this provides a greater range of useable operating points compared to

Median-CQP-60. Therefore, we select Mean-CQP-60 for our subsequent analysis.
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Table 4.5: Correlation of Minute level HRV features computed from PPG in Field

Field
Data

Quality
Index

Threshold Feature Correlation Yield

Heart
Rate

80th
Percentile

20th
Percentile IQR HF

Energy

Minutes
Per

Wrist Day

Percent
Reduction

in
Yield

Mean-
CQP-60

≥ 0.0 0.46±0.15 0.41±0.16 0.50±0.15 0.14±0.05 0.14±0.05 606.00±168.75 100.00±27.85
≥ 0.1 0.52±0.15 0.45±0.16 0.54±0.14 0.14±0.05 0.16±0.05 519.80±158.19 85.78±26.10
≥ 0.2 0.61±0.15 0.60±0.17 0.62±0.14 0.16±0.06 0.18±0.05 384.16±148.62 63.39±24.52
≥ 0.3 0.70±0.15 0.70±0.17 0.71±0.14 0.20±0.08 0.21±0.06 283.16±133.70 46.73±22.06
≥ 0.4 0.76±0.16 0.72±0.18 0.76±0.15 0.21±0.09 0.23±0.07 190.39±106.01 31.42±17.49
≥ 0.5 0.80±0.17 0.75±0.19 0.80±0.16 0.24±0.11 0.28±0.09 141.28±82.30 23.31±13.58
≥ 0.6 0.85±0.16 0.79±0.19 0.83±0.16 0.30±0.12 0.35±0.11 124.33±67.93 20.52±11.21
≥ 0.7 0.89±0.15 0.83±0.16 0.87±0.14 0.33±0.14 0.33±0.14 112.88±59.50 18.63±9.82
≥ 0.8 0.92±0.13 0.84±0.15 0.91±0.12 0.33±0.16 0.36±0.17 102.68±52.89 16.94±8.73

Median-
CQP-60

≥ 0.0 0.46±0.15 0.41±0.16 0.50±0.15 0.14±0.05 0.04±0.02 606.00±168.75 100.00±27.85
≥ 0.1 0.60±0.15 0.58±0.17 0.61±0.14 0.16±0.06 0.09±0.04 381.58±150.14 62.97±24.78
≥ 0.2 0.67±0.15 0.66±0.17 0.68±0.14 0.21±0.08 0.12±0.05 311.76±143.16 51.45±23.62
≥ 0.3 0.71±0.16 0.71±0.18 0.74±0.15 0.20±0.09 0.15±0.06 241.19±123.67 39.80±20.41
≥ 0.4 0.78±0.17 0.72±0.18 0.77±0.16 0.22±0.09 0.17±0.07 175.75±100.25 29.00±16.54
≥ 0.5 0.79±0.17 0.75±0.19 0.80±0.16 0.23±0.11 0.20±0.08 142.30±82.73 23.48±13.65
≥ 0.6 0.84±0.18 0.78±0.19 0.81±0.16 0.26±0.11 0.23±0.09 130.10±71.75 21.47±11.84
≥ 0.7 0.86±0.15 0.80±0.17 0.84±0.15 0.28±0.11 0.24±0.09 122.89±65.83 20.28±10.86
≥ 0.8 0.88±0.15 0.81±0.17 0.87±0.15 0.34±0.13 0.26±0.09 116.80±61.90 19.27±10.21

Min-
CQP-60

≥ 0.0 0.46±0.15 0.41±0.16 0.50±0.15 0.14±0.05 0.04±0.02 606.00±168.75 100.00±27.85
≥ 0.05 0.76±0.22 0.80±0.22 0.81±0.21 0.25±0.11 0.29±0.11 158.57±98.42 26.17±16.24
≥ 0.1 0.85±0.23 0.79±0.24 0.87±0.22 0.27±0.12 0.33±0.12 120.26±80.84 19.84±13.34
≥ 0.15 0.84±0.22 0.78±0.22 0.87±0.21 0.33±0.13 0.36±0.11 104.35±65.04 17.22±10.73
≥ 0.2 0.86±0.19 0.82±0.21 0.88±0.18 0.34±0.16 0.38±0.11 102.19±63.56 16.86±10.49

Third, we observe that just removing the irrecoverable PPG segments (i.e., data

quality threshold of 0) already provides a fairly high correlation (≈ 0.7) [215] for the first

order features in the lab environment. However, in the field, a data quality threshold of

0.3 is required to provide a similar level of correlation. Fourth, we note that the

correlation profiles of the first-order features are all quite similar to each other. The

correlation profiles for the HRV features are also similar to each other, but they are

significantly lower than for the first-order features. This can be explained by the fact

that first-order features have greater statistical robustness. Also, accurate computation

of HRV features usually requires a high sampling rate. As compared to ECG that is

sampled at 100 Hz in the lab and 64 Hz in the field, PPG is sampled only at 25 Hz due

to battery limitations. Fifth, in the field environment, the correlation for HRV features
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are 0.36 at best (for Mean-CQP-60), at which point, the yield is quite low. In the next

section, we present a case study exploring the end-to-end application of the CQP-60

index to a more challenging problem: improving the robustness of stress inference from

PPG data.

4.8 Deep Integration of the CQP Model to Improve the Robustness of

PPG-Based Stress Inference

In this section, we present a case study leveraging the CQP model to improve the

robustness of stress inference from PPG data. We again focus on assessing an accuracy

versus yield trade-off using either ground truth stress labels (in the lab setting) or

concordance with an ECG-based stress inference model (in the field setting). We

consider two ways to leverage the CQP model. First, similar to past work, we consider

thresholding the CQP-60 data quality index at different levels to expose a basic accuracy

versus yield trade-off for stress prediction at the minute level. Second, we consider

leveraging the CQP-5 data quality index to provide quality-weighted features in addition

to quality thresholding using CQP-60. We begin by describing the stress inference

process based on ECG data, where we follow the approach of [15]. We next describe the

pre-processing, feature extraction and learning steps for the PPG-based stress inference.

We conclude by describing the results of an experimental evaluation of the resulting

models.

4.8.1 Stress Inference from ECG Data

For the ECG stress inference pipeline, we follow the steps from [15]. ECG data is

first assessed for signal quality to identify acceptable segments of ECG. ECG conforms

to a unique PQRST morphology and thus acceptable ECG segments are easily

distinguishable from non signal components using simple thresholds on signal variance

and range [216]. We detect R peaks via the widely-used Pan Tompkins algorithm [217].

We then use the criterion beat difference (CBD)-based method from [218] to filter out

outliers and generate a clean RR interval time-series. Stress inference are computed for
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every one-minute window of RR interval data [15, 219]. We consider a one minute

window of RR interval timeseries usable if at least half of the window has acceptable

ECG data and sufficient ECG RR intervals are present, following [15].

4.8.2 PPG Data Cleaning and Computation of Inter-beat Intervals

As described in Section 4.7, for PPG data we apply a bandpass filter to remove

high-frequency noise, normalize the signal to remove rapid variability in signal amplitude,

segment the signals into 5-second segments with 50% overlap, identify and remove

irrecoverable segments, apply the CQP-5 model to obtain signal quality likelihood for all

remaining segments, select the channel with the highest signal quality to represent the

current segment, and compute the mean of these signal quality likelihood values in a

minute to estimate the signal quality index (CQP-60) if at least 50% of the segments

are present in the minute. For inter-beat interval computation for each minute, we

compute the mean RR interval in each 5-second segment, using the spectral peak

detection method from [82].

4.8.3 Quality-Integrated PPG Feature Computation

To train a machine learning model for inferring stress, we experiment with the 11

features used in [15], all of which are calculated from RR intervals over one-minute

windows. The features include mean, median, 80th percentile, 20th percentile, variance,

quartile deviation, low frequency energy (0.1–0.2Hz), medium frequency energy

(0.2–0.3Hz), high frequency energy (0.3–0.4Hz) and low to high frequency energy ratio

computed from RR intervals and heart-rate. Results from Section 4.7.8 show that

estimation error of mean RR interval values is lower for higher values of the CQP-5

indicator. We use this finding to integrate quality weighting into the feature

computations needed for stress inference.

Let ri represent the mean RR interval and qi be the signal quality likelihood of

the ith 5-second data segment in a minute of PPG data with with n ≤ 23 such segments.

qi refers to the CQP-5 value for ith segment. We then compute the weighted mean RR
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interval in a minute as r̄w =
∑n

i=1 qiri/
∑n

i=1 qi. Similarly, we compute the Weighted

sample variance as s2w =
∑n

i=1 qi(ri − r̄w)
2/ (n−1)

n

∑n
i=1 qi. To compute percentile based

features such as the median, interquartile range, 80th percentile, 20th percentile, we use

the qi values as frequency weights. To calculate weighted percentiles, we first normalize

the data quality weights within each window according to q′i = qi/
∑n

i=1 qi. Next, we

sort the mean RR interval timeseries ri. The weighted cth percentile is given by the

element rk which satisfies
∑k−1

i=1 q
′
i ≤ c/100 and

∑n
i=k+1 q

′
i ≤ c/100. The heart rate per

minute is computed from the inverse of weighted median RR interval (i.e., c = 50).

For calculation of frequency domain features, we use the Lomb-Scargle

periodogram [220, 221]. Computation of spectral density using the Lomb-Scargle

method requires temporal consistency to be preserved in the input time series. To

introduce weights based on signal quality likelihood, we transform the mean RR interval

timeseries values ri using an exponentially weighted moving average. Using an

exponential moving average with weighting, the RR interval value at the ith time is

computed as shown below. The periodogram-based features are calculated from the

rewma
i timeseries using α = 0.7.

rewma
i = α[riqi + (1− α)ri−1qi−1 + (1− α)2ri−2qi−2...+ (1− α)i−1r1q1]/

i∑
k=1

qk. (4.3)

4.8.4 PPG Feature Normalization to Account for Between-Person

Variability

An important step in stress modelling is normalization of heart beat interval

timeseries for minimizing the effect of between-person variability. Specifically, each

person has a different baseline resting heart rate as well as different average heart rate

variability features. Thus, to make the model more person independent, the authors

in [219] proposed person specific normalization of RR interval timeseries. They

transform the RR interval timeseries of each participant by converting them to z-score
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values with the mean and standard deviation calculated from the baseline rest period of

each participant. This procedure significantly improved the accuracy of stress model and

later works on stress detection from ECG/PPG/Respiration have all incorporated this

form of pre-processing [15, 103, 105]. We emphasize that z-score based standardization

is a linear transformation and can only minimize the person-specific differences in the

time-domain. Frequency domain HRV features calculated from RR interval z-scores will

have the same value as with raw RR interval timeseries. To circumvent this, we propose

person specific feature standardization instead. Let F be the feature matrix for stress

model training calculated from a single person. F has a shape of n× 11, with F j
i

indicating the value of jth feature at ith minute.

We normalize the columns of the feature matrix Fj as shown below, where F̂mean

is the mean feature value and F̂std is the standard deviation calculated from the minutes

belonging to baseline of the participant.

Fj
normalized = (Fj − F̂mean)/F̂std, (4.4)

To ensure we have sufficient data to compute the baseline, we use only those days from

field data of a participant that has at least 60 minutes of acceptable data. As the lab

study includes explicit baseline sessions before and after the stress sessions, we do not

need any such criteria for the lab data.

4.8.5 PPG Stress Model Training

Using the normalized features from the lab data, we train a support vector

machine with radial basis function kernel to optimize the leave one subject out cross

validation score. For unambiguous labels of stress and no stress, we use the lab stress

protocol sessions as shown in Figure 4.2a. As introduced in [219], all data when the

participant is undergoing a stress task is labeled as stress and the rest and recovery

sessions as no-stress. As these stress tasks are validated by psychologists to produce a
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physiological stress response, they provide validated ground truth labels for stress. The

choice of support vector machine for modeling stress stems from its ability to learn

accurate models with a limited number of features while avoiding over-fitting using

regularization. Using Platt’s scaling [222], the model outputs stress/not-stress class

probabilities for each minute of data. We choose the F1-score to be our performance

metric as the classes are unbalanced. All hyper-parameters are optimized using grid

search to maximize classification performance.

4.8.6 Experiments on Accuracy vs. Yield of Stress Inference in the Lab

We begin by reporting the classification performance of the PPG and ECG stress

models on labeled data from the lab similar to existing works [15, 219]. We find that the

ECG-based model achieves a test F1 score of 0.79. For the PPG-based model, we select

a quality threshold of Mean-CQP-60 ≥ 0.2. At this quality level, the PPG-based stress

inference model achieves a test F1 of 0.72 using data from the left wrist only, 0.69 using

data from the right wrist only, and 0.7 when pooling data from both wrists. This shows

that stress inference computed from the left wrist is slightly more accurate than stress

inference computed from the right wrist. Figure 4(a) shows the confusion matrix for the

ECG and PPG models where the PPG results are for the left wrist only with

Mean-CQP-60 ≥ 0.2 as the quality threshold (as noted above). As we can see, the

difference in F1 score between the ECG and PPG models is largely due to an increased

number of false negatives in the PPG-based model (27% versus 17%).

