
734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

Survey of Data Mining Approaches to
User Modeling for Adaptive Hypermedia

Enrique Frias-Martinez, Sherry Y. Chen, and Xiaohui Liu

Abstract—The ability of an adaptive hypermedia system to cre-
ate tailored environments depends mainly on the amount and ac-
curacy of information stored in each user model. Some of the diffi-
culties that user modeling faces are the amount of data available to
create user models, the adequacy of the data, the noise within that
data, and the necessity of capturing the imprecise nature of human
behavior. Data mining and machine learning techniques have the
ability to handle large amounts of data and to process uncertainty.
These characteristics make these techniques suitable for automatic
generation of user models that simulate human decision making.
This paper surveys different data mining techniques that can be
used to efficiently and accurately capture user behavior. The pa-
per also presents guidelines that show which techniques may be
used more efficiently according to the task implemented by the
application.

Index Terms—Adaptive hypermedia (AH), data mining, ma-
chine learning, user modeling (UM).

I. INTRODUCTION

ADAPTIVE hypermedia (AH) can be defined as the tech-
nology that allows to personalize for each individual user

of a hypermedia application the content and presentation of
the application according to user preferences and characteris-
tics [68]–[70].

The process of personalization is defined as the way in which
information and services can be tailored to match the unique
and specific needs of an individual or a community [17]. Per-
sonalization is about building customer loyalty by developing a
meaningful one-to-one relationship, by understanding the needs
of each individual and helping satisfy a goal that efficiently and
knowledgeably addresses each individual’s need in a given con-
text [75]. The more information a user model has, the better the
content, and presentation will be personalized. A user model is
created through a user modeling (UM) process in which unob-
servable information about a user is inferred from observable
information from that user, e.g., using the interactions with the
system [97], [98]. User models can be created using a user-
guided approach, in which the models are directly created using
the information provided by each user, or an automatic approach,
in which the process of creating a user model is controlled by the
system and is hidden from the user. The user-guided approach

Manuscript received October 1, 2004; revised February 28, 2005 and July 8,
2005. This work was supported in part by the U.K. Arts and Humanities Research
Board under Grant MRG/AN9183/APN16300. This paper was recommended
by Associate Editor M. Last.

The authors are with the Department of Information Systems and Com-
puting, Brunel University, Uxbridge, UB8 3PH, U.K. (e-mail: enrique.frias-
martinez@brunel.ac.uk; sherry.chen@brunel.ac.uk; xiaohui.liu@brunel.ac.uk).

Digital Object Identifier 10.1109/TSMCC.2006.879391

produces adaptable services and adaptable user models [32],
while the automatic approach produces adaptive services and
adaptive user models [16], [32]. In general, a user model will
contain some adaptive and some adaptable elements. Ideally,
the set of adaptable elements should be reduced to the mini-
mum possible (elements like age, gender, favorite background
color, etc.), while other elements (favorite topics, patterns of
behavior, etc.) should be created by a learning process. These
concepts have also been presented in the literature as implicit
and explicit UM acquisition [73].

The problem of UM can be implemented using an automatic
approach because a typical user exhibits patterns when accessing
a hypermedia system and the set of interactions containing those
patterns can be stored in a log database in the server. In this
context, machine learning and data mining techniques can be
applied to recognize regularities in user trails and to integrate
them as part of the user model. Machine learning encompasses
techniques where a machine acquires/learns knowledge from
its previous experience [93]. The output of a machine learning
technique is a structural description of what has been learned that
can be used to explain the original data and to make predictions.
From this perspective, data mining and other machine learning
techniques make it possible to automatically create user models
for the implementation of AH services. These techniques make
it possible to create user models in an environment, such as a
hypermedia application, in which, usually, users are not willing
to give feedback of their actions.

This fact leads researchers to consider the different tech-
niques that can be used to capture and model user behavior and
which elements of the behavior of a user each one of those
techniques can capture. In general, the adaptive service that
is going to be implemented determines the information that a
user model should contain. Once that is known, and taking into
account the characteristics of the available data, different data
mining/machine learning techniques can be chosen to capture
the necessary patterns.

This paper has surveyed the development of user models
using data mining and machine learning techniques from 1999
to 2004, focusing on the main journals and conferences for
UM, mainly:
— User Modeling and User-Adapted Interaction;
— International Conference on User Modeling, IEEE Trans-

actions on Neural Networks;
— Workshop of Intelligent Techniques for Web Personaliza-

tion (part of IJCAI International Joint Conference of Arti-
ficial Intelligence); and

— International Workshop on Knowledge Discovery on
the WEB (WEBKDD, part of the ACM SIGKDD

1094-6977/$20.00 © 2006 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 735

International Conference on Knowledge Discovery and
Data Mining).

The paper’s intentions are: 1) to give an up-to-date view of
data mining techniques applied to UM and highlight their po-
tential advantages and limitations and 2) to give basic guidelines
about which techniques can be useful for a given adaptive ap-
plication. The paper complements the results of [97], which
reviewed the use of predictive statistical models for UM.

The organization of the paper is as follows. The paper first
defines the concept of user model, its relevance for AH, and the
basic steps for the automatic creation of user models. After that
a set of unsupervised and supervised techniques are presented.
For each technique, we present its theoretical background, its
pros and cons, and its applications in the field of UM. Next, we
develop a guideline on how to create a user model according to
the needs of the AH application that is going to be implemented.
Finally, conclusions are drawn at the end of the paper.

II. UM

A user model should capture the behavior (patterns, goals,
interesting topics, etc.) a user shows when interacting with the
Web. A user model is defined as a set of information structures
designed to represent one or more of the following elements
[49]: 1) representation of goals, plans, preferences, tasks, and/or
abilities about one or more types of users; 2) representation of
relevant common characteristics of users pertaining to specific
user subgroups or stereotypes; 3) the classification of a user in
one or more of these subgroups or stereotypes; 4) the recording
of user behavior; 5) the formation of assumptions about the user
based on the interaction history; and/or 6) the generalization of
the interaction histories of many users into groups.

A. UM and AH

AH allows to personalize to each individual the content and
presentation of a Web site. The architecture of an AH system
is usually divided into two parts: the server side and the client
side. The server side generates the user models from a database
containing the interactions of the users with the system and
the personal data/preferences that each user has given to the
system. Also, user models can contain knowledge introduced
by the designer (in the form of rules, for example). These user
models, in combination with a hypermedia database, are used
by the “Decision Making and Personalization Engine” module
to identify user needs, decide on the types of adaptation to
be performed, and communicate them to an adaptive interface.
Fig. 1 presents the architecture of a generic AH system.

A personalized hypermedia system, by its very nature, should
respond in real time to user inputs. To do so, the architecture of
the system should provide a quick access to the right information
at the right time.

AH uses the knowledge given by user models to implement
one or more of the two basic types of adaptive tasks.

1) Recommendation (R). Recommendation is the capability
of suggesting interesting elements to a user based on some
information, e.g., from the items to be recommended or

Fig. 1. Generic architecture of an AH application.

Fig. 2. Steps for automatic generation of user models.

from the behavior of other users. Recommendation is also
known in the literature as collaborative filtering.

2) Classification (C). Classification builds a model that maps
or classifies data items into one of several predefined
classes. Classification is done using only data related to
that particular item. This knowledge can be used to tailor
the services of each user stereotype (class). In the liter-
ature, classification has also been presented as content-
based filtering.

Both recommendation and classification are types of filtering
applications.

B. Automatic Generation of User Models

One of the processes presented in Fig. 1 is the automatic
generation of user models from the interaction data between
the users and the system (done by the UM Generation module).
Fig. 2 presents the basic steps of this module: 1) data collection;
2) preprocessing; 3) pattern discovery; and 4) validation and
interpretation. A brief discussion of each of these follows.

1) Data collection. In this stage, user data are gathered. For
automatic user modeling, the data collected includes: data
regarding the interaction between the user and the Web,
data regarding the environment of the user when interact-
ing with the Web, direct feedback given by the user, etc.

2) Data preprocessing/information extraction. The in-
formation obtained in the previous stage cannot be

736 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

directly processed. It needs to be cleaned from noise and
inconsistencies in order to be used as the input of the
next phase. For user modeling, this involves mainly user
identification and session reconstruction. This stage is
aimed at obtaining, from the data available, the semantic
content about the user interaction with the system. Also,
in this phase, the data extracted should be adapted to
the data structure used by standard pattern discovery
algorithms used in the next step.

3) Pattern discovery. In this phase, machine learning and data
mining techniques are applied to the data obtained in the
previous stage in order to capture user behavior. The output
of this stage is a set of structural descriptions of what have
been learned about user behavior and user interests. These
descriptions constitute the base of a user model. Different
techniques will capture different user properties and will
express them in different ways. The knowledge needed
to implement an adaptive service will determine, among
other factors, which techniques to apply in this phase.

4) Validation and interpretation. In this phase, the structures
obtained in the pattern discovery stage are analyzed and
interpreted. The patterns discovered can be interpreted
and validated, using domain knowledge and visualization
tools, in order to test the importance and usability of the
knowledge obtained. In general, this process is done with
the help of a UM designer.

User model heuristics are used in each step of the process to
extract, adapt, and present the knowledge in a relevant way. The
process of generation of user models using data mining/machine
learning techniques can be seen as a standard process of extract-
ing knowledge from data where UM is used as a wrapper for
the entire process.

