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Abstract

In recent years, quantum information processors (QIPs) have grown from one or two

qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they

work, and how they fail – has become much more challenging. The obstacles to

characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of

qubits to hundreds, and enter what has been called the “noisy, intermediate-scale

quantum” (NISQ) era. This thesis develops methods based on advanced statistics

and machine learning algorithms to address the difficulties of “quantum character-

ization, validation, and verification” (QCVV) of NISQ processors. In the first part

of this thesis, I use statistical model selection to develop techniques for choosing

between several models for a QIPs behavior. In the second part, I deploy machine

learning algorithms to develop a new QCVV technique and to do experiment design.

These investigations help lay a foundation for extending QCVV to characterize the

next generation of NISQ processors.
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Chapter 1

Introduction to quantum

computing

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy. - Richard Feynman, 1982 (101)

1.1 Why study quantum computing?

Quantum mechanics is one of the most successful theories for describing the physical

world. Since its development in the early 1900s, the theory has been used to predict a

variety of physical phenomena, and its predictions closely match experimental results.

Applications of quantum mechanics have been found in areas as diverse as semicon-

ductor electronics (173), lasers (122; 279), molecular dynamics (217; 178; 315), and

medical imaging (32; 243). Over the past thirty-some years, physicists and other

researchers have realized that quantum mechanics enables an entirely new comput-

ing paradigm, dubbed quantum computing, and have explored its implications for

computer science, information theory, and physics. Surprisingly, these implications

1



Chapter 1. Introduction to quantum computing

raise deep questions about the nature of the Universe, its structure, and the ultimate

limits on computation.

At its core, quantum computing addresses the limits to and possibilities of a computer

whose fundamental physical mode of operation is quantum-mechanical in nature1.

Phrased another way, the operation of a classical computer is well-understood using a

small amount of quantum theory, but it does not require other quantum phenomena

such as superposition or entanglement. In contrast, quantum computers harness such

phenomena, and put them to work for computing.

What’s more, the underlying logic of the computation is quantum-mechanical in

nature. Classical computation uses classical bits, which can only take the discrete

values 0 and 1. In contrast, quantum computers store and process information in

quantum bits (qubits), or their higher-dimensional relatives, called qudits2. Because

the unit of information is different, the logic of quantum computers is necessarily

distinct from that of classical computers. Quantum bits can be encoded in a wide

variety of physical systems such as trapped ions, neutral atoms, superconducting

circuits, or photons. In what follows in this chapter, I’ll use the phrase “quantum

processor” to denote some quantum system that is being used for quantum compu-

tation. Through precision control of a quantum processor, quantum information can

be encoded, reliably stored, and manipulated. Given the unique nature of quantum

theory, and how different it is from classical theory, quantum computing offers a

radically different paradigm for computation.

With some reflection, the idea that physical law should affect what computers can do

doesn’t seem too far-fetched: after all, computers are physical devices in the world,

subject to those laws. Several examples illustrate this fact:

1Note that here I am ignoring the fact that some quantum effects show up in semicon-
ductor physics.

2See Chapter 2 for details.

2



Chapter 1. Introduction to quantum computing

• Special relativity places an absolute speed limit on the rate at which informa-

tion can be transmitted between two points (namely, the speed of light), so

no computer can send/transmit information between its processing units faster

than that.

• Information transfer requires energy, limiting the rate at which information can

be transmitted (24).

• A finite-volume region of spacetime can contain only so much information,

placing limits on the information storage capacity of a computer (25).

• Information erasure always comes with an entropy cost (186) – a non-zero

amount of energy is always required to erase a bit – giving a lower bound on

the energy consumption of an irreversible computer.

• Quantum information can decohere (“leak out”) from a quantum system, which

leads to the emergence of classical behavior (34). Therefore, any quantum

processor must address the problem of decoherence in order to harness quantum

phenomena for computation.

The reasons just given show how physical law places limits on computation. How-

ever, different physical models of a computer can lead to new insights in computer

science, and expand the conception of what a computer is, and what it can do. For

example, reversible computing was introduced in the early 1970s as a way to mit-

igate the energy cost associated with information erasure (26). However, a good

understanding of the relationship between reversible computing and reversible pro-

cesses in physics took approximately another decade to develop. Fredkin and Toffoli

considered the “billiard ball computer”, and showed such a computer could oper-

ate according to a “conservative logic” necessary for reversible computation (111).

(Of course, a reversible computer won’t be built out of billiard balls any time soon,

but the concept introduced by Fredkin and Toffoli helps build intuition.) Later, a

3
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more useful model was constructed using Josephson junctions (193). Within the past

decade, researchers have made strides in probing the physics of reversible computing

(29). In this way, toy models of computers help us explore the connections between

computation and physics. What’s more, these toy models can lead to new insights

about how to build computers.

Additional reflection suggests that computer science should have something to say

about physical law. For instance, computability theory studies the (abstract) com-

putational power of various models for ideal computers, such as classical Turing ma-

chines (300). Without making reference to any physical instantiation of a computer,

computability theory tells us that some problems such as the halting problem are

undecidable: no (abstract) computer can solve them. Under the assumption that

Turing machines are a faithful model of what computation is and how it physically

takes place, then computability theory would imply that no physical computer could

ever be built to solve undecidable problems3. In turn, physical law had better pro-

hibit such a machine from being built!

This interplay of physics and computer science is a non-trivial one, and raises deep

questions about the nature of the Universe. For instance, is an appropriate under-

lying theory for describing reality fundamentally informational or computational in

nature? If so, what kind of “program” is the Universe executing (196)? This line

of questioning isn’t unique in the history of science – consider the the “clockwork

model” of the Universe developed during the Enlightenment (88) – but quantum

mechanics provides arguably the most powerful physical theory developed to date

that could be used for answering such questions.

In fact, quantum computing has some surprising implications for computational com-

plexity theory. A recent result (1) shows that by taking the standard model for what

3These and related questions relate to the Church-Turing thesis and variants thereof
(83).
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a quantum computer is (i.e., the rules that describe its operation), and changing it

in two seemingly banal ways, one ends up with a model for computation that can

efficiently solve any decision problem whatsoever! Such a result clearly indicates

that quantum computers are worth understanding. What’s more, it suggests that

(standard) quantum computing is right on an edge between trivial and non-trivial

models of computation, which makes it an interesting topic of study. By exploring

the implications of quantum mechanics on computability theory, we gain a better

understanding of how physics and computer science relate to one another.

Computational complexity arguments aside, there are other reasons to study quan-

tum computing. The opening quote of this chapter is taken from a talk Feynman

gave in 1982. Entitled “Simulating Physics with Computers”, Feynman considered

the problem of using a classical computer (e.g. a deterministic or probabilistic Tur-

ing machine) to simulate a quantum-mechanical system. The main difficulty is that

quantum systems exhibit correlations between subsystems that cannot be explained

using just those subsystems alone. This property (quantum entanglement) makes

simulating a quantum system using a classical computer difficult. The computer has

to keep a record of the state of the system at each step in the simulation, and because

the correlations are across the global state of the system and not within smaller, lo-

calized subsystems, the computer has to keep track of the entire state. This places

storage requirements on the computer carrying out the simulation.

Why might a quantum computer help? Because its mode of operation is quantum-

mechanical in nature, if one assumes entanglement can be generated by the system

(a non-trivial task), then quantum computers seem to come with entanglement “for

free” as part of their operation. They won’t have to store a record of the state;

instead, they directly generate and manipulate it. Hence, a reasonable conjecture

would be that quantum computers could simulate quantum systems more efficiently

or more accurately than classical computers. Understanding the complex behavior
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of quantum systems could enable breakthrough developments in the technologies of

the 21st century, including materials design (batteries, solar cells), medicine (phar-

maceuticals, protein folding), and agriculture (nitrogen fixation).

Earlier, I alluded to the idea that quantum computing can shed some light on the

fundamental way the Universe operates. The fact that quantum mechanics – at

its core a theory about probabilities and information – is so good at describing the

world suggests that a more advanced version of physical theory should be grounded in

information theory, a notion that goes by the catchphrase “it from bit” (107; 320).

Some research in this direction has explored how quantum computing interfaces

with general relativity (196; 236; 142). The deeper connections between quantum

mechanics and general relativity are still being developed.

1.2 A brief overview of quantum computing his-

tory c. 1980 - c. 2010

Feynman’s talk in 1982 helped catalyze interest in quantum computing. Some pio-

neering results included the definition of a model of quantum computing based on a

“quantum Turing machine” (83) that generalizes the classical Turing machine, the

development of an equivalent “circuit model” that defines quantum computation as

a generalization of classical digital circuits and logic (329), and the discovery of a

simple problem (“Simon’s problem”) for which a quantum computer has a provable

exponential speedup over a classical computer (280).

Arguably, the first “killer app” for a quantum computer was developed by Peter

Shor, who showed in 1994 that quantum computers could solve the factoring

problem – “Factor an integer N into products of primes.” – in time O(log3(N))

(278). This problem is generally believed to be hard for classical computers, as the

best-known algorithm (the general number field sieve) runs in time approximately
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Exp
[
O(log1/3(N)(log logN)2/3)

]
. Given that commonly-used encryption algorithms

(such as RSA) rely on the hardness of factoring for their security, Shor’s result

stimulated much interest in quantum algorithms for cryptanalysis, including the de-

velopment of “post-quantum” cryptosystems that are resistant to attack by quantum

computers (27).

The second is a result due to Lov Grover, who in 1996 showed that quantum com-

puters, when given oracle access to an unstructured database of N items, could

search over that database in time O(
√
N) (127). Classically, the worst-case runtime

is O(N), so while the speedup is less dramatic, it’s nontrivial and can be applied to

other oracle problems. Since Shor and Grover discovered the algorithms that bear

their names, others have been created for problems including constraint satisfaction

(7; 206), computing the gradient of a function (162), and solving linear systems of

equations (139), among other problems (218; 161).

Although there are numerous algorithms that could be run on a quantum computer,

the intervening years between Shor’s discovery and the present day have highlighted

the challenges to developing a quantum computer that is universal (capable of ex-

ecuting arbitrary computations) and fault-tolerant (can compute for an arbitrarily

long time). Classically, these problems are well-understood and have been addressed.

For example, the nand gate is a universal logic gate (any logical operation can be

expressed using it), and fault-tolerant encoding protocols are known for storing and

transmitting classical bits. These problems are more subtle for quantum computers,

however.

The issue of universality for quantum computers was addressed by results such as

the Solovay-Kitaev theorem, (78) which showed that any computation could be de-

composed (compiled) into a sequence of primitive operations (gates). The subject of

“quantum compiling” remains an active area of research, particularly with respect

to compiling algorithms on near-term hardware (143; 169; 138).
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Making quantum computers fault-tolerant has proven to be quite difficult. By def-

inition, a fault-tolerant computer is able to compute even in the presence of errors

and corruption of information. Classically, fault-tolerance is relatively easy, because

classical bits can be very stable. In contrast, quantum bits are fragile, and have to

protected from the surrounding environment. The quantum information contained

within those bits decoheres – “leaks out” into the environment (34) – so reducing

decoherence is vital. At the same time, controlling quantum information requires the

ability to strongly couple to a quantum processor and manipulate it. This duality

– quantum bits need to be well-isolated from the environment, while also accessible

for controlled manipulation of the quantum information they contain – has been

called the “Tao of quantum computing” (84), and shows the fundamental difficulty

in building a quantum computer.

Fault-tolerant quantum error correction (FTQEC) is crucial for achieving fault-

tolerant quantum computation. A quantum computer using FTQEC can, in princi-

ple, compute for an arbitrarily long time, provided the error rates of the individual

components of the computer are below a suitable threshold (238; 85; 4). (Note that a

given quantum error correction technique may not be fault tolerant in the sense just

described. For example, it may not be robust against faulty gates or measurement

procedures.) Just as classical error correction encodes information to safeguard its

integrity as it is transmitted over a noisy channel, quantum error correction encodes

quantum information and protects it while a quantum computation is executed.

However, there are three ways in which QEC is unique and cannot be analogized

to classical error correction. First, arbitrary quantum information cannot be cloned

(326). Thus, a QEC technique cannot rely on the ability to blithely copy quantum

information from one set of qubits to another. Second, information stored in qubits is

disturbed when those qubits are measured. Therefore, a QEC technique cannot avoid

the no-cloning constraint by a protocol of the form “measure the qubits and then copy
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their information”. Third, qubits experience a richer set of errors than their classical

counterparts. There are only two kinds of errors that can affect classical bits: flips

and erasure. Qubits on the other hand can be flipped, erased, dephased, and damped,

among other errors; QEC has to protect quantum information against all of them

(85). Numerous QEC techniques have been proposed for doing so (110; 277; 121).

Protecting quantum information comes with a steep cost. Even using sophisticated

quantum error correcting codes (such as surface/color codes (110; 109; 185)), the

number of physical qubits required to encode some number of fault-tolerant (“logi-

cal”) qubits sufficient to address some near-term problems is currently estimated to

be in the tens of millions to billions (250; 288). Given that up until approximately 5

years ago the “state-of-the-art” in quantum hardware was devices with 1 or 2 qubits,

the road ahead to universal, fault-tolerant quantum computing looked bleak. Within

the past 5 years, however, several developments have helped push quantum comput-

ing forward. While fault-tolerance remains a future-term goal, the field has begun

to explore the usefulness of near-term devices with limited numbers of qubits that

lack error correction.

1.3 Advances in quantum computing c. 2010 -

present

Currently, a device with millions of high-quality physical qubits is out of reach.

However, very small devices with a modest number of noisy qubits are being built:

within the past 5 years, “state-of-the-art” in quantum computers has gone from 1 or

2 qubits to 5 to 10. Further, next-generation devices with 20 to approximately 100

qubits are being brought online or are under development (253; 312; 167). These

small devices are typically called quantum information processors (QIPs). QIPs are

not quantum computers - they won’t have error-corrected qubits, and they won’t be
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able to run sophisticated algorithms.

Quantum computing is thus at an “in-between” or “adolescent” stage: experimen-

talists are building enough noisy qubits that tackling new problems seems feasible,

but qubit error rates are sufficiently high that very long computations are imprac-

tical. Two phrases describe this watershed moment – “quantum supremacy” and

“noisy, intermediate-scale quantum” (NISQ). Coined by John Preskill in late 2011

(239) and 2017 (240), respectively, these phrases highlight and temper the promise

of what near-term QIPs can reasonably be expected to achieve.

Briefly, “quantum supremacy” will be demonstrated when a QIP does some task

that cannot be done using then-available classical computing power. Earlier in this

chapter, I noted that quantum systems can be entangled (correlations encoded in

the global state of a quantum system, as opposed to subsystems), and suggested

that a classical computer would have to keep track of this global state in order

to faithfully simulate the system. A heuristic argument for “quantum supremacy”

goes as follows: a quantum system over N qubits requires O(2N) real amplitudes to

describe a general (pure) state; if each of these amplitudes is stored using b bits of

precision, then a brute-force simulation of a highly-entangled quantum system is to

have at least b∗2N bits of classical storage available4. Given a computer with a fixed

amount of storage, there’s always a sufficiently large quantum system whose storage

requirements exceed that. However, a highly-controlled quantum computer with N

qubits might be able to do such a simulation.

The argument just given is not a “proof” of why quantum supremacy is achievable

in any formal sense. Indeed, there are many techniques for simulating complex

quantum systems beyond a brute-force approach5. More compelling (formalized)

4In practice, more storage will be required, as the computer will need to keep track of
the gates being applied to the state.

5For example, Hartree-Fock, coupled cluster, and density functional theory are all well-
established methods for simulating quantum systems.
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arguments for quantum supremacy have been developed using facts about sampling

from the output distribution of some quantum circuits. The canonical example is the

boson sampling problem, introduced by Aaronson and Arkhipov in 2010 (2). They

showed that, under certain computational complexity assumptions, sampling from

the output distribution of a particular linear optics experiment – N single photons

traveling through a linear-optical network with M ports – is quite hard for classical

computers. In contrast, that output distribution could be sampled using a QIP by

“simply” building the optical network and then running it. Current experimental

demonstrations of boson sampling have used a modest number of photons (. 10)

(22; 284; 57; 294).

Another problem proposed for demonstrating quantum supremacy is random cir-

cuit sampling. As the name implies, it is a sampling problem that requires the

computer to sample from the output distribution of a random quantum circuit. This

sampling problem is expected to be hard for classical computers (40). Intuitively the

reason for this hardness is that the evolution of an input state under a random circuit

will display chaotic behavior. That is, given a fixed input state, small perturbations

to the Hamiltonian that generates the evolution of that state could lead to radically

different output states6. Therefore, accurate sampling from the output distribution

using a classical computer would necessitate a high-accuracy simulation of the evolu-

tion, which leads back to the earlier issue of (classical) storage requirements. Again,

this output distribution could be sampled by a QIP by “simply” running the random

circuit.

Notice that problems such as factoring are not typically considered as candidates

for demonstrating quantum supremacy. Shor’s factoring algorithm requires FTQEC,

which will not be available on near and intermediate-term QIPs. Therefore, while

factoring RSA-2048 (or any other large number) would certainly be a notable achieve-

6See Section 2.1.1 for a few details on Hamiltonian dynamics in quantum systems.

11



Chapter 1. Introduction to quantum computing

ment in the development of quantum computers, devices being built today won’t have

the requisite fault-tolerance infrastructure to do so.

Quantum supremacy is an evolving milestone in the development of QIPs, as research

groups develop new classical algorithms for simulating quantum systems with many

qubits (137; 232; 63; 207). This “back-and-forth” between the quantum and classical

computing communities certainly has its own benefits in the form of more powerful

algorithms and a better understanding of quantum simulation. The current folk

wisdom is that a QIP with a number of qubits between 50 and 100 that runs boson

sampling or random circuit sampling could not be simulated by even the most

powerful supercomputers of today. At that point, the field will have “attained”

quantum supremacy.

If the phrase “quantum supremacy” highlights the promise of near-term QIPs, then

the phrase “noisy, intermediate-scale quantum” (NISQ) helps re-focus attention on

the realities of building them. NISQ processors have more qubits than what has

typically been available historically, but noise rates will be too high, and qubits too

few, to enable large-scale quantum error correction. (Here and in what follows, “pro-

cessor” is used as a synonym for “QIP”.) Consequently, they will not be able to run

some of quantum computing’s “killer apps” (Shor’s factoring algorithm, or Grover’s

search). In the meantime, researchers have been developing pre-fault-tolerant algo-

rithms. Hurdles include: (a) the number of qubits is modest, (b) qubit noise rates

are high, and (c) the circuit depth (the number of primitive operations in the circuit)

cannot be very large.

In spite of these hurdles, NISQ processors can run some non-trivial algorithms that

could be used to solve problems of interest (255; 291; 46; 324; 141; 268). Such

algorithms are said to demonstrate “quantum advantage”, because unlike the toy

problems used for demonstrating quantum supremacy, the problems they solve are

useful and not contrived. For this reason, achieving quantum advantage is perhaps
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a more compelling milestone in the development of NISQ processors and the field of

quantum computing in general.

The past 5 years has seen a surge in private-sector interest in the field. Compa-

nies such as Google, IBM, Intel, and Microsoft are all working on building NISQ

processors. As of the time of this writing, hardware startups include IonQ, Rigetti

Quantum Computing, and Silicon Quantum Computing. A growing ecosystem of

companies and firms are growing up around these and other companies. All told, a

fledgling private-sector industry is coalescing around quantum computing.

A paradigm shift has also taken place on the practical question of how a quantum

computer would be used, and how quantum computing fits into modern computing

environments (e.g., data centers). The NISQ processors being built today are not

being installed on-site at a user facility. Instead, they are being accessed through

a cloud-based service such as IBM’s Quantum Experience (312) or Rigetti’s Forest

API (252). NISQ processors can act as an “accelerator”, analogous to a graphics

processing unit (GPU) or tensor processing unit (TPU) in a modern data center,

where users design their programs to offload some, but not all, of their computation

onto special-purpose hardware. This paradigm makes clear that NISQ processors

could be useful for speeding up the time-to-solution for some complex problems, but

that the bulk of the computation will be classical.

1.4 Summary

This era in human civilization has sometimes been dubbed the “Information Age”.

It’s an appropriate adage, as we generate and store an increasing amount of informa-

tion/data each year. We have also sought to solve increasingly complex problems,

and develop ever-more sophisticated computational tools for doing so. From the de-

velopment of the CPU, to the GPU, and now the TPU, special-purpose hardware is

becoming increasingly necessary to tackle certain problems. As time goes by, “QPU”
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(quantum processing unit) may be added to that list7.

Quantum computing has experienced ebbs and flows of interest over the past 30

years. It uses a fundamentally different paradigm for computing and that difference

makes it an engaging topic to study8. As quantum computing enters the NISQ era,

scientists and engineers will have their hands full. One of the major issues with a

NISQ processor is the fact it is error-prone: processor initialization, running circuits,

and performing measurements are all noisy and imperfect operations. This limits how

long the processor can run before it effectively “crashes”. (Here, “crashing” could

mean that some of the quantum information stored in the processor has decohered

into the surrounding environment, or that some of its qubits have been lost, among

other things.) In the near term, improving the performance of NISQ processors

is important. The motivation behind the research in this thesis is the observation

that techniques for characterizing the one or two-qubit systems of today won’t be

sufficient for characterizing the devices coming online today or that will be built in

the near-term future.

The major research question addressed in this thesis is “What are barriers to char-

acterizing a NISQ processor, and what are some steps that can be taken to overcome

them?”. Chapters 3 and 4 contribute an answer by (a) discussing how statistical

model selection will be useful in building simpler models of a QIP’s behavior, (b)

showing that blithely applying classical statistical model selection techniques to the

problem of choosing between those doesn’t work, and (c) proposing remedies. Chap-

ter 5 leverages the power of machine learning algorithms to develop targeted charac-

terization techniques for specific processor properties, and Chapter 6 uses machine

learning algorithms to do experiment design.

7Whether that acronym will refer to a NISQ processor or a large-scale, fault-tolerant
quantum computer remains to be seen.

8Note that other computing paradigms such as neuromorphic computing (212) have
also been proposed for “post-classical” computing. Quantum computing is not unique in
that regard.
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In the future, large-scale, fault-tolerant quantum hardware may be available for

arbitrary-length, universal quantum computing. In the meantime, as the NISQ era

gets underway, we must face the challenges of understanding the utility of NISQ

processors, and debugging/characterizing their performance.
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Chapter 2

Quantum characterization,

validation, and verification

(QCVV)

The aim of natural science is not simply to accept the statements of others, but to

investigate the causes that are at work in nature. - St. Albert the Great, patron

saint of scientists (1491) (203)

To harness and increase the computational utility of a NISQ processor, character-

ization, validation, and verification of the device is necessary. This chapter traces

the history of “quantum characterization, validation, and verfication” (QCVV) tech-

niques, and discusses the need for new QCVV techniques in the NISQ era.

2.1 Introduction

Chapter 1 left off with the observation that quantum computing is moving into the

“noisy, intermediate-scale quantum” (NISQ) era. As processors with 50 to 100 qubits
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come online, characterizing their behavior and evaluating their performance will be

necessary to (a) understand what computation(s) these processors can execute, (b)

detecting and diagnosing their failure modes, and (c) proposing ways to fix them.

This issue is not unique to quantum computers or information processors, however.

Classical computer hardware can suffer from bugs introduced during the manufactur-

ing process (67); the task of chip verification is to certify the chip performs as desired

(246). The corresponding task in quantum computing goes by the name “QCVV”,

for “quantum characterization, verification, and validation. In typical use, “QCVV”

is synonymous with “characterize”, and that’s the usage I’ll retain throughout this

thesis. In the remainder of this chapter, I introduce the relevant postulates of quan-

tum mechanics and some mathematical preliminaries (Section 2.1.1), trace some of

the history of QCVV techniques (Sections 2.2 and 2.3), and conclude by explain-

ing why new techniques will be required to characterize next-generation hardware

(Section 2.4).

2.1.1 Postulates of quantum mechanics and mathematical

preliminaries

Quantum states

Ever since physicists formalized the notion of the state of a quantum system, a

tension has existed regarding the reality of the “quantum state”. Depending on

one’s philosophic bent, this state could be an objective truth about the world, or

simply the best description of it given available knowledge. Either way, there’s a

natural question that arises – “Given some quantum system, is there a procedure

or process that can be used to extract information about the system, and update

(or estimate) its state?”. That is, “Can the state of the system be inferred using

data collected by measuring it?”. This question (rather, a specific variant of it) is

typically referred to as the Pauli question (70; 230). To discuss this problem more
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precisely, some mathematics and notation will need to be introduced, along with

some of the postulates of quantum mechanics. These preliminaries will be necessary

for the discussion of quantum state tomography in Section 2.2.1.

Postulate 1 (quantum states): The state of a quantum system can be described

using a density operator that acts on some Hilbert space.

If the system has d dimensions (number of distinguishable states), then the associated

Hilbert space is d-dimensional, and ρ is an operator with the following properties:

1. ρ ∈ B(Hd), where B(Hd) is the set of bounded operators acting on the Hilbert

space Hd.

2. Tr(ρ) = 1, where Tr(A) denotes the trace of A.

3. ρ ≥ 0, meaning that 〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ Hd
1.

Each of these properties follows from a specific requirement that’s necessary for quan-

tum mechanics. Requiring ρ to be an element of B(Hd) is necessary when describing

continuous-variable quantum systems (where the dimension of the associated Hilbert

space is uncountably infinite.) In this thesis, (except in Section 4.2) the focus will be

solely on finite-dimensional quantum systems. For finite-dimensional systems, the

condition ρ ∈ B(Hd) could be relaxed to requiring ρ be in the set of linear operators

acting on the Hilbert space. For finite-dimensional systems, ρ ∈ B(Hd) implies that

ρ can be represented as a d× d matrix. A general d-dimensional quantum system is

called a “qudit”; if d = 2, a special name is used - “qubit”. Generally, ρ is represented

as a d× d matrix. However, some states can be written in the form ρ = |ψ〉〈ψ| with

〈ψ|ψ〉 = 1; such a state is said to be pure. Pure states can be represented simply

as a column vector with d rows. If ρ cannot be written in this way, it is said to be

mixed.

The second and third properties follow from other postulates of quantum mechanics

1Later I will discuss the use of the symbol |A〉 to denote the vector A.
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that relate to measurement of a quantum system. Explaining these two properties

requires a bit of a digression on measuring a quantum system, and the introduction

of more notation.

Postulate 2 (quantum measurements): Any physical quantity that can be mea-

sured about the system (an observable) is described by a d × d Hermitian operator

O.

All Hermitian matrices are normal (can be diagonalized), meaning O has a spectral

decomposition of the form

O =
d∑

j=1

oj|oj〉〈oj|, (2.1)

where O |oj〉 = oj |oj〉. This equation also uses the Pauli bra-ket notation that

was used earlier in Postulate 1. This notation is a succinct and convenient way of

expressing vector operations. Usually, the ket |A〉 is thought of as a column vector ;

the bra (dual vector) 〈A| is a linear map from kets to scalar variables, by the complex

dot product:

〈A|B〉 =
∑

j

A?jBj. (2.2)

That is, 〈A| is a row vector, but one where every element has been replaced by its

complex conjugate. Thus, to represent an inner product in bra-ket notation, all one

needs to write is 〈A|B〉. Now, Equation (2.1) doesn’t use an inner product; instead,

it uses an outer product, |A〉〈B|. This object is a matrix, with matrix elements given

by (|A〉〈B|)jk = 〈j|A〉〈B|k〉 = 〈j|A〉〈k|B〉?. In contrast, the inner product is a map

from vectors and dual vectors to scalars.

If observable O is measured, then the measurement outcome is one of the eigenvalues

oj. Quantum mechanics is a probabilistic theory about the measurement outcomes.

The probability of observing outcome ok is given by the Born rule:

pk = Tr(ρ|ok〉〈ok|) = 〈ok|ρ|ok〉. (2.3)
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With these postulates in hand, we can now see why properties 2 and 3 above are

necessary. Because probabilities are non-negative, ρ itself must be a non-negative

(positive-semidefinite) matrix - otherwise some pj could be less than zero. When

measuring an observable, some measurement outcome has to occur, meaning that

the total probability
∑

j pj must be 1. Since O is Hermitian, its eigenvectors are

orthogonal. From the eigenvalue condition O |oj〉 = oj |oj〉, it follows that they have

norm 1 (〈oj|oj〉 = 1). Because the d vectors |oj〉 are orthonormal,
∑

j〈oj|ρ|oj〉 =

Tr(ρ). Consequently, conservation of probability means Tr(ρ) = 1.

The kind of measurements just discussed are called projective, because the measure-

ment is described by an operator Pj = |oj〉〈oj| that satisfies P 2
j = Pj. The formalism

developed using projective measurements can be generalized by modeling a measure-

ment on a d-dimensional quantum system using a positive, operator-valued measure

(POVM):

Postulate 2’ (quantum measurements): Measurements on a quantum system

are described by a POVM, which associates to each measurement outcome j a (d ×
d) Hermitian operator Ej satisfying Ej ≥ 0 and

∑
j Ej = Id where Id is the d-

dimensional identity matrix.

Using the POVM formalism, the Born rule (Equation (2.3)) becomes pj = Tr(ρEj).

Another way of writing pj as function of ρ and Ej – one that will be useful later – can

be developed by observing that the trace is an inner product on Hermitian matrices.

