29 research outputs found

    Design of LCOS microdisplay backplanes for projection applications

    Get PDF
    De evolutie van licht emitterende diodes (LED) heeft ervoor gezorgd dat het op dit moment interessant wordt om deze componenten als lichtbron te gebruiken in projectiesystemen. LED’s hebben belangrijke voordelen vergeleken met klassieke booglampen. Ze zijn compact, ze hebben een veel grotere levensduur en ogenblikkelijke schakeltijden, ze werken op lage spanningen, etc. LED’s zijn smalbandig en kunnen een groterekleurenbereik realiseren. Ze hebben momenteel echter een beperkte helderheid. Naast de lichtbron is het type van de lichtklep ook bepalend voor de kwaliteit van een projectiesysteem. Er bestaan verschillende lichtkleptechnologieĂ«n waaronder die van de reflectieve LCOS-panelen. Deze lichtkleppen kunnen zeer hoge resoluties hebben en wordenvaak gebruikt in kwalitatieve, professionele projectiesystemen. LED’s zijn echter totaal verschillend van booglampen. Ze hebben een andere vorm, package, stralingspatroon, aansturing, fysische en thermische eigenschappen, etc. Hoewel er een twintigtal optische architecturen bekend zijn voor reflectieve beeldschermen (met een booglamp als lichtbron), zijn ze niet geschikt voor LED-projectoren en moeten nieuwe optische architecturen en een elektronische aansturing ontwikkeld worden. In dit doctoraat werd er hieromtrent onderzoek gedaan. Er werd uiteindelijk een driekleurenprojector (R, G, B) met een efficiĂ«nt LED-belichtingssysteem gebouwd met twee LCOS-lichtkleppen. Deze LEDprojector heeft superieure eigenschappen (zeer lange levensduur, beeldkwaliteit, etc.) en een matige lichtopbrengst

    Reconfigurable Gate Driver Toward High-Power Efficiency and High-Power Density Converters