C. Data Mining and Its Relevance to UM

As presented in Fig. 2, the phase of pattern discovery finds
out relevant information about the behavior of a user (or set of
users) when interacting with the Web. Data mining and machine
learning techniques are ideal for that process because they are
designed to represent what have been learned from the input
data with a structural representation. This representation stores
the knowledge needed to implement the two types of tasks pre-
viously described.

Although the application of machine learning and data min-
ing techniques works really well for modeling user behavior, it
also faces some problems [91]. Among those challenges is the
problem of needing large data sets, the problem of labeling data
for supervised machine leaning techniques, and the problem of
computational complexity.

Each data mining/machine learning technique will capture
different relationships among the data available and will express
the results using different data structures. The key question is to
find out which patterns need to be captured in order to imple-
ment an adaptive service. It is important, in order to choose a
suitable learning method, to know what knowledge is captured
by each technique and how that knowledge can be used to im-
plement the two basic tasks. Also, the choice of learning method

depends largely on the type of training data available. The main
distinction in machine learning research is between supervised
and unsupervised learning.

Supervised learning requires the training data to be preclas-
sified. This means that each training item is assigned a unique
label, signifying the class to which the item belongs. Given these
data, the learning algorithm builds a characteristic description
for each class, covering the examples of this class. The impor-
tant feature of this approach is that the class descriptions are
built conditional to the preclassification of the examples in the
training set.

In contrast, unsupervised learning methods do not require
preclassification of the training examples. These methods form
clusters of examples, which share common characteristics. The
main difference to supervised learning is that categories are not
known in advance, but constructed by the learner. When the
cohesion of a cluster is high, i.e., the examples in it are similar,
it defines a new class.

The rest of the paper presents how data mining and machine
learning techniques have been used for UM: which knowledge
can be captured with each technique, examples of applica-
tions, and its limits and strengths. The techniques presented
are divided into two groups: unsupervised, which includes
clustering (hierarchical, nonhierarchical, and fuzzy clustering)
and association rules, and supervised, which includes decision
trees/classification rules, k-nearest neighbor (k-NN), neural
networks and support vector machines (SVM).

III. UNSUPERVISED APPROACHES TO UM

The main unsupervised techniques are clustering and asso-
ciation rules. Clustering comprises a wide variety of different
techniques based on the same concept. A collection of different
clustering techniques and its variations can be found in [42]
and [43].

A. Clustering for UM

The task of clustering is to structure a given set of unclas-
sified instances (data vectors) by creating concepts, based on
similarities found on the training data.

A clustering algorithm finds the set of concepts that cover all
examples verifying that: 1) the similarity between examples of
the same concepts is maximized; and 2) the similarity between
examples of different concepts is minimized. In a cluster algo-
rithm, the key element is how to obtain the similarity between
two items of the training set.

Clustering techniques can be classified into hard clustering
and fuzzy clustering. In nonfuzzy or hard clustering, data are
divided into crisp clusters, where each data point belongs to
exactly one cluster. In fuzzy clustering, the data points can
belong to more than one cluster, and associated with each of
the instances are membership grades that indicate the degree to
which they belong to the different clusters.

Hard clustering techniques may be grouped into two cat-
egories: hierarchical and nonhierarchical [43]. A hierarchical
clustering procedure involves the construction of a hierarchy
or tree-like structure, which is basically a nested sequence of

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 737

partitions, while nonhierarchical or partitional procedures end
up with a particular number of clusters at a single step.

1) Basic Algorithms: Nonhierarchical Techniques: The
main nonhierarchical clustering techniques are: 1) k-means
clustering and 2) self-organizing maps (SOM).

a) K-means clustering: The k-means clustering technique
[58] is given as an input the number of clusters k. The algorithm
then picks k items, called seeds, from the training set in an arbi-
trary way. Then, in each iteration, each input item is assigned to
the most similar seed, and the seed of each cluster is recalculated
to be the centroid of all items assigned to that seed. This process
is repeated until the seed coordinates stabilize. This algorithm
aims at minimizing an objective function J typically a squared
error function

J =
k∑

j=1

n∑
i=1

dij =
k∑

j=1

n∑
i=1

∥∥∥x
(j)
i − cj

∥∥∥2

(1)

where dij is the distance measure between a data point xi and
the cluster center cj . J is an indicator of the distance of the n
data points from their respective cluster centers and represents
the compactness of the clusters created.

Although it can be proved that the procedure will always
terminate, the k-means algorithm does not necessarily find the
most optimal configuration, corresponding to the global objec-
tive function minimum. The k-means algorithm is popular as
it is easy to understand and implement. Its main drawback is
its complexity that depends linearly on the number of patterns
involved and on the number of clusters selected. Another prob-
lem is that it is sensitive to the initial partition—the selection
of the initial patterns, and may converge to a local minimum of
the criterion function value if the initial partition is not properly
chosen. A possible remedy is to run the algorithm with a number
of different initial partitions. If they all lead to the same final
partition, this implies that the global minimum of the square
error has been achieved. However, this can be time consuming,
and may not always work.

b) SOM: The SOM algorithm was proposed by Teuvo
Kohonen in 1981 [50]. Apart from being used in a wide vari-
ety of fields, the SOM offers an interesting tool for exploratory
data analysis, particularly for partitional clustering and visu-
alization. It is capable of representing high-dimensional data
in a low-dimensional space [often a two-dimensional (2-D) or
one-dimensional (1-D) array] that preserves the structure of the
original data.

A self-organizing network consists of a set of input nodes V =
{v1, v2, . . . , vN }, a set of output nodes C = {c1, c2, . . . , cM }, a
set of weight parameters W = {w11, w12, . . . , wij , . . . , wNM}
(1 ≤ i ≤ N , 1 ≤ j ≤ M , 0 ≤ wij ≤ 1), and a map topology
that defines the distances between any given two output nodes.
The output nodes in SOM are usually arranged in a 2-D array to
form a “map.” Each input node is fully connected to every output
node via a variable connection. A weight parameter is associated
with each of these connections, and the weights between the
input nodes and output nodes are iteratively changed during
the learning phase until a termination criterion is satisfied. For
each input vector v, there is one associated winner node on the

output map. A winner node is an output node that has minimum
distance to the input vector.

The SOM algorithm starts by initializing the topology and
size of the output map (M), the connection weights to random
values over the interval [0,1], the gain value η (learning rate)
and the neighborhood size r, and normalizes both the input vec-
tors and the connected weight vectors. After that, the algorithm
calculates the Euclidean distance between the new input vector
v and each node on the output map, and designates the node
with the minimum distance as the winner node c

c = min

√√√√ N∑
k=1

(vk − wkj)2, j = 1, 2, . . . ,M. (2)

Once c is obtained, the algorithm updates the weights W ,
the learning rate η, and Nc , the neighborhood surrounding the
winner node c, in such way that the vectors represented by output
nodes are similar if they are located in a small neighborhood. For
each node j ∈ Nc , the SOM algorithm performs the following
operation:

w
(new)
j = w

(old)
j + η[vi − w

(old)
j]. (3)

After that, the neighborhood size and the learning rate are de-
creased. This process is repeated until it converges. The neigh-
borhood set Nc is a set of nodes that surround the winner node c.
These nodes in Nc are affected with weight modifications, apart
from those changes made to the winner node, as defined in
the algorithm. These weight changes are made to increase the
matching between the nodes in Nc and the corresponding in-
put vectors. As the update of weight parameters proceeds, the
size of the neighborhood set is slowly decreased to a predefined
limit, for instance, a single node. This process leads to one of the
most important properties of SOM that similar input vectors are
mapped to geometrically close winner nodes on the output map.
This is called neighborhood preservations, which has turned out
to be very useful for clustering similar data patterns.

It is not always straightforward to visually inspect the pro-
jected data on the 2-D output map in order to decide the num-
ber and size of natural clusters. Therefore, careful analysis or
postprocessing of output maps is crucial to the partition of the
original data set. Like the k -means algorithm, the SOM pro-
duces a suboptimal partition if the initial weights are not chosen
properly. Moreover, its convergence is controlled by various pa-
rameters such as the learning rate, the size, and shape of the
neighborhood in which learning takes place. Consequently, the
algorithm may not be very stable in that a particular input pat-
tern may produce different winner nodes on the output map at
different iterations.

2) Basic Algorithms: Hierarchical Techniques: The main
problem of nonhierarchical approaches is that when working
with high-dimensional problems, in general, there will not be
enough items to populate the vector space, which will imply
that most dimensions will be unreliable for similarity compu-
tations. In order to solve this problem, hierarchical clustering
techniques were developed. There are two types of hierarchical
clustering: agglomerative and divisive. Both share a common
characteristic: they create a hierarchy of clusters. While the

738 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

agglomerative approach creates a bottom-up hierarchy, the di-
visive approach creates a top-down one. Generally speaking,
divisive algorithms are computationally less efficient.

A typical hierarchical agglomerative clustering algorithm is
outlined below.

Step 1) Place each pattern in a separate cluster.
Step 2) Compute the proximity matrix of all the interpattern

distances for all distinct pairs of patterns.
Step 3) Find the most similar pair of clusters using the matrix.

Merge these two clusters into one, decrement number
of clusters by one, and update the proximity matrix to
reflect this merge operation.

Step 4) If all patterns are in one cluster, stop. Otherwise, go
to the above step 2).