That is, ifA andB are two Hermitian matrices, then Tr(A†B) is a valid inner product,

as it satisfies the requirements of (a) conjugate symmetry (Tr(A†B) = Tr(B†A)?),

(b) linearity (Tr(A†[B+C]) = Tr(A†B)+Tr(A†C), and (c) positive semi-definiteness

(Tr(A†A) = 0 ⇐⇒ A = 0.) Consequently, Tr(A†B) is an inner product between

two matrices, which I write as (A|B). This “super/generalized-Pauli” notation makes

calculations involving the trace of a product of matrices easier to think about2. In

2This inner product is sometimes written using two angle brackets: Tr(A†B) = 〈〈A|B〉〉.
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this notation,

pj = Tr(ρEj) = Tr(E†jρ)→ (Ej|ρ). (2.4)

Notice the POVM formalism makes contact with the “measurements are projections

onto eigenstates of an observable” formalism by taking Ej = |oj〉〈oj|. The POVM

formalism is more general. For instance, the POVM effects are not required to be

projectors (EjEk 6= δjkEj). In addition, the POVM formalism more readily allows

for “chaining together” measurements back-to-back.

Postulate 3 (state collapse)3: If the state ρ is measured and outcome j observed,

then after the measurement, the state of the system “collapses”:

ρ→
MjρM

†
j

Tr(ρEj)
, where Ej = M †

jMj. (2.5)

Note that because the POVM effects are positive operators, they always have a

decomposition of the form M †
jMj, just as any real number x ≥ 0 has a root of the

form x = a?a. However, this decomposition is not unique: taking Mj → UMj leaves

Ej invariant. Physically, this corresponds to a measurement model in which the state

ρ is measured by coupling it to an ancilla, measuring the ancilla, and then applying

a post-measurement unitary to the state4. This state collapse postulate implies that

repeated measurements on a quantum system do not measure the same (original)

state as the system was prepared in. Suppose the system is prepared in a state ρ,

and consider two measurements E1, E2 that are performed one after another. After

E1, the state is

ρ→ ρ′ =
M1ρM

†
1

Tr(ρE1)
, (2.6)

3Note: Commonly postulates 2 or 2’ are lumped together with 3. I split them here to
highlight the difference between the projective measurement and POVM formalisms.

4This detail will not be necessary for the chapters that follow, but I include it here for
completeness.
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and after E2, it is

ρ′ → ρ′′ =
M2ρ

′M †
2

Tr(ρ′E2)
. (2.7)

Because ρ′ 6= ρ, generally, the outcome probability for E2 depends on whether E1

or E2 is measured first. Therefore, in order to build up sufficient statistics about

the distribution of outcomes (i.e., their probabilities), we will require many identi-

cal copies of ρ. The approach described here measures each copy one at a time;

joint measurements are possible across many copies changes the sample complexity

necessary for accurate recovery of the state (15; 136).

Finally, if ρA describes system A and ρB describes system B, the joint/composite

state of the combined system is given by ρAB = ρA ⊗ ρB. The state ρAB is said to

be separable with respect to subsystems A and B. Note that when using the bra-ket

notation, the ⊗ is sometimes suppressed; for example, |0〉 ⊗ |0〉 is often written as

|00〉. Given a general state ρAB, it is said to be separable if it can be written in the

form

ρAB =
∑

j

pjρA,j ⊗ ρB,j where
∑

j

pj = 1. (2.8)

If this decomposition is not possible, ρAB is said to be entangled. When there is

only one term in the sum (i.e. ρAB = ρA ⊗ ρB), ρAB is in a product state. As an

example of an entangled state, let |ψ〉AB = 1√
2

(|00〉+ |11〉), and take ρAB to be the

pure state |ψ〉AB ⊗ 〈ψ|AB. Entanglement is a resource for quantum computation and

communication (recall Chapter 1), but I do not discuss it in further detail here.

Quantum processes

QIPs run quantum algorithms (such as those discussed in Chapter 1) by performing

operations on qubits. Analogous to how classical computers implement digital logic

using binary operations such as AND, NOT, and OR, QIPs implement these opera-

tions using certain primitive operations, referred to as gates, channels, or processes.
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These operations affect the quantum state of the QIP. As physical examples, consider

a laser beam that’s used to drive an electron from one energy level to another, or

wave plates that change the polarization of a propagating photon. The mathematical

preliminaries introduced here will be necessary for the discussion of quantum process

tomography in Section 2.2.2.

A quantum channel will be denoted by E ; typically, the notation E [ρ] will mean “the

state that results from applying E to the state ρ”. (Recall classical logic, where

a Boolean gate acts on bits.) If E1 and E2 are applied in succession, the resulting

channel is their composition: (E2 ◦ E1)[ρ] = E2[E1[ρ]]. Physically, this means “Start

with ρ, apply E1, and then apply E2.”.

The joint channel that results from applying channel EA on subsystem A and channel

EB on subsystem B is EAB = EA ⊗ EB. Some composite channels EAB can generate

entanglement; consider the CNOT gate, which acts on pure states as

CNOT[|j〉 ⊗ |k〉] = |j〉 ⊗ |j ⊕ k〉. (2.9)

The CNOT gate flips the second qubit if the first qubit is in the state |1〉. Ap-

plying the CNOT gate to the state 1√
2

(|0〉+ |1〉) ⊗ |0〉 yields the entangled state

1√
2

(|00〉+ |11〉). (As we’ll see, quantum channels are linear operations.) Quantum

mechanics postulates certain properties for quantum channels, which I review here.

Postulate 4 (closed system dynamics): For closed quantum systems (systems

that do not interact with their environment), a quantum state evolves under the action

of unitary operators :

ρ(t) = U(t, t′)[ρ(t′)] = U(t, t′)ρ(0)U †(t, t′), (2.10)

where U(t, t′)U †(t, t′) = I. The operator U(t, t′) propagates the state from time t′ to

time t. This operator satisfies the differential equation

U̇(t) = − i
~
H(t)U(t), (2.11)
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where the operator H(t) is the underlying Hamiltonian generating the time dynamics

of the system. Generally, the Hamiltonian H(t) does not commute5 with itself at

different times, so the solution to the above equation is

U(t, t′) = T
[
Exp

(
− i
~

∫ t

t′
H(s) ds

)]
, (2.12)

where T is the time ordering operator. If H(t) does commute with itself at different

times, the time ordering is trivial, and

U(t, t′) = Exp

(
− i
~

∫ t

t′
H(s) ds

)
. (2.13)

Finally, if H(t) is time-independent, then the integral is trivial:

U(t, t′) = Exp

(
− i
~
H(t− t′)

)
. (2.14)

These solutions are very useful when solving for the evolution of a given system under

some Hamiltonian. To develop a slightly more general framework for describing the

transformations of quantum states, we examine two properties that are satisfied by

closed system dynamics. First, unitary transformations preserve the trace of ρ:

Tr[U(t, t′)[ρ(t′)]] = Tr(U(t, t′)ρ(t′)U †(t, t′)) = Tr(ρ(t′)). (2.15)

Second, unitary transformations preserve the positivity of the output state, meaning

that U(t, t′)[ρ(t′)] ≥ 0, provided the input state ρ(t′) ≥ 0.

Exactly how these properties are generalized to arbitrary closed-system dynamics is

beyond the scope of this chapter. See (223) for details. Suffice it to say that we want

E to have the following properties:

1. It is trace-preserving : Tr[E [ρ]] = Tr[ρ].

2. It satisfies complete positivity : (EA ⊗ IB)[ρAB] ≥ 0 ∀ρAB ≥ 0.

5The commutator of two operators A,B, denoted [A,B], is [A,B] = AB −BA.
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Any channel satisfying these two conditions is called “CPTP”, and I will focus ex-

clusively on such channels here. Because E is CP, the Kraus decomposition theorem

guarantees E has a representation as

E [ρ] =
k∑

j=1

KjρK
†
j , (2.16)

where the operators {Kj} are called the Kraus operators for the channel (223). This

theorem also shows that the converse is true: - if a representation of the form given

in Equation (2.16) exists, then E is completely positive. Because E is TP, the Kraus

operators satisfy
∑

jK
†
jKj = I. The number of terms in the sum, k, is upper-

bounded by d2. A channel is called unitary if, and only if, k = 1.

Given a process E , there are many equivalent representations for describing its action.

Appendix H discusses these representations. Readers unfamiliar with the Kraus,

superoperator, and Pauli transfer matrix representations are encouraged to consult

it.

With these mathematical preliminaries in hand, I now turn to an overview of QCVV

techniques from roughly 1980 to the present day.

2.2 “Traditional” QCVV: c. 1980 - c. 2005

2.2.1 Quantum state tomography

Earlier in Section 2.1.1, I pointed out that the question of whether the state of

a quantum system can be reliably inferred from measurements on it is a problem

almost as old as quantum mechanics itself. Pauli’s original question focused on

the problem of characterizing pure states. The problem of characterizing general

quantum states – pure or mixed – is much newer, and is known as quantum state

tomography (14; 12; 229). The name “tomography” is used because solutions to this
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task were originally developed in the context of characterizing continuous-variable

quantum systems using techniques applicable to medical imaging (12; 247; 204; 12;

228; 310; 318). There are several notions of “characterizing” a quantum state. One

of the most common – and the one discussed here – is “estimate the density matrix”.

Others include “estimating the amount of entanglement in the state” (39; 129), or

“estimate its fidelity with a fiducial (target) state” (106; 129).

If ρ0 is the state that (best) describes the device, then the problem of state tomogra-

phy is ‘Given data generated by measuring Nsamples copies of ρ0 using a POVM {Ej},
compute an estimate6 ρ̂0.” At least 2 questions have to be answered in solving this

problem: “What POVM should be performed?” and “How will experimental data be

processed to compute the estimate?”. The first question is one of experiment design;

the second data processing.

The question of experiment design naturally lends itself to questions about opti-

mal POVMs, their properties, etc. A variety of POVMs have been developed that

have different properties and utility, such as symmetric, informationally complete

POVMs (251), and mutually unbiased bases (154). The optimal sample complexity7

with respect to different loss metrics is known (136; 183). For example, if the loss

metric is the trace distance D(ρ, σ) = 1
2
||ρ− σ||1, then to achieve D(ρ0, ρ̂) ≤ ε, then

Nsamples ≥ Ω(d2/ε2) is necessary (136), and Nsamples ≤ O(d2/ε) log(d/ε) is sufficient.

Note that the estimation strategy uses an experiment design with joint measurements

of ρ
⊗Nsamples

0 . For independent measurements – each copy is measured one-at-a-time

– Nsamples ≥ Ω(d3/ε2) is necessary.

My focus in this section is less on experiment design, and more on data processing.

Depending on one’s statistical inclination, there are two major methodologies for

6Throughout this thesis the caret symbol is used to denote estimates, so that θ̂ means
“an estimate of θ”. Some authors use the symbol to denote quantum-mechanical operators;
I do not do so here.

7Number of copies of ρ0 needed
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processing the data: frequentist and Bayesian. Both use the fact that the probabil-

ities of the measurement outcomes (“outcome probabilities”) are given by the Born

rule: pj = Tr(ρ0Ej). However, outcome probabilities are generally not available, since

Nsamples �∞, and so the outcome probabilities need to be estimated in one fashion

or another. A common estimator is to take the observed outcomes and divide by

the total number of samples. If the outcome modeled by Ej was seen nj times out

of the Nsamples trials, then a reasonable estimator for pj is the observed frequency

fj = nj/N : p̂j = fj.

Frequentist estimation strategies

In a frequentist paradigm, there are at least two ways to compute ρ̂0: linear inversion

and maximum likelihood.

Linear inversion tomography proceeds by observing that outcome probabilities can

be represented as a matrix multiplication acting on ρ0:

p1 = (E1|ρ0), p2 = (E2|ρ0), · · ·

=⇒ p ≡




p1

p2

...


 =




(E1|ρ0)

(E2|ρ0)
...


 ≡M |ρ),

(2.17)

where M is the measurement matrix specified by the experiment design. By writing

the relationship between outcome probabilities and the state ρ0 in this way, a natural

estimation approach suggests itself: replace p by the estimated outcome probabilities,

and then invert Equation 2.17:

f ≈M |ρ0) =⇒ |ρ̂0) = (MTM)−1MT f . (2.18)

Note that generally, M will not be invertible (especially if the experiment design

is underdetermined, so that the number of rows of M is less than the number of

columns), which is why the Moore-Penrose pseudoinverse is commonly used. The
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pseudoinverse is guaranteed to exist, even when the inverse is not. Note that if M−1

exists, then the Moore-Penrose pseudoinverse is equal to it. This estimator is also

the solution to the unweighted least-squares optimization problem (228)

|ρ̂0) = argmin
σ∈Md

||f −M |σ)||2, (2.19)

whereMd = {σ | σ ∈ B(Hd), Tr(σ) = 1}. Crucially, the model Md does not impose

the positivity constraint ρ̂0 ≥ 0, meaning it may return an estimate that, while solving

the optimization problem, is not physical. For this reason, linear inversion tomogra-

phy, while conceptually and computationally simple, is typically eschewed in favor of

other, more powerful computational techniques where the positivity constraint can

be imposed. In certain contexts however, linear inversion is just as powerful (see

(283; 131) and section 3.5.3).

One such technique is maximum likelihood (338; 149). Maximum likelihood (ML)

estimation maximizes the likelihood function, given by

L(ρ) = Pr(Observed data | ρ). (2.20)

The likelihood function tells us how probable the data observed was given a particular

choice for ρ. An intuitive reason for why ML estimation is a good approach is that

if L(ρ) = 0 for some ρ, then the data that was actually observed could never have

been generated by ρ. Therefore, it could not have been generated by measurements

of ρ! For this reason, ML estimation posits that a good estimate for ρ0 is the state

that maximizes the likelihood function:

ρ̂ML,M = argmin
ρ∈M

L(ρ), (2.21)

where M is a set of density matrices. I’ll discuss in Chapter 3 why a good choice

for M is crucial for accurate inference of ρ0, and how statistical model selection

can be used to ensure a good choice is made. As an estimation paradigm, ML is

well-studied, and many properties of the ML estimate are known. For these reasons,

ML is an attractive approach for state tomography.
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For the kind of state tomography problems we’ll consider (Nsamples copies of ρ0 mea-

sured independently), the likelihood function is easy to compute:

L(ρ) =
∏

j

[Tr(ρEj)]
nj where

∑

j

nj = Nsamples. (2.22)

The likelihood function can be maximized using optimization algorithms such as

gradient ascent or conjugate gradient (45; 293). Chapter 3 discusses the implications

of the positivity constraint ρ̂ML,M ≥ 0 on the behavior of the distribution of ML

estimates and the impact that has on statistical model selection. Chapter 4 includes

a discussion of some of the practical issues that have to be considered when doing

ML estimation.

While ML estimation is powerful and has a well-developed statistical theory behind

it, it does suffer from the problem that ρ̂ML,M may be rank-deficient (i.e., may have

zero eigenvalues). Such an estimate predicts zero probability for a POVM that is the

projection onto its eigenstates, so hedging techniques have been proposed to ensure

the estimate is full-rank (35; 98), by replacing the zero eigenvalues with small, yet

non-zero values.

Bayesian estimation strategies

Another strategy that avoids returning an estimate with zero eigenvalues leverages

Bayesian estimation. A straightforward way to do so is by using a Bayesian mean

estimate, which computes ρ̂0 as

ρ̂0 =

∫
ρ L(ρ) π(ρ) d(ρ), (2.23)

with L(ρ) is the likelihood function, π(ρ) is the prior, and d(ρ) is a measure over the

state space (36; 123).
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2.2.2 Process tomography

Being able to characterize the primitive operations of a QIP is important: the channel

implemented by the QIP may not necessarily be the one required in the circuit

compilation, and those kinds of errors need to be detected and diagnosed. The

task of characterizing an unknown quantum channel E is called quantum process

tomography (66; 223). Since the early 2000s, several techniques have been developed

for doing so.

One simple process tomography technique is based on the observation that the Kraus

operators can be expanded in terms of a fixed basis {Bj}: Kj =
∑d2

l=1 cjlBl. From

this, it follows that any CPTP channel E can be written as

E [ρ] =
∑

j,l,m

cjlc
?
jmBlρB

†
m =

d2∑

l,m=1

(∑

j

cjlcjm

)
BlρB

†
m ≡

d2∑

l,m=1

χlmBlρB
†
m, (2.24)

where χ is the d2 × d2 Choi matrix for the channel. Notice χ is Hermitian: χ = χ†.

The requirement E be completely positive means that χ ≥ 0. By construction, an

estimate of χ is sufficient to estimate E . Because χ is a d2 × d2 Hermitian matrix

that maps complex matrices to complex matrices, it has d4 parameters. However, if

E is trace-preserving, then the condition
∑

jKjK
†
j = I implies

d2∑

l,m=1

χlmBlB
†
m = I. (2.25)

This equation is a set of d2 constraints (I is d × d), and the constraint is linear in

χ. Therefore, there are d2 linear constraints on χ when E is trace-preserving, so the

number of real parameters necessary to specify a CPTP channel is d4 − d2.

The outcome probability associated with sending a known input state ρj into the

channel and measuring a known POVM effect Ek is

pjk = Tr[EkE [ρj]] =
d2∑

l,m=1

χlmTr[EkBlρjB
†
m]. (2.26)
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This equation can be written in vectorized form by defining a measurement design

matrix M with matrix elements M(jk),(lm) = Tr[EkBlρjB
†
m]:

p = Mχ. (2.27)

If the POVM effects and input state are known, then the design matrix M is also

known. Therefore, just as in the case of state tomography, a simple way to estimate

χ is to estimate the outcome probabilities p, and then invert Equation 2.27 using

linear inversion (223). Alternatively, Equation (2.26) can be used in conjunction

with, e.g. maximum likelihood inference (336; 10), as another way of estimating χ.

Around 2005 though, the limitations of state and process tomography were becoming

clear, and certain characterization tasks where identified where full knowledge of the

state or process were not necessary. For these reasons, researchers began to develop

new QCVV techniques.

2.3 “Contemporary” QCVV: c. 2005 - present

day

Although state and process tomography are two powerful techniques for character-

izing a quantum information processors, they have a few problems. First, state and

process tomography estimate matrix elements, and the number of matrix elements

describing an n-qubit system (or a gate acting on the state of such a system) scales

exponentially with n. For an n-qubit system, the Hilbert space dimension d is 2n.

A general state of the system ρ has O(d2) parameters, and a channel, O(d4). Sec-

ond, tomography requires that the Hilbert space dimension is known (a point we’ll

return to in Chapter 3). Third, under state preparation and measurement error

(“SPAM error”/“SPAM”), both kinds of tomography perform poorly. All of these

reasons pointed to the need for new QCVV techniques. Over the past decade or

so, researchers have been developing various QCVV techniques that probe a QIP
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at different levels of interest, from self-consistent inference of the QIP’s gate set, to

characterizing average error rates. These “contemporary”8 QCVV techniques have

been extremely useful for providing more diagnostic information about a QIP.

2.3.1 Randomized benchmarking

Arguably, a watershed moment in the history of QCVV was the development of

randomized benchmarking (RB) between 2005 and 2008 (175; 91). RB characterizes

a QIP without having to directly estimate the state(s) it prepares or the channel(s) it

implements. Instead, RB measures an average “error rate” for the QIP known as the

“RB number”, denoted r (244; 241). To do so, RB prescribes certain experiments.

Each experiment consists of the following steps: initialize the QIP to some state

ρ0 ≈ |ψ0〉〈ψ0|, perform a random9 circuit c (usually drawn from the Clifford group)

of depth m, and measure whether the state of the QIP “survived” (i.e., has returned

to ρ0). This measurement can be done by performing the POVM {|ψ0〉〈ψ0|, I −
|ψ0〉〈ψ0|}. By running each circuit many times, the survival probability pc,m can be

estimated.

By averaging pc,m over many random circuits of depth m, the expected survival

probability 〈pc,m〉 can be estimated. After estimating 〈pc,m〉 for many values of m,

the data are usually fit to a model of the form

〈pc,m〉 = A+ (B + Cm)pm, (2.28)

where A,B,C, and p are the parameters of the model. The RB number is then

8Here, “contemporary” is used more to refer to the fact the technique isn’t just state or
process tomography, and has less to do with when the technique was actually developed.

9The circuit is not entirely random, as the final gate of the circuit is chosen so that the
circuit would be equivalent to the identity channel if all the gates were perfect. This is
why the circuit is typically drawn from the Clifford group, as computing the inverse of a
Clifford group element can be done efficiently. RB can be done using other groups (49).
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estimated as

r̂ =
d− 1

d
(1− p̂). (2.29)

Note that d = 2n for an n-qubit benchmarking experiment. Importantly, SPAM error

is accounted for in RB by the nuisance parameters. For this reason, plus the fact the

RB technique is simple and efficient to implement, RB is one of the most commonly-

used techniques for QCVV of a QIP. What’s more, many variants beyond the basic

idea presented here have been developed (202; 113; 273; 325; 69; 49). While there

are issues in extending RB to multi-qubit systems, recent research has developed a

method that overcomes some of them (242).

2.3.2 Gate set tomography

Gate set tomography (GST) (214; 37; 125) addresses the SPAM problem in state and

process tomography in a different way. GST estimates the entire gate set describing

the QIP – the state(s) it prepares, the channel(s) it performs, and the measurement(s)

it does – in a self-consistent way. Demanding the gate set be self-consistent means

that any miscalibrations or errors have to be accounted for and made explicit in the

model of the QIP’s behavior. Like other QCVV techniques, GST uses a Markovian

(CPTP) model for QIP’s gate set. Its experiment design consists of circuits that

amplify all possible Markovian noise affecting the gate set. Section 5.3.2 gives details

on GST.

2.3.3 Other contemporary QCVV techniques

Other contemporary QCVV techniques that go beyond state and process tomogra-

phy address a variety of characterization problems, such as: direct fidelity estimation

(106; 75), drift detection (304), entanglement witnesses (39; 305; 129), estimating

Lindblad operators (43), Hamiltonian learning (124), leakage detection (325), ran-

domized benchmarking tomography (RBT) (171), robust phase estimation (RPE)
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(172; 264), and unitarity/purity benchmarking (313; 96). Researchers have also con-

structed sensible error bars for state and process tomography (187; 123; 92; 33; 289;

97).

There are two other advances in contemporary QCVV of note. First is the devel-

opment of “quantum compressed sensing” (126; 105; 257; 164), which generalizes

classical compressed sensing – the high-accuracy recovery of a sparse signal using

few measurements – to the quantum realm. (In the context of state tomography,

ρ0 is sparse if it has low rank, since its spectral decomposition would contain few

terms.) As I’ll discuss in Chapter 4, some of the work developed in this thesis has

implications for this QCVV technique. Briefly, most quantum compressed sensing

techniques rely on a low-rank assumption about the state being estimated, or require

an experimentalist to perform very particular POVMs. The work developed in this

thesis provides another avenue for understanding these results, and suggests that the

geometry of quantum state space is sufficient to give compressed-sensing-like behav-

ior for state tomography, without requiring particular POVMs or invoking a low-rank

assumption.

The second development lies at the intersection of state tomography and classical

machine learning. As I’ll discuss in Chapter 5, machine learning algorithms de-

fine highly expressive representations of functions. For this reason, some algorithms

– such as neural networks (NNs) (210; 94; 146) or restricted Boltzmann machines

(RBMs) (282; 145) – are particularly well-suited to represent quantum states, which

we can view as functions from POVM effects to outcome probabilities (via the Born

rule). State tomography has traditionally focused on estimating the parameters of

the density matrix; in this paradigm, instead of having to estimate a large matrix,

a NN or RBM has to be learned. This paradigm has led to “neural network state

tomography” (56; 297), which has overlap with tomography by tensor networks such

as MPS/MERA (73; 188). Crucially, a wide variety of physical states can be rep-
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resented by these and similar algorithms (114; 298; 82; 81). The work presented in

this thesis leverages machine learning algorithms in a different way, by using them

to develop new QCVV techniques.

Contemporary QCVV techniques span a spectrum, from predictive modeling (e.g.,

GST) to regression analysis (e.g., RB). Each of them has utility for certain charac-

terization tasks. As quantum computing enters the NISQ era, more techniques will

be required.

2.4 QCVV of next-generation quantum hardware

There are several reasons why new QCVV techniques will be required to character-

ize intermediate-scale QIPs. First, many existing techniques require resources that

grow rapidly with the number of qubits. These resources include the number of

experiments, the repetitions of each experiment, and the amount of computation

required to process experimental data. As an example, taking single-qubit GST and

performing it on 10 separate qubits will require at least 10 times more resources than

single-qubit GST performed on just 1 qubit. In practice, the requirements will be

much greater because of the need to not only perform single-qubit GST on each of

10 qubits, but also many kinds of multi-qubit GST to detect multi-qubit noise.

Second, even scalable techniques may not be suitable to characterize novel kinds

of noise that affect next-generation processors, such as very long-range correlations

between qubits or crosstalk. Characterizing novel types of noise is beyond what those

techniques can do, simply because they weren’t designed with those noise types in

mind. Detecting and diagnosing them will generally require new QCVV techniques.

Third, characterizing the “holistic” performance of QIPs on tasks that utilize the

whole processor will be necessary. These kinds of device-wide metrics would be

useful to, for example, compare different QIPs in a standard way. Of the existing
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QCVV techniques, those that infer an error rate (e.g., RB) suffer from the problem

that they are typically designed for use on small numbers of qubits, which makes

deploying them for holistic characterization difficult. What’s more, it is unclear how

to characterize the total error rate of a QIP from inferences of the error rates of

smaller subcomponents, particularly if the size of the subcomponents grows slowly

(or is constant) relative to the size of the QIP.

For all these reasons, scalable QCVV of NISQ processors is likely to demand a wide

array of new QCVV techniques. Developing them is a challenging task, and the

research presented in the following 4 chapters takes some steps in the direction of

overcoming them.
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Chapter 3

Impact of state-space geometry on

tomography

There are three kinds of lies: lies, damned lies, and statistics. - Mark Twain, 1906

To characterize NISQ devices, simpler models that describe their behavior are re-

quired. This chapter introduces the idea of statistical model selection, and shows how

commonly-used model selection techniques in classical statistical inference problems

cannot be blithely applied to models describing a quantum information processor. To

remedy this, I define a new generalization of a powerful statistical framework for rea-

soning about the infinite-sample behavior of estimators, and discuss its implication

for maximum likelihood (ML)1quantum state tomography.

3.1 Introduction and overview

Determining the quantum state ρ0 produced by a specific preparation procedure

for a quantum system is a problem almost as old as quantum mechanics itself (70;

1Please note that in Chapters 5 and 6, the acronym ML will be used for ‘machine
learning’.
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230). This task, known as quantum state tomography (229), is not only useful in its

own right (diagnosing and detecting errors in state preparation), but is also used in

other characterization protocols including entanglement verification (286; 39; 305)

and process tomography (10). A typical state tomography protocol proceeds as

follows: many copies of ρ0 are produced, they are measured in diverse ways, and

finally the outcomes of those measurements (data) are collated and analyzed to

produce an estimate ρ̂. This is a straightforward statistical inference process (249;

317), where the data are used to fit the parameters of a statistical model. In state

tomography, the parameter is ρ, and the model is the set of all possible density

matrices on a Hilbert space H (equipped with the Born rule). However, we don’t

always know what model to use. It is not always a priori obvious what H or its

dimension is; examples include optical modes (6; 28; 201; 47; 192) and leakage levels

in AMO and superconducting (220; 95) qubits. In such situations, we seek to let

the data itself determine which of many candidate Hilbert spaces is best suited for

reconstructing ρ0.

Choosing an appropriate Hilbert space on the fly is an instance of a general statis-

tical problem called model selection. Although model selection has been thoroughly

explored in classical statistics (50), its application to state tomography encounters

some obstacles. They stem from the fact that quantum states – and therefore, es-

timates of them – must satisfy a positivity constraint ρ ≥ 0. (See Figure 3.1.) A

similar constraint, complete positivity, applies to process tomography. The impact of

positivity constraints on state and process tomography is an active area of research

(55; 105; 289; 58), and its implications for model selection have also been considered

(271; 132; 304; 187; 330; 219; 177). In this chapter, I address a specific question

at the heart of this matter: How does the loglikelihood ratio statistic used in many

model selection protocols, including (but not limited to) information criteria such as

Akaike’s AIC (5), behave in the presence of the positivity constraint ρ ≥ 0?
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ρ ≥ 0 ρ ≥ 0

ρ ≥ 0 ρ ≥ 0

Figure 3.1: Impact of the positivity constraint (ρ ≥ 0) on tomographic es-
timates. The boundary of quantum state space – which results from the constraint
ρ ≥ 0 – affects maximum likelihood (ML) tomography for a qutrit state ρ0 (star).
Two different 2-dimensional cross-sections of the state space are shown, which corre-
spond to a qubit (left) and a classical 3-outcome distribution (right). Top: Without
the positivity constraint, some ML estimates (orange squares) are not valid estimates
of a quantum state, because they are not positive semidefinite. However, some ML
estimates (blue circles) are. Further, the ML estimates are Gaussian distributed.
Bottom: Imposing the positivity constraint forces the (previously negative) ML es-
timates to “pile up” on the boundary of state space; the distribution Pr(ρ̂ML) is not
Gaussian, and local asymptotic normality is not satisfied. In turn, the assumptions
necessary to invoke the Wilks theorem are not satisfied either.

Section 3.2 begins by introducing the loglikelihood ratio statistic λ, and outline how

it can be used to choose a Hilbert space. In Section 3.3, we show how and why the

classical null theory for its behavior, the Wilks theorem, falls apart in the presence

of the positivity constraint, because quantum state space does not generally satisfy

local asymptotic normality (LAN). We define a new generalization of LAN, metric-

projected local asymptotic normality (MP-LAN), in Section 3.4; this generalization

explicitly accounts for the positivity constraint, and is satisfied by quantum state

space. This chapter provides a novel result that uses the MP-LAN formalism; namely,

deriving a replacement for the classical Wilks theorem that is applicable in state
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tomography (Section 3.5). (Two other results are derived in Chapter 4.) Finally,

this chapter concludes in Section 3.6 with a discussion of some other ways MP-LAN

could be used to improve statistical model selection for tomographic problems beyond

state tomography.