    Get PDF
    Les systĂšmes de gestion de l'Ă©nergie exigent des convertisseurs de puissance pour fournir une conversion de puissance adaptĂ©e Ă  diverses utilisations. Il existe diffĂ©rents types de convertisseurs de puissance, tel que les amplificateurs de puissance de classe D, les demi-ponts, les ponts complets, les amplificateurs de puissance de classe E, les convertisseurs buck et derniĂšrement les convertisseurs boost. Prenons par exemple les dispositifs implantables, lorsque l'Ă©nergie est prĂ©levĂ©e de la source principale, des convertisseurs de puissance buck ou boost sont nĂ©cessaires pour traiter l'Ă©nergie de l'entrĂ©e et fournir une Ă©nergie propre et adaptĂ©e aux diffĂ©rentes parties du systĂšme. D'autre part, dans les stations de charge des voitures Ă©lectriques, les nouveaux tĂ©lĂ©phones portables, les stimulateurs neuronaux, etc., l'Ă©nergie sans fil a Ă©tĂ© utilisĂ©e pour assurer une alimentation Ă  distance, et des amplificateurs de puissance de classe E sont dĂ©veloppĂ©s pour accomplir cette tĂąche. Les amplificateurs de puissance de classe D sont un excellent choix pour les casques d'Ă©coute ou les haut-parleurs en raison de leur grande efficacitĂ©. Dans le cas des interfaces de capteurs, les demi-ponts et les ponts complets sont les interfaces appropriĂ©es entre les systĂšmes Ă  faible et Ă  forte puissance. Dans les applications automobiles, l'interface du capteur reçoit le signal du cĂŽtĂ© puissance rĂ©duite et le transmet Ă  un rĂ©seau du cĂŽtĂ© puissance Ă©levĂ©e. En outre, l'interface du capteur doit recevoir un signal du cĂŽtĂ© haute puissance et le convertir vers la cĂŽtĂ© basse puissance. Tous les systĂšmes mentionnĂ©s ci-dessus nĂ©cessitent l'inclusion d'un pilote de porte spĂ©cifique dans les circuits, selon les applications. Les commandes de porte comprennent gĂ©nĂ©ralement un dĂ©calage du niveau de commande niveau supĂ©rieur, le levier de changement de niveau infĂ©rieur, une chaĂźne de tampon, un circuit de verrouillage sous tension, un circuit de temps mort, des portes logiques, un inverseur de Schmitt et un mĂ©canisme de dĂ©marrage. Ces circuits sont nĂ©cessaires pour assurer le bon fonctionnement des systĂšmes de conversion de puissance. Un circuit d'attaque de porte reconfigurable prendrait en charge une vaste gamme de convertisseurs de puissance ayant une tension d'entrĂ©e V[indice IN] et un courant de sortie I[indice Load] variables. L'objectif de ce projet est d'Ă©tudier intensivement les causes de diffĂ©rentes pertes dans les convertisseurs de puissance et de proposer ensuite de nouveaux circuits et mĂ©thodologies dans les diffĂ©rents circuits des conducteurs de porte pour atteindre une conversion de puissance avec une haute efficacitĂ© et densitĂ© de puissance. Nous proposons dans cette thĂšse de nouveaux circuits de gestion des temps mort, un Shapeshifter de niveau plus Ă©levĂ© et un Shapeshifter de niveau infĂ©rieur avec de nouvelles topologies qui ont Ă©tĂ© pleinement caractĂ©risĂ©es expĂ©rimentalement. De plus, l'Ă©quation mathĂ©matique du temps mort optimal pour les faces haute et basse d'un convertisseur buck est dĂ©rivĂ©e et expĂ©rimentalement prouvĂ©e. Les circuits intĂ©grĂ©s personnalisĂ©s et les mĂ©thodologies proposĂ©es sont validĂ©s avec diffĂ©rents convertisseurs de puissance, tels que les convertisseurs semi-pont et en boucle ouverte, en utilisant des composants standard pour dĂ©montrer leur supĂ©rioritĂ© sur les solutions traditionnelles. Les principales contributions de cette recherche ont Ă©tĂ© prĂ©sentĂ©es Ă  sept confĂ©rences prestigieuses, trois articles Ă©valuĂ©s par des pairs, qui ont Ă©tĂ© publiĂ©s ou prĂ©sentĂ©s, et une divulgation d'invention. Une contribution importante de ce travail recherche est la proposition d'un nouveau gĂ©nĂ©rateur actif CMOS intĂ©grĂ© dĂ©diĂ© de signaux sans chevauchement. Ce gĂ©nĂ©rateur a Ă©tĂ© fabriquĂ© Ă  l'aide de la technologie AMS de 0.35”m et consomme 16.8mW Ă  partir d'une tension d'alimentation de 3.3V pour commander de maniĂšre appropriĂ©e les cĂŽtĂ©s bas et haut d'un demi-pont afin d'Ă©liminer la propagation. La puce fabriquĂ©e est validĂ©e de façon expĂ©rimentale avec un demi-pont, qui a Ă©tĂ© mis en Ɠuvre avec des composants disponibles sur le marchĂ© et qui contrĂŽle une charge R-L. Les rĂ©sultats des mesures montrent une rĂ©duction de 40% de la perte totale d'un demi-pont de 45V d'entrĂ©e Ă  1MHz par rapport au fonctionnement du demi-pont sans notre circuit intĂ©grĂ© dĂ©diĂ©. Le circuit principal du circuit d'attaque de grille cĂŽtĂ© haut est le dĂ©caleur de niveau, qui fournit un signal de grande amplitude pour le commutateur de puissance cĂŽtĂ© haut. Une nouvelle structure de dĂ©calage de niveau avec un dĂ©lai de propagation minimal doit