The output of such an algorithm is a nested hierarchy of trees
that can be cut at a desired dissimilarity level forming a par-
tition. Hierarchical agglomerative clustering algorithms differ
primarily in the way they measure the distance or similarity of
two clusters where a cluster may consist of only a single object
at a time. The most commonly used intercluster measures are

dAB = min
i∈A
j ∈B

(dij) (4)

dAB = max
i∈A
j ∈B

(dij) (5)

dAB =
1

nAnB

∑
i∈A

∑
j∈B

dij (6)

where dAB is the dissimilarity between two clusters A and B,
dij is the dissimilarity between two individual patterns i and j,
nA and nB are the number of individuals in clusters A and B,
respectively. These three intercluster dissimilarity measures are
the basis of the three of the most popular hierarchical clustering
algorithms. The single-linkage algorithm uses (4), the minimum
of the distances between all pairs of patterns drawn from the two
clusters (one pattern from each cluster). The complete-linkage
algorithm uses (5), the maximum of all pairwise distances be-
tween patterns in the two clusters. The group-average algorithm
uses (6), the average of the distances between all pairs of indi-
viduals that are made up of one individual from each cluster.

A challenging issue with hierarchical clustering is how to de-
cide the optimal partition from the hierarchy. One approach is to
select a partition that best fits the data in some sense, and there
are many methods that have been suggested in the literature [30].
It has also been found that the single-linkage algorithm tends to
exhibit the so-called chaining effect: it has a tendency to cluster
together at relatively low level objects linked by chains of inter-
mediates. As such, the method is appropriate if one is looking
for “optimally” connected clusters rather than for homogeneous
spherical clusters. The complete-linkage algorithm, however,
tends to produce clusters that tightly bound or compact, and has
been found to produce more useful hierarchies in many appli-
cations than the single-link algorithm [43]. The group-average
algorithm is also widely used. Detailed discussion and practical
examples of how these algorithms work can be found in [43]
and [89].

3) Basic Algorithms: Fuzzy Clustering: One of the most
widely used fuzzy clustering algorithms is the fuzzy C-means
(FCM) algorithm [10]. The FCM algorithm attempts to par-
tition a finite collection of elements X = {x1, . . . , xn} into
a collection of c fuzzy clusters with respect to some given
criterion. Given a finite set of data, the algorithm returns a
list of c cluster centers C = {c1, . . . , cc} and a partition ma-
trix U = ui,j ∈ [0, 1], i = 1, . . . n, j = 1, . . . , c, where each el-
ement tells the degree to which element xi belongs to cluster
cj . Like the k-means algorithm, the FCM aims to minimize an
objective function. The standard function is

J =
c∑

j=1

n∑
i=1

(ui,j)m
∥∥∥x

(j)
i − cj

∥∥∥2

(7)

which differs from the k-means objective function by the ad-
dition of the membership values uij and the fuzzifier m. The
fuzzifier m determines the level of cluster fuzziness. A large
m results in smaller memberships uij and hence, fuzzier clus-
ters. In the limit m = 1, the memberships uij converge to 0 or
1, which implies a crisp partitioning. In the absence of experi-
mentation or domain knowledge, m is commonly set to 2. The
basic FCM algorithm, given n data points (x1, . . . , xn) to be
clustered, a number of c clusters with c1, . . . , cc) the center of
the clusters, and m the level of cluster fuzziness with

m ∈ R > 1 (8)

first initializes the membership matrix U to random values,
verifying that

uij ∈ [0, 1],
c∑

j=1

uij = 1. (9)

After the initialization, the algorithm obtains the center of the
clusters cj , j = 1, . . . , c

cj =
∑n

i=1(uij)m xi∑n
i=1(uij)m

. (10)

and obtains the distance between all points i = 1, . . . , n and all
cluster centers j = 1, . . . , c

dij =
∥∥∥x

(j)
i − cj

∥∥∥ . (11)

Updating matrix U according to the new distances

dij = 0 ⇒ uij = 1

uij =

[
c∑

k=1

(
dij

dik

) 2
m −1

]−1

. (12)

This process is repeated until the set of cluster centers is sta-
bilized. There are other algorithms, which are optimizations of
the original FCM, like the fuzzy c-medoid algorithm (FCMdd)
or the fuzzy c-trimered medoids algorithm (FCTMdd) [51].

4) Applications for UM: For UM, there are two kinds of
interesting clusters to be discovered: usage clusters and page
clusters. Clustering of users tends to establish groups of users
exhibiting similar browsing patterns, which are usually called
stereotypes. Such knowledge is especially useful for inferring
user demographics in order to perform market segmentation in

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 739

TABLE I
EXAMPLES OF SOME CLUSTERING-BASED USER MODELS

e-commerce applications or provide personalized Web content
to the users. However, clustering of pages will discover groups
of pages having related content. This information is useful for
Internet search engines and Web-assistance providers.

In the context of UM, clustering has a distinguishable charac-
teristic: it is usually done with nonnumerical data. This implies
that, usually, the clustering techniques applied are relational,
where numerical values represent the degrees to which two
objects of the data set are related. Clustering applied to UM has
to use techniques that can handle relational data because the in-
formation used to create clusters (pages visited, characteristics
of the user, etc.) cannot usually be represented by numerical
vectors. In case they are represented using vectors, part of the
semantic of the original data is lost. In these systems, the defi-
nition of distance is done using vectorial representations of user
interactions with the AH system. Some examples of relational
clustering applied to Web mining can be found in [47] and [61].

Table I summarizes some studies and applications of “hard”
clustering for UM. Some examples of recommendation tasks
implemented with clustering algorithms are presented in [27],
[34], [61], and [62] and in [66] and [67], which uses SOM.
Examples of classification tasks implemented using clustering
are presented in [27] and [39]. Goren-Bar et al. [36] use SOM
to classify documents based on a subjectively predefined set of
clusters in a specific domain.

When using fuzzy clustering, a user can be at the same time
in more than one cluster with different degrees of truth. This
allows to better capture the inherent uncertainty that the problem
of modeling user behavior has. Examples of applications that
implement a recommendation task using FC include [52] and
[65]. Examples of classification tasks are presented in [46] and
[51]. Table II summarizes some studies and applications of FC
for UM.

5) Limitations: The main problem that clustering techniques
face is how to define the concept of distance that is to be used. In
general, some knowledge of the problem is needed to define an

optimum concept of distance. When applied to user modeling,
this problem is even harder due to the nature of the data avail-
able: interactions, user preferences, pages visited, etc., which
are not expressed in a numerical way. Different techniques to
characterize Web-user behavior using numerical vectors have
been proposed [46], [61], but in one way or the other, the repre-
sentations lose part of the semantics that the original data had.
More research is needed on how to express the data available
in a numerical way and how to define a meaningful concept
of distance for creating efficient user models using clustering
techniques while at the same time keeping the semantics of the
original data.

Nonhierarchical clustering techniques assume that the num-
ber of clusters k is known a prioiri. For UM, this is not usually
the case. This implies that some heuristics need to be used to
determine the number of clusters.

Also, user models developed so far using fuzzy clustering do
not fully use the fuzzy nature of the technique in order to create
more flexible and adaptive systems. More studies are needed to
create meaningful ways of mixing the different personalizations
associated with each one of the clusters in which a user can be
included when using fuzzy clustering.

B. Association Rules for UM

Association rule discovery aims at discovering all frequent
patterns among transactions. The problem was originally in-
troduced by Agrawal in 1993 [1] and was based on detecting
frequent items in a market basket. The a priori algorithm, in-
cluding its variations and extensions, is widely accepted to solve
this problem.

1) Basic Algorithms: Being I = {i1, i2, . . . , im} a set of
items, S a set of transactions, where each transaction T is a
set of items, and X a set of items in I , a transaction T is said to
contain X , if

X ⊆ T. (13)

740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

TABLE II
EXAMPLES OF SOME FUZZY CLUSTERING-BASED USER MODELS

TABLE III
EXAMPLES OF SOME ASSOCIATION RULES-BASED USER MODELS

An association rule is defined as an implication of the form

X ⇒ Y X ⊂ I Y ⊂ I X ∩ Y = ∅ (14)

where X is usually called the antecedent and Y the consequent.
The order of the items of both the antecedent and consequent is
not relevant. Each association rule has a confidence and a support
associated. The support of a rule is defined as the fraction of
strings in the set of sessions of S where the rule successfully
applies

θ(XY) =
|Si ∈ S/XY ∈ Si |

|S| . (15)

The confidence of a rule is defined as the fraction of times for
which if the antecedent X is satisfied, the consequent Y is also
true

σ(XY) =
θ(XY)
θ(X)

. (16)

The values of support and confidence are used to filter the
set of association rules obtained from S. Given a set of transac-
tions S, the task of mining association rules can be formulated
as finding all association rules with at least minimum support
and minimum confidence, where the thresholds for support and
confidence are user-specified values. The task of discovering
association rules can be done in three steps: 1) find all sets of
items that have transaction support above minimum support;
2) for each item obtained, find all nonempty subsets; and 3) for
each such subset X of item I , if the confidence is bigger than
the given threshold, produce the rule

X ⇒ (I − X). (17)

2) Applications for UM: In the context of UM, association
rules capture sets of actions that have a causal relation among
them. A typical application of association rules for UM is cap-
turing pages that are accessed together.

Typically, association rules are used to implement recommen-
dation tasks. Some examples of recommendation tasks imple-
mented using association rules are presented in [20], [35], [55],
[62], and [64]. Table III summarizes these examples.