Table 4.6: Yield breakdown on field data using Mean-CQP-60 ≥ 0.2

ECG Based Model PPG Based Model
Left Wrist Only Right Wrist Only Using Either Wrist

No. of Participant-Days in Field with Acceptable Data 738 894 886 978
Amount of Acceptable Data (mins/day in field) 375.49±199.91 387.97±149.11 380.28±148.07 384.16±148.62

Data Usable for Stress Assessment (mins/day in field) 315.06±197.16 369.15±148.29 359.36±147.89 364.28±148.13
Total Data for Stress Assessment (mins) in field 232,560 (=3,876 hours) 330,020 (=5,500 hours) 318,392 (=5,306 hours) 356,265 (=5,937 hours)

Importantly, we note that the accuracy of PPG-based stress inference in the lab

is better than that reported in prior work, even at the data quality threshold of 0.2. For
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Fig. 4.5: Yield-Accuracy Trade-off of Quality Aware vs. not aware stress modelling.
Figure(a) shows the Confusion Matrices for ECG stress model and PPG Based Stress

Model from left wrist. Figure(b) shows the Leave one subject out cross validation scores
of PPG stress model developed on data from left wrist in the lab as a function of
increasing minimum thresholds on Mean-CQP-60. Figure(c) shows data yield vs

correlation with ECG stress model of both quality integrated and not integrated PPG
based stress model in lab. Green represents quality integrated model whereas red
represents quality not integrated model. X-axis in both (b) & (c) shows the mean
number of minutes available in field for corresponding thresholds on Mean-CQP-60

stress inference from wrist-worn PPG sensors (supplemented with electrodermal and

inertial sensors) using a lab stress protocol consisting of mental arithmetic task of

increasing difficulty, [105] reported an F1 score of 0.67 for their best classifier for one

minute data segments. For comparison, using only 11 features on PPG data, without

using eletrodermal or inertial sensors, we obtain an F1 score of 0.72, which as we show

in Figure 4.5b can be improved by further by raising the data quality threshold.

Table 4.6 provides a breakdown of the yield for the ECG-based model and the

PPG-based model using Mean-CQP-60 ≥ 0.2 when applied to field data. As described

in [15], data that is affected by torso motion is not usable for stress inference. Hence, all

data that is collected during significant torso motion as detected by the accelerometer in

the chest-worn sensor is excluded from stress inference. As we can see, the left wrist

also provides a somewhat higher data yield than the right wrist, while both provide

significantly higher yield than ECG based on the quality threshold used. The

improvement in yield with the left wrist may be because the right wrist is dominant for
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the vast majority of participants and hence is more likely to be affected by motion and

other artifacts. Although we are only able to assess left vs. right from our labeling of the

wrist sensors, we hypothesize that the non-dominant wrist can provide even better

accuracy and yield.

Next, we consider the performance of the PPG stress model using both quality

thresholding and quality integrated feature computations. As we can see in Figure 4(b),

the quality integrated computation out-performs the non-quality integrated computation

for all quality thresholds. In this plot, the horizontal axis shows the yield of each quality

threshold when applied to field data, while the vertical axis shows the corresponding test

F1 score. These results can be viewed either as providing significantly higher

classification performance at the same yield, or as providing significantly higher yield at

the same level of classification performance. Lastly, Figure 4(c) shows the correlation

between the quality integrated and non-quality integrated PPG-based stress inference

model and the ECG-based model at different CQP-60 quality thresholds. As we can see,

the higher quality thresholds result in increased correlation between the models. In

addition, the quality-integrated model uniformly out-performs the non-quality integrated

model at all quality thresholds, providing a substantially improved correlation-yield

trade-off.

4.8.7 Experiments on Accuracy vs. Yield of Stress Inference in the Field

In the field setting, we do not have labels for stress, thus our predictive analysis

focuses on comparing the ECG-based model to the PPG-based models in terms of

Pearson correlation. As we saw in the previous section, the ECG-based model has strong

performance in the lab in terms of F1 score, thus convergent validity of ECG and

PPG-based models is a reasonable evaluation procedure.

We present the performance of the PPG stress model using both quality

thresholding and quality integrated feature computations in the field in Table 6. As we

can see, the correlation between the ECG and PPG-based models again increases as the
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Table 4.7: Correlation Between ECG and PPG-based Stress Models and Yield of total
data in Field with and without Quality-Integration

Pearson Correlation with
ECG Stress Model in Field

Yield of Usable Data
in Field

Minimum Threshold
on

Mean-CQP-60

Quality Integrated
PPG Stress Model

Not Quality Integrated
PPG Stress Model Total Data(hours)

Percentage Relative to
ECG

(3876 Hours)
≥0.0 0.48±0.21 0.42±0.23 8421.38 217.27%
≥0.05 0.49±0.22 0.44±0.23 8158.45 210.49%
≥0.1 0.53±0.23 0.49±0.24 7293.17 188.16%
≥0.15 0.60±0.22 0.51±0.24 6324.88 163.18%
≥0.2 0.63±0.20 0.55±0.24 5500.35 141.91%
≥0.25 0.69±0.18 0.62±0.24 4710.27 121.52%
≥0.30 0.70±0.18 0.63±0.23 3899.48 100.61%
≥0.35 0.74±0.18 0.64±0.24 3122.03 80.55%
≥0.4 0.76±0.18 0.64±0.24 2408.28 62.13%
≥0.45 0.76±0.19 0.65±0.27 1766.20 45.57%
≥0.5 0.77±0.23 0.68±0.28 1284.22 33.13%
≥0.55 0.77±0.20 0.68±0.24 992.75 25.61%
≥0.60 0.78±0.23 0.70±0.25 803.53 20.73%

CQP-60 quality threshold is increased. In addition, the use of quality-integrated feature

computations results in a substantial improvement in correlation at the same level of

yield compared to the non-quality integrated model. We note that when operating the

PPG-based model with a yield that matches that of the ECG-based model, we obtain a

correlation of 0.7 using the quality-integrated stress model. On the other hand, the

not-quality integrated stress model achieves this level of correlation at the quality

threshold of 0.6, for which the data yield is only 21% of that obtained from ECG. Lastly,

we note that the correlation we obtain for stress inference after integrating quality is

comparable to what we obtain for first-order features such as heart rate, 80th percentile,

and 20th percentile (see Table 4.4). For example, for the 0.2 quality threshold, we get a

correlation of 0.63, which is comparable to the correlation of 0.61-0.62 for the first order

features and significantly better than 0.16-0.18 we obtain for the second order features.

This means that our approach is able to effectively overcome some of the apparent

weakness in the base features.
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4.9 Limitations and Future Works

This work has several limitations that open up the opportunity for future

research. First, we used 5 second segments as a unit for data quality assessment and

low-level feature computations. Future work can investigate different choices for this

window to see how they impact the accuracy of features and inferences derived.

Second, this work used a single device set at a sampling frequency of 25 Hz for

PPG data collection in both the lab and field settings. Future work can investigate the

impact of sampling frequency, types of PPG sensors, and different channels of PPG data

on the quality of data and consequently on the accuracy of features and inferences.

Third, this work presented a method to estimate and represent the quality of

PPG data and showed how to incorporate quality into machine learning models to

improve the robustness of inferences. However, there are several sources of uncertainty

in feature computations. Future work can investigate comprehensive approaches to

estimate uncertainty, represent it succinctly, and propagate it in the processing pipeline.

Fourth, for the purpose of assessing activity confounds in the context of stress

inference, we leveraged the accelerometer in a chest-worn sensor. Future work can

develop methods to make an assessment of physical activity confounds from wrist-worn

sensors which capture the movement of wrists, instead of or in addition to capturing

torso motion.

Fifth, this work assessed the concordance of stress inference in the field

estimated using PPG-based models with that output by an ECG-based model using

paired ECG and PPG data. Future work can assess the concordance of quality-informed

stress inference with self-report collected in field.

Finally, in addition to stress, several other physiological states can potentially be

inferred from PPG sensors such as pain, craving, and drug use. Future work can

investigate the integration of data quality into models for these domains and evaluate its

ability to improve accuracy-yield trade-offs.
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4.10 Chapter Summary

This work showed that assessment of wrist motion may not be a sufficient

indicator of PPG sensor data quality. This should be expected as PPG data quality may

be affected by several other factors including loose attachment and contamination from

ambient lighting. We have instead proposed an approach to estimating PPG data

quality using supervised learning and shown how the resulting continuous data quality

indicator, CQP, can be more deeply integrated into subsequent inferences to significantly

improve accuracy-yield trade-offs both for the computation of individual features and for

complex high-level inferences (e.g., stress).

As new research seeks to infer stress, pain, craving, drug use, and other

physiological states and events from PPG sensors that are now integral components in

smartwatches and activity trackers, this work provides a new approach to improve the

yield and accuracy of these computations in real-world settings. This improved accuracy

and coverage may provide higher quality inputs to down-stream processes for a variety of

applications in wellness, self-care, and precision health care. For example, our approach

could be leveraged in the context of just-in-time adaptive interventions to increase the

number of time points and the contexts where required inferences can be accurately

computed to support intervention decisions, helping to lead to overall improved

therapeutic efficacy.
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Chapter 5

rSmoke: Orientation-Invariant Detection of Smoking Events from Wrist-worn

Inertial Sensors

5.1 Introduction

In Chapter 3, we describe the machine learning-based deep neural network

models to continuously output the imminent risk of smoking lapse using mobile sensor

data collected in the natural environment. We first employed state-of-the-art mHealth

prediction models to passively detect varying risk factors dynamically. These factors

represent the physiological (e.g., stress), behavioral (e.g., activity), and environmental

(e.g., proximity to smoking spot) contexts of participants. Using the continuous

estimate of these risk factors as input, we trained LSTM-based deep models called

mRisk (See Chapter 3) to predict the risk of smoking lapse. Our primary goal is to

facilitate the effective design and delivery of just-in-time smoking interventions based on

the risk score produced by our model. Hence, we evaluated the mRisk models by

simulating their ability to inform the delivery of just-in-time interventions. However, the

effective deployment of a continuous smoking lapse risk estimation model to deliver

just-in-time adaptive interventions requires addressing multiple outstanding challenges of

the mRisk modeling pipeline.

In mRisk (see Chapter 3), we employed chest-based ECG, Respiration, and

inertial motion sensors for passive sensing of human health and wellness states. Owing

to the inconvenience of wearing chest-wrapped devices daily, the practical utility of using

such sensors outside of academic use remains limited. Researchers in [8] note that the

"complexity of equipment" reduces the quality of collected data in the smoking

cessation field study employing chest-worn AutoSense sensor suite [72], thus limiting the

feasibility of intervention design based on wearable sensing alone. On the other hand,

wrist-worn wearables or sensor-fitted smartwatches have seen growing adoption in

research and commercial use due to their convenience and the ability for continuous
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monitoring. Adapting our models and methodologies to work with wrist-worn wearable

sensors alone will significantly boost the practical utility of deployment in the wild.

The first step in achieving this goal is to enable continuous inference of dynamic

risk factors from wrist-worn sensor data. We took the first step in this direction by

developing CQP (see Chapter 4). In CQP, we proposed methods to enable continuous

stress inference from wrist-worn sensor data. The next significant challenge in adopting

a wrist-only smoking lapse risk estimation model is our ability to employ a smoking

detection model using wrist-worn sensors alone. For mRisk, we used puffMarker [10] to

detect smoking occurrences passively.

puffMarker uses wrist-worn inertial motion sensors and chest-worn respiration

sensors to detect smoking puffs. A collection of these detected puffs in close temporal

vicinity with each other together makes up a smoking episode. The smoking detection

model is essential for developing and deploying risk estimation models. First, we need

the precise timing of smoking lapses for training the mRisk models. Smoking self-reports

corroborate these smoking lapse detections through Ecological Momentary Assessments

(EMAs). One of the important limitations of the mRisk models is the lack of enough

positive (high-risk) instances. We had 84 confirmed lapses from 56 participants. Thus,

the number of positive cases in which the participants were confirmed to be at high risk

of smoking lapse was limited in scope. Second, we need the timing of smoking instances

in specific locations to extract the personal smoking spots. We computed the smoking

spots using location data and confirmed smoking instances from the pre-quit period.

These spots are used for computing features related to location proximity to smoking

spots and visitations. Therefore, we need a smoking event detection model from

wrist-worn inertial sensors alone to enable real-time risk estimation using wrist-worn

sensors.

In this chapter, we develop an orientation-invariant smoking detection model

using wrist-worn accelerometers and gyroscope sensors. We utilize the video-coded
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labeled data from participants’ natural environments to train and test our modeling

strategy. This is the first time real-life field data has been used to develop smoking

detection models from wrist worn sensor. We identify and address the critical challenges

specific to orientation of wrist-worn sensors in the natural environment. These

challenges include variability in sensor configurations, variability in axes orientation due

to sensor placement along with lack of sufficient field collected training data in deploying

a smoking event detection model in the field. We developed novel strategies to

construct smoking events from the noisy detected puffs and distinguish these events

from the non smoking ones. We devised a novel strategy to incorporate sub episodes

within candidate smoking events for smoking event prediction to overcome the paucity

of few candidate events. We evaluate our developed methodology with field data from

200+ participants from two different studies with different sensor configurations.

Our results show, the proposed sensor orientation invariant rSmoke model

obtains a precision of at least 0.65% in two test studies with original and switched

sensor mounts. rSmoke model also outperforms the puffMarker model in the percentage

of the EMA reported blocks with smoking correspondence. rSmoke provide increased

recall of smoking self-reports, hence providing us with improved data coverage for

training smoking risk estimation model.

5.2 Robustness Challenges to Smoking Detection using Wearable

Wrist-worn Sensors in the Field

We focus on developing a smoking detection model using wrist-worn inertial

sensors. Second, we train and test a real-time smoking risk prediction model using the

wrist-based smoking detection model from data collected using wrist-worn sensors alone.

Both these steps present several technical challenges. We outline these challenges below

in distinct categories.
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(a) Wrist
coordinate system

showing three
general orthogonal

direction axes.