ĂȘtre prĂ©sentĂ©e. Nous proposons une nouvelle topologie de dĂ©calage de niveau pour le cĂŽtĂ© haut des drivers de porte afin de produire des convertisseurs de puissance efficaces. Le SL prĂ©sente des dĂ©lais de propagation mesurĂ©s de 7.6ns. Les rĂ©sultats mesurĂ©s montrent le fonctionnement du circuit prĂ©sentĂ© sur la plage de frĂ©quence de 1MHz Ă  130MHz. Le circuit fabriquĂ© consomme 31.5pW de puissance statique et 3.4pJ d'Ă©nergie par transition Ă  1kHz, V[indice DDL] = 0.8V , V[indice DDH] = 3.0V, et une charge capacitive C[indice L] = 0.1pF. La consommation Ă©nergĂ©tique totale mesurĂ©e par rapport Ă  la charge capacitive de 0.1 Ă  100nF est indiquĂ©e. Un autre nouveau dĂ©calage vers le bas est proposĂ© pour ĂȘtre utilisĂ© sur le cĂŽtĂ© bas des pilotes de portes. Ce circuit est Ă©galement nĂ©cessaire dans la partie Rₓ du rĂ©seau de bus de donnĂ©es pour recevoir le signal haute tension du rĂ©seau et dĂ©livrer un signal de faible amplitude Ă  la partie basse tension. L'une des principales contributions de ces travaux est la proposition d'un modĂšle de rĂ©fĂ©rence pour l'abaissement de niveau Ă  puissance unique reconfigurable. Le circuit proposĂ© pilote avec succĂšs une gamme de charges capacitives allant de 10fF Ă  350pF. Le circuit prĂ©sentĂ© consomme des puissances statiques et dynamiques de 62.37pW et 108.9”W, respectivement, Ă  partir d'une alimentation de 3.3V lorsqu'il fonctionne Ă  1MHz et pilote une charge capacitive de 10pF. Les rĂ©sultats de la simulation post-layout montrent que les dĂ©lais de propagation de chute et de montĂ©e dans les trois configurations sont respectivement de l'ordre de 0.54 Ă  26.5ns et de 11.2 Ă  117.2ns. La puce occupe une surface de 80”m × 100”m. En effet, les temps morts des cĂŽtĂ©s hauts et bas varient en raison de la diffĂ©rence de fonctionnement des commutateurs de puissance cĂŽtĂ© haut et cĂŽtĂ© bas, qui sont respectivement en commutation dure et douce. Par consĂ©quent, un gĂ©nĂ©rateur de temps mort reconfigurable asymĂ©trique doit ĂȘtre ajoutĂ© aux pilotes de portes traditionnelles pour obtenir une conversion efficace. Notamment, le temps mort asymĂ©trique optimal pour les cĂŽtĂ©s hauts et bas des convertisseurs de puissance Ă  base de Gan doit ĂȘtre fourni par un circuit de commande de grille reconfigurable pour obtenir une conception efficace. Le temps mort optimal pour les convertisseurs de puissance dĂ©pend de la topologie. Une autre contribution importante de ce travail est la dĂ©rivation d'une Ă©quation prĂ©cise du temps mort optimal pour un convertisseur buck. Le gĂ©nĂ©rateur de temps mort asymĂ©trique reconfigurable fabriquĂ© sur mesure est connectĂ© Ă  un convertisseur buck pour valider le fonctionnement du circuit proposĂ© et l'Ă©quation dĂ©rivĂ©e. De plus le rendement d'un convertisseur buck typique avec T[indice DLH] minimum et T[indice DHL] optimal (basĂ© sur l'Ă©quation dĂ©rivĂ©e) Ă  I[indice Load] = 25mA est amĂ©liorĂ© de 12% par rapport Ă  un convertisseur avec un temps mort fixe de T[indice DLH] = T[indice DHL] = 12ns.Power management systems require power converters to provide appropriate power conversion for various purposes. Class D power amplifiers, half and full bridges, class E power amplifiers, buck converters, and boost converters are different types of power converters. Power efficiency and density are two prominent specifications for designing a power converter. For example, in implantable devices, when power is harvested from the main source, buck or boost power converters are required to receive the power from the input and deliver clean power to different parts of the system. In charge stations of electric cars, new cell phones, neural stimulators, and so on, power is transmitted wirelessly, and Class E power amplifiers are developed to accomplish this task. In headphone or speaker driver applications, Class D power amplifiers are an excellent choice due to their great efficiency. In sensor interfaces, half and full bridges are the appropriate interfaces between the low- and high-power sides of systems. In automotive applications, the sensor interface receives the signal from the low-power side and transmits it to a network on the high-power side. In addition, the sensor interface must receive a signal from the high-power side and convert it down to the low-power side. All the above-summarized systems require a particular gate driver to be included in the circuits depending on the applications. The gate drivers generally consist of the level-up shifter, the level-down shifter, a buffer chain, an under-voltage lock-out circuit, a deadtime circuit, logic gates, the Schmitt trigger, and a bootstrap mechanism. These circuits are necessary to achieve the proper functionality of the