3) Limitations: Association rules have two important draw-
backs when used for UM: they do not capture the sequentiality
of both the antecedent and the consequent and no temporality
information (for example, when X happens when is Y going
to happen) is captured. Both temporality and sequentiality are
very important characteristics for UM. Temporality allows us to
predict not only what actions a user is going to take, but also
when those actions are going to be taken. Sequentiality captures
the order in which a user makes a set of actions which is relevant
to the consequent that such antecedent will fire. Because tem-
porality and sequentiality are two key elements that need to be
captured to create efficient user models, more research is needed
to capture these characteristics when creating association rules.

IV. SUPERVISED APPROACHES TO UM

This section gives a review of how supervised learning
techniques (decision trees/classification rules, neural networks,
k-NN, and SVMs) can be used to model user behavior.

A. Decision Trees/Classification Rules for UM

Decision tree learning [60], [92] is a method for approxi-
mating discrete-valued functions with disjunctive expressions.

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 741

Decision tree learning is generally best suited to problems where
instances are represented by attribute-value pairs and the target
function has discrete output values.

Classification rules are an alternative representation of the
knowledge obtained from classification trees. They construct a
profile of items belonging to a particular group according to
their common attributes.

1) Basic Algorithms: The training process that creates a de-
cision tree is called induction. A standard decision tree algorithm
has two phases: 1) tree growing and 2) pruning. The growing
phase can be done using two methods: 1) top-down induction
and 2) incremental induction.

Top-down induction is an iterative process which involves
splitting the data into progressively smaller subsets. Each iter-
ation considers the data in only one node. The first iteration
considers the root node that contains all the data. Subsequent
iterations work on derivative nodes that will contain subsets of
the data. The algorithm begins by analyzing the data to find the
independent variable that, when used as a splitting rule will re-
sult in nodes that are most different from each other with respect
to the dependent variable. The quality of a test is measured by
the impurity/variance of example sets. The most common mea-
sure is the information gain. Typically, the set of possible tests
is limited to splitting the examples according to the value of a
certain attribute. Once a node is split, the same process is per-
formed on the new nodes, each of which contains a subset of
the data in the parent node. This process is repeated until only
nodes where no splits should be made remain.

Incremental induction is a method for the task of concept
learning. When a new training example is entered, it is classified
by the decision tree. If it is incorrectly classified, then the tree
is revised. Restructuring the tree can be done by storing all
training examples or by maintaining statistics associated with
nodes in the tree.

Tree-building algorithms usually have several stopping rules.
These rules are usually based on several factors including max-
imum tree depth, minimum number of elements in a node con-
sidered for splitting, or the minimum number of elements that
must be in a new node.

The second phase of the algorithm optimizes the resulting
tree obtained in the first phase. Pruning is a technique used to
make a tree more general. It removes splits and the subtrees
created by them. There is a great variety of different decision
tree algorithms in the literature. Some of the more common
algorithms are: classification and regression trees (CART) [15],
[29], chi-squared automatic interaction detection (CHAID) [48],
C4.5 [72], J4.8 [93], C5.0 [93] (which implements boosting),
and ID3 [71].

Rules are, at its simplest form, an equivalent form of
expressing a classification tree. In order to obtain the set of
rules of a decision tree, each path is traced from the root node
to the leaf node, recording the test outcomes as antecedents and
the leaf-node classification as the consequent. The process of
converting a decision tree into decision rules can be done after
or before pruning.

Converting a decision tree to rules before pruning has some
advantages: 1) it allows distinguishing among the different con-

texts in which a decision node is used; 2) the pruning deci-
sion regarding an attribute test can be made differently for each
path; and 3) it improves readability. Nevertheless, obtaining the
rules before pruning can produce a high number of rules. This
can be solved by applying some rule-reduction techniques. The
basic techniques are: 1) eliminate redundant and unnecessary
antecedents; 2) use OR to combine rules in order to reduce the
total number of rules to the number of dependent variables; and
3) eliminate unnecessary rules. Rules can be also obtained after
the tree has been pruned, producing in this case a smaller rule
knowledge base.

Algorithms such as CART, C4.5, and C.5 include meth-
ods to generalize rules associated with a tree which removes
redundancies.

2) Applications for UM: In the context of UM, decision
trees can be used to classify users and/or documents in order
to use this information for personalization purposes. Decision
trees can also handle noisy data and/or data with missing
parameters, which makes them very useful for creating user
models due to the noisy and imprecise nature of the data
available. Table IV summarizes some studies and applications
of decision trees for UM.

Classification trees are typically used to implement classi-
fication tasks. In this case, the classification trees are used
to construct user models to personalize the user experience
(for example, regarding their level of expertise, cognitive style,
etc.) [7], [87]. Due to its ability to group users with similar char-
acteristics, classification tress can be also used to implement
recommendation tasks [66], [91], [96].

Classification rules are widely used to model user behav-
ior as they provide a straightforward framework to represent
knowledge. The readability of the output knowledge is a great
advantage of this approach. Table V summarizes some studies
and applications of classification rules for UM.

Examples of classification tasks implemented using classifi-
cation rules can be found in [45], [82], [83], and [95]. In these
cases, the rules are used to characterize different user stereotypes
that are used to implement some personalized feature. Cercone
et al. [18], [19] give examples of application of classification
rules for recommendation.

Classification rules can not only be obtained from a learning
algorithm but can also be directly expressed by the designer
of the system. Some examples of this approach are [63] which
constructs a model capturing the behavior of a user that is con-
trolling a pole, [25] and [76], which use rules as part of the
architecture of a general-purpose tool for adaptive Websites,
and [9], which uses rules to characterize user behavior in the
context of information retrieval.

3) Limitations: Decision trees/classification rules produce
results that are highly dependent on the quality of the data avail-
able. This is because the subtrees are created using the maximum
information gain possible. In some cases, if the information
available is not appropriate, which typically happens when the
information used to create user models has been obtained using
user feedback or in a noisy environment, the models created will
not correctly capture user behavior. Also, for high-dimensional
problems, the response time of decision trees can be very high.

742 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

TABLE IV
EXAMPLES OF SOME DECISION TREE-BASED USER MODELS

TABLE V
EXAMPLES OF SOME CLASSIFICATION RULES-BASED USER MODELS

This is inconvenient when working with adaptive systems, be-
cause real-time response is needed. This problem can be solved
in some cases using classification rules.

The special interest in UM is the combination of classification
rules with soft computing techniques (fuzzy logic and neural net-
works especially) in order to create more flexible user models.
Fuzzy classification rules are able to overlap user models and
to improve the interpretability of the results. So far, UM with
fuzzy classification rules has not been used at its full capacity.

B. k-NN for UM

k-NN is a predictive technique suitable for classification [33].
Unlike other learning techniques in which the training data are
processed to create the model, in k-NN, the training data repre-
sents the model.

1) Basic Algorithms: The simplest version is the nearest
neighbor algorithm. In this case, the training portion of the
algorithm simply stores the data points of the training data
S, S = {x1, . . . , xn}. To classify a new item i, the nearest-
neighbor classifier finds the closest (according to some distance
metric) training point xj to i and assigns it to the same class of
xj . The nearest-neighbor algorithm is traditionally implemented
by computing the distance from i to every xj of S. It can also
be implemented more efficiently using Voronoi diagrams.

The k-NN algorithm is a variation of nearest neighbor. In this
case, instead of looking at only the point xi that is closest to
i, the algorithm looks at the k points in S that are closest to
i. Since the class of each of the k nearest points is known, the
majority category in this subset is the result of the classification.
Nearest neighbor is a special case of k -nearest-neighbor, where
k = 1.

k-NN has two main parameters: 1) the parameter k (number
of nearest cases to be used) and 2) the distance metric d.

The selection of the metric is very important, because dif-
ferent metrics, used on the same training data, can result in
completely different predictions. In general, the selection of
the metric is application dependent. A typical metric d is the
Euclidean distance, where

d(x, i) = sqrt((x − i)T(x − i)). (18)

The value of k should be determined by experimentation. In
general, higher values of k produce noiseproof systems, but also
systems with higher computational costs. Typically, k is in the
range of five to 20 rather than in the order of hundreds.

Because the model created by k-NN is basically the set of
training points, this means, especially for high-dimensional
problems and/or for problems with a lot of training data, that
the amount of memory needed to store the model is very high,
and that it increases when more data are added to the system.

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 743

TABLE VI
EXAMPLES OF SOME k-NN BASED USER MODELS

Agglomerative nearest neighbor (A-NN) algorithms have been
proposed to solve this problem. A-NN is designed to capture the
same information as k-NN but without the necessity of storing
the complete set of training data. The key idea behind A-NN is
that it clusters training points that have the same class. Each class
is then represented by a class representative, against which the
concept of distance is measured when classifying a new instance.
A-NN has been traditionally used for collaborative clustering.

2) Applications for UM: k-NN algorithms can be used very
effectively for recommendation. In this case, the algorithm is
used to recommend new elements based on the user’s past be-
havior. A typical application is the recommendation of interest-
ing documents. As can be seen, the concept of distance (in this
case, the distance between two texts) is the key element to an
efficient recommendation system. Examples of k-NN used to
implement recommendation tasks are presented in [12], [81],
and [85].