3.2 Statistical model selection and the Wilks the-

orem

Discussing model selection for state tomography requires introducing some terminol-

ogy/notation from statistics. A model M is a parameterized family of probability

distributions over some data D, usually denoted as Prθ(D), where θ ∈ M are the

parameters of the model. A fixed value for the parameters is called a simple hypoth-

esis ; a set of parameters is called a composite hypothesis. In state tomography, the

parameters are a quantum state ρ, the data are the observed outcomes of the mea-

surement of a positive operator-valued measure (POVM) {Ej}, and the probability

of observing outcome “j”2 is given by the Born rule: pj = Tr(ρEj). Throughout this

chapter, a model is a set of density matrices, and a state ρ is a particular choice of

the model’s parameters.

Suppose we have data D obtained from an unknown state ρ0, and two candidate

models M1,M2 that could be used to reconstruct it. Many of the known methods

for choosing between them (i.e., model selection) involve quantifying how well each

model fits the data by its likelihood. The likelihood of a simple hypothesis ρ is defined

as L(ρ) = Pr(D|ρ). Models, however, are composite hypotheses, comprising many

possible values of ρ. A canonical way to define model M’s likelihood is via the

general method of maximum likelihood (ML), by maximizing L(ρ) over ρ ∈ M. In

practice, the maximization is usually done explicitly to find an ML estimate ρ̂ML,M

2The index j may be continuous or discrete.
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(149; 155; 35) of M’s parameters, and then L(M) = L(ρ̂ML,M). (Although it is

common to refer to ρ̂ML without specifying the model over which L was maximized,

the model is listed explicitly because in this chapter, many different models are

frequently used!)

Then, the models can be compared using the loglikelihood ratio statistic (221; 35;

219):

λ(M1,M2) ≡ −2 log

(L(M1)

L(M2)

)

= −2 log

(L(ρ̂ML,M1
)

L(ρ̂ML,M2
)

)

= −2 log




max
ρ∈M1

L(ρ)

max
ρ∈M2

L(ρ)


 .

(3.1)

All else being equal, a positive λ favorsM2 – i.e., the model with the higher likelihood

is more plausible, because it fits the data better. However, all else is rarely equal.

If both models are equally valid – e.g., they both contain ρ0 – but M2 has more

parameters, then M2 will very probably fit the data better. Models with more

adjustable parameters do a better job of fitting noise (e.g., finite sample fluctuations)

in the data. This becomes strictly true when the models are nested, so that M1 ⊂
M2. In this case, the likelihood ofM2 is at least as high as that ofM1; not only is

λ ≥ 0, but almost surely λ > 0.

Remarkably, the same effect also makes M2’s fit less accurate (almost surely), be-

cause the fit incorporates more of the noise in the data. These two effects constitute

overfitting, which can be summed up as “Extra parameters make the fit look better,

but perform worse.”. An overfitted model would fit current data extremely well,

but would fail to accurately predict future data. This provides strong motivation to

correct for overfitting by penalizing or handicapping larger models, to prevent them

from being chosen over smaller models that are no less valid, and may even yield

better estimates in practice (5). As I’ll discuss in Chapter 5, a similar problem occurs
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when using machine learning algorithms to design new QCVV techniques. Just as

complex statistical models can overfit the data and then generalize poorly to predict

future data, machine learning algorithms can do the same, and require either explicit

regularization or cross-validation to ensure the tools they learn generalize well.

For this reason, any model selection method/criterion that relies (explicitly or im-

plicitly) on a statistic to quantify “how well model M fits the data” also relies on a

null theory to predict how that statistic will behave if some null hypothesis is true.

For the model selection problems we consider, the null hypothesis is that ρ0 ∈ M,

and the null theory will tell us how statistics of interest behave when that null hy-

pothesis is in fact true. A model selection criterion based on an invalid null theory

(or a criterion used in a context where its null theory does not apply) will tend to

perform sub-optimally (as compared to a method based on a correct null theory).

The null theory can be used to formulate a decision rule for choosing between models.

If how the test statistic behaves when both models are equally valid is known, then

calculating the observed value of the statistic under the null theory is possible. If

the observed value is very improbable under the null theory, then that constitutes

evidence against the smaller model, and justifies rejecting it. On the other hand, if

the observed value is consistent with the null theory, there is no reason to reject the

smaller model.

The standard null theory for λ is the Wilks theorem (323). It relies on local asymptotic

normality (LAN) (190; 189). LAN is a property of M; if M satisfies LAN, then as

Nsamples →∞:

• The ML estimate ρ̂ML,M is normally distributed around ρ0 with covariance

matrix I−1:

Pr(ρ̂ML,M) ∝ exp [−Tr[(ρ0 − ρ̂ML,M)I(ρ0 − ρ̂ML,M)]/2] . (3.2)

• The likelihood function in a neighborhood of ρ̂ML,M is locally Gaussian with
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Hessian I:

L(ρ) ∝ exp [−Tr[(ρ− ρ̂ML,M)I(ρ− ρ̂ML,M)]/2] . (3.3)

Here, I is the (classical) Fisher information matrix associated with the POVM. It

quantifies how much information the data carry about a parameter in the model.

Note that in expressions involving I, states ρ are treated as vectors in state space,

and I is a matrix or 2-index tensor acting on that state space.

Most statistical models satisfy LAN. When LAN is satisfied and Nsamples is large

enough to reach the “asymptotic” regime, we can invoke the Wilks theorem to deter-

mine the behavior of λ. This theorem says that under suitable regularity conditions,

if ρ0 ∈M1 ⊂M2, whereM2 has K more parameters thanM1, then λ is a χ2
K ran-

dom variable. This is a complete null theory for λ (under the specified conditions),

and implies that 〈λ〉 = K and (∆λ)2 = 2K.

Therefore, in the “Wilks regime”, a simple criterion for model selection would be to

compare the observed value of λ to λthresh = 〈λ〉 + k∆λ, for some k ≈ 1, and reject

the smaller model if λ > λthresh. While model selection rules can be more subtle

and complex than this (5; 270; 166; 285), they usually take the general form of a

threshold in which 〈λ〉 plays a key role. Rather than attempting to define a specific

rule, the purpose in this chapter is to understand the behavior of 〈λ〉 and derive an

approximate expression for it in the context of state tomography.

The first step in doing so is to explain how and why the Wilks theorem breaks down

in that context.
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3.3 Quantum state tomography and the break-

down of the Wilks theorem

Quantum state tomography typically begins with Nsamples independently and identi-

cally prepared quantum systems – i.e., Nsamples copies of an unknown state ρ0. Each

copy is measured, and without loss of generality we can assume that each measure-

ment is described by the same positive operator-valued measure (POVM). A POVM

is a collection of positive operators {Ej} summing to 1l, and the probability of out-

come “j” is given by Tr(ρ0Ej). The results of all Nsamples measurements constitute

data, represented as a record of the frequencies of the possible outcomes {nj}, where

nj is the number of times “j” was observed, and
∑

j nj = Nsamples. Finally, this data

is processed through some estimator to yield an estimate of ρ0, denoted ρ̂ .

Although a variety of estimators have been proposed (310; 149; 155; 36; 35; 335; 99),

the exact estimator used is not our concern here. However, since we are concerned

with computing the likelihood of a model M, which is defined as the likelihood of

the most likely ρ ∈M, we will make extensive use of the maximum likelihood (ML)

estimator. This should not be taken as advocacy for the ML estimator; it is only a

convenient way to find the maximum of L over M, and once a model is chosen, a

different estimator could be used. The likelihood L(ρ) is

L(ρ) =
∏

j

Tr(ρEj)
nj , (3.4)

and ρ̂ML,M is the solution to the optimization problem

ρ̂ML,M = argmax
ρ∈M

L(ρ). (3.5)

In state tomography,M is almost always the set of all density matrices over a Hilbert

space H:

MH = {ρ | ρ ∈ B(H), Tr(ρ) = 1, ρ ≥ 0}, (3.6)
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where B(H) is the space of bounded linear operators on H. To determine ρ̂ML,M, we

can use the following facts: (a) MH is a convex set, and (b) ρ̂ML,M minimizes the

value of the convex function − log[L(ρ)]. Because ρ̂ML,M is the solution to minimizing

a convex function over a convex set, it can be found efficiently via any of several

algorithms for convex optimization (45).

Usually, H is taken for granted or chosen by fiat. In this chapter, I consider a nested

family of different Hilbert spaces, indexed by their dimension d: H1 ⊂ · · · ⊂ Hd ⊂
Hd+1 ⊂ · · · . The models we consider are therefore given by:

Md ≡MHd
= {ρ | ρ ∈ B(Hd), Tr(ρ) = 1, ρ ≥ 0}. (3.7)

For notational brevity, we will use ρ̂ML,d to denote the ML estimate over Md. Se-

lecting between these models means determining whether one model (say, Md+1)

is “better” than another (say, Md). To evaluate which is better, the likelihood of

each model is computed, and then λ(Md,Md+1) is used to choose between them.

As mentioned in the previous section, this requires having a null theory for λ that

describes its behavior when ρ0 ∈Md ⊂Md+1.

The Wilks theorem, which is the classical null theory for λ, relies on local asymptotic

normality (LAN). If the models under consideration satisfy LAN, then as mentioned

in the previous section, the likelihood L(ρ) is Gaussian with a Hessian given by the

Fisher information. In classical statistics, it is common to assume that boundaries

are not relevant, either because the models of interest have none, or because the

true parameter values ρ0 lie far away from them. In the absence of boundaries,

and in the asymptotic limit where the curvature of the Fisher information metric is

also negligible, many calculations can be simplified by changing to Fisher-adjusted

coordinates in which the Fisher information is isotropic (i.e., I ∝ 1l). Under these

assumptions and simplifications, the Wilks theorem can be derived.

In quantum state tomography, the Wilks theorem breaks down for two reasons. First,

the quantum state space does have boundaries. Second, the Fisher information is
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anisotropic, and the anisotropy can’t easily be eliminated by a coordinate change

because those boundaries define a preferred coordinate system. We discuss these

obstacles – and our plan to address them – in detail in the remainder of this section.

Given a model Md, its boundary is the set of rank-deficient states within it. When

ρ0 ∈ Md and is full rank, LAN will hold – which is to say that, asymptotically,

the boundary can indeed be ignored. But when ρ0 is rank-deficient, it lies on the

boundary of the model. LAN is not satisfied, because positivity constrains ρ̂ML,d,

and so Pr(ρ̂ML,d) is not Gaussian (see Figure 3.1). The Wilks theorem does not

apply in this case, and its predictions regarding 〈λ〉 aren’t even close (see Figure

3.2). Moreover, this is the relevant situation for our analysis, because even if ρ0 is

full-rank in Md, it must be rank-deficient in Md+1. So we require a replacement for

the Wilks theorem; that is, we need a null theory for λ when ρ0 is rank-deficient.

One challenge in deriving this replacement is that the Fisher information generally

depends strongly on ρ0 and the POVM being measured (see Figure 3.5). In many

standard derivations, such anisotropy has no impact and can be eliminated easily

by changing to Fisher-adjusted coordinates. But the models we consider (quantum

states) have boundaries that break scale-invariance, and define preferred coordinate

systems. Changing to Fisher-adjusted coordinates does not eliminate the effect of

anisotropy, because the boundary has a new shape in the new coordinates that

serves as a record of the anisotropy. Moreover, the methods we derive here for

calculating the impact of the boundary rely heavily on a particular coordinate system

(Hilbert-Schmidt coordinates), and changing to Fisher-adjusted coordinates would

break them. This makes it very difficult to derive a precise generalization of the

Wilks theorem for arbitrary Fisher information, so to derive our results we make the

key simplifying assumption that the Fisher information is isotropic with respect to

Hilbert-Schmidt metric. (This metric defines a distance between density matrices

ρ1 and ρ2 that is given by d(ρ1, ρ2) = Tr[(ρ1 − ρ2)2].) This is almost never exactly
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Rank(ρ0) =10

(various colors) Rank(ρ0) = 2...9

Rank(ρ0) =1

Figure 3.2: Predictions of the Wilks theorem vs reality. In the context of
state tomography on a true state ρ0 in a d-dimensional Hilbert space, the Wilks
theorem can be used to predict that, when comparing the zero-parameter model
M0 = {ρ0} and the (d2 − 1)-parameter model Md defined in Equation (3.7), the
expected loglikelihood ratio 〈λ(M0,Md)〉 will be d2 − 1. Here, we compare that
prediction to numerical simulations of tomography on states ρ0 in dimension d =
2, . . . , 30, with ranks r = 1, . . . ,min(10, d). The Wilks theorem only predicts 〈λ〉
correctly for full-rank states; when r � d, the actual expected loglikelihood ratio
is much smaller. Our main result (Equation 3.43) gives a replacement that works
correctly (see Figure 3.10).

true in practice3, but it is reasonable to presume that our results remain useful and

approximately true when the Fisher information is almost isotropic. In Chapter 4

Section 4.2, I present numerical results showing that the null theory for λ developed

in this chapter under the assumption of isotropic Fisher information appears to be

surprisingly robust to significant anisotropy.

To derive our replacement for the Wilks theorem, we first need a new framework for

reasoning about models with convex constraints. Such a framework is developed in

the next section by defining a new generalization of LAN.

3Jonathan A Gross, private communication
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3.4 MP-LAN: a generalization of LAN for models

with convex constraints

In this section, I develop a framework that will allow us to derive a replacement for

the Wilks theorem that holds for rank-deficient ρ0. To do so, I define a generalization

of LAN in the presence of boundaries, which called metric-projected local asymptotic

normality (MP-LAN). (For other generalizations of LAN, see (262; 158).) Like LAN,

MP-LAN is a property that a statistical model may satisfy. Unlike LAN, MP-LAN is

satisfied by quantum state space. For any model that satisfies MP-LAN (quantum or

classical), I compute an asymptotically exact expression for λ, a necessary building

block in our replacement for the Wilks theorem.

In Section 3.5, I show that the modelsMd satisfy MP-LAN, and derive an approxi-

mation for 〈λ〉 (Equation (3.43), on page 71). Section 3.5.5 compares the theory to

numerical results.

The reader should note that to enhance readability, in this section (and only this

section) N is used to denote the number of samples, previously denoted as Nsamples.

3.4.1 Defining MP-LAN; overview of its implications

The main definitions and results required for the remainder of the chapter are pre-

sented in this subsection. Technical details and proofs are presented in the next

subsection.

Definition 1 (Metric-projected local asymptotic normality, or MP-LAN). A model

M satisfies MP-LAN if M is a convex subset of a model M′ that satisfies LAN.

The modelM′ will be used to define a set of unconstrained ML estimates ρ̂ML,M′ , some

of which may not satisfy the positivity constraint. While there are many possible

choices for this “unconstrained model”M′, we will find it useful to letM′ be a model

whose dimension is the same asM, but where any of the constraints that defineM
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are lifted. (For example, in Lemma 5, we will take M′ to be Hermitian matrices of

dimension d.) Other choices of M′ are possible, but I do not explore those here.

Although the definition of MP-LAN is rather short, it implies some very useful

properties. These properties follow from the fact that, as N → ∞, the behavior of

ρ̂ML,M and λ is entirely determined by their behavior in an arbitrarily small region

of M around ρ0, called the local state space.

Definition 2 (Local state space). For each natural number N , let IN = I/N be the

(scaled) Fisher information matrix of M at ρ0, and let MN be the set obtained by

re-scaling each point in M by I
−1/2
N . For each N , let CN be a convex subset of MN ,

chosen so that (a) CN+1 contains CN , and (b) limN→∞ Pr(ρ̂ML,M ∈ CN) = 1. Then

the sequence {CN : N = 1, 2...} converges to the local state space around ρ0.

Models that satisfy MP-LAN have the following asymptotic properties:

• The local state space is the solid tangent cone of the model at ρ0, denoted

T (ρ0).

• The ML estimate ρ̂ML,M is given by the metric projection of ρ̂ML,M′ onto T (ρ0):

ρ̂ML,M = argmin
ρ∈T (ρ0)

(ρ− ρ̂ML,M′)I(ρ− ρ̂ML,M′). (3.8)

I first encountered the term “metric projection” in the convex optimization lit-

erature (209; 8), and inspires our choice for the acronym “MP-LAN”. However,

it should be noted that in the problem setting considered in those references,

I = 1l. See discussion in Chapter 4, Section 4.2.7.

• The loglikelihood ratio λ(ρ0,M), defined as

λ(ρ0,M) = −2 log


 L(ρ0)

max
ρ∈M

L(ρ)


 , (3.9)

takes the following simple form:

λ(ρ0,M) = Tr[(ρ0 − ρ̂ML,M)I(ρ0 − ρ̂ML,M)]. (3.10)
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ρ0

ρ̂ML,M1

ρ̂ML,M2

ρ̂ML,M′
M1 M2

Figure 3.3: Equivalence of λ and squared distance when MP-LAN is satis-
fied. For any model Mk, λ(ρ0,Mk) is the difference between the squared distance
from ρ0 to ρ̂ML,M′ and that from ρ̂ML,Mk

to ρ̂ML,M′ (black lines). If Mk satisfies MP-
LAN, then (a) Mk ⊂ M′ for an unconstrained model M′, and (b) λ is equal, in
the asymptotic limit, to the squared distance from ρ̂ML,Mk

to ρ0 (red lines), because
ρ0, ρ̂ML,M′ , and ρ̂ML,Mk

form a right triangle. This is also true for models with curved
boundaries (such as quantum state space) because asymptotically, the local state
space is the solid tangent cone, whose boundaries are always flat.

This property is non-trivial; see Figure 3.3.

Even whenM satisfies MP-LAN, these properties may not be true when N is finite;

they are guaranteed only in the asymptotic limit. When N is sufficiently large, we

can (and will!) use the asymptotic properties above.

The following subsection presents the technical details and definitions necessary to

show the above results. The reader may skip it without loss of continuity, and

proceed to Section 3.5.
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3.4.2 Technical details: implications of MP-LAN

Assume a statistical modelM that satisfies MP-LAN. Below, I prove the properties

of M asserted in Section 3.4.1.

Convergence of the local state space to the solid tangent cone

Because M satisfies MP-LAN, there exists a model M′ ⊃ M of dimension d′ that

satisfies LAN. This means that as N →∞, the distribution of ρ̂ML,M′ converges to a

Gaussian:

Pr(ρ̂ML,M′)
d−→ N (ρ0,Σ/N), (3.11)

where
d−→ means “converges in distribution to”, and Σ = I−1. The shape of the

distribution is entirely determined by I. As N → ∞, this Gaussian distribution

becomes more and more tightly concentrated around ρ0. Although there is always

a non-zero probability that ρ̂ML,M′ will be arbitrarily far away from ρ0, it is possible

to define a sequence of balls BN that shrink with N , yet contain every ρ̂ML,M′ with

probability 1 as N →∞.

First, we switch coordinates by sending ρ → ρ − ρ0, establishing ρ0 as the origin of

the coordinate system. In these coordinates, ρ̂ML,M′ ∼ N (0,Σ/N), and the following

lemma constructs BN .

Lemma 1. Let ρ̂ML,M′ ∼ N (0,Σ/N), and let λmax(Σ) denote the largest eigenvalue

of Σ. Define BN = {ρ ∈ M′ | Tr(ρ2) ≤ r2}, where r =
√
λmax(Σ)/N1/4. Then,

limN→∞ Pr(ρ̂ML,M′ ∈ BN) = 1.

Proof. Let B0
N be an ellipsoidal ball defined by {ρ ∈ M′ | Tr(ρΣ−1ρ) ≤ 1/N1/2}.

Change coordinates by defining σ = N1/2Σ−1/2ρ. In these new coordinates σ̂ML,M′ ∼
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N (0, 1ld′), and B0
N = {σ ∈M′ | Tr(σ2) ≤ N1/2}. Therefore,

Pr(σ̂ML,M′ ∈ B0
N) = Pr(Tr(σ̂2

ML,M′) ≤ N1/2)

=

∫ N1/2

0

χ2
d′(z) dz,

(3.12)

because Tr(σ̂2
ML,M′) is a χ2

d′ random variable. It follows that

lim
N→∞

Pr(σ̂ML,M′ ∈ B0
N) =

∫ ∞

0

χ2
d′(z) dz = 1. (3.13)

Switching back to the original coordinates, we have

B0
N = {ρ ∈M′ | Tr(ρΣ−1ρ) ≤ 1/N1/2}, (3.14)

and limN→∞ Pr(ρ̂ML,M′ ∈ B0
N) = 1.

Now that we know B0
N contains all ρ̂ML,M′ as N → ∞, we can now show the same

holds true for BN . It suffices to show B0
N ⊂ BN . To see that this is the case, write

the equation for B0
N in the standard quadratic form for an ellipsoid:

B0
N = {ρ ∈M′ | Tr(ρ(N1/2Σ−1)ρ) ≤ 1}. (3.15)

The standard ellipsoid {x | xTAx ≤ 1} has semi-major axes whose lengths sj are

related to the eigenvalues aj of A: sj = 1/
√
aj. The matrix A = N1/2Σ−1 has

eigenvalues N1/2/λj, where λj are the eigenvalues of Σ. Thus, the lengths of the

semi-major axes of B0
N are given by sj = 1/

√
N1/2/λj =

√
λj/N

1/4. Letting λmax(Σ)

denote the largest eigenvalue of Σ, the longest semi-major axis of B0
N has length

√
λmax(Σ)/N1/4. Because BN is a ball whose radius is equal to this length, BN

circumscribes B0
N , and B0

N ⊂ BN .

As B0
N ⊂ BN , it follows from the monotonicity of probability that Pr(ρ̂ML,M′ ∈

B0
N) ≤ Pr(ρ̂ML,M′ ∈ BN). As the asymptotic limit of Pr(ρ̂ML,M′ ∈ B0

N) is 1, and

Pr(ρ̂ML,M′ ∈ BN) itself is bounded above by 1, it follows from the squeeze theorem

that limN→∞ Pr(ρ̂ML,M′ ∈ BN) = 1.
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Informally speaking, Lemma 1 implies that as N →∞ “all the action” about ρ̂ML,M′

takes place inside BN . Accordingly, to understand the behavior of quantities which

depend on ρ̂ML,M′ (such as ρ̂ML,M and λ), it is sufficient to consider their behavior

within BN . In fact, asymptotically all the ρ̂ML,M are contained within the region

CN ≡ BN ∩M:

Lemma 2. limN→∞ Pr(ρ̂ML,M ∈ CN) = 1.

Proof. Using the law of total probability, write Pr(ρ̂ML,M ∈ CN) as a sum of two

terms, depending on whether ρ̂ML,M′ ∈ BN . Letting p denote Pr(ρ̂ML,M′ ∈ BN), we

have

Pr(ρ̂ML,M ∈ CN) = pPr(ρ̂ML,M ∈ CN |ρ̂ML,M′ ∈ BN)

+ (1− p)Pr(ρ̂ML,M ∈ CN |ρ̂ML,M′ 6∈ BN)

≥ pPr(ρ̂ML,M ∈ CN |ρ̂ML,M′ ∈ BN).

(3.16)

For any ρ̂ML,M′ ∈ BN , the corresponding ρ̂ML,M is somewhere inM. To show ρ̂ML,M ∈
CN , we use a proof by contradiction. Suppose that ρ̂ML,M is the ML estimate in M
for ρ̂ML,M′ , and that ρ̂ML,M 6∈ CN . Let ρC denote the closest point in CN to ρ̂ML,M.

Because BN ⊃ CN , it follows that ρC is closer to ρ̂ML,M′ than ρ̂ML,M, contradicting the

assumption ρ̂ML,M was the ML estimate in M for ρ̂ML,M′ . Therefore, if ρ̂ML,M′ ∈ BN ,

it must be the case that ρ̂ML,M ∈ CN .

Consequently, Pr(ρ̂ML,M ∈ CN |ρ̂ML,M′ ∈ BN) = 1, implying Pr(ρ̂ML,M ∈ CN) ≥
Pr(ρ̂ML,M′ ∈ BN). Applying the squeeze theorem, plus Lemma 1, we conclude

limN→∞ Pr(ρ̂ML,M ∈ CN) = 1.

In the original coordinates, both BN and the distribution of ρ̂ML,M′ shrink with N ,

but BN shrinks more slowly. Suppose, instead, that we switch to N -dependent coor-

dinates that shrink with the distribution of ρ̂ML,M′ . In these coordinates,M andM′

grow with N , and BN also grows (but more slowly). This homothetic transformation
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ofM,M′, and BN scales all of them up. As N →∞, BN → Rd′ , and the local state

space is the solid tangent cone of M at ρ0.

Definition 3 (Homothetic Transformation). Given a convex set C, the homothetic

transformation of C with respect to any point X ∈ C, with homothety coefficient h,

is the set Ch defined by

Ch = {X + hY | ∀ Y ∈ C, Y 6= X}. (3.17)

Definition 4 (Solid Tangent Cone). For each point X in a convex set C, let Ch be

the homothetic transformation of C with respect to X, with homothety coefficient h.

Then, the solid tangent cone T (X) is defined as the following limit:

T (X) = lim
h→∞

Ch. (3.18)

Tangent cones are a general feature of convex sets; see (256), Chapter 6, Section A

for more information about them and their properties.

Let CN = BN ∩M in Hilbert-Schmidt coordinates. I show that, in an N -dependent

coordinate system, CN converges to the solid tangent cone, and is the local state

space.

Lemma 3. Consider the set CN = BN ∩ M in Hilbert-Schmidt coordinates, and

define C ′N = {N1/2ρ ∀ ρ ∈ CN}. Then:

1) limN→∞C
′
N is the solid tangent cone at ρ0.

2) limN→∞C
′
N is the local state space.

Proof.

1) By definition, C ′N is a homothetic transformation of CN , with homothety co-

efficient N1/2. (The homothetic center is ρ0; in these coordinates, it is 0.) By

definition, limN→∞C
′
N is the solid tangent cone at ρ0.
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2) The original set CN is a convex subset of M, and from Lemma 2,

lim
N→∞

Pr(ρ̂ML,M ∈ CN) = 1. (3.19)

Further, the coordinate system defined by the mapping ρ → N1/2ρ turns

the (previously N -dependent) Fisher information I into a constant. Thus,

limN→∞C
′
N is the local state space.

Therefore, I have shown that, asymptotically, the local state space around ρ0 is the

solid tangent cone T (ρ0). The geometry of T (ρ0) depends strongly on ρ0. If ρ0 is

rank-deficient within M, then T (ρ0) is the cone whose faces touch M at ρ0. (See

Figure 3.4 for a rebit example.) However, if ρ0 is full-rank, T (ρ0) is Rd2−1.

MLE as metric projection

As N → ∞, all the ρ̂ML,M′ are contained within the ball BN , and the local state

space is the solid tangent cone. Because M′ satisfies LAN, the likelihood function

around each ρ̂ML,M′ is Gaussian, meaning the optimization problem defining ρ̂ML,M is

given by

ρ̂ML,M = argmin
ρ∈T (ρ0)

Tr[(ρ− ρ̂ML,M′)I(ρ− ρ̂ML,M′)]. (3.20)

This equation shows that ρ̂ML,M is the metric projection of ρ̂ML,M′ onto the tangent

cone. See Figure 3.4 for a rebit example. (Notice that if ρ̂ML,M′ ∈ T (ρ0), then

ρ̂ML,M = ρ̂ML,M′ .) What makes this nontrivial is the replacement of the original state

space M, whose geometry can be arbitrarily complicated, with its tangent cone

T (ρ0). As shown in the next section, cones can be much simpler and tractable.
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ρ0

ρ̂ML,M

T (ρ0)

M

M′

ρ̂ML,M′

Tangent Cone Example (Rebit)

Figure 3.4: Example of the solid tangent cone for a rebit. As N → ∞,
the local state space around ρ0 is T (ρ0). In Fisher-adjusted coordinates, it’s easy to
show that (a) ρ̂ML,M is the metric projection of ρ̂ML,M′ onto T (ρ0), and (b) λ(ρ0,M) =
Tr[(ρ̂ML,M − ρ0)2].

Expression for λ(ρ0,M)

The loglikelihood ratio statistic between any two models λ(M1,M2) can be com-

puted using a reference model R:

λ(M1,M2) = λ(R,M2)− λ(R,M1), (3.21)

where

λ(R,M) = −2 log

( L(R)

L(M)

)
= −2 log




max
ρ∈R
L(ρ)

max
ρ∈M

L(ρ)


 . (3.22)
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Let us take R = ρ0. Because M′ satisfies LAN, asymptotically L(ρ) is Gaussian,

and λ relates to a difference in squared distances:

λ(ρ0,M) = −2 log


 L(ρ0)

max
ρ∈M

L(ρ)




−−−→
N→∞

Tr[(ρ0 − ρ̂ML,M′)I(ρ0 − ρ̂ML,M′)]

− Tr[(ρ̂ML,M − ρ̂ML,M′)I(ρ̂ML,M − ρ̂ML,M′)].

(3.23)

Using the fact ρ̂ML,M is a metric projection, λ(ρ0,M) has a simple form.

Lemma 4. λ(ρ0,M) = Tr[(ρ0 − ρ̂ML,M)I(ρ0 − ρ̂ML,M)].

Proof. We switch to Fisher-adjusted coordinates (ρ → I1/2ρ), and in these coordi-

nates I becomes 1l:

λ(ρ0,M) = Tr[(ρ0 − ρ̂ML,M′)2]− Tr[(ρ̂ML,M − ρ̂ML,M′)2]. (3.24)

To prove the lemma, we must consider two cases:

Case 1 : Assume ρ̂ML,M′ 6∈ T (ρ0). Because ρ̂ML,M is the metric projection of ρ̂ML,M′

onto T (ρ0) (Equation (3.20)), the line joining ρ̂ML,M′ and ρ̂ML,M is normal to T (ρ0) at

ρ̂ML,M. Because T (ρ0) contains ρ0 (as its origin), it follows that the lines joining ρ0 to

ρ̂ML,M, and ρ̂ML,M to ρ̂ML,M′ , are perpendicular (see Figure 3.4). By the Pythagorean

theorem,

Tr[(ρ0 − ρ̂ML,M′)2] = Tr[(ρ0 − ρ̂ML,M)2] + Tr[(ρ̂ML,M − ρ̂ML,M′)2]. (3.25)

Subtracting Tr[(ρ̂ML,M− ρ̂ML,M′)2] from both sides, and comparing to Equation (3.24),

yields the lemma statement in Fisher-adjusted coordinates.