power converter systems. A reconfigurable gate driver would support a wide range of power converters with variable input voltage V[subscript IN] and output current I[subscript Load]. The goal of this project is to intensively investigate the causes of different losses in power converters and then propose novel circuits and methodologies in the different circuits of gate drivers to achieve power conversion with high-power efficiency and density. We propose novel deadtime circuits, level-up shifter, and level-down shifter with new topologies that were fully characterized experimentally. Furthermore, the mathematical equation for optimum deadtimes for the high and low sides of a buck converter is derived and proven experimentally. The proposed custom integrated circuits and methodologies are validated with different power converters, such as half bridge and open loop buck converters, using off-the-shelf components to demonstrate their superiority over traditional solutions. The main contributions of this research have been presented in seven high prestigious conferences, three peer-reviewed articles, which have been published or submitted, and one invention disclosure. An important contribution of this research work is the proposal of a novel custom integrated CMOS active non-overlapping signal generator, which was fabricated using the 0.35−”m AMS technology and consumes 16.8mW from a 3.3−V supply voltage to appropriately drive the low and high sides of the half bridge to remove the shoot-through. The fabricated chip is validated experimentally with a half bridge, which was implemented with off-the-shelf components and driving a R-L load. Measurement results show a 40% reduction in the total loss of a 45 − V input 1 − MHz half bridge compared with the half bridge operation without our custom integrated circuit. The main circuit of high-side gate driver is the level-up shifter, which provides a signal with a large amplitude for the high-side power switch. A new level shifter structure with minimal propagation delay must be presented. We propose a novel level shifter topology for the high side of gate drivers to produce efficient power converters. The LS shows measured propagation delays of 7.6ns. The measured results demonstrate the operation of the presented circuit over the frequency range of 1MHz to 130MHz. The fabricated circuit consumes 31.5pW of static power and 3.4pJ of energy per transition at 1kHz, V[subscript DDL] = 0.8V , V[subscript DDH] = 3.0V , and capacitive load C[subscript L] = 0.1pF. The measured total power consumption versus the capacitive load from 0.1pF to 100nF is reported. Another new level-down shifter is proposed to be used on the low side of gate drivers. Another new level-down shifter is proposed to be used on the low side of gate drivers. This circuit is also required in the Rₓ part of the data bus network to receive the high-voltage signal from the network and deliver a signal with a low amplitude to the low-voltage part. An essential contribution of this work is the proposal of a single supply reconfigurable level-down shifter. The proposed circuit successfully drives a range of capacitive load from 10fF to 350pF. The presented circuit consumes static and dynamic powers of 62.37pW and 108.9”W, respectively, from a 3.3 − V supply when working at 1MHz and drives a 10pF capacitive load. The post-layout simulation results show that the fall and rise propagation delays in the three configurations are in the range of 0.54 − 26.5ns and 11.2 − 117.2ns, respectively. Its core occupies an area of 80”m × 100”m. Indeed, the deadtimes for the high and low sides vary due to the difference in the operation of the high- and low-side power switches, which are under hard and soft switching, respectively. Therefore, an asymmetric reconfigurable deadtime generator must be added to the traditional gate drivers to achieve efficient conversion. Notably, the optimal asymmetric deadtime for the high and low sides of GaN-based power converters must be provided by a reconfigurable gate driver to achieve efficient design. The optimum deadtime for power converters depends on the topology. Another important contribution of this work is the derivation of an accurate equation of optimum deadtime for a buck converter. The custom fabricated reconfigurable asymmetric deadtime generator is connected to a buck converter to validate the operation of the proposed circuit and the derived equation. The efficiency of a typical buck converter with minimum T[subscript DLH] and optimal T[subscript DHL] (based on the derived equation) at I[subscript Load] = 25mA is improved by 12% compared to a converter with a fixed deadtime of T[subscript DLH] = T[subscript DHL] = 12ns