Nevertheless, like any classification algorithm, it can also be
used to implement classification tasks, for example to initialize
properly a new user when first visiting a system given a set of
existing user models. Tsiriga and Virvou [86] give an exam-
ple of k-NN used to implement a classification task. Table VI
summarizes some studies and applications of k-NN for UM.

3) Limitations: k-NN is a very simple technique that pro-
duces good and straightforward results. Nevertheless, the main
drawbacks of this approach are the high dependence of the re-
sults on the value of k and the metric d chosen. In general, to
choose both parameters, some experimentation with the system
and some knowledge on how the system works will be needed.
Also, the value k should be big enough to produce a classifica-
tion system noiseproof; otherwise a k-NN with a small k value
will be extremely susceptible to noise. In the context of UM,
this is very important because usually the data available is noisy
and imprecise due to the nature of the problem. Nevertheless,
an increase in the value of k implies an increase in the com-
putational time needed. The definition of the distance d, when
used for UM, faces the same problems as clustering techniques:
1) the necessity of transforming user-related information into a
vectorial representation without losing semantics and 2) the def-
inition of a concept of distance among those vectors that capture
the characteristics of the problem (user interest, user behavior,
etc.). Another limitation of k-NN for UM is the response time,

Fig. 3. Architecture of an artificial neuron.

which is directly affected by d and by the dimensionality and
number of examples of the training data. AH systems need real-
time response, and k-NN may not be suitable in some cases.

C. Neural Networks for UM

An artificial neural network (ANN) is an information pro-
cessing paradigm that is inspired by the way biological nervous
systems process information [31], [40]. Although typical ANNs
are designed to solve supervised problems, there are also archi-
tectures to solve unsupervised problems.

1) Basic Concepts: The key element of this paradigm is the
structure of the information processing system. It is composed
of a large number of highly interconnected processing elements
(neurons) working in parallel. They consist of the following
elements: 1) neurones; 2) weighted interconnections; 3) an ac-
tivation rule, to propagate signals through the network; and
4) learning algorithm, specifying how weights are adjusted.

The basic element of any ANN is an artificial neuron (Fig. 3).
A neuron has N weighted input lines and a single output. The
neuron will combine these weighted inputs by forming their
sum and, with reference to an activation function and a threshold
value; will determine its output.

Here x1, x2, . . . , xN are the input signals, w1, . . . , wN the
synaptic weights, u the activation potential, θ the threshold, y
the output signal, and f the activation function

u = ΣN
i=1wixi (19)

y = f(u − θ). (20)

744 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

TABLE VII
EXAMPLES OF SOME NN-BASED USER MODELS

TABLE VIII
EXAMPLES OF SOME SVM-BASED USER MODELS

Defining w0 = θ and x0 = −1, the output of the system can
be reformulated as

y = f
(
ΣN

i=0wixi

)
. (21)

The activation function f defines the output of the neuron in
terms of the activity level at its input. The most common form
of activation function used is the sigmoid function.

There are very different ways in which a set of neurons can be
connected among themselves. The traditional cluster of artificial
neurons is called a neural network. Neural networks are basically
divided into three layers: the input layer, the hidden layer, which
may contain one ore more layers, and the output layer.

The layer of input neurons receives the data either from input
files or directly from electronic sensors in real-time applications.
The output layer sends information directly to the outside world,
to a secondary computer process, or to other devices such as
a mechanical control system. Between these two layers can
be many hidden layers. These internal layers contain many of
the neurons in various interconnected structures. The inputs
and outputs of each of these hidden neurons simply go to the
other neurons. In most networks, each neuron in a hidden layer
receives the signals from all of the neurons in a layer above it,
typically an input layer. After a neuron performs its function,
it passes its output to all of the neurons in the layer below it,
providing a feed-forward path to the output. Another type of
connection is feedback. This is where the output of one layer
routes back to a previous layer.

Multilayer perceptrons (MLPs) are the typical architecture
of NNs. MLPs are full-connected feedforward nets with one or
more layers of nodes between the input and the output nodes.

Classification and recognition capabilities of NNs stem from
the nonlinearities used within the nodes. A single-layered per-
ceptron implements a single hyperplane. A two-layer perceptron
implements arbitrary convex regions consisting of intersection
of hyperplanes. A three-layer NN implements decision surfaces

of arbitrary complexity [56], [57]. That is the reason why a
three-layer NN is the most typical architecture.

NNs learn through an iterative process of adjustments. There
are two training approaches: supervised and unsupervised.

In supervised training, both the inputs and the outputs are
provided. The net is trained by initially selecting small random
weights and internal thresholds, and presenting all training data
repeatedly. Weights are adjusted after every trial using informa-
tion specifying the correct class until weights converge and the
cost function is reduced to an acceptable value. The vast bulk
of networks utilize supervised training. The most common su-
pervised technique is the backpropagation learning algorithm.
It uses a gradient search technique to minimize a cost function
defined by the mean square error (MSE) between the desired
and the actual net outputs, with l the number of training points

MSE =
1
l
Σl

i=1(yi − y∧
i)2. (22)

The generally good performance found for the back-
propagation algorithm is somewhat surprising considering that
it is a gradient descent technique that may find a local minimum
in the cost function instead of the desired global minimum.

2) Applications for UM: NNs are able to derive meaning
from complicated and/or imprecise data. Also, NNs do not re-
quire the definition of any metric (unlike k-NN or clustering)
which make them completely application independent. No ini-
tial knowledge about the problem that is going to be solved is
needed. These characteristics make NNs a powerful method to
model human behavior and an ideal technique to create user
models for hypermedia applications.

NNs have been used for classification and recommendation in
order to group together users with the same characteristics and
create profiles and stereotypes. Bidel et al. [11] give an example
of NNs used for classification, [7], [8], [79], and [84] use NNs
for recommendation tasks. Table VII presents more details of
these applications.

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 745

Fig. 4. SVM maximization of the distance between classes.

3) Limitations: NNs have been successfully used for UM
mainly because they do not need any heuristic to produce a
model. Nevertheless, they still face important limitations. The
main ones are the training time needed to produce a model
(which in cases can be measured in the order of many hours
and even days) and the amount of information needed. The
training time is an inconvenience for creating dynamic models.
Although there are techniques that are able to retrain NNs dy-
namically, the techniques used so far for UM retrain the system
from scratch in case more information, e.g., a new user or a new
document, is added. More research in the field of incremental
learning is needed. Another important limitation of NNs is their
black box behavior. While the previous techniques, to a different
extent, can be interpreted and manually changed, NNs cannot
be interpreted which limits their applications in case a human
understandable user model is needed.

D. SVMs for UM

SVM is a classifier derived from statistical learning the-
ory [14], [23], [81]. The main advantages of SVM when used
for classification problems are: 1) the ability to work with high-
dimensional data and 2) high generalization performance with-
out the need to add a priori knowledge, even when the dimension
of the input space is very high.

The problem that SVM try to solve is to find an optimal
hyperplane that correctly classifies data points and separates the
points of two classes as much as possible. Fig. 4 isan example
of the previous situation.

1) Basic Algorithms: Given two classes, the objective is to
identify the hyperplane that maximizes m

m =
2

‖w‖ (23)

while at the same time classifying correctly all the exam-
ples given. Being wT the hyperplane that verifies the previ-
ous condition, all points that were part of that class will verify
wTx + b > 0, where x is the point that is being validated. If a
point is not part of that class, then wTx + b < 0.

Formally, the problem can be presented as follows. Given d
the dimension of the problem and N the number of training
points, let

(x1, y1), . . . , (xN , yN) ∈
d

× Y, yi ∈ Y, Y = {−1, 1} (24)

Fig. 5. Transformation of a nonlinearly separable problem into a linearly
separable problem.

be the set of labeled inputs, where −1 indicates that the input
is not of that class and 1 indicates that the input is of that class.
The decision boundary should verify

xT
i wT + b ≥ 1, ∀yi = 1

xT
i wT + b ≥ −1, ∀yi = −1. (25)

The problem can be presented as

Maximize m =
2

‖w‖

Subject to yi(xiwT + b) ≥ 1, ∀i = 1, . . . , n. (26)

This formulation can be expressed as a standard quadratic
problem (QP) in the form of

maximize
N∑
i

αi −
1
2

N∑
i=1,j=1

αiαjyiyjxT
i xj

Subject to αi ≥ 0,

N∑
i=1

αiyi = 0. (27)

In this context, a global maximum αi can always be found
and w can be recovered as

w =
N∑

i=1

αiyixi . (28)

Many of the αi are zero, which implies that w is a linear
combination of a small number of data. The set of elements xi

with nonzero αi are called support vectors. Graphically, these
are the set of points that mark the border of the class.

