260 research outputs found

    Lattice Erasure Codes of Low Rank with Noise Margins

    Full text link
    We consider the following generalization of an (n,k)(n,k) MDS code for application to an erasure channel with additive noise. Like an MDS code, our code is required to be decodable from any kk received symbols, in the absence of noise. In addition, we require that the noise margin for every allowable erasure pattern be as large as possible and that the code satisfy a power constraint. In this paper we derive performance bounds and present a few designs for low rank lattice codes for an additive noise channel with erasures

    Excursions at the Interface of Topological Phases of Matter and Quantum Error Correction

    Get PDF
    Topological quantum error-correcting codes are a family of stabilizer codes that are built using a lattice of qubits covering some manifold. The stabilizers of the code are local with respect to the underlying lattice, and logical information is encoded in the non-local degrees of freedom. The locality of stabilizers in these codes makes them especially suitable for experiments. From the condensed matter perspective, their code space corresponds to the ground state subspace of a local Hamiltonian belonging to a non-trivial topological phase of matter. The stabilizers of the code correspond to the Hamiltonian terms, and errors can be thought of as excitations above the ground state subspace. Conversely, one can use fixed point Hamiltonian of a topological phase of matter to define a topological quantum error-correcting code.This close connection has motivated numerous studies which utilize insights from one view- point to address questions in the other. This thesis further explores the possibilities in this di- rection. In the first two chapters, we present novel schemes to implement logical gates, which are motivated by viewing topological quantum error-correcting codes as topological phases of matter. In the third chapter, we show how the quantum error correction perspective could be used to realize robust topological entanglement phases in monitored random quantum circuits. And in the last chapter, we explore the possibility of extending this connection beyond topological quan- tum error-correcting codes. In particular, we introduce an order parameter for detecting k-local non-trivial states, which can be thought of as a generalization of topological states that includes codewords of any quantum error-correcting code

    Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control

    Get PDF
    The emerging study of integrating information theory and control systems theory has attracted tremendous attention, mainly motivated by the problems of control under communication constraints, feedback information theory, and networked systems. An often overlooked element is the estimation aspect; however, estimation cannot be studied isolatedly in those problems. Therefore, it is natural to investigate systems from the perspective of unifying communication, estimation, and control;This thesis is the first work to advocate such a perspective. To make Matters concrete, we focus on communication systems over Gaussian channels with feedback. For some of these channels, their fundamental limits for communication have been studied using information theoretic methods and control-oriented methods but remain open. In this thesis, we address the problems of characterizing and achieving the fundamental limits for these Gaussian channels with feedback by applying the unifying perspective;We establish a general equivalence among feedback communication, estimation, and feedback stabilization over the same Gaussian channels. As a consequence, we see that the information transmission (communication), information processing (estimation), and information utilization (control), seemingly different and usually separately treated, are in fact three sides of the same entity. We then reveal that the fundamental limitations in feedback communication, estimation, and control coincide: The achievable communication rates in the feedback communication problems can be alternatively given by the decay rates of the Cramer-Rao bounds (CRB) in the associated estimation problems or by the Bode sensitivity integrals in the associated control problems. Utilizing the general equivalence, we design optimal feedback communication schemes based on the celebrated Kalman filtering algorithm; these are the first deterministic, optimal communication schemes for these channels with feedback (except for the degenerated AWGN case). These schemes also extend the Schalkwijk-Kailath (SK) coding scheme and inherit its useful features, such as reduced coding complexity and improved performance. Hence, this thesis demonstrates that the new perspective plays a significant role in gaining new insights and new results in studying Gaussian feedback communication systems. We anticipate that the perspective could be extended to more general problems and helpful in building a theoretically and practically sound paradigm that unifies information, estimation, and control

    Application of network coding in satellite broadcast and multiple access channels