(b) Sensor Mounting on
Different Devices.

(c) Lateral axis
aligned to gravity.

(d) Lateral axis
opposite to gravity.

Fig. 5.1: Figures showing sensor mounting and axes orientation variability.(Figure (b)
taken from [1])

Variability in Sensor Configurations

Figure 5.1a shows the general wrist coordinate system with three mutually

orthogonal axes as defined by researchers in [1]. The lateral axis (l) is aligned with the

arm, the perpendicular axis (p) is aligned with the thumb, and the vertical axis (v) is the

gravity axis when the palm is parallel to the earth’s surface [1]. Although we define

these three as the general directions, accelerometer sensors mounted on devices provide

data using the Cartesian coordinates - (x, y, z). Usually, the z-axis corresponds to the

vertical axis. However, the x and y axes mounting can vary in different sensors.

Figure 5.1b shows two different 3-axis accelerometer sensors with two configurations -

(l, p, v) = (x, y, z) and (l, p, v) = (y, x, z). The same sensor can change its wrist

configuration owing to software or firmware updates. Hence given inertial sensor data

from the field as Cartesian coordinates, we have to identify the sensor configurations in

the form of the general wrist coordinate system.

Variability in Axes Orientation Owing to Sensor Placement

Figures 5.1c and 5.1d show two different orientations of the inertial sensor on the

wrist owing to participants’ slightly different placements on hand. In both these

placements, the configuration of the sensors is (l, p, v) = (x, y, z). However, the lateral
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axis (l = x) points away from the arm in Figure 5.1c and the opposite in Figure 5.1d.

We also observe the same phenomena for the perpendicular axis (p = y). This

phenomenon is ubiquitous since individuals wear wristwatches in their unique way.

Placements can also vary between days and periods for a single individual. Hence, for

smoking detection using wrist-worn inertial sensors, we must identify the directions of

inertial movement along each axis as measured by the sensors.

Lack of Sufficient Training Data from Natural Environment

Developing a working smoking detection model to deploy in the field requires a

comprehensive dataset containing the influence of sensors, individuals, context,

ground-truth labeling, and other factors. The dataset must be large enough and

incorporate enough diversity to account for the many differences that can arise in the

field environment. Distinguishing smoking from similar behaviors involving

hand-to-mouth gestures, such as eating or drinking, requires precise labeling of the

smoking puff events. This constrains the individual participants to wear video collection

devices that the annotators can use to label the different events. Given these limitations,

we need to maximize the efficiency of our modeling scheme to extract maximum value

from the limited amount of information available to learn from.

5.3 Prior Works on Smoking Detection and Our Contributions

Works on smoking puff detection using wrist-worn inertial motion sensors mainly

focus on detecting the hand-to-mouth gestures of smoking puffs. Inertial motion sensor

units have been widely used for assessing daily life activities. Previously published

studies typically involve collecting lab data from participants with one or more sensors

placed into a reference position [57, 58, 59, 60, 61, 55, 56]. Developing smoking

detection model with data collected from lab supervision limits the utility of the

developed model in the field. Several studies have collected data from the natural field

environment [58, 10, 62]. However, they also assume a reference position for the

smart-watch-based inertial sensors and do not address the variability owing to sensor
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mounting, placement, and other factors. Researchers have used other sensors to

estimate the smoking puff action accurately. Respiration sensors (RIP) have been used

alone [55, 56] or in combination with inertial accelerometry [10] to identify smoking

puffs. RIP and RF hand-to-mouth proximity sensors [115] has been used to detect and

characterize cigarette smoke inhalations. Respiration sensors are chest-worn and increase

the burden on participants to wear a chest-belt device in their daily lives. In [61],

authors mounted inertial sensing units inside a smart lighter to better distinguish the

smoking puffs. In [58], researchers advocated using 9-axis IMU units containing

quaternions to more accurately estimate the trajectory of hand motion. [116] deployed

a chest-worn thermal-sensing wearable system that captures spatial, temporal, and

thermal information around cigarettes and the wearer to passively detect smoking events

throughout the day. Works involving novel sensing schemes to detect smoking behaviors

are ongoing, and the unique challenges facing them are independent of the ones

affecting wrist-worn sensors. The ever-growing adoption of inexpensive wrist-based

wearables in smartwatches and related edge devices attests to the large impact of a

smoking detection model developed from wrist sensors alone. In contrast, we aim to

build a smoking detection model using data from 6-axis Inertial motion units (3-axis

accelerometer and 3-axis gyroscope) in the natural environment. These ubiquitous

sensors come integrated within commodity smartwatches. An accurate, inexpensive, and

working smoking detection model using these sensors will be a significant leap in the

research on detecting smoking detection. Our work builds upon puffMarker, which used

6-D IMU and Respiration sensors to detect smoking puffs and identify smoking episodes

using data collected from the field environment with human supervision. However, our

work is unique in many ways.

First, we do not use respiration sensors. We want to ensure maximum practical

utility for our developed model by only using wrist-worn inertial sensors for smoking

detection in the natural field environment.
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Second, the authors collected the training data from smokers with a human

observer present. The observer marked the start and end of the smoking puffs and

coordinated the sensor placement and other factors. We build our training dataset using

data collected from participants living their daily lives in the natural environment.

Participants wore a video collection device that recorded their daily life activities. Later,

human annotators annotated the smoking puffs from the videos collected. The presence

of an accompanying human observer significantly impacts the data collection

environment and limits the degrees of freedom and diversity of the collected data.

Third, puffMarker assumes a fixed direction of the inertial motion axes - Y axis

opposite to gravity. The authors do not address the scenarios of axis identification in the

case of different types of sensor mountings (Figure 5.1b). In contrast, we propose a

basic rule-based approach to identify which axes are aligned with the lateral and

perpendicular directions, thus making our methodology robust to any change of sensor

types and configuration changes. Also, since puffMarker assumes a reference set of

directions for all three axes in both hands, it is not robust to the different types of sensor

placements resulting in different orientations. In [10], authors detect a positive rise of

the accelerometer y-axis time series to designate candidate puffs. However, in case of a

change in orientation resulting from different sensor placement, the positive rise pattern

will change to a fall in the negative direction resulting in a failure case. Thus, we do not

employ individual axis time series to identify the candidate puffs. We utilize the

gyroscope magnitude time series to identify candidate puffs. The magnitude time series

is invariant to the direction of the individual inertial motion axes. Next, we propose

rule-based ways to identify the direction of the lateral axis of the accelerometer and

align it to gravity before feature computation and model building.

Finally, puffMarker focuses on smoking puff detection using a Support vector

machine (SVM) based machine learning model. Our results show that puff detection

using field-collected data is not sufficiently accurate in the field environment. Hence, we
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extend the output of our trained puff detection model to construct smoking episodes

using another machine learning-based model. The advantage of using a probabilistic

smoking event detection classifier is the ability to represent the whole smoking episode

using top-level features representing information about multiple puffs at a time. Also, in

our use case of smoking lapse detection, we corroborate the smoking events given by the

model using self-reports. The confirmation through EMA-provided self-reports reduces

the chances of false positives. Our proposed probabilistic smoking event classifier allows

us to select the appropriate operating threshold for capturing a significant portion of

smoking lapse behaviors within the study.

5.4 Dataset Description

We develop the rSmoke model using data collected from participants in the

natural environment as part of a smoking cessation research study. We evaluate our

methodology using data from two other test studies. In both these studies, participants

completed regular and random Ecological Momentary Assessments (EMAs), where they

self-reported their recent smoking events. We apply rSmoke and report the accuracy of

detecting these self-reported smoking events. The Institutional Review Board (IRB)

approved all the studies. We now describe them in the necessary details.

5.4.1 Training Data for Smoking Detection

We have training data from 10 daily smokers in the field. The participants were

part of a smoking cessation research study and wore the chest-worn AutoSense [72] and

wristbands on both wrists. We develop rSmoke using the 6-axis accelerometer and

gyroscope sensors fitted within the wristbands. The sampling frequency is 16.33 Hz for

both the accelerometer and gyroscope data. Participants also wore a video collection

device (goPro). We annotate the videos to designate ground truth labels of smoking

puff gestures. Participants provided smoking data in their pre-quit period, where they

wore the sensor suites daily. We have data from 15 user days with 360 labeled smoking
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puffs from 41 smoking events. Out of the labeled smoking puffs, 263 are smoking with

their right hand, 97 with their left hand.

5.4.2 Smoking Data from Field With Original Sensor Mount

This is the same study described in Chapter 3. Participants wore a chest-worn

AutoSense sensor suite fitted with ECG, Respiration, and Accelerometry sensors.

Participants also wore wrist-based smartwatches on both wrists. The sensor suites worn

in this study are identical to the training study with the wristband collecting 6 axis

accelerometer and gyroscope data at a sampling frequency of 16.33 Hz. We have data

from 92 participants in the field wearing both the chest and wrist sensor suite. Alongside

the sensor data, the participants also completed 3, 719 EMAs. We use the smoking self

reports in EMAs to evaluate our smoking detection model.

5.4.3 Smoking Data from Field With Switched Sensor Mount

We use the same study from Chapter 4. Similar to the previous test study, this

study also involves daily smokers in a smoking cessation research. Participants wore the

chest-worn AutoSense sensor suite for chest-sensing and smartwatches on both wrists

fitted with a PPG sensor and 6-axis accelerometer and gyroscope sensors. The sampling

frequency of wrist-worn PPG, Accelerometer and Gyroscope sensors was 25 Hz. We

have chest and wrist-sensor data from 97 participants with 1884 EMAs completed. The

inertial motion sensor used in this study is different from the one used in the training or

first testing study. The IMU sensor configuration is switched in this study. We propose

methods to identify and align the sensor configurations in both the testing studies.

5.5 Inertial Sensor Mount Identification and Axis Alignment

Wrist-worn inertial motion sensors can be worn in multiple ways on wrists. Also,

different sensors can have different configurations of the inertial axes of a movement,

contributing to a high diversity and differences in data distribution. We must account

for these differences in our methodology for detecting smoking events using wrist-worn

motion sensors. Typically studies involving wrist-based IMU sensors assume a fixed
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(a) Axis Orientation of 3-axis
accelerometer in both wrists.

(b) Variability in lateral and perpendicular
Axes during walking.

(c) Distribution of accelerometer axes in both wrists during walking.

Fig. 5.2: Figures showing (a) opposing orientation of the perpendicular axis between left
and right wrist, (b) three different walking moments showing values of lateral and

perpendicular axis in the right wrist (human figurine copied from [2]), (c) Distribution of
the accelerometer axes values during walking in our studies

configuration of the 3 orthogonal axes of movement. They ensure this compliance in

their data collection process by constraining their data collection environment to a lab or

controlled setting.

Existing works on orientation invariant processing of inertial wrist sensor data

involve supervised classification [1, 121], incorporating additional sensing

medium [119, 122], and transformation of tri-axial sensor values to an

orientation-invariant representation [123, 124, 125, 126, 127, 128, 129, 130, 117, 131].

When transformed into a different system of coordinates, the individual sensor axes are

each changed to a different sequence with loss of the initial meaning and information. In
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proposing an orientation-invariant method of smoking detection, we aim to preserve and

utilize the already known patterns present in the original sensor signals. Our orientation

in-variance approach tackles two distinct problems. We propose methods to identify the

configurations of a given wrist-worn sensor using the distribution of the accelerometer

sensor signals during moments of walking. More formally, given a 3-axis accelerometer

sensor with x,y, and z axis, we must determine their orientation in the general wrist

coordinate system of lateral, perpendicular, and vertical (l, p, v) axes shown in

Figure 5.1a. Next, we propose to align the sensor axis corresponding to the gravity line

in real time. Our proposed methods address the orientation-related challenges that affect

smoking detection from wrist-worn inertial sensors in the natural field environment.

In this section, we describe our proposed methodology to achieve these goals.

We employ the convolutional neural network-based activity detection models proposed in

Chapter 4 (see Section 4.2). Recall that we detect five different physical activity labels

in 20-second windows using the magnitude of accelerometer data - Walking, Stairs,

Stationery, Exercise, and Sports. We apply our activity detection model to the data

collected and extract the times of various physical activities. Next, we concentrate on

the moments when an individual walks while wearing the wrist-worn accelerometer

sensors. The key idea is to utilize the distribution accelerometer signals during walking

to devise a rule-based algorithm for identifying the three axes of inertial movement and

the direction of the lateral axis.

5.5.1 Distribution of Vertical Axis during Walking

Figure 5.2b shows the direction of the vertical axis during walking at three

different points within a walking step. With our hands pointed downwards during

walking, the direction of the vertical axis remains parallel to the earth’s surface. Thus,

the vertical axis remains orthogonal to gravity’s direction; most values will be close to

zero. In all six (three studies, two wrists = six total) of the plots, the distribution of the

z-axis shows this pattern. There is a peak centered on zero with an almost equal spread
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in both negative and positive directions. The z-axis distribution plots are consistent with

the expected distribution of the vertical axis. The general pattern of vertical axis

distribution centering on zero allows us to determine the exact individual axis to be

considered the vertical axis. Therefore, Figure 5.2c shows |v| = |z| for all three studies.

5.5.2 Key Idea: Distinguishing between Lateral and Perpendicular Axes

Distribution during Walking

With the vertical axis identified, our next goal is understanding the perpendicular

and lateral axes. Figure 5.2b shows three different points in a walking step while wearing

a wrist-IMU sensor on the right wrist. Our drawing adopts the (l, p, v) coordinate

system with the lateral axis aligned to the direction of the fingers and the perpendicular

axis in the same direction as the thumb. We first explain the expected distribution of

lateral and perpendicular axes at moments of walking. Understanding their individual

and pairwise interaction will allow us to construct rules for accurately identifying the

lateral and perpendicular axes.

