3,253 research outputs found

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Naive possibilistic classifiers for imprecise or uncertain numerical data

    Get PDF
    International audienceIn real-world problems, input data may be pervaded with uncertainty. In this paper, we investigate the behavior of naive possibilistic classifiers, as a counterpart to naive Bayesian ones, for dealing with classification tasks in the presence of uncertainty. For this purpose, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. Here the possibility distributions that are used are supposed to encode the family of Gaussian probabilistic distributions that are compatible with the considered dataset. We consider two types of uncertainty: (i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and (ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. Moreover, the approach takes into account the uncertainty about the estimation of the Gaussian distribution parameters due to the limited amount of data available. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an algorithm based on the extension principle to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data

    Possibilistic networks parameter learning: Preliminary empirical comparison

    Get PDF
    International audienceLike Bayesian networks, possibilistic ones compactly encode joint uncertainty representations over a set of variables. Learning possibilistic networks from data in general and from imperfect or scarce data in particular, has not received enough attention. Indeed, only few works deal with learning the structure and the parameters of a possibilistic network from a dataset. This paper provides a preliminary comparative empirical evaluation of two approaches for learning the parameters of a possibilistic network from empirical data. The first method is a possibilistic approach while the second one first learns imprecise probability measures then transforms them into possibility distributions by means of probability-possibility transformations. The comparative evaluation focuses on learning belief networks on datasets with missing data and scarce datasets

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results
    corecore