    Get PDF
    Satellite broadcasting and relaying capabilities enable mobile broadcast systems over wide geographical areas, which opens large market possibilities for handheld, vehicular and fixed user terminals. The geostationary (GEO) satellite orbit is highly suited for such applications, as it spares the need for satellite terminals to track the movement of the spacecraft, with important savings in terms of complexity and cost. The large radius of the GEO orbit (more than 40000 km) has two main drawbacks. One is the large free space loss experienced by a signal traveling to or from the satellite, which limits the signal-to-noise ratio (SNR) margins in the link budget with respect to terrestrial systems. The second drawback of the GEO orbit is the large propagation delay (about 250 msec) that limits the use of feedback in both the forward (satellite to satellite terminal) and the reverse (satellite terminal to satellite) link. The limited margin protection causes loss of service availability in environments where there is no direct line of sight to the satellite, such as urban areas. The large propagation delay on its turn, together with the large terminal population size usually served by a GEO satellite, limit the use of feedback, which is at the basis of error-control. In the reverse link, especially in the case of fixed terminals, packet losses are mainly due to collisions, that severely limit the access to satellite services in case a random access scheme is adopted. The need for improvements and further understanding of these setups lead to the development of our work. In this dissertation we study the application of network coding to counteract the above mentioned channel impairments in satellite systems. The idea of using network coding stems from the fact that it allows to efficiently exploit the diversity, either temporal or spatial, present in the system. In the following we outline the original contributions included in each of the chapters of the dissertation. Chapter 3. This chapter deals with channel impairments in the forward link, and specifically with the problem of missing coverage in Urban environments for land mobile satellite (LMS) networks. By applying the Max-flow Min-cut theorem we derive a lower bound on the maximum coverage that can be achieved through cooperation. Inspired by this result, we propose a practical scheme, keeping in mind the compatibility with the DVB-SH standard. We developed a simulator in Matlab/C++ based on the physical layer abstraction and used it to test the performance gain of our scheme with a benchmark relaying scheme that does allow coding at packet level. Chapter 4. The second chapter of contributions is devoted to the information theoretical study of real-time streaming transmissions over fading channels with channel state information at the transmitter only. We introduce this new channel model and propose several transmission schemes, one of which is proved to be asymptotically optimal in terms of throughput. We also provide an upper bound on the achievable throughput for the proposed channel model and compare it numerically with the proposed schemes over a Rayleigh fading channel. Chapter 5. Chapter 5 is devoted to the study of throughput and delay in non-real-time streaming transmission over block fading channels. We derive bounds on the throughput and the delay for this channel and propose different coding techniques based on time-sharing. For each of them we carry out an analytical study of the performance. Finally, we compare numerically the performance of the proposed schemes over a Rayleigh fading channel. Chapter 6. In the last technical chapter we propose a collision resolution method for the return link based on physical layer network coding over extended Galois field (EGF). The proposed scheme extracts information from the colliding signals and achieves important gains with respect to Slotted ALOHA systems as well as with respect to other collision resolution schemes.Una de les característiques mes importants de les plataformes de comunicacions per satèl.lit és la seva capacitat de retransmetre senyals rebuts a un gran número de terminals. Això es fonamental en contextes com la difusió a terminals mòbils o la comunicació entre màquines. Al mateix temps, la disponibilitat d’un canal de retorn permet la creació de sistemes de comunicacions per satèl.lit interactius que, en principi, poden arribar a qualsevol punt del planeta. Els satèl.lits Geoestacionaris son particularment adequats per a complir amb aquesta tasca. Aquest tipus de satèl.lits manté una posició fixa respecte a la Terra, estalviant als terminals terrestres la necessitat de seguir el seu moviment en el cel. Per altra banda, la gran distància que separa la Terra dels satèl.lits Geoestacionaris introdueix grans retrassos en les comunicacions que, afegit al gran número de terminals en servei, limita l’ús de tècniques de retransmissió basades en acknowledgments en cas de pèrdua de paquets. Per tal de sol.lucionar el problema de la pèrdua de paquets, les tècniques més utilitzades son el desplegament de repetidors terrestres, anomenats gap fillers, l’ús de codis de protecció a nivell de paquet i mecanismes proactius de resolució de col.lisions en el canal de retorn. En aquesta tesi s’analitzen i s’estudien sol.lucions a problemes en la comunicació per satèl.lit tant en el canal de baixada com el de pujada. En concret, es consideren tres escenaris diferents. El primer escenari es la transmissió a grans poblacions de terminals mòbils en enorns urbans, que es veuen particularment afectats per la pèrdua de paquets degut a l’obstrucció, per part dels edificis, de la línia de visió amb el satèl.lit. La sol.lució que considerem consisteix en la utilització de la cooperació entre terminals. Una vegada obtinguda una mesura del guany que es pot assolir mitjançant cooperació en un model bàsic de xarxa, a través del teorema Max-flow Min-cut, proposem un esquema de cooperació compatible amb estàndards de comunicació existents. El segon escenari que considerem es la transmissió de vídeo, un tipus de tràfic particularment sensible a la pèrdua de paquets i retards endògens als sistemes de comunicació per satèl.lit. Considerem els casos de transmissió en temps real i en diferit, des de la perspectiva de teoria de la informació, i estudiem diferents tècniques de codificació analítica i numèrica. Un dels resultats principals obtinguts es l’extensió del límit assolible de la capacitat ergòdica del canal en cas que el transmissor rebi les dades de manera gradual, enlloc de rebre-les totes a l’inici de la transmissió. El tercer escenari que considerem es l’accés aleatori al satèl.lit. Desenvolupem un esquema de recuperació dels paquets perduts basat en la codificació de xarxa a nivell físic i en extensions a camps de Galois, amb resultats molt prometedors en termes de rendiment. També estudiem aspectes relacionats amb la implementació pràctica d’aquest esquema