Case 2 : Assume ρ̂ML,M′ ∈ T (ρ0). Then, ρ̂ML,M = ρ̂ML,M′ , and Equation (3.24) simpli-

fies to the lemma statement in Fisher-adjusted coordinates.

Switching back from Fisher-adjusted coordinates yields

λ(ρ0,M) = Tr[(ρ0 − ρ̂ML,M)I(ρ0 − ρ̂ML,M)]. (3.26)
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So if M satisfies MP-LAN then as N →∞ the loglikelihood ratio statistic becomes

related to squared error/loss (as measured by the Fisher information metric.) This

result may be of independent interest in, for example, defining new information cri-

teria, which attempt to balance goodness of fit (as measured by λ) against error/loss

(generally, as measured by squared error).

Having defined a new generalization of LAN for models with convex constraints, I

now turn to three specific applications of MP-LAN. The first derives a replacement

for the Wilks theorem, the second derives an expression for the expected rank of ML

estimates, and the third shows how our replacement for the Wilks theorem can be

used to choose a Hilbert space dimension for an optical quantum system.

3.5 A Wilks theorem for quantum state space

To derive a replacement for the Wilks theorem, I start by showing the models Md

satisfy MP-LAN.

Lemma 5. The models Md, defined in Equation (3.7), satisfy MP-LAN.

Proof. Let M′
d = {σ | dim(σ) = d, σ = σ†,Tr(σ) = 1}. M′

d is the set of all trace-1,

d × d Hermitian matrices, but they are not required to be non-negative. It is clear

Md ⊂M′
d. Now, ∀ σ ∈M′

d, the likelihood L(σ) is twice continuously differentiable,

meaning M′
d satisfies LAN. Thus, Md satisfies MP-LAN.

The problem of computing λ(Md,Md+1) can be reduced to that of computing

λ(ρ0,Mk) for k = d, d+ 1 using the identity

λ(Md,Md+1) = λ(ρ0,Md+1)− λ(ρ0,Md), (3.27)
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where λ(ρ0,Mk) is given in Equation (3.9). Because each model satisfies MP-LAN,

asymptotically, λ(ρ0,Mk) takes a very simple form, via Equation (3.10):

λ(ρ0,Mk) = Tr[(ρ0 − ρ̂ML,Mk
)Ik(ρ0 − ρ̂ML,Mk

)]. (3.28)

The Fisher information Ik is generally anisotropic, depending on ρ0, the POVM

being measured, and the modelMk (see Figure 3.5). And while the ρ ≥ 0 constraint

that invalidated LAN in the first place is at least somewhat tractable in standard

(Hilbert-Schmidt) coordinates, it becomes completely intractable in Fisher-adjusted

coordinates. So, to obtain a semi-analytic null theory for λ, I will simplify to the case

where Ik = 1lk/ε
2 for some ε that scales as 1/

√
Nsamples. (That is, Ik is proportional

to the Hilbert-Schmidt metric.) This simplification permits the derivation of analytic

results that capture realistic tomographic scenarios surprisingly well (283).

With this simplification, λ(Md,Md+1) is given by

λ =
1

ε2
(
Tr[(ρ0 − ρ̂ML,d+1)

2]− Tr[(ρ0 − ρ̂ML,d)
2]
)
. (3.29)

That is, λ is a difference in Hilbert-Schmidt distances. This expression makes it

clear why a null theory for λ is necessary: if ρ0 ∈ Md,Md+1, then ρ̂ML,d+1 will lie

further from ρ0 than ρ̂ML,d (because there are more parameters that can fit noise in

the data). The null theory for λ tells us how much extra error will be incurred in

using Md+1 to reconstruct ρ0 when Md is just as good.

Describing Pr(λ) is difficult because the distributions of ρ̂ML,d, ρ̂ML,d+1 are complicated,

highly non-Gaussian, and singular (estimates “pile up” on the various faces of the

boundary as shown in Figure 3.1). For this reason, I will not attempt to compute

Pr(λ) directly. Instead, I focus on deriving a good approximation for 〈λ〉.

I consider each of the terms in Equation (3.29) separately and focus on computing

ε2〈λ(ρ0,Md)〉 = 〈Tr[(ρ̂ML,d−ρ0)2]〉 for arbitrary d. Doing so involves two main steps:

(1) Identify which degrees of freedom in ρ̂ML,M′
d

are, and are not, affected by pro-

jection onto the tangent cone T (ρ0).
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−1.0 −0.5 0.0 0.5 1.0
〈σX〉

−1.0

−0.5

0.0

0.5

1.0

〈σ
Z
〉

Anisotropic Fisher information (Rebit)

Figure 3.5: Anisotropy of the Fisher information for a rebit Suppose a rebit
state ρ0 (star) is measured using the POVM 1

2
{|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|}. De-

pending on ρ0, the distribution of the unconstrained estimates ρ̂ML (ellipses) may be
anisotropic. Imposing the positivity constraint ρ ≥ 0 is difficult in Fisher-adjusted
coordinates; in this chapter, these complexities are simplified to the case where I ∝ 1l,
and is independent of ρ0.

(2) For each of those categories, evaluate its contribution to the value of 〈λ〉.

In Section 3.5.1, I identify two types of degrees of freedom in ρ̂ML,M′ , called the “L”

and the “kite”. Section 3.5.2 computes the contribution of degrees of freedom in

the “L”, and Section 3.5.3 computes the contribution from the “kite”. The total

expected value is given in Equation (3.43) in Section 3.5.4, on page 71.
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3.5.1 Separating out degrees of freedom in ρ̂ML,M′
d

We begin by observing that λ(ρ0,Md) can be written as a sum over matrix elements,

λ = ε−2Tr[(ρ̂ML,d − ρ0)2] = ε−2
∑

jk

|(ρ̂ML,d − ρ0)jk|2

=
∑

jk

λjk where λjk = ε−2|(ρ̂ML,d − ρ0)jk|2,
(3.30)

and therefore 〈λ〉 =
∑

jk〈λjk〉. Each term 〈λjk〉 quantifies the mean-squared error of

a single matrix element of ρ̂ML,d, and while the Wilks theorem predicts 〈λjk〉 = 1 for

all j, k, due to positivity constraints, this no longer holds. In particular, the matrix

elements of ρ̂ML,d now fall into two parts:

1. Those for which the positivity constraint does affect their behavior.

2. Those for which the positivity constraint does not affect their behavior, as

they correspond to directions on the surface of the tangent cone T (ρ0). (Recall

Figure 3.4 - as a component of ρ̂ML,M′ along T (ρ0) changes, the component of

ρ̂ML,M changes by the same amount. These elements are unconstrained.)

The latter, which lie in what I call the “L”, comprise all off-diagonal elements on the

support of ρ0 and between the support and the kernel, while the former, which lie in

what I call the “kite”, are all diagonal elements and all elements on the kernel (null

space) of ρ0.

Performing this division is also supported by numerical simulations (see Figure 3.6).

Matrix elements in the “L” appear to contribute 〈λjk〉 = 1, consistent with the Wilks

theorem, while those in the “kite” contribute more (if they are within the support

of ρ0) or less (if they are in the kernel). Having performed the division of the matrix

elements of ρ̂ML,M′
d
, observe that 〈λ〉 = 〈λL〉 + 〈λkite〉. Because each 〈λjk〉 is not

necessarily equal to one (as in the Wilks theorem), and because many of them are

less than 1, it is clear that their total 〈λ〉 is dramatically lower than the prediction

of the Wilks theorem. (Recall Figure 3.2.)
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“Kite”“L”

“L”

Matrix Elements of ρ̂M′
d

1 0.98 0.12 0.12 0.12 0.11 0.11 0.3

1 1 0.12 0.12 0.11 0.12 0.33 0.11

1 1 0.12 0.12 0.12 0.34 0.12 0.11

1 1 0.12 0.12 0.29 0.12 0.11 0.12

0.99 0.99 0.13 0.38 0.12 0.12 0.12 0.12

0.94 1 0.35 0.13 0.12 0.12 0.12 0.12

1 2.6 1 0.99 1 1 1 0.98

2.7 1 0.94 0.99 1 1 1 1

〈λjk〉

Figure 3.6: Division of the matrix elements of ρ̂ML,M′
d
. When a rank-2 state

is reconstructed in d = 8 dimensions, the total loglikelihood ratio λ(ρ0,M8) is the
sum of terms λjk from errors in each matrix element (ρ̂ML,d)jk. Left: Numerics show
a clear division; some matrix elements have 〈λjk〉 ∼ 1 as predicted by the Wilks
theorem, while others are either more or less. Right: The numerical results support
our theoretical reasoning for dividing the matrix elements of ρ̂ML,M′

d
into two parts:

the “kite” and the “L”.

In the following subsections, I develop a theory to explain the behavior of 〈λL〉 and

〈λkite〉. In doing so, it is helpful to think about the matrix δ ≡ ρ̂ML,M′
d
− ρ0, a

normally-distributed traceless matrix. To simplify the analysis, I explicitly drop

the Tr(δ) = 0 constraint and let δ be N (0, ε21l) distributed over the d2-dimensional

space of Hermitian matrices (a good approximation when d � 2), which makes δ

proportional to an element of the Gaussian Unitary Ensemble (GUE) (112).

3.5.2 Computing contributions from the “L”

The value of each δjk in the “L” is invariant under projection onto the boundary

(the surface of the tangent cone T (ρ0)), meaning that it is also equal to the error

(ρ̂ML,d− ρ0)jk. Therefore, 〈λjk〉 = 〈δ2
jk〉/ε2. BecauseM′ satisfies LAN, it follows that

each δjk is an i.i.d. Gaussian random variable with mean zero and variance ε2. Thus,

〈λjk〉 = 1 ∀ (j, k) in the “L”. The dimension of the surface of the tangent cone is
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equal to the dimension of the manifold of rank-r states in a d-dimensional space. A

direct calculation of that quantity yields 2rd− r(r + 1), so 〈λL〉 = 2rd− r(r + 1).

Another way of obtaining this result is to view the δjk in the “L” as errors arising

due to small unitary perturbations of ρ0. Writing ρ̂ML,M′
d

= U †ρ0U , where U = eiεH ,

we have

ρ̂ML,M′
d
≈ ρ0 + iε[ρ0, H] +O(ε2), (3.31)

and δ ≈ iε[ρ0, H]. If j = k, then δjj = 0. Thus, small unitaries cannot create errors

in the diagonal matrix elements, at O(ε). If j 6= k, then δjk 6= 0, in general. Small

unitaries can introduce errors in off-diagonal elements.

However, if either j or k (or both) lie within the kernel of ρ0 (i.e., 〈k|ρ0|k〉 or 〈j|ρ0|j〉
is 0), then the corresponding δjk are zero. The only off-diagonal elements where

small unitaries can introduce errors are those which are coherent between the kernel

of ρ0 and its support. These off-diagonal elements are precisely the “L”, and are the

set {δjk | 〈j|ρ0|j〉 6= 0, j 6= k, 0 ≤ j, k ≤ d − 1}. This set contains 2rd − r(r + 1)

elements, each of which has 〈λjk〉 = 1, so we again arrive at 〈λL〉 = 2rd− r(r + 1).

3.5.3 Computing contributions from the “kite”

Computing 〈λL〉 was made easy by the fact that the matrix elements of δ in the “L”

are invariant under the projection of ρ̂ML,M′
d

onto T (ρ0). Computing 〈λkite〉 is a bit

harder, because the boundary does constrain δ. To understand how the behavior of

〈λkite〉 is affected, I analyze an algorithm presented in (283) for explicitly solving the

optimization problem in Equation (3.8).

This algorithm, a (very fast) numerical method for computing ρ̂ML,d given ρ̂ML,M′
d
,

utilizes two steps:

1. Subtract q1l from ρ̂ML,M′
d
, for a particular q ∈ R.

2. “Truncate” ρ̂ML,M′
d
−q1l, by replacing each of its negative eigenvalues with zero.
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Here, q is defined implicitly such that Tr
[
Trunc(ρ̂ML,M′

d
− q1l)

]
= 1, and must be

determined numerically. However, we can analyze how this algorithm affects the

eigenvalues of ρ̂ML,d, which turn out to be the key quantity necessary for computing

〈λkite〉.

The truncation algorithm above is most naturally performed in the eigenbasis of

ρ̂ML,M′
d
. Exact diagonalization of ρ̂ML,M′

d
is not feasible analytically, but only its

small eigenvalues are critical in truncation. Further, only knowledge of the typical

eigenvalues of ρ̂ML,d is necessary for computing 〈λkite〉. Therefore, we do not need to

determine ρ̂ML,d exactly, which would require explicitly solving Equation (3.8) using

the algorithm presented in (283); instead, a procedure for determining its typical

eigenvalues is all that is required.

I assume that Nsamples is sufficiently large so that all the nonzero eigenvalues of ρ0 are

much larger than ε. This means the eigenbasis of ρ̂ML,M′
d

is accurately approximated

by: (1) the eigenvectors of ρ0 on its support; and (2) the eigenvectors of δker =

ΠkerδΠker = Πkerρ̂ML,M′
d
Πker, where Πker is the projector onto the kernel of ρ0.

Changing to this basis diagonalizes the “kite” portion of δ, and leaves all elements

of the “L” unchanged (at O(ε)). The diagonal elements fall into two categories:

1. r elements corresponding to the eigenvalues of ρ0, which are given by pj =

ρjj + δjj where ρjj is the jth eigenvalue of ρ0, and δjj ∼ N (0, ε2).

2. n ≡ d−r elements that are eigenvalues of δker, which I denote by κ = {κj : j =

1, . . . , n}.

In turn, q is the solution to
r∑

j=1

(pj − q)+ +
n∑

j=1

(κj − q)+ = 1, (3.32)

where (x)+ = max(x, 0), and λkite is

ε2λkite =
r∑

j=1

[ρjj − (pj − q)+]2 +
n∑

j=1

[
(κj − q)+

]2
. (3.33)
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To solve Equation (3.32), and derive an approximation for (3.33), I use the fact that

I am interested in computing the average value of λkite, which justifies approximating

the random variable q by a closed-form, deterministic value. To do so, we need to

understand the behavior of κ. Developing such an understanding, and a theory of

its typical value, is the subject of the next section.

Approximating the eigenvalues of a GUE(n) matrix

Observe that while the κj are random variables, they are not normally distributed.

Instead, because δker is proportional to a GUE(n) matrix, for n � 1, the distribu-

tion of any eigenvalue κj converges to a Wigner semicircle distribution (322), given

by Pr(κ) = 2
πR2

√
R2 − κ2 for |κ| ≤ R, with R = 2ε

√
n. The eigenvalues are not

independent; they tend to avoid collisions (“level avoidance” (292)), and typically

form a surprisingly regular array over the support of the Wigner semicircle. Since

the goal is to compute 〈λkite〉, we can capitalize on this behavior by replacing each

random sample of κ with a typical sample given by its order statistics κ̄. These are

the average values of the sorted κ, so κj is the average value of the jth largest value

of κ. Large random samples are usually well approximated (for many purposes) by

their order statistics even when the elements of the sample are independent, and

level avoidance makes the approximation even better.

Suppose that κ are the eigenvalues of a GUE(n) matrix, sorted from highest to low-

est. Figure 3.7 illustrates such a sample for n = 100. It also shows the average values

of 100 such samples (all sorted). These are the order statistics κ of the distribution

(more precisely, what is shown is a good estimate of the order statistics; the actual

order statistics would be given by the average over infinitely many samples). As the

figure shows, while the order statistics are slightly more smoothly and predictably

distributed than a single (sorted) sample, the two are remarkably similar. A sin-

gle sample κ will fluctuate around the order statistics, but these fluctuations are

relatively small, partly because the sample is large, and partly because the GUE
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Figure 3.7: Approximating typical samples of GUE(n) eigenvalues by order
statistics. I approximate a typical sample of GUE(n) eigenvalues by their order
statistics (average values of a sorted sample). Left: The sorted eigenvalues (i.e.,
order statistics κj) of one randomly chosen GUE(100) matrix. Right: Approximate
expected values of the order statistics, κ̄j, of the GUE(100) distribution, computed
as the average of the sorted eigenvalues of 100 randomly chosen GUE(100) matrices.

eigenvalues experience level repulsion. Thus, the “typical” behavior of a sample – by

which I mean the mean value of a statistic of the sample – is well captured by the

order statistics (which have no fluctuations at all).

I now turn to the problem of modeling κ quantitatively. I note up front that later,

we are only going to be interested in certain properties of κ: specifically, partial sums

of all κj greater or less than the threshold q, or partial sums of functions of the κj

(e.g., (κj − q)2). I require only that an ansatz be accurate for such quantities. I do

not use this fact explicitly, but it motivates the approach – and I do not claim that

the ansatz is accurate for all conceivable functions.

In general, if a sample κ of size n is drawn so that each κ has the same probability

density function Pr(κ), then a good approximation for the jth order statistic is given
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by the inverse cumulative distribution function (CDF):

κj ≈ CDF−1

(
j − 1/2

n

)
. (3.34)

This is closely related to the observation that the histogram of a sample tends to

look similar to the underlying probability density function. More precisely, it is

equivalent to the observation that the empirical distribution function (the CDF of the

histogram) tends to be (even more) similar to the underlying CDF. For i.i.d. samples,

this is the content of the Glivenko-Cantelli theorem (302). Figure 3.8 compares

the order statistics of GUE(100) and GUE(10) eigenvalues (computed as numerical

averages over 100 random samples) to the inverse CDF for the Wigner semicircle

distribution. Even though the Wigner semicircle model of GUE eigenvalues is only

exact as n → ∞, it provides a nearly-perfect model for κ even at n = 10 (and

remains surprisingly good all the way down to n = 2).

I make one further approximation, by assuming that n � 1, so the distribution of

the κj is effectively continuous and identical to Pr(κ). For the quantities computed,

this is equivalent to replacing the empirical distribution function (which is a step

function) by the CDF of the Wigner semicircle distribution. So, whereas for any

given sample the partial sum of all κj > q jumps discontinuously when q = κj for

any j, in this approximation it changes smoothly. This accurately models the average

behavior of partial sums.

Deriving an approximation for q

The approximations of the previous section allow us to use {pj}∪{κj} as the ansatz

for the eigenvalues of ρ̂ML,M′
d
, where the pj are N (ρjj, ε

2) random variables, and the

κj are the (fixed, smoothed) order statistics of a Wigner semicircle distribution. In

turn, the defining equation for q (Equation (3.32)) is well approximated as

r∑

j=1

(pj − q)+ +
n∑

j=1

(κj − q)+ = 1. (3.35)
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Figure 3.8: Approximating order statistics by the inverse CDF Order statis-
tics of the GUE(n) eigenvalue distribution are very well approximated by the inverse
CDF of the Wigner semicircle distribution. In both figures, I compare the order
statistics of a GUE(n) distribution to the inverse CDF of the Wigner semicircle dis-
tribution. Top: n = 100. Bottom: n = 10. Agreement in both cases is essentially
perfect.

Because the κj are symmetrically distributed around κ = 0, half of them are negative.

Therefore, with high probability, Tr
[
Trunc(ρ̂ML,M′

d
)
]
> 1, and so q1l will need to be

subtracted from ρ̂ML,M′
d

before truncating.

Because I have assumed Nsamples is sufficiently large (Nsamples � minj 1/ρ2
jj), the

eigenvalues of ρ0 are large compared to the perturbations δjj and q. This implies
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(pj − q)+ = pj − q. Under this assumption, q is the solution to

r∑

j=1

(pj − q) +
n∑

j=1

(κj − q)+ = 1 (3.36)

=⇒ − rq + ∆ + n

∫ 2ε
√
n

κ=q

(κ− q)Pr(κ)dκ = 0 (3.37)

=⇒ − rq +
ε

12π

[
(q2 + 8n)

√
−q2 + 4n− 12qn

(
π

2
− sin−1

(
q

2
√
n

))]
= 0.

(3.38)

There are several simplifications I use in the derivation of Equation (3.38) from

Equation (3.36). First, I choose to replace a discrete sum in Equation (3.36) with an

integral. This approximation is valid when n� 1, as I can accurately approximate a

discrete collection of closely spaced real numbers by a smooth density or distribution

over the real numbers that has approximately the same CDF. It is also remarkably

accurate in practice. The quantity ∆ =
∑r

j=1 δjj in Equation (3.37) is a N (0, rε2)

random variable. In yet another approximation, I replace ∆ with its average value,

which is zero. An even more accurate expression could be obtained by treating ∆

more carefully, but this crude approximation turns out to be quite accurate already.

To solve Equation (3.38), it is necessary to further simplify the complicated expres-

sion resulting from the integral in Equation (3.37) (the bracketed term in Equation

(3.38)). To do so, I assume ρ0 is relatively low-rank, so r � d/2. In this case, the

sum of the positive κj is large compared with r, almost all of them need to be sub-

tracted away, and therefore q is close to 2ε
√
n. I therefore replace the complicated

expression with its leading order Taylor expansion around q = 2ε
√
n, substitute into

Equation (3.38), and obtain the equation

rq

ε
=

4

15π
n1/4

(
2
√
n− q

ε

)5/2

. (3.39)

This equation is a quintic polynomial in q/ε, so by the Abel-Ruffini theorem, it has

no algebraic solution. However, as n → ∞, its roots have a well-defined algebraic
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Figure 3.9: Comparing theory for z to numerical results. The formula for z
given in Equation (3.40) agrees well with numerics, provided r � d. (Simulations
use ε = 10−4).

approximation4 that becomes accurate quite rapidly (e.g., for n > 4):

z ≡ q/ε ≈ 2
√
n

(
1− 1

2
x+

1

10
x2 − 1

200
x3

)
, (3.40)

where

x =

(
15πr

2n

)2/5

. (3.41)

Figure 3.9 compares this expression for z to numerical results. Once r � d, the

agreement is very good, although it suffers quite dramatically as r → d.

4See Appendix B for a derivation of this solution.

70



Chapter 3. Impact of state-space geometry on tomography

Expression for 〈λkite〉

Now that we know how much to subtract off in the truncation process, we can

approximate 〈λkite〉, originally given in Equation (3.33):

〈λkite〉 ≈
1

ε2

〈
r∑

j=1

[ρjj − (pj − q)+]2 +
n∑

j=1

[
(κ̄j − q)+

]2
〉

≈ 1

ε2

〈
r∑

j=1

[−δjj + q]2 +
n∑

j=1

[
(κ̄j − q)+

]2
〉

≈ r + rz2 +
n

ε2

∫ 2ε
√
n

κ=q

Pr(κ)(κ− q)2dκ

= r + rz2 +
n(n+ z2)

π

(
π

2
− sin−1

(
z

2
√
n

))

− z(z2 + 26n)

24π

√
4n− z2.

(3.42)

3.5.4 Complete expression for 〈λ〉

The total expected value, 〈λ〉 = 〈λL〉+ 〈λkite〉, is thus

〈λ(ρ0,Md)〉 ≈ 2rd− r2 + rz2

+
n(n+ z2)

π

(
π

2
− sin−1

(
z

2
√
n

))

− z(z2 + 26n)

24π

√
4n− z2.

(3.43)

where z is given in Equation (3.40), n = d− r, and r = Rank(ρ0).

This null theory is much more complicated than the Wilks theorem, but as Figure

3.10 shows, it is very accurate when 2r � d. (In contrast, the prediction of the Wilks

theorem is wildly incorrect for r � d.) Although our null theory does break down

as r → d, it does so fairly gracefully. I conclude that our analysis (and Equation

(3.43)) correctly models tomography if the Fisher information is isotropic (I ∝ 1l),

a point I turn to in the next subsection and in Section 4.2.
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Figure 3.10: Improved prediction for 〈λ(ρ0,Md)〉, as compared to the Wilks
theorem. Numerical results for 〈λ(ρ0,Md)〉 compared to the prediction of the Wilks
theorem (solid line) and our replacement theory as given in Equation (3.43) (dashed
lines). Our formula depends on the rank r of ρ0 (unlike the Wilks prediction), and
is nearly perfect for r � d/2. It becomes less accurate as r approaches d/2, and is
invalid when r ≈ d.

In the asymptotic limit d→∞, while keeping r fixed, 〈λ〉 takes the following form:

〈λ〉 −→
d→∞

rd

[
6− 20

7

(
15πr

2d

)2/5

+
20

21

(
15πr

2d

)4/5
]
− 5r2. (3.44)

That 〈λ〉 scales as O(rd) in this regime is to be expected, as a rank-r density matrix

has O(rd) free parameters. Curiously though, this asymptotic result is not equal to

〈λL〉, meaning that the “kite” elements continue to contribute to the behavior of the

statistic, even though most of them will be set to zero in the projection step when

computing ρ̂ML,M.

3.5.5 Comparison to idealized tomography

To evaluate this null theory for 〈λ〉, I compare it to numerical experiments, described

below. The derivation of Equation (3.43) assumed both that the Fisher information

72



Chapter 3. Impact of state-space geometry on tomography

is isotropic and that the number of samples is asymptotically infinite. To simulate the

expected value of λ under both these assumptions, I chose a variety of true states

ρ0 with dimension d = 2, . . . , 30 and rank r = 1, . . . , 10 and: (a) generated N =

500 i.i.d. N (ρ0, ε
2I) unconstrained ML estimates {ρ̂ML,M′

d,j
}Nj=1, thereby simulating

the unconstrained ML estimates at the Nsamples = ∞ limit, (b) numerically solved

Equation (3.20) for each ρ̂ML,M′
d,j

to obtain the constrained ML estimate ρ̂ML,Md,j
, and

(c) estimated 〈λ〉 as 1
N

∑N
j=1 Tr[(ρ0 − ρ̂ML,Md,j

)2]/ε2. I took ε = 10−4, to ensure that

all of the unconstrained ML estimates are close to ρ0, and that I was not erroneously

generating estimates which are too far away. Recall that the derivation used the

fact that, asymptotically, we can “zoom in” on ρ0 to understand the behavior of

λ. Consequently, if ε is too large, then some of the unconstrained ML estimates

may almost be orthogonal to ρ0, which clearly violates the conditions used in the

derivation.

Figure 3.10 compares the theory (dashed lines) to these numerical results (solid

dots). It is clear Equation (3.43) is almost perfectly accurate when r � d/2, but it

does begin to break down as r becomes comparable to d. Therefore, we can have

confidence that the theory – although derived in a highly-idealized scenario – is

more-or-less correct within that scenario.

3.6 Conclusion and discussion

Quantum state space violates local asymptotic normality, a key property satisfied

by classical statistical models. Through the introduction of metric-projected local

asymptotic normality (MP-LAN), I have provided a new framework for reasoning

about results in classical statistical model selection for models that don’t satisfy

LAN because of convex constraints.

This chapter explicitly investigated one such result, the Wilks theorem, found it

is not generally reliable in quantum state tomography, and provided a much more
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broadly applicable replacement that can be used in model selection methods (Equa-

tion (3.43)). While Equation (3.43) is an approximate expression for 〈λ〉, further

refinements to the approximation (such as considering the ∆-fluctuations in the ML

estimate (Equation (3.36)), or using higher-order polynomial expansions of Equations

(3.36) and (3.39)) would yield an even better theory.

Note that the Wilks theorem is rigorously proven under certain assumptions. Proving

a quantum version of the Wilks theorem would be difficult due to the fact that λ

depends non-trivially on the distribution of ρ̂ML,Md
. However, one way to go about

proving (instead of simply approximating) facts about λ would be to recognize that λ

is a “chi-bar-squared” random variable (21; 20; 19), and understand how the structure

of that distribution depends on the distribution of ρ̂ML,Md
. (A chi-bar-squared random

variable is distributed according to a mixture of χ2 random variables with different

degrees of freedom.)

MP-LAN is also applicable to information criteria such as the AIC and BIC (5; 270;

166; 50) that do not explicitly use the Wilks theorem, but rely on the same assump-

tions (local asymptotic normality, equivalence between loglikelihood and squared

error, etc.). Information criteria balance how well a model fits the data against how

much the model overfits the data; usually, the fact that λ and squared loss are equiv-

alent is taken for granted. One of the implications of MP-LAN is that this fact is

also true for models with convex boundaries. Hence, the derivation of a “quantum

information criterion” is now within reach.

Null theories of loglikelihood ratios have many other applications, including hypothe-

sis testing (35; 219) and confidence regions (117), and our result is directly applicable

to them. Refs. (219; 117) both point out explicitly that their methods are unreliable

near boundaries and therefore cannot be applied to rank-deficient states; our result

fixes this outstanding problem.

Because MP-LAN is a generalization applicable to all models with convex bound-
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aries, it can also be used to reason about the properties of other kinds of statistical

estimation problems involving such models. In particular, MP-LAN is also applicable

to the models describing the gates (channels) implemented by a quantum information

processor. As alluded to in Section 3.1, models for channels must satisfy complete

positivity, which places a constraint on the parameter(s) of the model. MP-LAN

could be used to compute the expected value of λ for different models of the chan-

nel. (For example, one model might be that a classical memory exists somewhere

in the environment that affects which channel is actually applied, which would be

useful for modeling (seemingly) non-Markovian noise.) By defining MP-LAN and

examining its implications for statistical model selection (more are discussed in the

next chapter), more advanced statistical modeling techniques can be developed for

characterizing QIPs.