This approach is valid whenever the set of points of the two
classes are linearly separable. Nevertheless, in real data, this is
usually not the case. In order to work with nonlinear decision
boundaries the key idea is to transform xi to a higher dimension
space, so that in this new space the samples can be linearly
divided (Fig. 5). The problem of this solution can be the high
computational requirements. SVM solve these problems using
kernels. The relationship between the kernel function K and Φ is

K(xi ,xj) = Φ(xi) · Φ(xj). (29)

Intuitively, K(x,y) represents our desired notion of similar-
ity between data x and y based on our prior knowledge of the
problem. K(x,y) needs to satisfy a technical condition (Mercer
condition) in order for Φ to exist. In practice, K can be directly
specified, thereby specifying Φ indirectly, instead of choosing
Φ. An example of a kernel function is the Gaussian kernel, which

746 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

TABLE IX
SELECTION OF SUITABLE DATA MINING TECHNIQUE

is defined as

K(xi,xj) = e
−‖xi−xj‖2

std2 . (30)

When working with a Gaussian kernel, std represents the stan-
dard deviation, and ideally should represent the minimum dis-
tance between any two elements of two different classes. As can
be seen, when constructing a SVM based on a Gaussian kernel,
the only value that needs to be defined is std. There are other
standard kernels like polynomial, linear, or sigmoidal, each one
with its own parameters. These kernels are generic in the sense
that they can, in some way or the other, be applied to all prob-
lems and will provide good solutions. For example, Gaussian
kernels tend to work very well in image recognition problems.
Nevertheless, results can always be improved by designing
a problem-specific kernel, although this approach requires an
a -priori knowledge about the problem.

When working with kernels, in general it would not be possi-
ble to obtain w. Nevertheless, SVM can still be used. Being NS

the number of support vectors of the training set, the decision
function can be expressed as

f(x) = Sign

(
NS∑
i=1

αiyiK(xi ,x) + b

)
. (31)

Although the theoretical background given has introduced
classification system for only two classes, SVM can be general-
ized to a set of C classes. In this case, each one of the classes will
be trained against the rest C − 1 classes, reducing the problem
to a two-class classification problem.

2) Applications for UM: Due to its ability to work extremely
well with high-dimensional data, SVM can be used to classify
documents in order to personalize recommendations given by
search engines. Aihara and Takasu [2], Liao [54], and Ruvini
[77] give examples of classification tasks implemented using
SVM. Table VIII summarizes some studies and applications of
SVM for UM.

3) Limitations: In general, the main problem that SVM faces
is the selection of the kernel K used to implement the classi-
fier. Although there are a set of standard kernels (polynomial,
Gaussian, etc.) that work well for many applications, for com-
plex cases it is convenient to develop a specific kernel con-
sidering the characteristics of the problem. For example, there
are kernels specifically designed for gene detection or for text
classification.

In the context of UM, SVM has been used to personalize
recommendation applications. So far the classification has been
applied to the documents but not to the users directly. Due to the

ability of SVM to optimize the separation between the classes,
the application of SVM to create classes of users can improve
the individual degree of satisfaction of each user. More research
is needed in the applications of SVM for UM, ranging from
general applications to the development of specific kernels.

V. CRITERIA FOR THE SELECTION OF THE TECHNIQUES

The preceding discussion has demonstrated that each tech-
nique captures different relationships among the data available
and expresses it using different data structures. In this section
we present guidelines to help decide which technique to use
when developing an AH application.

We consider that, in the context of UM, there are three
main criteria that determine which data mining/machine learn-
ing technique is suitable for a specific adaptive application:
1) the labeled/unlabelled nature of the data available; 2) the
type of task that is going to be implemented (recommendation
or classification); and 3) the “readability” needed for the results.
“Readability” is defined as the ability of a technique to produce
a human-readable output of the knowledge captured for a non-
technical user. There are two possible values for readability:
1) needed; and 2) not needed. The first one expresses the neces-
sity of having a human-readable output while the second one
states that this factor is not relevant. Table IX presents a guide-
line of which data mining techniques are useful considering
the criteria previously introduced. The techniques are classi-
fied according to the set of references used in this study. The
set of techniques that can be applied when the systems needs
readability can also be applied when this factor is not relevant.

In general, when selecting a data mining technique two of
the more important factors are: 1) the ability to handle high-
dimensional data and 2) scalability. Although the ability to han-
dle high-dimensional data for a generic problem is a very impor-
tant characteristic, within the context of UM we consider that it
is not a very relevant factor because of the dimensionality of the
data used. Nevertheless, in the context of UM, the scalability of
the techniques is a very important factor due to the high number
of users that, in general, will interact with an AH system. The
scalability of each technique regarding the number of users will
depend on how the information of each user is presented. An
indication of the scalability of each technique is presented in the
first column of Table X.

Table X summarizes the characteristics of the techniques pre-
sented along four dimensions. The first three dimensions cap-
ture some of the main problems that machine learning for UM
faces [91]: Computational complexity for off-line processing;

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 747

TABLE X
GENERAL CHARACTERISTICS OF THE REVISED TECHNIQUES

dynamic modeling, which indicates the suitability of the tech-
nique to change a user model on-the-fly; and labeled/unlabeled.
The “readability” dimension has also been added to the table.

The combination of Table IX and X can be used to guide a
choice of which technique to use when modeling user behav-
ior for adaptive systems. First, Table IX identifies the set of
techniques suitable for the adaptive application, and, after that,
Table X can be used to refine the choice considering the scala-
bility and dynamic modeling capabilities of each technique.

Finally, there are other techniques not reviewed in this paper,
mainly predictive statistical techniques [97], that can also be
used to create user models. For example, recommendation tasks
have also been implemented with Markov models [3], [4], [5],
[26], [28], [78] or with Bayesian networks [22], [37], [41], [44],
[80], [94]. Classification tasks have also been implemented with
Bayesian classifiers [20], [81].

VI. CONCLUSION AND DISCUSSION

Hypermedia systems are becoming more important in our
everyday activities and their contents and services are evolving.
Due to this important role, users welcome any improvement on
the hypermedia services they receive. One trend used to improve
digital services is through personalization which is based on
the concept of UM. In this context, data mining and machine
learning techniques can be used to automatically identify user
patterns and interests and use the knowledge obtained to produce
user models.

This paper has presented a review of the state of the art of
data mining techniques within the area of UM for AH systems.
The review demonstrates that one of the main problems that the
development of user model faces is the lack of any kind of stan-
dardization for the design of user models. In order to improve
this situation, this paper has tried to give a set of guidelines
that formalize the design of user models using a data mining
approach. In the same line of standardization, another interest-
ing research area would be the design of a system to evaluate

the performance of UM in order to make it feasible to compare
different user models.

It is our opinion that the future of UM is in hybrid systems.
As has been shown, each technique captures different elements
of user behavior. The combination of these techniques among
themselves and with other machine learning techniques, espe-
cially with soft computing techniques, will provide a useful
framework to efficiently capture the natural complexity of hu-
man behavior.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules be-
tween sets of items in large databases,” presented at the 1993 ACM SIG-
MOD Conf., Washington, DC, 1993.

[2] K. Aihara and A. Takasu, “Category based customization approach for
information retrieval,” in 8th Int. Conf. User Modeling, Lecture Notes
in Artificial Intelligence. vol. 2109, Berlin, Germany: Springer-Verlag,
2001.

[3] D. Albrecht, I. Zukerman, and A. Nicholson, “Pre-sending documents on
the WWW: A comparative study,” in Proc. 16th Int. Joint Conf. Artif.
Intell., 1999, pp. 1274–1279.

[4] C. R. Anderson, P. Domingos, and D. S. Weld, “Adaptive Web naviga-
tion for wireless devices,” presented at the 17th Int. Joint Conf. Artifical
Intelligence, Seattle, WA, 2001.

[5] C. Anderson, P. Domingos, and D. Weld, “Relational Markov models
and their application to adaptive Web navigation,” in Proc. 8th ACM
SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2002, pp. 143–
152.

[6] F. Angiulli, G. Ianni, and L. Palopoli, “On the complexity of mining
association rules,” Data Mining Knowl. Discovery, vol. 2, no. 3, pp. 263–
281, 1998.

[7] J. Beck, P. Jia, J. Sison, and J. Mostow, “Predicting student help-request
behavior in an intelligent tutor for reading,” in Proc. 9th Int. Conf.
User Model., Lecture Notes in Artificial Intelligence, vol. 2702, Berlin,
Germany: Springer-Verlag, 2003, pp. 303–312.

[8] J. E. Beck and B. P. Woolf, “Using a learning agent with a student model,”
in Lecture Notes in Computer Science. vol. 1452, Berling, Germany:
Springer-Verlag, 1998, pp. 6–15.

[9] E. Benaki, V. A. Karkaletsis, and C. D. Spyropoulos, “User modeling in
WWW: The UMIE prototype, adaptive systems and user modeling on the
World Wide Web,” presented at the 6th Int. Conf. User Modeling, Sardinia,
Italy, Jun. 1997.

[10] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

748 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 6, NOVEMBER 2006

[11] S. Bidel, L. Lemoine, F. Piat, T. Artieres, and P. Gallinari, “Statistical
machine learning for tracking hypermedia user behavior,” presented at
the 2nd Workshop Machine Learning, Information Retrieval, and User
Modeling, 9th Int. Conf. User Modeling, Pittsburgh, PA, 2003.

[12] D. Billsus and N. Pazzani, “A hybrid user model for news story classifi-
cation,” in Proc. 7th Int. Conf. User Modeling, 1999, pp. 99–108.

[13] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is NP-
complete,” Neural Netw., vol. 5, no. 1, pp. 117–127, 1992.

[14] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proc. 5th Annu. Workshop Computational
Learning Theory, 1992, pp. 144–152.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and regression trees (Wadsworth International Group/Probability Series).
Belmont, CA: Wadsworth, 1984.

[16] P. Brusilovsky and E. Schwarz, “User as student: towards an adaptive
interface for advanced Web-based applications,” in User Modeling: Proc.
6th Int. Conf., A. Jamesson, C. Paris, and C. Tasso, Eds. New York:
Springer Wien, 1997.