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Advances in Modeling and Signal Processing for Bit-Patterned Magnetic Recording Channels with Written-In Errors

    Get PDF
    In the past perpendicular magnetic recording on continuous media has served as the storage mechanism for the hard-disk drive (HDD) industry, allowing for growth in areal densities approaching 0.5 Tb/in2. Under the current system design, further increases are limited by the superparamagnetic effect where the medium's thermal energy destabilizes the individual bit domains used for storage. In order to provide for future growth in the area of magnetic recording for disk drives, a number of various technology shifts have been proposed and are currently undergoing considerable research. One promising option involves switching to a discrete medium in the form of individual bit islands, termed bit-patterned magnetic recording (BPMR).When switching from a continuous to a discrete media, the problems encountered become substantial for every aspect of the hard-disk drive design. In this dissertation the complications in modeling and signal processing for bit-patterned magnetic recording are investigated where the write and read processes along with the channel characteristics present considerable challenges. For a target areal density of 4 Tb/in2, the storage process is hindered by media noise, two-dimensional (2D) intersymbol interference (ISI), electronics noise and written-in errors introduced during the write process. Thus there is a strong possibility that BPMR may prove intractable as a future HDD technology at high areal densities because the combined negative effects of the many error sources produces an environment where current signal processing techniques cannot accurately recover the stored data. The purpose here is to exploit advanced methods of detection and error correction to show that data can be effectively recovered from a BPMR channel in the presence of multiple error sources at high areal densities.First a practical model for the readback response of an individual island is established that is capable of representing its 2D nature with a Gaussian pulse. Various characteristics of the readback pulse are shown to emerge as it is subjected to the degradation of 2D media noise. The writing of the bits within a track is also investigated with an emphasis on the write process's ability to inject written-in errors in the data stream resulting from both a loss of synchronization of the write clock and the interaction of the local-scale magnetic fields under the influence of the applied write field.To facilitate data recovery in the presence of BPMR's major degradations, various detection and error-correction methods are utilized. For single-track equalization of the channel output, noise prediction is incorporated to assist detection with increased levels of media noise. With large detrimental amounts of 2D ISI and media noise present in the channel at high areal densities, a 2D approach known as multi-track detection is investigated where multiple tracks are sensed by the read heads and then used to extract information on the target track. For BPMR the output of the detector still possesses the uncorrected written-in errors. Powerful error-correction codes based on finite geometries are employed to help recover the original data stream. Increased error-correction is sought by utilizing two-fold EG codes in combination with a form of automorphism decoding known as auto-diversity. Modifications to the parity-check matrices of the error-correction codes are also investigated for the purpose of attempting more practical applications of the decoding algorithms based on belief propagation. Under the proposed techniques it is shown that effective data recovery is possible at an areal density of 4 Tb/in2 in the presence of all significant error sources except for insertions and deletions. Data recovery from the BPMR channel with insertions and deletions remains an open problem

    Towards Scalable Characterization of Noisy, Intermediate-Scale Quantum Information Processors

    Get PDF
    In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the first part of this thesis, I use statistical model selection to develop techniques for choosing between several models for a QIPs behavior. In the second part, I deploy machine learning algorithms to develop a new QCVV technique and to do experiment design. These investigations help lay a foundation for extending QCVV to characterize the next generation of NISQ processors

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    corecore