Distribution of Lateral Axis

Concerning the lateral axis, we find two situations that may arise. First, an

individual axis of the accelerometer (assume k) is aligned to the lateral axis (l = k, both

pointing towards gravity). Figure 5.2b illustrates this scenario with the lateral axis

pointing towards gravity. If we plot the distribution of the lateral axis value, we will see

that most values are close to 1g in the positive direction. Second, in the case where the

individual accelerometer axis is opposite to the lateral axis (l = −k). The significant

distribution mass will be negative (close to −1g) for the later scenario. In both these

scenarios, we expect the distribution to display a sharp peak with significantly less

probability mass around the origin. Similarly, the location of this peak can also inform us

as to the orientation of the inertial movement axis in the sensor to gravity.
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Distribution of Perpendicular Axis

The distribution of the perpendicular axis during walking shows significant

variability. Since the ’perpendicular’ axis is aligned to the thumb, its general direction

aligns with the swing direction of our hands during walking. This is true for both hands

owing to the opposable thumbs. In Figure 5.2b, we see three different states of the

perpendicular axis in the right hand during walking. The perpendicular axis shows a

broader range from negative to positive g. Thus, we expect the distribution of the

perpendicular axis to have more spread along the entire range of possible accelerometer

values. However, unlike the vertical axis, the distribution of the perpendicular axis values

will not be centered around zero. The reasoning behind this phenomenon involves two

intertwined arguments. First, the longitudinal position of our hand relative to our body

will determine the prominence of positive vs. negative values in the distribution of the

perpendicular axis. If the wrist is behind the body line perpendicular axis will be positive.

And if the wrist is in front of the body line, the perpendicular axis will be negative.

However, the hand’s position relative to our body is seldom symmetrical in a walking

episode. Individuals can walk with their wrists in their pockets or hold a cup of

beverage. Multiple such scenarios can disturb the symmetry of the perpendicular axis.

Most of these scenarios involve the wrist in front of the body line. This indicates that

the distribution will be shifted to one side. However, we can not definitively say which

direction the shift will be. This is due to the second element of our argument.

Considering Figure 5.2a, for the exact position of the sensor-fitted watch on our wrists,

the perpendicular axis aligns with the accelerometer axis for the right hand. In contrast,

it is precisely the opposite for the left hand. Even for a single wrist, wearing the watch in

different positions will affect the direction of the accelerometer axis aligned to the

perpendicular one. And finally, for a single wrist (assume right), the sensor can be

configured so that even when one of the accelerometer axes is precisely aligned to the

lateral axis pointing towards gravity, another accelerometer axis is not aligned to the
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thumb direction. Thus, we can not be precise about the exact direction of the

perpendicular axis. We can only say that the distribution will be spread along the whole

range of values with either a positive or a negative skew present.

With the expected lateral and perpendicular axis patterns explained, we can now

describe our approach toward identifying the sensor configuration and lateral axis

alignment.

5.5.3 Identification of 3-Axis Inertial Sensor Configuration

Extending our arguments to Figure 5.2c, we can see that in both training and

field study 1, the accelerometer x-axis shows a sharp peak in the positive direction for

both left and right wrists with little to no probability mass around zero. Based on this,

we can claim that the direction of the x-axis of the accelerometer in the training study

and field study 1 is along the same straight line drawn by the lateral axis. We further

strengthen our argument by explaining the distributions of the y-axis in both studies. As

described beforehand, the distribution of the y-axis in both studies displays a broader

range with a significant skew on either the positive or negative side. Considering these

phenomena together, we can definitively say that for training study and field study 1, the

x-axis corresponds to the direction of the lateral axis, and the y-axis corresponds to the

direction spanned out by the perpendicular axis.

We employ a different inertial sensor for field study 2 compared to field study 1

and the training study. In field study 2, the accelerometer y-axis depicts sharp peaks in

the distribution, and the x-axis seems more spread out along the entire horizontal range

of values. This is opposite to the x and y axes distribution in the first two studies. For

field study 2, we observe that the y-axis corresponds to the same pattern expected from

the lateral axis of the wrist coordinate system. The y-axis points primarily toward gravity

on the right wrist, and the y-axis points opposite gravity in most cases on the left wrist.

This results in a sharp peak-like distribution for the y-axis for both left and right wrists.

Interestingly, we see both negative and positive peaks in the distribution. The scant
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opposite scenarios of the right-wrist y-axis pointing opposite to gravity and the left-wrist

y-axis towards gravity also result in small peaks in the negative and positive directions,

respectively. All the evidence points towards switching the x and y axes’ directions in

field study 2 compared to both studies. Our proposed methodology of investigating the

distributions of the individual accelerometer axes allows us to find out this switching

scenario. Also, this switching can happen during the study due to a change in sensor

type or sensor configuration. It affects the robustness of any developed model on top of

the inertial wrist-sensor data.

5.5.4 Investigating the possibility of Exact Alignment of Individual

Accelerometer Axes

So far, we have proposed methods for the general identification of the 3-axis

accelerometer sensor relative to the wrist-coordinate system. Our methodology for

identifying the perpendicular and vertical axes does not provide the exact alignment

direction. Based on the distributions of the accelerometer values during walking, we can

only detect the accelerometer axis corresponding to the straight line spanned by the

perpendicular or vertical axis. Both these axes have significant variability in wearing and

assuming a fixed set of directions in the sensor (similar to puffMarker [10]) introduces

noise in the modeling methodology. Thus, in our proposed smoking detection methods,

we do not assume a fixed direction of the two accelerometer axes corresponding to the

perpendicular and vertical axes. This limitation introduces significant noise in the pitch

and yaw angle estimation. Therefore, we refrain from using pitch and yaw values for

modeling. However, based on the distributions during walking, we can accurately

identify the exact alignment of the accelerometer signal corresponding to the lateral

axis. Recall the two scenarios of lateral axis distribution from Section 5.5.2. If the

accelerometer axis’ direction points towards gravity (similar to the lateral axis), the peak

of the distribution during walking will be on the positive side (close to 1g). And if it

points away from gravity, the peak will be close to −1g. Using this information, we can
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dynamically align the accelerometer axis toward gravity. We consider the distribution of

each individual on a day-by-day basis, and based on the location of the peak in the

distribution, we can precisely align the axis with the lateral one. Aligning the identified

axis towards gravity allows consistent computation of the exact rotation around the

lateral axis. Therefore, using our axis identification and alignment methodology, we

improve the robustness of our models by first identifying the limits of the wrist-worn

inertial sensors and second by focusing on the variables or features we can robustly

compute after employing the proposed processing steps.

5.6 rSmoke: Smoking Episode Detection

This Section presents an overview of the rSmoke model. We extend the existing

literature on smoking detection by adopting the iterative steps of first detecting

individual smoking hand-to-mouth puff gestures using classical models and then using

the inferred puffs to construct a smoking episode detection model. We only use the

3-axis accelerometer and 3-axis gyroscope time series in a single wrist as input signals.

We first explain the data curation steps involved for wrist-worn inertial sensor data.

Next, we present a detailed overview of the smoking puff detection model. Finally, we

describe the rSmoke smoking episode construction and modeling strategies.

5.6.1 Data Preprocessing

The first step in processing the inertial sensor data is identifying the moments

when the sensor was not worn on the wrists. We utilize the deviation in accelerometer

signals to detect if the sensor was kept on a static surface compared to the wrist. When

accelerometer sensors are kept stationary on a fixed surface, such as on a table or within

a box, the signals have little to no deviation present. Worn on wrists, even when

stationary, blood flow beneath our skin, and inhalation and exhalation of air create

minuscule movements in the sensor signals. There have been works on heart rate and

respiration detection by leveraging these minute movement patterns. For our use case,

we employ a simple threshold-based approach to discard all the segments that do not
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have this minimum deviation. We segment the accelerometer data into 5-second

segments and compute the standard deviation of the magnitude. If the standard

deviation is above a certain threshold, we keep the segment; otherwise, we discard it.

This simple methodology is generalizable across different sensors and, without complex

data processing requirements, allows us to discard segments with no information.

The next step in processing the inertial data for smoking detection involves

aligning the accelerometer and gyroscope signals on the same time axis. We use linear

interpolation to achieve this timing alignment. We construct the interpolated time-axis

to have timesteps when a small amount of data is missing (less than 2 seconds). This

allows for filling in missing values in small segments. With the common interpolated

time-axis constructed, we interpolate both accelerometer and gyroscope data using

linear interpolation. With the accelerometer and gyroscope data aligned to the same

axis, next, we apply our activity detection model to remove the segments with

high-intensity activity (Walking, Stairs, and Exercise).

5.6.2 Smoking Puff Detection

In our approach to detecting the smoking puff gestures, we build upon the

existing works of smoking detection. Our work extends puffMarker [10]. Similarly, we

aim to detect the smoking puff gesture involving a hand-to-mouth action using inertial

wrist sensor data. We elaborate on their methodology before presenting our

modifications and novelties.

Building Upon Prior Works By Identifying the Limitations of Existing Puff

Detection Model

Figure 5.3 shows four smoking events with multiple puffs in each. Figures 5.3a

and 5.3c are from left wrist and Figures 5.3b and 5.3d show smoking events from right

wrist. In each sub-figure, we plot the gyroscope magnitude and accelerometer x,y, and

z-axis from top to bottom. The straight black lines indicate the labeled segment. The

individual figures show that smoking puff gestures are sandwiched between two
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(a) (b)

(c) (d)

Fig. 5.3: Figures showing inertial wrist sensor data of both wrists during smoking
episodes

gyroscope magnitude time series peaks. The first peak indicates the movement of the

hand from the body to the mouth. The plateau following the first peak is when the

smoke is inhaled. Following this inhalation, the second peak indicates the movement of

the hand from the mouth back to the resting position in the body. Therefore, we can

trace the start and end of a smoking puff using the gyroscope magnitude data.

puffMarker uses this approach to identify candidate puffs. Once the candidate segments

have been generated, puffMarker applies multiple decision rules to accept or discard the

candidate segment. The first rule involves checking if the accelerometer y-axis (lateral

axis in puffMarker) signal moves from low to high (for right hand) and high to low (for

left wrist). Without the wrist-specific change, puffMarker rejects the candidate segment

from further analysis. However, Figure 5.3 shows that the mentioned change in the

lateral axis (accelerometer x-axis in our study) does not always manifest in smoking data

collected from the field. In the two left wrist smoking events (Figure 5.3a and 5.3c), we

observe a low to high transition of lateral axis in each smoking puff. This is contrary to

135



puffMarker assumption of high to low transition in the case of the left wrist. Also, we

observe a low-to-high transition for the right wrist in Figure 5.3b and a high-to-low

transition in Figure 5.3d. Thus, puffMarker will fail to detect 3 of the 4 smoking events

shown in Figure 5.3. The next notable rule involves determining the hand orientation

given by the roll and pitch angles. puffMarker ensures consistency in roll and pitch

calculation by fixing the position and orientation of the wrist sensor in both hands. We

discuss the roll and pitch calculation limitations in Section 5.5.4. Our findings show that

determining the precise direction of the accelerometer sensor axis aligned to the

perpendicular axis is difficult. Hence, thresholding based on pitch angles is ineffective in

natural field settings. We extend the works in the literature by carefully considering all

the factors which introduce failure modes for puff detection models in the natural field

environment. We now describe our candidate segment and smoking puff modeling

approach.

Candidate Segment Generation and Selection

In our candidate puff generation approach, we carefully adopt methods that are

robust to conditions in the field environment. We do not employ methods vulnerable to

unaccounted-for changes in the training data. The significant difference in our

methodology lies in the orientation-invariance approach of incorporating different types

of sensor placement possible in the field.

We generate candidate segments by detecting smooth gyroscope magnitude time

series peaks. Before applying the peak detection algorithm, we first smooth the

gyroscope magnitude signal using a moving average window of 0.86 seconds. The

smoothing window is selected as 5th percentile of the duration of all labeled smoking

puffs in our training data. We choose the minimum peak height for peak detection as

the 5th percentile of the gyroscope peaks that fall within or nearby the labeled puff

segments. The segment between two consecutive peaks is first run through two different

filters based on the duration and intensity of motion. First, we see if the segment has a
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Fig. 5.4: Histogram of the Duration of All Labelled Smoking Puffs

duration within a specific range. We exclude the segment if the segment’s duration is

lower than 0.86 seconds or longer than 7.43 seconds (95th percentile of the duration of

all labeled puffs). The second filter is related to the degree of motion of our wrist within

the candidate puff segment. We measure motion using the standard deviation of the

accelerometer magnitude time series. If the standard deviation of the candidate segment

is above the 95th percentile of the standard deviations of all labeled puffs, we exclude it.

The steps mentioned so far are standard processing steps followed in [10]. In the final

step, we check for a transition in the accelerometer lateral axis within the puff segment.

Unlike [10], we do not impose strict wrist-specific transition criteria. We consider the

segment a candidate puff if a low-to-high or high-to-low transition is present.