The next chapter discusses some more applications of MP-LAN, including its impli-

cations for quantum compressed sensing.
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Other applications of MP-LAN

I suppose it is tempting, if the only tool you have is a hammer, to treat everything

as if it were a nail. - Abraham Maslow, 1966 (208)

The generalization of LAN given in Chapter 3 (MP-LAN) was extremely useful for

understanding the behavior of the maximum likelihood (ML)1 estimator in state to-

mography. This chapter explores other applications of MP-LAN. The first connects

MP-LAN to quantum compressed sensing, where I show that the expected rank of ML

estimates can be accurately approximated, and depends only on the Hilbert space di-

mension d and the rank of the true state ρ0. The second application is tomography of

optical quantum states, where I show that the expected value of the loglikelihood ratio

statistic in ideal (Fisher-isotropic) tomography generally tracks its expected value for

heterodyne tomography.

1Please note that in Chapters 5 and 6, the acronym ML will be used for ‘machine
learning’.
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4.1 Quantum compressed sensing: expected rank

of ML estimates

The fact that quantum state space has boundaries impacts many properties of ML

estimates. Chapter 3 showed that the boundary affects the squared distance from the

ML estimate to the true state (i.e., the loglikelihood ratio statistic λ). However, other

properties are affected as well. In this section, I show how the positivity constraint

in state tomography affects the expected rank of ML estimates. This is an active

area of research within the field of “quantum compressed sensing” (126; 257; 164;

174; 105; 287; 58; 163; 51; 195).

4.1.1 Overview of quantum compressed sensing

Historically, quantum compressed sensing has focused on two main research ques-

tions – first, whether compressed sensing of quantum states is possible, and second,

what measurements enable quantum compressed sensing. Before discussing quantum

compressed sensing, a brief digression on classical compressed sensing is in order.

Classical compressed sensing concerns itself with the following problem: “Given some

sparse signal x0 ∈ Rd, and some noisy data y acquired by measuring that signal,

under what conditions is recovery (inference) of x0 possible?”. Usually, classical

compressed sensing proceeds by assuming

y = Ax + ε, (4.1)

where A is the sensing (design) matrix, and ε is a noise term. The sensing is

“compressive” in the sense that A is an m× d matrix, where ideally, m� d: if the

measurements are sufficiently informative, then a small number of them is sufficient

for inferring x0.

The notion of the sparsity of the signal depends on what kind of signal is being
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inferred. If x0 is a vector, then the canonical notion of sparsity is the L0 “norm”2:

L0(x) =
∑

j

I[xj] I[x] = 1 ⇐⇒ x 6= 0. (4.2)

One other other hand, if x0 represents a matrix (as it does in, e.g., matrix completion

problems), then the canonical notion of sparsity is that x0 is low rank.

Recovery of x0 is usually done by solving some convex optimization problem:

x̂0 = argmin
x∈Rd

f(x) s.t. ||Ax− y|| ≤ τ, (4.3)

where the data y is gathered according to Equation (4.1). The convex function f

encodes the notion of sparsity (e.g., for convex recovery of sparse vectors, it is the

L1 norm L1(x) =
∑

j |xj|). The condition ||Ax − y|| ≤ τ enforces the constraint

that the recovered signal be consistent with the observed data. The regularization

parameter τ could be a bound on ||ε||, for example.

A full discussion of classical compressed sensing is beyond the scope of this thesis.

However, what is relevant for a discussion of quantum compressed sensing is that

historically, classical compressed sensing has focused on understanding what mea-

surement maps A enable compressed sensing (i.e., the properties A must have so

that m does not have to scale very rapidly with d in order to ensure x̂0 is close to

x0). Historically, A is required to satisfy the Restricted Isometry Property (RIP).

Briefly, a measurement map satisfies s-restricted RIP if its action on s-sparse vectors

doesn’t distort their 2-norm very much. This is a very powerful property, and much

of literature in classical compressed sensing involves analyzing measurement maps

that satisfy it (52; 54).

Quantum compressed sensing has likewise focused on convex recovery of low-rank

quantum states, also by considering measurement designs that satisfy RIP (164; 328;

2Because L0 does not satisfy the homogeneity condition L(ax) = aL0(x), it is not a
norm.
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257). Analogous to the classical case, quantum compressed sensing assumes that

Nsamples copies of ρ0 are available, and they are measured using some POVM {Ej}.
The experiment design (recall Equation (2.17)) is a matrix M of the form

M =




(E1|
(E2|

...

(Em|



. (4.4)

One of the key questions in quantum compressed sensing is “If ρ0 is rank r, d-

dimensional density matrix, then what are the optimal values of Nsamples and m such

that convex recovery of ρ0 is possible?”. Previous research has illuminated some

aspects of this problem:

1. For a POVM consisting of Pauli measurements (either a randomly chosen set

(126) or a fixed set (195)), m = O(rdpoly log d) such measurements suffice to

recover ρ0 with high probability.

2. If the POVM is strictly rank-r informationally complete (164), convex recovery

of ρ0 will yield ρ̂0 = ρ0.

These results were derived in the asymptotic Nsamples → ∞ limit (i.e., exact sam-

pling). In the remainder of this section, I show how MP-LAN (itself a property

that is only valid asymptotically) can be applied to the problem of computing the

expected rank of ML estimates. Importantly, MP-LAN is a property of the model

(quantum state space), and doesn’t explicitly depend on any particular measurement

of ρ0. For this reason, MP-LAN provides a new way for thinking about quantum

compressed sensing (a point I return to in Chapter 7).
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4.1.2 Using MP-LAN to compute 〈Rank(ρ̂ML,Md
)〉

This section reprises some of the terminology and language used in Chapter 3. Let

Md denote the set of d× d density matrices, and assume ρ0 ∈ Md has rank r. Let

M′
d denote the set of d × d, trace-1, Hermitian matrices. Clearly Md ⊂ M′

d. The

ML estimate in a modelM is denoted ρ̂ML,M. BecauseMd satisfies MP-LAN, there

is a relationship between ML estimates in Md and ML estimates in M′
d:

ρ̂ML,Md
= argmin

ρ∈Md

Tr[(ρ− ρ̂ML,M′
d
)I(ρ− ρ̂ML,M′

d
)], (4.5)

where I is the Fisher information. As Nsamples →∞, ρ̂ML,M′
d

are Gaussian-distributed

around ρ0, with a covariance matrix given by I−1/Nsamples. As in Chapter 3, I will

make the assumption that I is the identity, so that the metric induced on state-space

is the Hilbert-Schmidt metric.

Recall that solving Equation (4.5) when I is proportional to the identity is straight-

forward:

• Take ρ̂ML,M′
d

and diagonalize it (so that ρ̂ML,M′
d

= V †DV ) yielding eigenvalues

of two types:

1. r eigenvalues that relate to the support of ρ0, given by pj = ρjj+δjj where

ρjj is the jth eigenvalue of ρ0, and δjj ∼ N (0, ε2), where ε = 1/
√
Nsamples.

2. n ≡ d− r elements that are eigenvalues of δker – a matrix drawn from the

Gaussian Unitary Ensemble – denoted by κ = {κj : j = 1, . . . , n}.

(Recall the discussion in Section 3.5.3.)

• Determine a decremement q, which is the solution to

r∑

j=1

(pj − q)+ +
n∑

j=1

(κj − q)+ = 1. (4.6)

• Compute the eigenvalues of the constrained ML estimate ρ̂ML,Md
by shrinking
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the eigenvalues of ρ̂ML,M′
d

according to

pj → (pj − q)+ , κj → (κj − q)+, (4.7)

where (x)+ = max(x, 0). Form the matrix D′ = diag((p1 − q)+, · · · , (pr −
q)+, (κ1 − q)+, · · · , (κn − q)+).

• Compute ρ̂ML,Md
as V †D′V .

The decrement q is the amount that has to be subtract from the eigenvalues of

ρ̂ML,M′
d

to make the constrained ML estimate both positive-semidefinite and trace-

1. In general, q is a random variable – it depends on the random perturbations

of the eigenvalues of ρ0 – but in the same spirit that pervaded the derivation of

an approximation to the Wilks theorem throughout Section 3.5, we will interest

ourselves only in the expected value of Rank(ρ̂ML,Md
), so q can be treated as the

deterministic variable solved for back in Equation (3.40).

Because the rank is simply the number of non-zero eigenvalues, 〈Rank(ρ̂ML,Md
)〉 is

easy to write down:

〈Rank(ρ̂ML,Md
)〉 =

r−1∑

j=0

〈I[(pj − q)+]〉+
d−1∑

j=r

〈I[(κj − q)+]〉, (4.8)

with I[x] as the indicator function: I[x] = 1 if x > 0, and I[x] = 0 otherwise. In

terms of the diagonal elements of ρ0, Equation (4.8) is

〈Rank(ρ̂ML,Md
)〉 =

r−1∑

j=0

〈I[(ρjj + δjj − q)+]〉+
d−1∑

j=r

〈I[(κj − q)+]〉. (4.9)

In the asymptotic (Nsamples →∞) limit, ρjj � δjj, q. In turn, (ρjj + δjj − q)+ = ρjj,

and so

r−1∑

j=0

〈I[(ρjj + δjj − q)+]〉 =
r−1∑

j=0

I[ρjj] = r. (4.10)
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This assumption implies the expected rank of the constrained ML estimate is not

lower than the rank of the state being tomographed :

〈Rank(ρ̂ML,Md
)〉 = r +

d−1∑

j=r

〈I[(κj − q)+]〉 ≥ r. (4.11)

This result implies that asymptotically, maximum likelihood state tomography is

self-certifying : all non-zero eigenvalues of ρ0 will be estimated to non-zero values by

the ML estimator3. In turn, this implies that the lower the expected rank of the ML

estimate, the more pure the underlying true state has to be4.

The derivation of a replacement for the Wilks theorem relied on two key assumptions:

first, that κj could be replaced by their typical values, and that N ≡ d− r � 1. The

first assumption was justified due to our interest in computing 〈λ〉; here, I make that

same assumption because I am computing the expected rank. The second assumption

enabled discrete sums involving the κj to be replaced by continuous integrals over

their probability distribution. Taking that same limit here allows me to replace the

sum over the indicator function by an integral.

The sum
∑d−1

j=r〈I[(κj − q)+]〉 simply counts the number of κj that are larger than

q. Hence, this sum divided by the total range over which j varies is the probability

that any element of the set {κj}d−1
j=r is greater than or equal to q. Therefore, by the

two assumptions made in the previous paragraph, it follows that

1

d− r
d−1∑

j=r

〈I[(κj − q)+]〉 → 1

d− r
d−1∑

j=r

I[(κ̄j − q)+]→
∫ κmax

κ=q

Pr(κ) dκ. (4.12)

Hence,

〈Rank(ρ̂ML,Md
)〉 = r + (d− r)

∫ κmax

κ=q

Pr(κ) dκ. (4.13)

3Though other compressed sensing protocols, such as an L1-regularized convex estima-
tor, can have this property: it is not unique to ML state tomography.

4Numerical evidence indicates the distribution Pr(Rank(ρ̂ML,Md
)) is tightly-concentrated

about its expected value, implying that rank of each ML estimate could provide the same
kind of self-certifying guarantee.
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Figure 4.1: Comparing theory for the expected rank to numerical results.
The formula for 〈Rank(ρ̂ML,Md

)〉 in Equation (4.15) agrees well with numerics. As in
Figure 3.10, discrepancies begin to appear as r becomes comparable to d.

Recall from Section 3.5.3 that asymptotically, the eigenvalues of the kernel of ρ0 are

distributed according to the Wigner semicircle distribution:

Pr(κ) =
2

πR2

√
R2 − κ2 where R = 2ε

√
d− r. (4.14)

4.1.3 Results and comparison to numerical experiments

Given the distribution of κ, computing 〈Rank(ρ̂ML,Md
)〉 is straightforward:

〈Rank(ρ̂ML,Md
)〉 − r

d− r =

∫ κmax

κ=q

Pr(κ) dκ =
2

πR2

∫ R

κ=q

√
R2 − κ2 dκ

=
1

2π

(
−2 sin−1(q/R)− 2(q/R)

√
1− (q/R)2 + π

)
.

(4.15)

By Equation (3.40), q/R ≈ 1− 1
2
x+ 1

10
x2− 1

200
x3, where x is given in Equation (3.41).

Figure 4.1 compares this approximation to numerical results.
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4.1.4 Classical case

The result derived in Equation (4.15) is straightforward, but required a great deal

of preliminaries to get to. By considering the problem of estimating outcome prob-

abilities over a d-dimensional simplex, we can derive a similar result that suggests a

surprising connection between the classical and quantum versions of this problem.

Suppose we want to estimate a probability vector p0 = (p0, p1, · · · pr−1, 0, · · · , 0) ∈
∆d, where there are d−r zeroes, and ∆d is the d-dimensional simplex. (For example,

we may be rolling a d-sided die, and want to estimate, for each of its faces, the

probability that face will come up on any given roll.)

Consider the model Md = {p ∈ ∆d}. This model satisfies MP-LAN, because it is a

convex subset of M′
d = {f ∈ Rd | ∑j fj = 1}, which itself is a model that satisfies

LAN.

Even though Md is a model over a classical state-space, the results derived in the

MP-LAN framework are also applicable to it, because MP-LAN is a framework that

applies to any model with convex boundaries. In particular, because Md satisfies

MP-LAN, every ML estimate p̂ML,Md
can be computed by truncating an uncon-

strained ML estimate p̂ML,M′
d

p̂ML,Md
= argmin

p∈∆d

||p− p̂ML,M′
d
||2. (4.16)

Notice that the sum of the components of p̂ML,M′
d

is 1, and that some of those

components will be negative. (Within the d − r elements that are in the kernel

of p0, typically half of the δj will be negative.) Therefore, it’s necessary to subtract

from the components before truncating. (Otherwise, the components of the resulting

estimate will sum to a number greater than 1.) Computing the constrained estimate

is possible using the truncation algorithm presented in Section 3.5.3; namely,

(p̂ML,Md
)j =

((
p̂ML,M′

d

)
j
− q
)+

, (4.17)
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where q is the solution to

∑

j

((
p̂ML,M′

d

)
j
− q
)+

= 1. (4.18)

The components of p̂ML,M′
d

are given by

(
p̂ML,M′

d

)
j

=




pj + δj 0 ≤ j ≤ r − 1

δj r < j < d− r
, (4.19)

where δj ∼ N (0, ε2). In what follows, let Φε(x) denote the cumulative distribution

function of their distribution:

Φε(x) =

∫ x

−∞
Pr(δ) dδ =

1

ε
√

2π

∫ x

−∞
e−δ

2/2ε2 dδ. (4.20)

From Equations (4.17) and (4.19), it follows that the expected rank of the ML

estimate is

〈Rank(p̂ML,Md
)〉 =

r∑

j=1

I[(pj + δj − q)+] +
d−r∑

j=r

I[(δj − q)+]. (4.21)

As we did when solving for q in the quantum case, we invoke the asymptotic as-

sumption Nsamples → ∞, so that ε → 0, and pj � δj, q. From this, it follows that

〈Rank(p̂ML,Md
)〉 = r +

d−r∑

j=r

I[(δj − q)+]. (4.22)

Again, we consider the large-d limit – so that the sum over the indicator function

can be turned into an integral – and replace the δj by a typical sample:

〈Rank(p̂ML,Md
)〉 = r + (d− r)

∫ ∞

δ=q

Pr(δ) dδ

= r + (d− r) (1− Φε(q)) .

(4.23)
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Solving for q

Under the asymptotic assumption, Equation (4.18) simplifies to

r−1∑

j=0

pj +
r−1∑

j=0

δj − rq +
d−r∑

j=r

(δj − q)+ = 1

=⇒ −rq +
r−1∑

j=0

δj +
d−r∑

j=r

(δj − q)+ = 0.

(4.24)

Next, we approximate the sum over δj by the expected value of any δj, replace the

random sample of δj by their typical values, and write the sum as an integral over

the distribution of δ:

−rq +
d− r√

2πε

∫ ∞

δ=q

(δ − q)e−δ2/2ε2 dδ = 0. (4.25)

A little bit of algebra yields a nicer-looking equation for q in terms of z ≡ (q/ε):

−rq +
d− r√

2πε

∫ ∞

δ=q

(δ − q)e−δ2/2ε2 dδ = 0

=⇒ −rz +
d− r√

2π

∫ ∞

u=z

(u− z)e−u
2/2 du = 0.

(4.26)

Note that z is ε-invariant, and so is a useful variable to use in these calculations.

The Gaussian integral may be computed as
∫ ∞

u=z

(u− z)e−u
2/2 du = e−z

2/2 − z
√
π/2Erfc(z/

√
2). (4.27)

where Erfc(x) is the complementary error function for the standard normal distri-

bution, which may be related to the cumulative distribution function of a standard

normal random variable by

Erfc(x) = 2(1− Φ1(x
√

2)). (4.28)

Therefore, the equation for z becomes

−rz +
d− r√

2π

[
e−z

2/2 − z
√

2π (1− Φ1(z))
]

= 0

=⇒ −z + A
(
e−z

2/2 + zΦ1(z)
√

2π
)

= 0,

(4.29)
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where A = (1− (r/d))/
√

2π. Notice that as r → d, A → 0, and the solution z → 0

as well. (When the probability vector being estimated is close to full-rank, then

asymptotically, every unconstrained ML estimate lies inside the model Md, so no

truncation is necessary.) Conversely, if r � d, then most of the unconstrained ML

estimates lie outside Md, so truncation is necessary.

Solving this equation analytically would be difficult, as it involves Φ1, which is a

function with no known expression in terms of elementary functions. This difficulty

is compounded by the fact that the fluctuations δj are in principle unbounded (unlike

the quantum case, where the finite support of the Wigner semicircle distribution

constrains how large the eigenvalue perturbations can be). Notice that in Equation

(4.24), q is upper-bounded by the largest value of the d− r values of δj coming from

the null space of p0. To get a handle on how large δj will be, it’s useful to turn

to extreme value theory. As shown in Appendix J , Section J.1, if m is the random

variable given by

m = max
r≤j≤d−r

δj, (4.30)

then

〈m〉 ≤ ε
√

2 log(d− r). (4.31)

When d = r, asymptotically every ρ̂ML,M′
d

is contained withinMd, so no truncation is

necessary. Hence, the odd behavior of this bound when d = r is not an issue. While

〈m〉 does depend on d, this dependence is modest. What’s more, the asymptotic

assumption ε→ 0 ensures that 〈m〉 will not be too big. Consequently, q is typically

O(ε), so z is O(1). Therefore, to solve Equation (4.29), I will simply expand every-

thing about z = c for a suitable choice of c, and then solve the resulting equation.

I take c = 1 primarily for simplicity, which also allows for a reasonably accurate

solution to Equation (4.29) (when compared to numerics). Expanding (4.29) using
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Figure 4.2: Comparing theory (Equation (J.17)) to numerical results. Once
r � d, the theory begins to break down, as expected from a consideration of the
solution. As the rank of ρ0 decreases, the scaled decrement z = q/ε increases.

Taylor series to 3rd order, and solving the resulting equation, gives

z =

√
2πe

B

(
1−BΦ1(1) +B

e−1/2

√
2π
−
√
D

)
, (4.32)

where B = 1− r/d and

D = B2

(
(Φ1(1))2 −

√
2

π
Φ1(1)e−1/2 − 1

π
e−1

)

+B

(
−2Φ1(1) +

√
2

π
e−1/2

)
+ 1.

(4.33)

Section J.2 provides the details for this calculation. Notice that if D < 0, then the

solution for z is ill-defined. This happens when r/d . 0.012. Thus, for a fixed value

of d, the expression for z in Equation (4.32) is ill-defined when r . .012d. Figure 4.2

compares Equation (4.32) to numerical simulations. Considering r = 1, once d & 50,

the solution no longer tracks the numerical results. The fact that it is higher than

the numerical results has implications for the expected value of the rank, as we shall

soon see. Another reason for discrepancies is that z is not exactly O(1), as it depends

on d, r. A more precise calculation would do the Taylor series about
√

2 log(d− r).

88



Chapter 4. Other applications of MP-LAN

Computing 〈Rank(p̂ML,Md
)〉

In terms of q, the expected rank of the constrained ML estimate is

〈Rank(p̂ML,Md
)〉 = r + (d− r) (1− Φε(q)) , (4.34)

where

Φε(q) =
1

ε
√

2π

∫ q

−∞
e−x

2/2ε2 dx. (4.35)

Notice that Φε(q) = Φ1(z), so

〈Rank(p̂ML,Md
)〉 = r + (d− r) (1− Φ1(z)) . (4.36)

This expression, coupled with the result in Equation (J.17) completely suffices for

computing the expected rank. Because Φ1 is a special function, with no known

expansion in terms of elementary functions, I leave this expression as-is. Given that

Φ1 is readily computed numerically for arbitrary values of z, I see no harm in doing

so. Figure 4.3 compares this theory to numerics. In numerical simulations, I take

ε = 10−4, and estimate 〈Rank(p̂ML,Md
)〉 using 104 − 105 i.i.d. realizations of the

unconstrained ML estimates p̂ML,M′
d
.

Because the theory for z in Equation (J.17) tends to over-predict the amount sub-

tracted to do the truncation, the rank of the truncated ML estimate is going to be

lower in theory than in practice. This is readily seen in the discrepancies for r = 1

around d = 25, and at other values of d for other values of r. Again, a more accurate

theory for z would remedy these issues.

4.1.5 Comparing quantum and classical cases

The thrust of this section has been to derive results for the expected rank of ML esti-

mates for the task of quantum state tomography and that of estimating a probability

89



Chapter 4. Other applications of MP-LAN

0 20 40 60 80 100

Probability simplex dimension d

5

10

15

20

25

〈R
an

k(
p̂

M
L
,M

d
)〉

Comparing theory and numerics for 〈Rank(p̂ML,Md
)〉

1

2

3

4

5

6

7

8

9

10

Theory

Figure 4.3: Comparing theory and numerics for 〈Rank(p̂ML,Md
)〉. From Equa-

tion (J.17), we know that once r � d, the theory for z starts to break down; this is
reflected in the discrepancies between the theory (dashed lines) and numerical results
(solid dots) at higher values of d. The growth in the expected rank is modest with
respect to d for a fixed value of r.

vector. A natural question is how these two quantities relate to one another. Figure

4.4 compares 〈Rank(ρ̂ML,Md
)〉 and 〈Rank(p̂ML,Md

)〉 using both numerics and the the-

ories given in Equations (4.15) and (4.36) respectively. A surprising feature of this

comparison is that 〈Rank(ρ̂ML,Md
)〉 and 〈Rank(p̂ML,Md

)〉 tend to track one another,

though numerically, 〈Rank(ρ̂ML,Md
)〉 appears to be greater than 〈Rank(p̂ML,Md

)〉 usu-

ally. Whether that is a genuine fact about these models, or an artifact of my nu-

merical simulations, is difficult to say. Comparing the theories is also fraught with

complications, as both are derived under various approximations. As noted previ-

ously, the fact that the classical theory underpredicts 〈Rank(p̂ML,Md
)〉 means that

the comparison in the rightmost panel of Figure 4.4 is off a bit.

4.1.6 Conclusion and discussion

The research presented in this section shows that low-rank estimates are a ubiquitous

feature of maximum-likelihood state tomography. This suggests that the success of
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Figure 4.4: Comparing quantum and classical cases. The orange line is what
would result if the two cases agreed exactly. For the most part, the two cases
do mirror one another. However, in the rightmost panel, the classical theory for
〈Rank(p̂ML,Md

)〉 tends to underpredict ; hence the excess of blue points above the
orange line.

quantum compressed sensing – while certainly dependent on the POVM being mea-

sured – also depends on the geometry of quantum state space itself. This obser-

vation was made in (164) in the definition of a “rank-r strictly complete POVM”.

Understanding the relationship between such POVMs and their implications for the

asymptotic distribution of ML estimates would be a fruitful research direction.

In addition, there appears to be a close connection between compressed sensing of

quantum states and an analogous problem for compressed sensing over classical prob-

ability simplices (Figure 4.4). This suggests connections between the geometry of

classical simplices and quantum state space, as has been noted in (11). Understand-

ing how these two cases are genuinely different would be a useful research direction

to pursue.

Finally, I suspect there are some fairly deep and general connections between an

analysis of state tomography using MP-LAN, and quantum compressed sensing. This

suspicion is based on several threads of reasoning. First, classical compressed sensing
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research has moved beyond measurement maps that satisfy RIP (53; 181). Modern

compressed sensing protocols have been developed based on the observation that if

the measurement map A doesn’t provide sufficient restrictions on the set of possible

solutions, then Equation (4.3) is underdetermined, and no unique solution exists. On

the other hand, if A provides “just enough” constraints on the solution, then it’s

possible for convex recovery to succeed with high probability. (If A has too many

constraints, the problem is overdetermined, and no feasible point may exist.) Phrased

another way, as the number of rows of A are varied, there is a “phase transition”

from infeasibility to feasibility of the convex recovery problem.

Understanding how that phase transition depends on m – number of rows of A –

is an active area of research (299; 55). Crucially, this phase transition relates to

geometric properties of Equation (4.3), by looking at the descent cone of f(x) at

the signal x0. (See (299) for details.) That is, given a fixed measurement map A,

of an appropriate sort, there may exist some convex functions such that recovery

by solving Equation (4.3) is feasible, while for others, it is not. For this reason,

modern compressed sensing research has come to focus on what could be called the

“geometry of convex optimization”5 (299; 332).

Second, it turns out that a geometric quantity of this convex function, the statistical

dimension of its descent cone, is crucial in the modern compressed sensing framework

(9). This quantity governs the transition region from an infeasible problem to a

feasible one. That is, if the number of rows of A is less than the statistical dimension,

recovery is infeasible.

Third, a careful reading of (9) indicates that the expected value of the loglikelihood

ratio statistic given in Equation (3.43) is in fact the statistical dimension of the

tangent cone at ρ0. From a discussion with Joel Tropp, I learned this is the descent

5I am not aware if those within the classical compressed sensing community would use
that phrase, however.
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cone of the indicator function over positive-semidefinite matrices: I[M ] = 1 ⇐⇒
M ≥ 0. This function would show up in, e.g., a regularized convex optimization with

a penalty of the form log(I[M ]). That is, if the estimate is negative, the penalty is

infinite.

These lines of reasoning converge to the observation that if the descent cone for a

convex recovery problem of the form (convex function + regularization term) can be

expressed in terms of the descent cone of each, then we can apply both MP-LAN and

the framework developed in (9) to port quantum state tomography into a modern

compressed sensing framework. This may help us understand existing results in

quantum compressed sensing regarding a sufficient number of POVM elements for

convex recovery of ρ0. To determine whether this is in fact the case, studying how the

descent cone of a convex function changes under regularization would be required,

and most likely would also require deriving results about the descent cone of the

likelihood function.

4.2 Choosing a Hilbert space dimension for

continuous-variable quantum systems

In Chapter 2, I alluded to how the word “tomography” came to be associated with

characterizing quantum devices because some of the first state tomography protocols

were developed for continuous-variable (CV) quantum systems (192; 191; 247; 248;

201? ). These systems also provide a natural testing ground for the statistical model

selection problem discussed in Chapter 3. Within this context, a relevant statistical

model selection problem is: choose a good Hilbert space dimension d for modeling

the CV system. In this Section, I show how use the approximate replacement for the

Wilks theorem (Equation (3.43)) to do so.
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4.2.1 Continuous-variable (CV) quantum systems

In the context of this section, “continuous” means the state of the system is described

by a continuous parameter; for example, the wavefunction |ψ〉 of a one-dimensional

quantum system can be expanded in the position basis

|ψ〉 =

∫
dx ψ(x) |x〉 ,

∫
|ψ(x)|2 dx = 1, 〈x|x′〉 = δ(x−x′), X|x〉 = x|x〉. (4.37)

An analogous expansion of |ψ〉 is possible in the momentum basis, |p〉. Formally,

states of one-dimensional CV systems are described by density operators on the

infinite-dimensional Hilbert space L2(R). Characterizing these states (i.e., estimat-

ing them) clearly requires advanced statistical methods, as fitting infinitely many

parameters to a finite amount of data is not tenable.

Here, I’ll focus on optical quantum systems (quantum states of light). These systems

are important in metrology, sensing, communications, and computation (227; 160;

153; 184; 89; 176; 87; 245); hence, being able to adequately characterize them is

important. For several books on the subject of quantum optics, see (128; 272; 64;

205). A full discussion of quantum optics and continuous-variable systems is beyond

the scope of this thesis. However, a small digression on some of the basic concepts

is in order.

Classically, the behavior of light propagating in some medium (free space or other-

wise) is described by the Maxwell equations, plus any requisite boundary conditions.

Generally, those differential equations have families of solutions, indexed by some

set of integers. For a particular choice of these indices, the corresponding solution

is said to be a mode of the field. For instance, consider a rectangular cavity whose

side lengths are lx, ly, and lz. Then, the modes are labeled by k = (kx, ky, kz, p),

where kj = πnj/lj, and p denotes the polarization state of the mode. Further, mode

k propagates with an angular frequency given by ω2
k = c2(k2

x + k2
y + kz)

2. Thus, k

indexes the mode. For each mode, there is an associated electric and magnetic field.
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The modes can be quantized using a simple harmonic oscillator with an angular

frequency ωk. In what follows, I’ll focus on characterizing a single mode of light,

and so will suppress the index k unless it is needed. Classically, the Hamiltonian

describing a simple harmonic oscillator of mass m and angular frequency ω is

H =
p2

2m
+
mω2

2
x2. (4.38)

Quantizing this Hamiltonian means replacing x, p by their quantum-mechanical coun-

terparts X,P , which are operators that satisfy the canonical commutation relation

[X,P ] = i~:

H → P 2

2m
+
mω2

2
X2. (4.39)

For a single mode, the operators X and P are directly related to the electric field

and the magnetic vector potential; see (64, Section 2.1.2) for details. For this reason,

X and P are said to be the quadrature operators for the mode. The eigenstates of

this Hamiltonian form a useful basis in which any mode can be expanded. There are

various ways to calculate them; here, I use an approach due to Dirac. By introducing

the (non-Hermitian) operators

a =
(mω

2~

)1/2

X + i

(
1

2mω~

)1/2

P

a† =
(mω

2~

)1/2

X − i
(

1

2mω~

)1/2

P,

(4.40)

whose commutation relations are [a, a†] = 1, the quantized Hamiltonian takes the

form

H = ~ω(a†a+ 1/2). (4.41)

If |E〉 is an energy eigenstate of H, so that H|E〉 = E|E〉, then

Ha|E〉 = (E − 1)a|E〉

Ha†|E〉 = (E + 1)a†|E〉.
(4.42)
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Therefore, a|E〉 is an eigenstate of H with eigenvalue E−1, and a†|E〉 is an eigenstate

of H with eigenvalue E + 1. For this reason, a is called the lowering operator, and

a†, the raising operator.