    Circuit design in complementary organic technologies

    Get PDF

    전넘 섌싱 플드백 시슀템을 읎용한 êł ì•ˆì •ì„± ì‚°í™”ëŹŒ TFT ì‰Źí”„íŠž 레지슀터의 ì„€êł„ 및 제작

    Get PDF
    í•™ìœ„ë…ŒëŹž (ë°•ì‚Ź)-- 서욞대학ꔐ 대학원 : ì „êž°Â·ì»Ží“ší„°êł”í•™ë¶€, 2017. 2. 정덕균.Integration of shift registers on the glass panel allows the display to be thinner, lighter, and cheaper to produce, thanks to the reduction of the number of ICs for scanning horizontal lines. Circuits of the shift register employing n-type thin film transistors (TFTs), such as hydrogenated amorphous silicon (a-Si:H) and oxide TFTs, have been reported. Recently, oxide TFTs attract much attention due to their high mobility (5~10 cm2/V∙s) compared with that of a-Si:H TFT (0.8cm2/V∙s). However, oxide TFTs often suffer from severe degradation of the threshold voltage (VTH) against the temperature and electrical stress. In this paper, in order to compensate the instability of oxide TFTs in the shift register, an oxide TFT with double gates, which can control VTH by varying the top gate bias (VTG) is adopted. The top gate of the double-gate TFT can be fabricated in the same process for the pixel IZO (Indium Zinc Oxide) so that an additional process only for the top gate is not required. Adequate VTG is provided timely, adaptively to the gate of the oxide TFTs to stabilize the threshold voltage. The fabrication result shows that the proposed shift register using VTG set at an adapted value become stable at 100℃ whereas the conventional one is mal-functioning. The optimum VTG varies from product to product and changes continuously over the lifetime of the display. Therefore, the feedback driving system suitable for the proposed shift register is required to search the optimum VTG. The system has two main functionsthe first is to sense the current of shift register and the second is the searching algorithm for finding the optimum VTG. When the transistors are degraded by an external stress, the current of the whole shift registers is changed. The information about the VTH degradation in the shift register can be gathered via current sensing circuit. The sensed current is integrated to generate the output and is forwarded to an ADC. The binary-converted current of shift register is processed by the proposed algorithm in the digital domain for obtaining an optimum VTG and then the result is converted back to analog to generate VTG. The IC implementing such functions is fabricated in a 0.18 ÎŒm BCDMOS process. When the shift register current is measured on the conventional system with increasing temperature up to 80℃, it is increased to more than 10 times than that at the room temperature. However, the proposed feedback system keeps a highly stable (<13%) current level of shift register up to 80℃ with an optimized VTG.Abstracts i Table of Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Background 2 1.2 Outline 7 Chapter 2 Review of oxide-based TFT device and N-type TFT circuit design 8 2.1 Overview 9 2.1.1 Characteristics of Oxide TFT 9 2.2 Oxide-based TFT 14 2.2.1 Electrical characteristics of oxide-based TFT 14 2.2.2 Stability of oxide-based TFT 18 2.3 NMOS driving circuit 24 2.3.1 Bootstrapping driving circuit 24 2.3.2 Shift register with n-type TFT 28 Chapter 3 Proposed Oxide TFT Shift Register 37 3.1 Overview 38 3.2 Characteristic of Double Gate TFT 39 3.3 Design of New shift register 46 3.3.1 Simulation Result of Conventional shift register 46 3.3.2 New shift register using Double Gate TFT 51 3.3.3 Simulation Modeling of Double Gate TFT 58 3.3.4 Simulation and Experimental Result 61 Chapter 4 Real Time Current-Sensing Feedback Compensation System 71 4.1 Overview 72 4.2 System Architecture 74 4.3 Circuit Design 77 4.3.1 Current Sensing Block 77 4.3.2 ADC/DAC Block 85 4.4 Optimum Point Searching Algorithm 100 4.5 System Verification 106 Chapter 5 Summary 116 Appendix A SPICE models 118 Bibliography 120Docto