Orientation Invariant Features from Candidate Puffs

We compute several features from the candidate puff segment to compute the

feature vector before training our smoking puff detection model. We first increase the

width to account for the surroundings of the segment at hand. If (t1, t2) is the

generated candidate segment, we use (t1 − δ, t2 − δ) as the whole segment. We select

δ = 1s since it does not overwhelm the original segment. We widened the segment to

account for the movement of the hand before reaching the peak value. This movement

is part of the smoking puff gesture and should be accounted for in our analysis. Before
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computing features, we also align the accelerometer axis corresponding to the lateral

axis towards the direction of the earth’s gravity. We follow our proposed methodology

from Section 5.5.4 to identify and align the accelerometer axis corresponding to the

wrist coordinate system (l, p, v). Next, we compute the roll time series using the

accelerometer signals. Roll is defined as the rotation around the lateral axis and is

computed using the formula al/
√
a2p + a2v where (al, ap, av) is an accelerometer sample.

The formula for the roll calculation is independent of the exact direction of the

perpendicular and vertical axes. Since we do not know the exact direction of the

accelerometer axes corresponding to perpendicular and vertical axes, we only use the roll

values and refrain from using the pitch and yaw angles commonly used in literature. We

also use the accelerometer magnitude time series, which is direction independent. From

the candidate puff segment, we compute the mean, median, standard deviation, zero

crossing rate, 80th, and 20th percentile of the gyroscope magnitude, accelerometer

magnitude, roll, and accelerometer lateral axis time series. We also compute peaks in

each series and compute three features - the number of peaks per second, mean, and

standard deviation of peak amplitudes. Since we do not know the direction of the

accelerometer axes corresponding to the perpendicular and vertical axes, we transform

each into two orientation-invariant forms. The first is the magnitude, and the second is

the magnitude of the consecutive difference. In total, from 8 different time series, we

have 72 features, including the actual duration of the segment. Finally, we include a

separate binary feature indicating whether it is left or right wrist. Thus, we have 74

features in total from each segment. We use these features robust to the changes in

wrist-sensor placement and orientation in the field.

Puff Detection Model

We first label each candidate puff as an actual puff or not. We apply our

candidate puff generation method on data of days where video-coded labeled data is

available. Thus, our dataset is imbalanced, with more non-puffs dominating the actual
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(a) (b)

Fig. 5.5: Performance of Smoking Puff Detection Model

puff counts. We have 10, 300 non-puffs compared to 424 real puffs. The number of

candidate-labeled puffs is higher than that of human-labeled puffs (360). This is

because, in rare cases, two consecutive smoking puffs may be very close to each other

with only one label coded by the human annotator. Using the features and the

associated ground truth labels, we train and optimize a gradient-boosted decision tree

model to accurately classify the actual puffs. We employ the CatBoost model [223]

(short name for Categorical Boosting) using the open-source CatBoost library. CatBoost

is a gradient-boosting tree model that has achieved state-of-the-art results in many

tasks and requires comparatively little hyperparameter tuning [224]. We use Gradient

Boosted trees since we have many features, and exploiting their mutual interaction is the

key to successfully training our model. Our choice of the model is also inspired by its

state-of-the-art classification results and ease of parameter tuning compared to

traditional models such as Support Vector Machines, Random forest models, and others.

CatBoost also includes a built-in parameter when dealing with highly imbalanced

datasets. We also train and optimize a Balanced Random Forest Classifier [225] with

500 decision trees employing balanced sampling in each tree.

We train the models using leave one subject out cross-validation. To
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demonstrate the effectiveness of our orientation-invariance approach, we also train using

features computed without lateral axis alignment and transformation of the

accelerometer perpendicular and vertical axes. In training our model, we aim to ensure a

high recall of the countable actual puffs in our data. To that end, we experiment with

selecting the appropriate probability threshold to obtain a specific recall value.

Figure 5.5a shows the recall vs. precision plot of the trained puff detection

models. We can see that Orientation Invariant Features improve the performance of puff

detection for each model type. For a recall of 0.5, using orientation invariant features,

we obtain a precision of 0.343. In comparison, without using the proposed features, we

obtain a precision of 0.28 using the same model. Figure 5.5b shows the impact of our

methodology in two confusion matrices. For the same number of true positives, we have

350+ false positives without our approach of orientation invariance.

The CatBoost Gradient Boosting model with the proposed feature computation

pipeline provides superior performance compared to the Balanced Random Forest

Classifier. However, the Random Forest model shows the most significant jump in

performance when using the orientation invariance approach.

We select recall of actual puffs as our metric after considering the performance

of our model on the training data. Compared to existing works where smoking puff

detection models are reported to be highly accurate in field settings and serve as the

backbone of the smoking detection process, we find that the performance of actual puff

detection is significantly less in our field-collected training dataset. This speaks to the

uniqueness of our training data collected in an uncontrolled setting in the field

environment. It also illustrates the difficulty in training a smoking detection model for

the natural field environment with multiple confounding factors. Hand-to-mouth

gestures are common to other activities such as eating, drinking, touching the face, etc.

Hence, we must develop a more comprehensive modeling scheme to construct a smoking

episode detection approach on top of these noisy detected puffs. We, therefore, propose
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our next step of smoking episode construction from noisy detected smoking puffs in the

rSmoke smoking detection methodology.

5.6.3 Smoking Episode Construction from Noisy Detected Puffs and Event

Modelling

We apply the proposed puff detection model to the training data in a

leave-one-subject-out cross-validation setting to detect the actual smoking puffs. Using

the puff detection model described and with the operating point set at Recall>= 0.9, we

can filter out 71.4% (7, 363 out of 10, 300) of the candidate puff segments. However,

false positives overwhelm the actual puffs detected (1 to 7.7 true positive to false

positive ratio). Existing smoking detection methods construct a smoking episode from

detected using a simple rule-based approach of designating a smoking event if a

minimum number of puffs are seen within proximity to each other. They employ

additional sensor types for effective deployments, such as Respiration [10, 55], smart

lighters [61] or quaternions [58]. However, given the nature of our dataset, these

methods will prove inadequate using wrist-worn sensors alone. We, therefore, develop a

smoking event detection methodology that considers the high rate of false positives and

aims to accurately identify smoking events from detected smoking puffs.

(a) (b)

Fig. 5.6: Distribution of the Inter Smoking Puff duration and count in labeled data

Constructing Candidate Smoking Episodes from Detected Smoking Puffs

In constructing a candidate smoking episode from the detected puffs, we first

investigate the presence and patterns of smoking puffs within each episode. We utilize
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the distance between consecutive puffs as a measure of starting a new episode. We

define a candidate smoking episode as a series of k detected puffs

[(ti, fi), (ti+1, fi+1), (ti+2, fi+2), ...(ti+k, fi+k)] if for 1 <= j <= k,

ti+j − ti+j−1] ≤ αduration. Imposing an upper bound on the distance between two

consecutive detected puffs will isolate spurious detected puffs from being considered part

of a smoking episode. We use the domain information from the labeled data to select

the appropriate threshold, αduration. Figure 5.6a shows the distribution of the time

distance between subsequent labeled smoking puffs in our training data. We use the

93rd percentile of the inter-smoking puff duration (αduration = 78.016 seconds) as our

threshold. The next criterion we employ is the number of detected puffs (k) within a

smoking episode. Figure 5.6b shows the distribution of real smoking puffs in individual

smoking episodes in the labeled data (mean = 7.07, std = 3.96). We select the

minimum of this distribution(k = 3) as our threshold. Every candidate smoking episode

must have at least 3 detected smoking puffs. Next, we designate the candidate episode

as an actual smoking episode. We consider a candidate episode an actual one if at least

two real smoking puffs are present amongst all the detected puffs within the episode.

Using the above methodology, the total number of candidate episodes is 167 with 127

non-smoking episodes and 40 smoking episodes. From now on, we propose our

methodology to distinguish between smoking and non-smoking episodes.

Excluding Non-Smoking Episodes Based on Duration and Count of Detected

Puffs

In distinguishing between the smoking and non-smoking episodes, we first use

rule-based approaches of filtering out obvious non-smoking candidates. Figure 5.7a

shows the box plot of the duration of non-smoking and smoking episodes. We observe

that the duration of non-smoking episodes is lower when compared to smoking episodes.

The 10th percentile of the duration of smoking episodes is 111.645 seconds, equal to the

49th percentile of the duration of non-smoking episodes. We use 111.645 seconds as an
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(a) (b) (c)

Fig. 5.7: (a) Distribution of the Duration of Candidate Smoking Episodes, (b)
Distribution of the count of actual puffs within candidate smoking episodes, (c)

Distribution of detected and smoking puff counts within smoking episodes

episode’s minimum duration to be considered a potential smoking one. With the

duration filter applied, we check for the number of detected puffs within a smoking and

non-smoking episode. Figure 5.7b shows the quantile distribution of the number of

detected puffs within smoking and non-smoking episodes. The 10th percentile of

detected puffs within a smoking episode is 11.75, equal to the 35th percentile of the

number of detected puffs in a non-smoking episode. Hence, we employ a second filter on

the minimum number of detected puffs within a candidate episode to be considered for

inference. Using the simple rule-based approach, we are left with 107 total candidate

episodes with 71 non-smoking and 36 smoking episodes. In the final step, we propose

representing these episodes for probabilistic classification using traditional

machine-learning models.

Representing Candidate Smoking Episodes for Learning

We must represent the candidate episodes in a manner suitable for classification

with maximum exploitation of the embedded information. The major challenge is the

few episodes to learn a viable model. Hence, we devise a novel strategy of independently

considering portions of each episode before combining them again to make the final

prediction. Considering Ej = [p1, p2, p3, ..., pk] as a sequence of k puffs with yj as the

ground truth label (smoking or non-smoking episode). We find all contiguous
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sub-sequence Ei
j such that lmin ≤ |Ei

j| ≤ lmax and |Ei
j| ≤ |Ej|. Here lmax and lmin are

constants denoting the maximum and minimum puff counts. Assume there is n such

sub-sequence present for the episode, Ej =
n⋃

i=1

Ei
j. For ∀i∀j, we consider all

sub-episodes Ei
j independently and train a classification model ϕ such that ϕ(Ei

j) = yj.

Selecting lmin and lmax: We create all possible contiguous sub-episodes from

the original candidate episode with puff-counts within the range (lmin, lmax). Each such

sub-episode will represent a portion of the original candidate episode. Figure 5.7c show

the distributions of the detected puff counts of smoking episodes. The figure also shows

the distribution of smoking puff counts within smoking episodes. The mean number of

smoking puff counts is 9.03, while the mean number of detected puffs is 40.14. This

indicates that 1 actual smoking puff is present in every 4 detected puffs. We choose

(lmin = 8 to have the maximum chance of including at least two consecutive smoking

puffs within each sub-episode. The choice of lmax is less sensitive since we consider all

possible sub-episodes of length ≤ lmax and ≥ lmax. We choose the value of lmax = 16 .

Thus, our methodology breaks down each candidate episode into multiple contiguous

sub-episodes with 2 to 4 smoking puffs present.

Features from candidate sub-episodes: We compute features from each

sub-episode before training the episode classification model. We first consider the

difference in time between consecutive puffs and calculate the standard deviation, 15th

and 85th percentile of the time between successive puffs. We also have a feature

denoting how many successive puffs overlap. Next, we have the total duration, puff

count, and duration per puff count of the whole episode. In each detected puff, we have

attributes such as puff probability as given by the smoking puff detection model, mean

and standard deviation of the accelerometer, and gyroscope magnitude. We compute

the 15th and 85th percentile of these attributes within the episode. Finally, we aim to

locate the small number of actual puffs present amid many detected puffs. Hence, we

propose identifying the presence of these smoking puffs by featurizing the time difference
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Fig. 5.8: Confusion Matrix for Smoking Event Detection

between all possible detected puffs in the episode. If Ep
q = [p1, p2, p3, ..., pr] is the sub

episode with r detected puffs, ∀i, i < r − 1, ∀j, i < j ≤ r, we calculate the difference in

time between pi and pj and denote it as ti,j. Next, we compute features representing

the percentage of ti,js fall within the range of specific time duration -

(0, 5), (5, 10), (10, 20), (20, 30). The assumption behind this feature is that actual

smoking puffs, if present, will be evenly distributed within the episode, and the

consistent time difference between them will create mass in specific duration ranges.

Smoking Event Detection Model:

With features from each sub-episode computed, we train a classification model to

independently predict the label of each sub-episode given the features from it. We train

a CatBoost [223] gradient boosting model in a leave one subject out cross-validation

setting. Using this model, we have a probability of being a smoking episode for each

sub-episode. The 95th percentile of the probabilities of all sub-episodes belonging to an

original episode is denoted as the final probability of being a smoking episode.

Figure 5.8 shows the confusion matrix of smoking episode detection. We obtain

a leave one subject out micro f1 score of 0.76, rising to 0.83 for a weighted average, and

a roc-auc score of 0.85. In the following section, We further report the performance of

our trained model using testing data from the two field studies.
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5.7 Performance on Detecting EMA-Reported Smoking Events

We evaluate the performance of rSmoke using data from two field studies. Both

were smoking cessation research studies involving participants who were regular smokers

but wanted to quit. The study protocol involved a pre-quit period when participants

went about their daily lives. They quit smoking on their quit day, intending to give up

smoking altogether. The post-quit period follows when study coordinators monitor the

participants’ smoking abstinence status. All the participants wore wrist and chest sensor

suites in their natural environment for the whole length of the study. Using EMAs,

participants could self-report if they have smoked or not in the recent past. We report

the performance of our developed rSmoke models to detect the actual occurrence of

self-reported smoking events through EMAs. We first explain the details of EMA-based

reporting of smoking occurrence and how we construct our ground truth using the

self-reports. Then we report the performance of rSmoke model in detecting these

smoking events.