Because H is a positive operator (〈ψ|H|ψ〉 ≥ 0), it follows that the energy eigenstates

cannot be lowered indefinitely: there exists some state |E0〉 such that a|E0〉 = 0. This

observation, plus some algebra, yields the fact that the energy eigenstates of H are

states with a definite number of excitations. These are known as the Fock states,

denoted |n〉. Under a and a†, they transform as

a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉 . (4.43)

These states are eigenstates of H: H |n〉 = ~ω(n + 1/2) |n〉, and form a complete

orthonormal basis:

∞∑

n=0

|n〉〈n| = I, 〈m|n〉 = δmn. (4.44)

Within the context of quantum optics, the Fock states are also called “photon-number

states”, as they are eigenstates of the number operator N = a†a. A state of the mode

can be expanded in terms of the Fock states:

ρ =
∞∑

j,k=1

ρjk|j〉〈k|, (4.45)

and this representation naturally lends itself to representing ρ as a matrix. There

are a couple of problems with this. First, the sum is formally infinite, so a finite-

dimensional approximation to the matrix will always be necessary. Second, the

dynamics of a simple harmonic oscillator (i.e., the mode) is more naturally described

using a phase space representation in terms of the phase-space variables x, p that

were promoted to quantum-mechanical operators in quantizing the Hamiltonian.

One such representation is known as the Wigner function (321):

W (x, p) =
1

~π

∫ ∞

−∞
〈x+ y|ρ|x− y〉e−2ipy/~ dy, (4.46)
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where 〈x|ψ〉 = ψ(x). Formally, the Wigner function is the Wigner-Weyl transfor-

mation of ρ. This transformation can also be represent other quantum-mechanical

operators (such as observables) in terms of functions over phase space (60), and is

known as the Weyl representation. For any operator A, the Wigner-Weyl transform

maps it to a function fA(x, p). These functions have the property that calculating

traces in operator space (e.g., Tr(AB)) relates to integrals over their phase-space

representations. In particular, this means that for any observable O of the system,

its expectation value 〈O〉 = Tr(ρO) can be computed as

〈O〉 =

∫
W (x, p)fO(x, p) dx dp. (4.47)

A cursory glance at the equivalence tempts one to think that W is a probability

distribution over phase space. That line of reasoning would be incorrect: the Wigner

function defines a quasiprobability distribution in phase space, meaning there exist

states ρ such thatW (x, p) < 0 for some (x, p). For example, let ρ be the single-photon

state |1〉〈1|. While the negativity of Wigner function has spurred intense interest in

the differences between quantum mechanical and classical systems (168; 309; 100),

it is not my intent to add or subtract to that discussion here.

4.2.2 The need for statistical model selection in CV tomog-

raphy

Historically, tomography of optical modes has focused on using the Wigner function

representation of the state (Equation (4.46)), in part because of the work of Vogel

and Risken (310), which showed that by measuring the generalized quadrature Xθ =

cos θX + sin θP along various angles θ using homodyne detection, and processing

homodyne measurement data results using an inverse Radon transform, an estimate

of the Wigner function Ŵ (x, p) could be computed (201).

In using this tomographic technique, experimentalists often use smoothing protocols
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(47) or binning procedures (200) which are implemented to either remove unwanted

“high frequency” noise or to provide sufficient counts for statistical inference (201).

This noise typically is an artifact of inverting the Radon transform, or is caused by

imperfections in the homodyne detector. These approaches use a type of statistical

model selection, by regularizing the estimated Wigner function. This can be seen

expanding ρ in the Fock basis:

W (x, p) =
1

~π

D∑

n=0

ρjk

∫ ∞

−∞
〈x+ y|j〉〈k|x− y〉e−2ipy/~ dy, (4.48)

with D being the dimension of ρ in the Fock basis. The integral above simply

integrates over the position-basis representations of the Fock states |m〉, |n〉, which

are functions of the form

〈x|n〉 =

(
mω

π~22n(n!)2

)1/4

Exp

[
−mωx

2

2~

]
Hn

[(mω
~

)1/2

x

]
. (4.49)

The integrand of Equation (4.48) relates to integrals of Hermite polynomials Hn.

The structure of the Hermite polynomials depends very strongly on the index n: as

it increases, the number of oscillations of Hn increases as well. As such, a specific

choice for D corresponds to a specific choice for the amount of structure in the

Wigner function, and vice-versa (337). From that perspective, smoothing out high-

frequency wiggles is to making the assumption the state does not have support on

higher dimensions.

Consequently, a plot of an estimated Wigner function must come with some par-

ticular choice of Hilbert space dimension D. Therefore, smoothing or otherwise

regularizing an estimated Wigner function corresponds to selecting a model. When

the representation of choice is a density matrix ρ, it is clear that many of its pa-

rameters are underdetermined by experimental data – the number of parameters is

infinite, and the amount of data, finite – and regularization (such as restricting the

support of ρ̂ to some d-dimensional subspace) is typically used to avoid overfitting.

Reconstructing the Wigner function using the inverse Radon transform also implies
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an implicit choice for d, and can lead to overfitting (see (47) as a possible example

of overfitting).

In the remainder of this section, I show how the result derived in Section 3.5 regarding

〈λ〉 can be applied to the problem of choosing a good Hilbert space dimension for an

continuous-variable quantum system.

4.2.3 How to choose a Hilbert space dimension for CV quan-

tum system

Suppose a single mode of light is prepared in the state ρ0. To characterize this state

using tomography, some model needs to be constructed. The largest possible model

is L2(R) – all square-integrable wavefunctions – but this model has infinitely many

parameters, and only a finite amount of data will be collected. Clearly a simpler

model is necessary!

The number of photons in the mode relates to the total energy. Recall the simple

harmonic oscillator Hamiltonian in Equation (4.41): if there are N photons in the

mode, the energy is O(Nω). A system with an infinite amount of energy is non-

sensical, which means ρ0 can be well-described by a model with a finite number of

photons. Therefore, considering few-photon models is sensible. Let Md denote the

set of d-dimensional density matrices when expanded in the Fock basis:

Md = {ρ | ρ ∈ B(Hd), Tr(ρ) = 1, ρ ≥ 0}, (4.50)

where

Hd = Span {|0〉 , |1〉 , · · · , |d− 1〉} . (4.51)

Any state ρ ∈Md can be expanded as

ρ ∈Md =⇒ ρ =
d−1∑

m,n=0

ρmn|m〉〈n|. (4.52)
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Choosing a good Hilbert space dimension for reconstructing ρ0 is equivalent to de-

termining which of the two modelsMd andMd′ is better. However, there are many

choices for d, d′. A simplification is to take d′ = d+ 1, meaning the two models differ

by at most one quanta of energy. Motivated by the observation that physical states

do not have arbitrarily high energy, a simple algorithm for choosing d goes as fol-

lows: beginning with d = 2, compute λ(Md,Md+1). Compare to a threshold value

λthresh(d, d+ 1). If λ > λthresh, increment d by 1 and repeat. However, if λ < λthresh,

report d as the choice for the Hilbert space dimension.

This algorithm uses the loglikelihood ratio statistic to determine if a particular low-

energy model is sufficient; if it is not, an additional Fock state is added to the

basis set, and the comparison performed again. Phrased another way, this algorithm

expands the support of the estimate in phase space out from the origin (the vacuum

state |0〉) until that support is of sufficiently high energy to adequately model ρ0. In

terms of a matrix representation, each iteration compares a density matrix with d

rows and columns to one with d+ 1 rows and columns, and determines whether the

additional parameters introduced help fit the data better.

Section 3.2 noted that commonly, λthresh is take to be 〈λ〉 + ∆λ. The algorithm

above uses λ(Md,Md+1) as the test statistic, so to set a threshold, knowing its

expected value and variance would be necessary. Here, I won’t focus on computing

that expected value. Instead, I use the fact that

λ(Md,Md′) = λ(ρ0,Md′)− λ(ρ0,Md), (4.53)

which reduces the problem of computing 〈λ(Md,Md+1)〉 to that of computing

〈λ(ρ0,Md)〉6. As a simple test of the theory for 〈λ(ρ0,Md)〉 given in Equation (3.43)

– which was derived under highly ideal circumstances – I’ll compare it to numerical

results for heterodyne tomography, which is a commonly-used tomographic technique

for CV systems.

6Recall Section 3.5.
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4.2.4 Application: heterodyne tomography

In quantum optics, two measurements are commonly used for tomography: homodyne

(201; 17; 191; 318; 281; 199), alluded to in Section 4.2.2, and heterodyne (200; 28;

192; 201; 12). Below I briefly sketch out how these two measurements are performed.

Balanced homodyne measurement uses a local oscillator (LO) operating at the same

frequency as the input signal being characterized. The LO is phase-shifted relative

to the input by θ. To do the homodyne measurement, the input and LO signals are

combined on a 50:50 beamsplitter. The output arms of the beamsplitter are then

detected using photodetection, and the two photocurrent signals are subtracted from

one another. With ideal photodetectors, this measurement is described by a POVM

that projects the input signal onto the eigenstate of the generalized quadrature Xθ =

cos θX + sin θP (12).

The heterodyne measurement can be performed in two different ways. The simplest

way is to use the homodyne measurement twice, measuring the input signal along

the orthogonal quadratures Xθ and Xθ+π/2. This is done by first passing the input

signal through a 50:50 beamsplitter, which splits the signal. Then the homodyne

measurement is performed on each output arm using two local oscillators. These

local oscillators are phase-shifted relative to one another by π/2, which measures

orthogonal quadratures.

An equivalent way to perform the heterodyne measurement uses just one beam split-

ter. Instead of the LO being held at the frequency of the input signal, it is shifted

slightly below the input frequency. Then, a photodetector is used to measure the

output current. Focusing on the photocurrent that comes out at a frequency given

by the difference of the input and LO frequencies, the quadratures of that output

are the quadratures of the input signal.

Within the POVM formalism, the heterodyne measurement is modeled by projections
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of the signal ρ0 onto coherent states, often labeled as |α〉. In general, α is complex

number; often it is written as α = x+ ip to demonstrate the formal correspondence

with the canonical classical phase space variables x, p (192). Writing α = reiθ, the

evolution of the coherent states under the harmonic oscillator Hamiltonian H ∝ ωa†a

is simply a rotation in phase space:

|α(t)〉 = U(t)|α(0) = reiθ〉 = |rei(θ−ωt)〉. (4.54)

The coherent states saturate the Heisenberg uncertainty principle along any quadra-

ture: ∆(Xθ)∆(Pθ) = 1/2. In this sense they are the most classical states in quantum

phase space.

One of the surprising properties of coherent states is that they are eigenstates of

the lowering operator a: a |α〉 = α |α〉7. From this fact, it follows that they can be

expanded in the Fock basis as

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 = e−|α|

2/2

∞∑

n=0

αn

n!
|0〉 = eαa

†−α?a |0〉 . (4.55)

This final form shows that coherent states are simply displacements of the vacuum

state |0〉.

The heterodyne measurement corresponds to measuring the coherent-state POVM,

given by

Πα =
|α〉〈α|
π

,

∫

α

Πα = 1 , Tr(ΠαΠβ) ∝ e−|α−β|
2

. (4.56)

The POVM elements Πα are overcomplete, as they provide a resolution of the identity

operator, but are not orthogonal. When performing the heterodyne measurement on

a state ρ0, the probability of observing an outcome α is given by

Pr(α) = Tr(Παρ0) =
〈α|ρ0|α〉

π
≡ Qρ0(α). (4.57)

7This can be taken as the definition of a coherent state.
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This distribution gives yet another representation of ρ0, known as the Husimi Q-

function (152).

To evaluating how well Equation (3.43) performs in comparison to 〈λ(ρ0,Md)〉 under

heterodyne tomography, I numerically simulated (a) heterodyne tomography exper-

iments (i.e., data), and (b) numerically computed the ML estimates ρ̂ML,Md
. The

next subsection provides details on this simulation, and the results are presented in

Section 4.2.6.

4.2.5 Simulating heterodyne tomography

The following subsections detail numerical experiments I performed to simulate het-

erodyne tomography and to compare the performance of Equation (3.43) in predict-

ing 〈λ〉8.

Generating synthetic heterodyne data

I generated synthetic experimental data for the heterodyne POVM by generating an

a priori known quantum state ρ0. Heterodyne tomography samples from the Husimi

Q-function for this state (Equation (4.57)). Given ρ0, I used rejection sampling (61)

to sample from Qρ0(α). Rejection sampling is a technique for sampling from some

desired probability distribution p(x) that might be hard to sample from directly

using the ability to efficiently sample from some other distribution q(x). Rejection

sampling works as follows: given p(x) (the one we want to sample from) and q(x)

(the one we can sample from), define r = max
x

q/p. Draw a candidate point y from

q. Then, generate a random number u ∼ Unif[0, 1]. If p(y)/(rq(y)) ≥ u, then y is

accepted as a sample; otherwise, it is rejected. Each time a fresh sample is required,

a new value for u is chosen.

8For roughly the first year of my PhD research, I worked on developing a code base for
doing these numerical simulations and processing the results. Hence the detailed descrip-
tion.
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The Husimi Q-function is a function over R2, so in my simulations, I took q to

be a 2-dimensional, isotropic Gaussian distribution with mean zero and standard

deviation 3: q = N (0, 9 ∗ I). This choice of q is motivated by the fact that (a) it’s

very easy to sample from, and (b) its tails roll off exponentially, just as the Husimi

Q-distribution’s do. For the coherent state POVM, there is generally no closed-form

expression for r, which means that r has to be estimated. To do so, I started by

randomly sampling 100 points xj from q, estimate r as the r̂ = max
xj

q(x)/p(x). As

the rejection sampling algorithm proceeds, if there is a point generated x′ such that

q(x′)/p(x′) > r̂, then I set r̂ = q(x′)/p(x′), and remove some of the points that had

been previously generated. Note that simply dumping the points generated up to

that iteration, and starting afresh, is not tenable, unless some kind of certificate on

|r̂ − r| could be computed: otherwise, there may exist an even higher value of r̂!

Computing ML estimates

The Nsamples of heterodyne outcomes (points in phase space {αj}) constitute the

experimental data. To compute λ(ρ0,Md) on this data, computing the ML esti-

mates ρ̂ML,Md
is necessary. Unlike the idealized problem considered in Chapter 3,

the only known numerical algorithm for computing the ML estimate is a brute-force

optimization of the likelihood function.

Recall the likelihood function L(ρ) = Pr(Data|ρ); for heterodyne data, this likelihood

function is

L(ρ) =
1

πNsamples

Nsamples∏

j=1

〈αj|ρ|αj〉. (4.58)

Because the maximum of L and aL are the same for any a > 0, I ignore the 1/πNsamples

prefactor in what follows. Since the models Md are convex, and the likelihood

function is convex, standard numerical optimizers could be used to compute ρ̂ML,Md
.

Instead, I chose to write my own optimization routine, based on gradient ascent and

conjugate gradient algorithms.
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Gradient ascent algorithms are well-suited for maximizing functions. Given a guess

for an initial starting point (ρ̂ML,Md
)0 (which I take to be the d-dimensional maxi-

mally mixed state Id/d), both of these algorithms ascend the likelihood function by

iteratively updating the estimate for the state according to some rule until a termi-

nation condition is reached. Instead of maximizing the likelihood, I chose to instead

maximize its logarithm. Note that maximizing the logarithm of the gradient will give

the same ML estimate as maximizing the likelihood directly, as taking the logarithm

preserves inequalities (x ≤ y ⇐⇒ log(x) ≤ log(y)).

Gradient ascent algorithm

A straightforward gradient ascent algorithm updates the estimated state via the rule

(ρ̂ML,Md
)j+1 = (ρ̂ML,Md

)j + η∇ log(L((ρ̂ML,Md
)j)). (4.59)

Here, η is a parameter that controls the rate at which the estimate is updated, and

the gradient is taken with respect to the parameters of ρ. The logarithm of the

likelihood is

log(L(ρ)) =

Nsamples∑

j=1

log(〈αj|ρ|αj〉), (4.60)

and its gradient can be straightforwardly computed by writing the matrix element

〈αj|ρ|αj〉 as a trace:

∇ logL =

Nsamples∑

j=1

∇Tr(ρ|αj〉〈αj|)
Tr(ρ|αj〉〈αj|)

. (4.61)

Recall that the trace is an inner product on complex matrices, so when differentiating

Tr(ρ|αj〉〈αj|) with respect to ρ, the gradient is |αj〉〈αj|, just as ∇x(x ·y) = y. Hence,

∇ logL =

Nsamples∑

j=1

|αj〉〈αj|
Tr(ρ|αj〉〈αj|)

. (4.62)
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Looking at the update rule (4.59), it’s clear that unless ∇ logL is modified in some

way, the trace of the estimated state could change from one iteration to the next:

Tr[(ρ̂ML,Md
)j+1] = Tr[(ρ̂ML,Md

)j] + ηTr[∇ log(L((ρ̂ML,Md
)j))]. (4.63)

Examining Equation (4.62), it’s clear ∇ logL is not trace-zero. Thus, it’s necessary

to subtract out the traceful component of ∇ logL prior to using it in any update step.

Note that other schemes are possible for ensuring trace preservation; a common one

is to divide the estimate at each iteration by its trace (293).

Importantly, this operation doesn’t change the gradient in the other directions of

interest in state space. Because ∇ logL is a Hermitian operator, it can be expanded

in any basis for Hermitian matrices (e.g., generalized Pauli matrices):

∇ logL = c0τ0 +
∑

j

cjτj, where Tr(τj) = 0 for j > 0, Tr(τjτk) = δjk, Tr(τ0) = d.

(4.64)

The gradient of the loglikelihood may be non-zero in the direction of τ0 (i.e., the

identity direction), and if the component c0 was retained, then the trace of (ρ̂ML,Md
)j+1

would change from one iteration to the next. For this reason, I define g ≡ ∇ logL−
Tr(∇ logL)τ0/d, and the update rule is

(ρ̂ML,Md
)j+1 = (ρ̂ML,Md

)j + ηgj. (4.65)

Conjugate gradient algorithm

While gradient ascent is a simple and reliable algorithm for maximizing functions, it

suffers from the problem that if the function’s maximum lies on a “ridgeline”, then

gradient ascent can “ping-pong” back-and-forth across the ridge for many iterations.

To remedy this problem, I also coded up an optimization algorithm that uses a non-

linear conjugate gradient update (276; 293). Unlike gradient ascent, in the conjugate

gradient algorithm, the direction along which the estimate is updated depends on
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the local gradient as well as past directions. The update rule is similar to that of

gradient ascent (Equation (4.59)):

(ρ̂ML,Md
)j+1 = (ρ̂ML,Md

)j + ηsj, (4.66)

but sj is not simply the gradient at (ρ̂ML,Md
)j. Instead, it is updated as

sj+1 = sj + β(Gj, Gj−1)Gj, (4.67)

where Gj is the gradient of the loglikelihood evaluated at (ρ̂ML,Md
)j, and

β(Gj, Gj−1) =
Tr[G†j(Gj −Gj−1)]

Tr[G†j−1Gj−1]
. (4.68)

This choice for β is known as the Polak-Ribière choice (235). Just as I did for the

gradient, I also subtract out the τ0 component of sj before doing the update.

A “smart” update rule: golden section search

Both the gradient ascent and conjugate gradient algorithms use update rules of the

form

(ρ̂ML,Md
)j+1 = (ρ̂ML,Md

)j + η∆j, (4.69)

where ∆j is the gradient or conjugate gradient at iteration j. The step size/rate η

modifies the change to the estimate ∆j, and consequently, affects the behavior of the

algorithm. Assuming η is fixed, then there’s the problem that if it’s set too low, the

algorithm will take a long time to converge, while if it’s set too high, the algorithm

might needlessly go through many iterations bouncing back and forth around the

maximum. For this reason, I chose to dynamically update η as the algorithm was

running, by using golden section search (170) to choose an optimal value for η at

each iteration.

To compute the maximum or minimum of a strictly unimodal function f : R → R

(e.g., the loglikelihood function), golden section search progressively narrows down a
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search interval [a, b] to the extremal value x? that extremizes f by considering sub-

intervals [a, x1], [x1, x2], [x2, b] that have the property that their ratios form a golden

ratio.

In order to use this algorithm, it’s necessary to identify a and b. Because the search

parameter η is lower-bounded by 0 (if it’s negative, the algorithm is descending),

a = 0. To determine b, it suffices to consider log(L((ρ̂ML,Md
)j) + κ∆j for increasing

values of κ. Once a value of κ is identified such that log(L((ρ̂ML,Md
)j + κ?∆j) <

log(L((ρ̂ML,Md
)j), then because the loglikelihood is a strictly unimodal function, the

extremal value of L lies in the interval [0, κ?], and the golden section search algorithm

can be used.

Dealing with the boundary of state-space

Regardless of which algorithm is used, any gradient-based update rule will run into

problems when the current estimate gets close to the boundary. In particular, sup-

pose the unconstrained ML estimate ρ̂ML,M′
d

lies outsideMd. Then the optimization

rules above will fairly rapidly update the estimate to one that lies on the boundary

of the model, but then subsequent updates will cause the estimate to slowly “crawl”

along the boundary: at each iteration, the gradient ∇ logL will point toward ρ̂ML,M′
d
,

and its projection onto the local tangent plane of the boundary will be small. At

ρ̂ML,Md
, the gradient will point directly at ρ̂ML,M′

d
, and its projection onto the local

tangent plane will be 0. Thus, the amount of “horizontal” update that the gradient

gives goes to zero as the optimizer converges on ρ̂ML,Md
. This poses challenges for

gradient-based optimization of the likelihood near a boundary.

To remedy this, I use a simple test: given the gradient gj, compute (ρ̂ML,Md
)j + εgj

with ε = 10−5. If this matrix is negative, then the current estimate is probably on

the boundary. Thus, the gradient should be replaced by its local approximation

gj →
Π[(ρ̂ML,Md

)j + εgj]− (ρ̂ML,Md
)j

ε
, (4.70)
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Figure 4.5: Anisotropy of the heterodyne POVM Fisher information. The
condition number κ – the ratio of the largest eigenvalue to the smallest – of the esti-
mated heterodyne Fisher information. (Estimates are the average over 100 Hessians
of the loglikelihood function.) κ grows with model dimension, meaning anisotropy is
increasing. The dashed lines indicate different states ρ0, and the solid line is κ = 1
(i.e., I ∝ 1l.).

where Π[A] performs the truncation algorithm described in Section 3.5.3. This ap-

proach uses a finite-difference method to estimate the gradient along the boundary,

which is the direction we want the optimizer to go anyway.

4.2.6 Results

The theory derived in Section 3.5 models ideal tomography, where the Fisher infor-

mation is isotropic. In practice, this is rarely the case, particularly for the heterodyne

POVM. Figure 4.5 plots the condition number – the ratio of the largest eigenvalue

to the smallest – of the estimated Fisher information. It is clear I 6∝ 1l. Although

the Fisher information is highly anisotropic, this turns out to be less of a problem

than Figure 4.5 indicates.
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Figure 4.6: Applying isotropic formula to heterodyne tomography. The
Wilks theorem (orange dots) dramatically over-estimates 〈λ(ρ0,Md)〉 in optical het-
erodyne tomography. Our formula, Equation (3.43) (blue squares), is far more accu-
rate. Residual discrepancies occur in large part because Nsamples is not yet “asymp-
totically large”. The solid red line corresponds to perfect correlation between theory
(〈λ〉) and practice (λ̄).

I examined the behavior of λ for 13 distinct states ρ0, both pure and mixed, supported

on H2,H3,H4, and H5. As described earlier, I used rejection sampling to simulate

100 heterodyne datasets with up to Nsamples = 105, and numerical optimization to

compute the ML estimates ρ̂ML,Md
over each of the 9 models M2, . . . ,M10. (The

model M1 is trivial, as M1 = {|0〉〈0|}. This model will be generally be a poor

choice.) For each ρ0 and each d, I averaged λ(ρ0,Md) over all 100 datasets to obtain

an empirical average loglikelihood ratio λ̄(ρ0, d).

Results of this test are shown in Figure 4.6, which plots the predictions for 〈λ〉 given

by the Wilks theorem and Equation (3.43), against the empirical average λ̄, for a

variety of ρ0 and d. Equation (3.43) correlates very well with the empirical average,

while the Wilks theorem (unsurprisingly) overestimates λ dramatically for low-rank
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states. Whereas a model selection procedure based on the Wilks theorem would

tend to falsely reject larger Hilbert spaces (by setting the threshold for acceptance

too high), Equation (3.43) provides a reliable null theory.

Interestingly, as d grows, Equation (3.43) also begins to overpredict. As Figure

4.7 indicates, a more accurate description is that the numerical experiments are

underachieving, because λ̄ is still growing with Nsamples. Both the Wilks theorem

and the theory developed in Section 3.5 are derived in the limit Nsamples → ∞;

for finite but large Nsamples, both may be invalid. Figure 4.7 shows that, even at

Nsamples ∼ 105, the behavior of λ̄ has failed to become asymptotic. This is surprising,

and suggests heterodyne tomography is a particularly exceptional and challenging

case to model statistically.

However, the analysis of Section 3.5 does get some of the qualitative features correct.

Figure 4.8 presents simulated values of 〈λjk〉 for an isotropic Fisher information and

for heterodyne tomography. While the values of 〈λjk〉 do not agree exactly, they still

decompose into two types, the “L” and the “kite”. (See Figure 4.9 for an analysis of

the discrepancies.)

The loglikelihood ratio statistic λ(ρ0,Md) is also the squared error between ρ0 and

ρ̂ML,Md
. IfMd is sufficiently complex (i.e., d > dim(ρ0), then we usually expect that

some parameters in ρ̂ML,Md
will be estimated with non-zero values, even when the

corresponding matrix element(s) in ρ0 are 0. In turn, the squared error would be

non-zero. However, if the data itself didn’t provide any evidence that the matrix

elements in ρ̂ML,Md
should be estimated with non-zero values, then the squared loss

would be zero.

Figure 4.8 indicates that such an effect might be at play when considering heterodyne

tomography. In particular, if ρ0 is a state with n photons, but the dimension of the

model d > n, then it’s very unlikely the tomographic data set will contain many

values of α with |α|2 > n. In turn, ρ̂ML,Md
shouldn’t have much support on the
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Figure 4.7: “Underachievement” of λ̄ in heterodyne tomography. The empir-
ical average λ̄ may have achieved its asymptotic value, or is still growing, depending
on ρ0 and d. Solid lines indicate the value of Equation (3.43).

higher-energy number states, so (ρ̂ML,Md
)jj ∼ 0 for j ∈ [n, n+ 1, · · · d]. This is in fact

the behavior observed in Figure 4.8. Because ρ̂ML,Md
≥ 0, if it has small diagonal

elements, then the off-diagonal elements that are coherent with them must also be

small. Both of these effects imply the high-photon-number matrix elements of ρ̂ML,Md

are small, which means they are close to zero, thereby driving down the squared loss

(i.e., 〈λjk〉).

With very few heterodyne “counts” out in the high-photon-number region of phase

space, the data provide very little reason/evidence to fit the extra parameters in the

model to any value besides zero. Because the estimates are essentially “pinned”, they

112



Chapter 4. Other applications of MP-LAN

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0.99 0.06 0.06 0.06 0.06 0.06 0.06 0.16

0.99 0.06 0.06 0.06 0.06 0.06 0.16 0.06

1 0.06 0.06 0.06 0.06 0.16 0.06 0.06

1 0.06 0.06 0.06 0.16 0.06 0.06 0.06

0.98 0.06 0.06 0.16 0.06 0.06 0.06 0.06

0.97 0.06 0.16 0.06 0.06 0.06 0.06 0.06

0.99 0.17 0.06 0.06 0.06 0.06 0.06 0.06

5.3 0.99 0.97 0.98 1 1 0.99 0.99

Isotropic Model
(10000 Trials)

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0.67 0.01 0.01 0.01 0.02 0.02 0.02 0.02

0.85 0.01 0.02 0.02 0.02 0.01 0.02 0.02

0.95 0.01 0.03 0.02 0.02 0.02 0.01 0.02

0.85 0.02 0.04 0.04 0.04 0.02 0.02 0.02

0.94 0.05 0.06 0.05 0.04 0.02 0.02 0.01

0.92 0.12 0.06 0.06 0.04 0.03 0.02 0.01

1 0.11 0.12 0.05 0.02 0.01 0.01 0.01

1.3 1 0.92 0.94 0.85 0.95 0.85 0.67

Heterodyne Tomography
(100 Trials)

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0.99 0.99 0.12 0.12 0.12 0.12 0.12 0.34

0.99 1 0.12 0.12 0.12 0.12 0.33 0.12

1 1 0.12 0.12 0.12 0.34 0.12 0.12

1 1 0.12 0.12 0.33 0.12 0.12 0.12

0.98 0.99 0.12 0.34 0.12 0.12 0.12 0.12

0.97 1 0.33 0.12 0.12 0.12 0.12 0.12

0.99 2.6 1 0.99 1 1 1 0.99

2.7 0.99 0.97 0.98 1 1 0.99 0.99

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0.35 0.57 0.01 0.02 0.02 0.03 0.03 0.05

0.28 0.7 0.01 0.02 0.03 0.04 0.05 0.03

0.38 0.79 0.03 0.03 0.04 0.08 0.04 0.03

0.51 0.89 0.04 0.04 0.08 0.04 0.03 0.02

0.77 0.79 0.08 0.11 0.04 0.03 0.02 0.02

0.94 1.1 0.14 0.08 0.04 0.03 0.01 0.01

1.1 1.8 1.1 0.79 0.89 0.79 0.7 0.57

0.79 1.1 0.94 0.77 0.51 0.38 0.28 0.35

Figure 4.8: Detailed comparison of isotropic model and heterodyne tomog-
raphy. The values of 〈λjk〉 for an isotropic Fisher information (left), and for het-
erodyne tomography (right). Top: ρ0 = |0〉〈0|. Bottom: ρ0 = I2/2. Discussion:
Qualitatively, the behavior is the same, though there are quantitative differences,
particularly within the kite.

don’t fluctuate too much, so their contribution to the loglikelihood ratio statistic is

small.