[17] J. Callan, A. Smeaton, M. Beaulieu, P. Borlund, P. Brusilovsky,
M. Chalmers, C. Lynch, J. Riedl, B. Smyth, and U. Straccia, “Person-
alization and recommender systems in digital libraries,” presented at the
2nd DELOS Workshop Personalization and Recommender Systems in
Digital Libraries, Dublin, Ireland, 2001.

[18] N. Cercone, L. Hou, V. Keselj, A. An, K. Naruedomkul, and X. Hu, “From
computational intelligence to Web intelligence,” Computer, vol. 35,
no. 11, pp. 72–76, Nov. 2002.

[19] N. Cercone, “From computational intelligence to Web intelligence: An
ensemble from potpourri,” in Proc. Web Intelligence Research and
Development, Lecture Notes in Artificial Intelligence, vol. 2198, Berlin,
Germany: Springer-Verlag, 2002, pp. 31–42.

[20] A. Chen, F. Lin, W. Ma, and L. Wenyin, “User intention modeling in Web
applications using data mining,” World Wide Web: Internet Web Inf. Syst.,
vol. 5, pp. 181–191, 2002.

[21] K. K. Chin, “Support vector machines applied to speech pattern classifi-
cation” M. Phil. thesis, Dept. Eng., Cambridge Univ., 1998.

[22] C. Conati, A. Gertner, K. Vanlehn, and M. Druzdzel, “On-line student
modeling for coached problem solving using Bayesian networks,” pre-
sented at the 1997 User Modeling Conf., Sardinia, Italy, 1997.

[23] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[24] I. Davidson and A. Satyanarayana, “Speeding up k-means clustering by
Bootstrap averaging,” presented at the IEEE Data Mining Workshop on
Clustering Large Data Sets, 3rd IEEE Int. Conf. Data Mining, Melbourne,
FL, 2003.

[25] P. DeBra and N. Stash, “AHA! A general-purpose tool for adaptive
Websites,” presented at the World Wide Web Conf., Honolulu, HI, May
2002.

[26] M. Deshpande and G. Karypis, “Selective Markov models for predict-
ing Web-page accesses,” presented at the SIAM Int. Conf. Data Mining
(SDM2001), San Francisco, CA.

[27] A. Doux, J. Laurent, and J. Nadal, “Symbolic data analysis with the
k-means algorithm for user profiling, user modeling,” presented at the 6th
Int. Conf., UM97, Sardinia, Italy, 1997.

[28] D. Duchamp, “Prefetching hyperlinks,” in Proc. 2nd USENIX Symp. In-
ternet Technologies and Systems, USENIX, Oct. 1999, pp. 127–138.

[29] B. Efron and R. Tibshirani, “Statistical data analysis in the computer age,”
Science, vol. 253, no. 5018, pp. 390–395, 1991.

[30] B. S. Everitt, Cluster Analysis, 3rd ed. London, U.K.: Arnold, 1993.
[31] L. Fausett, Fundamentals of Neural Networks. Englewood Cliffs, NJ:

Prentice-Hall, 1994.
[32] J. Fink, A. Kobsa, and A. Nill, “Adaptable and adaptive information access

for all users, including the disabled and the elderly,” in User Modeling:
Proc. 6th Int. Conf., UM97, A. Jamesson, C. Paris, and C. Tasso, Eds.
New York: Springer, 1997, pp. 171–173.

[33] J. H. Friedman, F. Baskett, and L. J. Shustek, “An algorithm for finding
nearest neighbors,” IEEE Trans. Comput., vol. 24, no. 10, pp. 1000–1006,
Oct. 1975.

[34] Y. Fu, K. Sandhu, and M.-Y. Shih, “Clustering of Web users based on
access patterns,” presented at the 1999 KDD Workshop Web Mining, San
Diego, CA, Jul. 2002.

[35] A. Geyer-Schulz and M. Hahsler, “Evaluation of recommender algorithms
for an Internet information broker based on simple association rules and
on the repeat-buying theory,” in Proc. WEBKDD 2002, 4th WEBKDD
Web Mining Usage Patterns User Profiles, 2002, pp. 100–114.

[36] D. Goren-Bar, T. Kuflik, D. Lev, and P. Shoval, “Automatic personal
categorization using artificial neural networks,” in Proc. 8th Int. Conf.

User Modeling, Lecture Notes in Artificial Intelligence, vol. 2109, Berlin,
Germany: Springer-Verlag, 2001, pp. 188–198.

[37] B. Grobmann-Hutter, A. Jameson, and F. Witting, “Learning Bayesian
networks with hidden variables for user modeling,” presented at the Work-
shop Machine Learning for User Modeling, 6th Int. Conf. User Modeling,
Sardinia, Italy, 1997.

[38] J. Hartigan, Clustering Algorithms. New York: Wiley, 1975.
[39] B. Hay, G. Wets, and K. Vanhoof, “Clustering navigation patterns on a

Website using a sequence alignment method,” presented at the IJCAI 2001
Workshop Intelligent Techniques for Web Personalization, Seattle, WA.

[40] S. Haykin, Neural Networks, 2nd ed. Englewood Cliffs, NJ: Prentice-
Hall, 1999.

[41] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, “The
Lumière project: Bayesian user modeling for inferring the goals and needs
of software users,” in Uncertainty in Artificial Intelligence: Proc. 14th
Conf., G. Cooper and S. Moral, Eds., 1998, pp. 256–265.

[42] A. Jain and R. C. Dubes, Algorithms for Clustering Data.. Englewood
Clifs, NJ: Prentice-Hall, 1988.

[43] A. Jain and R. C. Dubes, “Data clustering,” ACM Comput. Survey, vol. 31,
pp. 264–323, 1999.

[44] F. V. Jensen, An Introduction to Bayesian Networks. Berlin: Springer-
Verlag, 1996.

[45] T. Joerding, “Temporary user modeling approach for adaptive shopping
on the Web,” presented at the 2nd Workshop Adaptive Systems and User
Modeling on the WWW, Toronto, Canada, 1999.

[46] A. Joshi, K. Joshi, and R. Krishnapuram, “On mining Web access logs,”
in Proc. ACM-SIGMOD Workshop Research Issues in Data Mining and
Knowledge Discovery, 2000, pp. 63–69.

[47] S. Kaski, “Data exploration using self organizing maps,” Acta Polytech.
Scand., Math., Comput. Manag. Eng. Ser., vol. 82, 1997.

[48] G. V. Kass, “An exploratory technique for investigating large quantities
of categorical data,” in Appl. Stat., vol. 29, 1980, pp. 119–127.

[49] A. Kobsa, “Generic user modeling systems,” in Proc. User Modeling and
User-Adapted Interaction., vol. 11, 2001, pp. 49–63.

[50] T. Kohonen, Self-Organizating Maps. New York: Springer-Verlag,
1997.

[51] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi, “Low-complexity
fuzzy relational clustering algorithms for web mining,” IEEE Trans.
Fuzzy Syst., vol. 9, no. 4, pp. 595–608, Aug. 2001.

[52] T. Lampinen and H. Koivisto, “Profiling network applications with fuzzy
C-means clustering and self-organising map,” presented at the Int. Conf.
Fuzzy Systems and Knowledge Discovery, Singapore, Nov. 2002.

[53] P. Langley and W. Iba, “Average-case analysis of a nearest neighbor
algorithm,” in Proc. 13th Int. Joint Conf. Artificial Intelligence, 1993,
pp. 889–894.

[54] Y. Liao, “Windows NT user profiling with support vector machines,” pre-
sented at the 2002 UC Davis Student Workshop on Computing, Technical
Report CSE-2002-28, Department of Computer Science, University of
California, Davis, 2002.

[55] F. Lin, L. Wenyin, Z. Chen, H. Zhang, and T. Long, “User modeling for
efficient use of multimedia files,” in Proc. Advances in Multimedia Infor-
mation Processing PCM 2001: 2nd IEEE Pacific Rim Conf. Multimedia,
2001, pp. 24–26.

[56] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE
ASSP Mag., pp. 4–28, 1987.

[57] C. G. Looney, Pattern Recognition Using Neural Networks: Theory and
Algorithms for Engineers and Scientists. London, U.K.: Oxford Univ.
Press, 1997.

[58] J. B. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Mathematical Statis-
tics and Probability, pp 281–297, 1967.

[59] J. K. Martin and D. S. Hirschberg, “The time complexity of decision tree
induction,” Dept. Inf. Comput. Sci., Univ. California IrvineTech. Rep.
95-27 (ICS/TR-95-27), 1995.

[60] T. Mitchell, “Decision tree learning,” in Machine Learning, New York:
McGraw-Hill, 1997, pp. 52–78.

[61] B. Mobasher and R. Cooley, “Automatic personalization based on Web
usage mining,” Commun. ACM, vol. 43, no. 8, pp. 142–151, Aug. 2000.

[62] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective personalization
based on association rule discovery from Web usage data,” presented at
the 3rd ACM Workshop Web Information and Data Management, 2001.

[63] R. Morales and H. Pain, “Modeling of novices’ control skills with machine
learning,” in User Modeling: Proc. 7th Int. Conf., UM99, pp. 159–168.

[64] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “Effective prediction
of Web-user accesses: A data mining approach,” presented at the WE-
BKDD 2001 Workshop, San Francisco, CA.