5.7.1 Self-Reporting Smoking Occurrence using EMAs

Participants filled out regular and random EMAs every day during the study

period. The EMAs contained questions about the timings of smoking in their recent

past. In the EMAs, the participants were asked, ’Since the last assessment, have you

smoked any cigarettes?’. If they responded with ’yes,’ we asked them, ’how many

cigarettes did you smoke since the last assessment?’. The participants could report the

exact number of cigarettes. If they say only 1 cigarette, they are asked, ’How long ago

did you smoke the cigarette?’. If they report more than one cigarette, we ask, ‘How long

ago you smoked your first cig?’ and ‘Most Recent cig, how long ago?’. The questions

were designed to determine the time of smoking and the number of cigarettes they

smoked. For reporting the timing of smoking occurrences, participants only indicate a

2-hour time window - ’0 - 2 hours ago’, ’2 - 4 hours ago’ and likewise (See Figure 3.7a

in Chapter 3 for more details on the EMA reporting questions and answers).
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Table 5.1: Performance of rSmoke model from smoking self-reports

Test Study Remarks

Number
of

2-hour blocks
with EMA
reported
Smoking

Number ’
of

Participant
Days
with

No Smoking

Model
True

Positive
Per Day

False
Positive
Per Day

Precision

Percentage
of

EMA reported
2 -hour Blocks

with
smoking events

Original Sensor Mount 804 451 puffMarker 1.51 0.62 0.71 30%
rSmoke 1.91 1.01 0.65 39.4%

Switched Sensor Mount 373 173 puffMarker 0.81 0.52 0.61 12%
rSmoke 2.06 1.07 0.66 34%

We use these EMAs to design our ground truth labels for smoking occurrences.

For true positive analysis, we consider the EMAs where the participants reported smoking

events using the 2-hour windows. If (t, t+ 2) is one 2-hour block where the participant

said he smoked cigarettes, we check to see if our model detected smoking within this

time range. If a smoking event is present, we consider it a true positive. We report the

number of true positives per participant day. We also report the percentage of blocks

the participants reported to have smoked contains rSmoke detected smoking events.

We consider the days when the participants reported no smoking occurrences for

false-positive analysis. On those days, we check their EMA response to see when they

responded ’No’ to the question, ’Since the last assessment, have you smoked any

cigarettes?’. We checked the last assessment time if the participants responded to not

smoking. Let (t1, t2) be the time window where the participant reported not smoking

cigarettes. We counted the number of rSmoke detected smoking events in this time

window. According to the EMA reports, each smoking event within this window is a false

positive. We count the false positives per participant day and report them in our results.

For comparison, we also applied puffMarker [10] to both studies. We adopted

the original puffmarker using both the wrist-worn IMUs and chest-worn respiration

sensors and compare its performance against the wrist-based rSmoke model alone.

5.7.2 Results

Table 5.1 shows the performance of the rSmoke and puffMarker models in the

two test studies with original and switched sensor mounts. The puffMarker model
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employs both the wrist-worn inertial and chest-based respiration sensors. In contrast,

rSmoke uses the inertial wrist sensors only. We report the number of true and false

positives daily in the studies. We also report the percentage of EMA-collected

self-reports with the corresponding smoking events detected. We need the precise

moments of smoking to train the risk estimation models. Using the sensor-based

detection of smoking events and confirmation through EMAs, we can confidently

capture the smoking lapse moments. Hence, the percentage of EMA-collected

self-reports with the corresponding smoking events plays a vital role in deciding between

the detection models. The model with a better correspondence rate will be more

suitable for use in the risk estimation model training and deployment.

In the test study with the original sensor mount, puffMarker gives a true vs. false

positive per day of 1.51 vs. 0.62 while rSmoke obtains a true vs. false positive per day

of 1.91 vs. 1.01. The improved performance of the puffMarker model (71% vs. 65%

true positive rate) can be attributed to the usage of respiration sensors in discarding

many falsely detected puffs. Since puffMarker assumes a fixed orientation of the sensor

axes, the number of smoking events detected is low compared to the wrist-only rSmoke

model. We observe this in the percentage of correspondence with self-reports of

smoking events. Using only the wrist-worn inertial sensors, rSmoke model obtains a

39.4% self-report correspondece compared to 30% for puffMarker.

The major gain in performance is observed in the testing study with switched

sensor mounts. rSmoke model achieves a true positive per day of 2.06 with a false

positive rate of 0.34 compared to 0.81 for puffMarker with a false positive rate of 0.39.

Despite the use of Respiration sensors in puffMarker, the change in inertial sensor mount

and the lack of robustness of the methods contribute to an EMA correspondence rate of

only 12%. In comparison, rSmoke achieves a correspondence rate of 34% using

wrist-worn sensors alone.

Overall, the proposed wrist-only rSmoke model outperforms the puffMarker
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model using both the wrist-worn IMUs and chest-based respiration sensors. Also,

rSmoke being a probabilistic machine learning model allows us to tune the operating

point of the smoking-event classifier which can be very useful our use case of smoking

lapse risk estimation.

5.8 Limitations and Future Works

This work improved on [10] using only 6-axis wrist-worn inertial sensors for

detecting smoking events. However, this work has several limitations, which provide

opportunities and challenges for future research. First, there was a paucity of enough

training data (only 41 labeled smoking events) from 10 participants. Future works with

more training data, especially with more labeled smoking events, can increase the

accuracy of puff detection and improve smoking event detection in the field.

Second, we used a simple threshold-based approach to determine whether the

sensor is worn. Determining sensor is worn or not using an accelerometer is tricky as it

may lead to many false positives. Moreover, gyroscope sensors are susceptible to

motion, leading to the generation of many spurious puffs. Future works can improve the

method to detect sensor wearing more accurately to limit false positives.

In all three studies, participants wore sensors on both wrists, considered

independent in our model. However, in real life, we expect an individual to wear a sensor

on either wrist. Hence the smoking detection model needs to consider both wrists

together so that the model works for a single sensor on either wrist.

In the field, wrist sensors can be worn with varying degrees of tightness, which

can contribute to the noise component in the data. To reduce the noise caused by the

tightness of the wearing of the sensors, future works may need to include PPG sensing

to filter out segments where the sensor was worn loosely.

Collecting ground truth for smoking behavior is challenging. EMAs provide a

secondary evaluation only. The future study design can consider this phenomenon to

improve the collection of reliable ground truths.
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A personalized model of smoking detection would be more useful in the long

term. Online learning methods to calibrate e smoking model for each participant can be

done in the future.

This work presented cigarette smoking event detection using wrist inertial

sensors. Future works can also expand this work to vaping, e-cigarette smoking, and

others. Further works can also use GPS sensors to confirm smoking instances and

reduce false positive samples.

5.9 Chapter Summary

Nearly one of every five deaths in the United States is caused by smoking [226].

Automated detection of smoking from wrist sensors can facilitate the precise

intervention or delivery of the treatment at the right moment for an abstinent smoker to

prevent relapsing. Variability in sensor configurations, sensor placement resulting in

variability in axes orientation, lack of sufficient training data, and difficulty in collecting

reliable ground truths present challenges in building a robust smoking detection model

from wrist sensors in the field. Difficulty distinguishing smoking from similar behaviors

involving hand-to-mouth gestures such as eating, brushing, or drinking and determining

whether the sensor is worn can result in many false positives. This work provides an

orientation-invariant modeling framework for detecting smoking events from wrist-worn

inertial sensors. The model achieves a precision of at least 0.65% two different test

studies with higher self-report recall rate than existing models. This work could be

leveraged by researchers or health practitioners to automatically detect smoking events

in the field to assist in intervention and treatment decisions to prevent any abstinent

smokers from relapsing.
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Chapter 6

Continuous Assessment of Smoking Lapse Risk From Wrist-worn Sensors

6.1 Introduction

In this chapter, we combine all the completed works from previous chapters to

realize our goal of developing a continuous smoking lapse risk assessment model using

data collected from wrist-worn sensors alone. In Chapter 3, we developed mRisk, a

continuous lapse risk estimation model in the participants’ natural environment. We

developed mRisk using data from chest-worn sensors. The different modalities of sensor

data were first transformed into an intermediate representation of dynamic risk factors

using state-of-the-art machine learning models. From chest-worn ECG and Respiration

sensors, we computed the continuous stress levels of participants in their natural

environment. From chest-worn accelerometer sensors, we computed the physical activity

level. And finally, using the GPS-based location information collected through

smartphones, we computed the proximity to personal and general smoking spots. Using

this psychological (stress), behavioral (activity), and contextual (proximity to smoking

spots, location) information, we trained a deep neural network-based model to

continuously output the impending risk of smoking lapse. We evaluated the mRisk

models based on their ability to inform the delivery of just-in-time smoking interventions

to avert the occurrence of lapse in the near future. The findings from mRisk show that

continuous lapse risk estimation from chest-worn mobile health sensor data is feasible.

However, accomplishing the overall goal of assessing smoking lapse risk from wrist-worn

sensors involved solving multiple challenges facing human psychological and behavioral

state prediction using machine learning models.

The first challenge concerns estimating stress and activity levels from wrist-worn

PPG sensors. In Chapter 4, we proposed methods to enable robust inference of stress

and activity from wrist-worn sensor data. We developed CQP, a continuous stress

assessment model from PPG sensor data that proposes to integrate the raw signal
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quality of PPG signals as a tool for selecting viable sensor segments and accurate

computation of heartbeat-related features. We trained a convolutional neural network

(CNN) based physical activity inference model with publicly available labeled data to

estimate activity levels. We train the activity detection model to output physical activity

labels from the magnitude of the accelerometer signal in fixed-length windows.

The next challenge stems from developing a smoking detection model from

wrist-worn inertial sensors for deployment in the natural field environment. Current

smoking detection models’ limitations include a rigid approach of assuming a fixed

configuration of inertial sensor axes and a lack of robustness against sensor orientation

and placement changes. We developed rSmoke in Chapter 5, an orientation-invariant

approach to detecting smoking events from accelerometer and gyroscope sensors in the

field. Our proposed rSmoke model increases recall of smoking self-reports, thus providing

us with improved data coverage for training our smoking risk estimation model.

With wrist-based inference of lapse risk factors and smoking events in the natural

environment proven possible, we move towards training and developing the mRisk

models from multi-modal wrist sensors in participants’ natural environment. We propose

an end-to-end methodology for estimating smoking lapse risk using wrist-worn PPG,

accelerometry, and GPS sensor data. Our approach considers the intricacies of

processing wrist-sensor-derived inference of dynamic risk factors in the wild for use as

model inputs. Like the mRisk models developed using chest sensor data, we evaluate

our models based on their ability to inform intelligent design and delivery of just-in-time

smoking interventions in the wild. Previously in Chapter 3, we simulated a

threshold-based design of the intervention delivery mechanism where we deliver an

intervention whenever the risk score is higher than a threshold and sufficient time has

passed since the previous intervention. We propose a more useful intervention delivery

scheme that simulates the delivery of interventions at the onset of a risk episode. In

developing our methods, we consider various challenges concerning the triggering of
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smoking interventions to participants in their natural environment. We need to deliver

the intervention to be effective for participants. The delivery mechanism must be simple

enough for implementation on a mobile device. Also, the frequency of interventions

must be tolerable to avoid fatigue [172].

We first describe the smoking cessation dataset where participants wore both the

chest-worn ECG, Respiration sensors alongside wrist-worn PPG and inertial motion

sensor units. Second, we provide an overview of the specific data processing routines

unique to the wrist sensor data for estimating smoking lapse risk. We train the mRisk

models using wrist-sensor-based inferences of dynamic risk factors representing

participants’ psychological, behavioral, and environmental contexts. Next, we describe

our methodology for delivering effective interventions to participants in their natural

environment. Finally, we present our results of simulated intervention delivery using risk

scores produced by the trained models. We compare and contrast the results obtained

using wrist and chest sensor-derived inferences of dynamic risk factors.

6.2 Smoking Cessation Research Study with both Wrist and Chest Sensors

We describe the smoking cessation research study involving the use of both chest

and wrist sensors. This is the same study from Chapter 4. The Institutional Review

Board (IRB) approved the study and all participants provided written consent.

6.2.1 Study Participants Recruitment and Protocol

The participants had to be regular smokers for the last two years and willing to

quit to be eligible to take part in the study. Recruitment flyers were posted in public

areas such as college campuses, community clinics, churches, and local restaurants and

bars to recruit participants. Advertisements were placed in local newspapers and on the

radio. In-person recruitment was implemented to promote enrollment when requested by

groups or institutions with a population that is likely eligible and interested (similar to

the smoking cessation research study in Chapter 3). The recruited participants went

through the informed consent process during their initial (baseline) lab visit.
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In their visit to the lab, participants were trained in the proper use of the sensor

devices and how to respond to questionnaires in the form of Ecological Momentary

Assessments (EMA) via a study-provided smartphone. They wore the sensors for 4 days

during the pre-quit phase. On their preset quit date, participants returned to the lab.

Then they wore the sensors for 10 more days during the post-quit (or smoking cessation)

phase. The participants were compensated for completing in-person visits — $30 each

for Visits 1, 2, and 3, $80 for Visit 4, and $60 for Visit 5. They were compensated at the

rate of $1.25 for completing each smartphone survey if they wore the on-body sensors

and/or collected usable sensor data at least 60% of the time since the last phone survey,

and $0.50, otherwise for completing each smartphone survey. The participants were also

reimbursed for parking or bus tokens to defray the cost of traveling to the project site.

6.2.2 Wearable Sensor Suites

Participants wore both the chest and wrist sensor suites in their daily lives. We

employed the AutoSense [72] chest sensor suite, which contains ECG (64 Hz),

Respiration (21.33 Hz), and Accelerometry (16.33 Hz) sensors in a chest belt.