This behavior is not unique to heterodyne tomography. In fact, it also occurs for the

loglikelihood ratio statistic for classical Poisson distributions (see Appendix G): when

the Poisson rate parameter – which determines the expected number of counts for

the process – is small, the expected value of λ is small as well. Therefore, I conjecture

that the matrix elements of ρ̂ML,Md
with support on higher-energy photon states |n〉

do not reach their asymptotic contribution level until extremely large sample sizes

Nsamples. If this conjecture is true, then at least some of Equation (3.43)’s failure to

match the observed values occurs simply because the empirical datasets are not yet
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Figure 4.9: Discrepancies between isotropic model and heterodyne tomog-
raphy. Examining how the analysis of Section 3.5 for 〈λjk〉 disagrees with simulated
heterodyne experiments. We take ρ0 = |0〉〈0| and d = 8. Top Left: The values of
〈λ0k〉 in the “L” as a function of Nsamples. Top Right: At the largest Nsamples stud-
ied, 〈λ0k〉 is less than 1, especially for the higher number states. Bottom Left: The
total from the “kite” versus Nsamples. It is clear the total is still growing. Bottom
Right: The individual “kite” elements 〈λjk〉 at the largest Nsamples studied; most are
small compared to their values in the isotropic case.

“asymptotically” large, meaning individual 〈λjk〉 are not yet asymptotic, causing 〈λ〉
to not have achieved its asymptotic value either.

4.2.7 Conclusion and discussion

Tomography of continuous-variable systems presents a challenging statistical infer-

ence problem: formally, the model is infinite-dimensional, but a finite amount of

experimental data will be collected for characterizing the state. Thus, model selec-

tion techniques are essential. This section showed that the result for 〈λ(ρ0,Md)〉
derived in a highly-idealized model of tomography (an isotropic Fisher information)
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does capture some effects about the loglikelihood ratio statistic’s behavior, partic-

ularly the division of the matrix elements of ρ̂ML,Md
into the “L” and “kite” show

up. Based on correspondence with Jonathan A. Gross, the reason for this may be

that the directions along which the Fisher information is most highly anisotropic are

those corresponding to the “kite” matrix elements.

The numerical experiments with heterodyne tomography I presented show unex-

pected behavior, indicating that quantum tomography can still surprise, and may

violate all asymptotic statistics results. In particular, the idea that some matrix

elements in ρ̂ML,Md
don’t “turn on” until extremely large sample sizes Nsamples has

some legs, given the analysis of Poisson-distributed random variables in Appendix

G. In such cases, bootstrapping (90; 144) may be the only reliable way to construct

null theories for λ.
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Machine-learned QCVV

techniques

Machines take me by surprise with great frequency. - Alan Turing (1950) (301)

Designing a QCVV technique to probe a new property of interest takes time, effort,

and expertise. Machine learning (ML1) can help automate the development of new

QCVV techniques. In this chapter, I investigate the geometry of QCVV data sets

to determine what kind(s) of surfaces can separate different types of noise. As a

testing ground, I use the simple and canonical problem of determining whether a pro-

cessor’s dominant noise source is coherent or stochastic. I find that noise signatures

in data from long circuits can reliably be separated by linear surfaces. When only

short circuits, like the ones used for linear gate-set tomography, are available, feature

engineering allows linear surfaces to reliably separate noise signatures.

1Here and in Chapter 6, “ML” is used for ‘machine learning’, and not ‘maximum like-
lihood’ as it was in Chapters 3 and 4.
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5.1 Introduction - characterizing next-generation

quantum information processors

5.1.1 The need for new characterization techniques

Quantum information processors (QIPs) perform quantum circuits. Ideally, QIPs

would perform specific circuits designed for a particular task (e.g., encoding clas-

sical data into a quantum state). In practice, QIPs are imperfect, idiosyncratic,

and subject to noise and errors, so the circuits they run deviate from that ideal.

To describe these deviations from ideal behavior, we use noise models that have

many properties. Determining these properties – or more precisely, inferring them

from data – is nontrivial. But doing so is necessary to diagnose problems and pre-

dict performance. The field of quantum characterization, validation, and verification

(QCVV) provides a toolbox for measuring and inferring various properties (e.g. fi-

delity) of noisy processors. But as QIPs grow in size and quantum computing enters

the “noisy, intermediate-scale quantum” (NISQ) era (237) (heralded by releases of

multi-qubit processors by Google, IBM, Rigetti Quantum Computing, and others

(167; 312; 333)), relying on existing tools in the QCVV toolbox becomes increas-

ingly hard. The QCVV techniques that exist today may not work for characterizing

next-generation processors (or those coming online today). (Recall Section 2.4.)

Inventing a new QCVV technique is generally a hard task, and typically corresponds

to a fairly high-impact scientific paper. It requires creativity, effort, and months or

years of time. New QCVV techniques are informed by significant domain-specific

expertise, and distilling the complex behavior of a processor into a meaningful set

of characterizable properties requires thoughtful effort. Is there a more efficient way

to leverage such domain-specific expertise to speed up this process and help QCVV

practitioners develop new QCVV techniques more rapidly? I think the answer is

“yes”. In this chapter, I show how to use machine learning (ML) to automate one of
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Figure 5.1: Using machine learning (ML) to characterize quantum infor-
mation processors (QIPs). Developing a quantum characterization, validation,
and verification (QCVV) technique for a QIP characterization task currently requires
time, effort, and domain-specific expertise. In this chapter, I show how ML can make
this task easier. ML algorithms are not, themselves, QCVV techniques. Instead, al-
gorithms create QCVV techniques if they are given the right ingredients. The most
important of these is a specification of the task (a property of the QIP to be inferred);
in supervised learning, this property is presented to the ML algorithm as a label on
training data.

the more challenging parts in creating a QCVV technique (see Figure 5.1).

I start by explaining what ML can (and can’t!) reasonably do in this area. Then,

I outline a set of steps for formulating some QCVV tasks as supervised learning

problems, and identify the key ingredients that need to be specified before an ML

algorithm can be deployed (Section 5.2). I then demonstrate this process by going

through the steps and using several ML algorithms for supervised learning to cre-

ate a QCVV technique for determining whether a single-qubit QIP suffers from (1)

coherent errors, or (2) stochastic errors (Sections 5.3 and 5.4). I examine the perfor-

mance of several different ML pipelines – an ML algorithm together with pre- and

post-processing of the data – and show that the geometry of QCVV datasets gov-

erns which algorithms can achieve high accuracy. Feature engineering (a rich form

of pre-processing) can help linear classification algorithms learn how to distinguish

coherent from stochastic noise using QCVV data. Section 5.5 concludes this chapter

with an outlook on the viability of machine-learned QCVV for NISQ processors.
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5.1.2 Advantages and disadvantages of using machine learn-

ing (ML) for QCVV tasks

Broadly speaking, machine learning (ML) is a field within computer science that

focuses on creating and using algorithms for finding patterns in large data sets (266;

140; 119; 156). ML has already been used with great success in a variety of scientific

disciplines (16; 68; 80; 327; 260; 102; 213); readers interested in the intersection

of ML and quantum computation/information may appreciate the growing list of

papers available at (118).

An operational definition for “learning”, given in reference (216), is:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T , as measured by P , improves with experience E.”

Most QCVV tasks can be summarized as “Given some data, infer some property

about the QIP that produced the data.” A “property” is anything that describes the

processor’s behavior. Examples include T1 and T2 times, process matrices that de-

scribe gates, average fidelities, and the presence (or absence) of leakage. Interesting,

relevant properties are quite diverse – they can be binary, real-valued, matrix-valued,

or qualitative.

QCVV techniques that address tasks like this require answering two questions:

“What kind of experimental data will be collected?” (the answer constitutes an

experiment design) and “How will the data be processed to infer the property of

interest?” (the answer constitutes a data analysis pipeline).

Once the property of interest is specified, ML algorithms can generate (or at least

help to generate) answers for both of these questions. The focus in this chapter is on

data processing, and on using ML algorithms to automatically generate good maps

from data to inferred properties. Chapter 6 discusses how ML could also be used
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to construct experiment designs. In this chapter, I will assume that an expert has

already specified the experiment design – and that the data from those experiments

(D) is in fact sufficient to infer the property of interest (P). With the experiment

design specified, solving the characterization problem “Infer P from D” requires

finding a map f : D → P that yields the right answer with high probability.

For most existing QCVV techniques, this map is constructed by a theorist using

statistical theory. There are several steps. First, the theorist posits a parameterized

statistical model M(θ) for the QIP. For each value of the parameters θ, this model

predicts the probability distribution of the observed data, or a coarse-graining of it

(e.g., the model in randomized benchmarking predicts certain averages, rather than

individual circuit probabilities). Then, the theorist chooses an estimation procedure

(e.g. maximum likelihood estimation, or Bayesian inference) that will map the data

D to an estimate θ̂M(D) of the model parameters that describe the QIP that gen-

erated the data. Finally, the value of the property P can be inferred as its value for

the estimated parameters: P̂ = P (θ̂M(D)). For example, if θ is a process matrix

describing a gate, and the property of interest P is “Is the gate’s error coherent?”,

then the inferred answer is “yes” if θ̂ corresponds to an undesired unitary rotation.

This approach is illustrated in Figure 5.2.

“Statistics-based QCVV techniques” have several drawbacks, all of which center

around the statistical model. The entire approach relies critically on a wise, informed

choice forM(θ). There is no unique, obvious choice. George Box famously observed

“All models are wrong; some are useful.” (44). If the model is too complex, and

has too many parameters, then statistical inference will be inaccurate, and prone to

false detection of effects. But overly simple models are worse; if the model is not rich

enough to capture the QIP’s behavior and fit the data, then all conclusions drawn

from it are suspect – the final estimate of the property will be biased. Selecting

between models is something of a dark art. Finally, a model that captures the
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Figure 5.2: Structure of statistical QCVV techniques. Most existing QCVV
protocols rely on statistical inference to approximate the relationship between a QIP’s
property P and experimental data D. A theorist constructs a statistical model M
and uses D to estimate its parameters, yielding θ̂M(D). Then the inferred value of

P is simply P
(
θ̂M(D)

)
.

desired property has to exist or be invented by a creative theorist before statistical

machinery can be deployed.

“Machine-learned QCVV techniques” are quite different, and require a distinct ap-

proach to their development. Essentially (explored in much greater detail below), an

ML algorithm creates a data analysis function f : D → P by using a large collection

of training examples (data sets generated by QIPs with known values for the prop-

erty) which effectively describe the property of interest, to search or optimize over a

large hypothesis class of candidate functions, and find one that (1) works reliably on

the training examples, and (2) satisfies some robustness criterion that ensures this

reliability will extend to future, as-yet-unseen data generated by a QIP whose value

for the property needs to be inferred.

Why might this be expected to work? ML algorithms are known to be particularly

good at learning approximations to functions. So if a good f exists – e.g., one

that could be derived via statistics – then some ML approach should be able to

find a good approximation to it. Some ML algorithms are in fact universal function

approximators (79), and can approximate arbitrarily well any given function (subject

to some mild regularity conditions). Furthermore, the ML toolbox contains well-
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established methods for ensuring (and verifying) that the approximation to f learned

by the ML algorithm will generalize to make sensible inferences on new data. Like

statistical model selection, these techniques mitigate the risk of overfitting.

The ML approach has two major advantages. First, ML algorithms do not rely at all

on (statistical) models. Instead, they infer inductively, by generalizing from a large

array of sample cases (training data) by searching over a hypothesis class. So there

is no obligation to come up with a good model, and no risk of choosing a bad one.

Second, because ML algorithms only care about the relationship between D and P ,

the same algorithm can be applied across a wide variety of characterization tasks. A

single ML algorithm can learn how to solve many different QCVV problems, as long

as it is supplied with a representative training set for each. This shifts the burden

of effort from statistics (which requires fine reasoning about hypothetical data that

might be observed) to simulation (generating reams of training data).

This ML approach isn’t a panacea; ML algorithms come with several costs. First,

the technique learned by the algorithm may not make any sense (to humans), and

therefore not lend itself to insight or generalization. This is particularly true for

powerful algorithms such as neural networks (210; 94; 146). Second, ML algorithms

require access to data (“experience E”). Generating data for ML algorithms to

learn on can require lots of experiments and/or compute cycles. Computer-generated

(“synthetic”) data might become extremely costly once NISQ QIPs achieve quantum

supremacy/advantage and become effectively unsimulatable on classical computers.

Third, while ML algorithms do not rely on a model, they do represent a hypothesis

class (a set of functions), which can have the same of issues that affect the statistical

models (e.g., the hypothesis class has to be rich enough to solve the problem, but

simple enough to be learned efficiently). The hope in using ML instead of statistics

is that finding a good hypothesis within the hypothesis class (i.e., learning a high-

accuracy classifier) may be easier than finding the right model.
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5.1.3 Related work

This work focuses on how classical ML algorithms can process classical data that

comes from to performing experiments on a quantum information processor. Within

the domain of “quantum machine learning” research (269; 30), this work falls in the

“quantum system/classical algorithm” case, in contrast to other work that focuses

on using quantum algorithms to process classical or quantum data (198; 197; 139).

There has been much research in recent years addressing problems in this “Q/C”

case (150; 306; 59; 65; 319; 334; 124; 331; 130). The line of work developed here

is unique in that I use classical ML algorithms to develop a new characterization

technique, as opposed to deploying ML algorithms for known characterization tasks.

5.1.4 Problem statement and key results

In this chapter, I consider the problem of using supervised classification algorithms

to learn a high-accuracy classifier for determining whether the noise affecting a single

qubit is coherent or stochastic. (This problem is a special case of the more general

problem of estimating the coherence of the noise, for which there are known QCVV

techniques (313; 96).) I will show that this problem can be solved using “off-the-

shelf” classifiers that learn from the estimated outcome probabilities of the circuits

prescribed by gate set tomography (GST). I also find that linear classification algo-

rithms – ones that learn separating hyperplanes – can have comparable performance

to nonlinear algorithms, but only if feature engineering is used to represent the data

in a nonlinear way. Finally, I show that the linear support vector machine (SVM)

algorithm, which learns a hyperplane that is robust under small perturbations of the

data, can be used to classify noise even in the presence of finite-sample errors. These

results show that developing a machine-learned QCVV technique can be easier than

the traditional, statistics-based approach to QCVV.
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5.2 How to use ML for developing new QCVV

techniques

A QCVV technique is a way to infer a property of a QIP from the experimental

data it generates. Machine learning is a diverse field with many applications, so

there are surely many ways that ML could contribute to QCVV. This section lays

out one particular rubric – which is somewhat general, but not universal – for using

supervised learning to build a QCVV technique.

The focus here is on supervised learning because, in general, algorithms for supervised

learning infer a function from data to QIP property using data sets with known

properties, whereas those for unsupervised learning discover structure within data.

The canonical QCVV task is to measure, estimate, or infer a specific property (e.g.,

fidelity, coherence, leakage rate, etc). That the subject of interest is the property

itself suggests that supervised learning is more relevant.

There are 7 general components necessary to develop a “machine-learned QCVV

technique”:

1. P , the property of interest,

2. An experiment design that determines the kind and format of the data D,

3. An embedding of D into a feature space Rn.

4. A data processing pipeline for learning a map f : D → P , centered around an

ML algorithm A.

5. A metric of success, used to evaluate candidate solutions against the training

data.

6. Values (or a search protocol) for the hyperparameters that control how the

algorithm behaves.

124



Chapter 5. Machine-learned QCVV techniques

7. A collection of labeled training data from which the algorithm can learn.

The property P is the answer to the question “What do I want to know about the

QIP?”. can be many things – QIP properties include T1 time, logical error rates,

two-qubit gate fidelities, etc. In supervised learning, the property is used to label the

training data: for each value of P , some training data will be generated, and these

effectively define the property, by allowing the ML algorithm to recognize what data

are “typically” generated by a QIP with that value of P . Unsupervised learning is

not always focused on properties, but it can be – we might be interested in a general

question about the structure of the data, such as “Is data collected today consistent

with historical data collected from this device?”.

In this chapter, the experiment design is taken as a given. It constitutes a description

of what experiments will be run, in what order and arrangement, at whatever level of

granularity is necessary. The result of running these experiments is a single dataset

D. QCVV experiments are described by the ideal quantum circuits to be performed

by the QIP; the QIP performs these circuits (usually with noise and errors), and

generates outcomes. So “data” means “the outcomes of various quantum circuits”.

If the QIP’s behavior is assumed to be stationary, then it is sufficient for D to

consist of the aggregated outcome frequencies of the circuits. Except for Section

5.4.5, I consider the “infinite-sample” limit, so that the outcome frequencies are the

outcome probabilities. If not, then D would need to consist of the time-stamped

outcomes for each repetition of a each circuit.

Third, to make experimental data usable by ML algorithms, it needs to be embedded

in a feature space F . This is typically isomorphic to Rn for some n. The embedding

is described by a feature map φ : D → f ∈ F . φ takes a QCVV data set and maps it

into a feature vector f . Different feature maps can yield very different feature spaces,

which impacts the performance of ML algorithms. Varying the feature space and the

feature map intentionally is called feature engineering, and its effects are investigated
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in some detail in Section 5.4.3.

Fourth is the choice of ML algorithm A. The choice for A depends strongly on P
(and also the learning paradigm). If P is a binary property (“Is the noise entirely

coherent or entirely stochastic?”), then A should be a binary classification algorithm.

For continuous properties such as error rates, a regression algorithm would be used.

ML algorithms can be complex, but at heart they consist of parameters θ that index

a hypothesis for the relationship between D and P , and are updated in response

to data (training) to find an element of the hypothesis class that can successfully

predict the property.

Fifth, a metric of success is necessary. Since ML algorithms learn inference tools, that

metric should measure the quality of the inference. For supervised learning tasks, a

loss function is typically used to quantify the penalty for incorrect inference of P .

For binary or discrete classification, the loss function is usually “0/1” (a penalty of 1

is applied for an incorrect classification; no penalty is applied for a correct one), while

for regressing a continuous parameter the loss function would typically quantify the

distance between the inferred value of P and its true value. During training, ML

algorithms update their parameters θ to minimize the loss.

Sixth, most ML algorithms are configurable via user-controllable hyperparameters,

and an algorithm’s performance (i.e., how good a QCVV technique it learns) will

depend on their values. In simple cases the hyperparameters can be specified a priori.

In others specifying a procedure for varying hyperparameters to find good values is

necessary. For the example problem discussed in Chapter 5.3, the solution quality

turns out to be strongly dependent on hyperparameters.

Finally, one of the most important ingredients is a collection of training data C =

{(D1,P1), (D2,P2), · · · } that the ML algorithm can learn from. Each data set in

the collection Dj carries with it a label defined by the property of interest Pj. The

collection is used by the algorithm to identify a good QCVV technique (i.e., a good
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hypothesis out of the hypothesis class available to it.) Some of the training data

is also withheld (temporarily) to be used in testing the technique that is identified.

This cross-validation is essential for validating that the technique generalizes well,

confirming that the training data were large enough, and setting expectations for

how well the tool might work in the future. For QCVV purposes, I envision this

training data being generated via simulation, not from actual experiments. However,

in the situation where we wanted to detect an unknown effect observed previously

in another experiment, the training data might constitute data from that previous

experiment.

Figure 5.3 gives a pictorial description showing how these components relate to one

another. Each needs to be specified to develop an ML-learned QCVV technique.

Note that the first two (property and experiment design) need to be specified for

any QCVV technique. Several of these ingredients could, at least in principle, be

discovered themselves by machine learning: the experiment design (at least partly,

via reinforcement learning), the feature map φ (via automated feature engineering),

and the choice of the algorithm’s hyperparameters (via automated hyperparameter

tuning).

The next section demonstrates exactly how to specify these components and then

deploy ML to generate a simple QCVV technique for a simple but interesting prob-

lem. Section 5.4 will show how to evaluate ML algorithms using cross-validation,

demonstrate the importance of hyperparameter tuning, and introduce feature engi-

neering as a way to enhance ML with domain-specific expertise. Finally, Section

5.5 concludes by discussing the viability of “machine-learned QCVV” for near-term

processors.
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Experimental 
data DD

Feature vector �(D)�(D)

Feature map ��

Data collection CC

ML algorithm A(✓)A(✓)

Performance measure PP

Inference tool A(✓?)A(✓?)

(by training/learning) 

Inferred property
P̂ = A(✓)[�(D)]P̂ = A(✓)[�(D)]

Figure 5.3: Using ML to develop new QCVV techniques. Using ML to build
a QCVV protocol that can infer a QIP property P from data requires different
inputs from (e.g.) traditional statistical QCVV techniques (compare with Figure
5.2). In particular, the statistical model is replaced by an ML algorithm A that
defines a hypothesis class of candidate functions f : D → P . The inference method
is fundamentally different - instead of defining f implicitly via estimation of a model’s
parameters, the result of the ML design process is an atomic analysis map f : D → P
that was learned directly from example data C.

5.3 A machine-learned QCVV technique for dis-

tinguishing single-qubit coherent and stochas-

tic noise

Although a reasonable conjecture is that supervised ML could be applied successfully

to arbitrarily complex QCVV problems – e.g., estimating a full gate set, as gate set

tomography (37; 125; 38) does – the work presented here focuses on a much simpler

yet still interesting task: estimating the coherence of noise (313; 96). Gate errors

are often implicitly assumed to be stochastic, but it is known that they can also be

coherent (general noise is a mixture of stochastic, coherent, and other types of error).

The coherence of the noise impacts the relationship between average and worst-case

error rates (182), and potentially the performance of quantum error-correcting codes

(18; 133; 77; 314; 273). Thus, determining whether errors are coherent or stochastic
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is an important step in assessing how well a QIP could perform error correction (and

probably other tasks). Recently, QCVV protocols have been introduced that can

accurately detect and measure coherence. Some are based on randomized bench-

marking (313; 96). Gate set tomography can also efficiently measure the degree of

coherence.

One way to estimate the coherence of a QIP’s noise is to apply circuits that ran-

domly sample from a unitary 2-design (e.g. Clifford circuits), and then estimate

expectation values of particular observables (313). This “unitarity benchmarking”

protocol is reasonably straightforward – but its derivation very clearly demanded ex-

tensive subject matter expertise! Here, ML is used to solve a simpler version of the

same problem: instead of estimating how coherent the noise is, the task is to classify

whether it is entirely coherent, or entirely stochastic (incoherent). This is a clas-

sification problem, and estimating the coherence quantitatively is a closely related

regression problem. I demonstrate that ML algorithms can learn how to classify

coherent and stochastic noise. Although this does not guarantee that ML algorithms

can perform regression too, it does suggest that doing so could be possible (although

different algorithms may be required). I leave that topic for future work. As noted

in Section 5.1, characterizing NISQ QIPs is challenging for many reasons. The goal

here is to prove the principle, so I simplify by considering a single-qubit processor.

The next subsections specify each of the components identified in the previous sec-

tion.

5.3.1 Property P: “Are the gate errors coherent or stochas-

tic?”

A gate-based QIP implements quantum circuits by compiling the circuit into primi-

tive operations (gates), and executing those gates in the order specified by the com-

piler. The property we want to extract is a property of these primitive operations.
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Figure 5.4: Example of how different types of gate noise affect circuit
outcome probabilities. Suppose that ρ0 = |0〉〈0|, G0 = RY (φ) is a rotation
about the Y -axis by an angle φ = π/2, and the POVM is {|0〉〈0|, |1〉〈1|}. Un-
der G0 (center), Pr(0) = Pr(1) = .5. If instead the applied gate is a coherent
over-rotation rY (θ) = RY (π/2 + θ) (left), then Pr(0) = (1 − sin θ)/2 6= .5, in
general. This same outcome probability of 1/2 can arise from stochastic noise,
G0 → E [ρ] = (rY (θ)ρr†Y (θ) + rY (−θ)ρr†Y (−θ))/2 (right), although the effect of this
noisy channel on the initial state is different – it decreases the purity of ρ0, provided
θ 6= ±π/2.

Ideal gates on a qubit are described by 2× 2 unitary matrices U . For a more general

model that encompasses Markovian errors, gates are described by 4 × 4 completely

positive trace-preserving maps (CPTP maps) that act linearly on density matrices.

A model that assigns a CPTP map to each primitive operation of a QIP is a gate

set. The single-qubit processor considered here has five operations: initialization (ρ),

measurement (M), and three logic gates corresponding to idling and π/2 rotations

around the X and Y Bloch axes (GI , GX , and GY , respectively).

An ideal unitary gate G0 is described by a CPTP map that acts as G0[ρ] = UρU †.

The real gate E will deviate from G0. This deviation is the error in the gate, and

a variety of errors are possible. This chapter focus on two specific classes of errors,

which are described by their generators, as follows.

The ideal unitary U can be described by the 2 × 2 Hamiltonian H0 that generates

it as U = e−iH0 . The ideal CPTP map G0 is a different representation of the same
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unitary action. It can also be described by a generator as G0 = eH0 , where now H0

is a 4× 4 matrix that acts on density matrices as H0[ρ] = −i[H0, ρ].

If E ’s error (deviation from G0) is purely coherent, then it still acts unitarily, but

with an additional Hamiltonian term:

G0[ρ]→ E [ρ] ≡ e−i(H0+He)ρei(H0+He). (5.1)

It is easy and useful to write this using the generator of the error, which is of the

same kind as the generator of ideal dynamics:

E = eH0+He . (5.2)

An error is purely coherent if and only if it is of this form. Coherent errors often

result from imperfect calibration of classical control fields.

“Stochastic” noise is widely understood and discussed, but does not seem to be

precisely defined anywhere. A particular definition is given for purely stochastic

noise that is generally consistent with usage in the quantum computing community

(see below). The concept to be captured is this: stochastic errors are what occur

when control fields are fluctuating around the desired value in a random way, but

the expected value of those fluctuations is zero.

This concept is most straightforwardly seen when considering an imperfect idle op-

eration (where the target unitary is 1l). This operation has purely stochastic errors

if its noisy version can be written as a convex sum of unitary operations and it is

invariant under time reversal:

E [ρ] =
n∑

j=1

wjUjρU
†
j , E = E†. (5.3)

This definition can be generalized to nontrivial unitary gates G0 = eH0 via the gen-

erators for stochastic noise that appear in the canonical Lindblad equation. Letting

S represent a parameterized generator, then a noisy gate is computed as

E = eH0+S . (5.4)
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Full details are given in Appendix C.2. Stochastic errors can have several causes,

including fluctuations of the classical control fields and weak coupling to a rapidly

mixing quantum bath.

Both of these noise models are Markovian - for a fixed realization of the noise, when

G0 is applied more than once in a circuit, the same CPTP affects each application.

Figure 5.4 shows examples of how purely coherent or purely stochastic noise affect

the outcome probabilities of a simple circuit for a single qubit. For details on how

random realizations of stochastic and/or coherent error are generated, see Appendix

C.2. In generating realizations of these two noises (e.g., for training data or for

testing purposes), the strength of the errors is controlled with a parameter η. The

coefficient or “rate” r that multiplies each generator of stochastic or coherent noise

is randomly distributed, and expected value of its magnitude is 〈|r|〉 = O(η). For

small η, this means that |E −G0| = O(η) as well.

5.3.2 Experiment design: gate set tomography (GST) cir-

cuits

I do not try to produce a highly optimized set of circuits adapted specifically to the

task of distinguishing coherent from stochastic noise. Instead (and in keeping with

the general spirit of ML), I want a general purpose experiment design that should

at least in principle provide information about almost any property. (That way,

the property of interest is guaranteed to be inferrable from experimental data.) For

this reason, the circuits used for gate set tomography (GST) (37; 125; 38) are used.

They are intended to capture all aspects of Markovian noise, because GST seeks

to completely reconstruct the gates’ process matrices, and so its experiment design

must be sensitive to everything about that noise. This experiment design is thus

sensitive to the binary “coherent vs. stochastic” property of the noise. Therefore,

the data I consider are the outcome probabilities (or, in the case of real finite-sample
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data, the observed frequencies) of the circuits prescribed for GST.

Each GST circuit cj is of the form FM(gm)lFS where FS, FM , and gm are short sub-

sequences comprised of the elementary gates from the QIP’s gate set. GST doesn’t

actually prescribe a single, specific set of circuits, because the protocol has some

configurable parameters. One is the maximum depth of the experiment design, L.

If L is increased, then new circuits are added to the experiment design, by adding

new values of the l parameter in the circuit description above. These circuits are

designed so that the GST experiment design is not just sensitive to every observable

parameter of the gate set, but increasingly sensitive as L increases – i.e., every pa-

rameter gets amplified. For a fixed value of L, the circuits in the GST experiment

design have depth at most L+O(1).