FRIAS-MARTINEZ et al.: SURVEY OF DATA MINING APPROACHES TO USER MODELING 749

[65] O. Nasraoui, H. Frigui, A. Joshi, and R. Krishnapuram, “Mining Web
access logs using relational competitive fuzzy clustering,” presented at
the 8th Int. Fuzzy Systems Association World Congr., IFSA 99, Taipei,
Taiwan, R.O.C, 2006.

[66] G. Paliouras, V. Karkaletsis, C. Papathedorou, and C. Spyropoulos, “Ex-
ploiting learning techniques for the acquisition of user stereotypes and
communities,” presented at the Int. Conf. User Modeling, UM’99, Banff,
Canada.

[67] G. Paliouras, C. Papatheodorou, V. Karkaletsis, and C. Spyropoulos,
“Clustering the users of large Web sites into communities,” in Proc. 17th
Int. Conf. Machine Learning, 2000, pp. 719–726.

[68] M. Perkowitz and O. Etzioni, “Adaptive Web sites,” Commun. ACM,
vol. 43, no. 8, pp. 152–158, 2000.

[69] , “Adaptive Web sites: An AI challenge,” in Proc. IJCAI’98, pp. 16–
23.

[70] , “Towards adaptive Web sites: Conceptual framework and case
study,” presented at the 8th Int. World Wide Web Conf., Toronto, ON,
Ontario, Canada, 1999.

[71] J. R. Quinlan, “Introduction to decision trees,” in Machine Learning,
vol. 1, 1986, pp. 81–106.

[72] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo,
CA: Morgan Kaufmann, 1993.

[73] L. M. Quiroga and J. Mostafa, “Empirical evaluation of explicit versus
implicit acquisition of user profiles,” in Proc. 4th ACM Conf. Digital
Libraries, 1999, pp. 238–239.

[74] M. Ramsey, H. Chen, and B. Zhu, “A collection of visual thesauri for
browsing large collections of geographic images,” J. Amer. Soc. Inf. Sci.
Technol., vol. 50, no. 9, pp. 826–834, 1999.

[75] D. Riecken, “Personalized views of personalization,” Commun. ACM,
vol. 43, no. 8, pp. 27–28, 2000.

[76] C. Romero, S. Ventura, P. de Bra, and C. de Casto, “Discovering predic-
tion rules in AHA! courses,” presented at the 9th Int. Conf. User Model-
ing, Lecture Notes in Artificial Intelligence, vol. 2702, Berlin, Germany:
Springer-Verlag, 2003.

[77] J. Ruvini, “Adapting to the user’s Internet search strategy,” presented at
the 9th Int. Conf. User Modeling, Lecture Notes in Artificial Intelligence,
vol. 2702, Berlin, Germany: Springer-Verlag, 2003.

[78] R. R. Sarukkai, “Link prediction and path analysis using Markov chains,”
Comput. Netw., vol. 33, no. 1–6, pp. 377–386, 2000.

[79] C. Sas, R. Reilly, and G. O’Hare, “A connectionist model of spatial
knowledge acquisition in a virtual environment,” presented at the 2nd
Workshop Machine Learning, Information Retrieval, and User Modeling,
Pittsburgh, PA, 2003.

[80] R. Schafer and T. Weyrath, “Assessing temporally variable user proper-
ties with dynamic Bayesian networks,” presented at the Int. Conf. User
Modeling, UM97, Sardinia, Italy, 1997.

[81] I. Schwab and W. Pohl, “Learning information interest from positive
examples,” in Proc. Int. Conf. Machine Learning and Applications, pp. 15–
20, 1999.

[82] G. Semeraro, S. Ferilli, N. Fanizzi, and F. Abbattista, “Learning interac-
tion models in a digital library service,” presented at the 8th Int. Conf.
User Modeling, Lecture Notes in Artificial Intelligence, vol. 2109, Berlin,
Germany: Springer-Verlag, 2001.

[83] H. S. Shah, N. R. Joshi, and P. R. Wurman, “Mining for bidding strategies
on eBay,” in Proc. WEBKDD 2002, 4th WEBKDD Web Mining Usage
Patterns and User Profiles, pp. 16–30.

[84] A. Sheperd, C. Watters, and A. T. Marath, “Adaptive user modeling for
filtering electronic news,” presented at the 35th Annu. Hawaii Int. Conf.
System Sciences, HICSS-02, vol. 4.

[85] B. Shih and W. Lee, “The application of nearest neighbour algorithm
on creating an adaptive on-line learning system,” presented at the 31st
ASEE/IEEE Frontiers in Education Conf., Reno, NV, 2001.

[86] V. Tsiriga and M. Virvou, “Initializing the student model using stereotypes
and machine learning,” presented at the 2002 IEEE Int. Conf. Systems,
Man, and Cybernetics, Hammamet, Tunisia, 2002.

[87] M. Tsukada, T. Washio, and H. Motoda, “Automatic Web-page clas-
sification by using machine learning methods,” in Proc. Web In-
telligence: Research and Development: Lecture Notes in Artificial
Intelligence, vol. 2198, Berlin, Germany: Springer-Verlag, 2001, pp. 303–
313.

[88] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[89] A. Webb, Statistical Pattern Recognition. London, U.K.: Arnold, 1999.
[90] G. I. Webb, B. C. Chiu, and M. Kuzmycz, “Comparative evaluation of

alternative induction engines for feature based modeling,” Int. J. Artif.
Intell. Educ., vol. 8, pp. 97–115, 1997.

[91] G. I. Webb, M. J. Pazzani, and D. Billsus, “Machine learning for user
modeling,” in Proc. User Modeling and User-Adapted Interaction, 2001,
vol. 11, pp. 19–29.

[92] P. Winston, “Learning by building identification trees,” Artif. Intell.,
pp. 423–442, 1992.

[93] I. H. Witten and E. Frank, Data Mining. Practical Machine Learning
Tools and Techniques With JAVA Implementations. San Mateo, CA:
Morgan Kaufman, 1999.

[94] F. Witting, “ML4UM for Bayesian network user model acquisition,” pre-
sented at the 2nd Workshop Machine Learning, Information Retrieval, and
User Modeling, Pittsburgh, PA, 2003.

[95] X. Zhang, “Discriminant analysis as a machine learning method for revi-
sion of user stereotypes of information retrieval systems,” presented at the
MLIRUM’03: 2nd Workshop Machine Learning, Information Retrieval,
and User Modeling, 9th Int. Conf. User Modeling, Pittsburgh, PA, 2003.

[96] T. Zhu, R. Greiner, and G. Haubl, “Learning a model of a Web user’s
interests,” presented at the 9th Int. Conf. User Modeling. Lecture Notes in
Artificial Intelligence, vol. 2702, Berlin, Germany: Springer-Verlag, 2003.

[97] I. Zukerman and D. W. Albrecht, “Predictive statistical models for user
modeling,” in Proc. User Modeling and User-Adapted Interaction, 2001,
vol. 1, pp. 5–18.

[98] I. Zukerman, D. W. Albrecht, and A. E. Nicholson, “Predicting users
request on the WWW,” presented at the 7th Int. Conf. User Modeling and
(UM99), Banff, AB, Canada.

Enrique Frias-Martinez received the Ph.D. degree
from the Polytechnic University of Madrid, Madrid,
Spain, in 2000.

Currently, he is a Research Fellow in the School of
Information Systems, Computing, and Mathematics,
Brunel University, Uxbridge, U.K. His current re-
search interests include soft computing, data mining,
machine learning, and human–computer interaction.

Dr. Frias-Martinez was the recipient of the Best
Ph.D. Thesis Award of the School of Computer Sci-
ence, Polytechnic University of Madrid.

Sherry Y. Chen received the Ph.D. degree from the
University of Sheffield, Sheffield, U.K., in 2000.

Currently, she is a Senior Lecturer in the School of
Information Systems, Computing, and Mathematics,
Brunel University, Uxbridge, U.K. She has published
widely in areas such as human–computer interac-
tion, data mining, digital libraries, and educational
technology. She is the coeditor of the books, Adap-
tive and Adaptable Hypermedia Systems (IRM, 2005)
and Advances in Web-Based Education: Personalized
Learning Environments (Information Science, 2006).

Her current research interests include human–computer interaction, data mining,
digital libraries, and educational technology. She is a member of the editorial
board of five computing journals.

Dr. Shen has given numerous invited talks, including at the 9th International
Conference on User Modeling and the Engineering and Physical Sciences Re-
search Council Network of Women in Computer Science Colloquium.

Xiaohui Liu is currently a Professor of computing at
Brunel University, Uxbridge, U.K., since 2000. He is
also the Honorary Pascal Professor at Leiden Univer-
sity, Leiden, The Netherlands, since 2004. He heads
the Intelligent Data Analysis (IDA) Group. He has
over 100 refereed publications in bioinformatics, data
mining, intelligent systems, and image and signal pro-
cessing. His current research interests include inter-
disciplinary research involving artificial intelligence,
dynamic systems, signal processing, and statistics.
He serves on the editorial boards of four computing

journals, founded the Biennial International Conference Series on IDA, in 1995.
Prof. Liu is a Charted Engineer, Life Member of the American Association

for Artificial Intelligence, Fellow of the Royal Statistical Society, and Fellow of
the British Computer Society. He has given numerous invited talks, including
a keynote at the International Conference of the Royal Statistical Society, in
2002. He serves on the editorial boards of four computing journals, founded the
Biennial International Conference Series on IDA, in 1995.