Participants also wore wristbands fitted with PPG, Accelerometer, and Gyroscope

sensors in both wrists. The sampling frequency of all the sensors in the wristband is 25

Hz. Participants were also given a study smartphone to complete EMAs and required

questionnaires. The smartphone comes with the open-source mCerebrum software [156]

installed. The smartphone also collects GPS data. However, we do not constantly

sample GPS sensor data to conserve battery energy. We only sample GPS location

whenever smartphone inertial sensors register movement. We employ this strategy for

optimizing battery usage and collecting data for longer periods between charging.

6.2.3 Data Volume

Out of the 110 participants who completed the study, we have sufficient data

from 54 participants from their pre-quit period. From these 54 participants, we have

data from 568 participant days. From the wrists, we have 7, 056 hours of stress data
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(12.42 hours per day) and 9, 979 hours of activity data (17.56 hours per day). From the

chest, we have 7, 353 hours of activity data (12.94 hours per day) and 4, 892 hours of

stress data (8.61 hours per day). Additionally, we have 9, 366 hours of location data

(16.49 hours per day). The 54 participants completed a total of 1, 388 EMAs. We

obtain the smoking lapse times from these 54 users using EMA-collected self-reports and

the rSmoke model from Chapter 5. Although all 54 participants lapsed according to

their EMA response, we only have confirmed lapse events for 35 of them. From the 35

participants, we have 98 confirmed lapse events in total.

6.3 Wrist-based Smoking Lapse Risk Estimation

We aim to train and develop the mRisk models from Chapter 3 using data

derived from only wrist-worn sensors. This section describes the data processing routines

for transforming the wrist-worn sensor data into intermediate representations of smoking

lapse risk factors. We touch on the feature computation and processing pipelines specific

to wrist data. Next, using the features, we briefly describe the training and evaluation

methodology for the lapse risk models.

6.3.1 Data Processing

We use the stress and activity inference models from Chapter 4. We apply the

models on our dataset to compute the continuous stress from PPG and physical activity

labels from wrist-worn accelerometer sensors. The stress model outputs a continuous

time series representing momentary stress levels. We compute stress episodes from the

stress likelihood time series. Episodes indicate the locations where participants were

subject to major stress cues. Episodes help us capture the historical cues of stress

influence. We call these episodes ’stress events-of-influence.’

The activity detection model outputs one of five discrete activity labels every 20

seconds - Stationary, Walking, Exercise, Stairs, and Sports. We consider Exercise,

Walking, and Climbing Stairs high-intensity activities compared to Stationary and

Sports. We first compute a minute-level binary time series indicating if there is
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high-intensity activity present within a minute. This continuous activity time series

reflects whether a participant was active. From the activity time series, we compute

activity episodes indicating the contiguous duration of activity in periods. We term these

as ’activity events-of-influence.’ Both stress and activity suffer from spurious missingness

owing to a lack of viable sensor data, the sensor not being worn, and other factors.

Before computing the events of influence, we impute the small gaps in the stress and

activity series.

The GPS sampling scheme in our study follows a battery-saving principle to

ensure a longer data collection period. The GPS sensors sample the location data

whenever smartphone accelerometer sensors indicate motion. This creates a sparse

representation of the participant’s location compared to the dense representation

produced by GPS sampling every second (in the Smoking Cessation Research Study of

Chapter 3). We adopt the methods proposed in [32] to process GPS samples into

representations of location contexts.

The first step in pre-processing GPS data is employing temporal clustering to

sparsify the original time series into stay times at dwell places. For example (t1, t2, d1)

represent the participant stayed at dwell place d1 from time t1 to t2. The stay time

clustering is necessary for reducing the number of GPS samples before employing

computationally expensive density-based spatial clustering methods [227, 228]. Since we

employ conditional sampling of the GPS sensor in the first place, the number of GPS

samples is not very high. We can apply density-based clustering in the first step. We

first de-noise the GPS time series by removing outlier samples with low accuracy. Next,

we apply a density-based clustering method to derive the participant dwell places in their

pre-quit period. A dwell place designates a location where the participant stayed for a

while. Based on the duration of stay and frequency of visits, we mark each dwell place

as Significant or Transient. The significant dwell places are specific to participants, are

comparatively small in number, and represent locations such as homes or offices where
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the participant resided for a significant amount of time. In contrast, transient places

represent occasional visits to places such as shops, places of worship, hospitals, etc. The

number of transient places per participant is also quite large.

Using the exact timings of smoking events given by the rSmoke model and

confirmed through EMAs, we can designate all the dwell places as personal or general

smoking spots. Personal smoking spots are significant dwell places where participants

smoke regularly. We compute the general smoking spots from the transient dwell places.

We extract the semantic meaning of these transient places to assess if it is potentially

conducive to smoking. Using a customized Point-of-Interest (POI) database, we label

each transient place as having one of 6 semantic types - alcohol, cigarette point-of-sale,

retail, medical, school, and places of worship. Using smoking allowance level (provided

by EMA), semantic meaning, and occasional observed smoking events, we designate

some transient places as general smoking spots. These spots indicate public locations

conducive to smoking and can illicit a smoking lapse behavior in a visiting participant.

Once we obtain the locations of significant and transient dwell places along with the

smoking spot classifications from the pre-quit period, we can represent the post-quit

GPS data of all participants into representations of smoking spot visitations and

proximity to smoking spots.

6.3.2 Risk Estimation Models

Using the stress, activity, and location contexts derived from wrist-sensor data,

we train the LSTM-based deep neural network mRisk models from Chapter 3. The first

model is called DRES, which stands for Deep Model with Recent Event Summarization.

The second model is called DDHI - Deep Model with Historical Influence. Both models

utilize continuous inference features to represent the current physiological, behavioral,

and environmental context. We use two approaches to represent historical context as

given by the events-of-influence time series (stress, activity, and visits to smoking spots).

The DRES model uses innovative features to represent the events-of-influence time
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(a)

(b)

Fig. 6.1: Examples of Lapse Risk Episodes in daily Smoking Lapse Risk Scores

series. In DDHI, we forego feature engineering and employ a novel heterogeneous

event-encoding methodology first proposed in Chapter 3.

We also employ the novel Rare Positive Loss function proposed in Chapter 3 to

train these models using data derived from wrist-worn sensors. We train the models in

leave-one-subject-out cross-validation and derive the continuous lapse risk scores. The

risk scores given by the trained models are evaluated based on their ability to inform

just-in-time smoking interventions. In this chapter, we take it further and introduce the

concept of risk episodes. These episodes are useful in determining the appropriate

strategy for designing an effective smoking intervention methodology.
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6.4 Intervention Delivery Informed by Risk Episodes

Figure 6.1 shows daily plots of smoking lapse risk given by the DDHI model. We

train the model using wrist-sensor-based stress, activity inferences, and location contexts

derived from smartphone-collected GPS samples. We overlay the plots with vertical lines

showing smoking lapse times. The goal is to enable intervention delivery at opportune

moments to maximize our chances of averting impending lapse moments. Our models

output a continuous risk score every minute. We need to make an informed decision at

every minute about whether we want to send the intervention. In Chapter 3, we

simulate the intervention delivery mechanism to deliver interventions whenever the risk

score crosses a certain threshold and a minimum time has passed from the previous

intervention time. The methodology is oblivious to the local characteristics of the

smoking lapse risk time series around the intervention point. A spurious high-risk score

value can trigger an intervention with a high chance that the intervention does not

address the actual level of lapse risk the participant currently experiences. In this

section, we first introduce the concept of risk episodes from continuous lapse risk scores.

The episodes indicate times when the participant experienced a rise in risk levels,

followed by the risk levels again falling back to the baseline. Figure 6.1a shows an

example of four risk episodes the participant experiences in a single day. Two episodes

precede ground truth lapse moments confirmed by EMA-collected self-reports.

Figure 6.1b also shows similar phenomena with a risk episode preceding a smoking lapse

behavior. The episodes, if properly identified, provide the opportunity to construct

proactive intervention delivery mechanisms.

6.4.1 Finding Opportune Moments for Smoking Interventions

We base our proposed intervention delivery method on utilizing the episodes to

deliver effective interventions. Our method of intervention delivery also needs to be

simple enough to be implemented in mobile devices without the need for complex

processing routines. Most of all, the proposed method must be fit for online
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implementation. Detecting the whole episode and then delivering intervention based on

the whole will delay the delivery time of interventions. This may render the intervention

ineffective, with high chances of participants lapsing beforehand. Hence, we do not go

into the details of constructing risk episodes in their entirety. We propose methods to

directly identify the opportune moments of intervention delivery within a risk episode

without constructing the whole episode.

We observe in the example figures that each risk episode starts with a rise from

its baseline and reaches a peak risk value. This peak risk time indicates the participant’s

highest risk level. We propose to detect these peaks in an online manner. As the model

outputs continuous risk scores, we check whether we are at the peak risk value. If yi is a

peak, then yi > yi−1 and yi > yi+1. This is a simple first-order condition. And in the

presence of noise, we can be overwhelmed with spurious peaks in the risk time series. To

reduce the noise, we propose transforming the raw risk score time series by applying an

online moving average of fixed samples. We then proceed to compute peaks in the

average risk score time series. To be stringent in selecting peaks, we also introduce a

second-order condition. If yi is a peak, then yi > yi−1, yi−1 > yi−2, yi > yi+1 and

yi+1 > yi+2. Notice with the second-order condition, we will only find the episode peak

2 minutes after it occurs. Next, we impose two more criteria on peak selection. The first

criterion is the peak amplitude. The value of the risk at the peak point has to be greater

than a threshold θ. The second criterion concerns the rate of rise in a risk episode from

the start to the peak location. Let yi > θ indicate a peak location in the risk time series

that fulfills the second-order peak condition. Let yj, j < i be the valley that indicates

the start of the episode to which yi belongs. Our second criterion is based on the

amount of risk from the start point j to the peak location i. We only propose to deliver

an intervention at time i+ 2 if
∑i

k=j yk ≥ δ. The value of parameters θ and δ will

determine the overall frequency of smoking lapse interventions to be delivered.
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Table 6.1: Intervention Hit Rate at different daily frequencies of intervention using wrist
sensors

Intervention Frequency per day

Model
Intervention

Delivery
Algorithm

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Median IHR

Random - 0.31 0.34 0.42 0.46 0.48 0.55 0.61 0.64 0.70 0.76 0.76 0.55

DRES
Threshold

Based 0.40 0.42 0.51 0.57 0.58 0.67 0.76 0.83 0.86 0.90 0.91 0.67

Risk Peak
Detection 0.53 0.60 0.62 0.63 0.65 0.71 0.76 0.76 0.77 0.79 0.82 0.71

DDHI
Threshold

Based 0.51 0.54 0.63 0.68 0.70 0.76 0.84 0.86 0.89 0.92 0.94 0.76

Risk Peak
Detection 0.55 0.64 0.68 0.70 0.73 0.77 0.81 0.83 0.86 0.86 0.86 0.77

6.5 Evaluating the Effectiveness of Risk Peak Triggered Simulated

Interventions

To understand the effectiveness of the trained lapse risk prediction models from

wrist sensors, we adopt the approaches from Section 3.7.3, Chapter 3 to simulate

intervention delivery at opportune moments indicated by the risk scores. We report the

Intervention Hit Rate (IHR) values for a given model and intervention delivery algorithm.

IHR denotes the proportion of lapse events occurring within 60 minutes of intervention.

We design our intervention delivery mechanism by triggering interventions at times of

risk peaks. We vary the values of parameters θ and δ. This translates to varying levels

of aggregate intervention frequency in the whole dataset. We compute the IHR values

for a given median intervention frequency per day. Next, we interpolate them in the

range of [3, 8] interventions per day.

We also adopt two methods for baseline comparison. First, we show the IHR

results obtained by delivering interventions at randomly selected times within selected

time blocks. This method may be used when no risk assessment via sensors or

self-reports is available. We divide each waking day into k blocks of time and randomly

assign an intervention within each block. By varying the value of k, we can tune the

median number of interventions given per day. Second, we adopt the threshold-based

intervention delivery method proposed in Chapter 3. Interventions are delivered when
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Table 6.2: Intervention Hit Rate of the DDHI model at different daily frequencies of
intervention using different sensing modalities

Intervention Frequency per day

Sensing
Modality

Intervention
Delivery

Algorithm
3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 Median IHR

Chest
Threshold

Based 0.53 0.59 0.67 0.72 0.74 0.78 0.77 0.86 0.86 0.92 0.96 0.77

Risk Peak
Detection 0.61 0.61 0.61 0.63 0.71 0.79 0.82 0.81 0.86 0.88 0.88 0.79

Wrist
Threshold

Based 0.51 0.54 0.63 0.68 0.70 0.76 0.84 0.86 0.89 0.92 0.94 0.76

Risk Peak
Detection 0.55 0.64 0.68 0.70 0.73 0.77 0.81 0.83 0.86 0.86 0.86 0.77

the risk for lapse rises above a pre-determined threshold (TL) and at least intervention

gap (IG) minutes have elapsed since the last intervention.

Table 6.1 shows the IHR results for both the DDHI and DRES models trained

using data collected from wrist-worn sensors alone. The smoking lapse risk models

outperform the random baseline by a significant margin. The DDHI model with our

novel event encoding methodology gives better results than the feature-based DRES

model.