    Procedural layout of a high-speed floating-point arithmetic unit

    Get PDF
    Originally presented as author's thesis (Electrical Engineer --Massachusetts Institute of Technology) 1985.Bibliography: leaf 116.Supported in part by the U.S. Air Force Office of Scientific Research contract F49620-84-C-0004Robert Clyde Armstrong

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 ”W. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    First observations of Rydberg blockade in a frozen gas of divalent atoms

    Get PDF
    This thesis details the first measurements of Rydberg dipole blockade in a cold ensemble of divalent atoms. Strontium atoms are cooled and trapped in a magneto-optical trap and coherently excited to Rydberg states in a two-photon, three-level ladder scheme. Owing to the divalent nature of strontium, one electron can be excited to the Rydberg state, whilst the other lower-lying electron is available to undergo resonant optical excitation to autoionising states, which ionise in sub-nanosecond timescales. The remaining ions that are recorded on a micro-channel plate are proportional to the number of Rydberg atoms. The development of a narrow linewidth laser system necessary for an additional stage of cooling is explained and characterised. Two frequency stabilisation schemes are discussed: one to address the short-term laser frequency instabilities based on the Pound-Drever-Hall technique; the other to address the long-term laser frequency instabilities based on Lamb-dip spectroscopy in an atomic beam. The cooling dynamics on the narrow cooling transition is studied experimentally and modelled via theoretical simulations

    Retrodirective phase-lock loop controlled phased array antenna for a solar power satellite system

    Get PDF
    This thesis proposes a novel technique using a phase-lock loop (PLL) style phase control loop to achieve retrodirective phased array antenna steering. This novel approach introduces the concept of phase scaling and frequency translation. It releases the retrodirective transmit-receive frequency ratio from integer constraints and avoids steering approximation errors. The concept was developed to achieve automatic and precise beam steering for the solar power satellite (SPS). The testing was performed using a transceiver converting a pair of received 2.9 GHz signals down to 10 MHz, and up converting two 10 MHz signals to 5.8 GHz. Phase scaling and conjugation was performed at the 10 MHz IF using linear XOR phase detectors and a PLL loop to synthesize a 10 MHz signal with conjugate phase. A phase control loop design is presented using PLL design theory achieving a full 2&#960; steering range. The concept of retrodirective beam steering is also presented in detail. Operational theory and techniques of the proposed method are presented. The prototype circuit is built and the fabrication details are presented. Measured performance is presented along with measurement techniques. Pilot phase detectors and PCL achieve good linearity as required. The achieved performance is benchmarked with standards derived from likely performance requirements of the SPS and beam steering of small versus large arrays are considered
    corecore