For each model type, we also report the performance of both the threshold based

as well as the proposed risk peak-triggered intervention delivery method. Our proposed

intervention delivery method provides superior performance, especially at lower

frequencies of interventions. At 4 interventions per day, using the DDHI model we

obtain 0.68 IHR value which is 0.05 larger than using the threshold-based method used

in Chapter 3. The performance improvement is even larger (0.62 compared to 0.52) for

the DRES model. The gain in performance at lower frequencies from using the risk

episode peaks is because peaks are stable estimates of high-risk situations, and risk

episodes with high-risk amplitudes precede most lapses. As we increase the number of

intervention frequencies daily, the threshold-based delivery method outperforms the risk

peak-based delivery of smoking interventions. The threshold-based intervention delivery
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Fig. 6.2: Wrist-derived mRisk Lapse likelihood averaged across all the lapse moments

mechanism also has a higher ceiling with 94% of the lapses captured at the cost of 8

interventions per day.

Table 6.2 compares the performance between the DDHI models built using the

wrist and chest sensors. The wrist-based DDHI model performs similarly to the

chest-based model. We obtain a median IHR value of 0.79 using the chest sensors and

0.77 using wrist sensors only. This demonstrates that our proposed methods of stress,

activity, and smoking inferences from wrist-sensor data enable accurate modeling of the

smoking lapse phenomenon. The results using multiple sensing modalities also speak to

the generalization ability of the modeling approaches proposed in Chapter 3.

We aggregate the risk scores across all lapse moments from all participants to

see the general pattern of risk before and after the lapse. Figure 6.2 shows the mean

lapse risk (with a confidence interval of 90%) before and after a smoking lapse. The risk

score rises and peaks around 50-45 minutes before a smoking lapse. The risk then

decreases as the lapse moment approaches. The aggregate rise in risk score before the

lapse moment is similar to what we observe in Chapter 3, Figure 3.8b for the

chest-based model where we observe a rise in risk 44 minutes before lapse.

Overall, our results show that the proposed wrist-based estimation of smoking
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lapse risk is accurate in comparison to the chest-based models and allows the design of

effective intervention methods to avert smoking lapse behavior in abstinent participants.

6.6 Discussions, Limitations and Future Works

The proposed methods have several limitations that present exciting

opportunities for future research endeavors in computing and health research. The

limitations related to smoking lapse risk models include the inability to use temporally

imprecise label sources, the lack of ground truth labels of low-risk states, and the

presence of only stress, activity, and location features. We explain these limitations in

detail in Chapter 3. In this section, we focus on the limitations and future research areas

related to wrist-based sensing, smoking lapse risk estimation from wrist sensors, and

just-in-time smoking intervention design.

First, we only have viable data from 35 participants only for modeling the

smoking lapse risk phenomena using wrist sensors. Increasing the number of participants

and data volume will allow our model to learn the diverse interwoven pattern of smoking

lapse behavior and will certainly add to the robustness of the learned model.

The second limitation concerns the lack of an online methodology for smoking

lapse risk models. Our work does not address the complexity of online estimation of

smoking lapse risks in the natural environment. Real-time smoking risk estimation will

significantly increase the utility of our models. Future research can work to address this

gap by adapting our methods to work with only current and past data. Exploring online

learning methods to enable personalized risk estimation using ground truth risk moments

from the post-quit period will add to the feasibility of practical deployment. This will

allow more accurate estimation of participants’ risk contextualized to their environment.

Third, our wrist-based risk estimation model does not consider any fundamental

characteristics of mobile health sensing using wrist sensors. Although we use

intermediate representations of the raw sensor data with state-of-the-art machine

learning models, information about the different sensing mechanisms adopted in wrists
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can contribute more information. For example, wrist-worn PPG sensors are susceptible

to higher motion artifacts than chest-worn ECG. Our proposed stress model incorporates

an independent data quality estimation pipeline to quantify the quality of collected data

and aid in stress inference from PPG. In the future, we can consider the quality likelihood

time series as an independent information channel for the smoking risk estimation model.

Fourth, we notice the promise of uncertainty quantification of the output risk

scores. A measure of uncertainty accompanying the risk allows for more intelligent and

rational decision-making on the time and type of interventions to deliver based on the

risk score. Uncertainty estimation can account for the uncertainty inherent to the model

itself. The risk prediction model is designed to output smoking lapse risk in diverse

situations, which may indicate a shift from training data. An estimate of the model

uncertainty aims to provide a performance bound and draw the limitations of the lapse

risk model [229].

Fourth, we depend on self-reports and automated detection of smoking events to

construct ground truth labels of high-risk states. Automated smoking detection models,

including the rSmoke model presented in Chapter 5, do not have the necessary precision

to locate smoking lapse events in the wild without confirmation from self-reports. Thus,

we depend on temporally imprecise sources such as EMAs to confirm detected smoking

events. Future work can explore novel ways to incorporate information from temporally

imprecise sources such as EMAs or incorporate smoking event markings.

Finally, our design of intervention delivery and simulation experiments using risk

scores from the trained models is not validated with real-life experiments. We can

complete the evaluation of our proposed methods by designing a micro-randomized trial

based on intervention delivery informed by smoking lapse risk scores.

6.7 Chapter Summary

In Chapter 3, we employed chest-based ECG and inertial motion sensors for

passive sensing of human health and wellness states. Owing to the inconvenience of
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wearing chest-wrapped devices daily, the practical utility of using such sensors outside of

academic use remains limited. Conversely, wrist-worn wearables or sensor-fitted

smartwatches have seen growing adoption in research and commercial use due to their

convenient form and the ability for continuous monitoring. Developing a wrist-only

smoking lapse risk estimation model from wrist-worn wearable sensors can significantly

boost the practical utility and usability. Our work realizes this goal by developing a

first-of-its-kind smoking lapse risk estimation model from wrist-worn sensors. We also

propose a new intervention delivery mechanism inspired by the episodic characteristics of

the risk scores. Simulated results show that our wrist-based smoking lapse risk

estimation model can capture 68% of the confirmed lapses at 4 interventions per day.

This work opens the door to many exciting research opportunities to increase the rate of

smoking abstinence using mobile health sensors.
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Chapter 7

Conclusion and Future Directions

7.1 Summary and Key Contributions

In the continuing fight to curb smoking and the tobacco use pandemic,

innovative methods relying on passive mobile sensing can usher in a new era of progress

and positive results. Precision medicine based on wearable sensing has the potential for

delivering just-in-time adaptive interventions to abstinent smokers when they are most

vulnerable. Our dissertation adopts this objective and proposes an end-to-end

methodology for estimating the imminent risk of smoking lapse behavior. Our method

relies on passive and continuous detection of smoking lapse risk factors in the natural

environment of individuals to train a novel deep neural network-based smoking lapse risk

estimation model from convenient wrist-worn sensors.

Our model relies on several key innovations to address the challenges of

continuously estimating smoking lapse risk using wrist-worn mobile health sensors. We

propose to represent participants’ current and historical context in their natural

environment using inferences of lapse risk factors from state-of-the-art machine learning

models. We represent the physiological, behavioral, and environmental contexts using

sensor-based inferences of stress, activity, and location contexts. We derive these

contexts by employing chest-worn wearable sensors and propose an end-to-end smoking

lapse risk estimation pipeline. We train two LSTM-based deep neural network models,

each with a unique strategy for capturing historical context. We also propose a novel

event-encoding methodology of automatically representing the historical contexts

captured by events-of-influence time series. To accurately optimize our models with

incomplete positive-only labels, we propose a novel loss function. We evaluate the utility

of our models based on their ability to inform the design and delivery of just-in-time

adaptive smoking interventions. Our preliminary results indicate that using

167



chest-sensor-derived representations of stress, activity, and location contexts, our model

can deliver just-in-time smoking interventions before most of the confirmed lapses.

Our proposed methods of accurate smoking risk estimation from chest-worn

wearables open up a new chapter of computing research. Intervening with at-risk

participants to avoid impending lapse can improve the overall smoking abstinence rate.

However, adopting the chest-sensor-based risk estimation models for widespread use is

not straightforward. Outside academic research, the utility of chest sensors is limited due

to the inconvenience of wearing chest-wrapped devices daily. Wrist-based sensors, on the

other hand, provide a convenient form of wearing and have seen growing adoption in

research and commercial use due to their ability for continuous monitoring. Adapting

our methodology to enable continuous estimation of smoking lapse risk from wearable

wrist sensors is bound to improve the practical utility of our models. Hence, we focus on

translating the developed lapse risk estimation methods to work with wrist sensors alone.

To develop the mRisk models from wrist sensors, it is imperative to obtain a

passive and continuous estimation of dynamic risk factors. To enable robust inference

from noisy wrist-worn sensor data, we propose CQP. CQP is a machine learning-based

data quality indicator, which informs the quality of inference from time-varying signals.

We use CQP to devise a novel approach of auxiliary estimation and deep integration of

signal quality metrics within the inference process. Integrating signal quality levels within

the inference mechanism enhances the accuracy and robustness of continuous inference

from wrist-worn PPG sensor data compared to existing methods. We also train a deep

neural network-based activity detection model to output continuous activity labels using

the magnitude of wrist-worn accelerometer sensor data.

To enable wrist-based estimation of smoking lapse risk, we need a working

smoking detection model that can accurately detect smoking events from wrist-worn

inertial sensor data in the field. We first identify the limitations of existing wrist-based

smoking detection methods in the literature. These methods suffer from a lack of
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robustness to many possible scenarios in the field related to sensor configurations,

orientation changes, and other factors. We propose rSmoke, an orientation-invariant

approach to first identifying the axes configuration for inertial sensors in the wild.

rSmoke computes robust features from the inertial wrist-worn IMU data to first detect

smoking puffs. To construct smoking episodes from noisy and spurious smoking puffs

detected in the field, rSmoke proposes a novel smoking episode construction scheme that

allows for the representation and identification of smoking episodes. Using the rSmoke

model, we capture smoking lapse events in the post-quit smoking abstinence period.

We train the proposed mRisk models from all the proposed wrist-based

inferences to output smoking lapse risk scores from wrist-worn wearables. To simulate

the ability of the trained models to deliver intelligent smoking interventions to abstinent

participants, we propose a new online intervention delivery mechanism based on risk

episodes. Our results indicate that smoking lapse risk scores from the mRisk models

trained on wrist-based inferences of lapse risk factors.

7.2 Future Research Directions

Our dissertation is the first to propose a comprehensive approach to predict the

imminent risk of smoking lapse from wrist-worn wearables. Our work explores many

directions to making smoking lapse estimation from wrist sensors a reality. We innovate

novel solutions to fill the existing research gaps and propose a detailed end-to-end

pipeline of continuous smoking lapse risk estimation from wrist-worn wearables. Our

dissertation touches on multiple sub-problems in different fields and employs novel

approaches to address each of them. Our proposed methods has limitations that present

exciting opportunities for future computing and behavioral research.

In future, the developed risk prediction model can continuously output the

real-time risk of a smoking lapse in the natural environment. For effective deployment of

the model in a smoking cessation study, future research can address the challenges of

building and deploying a real-time online model. Developing an online lapse risk
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estimation model to output composite risk scores in real-time will significantly increase

the utility of our work. Exploring online learning methods to enable personalized risk

estimation using ground truth risk moments from the post-quit period will add to the

feasibility of practical deployment. This will allow a more accurate estimation of

participants’ risk contextualized to their environment.

The presence of many external and internal factors in the natural environment

can adversely impact the mobile sensing process and their presence reduces the

trustworthiness of the model output to end users and introduces uncertainty in the

estimation process. Quantifying this uncertainty level is necessary for exploring the

practical utility of these streams in representing the health and wellness states of

individuals in natural environments. The smoking risk prediction model is another

ML-based model dependent on these streams and their associated uncertainties. Future

research works can output a measure of uncertainty alongside the lapse risk score. An

uncertainty measure can be more helpful to decide what interventions to deliver and

when to deliver them based on the risk score.

To increase the number of labeled instances of at-risk moments, future works can

utilize other sources of labels. EMAs offer a possible source of such noisy labels. EMAs

are almost ubiquitous in smoking cessation studies. Using EMAs participants self-report

smoking lapses. They fill in structured questionnaires designed to locate the lapse timing

within a block of the exact time of smoking. For example, the participants may report

that they smoked within the last 2 hours. Thus, the lapse-reports obtained using EMAs

come with a coarse and imprecise timing resolution. Future works can develop novel

methodologies for utilizing these label sources. Future works can also employ novel

study designs to collect ground truth labels for low-risk moments as well.

Our proposed risk estimation model achieves a reasonable performance(IHR)

using only the stress, location, and activity features. Future works can boost the

performance further by supplementing them with craving, self-efficacy, presence of other
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cues such as noisy locations, graffiti, and other situational indicators that may affect the

risk of lapse.

We evaluate the utility of the developed risk estimation models using simulation

experiments of delivering smoking interventions as informed by the smoking lapse risk

scores. A comprehensive evaluation of the developed methods will require design of a

randomized clinical trial (RCT) to quantify the performance of the proposed models.

Future works can employ adapt the developed methodologies for deployment in a RCT.

Finally, a novel future application can use the developed risk scores to dictate the

delivery of Ecological Momentary Assessments based on the smoking lapse risk scores.

In a smoking cessation research study, researchers employ EMAs to assess participants’

health and wellness states of individuals at regular intervals. EMAs are typically

delivered to participants in regular blocks throughout the day. Filling in EMA

questionnaires requires time and effort, thus putting a burden on the study participants

willing to quit smoking. Using the smoking lapse risk scores to inform the delivery of

EMAs can improve the effectiveness of the delivered EMAs and reduce the number of

EMAs delivered daily.
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