For a given gate set (i.e., QIP), each circuit cj has an outcome probability pj that

describes the random result of the circuit’s terminating measurement M . For single-

qubit GST, M is a 2-outcome POVM, with outcomes “up” and “down”. In exper-

iments, one of these outcome probabilities (say, for the “up” outcome) has to be

estimated by repeating cj a total of Nsamples times and counting the number of times

the “up” outcome is observed

p̂j = fj ≡
Number of times “up” seen when cj was run

Nsamples

. (5.5)

For a given circuit family, a GST data set D is a list

[(c1, f1, Nsamples), (c2, f2, Nsamples), · · · , (cd, fd, Nsamples)]. Here, d is the total number

of circuits (not the Hilbert space dimension, which is 2 throughout this chapter!),

and depends on the family parameter L.

5.3.3 Feature space F : the unit hypercube

A GST data set (D) is usually presented as a list of count statistics, one for each

circuit. But ML algorithms (e.g., classifiers) represent data as feature vectors. So
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GST data sets need to be mapped into a feature vector f in a feature space F . Any

way of doing so is called a feature map, φ : D → f ∈ F .

The simplest and most obvious feature map is the one that takes the estimated

outcome probabilities for each circuit and arranges them into a vector:

φ(D) = f ≡ [f1, f2, · · · , fd]. (5.6)

φ defines a feature space that is the unit hypercube in Rd:

F = [0, 1]d. (5.7)

The dimension of F is d, the total number of circuits in the GST experiment. It

is not fixed, and varies with the GST experiment design. In particular, d varies

with L, the parameter that sets the maximum length of circuits used for GST. If

D only contains circuits from the L = l family, I call the feature vector φ(D) an

“L = l GST feature vector”. Increasing L (typically by factors of 2) adds new,

longer circuits that amplify the noise. It also increases d, albeit relatively slowly (see

Figure 5.5 and Table 5.1). Even the largest GST experiments considered here are

quite manageable for ML algorithms, which can learn well on feature spaces that

have dimension up to d = 105. Figure 5.6 illustrates GST feature vectors, showing

how their components (outcome probabilities of a given circuit) respond to particular

realizations of coherent and stochastic noise.

The “base” feature space defined above is just a starting point. In principle, it

contains all the necessary information for classifying the noise (since the GST cir-

cuits are designed to capture and amplify every property of Markovian noise). But

that information may not be easily accessible to ML algorithms – especially ones

like linear classifiers that rely on a certain structure – and it may be highly redun-

dant. There are two canonical techniques for pre-processing data to enhance ML

performance. Feature engineering means augmenting the feature space with new,

(possibly nonlinear) functions of existing features. This adds no new information,

134



Chapter 5. Machine-learned QCVV techniques

0 50 100 150 200 250

Maximum circuit depth L

0

500

1000

1500

2000

2500

F
ea

tu
re

sp
ac

e
di

m
en

si
on

d

Figure 5.5: The feature space dimension d grows with the GST circuit
family parameter L. As L is increased, the number of circuits in the GST data
set D grows. The dimension of the feature vector φ(D) also grows. However, this
growth is roughly logarithmic in L, and even at the largest value of L considered
here, the feature space dimension is not too large for the ML algorithms used.

but it changes the geometric structure of the problem, and can make properties of

the base feature space accessible to linear classifiers. Feature selection means throw-

ing out redundancies and unnecessary features, by determining which features are

useful or necessary for a given task and only keeping them. Feature engineering is

used later in this chapter, to allow linear classifiers to capture properties that are

provably not accessible to them in the base feature space. Feature selection is not

used here. (See Chapter 6 for research showing that feature selection is generally

possible for a wide variety of Markovian noise models.)

5.3.4 Algorithm A: supervised binary classifiers

Distinguishing between coherent and stochastic noise is naturally posed as a binary

classification problem. This chapter considers and explores several supervised learn-

ing algorithms for solving this problem. The general task of supervised learning is:

“Given a collection of feature vectors C = {(fj, yj)}Nj=1, with yj ∈ {±1} indicating

which class fj belongs to, learn (find) a classifier c : f → {±1}.” All such algorithms
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Figure 5.6: GST data sets as feature vectors. The L = 1 feature vectors
for a noiseless gate set (green), a gate set where each gate has been affected by an
independent coherent error (orange), and a gate set where each gate has been affected
by an independent stochastic error (blue) is plotted. Both realizations of the noise
had η = 0.1.

seek a classifier that performs well on the training data C. They differ in (1) how

they search for good decision rules, and (2) how they try to avoid overfitting.

A good measure of a supervised learning algorithm’s performance is the accuracy

A with which they infer the class label. There are many measures of accuracy for

supervised learning problems; here, I use

A =





1 if c(fj) = yj

0 otherwise
, (5.8)

for which the average accuracy is between 0 and 1 and equals the probability of

correct classification. The quantity 1−A is the “0/1 loss” alluded to in Section 5.2.

Every binary classification algorithm learns a classifier that divides the feature space

into two parts. Linear classifiers are particularly simple; the boundary that separates

the feature space is an affine hyperplane described by a normal vector and a scalar

offset. Here, the focus is primarily on linear classifiers. However, when they are

deployed on engineered feature spaces, they are effectively nonlinear classifiers on
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the base feature space. Two nonlinear classifiers are also considered. But because

linear classifiers are so important to the analysis that follows, I now briefly review

the geometry of affine hyperplanes.

Affine hyperplane geometry

An affine hyperplaneH = (β, β0) is the set of vectors xj ∈ Rd satisfying β·xj+β0 = 0.

The geometric distance from any point x ∈ Rd to any point x0 ∈ H can be computed

by noting that β is normal to H, and that ∀ x0 ∈ H, β · x0 = −β0. Therefore,

d(x,x0) = |β · x + β0|/||β||. (5.9)

Since the relation above is independent of x0, we may refer to the “distance from x

to H” without ambiguity, denoted as d(x, H).

The classification rule c learned by a linear classification algorithm is often formulated

in terms of a separating affine hyperplane H = (β, β0):

c(f) = sign [β · f + β0] . (5.10)

Suppose H = (β, β0) separates C, so that c(fj) = yj ∀ j. The geometric margin MH

of H is the minimum distance from any feature vector to H:

MH = min
fj∈C

d(fj, H) =
1

||β||min
fj∈C

|β · fj + β0| . (5.11)

Figure 5.7 gives a pictorial description of the margin. Suppose H is a fixed separating

hyperplane for C. Its margin MH has a nice geometric interpretation: the classifier

would only misclassify a feature vector in the training set if were perturbed by at least

MH along β̂. So a large margin is desirable. When there are multiple hyperplanes

that separate the training data, the optimal hyperplane is the one that maximizes

MH . If H has the largest geometric margin of all hyperplanes that could separate C,
then it follows that H would generalize well to the task of classifying feature vectors
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Figure 5.7: Example of margin for a separating hyperplane. In this toy
example, a hyperplane H = (w, b) separates the data (solid black line). The dashed
line intersects the feature vectors closest to the separating hyperplane. The distance
from the separating hyperplane to the nearest feature vectors is called the margin;
here, the margin is 1/||w||. Credit: Wikimedia commons.

that are merely small perturbations on the feature vectors in C. The margin becomes

especially important when the training data are limited, or when the QCVV data

to be classified has finite sample noise (see Section 5.4.5). Support vector machines

(Appendix D.3) are particularly good at finding robust, large-margin hyperplanes.

Algorithms for supervised binary classification

This chapter examines and compares the performance of several algorithms for super-

vised binary classification. One class that is not considered is neural networks. Neu-

ral networks have a complex internal structure that makes them very powerful, but

makes their behavior difficult to understand and explain. (Recall the “interpretabil-

ity issue” raised in Section 5.1.2.) Instead, five simpler, widely-used algorithms are
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considered. Three are linear classifiers: linear discriminant analysis (LDA), percep-

trons, and linear support vector machines (SVMs). Two are intrinsically nonlinear:

quadratic discriminant analysis (QDA), and radial basis function (RBF) SVMs. Each

of these algorithms is explained below. Further discussion can be found in Hastie et

al. (140), and in Appendix D.

The behavior of most ML algorithms can be configured by setting user-specified hy-

perparameters (so named to distinguish them from the parameters that index the

hypothesis, which the algorithm is trying to learn). Tuning an algorithm’s hyper-

parameters so that it can learn from known data and generalize to perform well on

unseen, future data is something of a subtle art. In the examples considered here,

the relevant hyperparameters are typically swept across a wide range to find val-

ues that work. (See Appendix F for details, particularly Table F.1, which lists the

hyperparameter values examined.)

The first two algorithms examined, LDA and QDA, approach the binary classification

problem from a statistical perspective. They are derived from a Gaussian ansatz,

in which the feature vectors for each class are normally-distributed with means µ1

and µ2 and covariances Σ1 and Σ2. Under this assumption, there is an optimal

decision boundary for the feature vector f that can be derived from a likelihood ratio

test. The “learning” in LDA and QDA corresponds to assuming that the means and

covariances are unknown, and must be estimated from the training data. Denote the

estimated means and covariances (respectively) by µ̂j and Σ̂j.

LDA assumes that the two covariance matrices are identical, in which case the opti-

mal decision boundary is a hyperplane. The LDA decision rule is

cLDA(f) = sign
[
f · Σ̂−1(µ̂1 − µ̂2)

+ (µ̂1 · Σ̂−1µ̂1 − µ̂2 · Σ̂−1µ̂2)/2
]
,

(5.12)

which is of the form sign[f · β + β0]. QDA allows the two covariance matrices to be
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different, which produces a nonlinear optimal decision rule that takes the form

cQDA(f) = sign

[
1

2
log

(
|Σ̂2|
|Σ̂1|

)
+

1

2
(f − µ̂2)T Σ̂−1

2 (f − µ̂2)

− 1

2
(f − µ̂1)T Σ̂−1

1 (f − µ̂1)

]
. (5.13)

Derivations of these classification rules can be found in Appendix D.1.

Estimating the means µ̂1 and µ̂2 is relatively straightforward as long as there are

significantly more training examples than dimensions in feature space. But unbiased

estimation of the covariance matrices would require much larger training sets (more

than d2 examples), so both LDA and QDA regularize the estimated covariance ma-

trices. LDA does so through a hyperparameter τ that affects the dimension of β (by

controlling the rank of Σ−1). QDA introduces a hyperparameter s, where 0 ≤ s ≤ 1,

and replaces Σ̂k by sΣ̂k + (1− s)I.

The perceptron (259; 258), one of the oldest supervised binary classification algo-

rithms, makes no assumptions about the distribution of the feature vectors. It

learns a separating hyperplane using a simple, iterative training algorithm whose

only hyperparameter, Nepochs, determines the number of iterations allowed before

the algorithm terminates. It generates a linear decision rule of the form

cPerceptron(f) = sign (β · f + β0) . (5.14)

Appendix D.2 provides details on how the perceptron is trained.

Support vector machines (SVMs) (308) address a notable flaw of the perceptron: the

perceptron will find some separating hyperplane (if one exists), but not necessarily

an optimal one. The soft-margin SVM defines the optimal hyperplane to be the one

that maximizes the geometric margin, subject to a regularization penalty C. (See

Appendix D.3 for details.) The decision rule learned by the linear SVM is

cLinear SVM(f) = sign

[
N∑

j=1

yjcj(fj · f) + β0

]
, (5.15)
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where 0 ≤ cj ≤ C. C is a hyperparameter for this algorithm, and controls a trade-off

between maximizing MH and minimizing the number of mis-classified points. (See

Equation (D.30).) The decision rule explicitly depends on the feature vectors in C.
If cj 6= 0, fj is called a support vector.

The radial basis function (RBF) SVM is intended for situations where the data can

only be separated by curved (nonlinear) hypersurfaces. The RBF SVM uses a kernel

K (147; 134) to implicitly map the data to a high-dimensional feature space where

a linear decision boundary (which is nonlinear in the original feature space) can

separate the data. So the RBF SVM is implicitly performing a particular kind of

feature engineering, akin to what is explicitly done later in this chapter. The RBF

SVM decision rule is

cRBF SVM(f) = sign

[
N∑

j=1

yjcjK(fj, f) + β0

]
, (5.16)

where K(x,y) = Exp [−γ||x− y||2], and again 0 ≤ cj ≤ C. The RBF SVM has two

hyperparameters: C, which behaves exactly as with the linear SVM, while γ controls

the width of the kernel.

5.3.5 Data collection C

The main goals of this chapter are to determine whether any ML algorithm could

learn a technique to distinguish stochastic and coherent noise, and to compare the

performance of different algorithms. To test them, a large collection of labeled data

– simulated GST datasets for many realizations of stochastic and coherent noise –

was generated, and was used to train each algorithm.

To produce this data, I numerically simulated GST experiments – for several different

values of L – using noisy gate sets. In all cases, the noiseless “target” gate set was

G = {ρ0 = |0〉〈0|, {Gj} = {I, Xπ/2, Yπ/2}, E = {|0〉〈0|, |1〉〈1}}. I chose 19 values

for the noise strength η (see Table 5.1). For each noise type (stochastic / coherent)
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Target gate set G ρ0 = |0〉〈0|, {Gj} = {GI , GX , GY }, E = {|0〉〈0|, |1〉〈1|}
Noise type Coherent and stochastic (see Appendix C.1)
GST data set
family parame-
ter L

[1, 2, 4, 8, 16, 32, 64, 128, 256]

Noise strength η [10−4, 2.15 × 10−4, 4.64 × 10−4, 10−3, 2.15 × 10−3, 4.64 ×
10−3, 10−2, 2.15 × 10−2, 4.64 × 10−2, 10−1, 1.19 × 10−1, 1.43 ×
10−1, 1.71× 10−1, 2.04× 10−1, 2.44× 10−1, 2.92× 10−1, 3.49×
10−1, 4.18× 10−1, 5× 10−1]

Noise realiza-
tions for fixed η
and noise type

900 (1 for each gate in G, yielding 300 noisy gate sets, gener-
ated as specified in Appendix C.2)

Table 5.1: Data set description. For each value of L, a collection of data CL was
generated using noisy versions of the gate set G. The noise strength η quantifies the
discrepancy between the ideal gate set and its noisy version; as η → 0, the noisy gate
set converges to the ideal one.

and noise strength η, I generated 300 random noisy gatesets, each one obtained

by postpending a randomly chosen noise channel of that noise type to each gate.

(Note that an independently selected noise channel was applied to each of the three

gates in the gate set). pyGSTi (222) was used to generate the GST data sets that

would result from running the GST experiment design with a given noisy gate set.

Although I do consider finite-sample effects (see Section 5.4.5), the main focus is on

the N → ∞ exact-sampling limit, where the estimated frequencies equal the exact

outcome probabilities.

The collection of labeled feature vectors generated this way, for a specific value of L,

is denoted CL. So CL = {(fj, yj)}Nj=1, where fj = φ(Dj) ∈ Rd, d depends on L, and yj

is the binary label indicating “stochastic” or “coherent”. For each value of L, there

are N = 2× 19× 300 = 11400 labeled feature vectors that can be used for training

or testing.

Because most ML algorithms are designed to perform best on data with zero mean
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and unit variance, the feature vectors in CL are standardized. Standardization ex-

presses the feature vector in coordinates that are (conceptually) the same across

components. A common standardization approach (and the one used here) is to

replace the components of each feature vector by their Z-score. Let µ̂ denote the es-

timated mean of the feature vectors, and Σ̂ denote the estimated covariance matrix.

For each fj, the standardized zj is

zj = diag(Σ̂)−1(fj − µ̂), (5.17)

so that 〈zj〉 = 0 and Cov(zj, zk) = Id2 . Standardization adjusts each component of

fj independently, so no correlation is introduced between the features.

5.4 Results

5.4.1 Classifying GST feature vectors

Testing whether linear classification is feasible

Three of the classification algorithms presented in Section 5.3.4 learn a linear decision

boundary (i.e., an affine hyperplane H). Of course, this is impossible if CL is not

linearly separable! So in each case, I began by determining whether the training

data were linearly separable. This is usually checked by running the perceptron

algorithm with Nepochs set to some very large number. If the algorithm converges to

a separating hyperplane, then clearly CL is linearly separable. However, a failure to

converge doesn’t guarantee that CL is linearly inseparable. Instead, a linear program

is used to test for separability that either finds a separating hyperplane or (if the data

are inseparable) constructs a provable witness to non-separability (see Appendix E).

Using this technique, I found each of the CL to be linearly separable except for L = 1

(“linear GST” data). So no linear classification algorithm can attain 100% accuracy

in classifying coherent and stochastic noise using L = 1 GST feature vectors, even in
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Value(s) of η Separability witness?
Fixed Yes

[10−4, .5] No
[10−4, .34] Yes

[10−2, 10−1] Yes
[10−4, 10−2] Yes
[10−4, 10−3] Yes

Table 5.2: Testing for linear separability of subsets of C1. Linear separability
for some subsets of C1 is established by checking a separability witness (see Appendix
E). A subset with noise strength η spanning a slightly restricted range (relative to
the original range considered) is separable, as are subsets with a fixed value for η.

principle. This result indicates that there is something nontrivial about the geometry

of the data (see Section 5.4.2).

However, this only holds true when the range of values for the noise strength η is

quite large, extending over 3 orders of magnitude from 10−4 to .5. Restricting the

range of η produced smaller subsets of C1, which (see Table 5.2) were almost always

linearly separable. A simple conclusion from this result is that this QCVV problem

gets harder (at least somewhat) when the gate errors are allowed to be very large.

This is unsurprising; similar challenges afflict randomized benchmarking and GST,

and most QCVV methods focus on the regime where gate errors are perturbative.

For L > 1, the training data were always linearly separable. However, I considered

the possibility that this might have been an artifact of finite training data (undersam-

pling), rather than an indication that the two noise classes can always be separated

using linear classifiers. To check for this, a linear soft-margin SVM (C = 104) was

trained using the original 300 realizations of each noise type, and then evaluated the

accuracy of the hyperplane it learned on 20,000 previously unseen realizations. On

each of L = 4 and L = 8, the hyperplane learned had ∼ 96% accuracy on the new

noise realizations. This suggests that C4, C8 are in fact linearly separable, and that I

was not undersampling the noise realizations.
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Figure 5.8: Swarmplot of K = 20 cross-validated classification accuracies as
a function of L. As L increases, the accuracy increases in a classifier-dependent
way. Top: Under the default value of its hyperparameters, the QDA algorithm
typically performs best. Bottom: Hyperparameter tuning boosts the accuracy of
the linear SVM, perceptron, and RBF SVM algorithms.

Classification accuracy depends on L

If CL is linearly separable, then in principle a linear classification algorithm could

successfully learn a separating hyperplane. As noted in Section 5.2, the hyperpa-

rameters of an algorithm influence the inference tool it learns, and consequently, the

accuracy of its inferences.

Evaluating the accuracy of an inference tool is straightforward, especially in super-

vised learning: ask the tool to classify a feature vector, and compare the label it
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assigns to the true label. To evaluate the accuracy of an algorithm, however, is a

slightly harder task. A common way to do so is to use cross-validation. The data

collection C is split into two parts, Ctrain and Ctest; the algorithm is trained using data

in Ctrain, and the accuracy of the tool it learns is computed on Ctest. In this work,

I typically use a “shuffle-split” cross-validation approach, where C is split K times

into training and testing data; I usually take the number of feature vectors in Ctest

to be 10% of the feature vectors in C.

Figure 5.8 plots the cross-validated accuracies of the ML algorithms as a function of

the GST family parameter L. As the top portion of the figure shows, the accuracy

of the inference tools increases with L. However, under the default value of the

hyperparameters for the linear classification algorithms, the accuracy is not close to

1 for L = 2 or L = 16. In turn, this implies that hyperparameter tuning is necessary

to boost accuracy.

The bottom portion of Figure 5.8 shows the accuracies under the best hyperparam-

eter values. For both the linear SVM and perceptron algorithms, hyperparameter

tuning improved accuracy from ∼ .9 to ≥ .95. In contrast, the performance of the

LDA and QDA algorithms is best on the default value of their hyperparameters.

(See Figure F.1 in Appendix F for plots of the accuracy as a function of classification

algorithm hyperparameters.)

The performance of the LDA algorithm is noteworthy because it highlights an impor-

tant fact – QIP properties are not generally learnable by arbitrary ML algorithms.

That is, even though the data for L > 2 is linearly separable, and LDA is a lin-

ear classification algorithm, it does not follow that the LDA algorithm will always

succeed in learning a separating hyperplane, even with hyperparmeter tuning.

Unsurprisingly, the linear classification algorithms continue to perform poorly on C1,

even with hyperparameter tuning. Given that C1 isn’t linearly separable, this result

is to be expected.
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These results highlight the importance of checking the hyperparameters of a given

algorithm. Depending on the data and the algorithm, hyperparameter tuning could

help. However, hyperparameter tuning takes time, and there is the risk that even

with cross-validation, the hyperparameter settings that yield maximal accuracy on

data we currently have may cause the algorithm to learn a classifier that performs

poorly on future data.

For this reason, I also investigated the use of feature engineering – creating new

features out of existing ones – to boost accuracy. Of the data collections considered,

there is one where it is most glaringly apparent that increases in accuracy are possible;

namely, C1. It is not linearly separable, and the reason is fairly straightforward to

understand. In the next subsection, dimensionality reduction techniques are used to

probe the structure of C1. The insights about this structure will inform the design

of new feature maps in Section 5.4.3 that take L = 1 GST data sets and map them

into a feature space where they are linearly separable.

5.4.2 Probing the structure of C1 by dimensionality reduc-

tion

Dimensionality reduction techniques embed data from a d � 1-dimensional feature

space into a k � d-dimensional space to visualize its structure and related proper-

ties. To explore the structure of C1, two techniques were used: principal component

analysis and multidimensional scaling.

Principal component analysis (PCA) (159; 148; 231) is a technique that projects N

feature vectors onto the directions along which they vary maximally vary These di-

rections – the “principal components” – are the eigenvectors {ej}Ej=1 of the estimated

covariance matrix Σ̂:

Σ̂ =
E∑

j=1

σjeje
T
j , (5.18)
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Figure 5.9: 2-dimensional embeddings of C1. Top: The embedded feature vectors
for stochastic noise appear to be “surrounded” by those for coherent noise. Bottom:
As the noise strength η → 0, the feature vectors for coherent and stochastic noise
approach one another, which is to be expected: at η = 0, the underlying “noisy”
gate set is actually the ideal one.

where the number of eigenvectors E ≤ min(d,N) and σ2
j is the variance of the data

along ej. The principal components can be used to define a projector Πk from Rd to

Rk:

fj → yj ≡ Πk[fj] =
k∑

j=1

ej(ej · fj). (5.19)

When using PCA for dimensionality reduction (i.e., defining Πk) k is usually taken

to be less than E. Instead, only the principal components that have large eigenvalues

are kept, since if σj ∼ 0, the principal component ej is an “uninformative” direction

– the data does not vary much along it – and there is no reason to include it in the

projector.

Multdimensional scaling (MDS) (41; 296; 180; 274; 275) provides a different approach

for dimensionality reduction by defining the k-dimensional representation of the data
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as a solution to an optimization problem in the k-dimensional space that preserves

as much as possible all pairwise distances.

Given a data set with pairwise distances (or dissimilarities) between the feature

vectors {dmn}Nm,n=1, the MDS embedding is a set {yj} ∈ Rk satisfying

{yj}Nj=1 = argmin
Rk

N∑

m,n=1

(||ym − yn|| − dmn)2 . (5.20)

Because the feature space for the L = 1 feature vectors is a subset of R92, a natural

distance measure between fm and fm is their Euclidean distance: dmn = ||fm − fn||2.

Figure 5.9 plots the k = 2-dimensional embeddings of C1 using PCA or MDS. The

top row colors the embedded points are colored by noise type, and the bottom row

colors them by noise strength. Both plots indicate that C1 bears some resemblance

to a high-dimensional radio dish.

These embeddings are low-dimensional approximations to high-dimensional feature

spaces, leading to the question “Are these ‘radio dishes’ real?” A simple argument

suggests the answer is “mostly yes”. The circuits used for L = 1 GST give rise to a

feature vector that depends on the gate set in an almost linear fashion (in process

tomography, the feature vector would be exactly linear in the process). Because the

deviations from linearity are small, the structure of C1 is similar to the structure of

the underlying gate sets generating the feature vectors.

This structure can be understood by mapping the gate set to a quantum state using

the Choi-Jamio lkowski isometry (157). A gate set is the direct sum of the constituent

gates (a linear operation), and the Choi-Jamio lkowski isometry is a linear map from

gates (channels) to quantum states. Hence, a linear map exists taking gate sets into

quantum state space. A gate affected by purely coherent noise maps to a pure state,

and a gate affected by purely stochastic noise maps to a mixed state. Therefore, gate

sets affected by purely coherent noise “envelop” those affected by purely stochastic

149



Chapter 5. Machine-learned QCVV techniques

noise. This behavior is analogous to that observed with C1, although the exact

structure may not be comparable. (Again, there are small deviations from a linear

relationship between feature vectors and gate sets for L = 1 GST.) Therefore, the

radio dish structure present in C1 appears to be genuinely real, and not an artifact

of our simulations.

This explains why algorithms using a nonlinear decision rule (QDA or RBF SVM)

achieve higher accuracy than linear algorithms (recall Figure 5.8): the surfaces that

most naturally separate C1 have curvature, and the nonlinear algorithms can suc-

cessfully learn that curvature.

Given this domain-specific knowledge, we can use feature engineering to change the

feature map that takes GST data sets and maps them to feature vectors. In par-

ticular, the radio dish structure in C1 can be “unrolled” in such a way that linear

classification algorithms can achieve high accuracy. Two new feature maps are dis-

cussed in the next subsection, and Section 5.4.4 shows that the perceptron and linear

SVM algorithms can achieve high accuracy in these new feature spaces.

5.4.3 Overcoming linear inseparability of C1 using feature

engineering

A linear classification algorithm can learn a quadratic function of the features if the

algorithm has access to quadratic functions of the features. There are two feature

engineering maps that naturally “unroll” the quadratic radio dish structure of C1.

Both add new components to the feature vectors on top of the “base” features defined

by φ, thereby enlarging the feature space. Let f be a feature vector in C1. The two

feature engineering maps considered are

φSQ : F → [0, 1]2d

φSQ(f) = f ⊕
j
f 2
j ,

(5.21)
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and

φPP : F → [0, 1]d(d+3)/2

φPP(f) = f ⊕
j<k

fjfk.
(5.22)

Note that for φPP, unique pairwise products are used, so that fjfk and fkfj are not

both added as extra components. As an example of how these maps act, consider

f = (x, y) ∈ R2. Then φSQ(f) = (x, y, x2, y2) ∈ R4, and φPP(f) = (x, y, xy, x2, y2) ∈
R5.

φSQ adds a quadratic nonlinearity while preserving the coordinate axes, whereas

φPP allows quadratic nonlinearity together with rotation of the coordinate axes. If

the coordinate axes are significant for this problem, φSQ is preferable, while φPP

is preferable if correlations between different variables are important. Also, note

that φPP has quadratically more parameters than φSQ and hence, a greater danger

of overfitting. From an ML perspective, φSQ is the simplest way to enable linear

classification algorithms to separate coherent and stochastic noise using L = 1 GST

feature vectors, but the pipeline it defines is not as rich or complex as the pipeline

defined by φPP.

5.4.4 Feature engineering of C1 enables linear separability

Checking the separability witness (Appendix E) confirms that under the action

of φSQ and φPP, the previously-inseparable L = 1 GST feature vectors

become linearly separable in the new feature spaces .

Because the feature vectors are linearly separable in these new feature spaces, linear

classification algorithms should perform better than they did on C1. Figure 5.10

shows that feature engineering does boost the performance of the linear classifica-

tion algorithms, and that this boost can be further enhanced using hyperparameter

tuning. (See Figure F.2 in Appendix F for results of the hyperparameter sweep.)
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Figure 5.10: Feature engineering boosts accuracy of some classification al-
gorithms. Cross-validated accuracies of the algorithms under their default hyper-
parameters (top) and with tuned hyperparameters (bottom). The performance of
the RBF SVM algorithm indicates nonlinear separating surfaces are best. The QDA
algorithm’s performance on φPP feature vectors suggests a “quartic surface” – a 4th

order polynomial in the feature vector coefficients – is a sufficient amount of non-
linearity. The performance of the linear SVM and perceptron algorithms implies
quadratic separating surfaces work well as approximations to the nonlinear surfaces
learned by the RBF SVM and/or QDA algorithms.

The performance of the RBF SVM algorithm indicates nonlinear separating surfaces

are generally best. However, the amount of nonlinearity required is modest: the per-

formance of the QDA algorithm on φPP feature vectors suggests a “quartic surface”

– a 4th order polynomial in the feature vector coefficients – is a sufficient amount

of nonlinearity. QDA learns a quadratic decision rule, and φPP uses all pairwise

products. Therefore, the decision rule is quartic in the feature vector components.
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The fact that linear SVM and perceptron algorithms also work well implies that

quadratic separating surfaces are sufficiently good approximations to the nonlinear

surfaces learned by the RBF SVM and/or QDA algorithms. Therefore, while the

curvature of surface that would best separate the QCVV data sets mapped under

φSQ or φPP deviates fairly strongly from a flat curvature, those deviations can be

captured by quadratic surfaces.

As noted in Section 5.4.1, there is always the risk that the noise realizations were

under-sampled. In this context, undersampling would mean that the geometry of

the infinite-sample data set would not be faithfully represented by the geometry of

the finite-sample data set. To check for this, I trained each classification algorithm

on all the engineered feature vectors for each feature map and then cross-validated

how the separating surface learned by the algorithm would perform on ∼ 20, 000

previously unseen feature vectors. The accuracies remain stable, indicating that the

noise types are not being undersampled (see Table F.2 in Appendix F).

In sum, feature engineering separates C1, and linear classification algo-

rithms such as perceptrons or linear SVMs can successfully learn a

high-accuracy classifier whose performance is comparable to classifiers

learned by nonlinear algorithms.

5.4.5 Robustness to finite-sample effects

The tests and analysis done up to this point have been performed in the exact-

sampling limit. However, real GST data sets have finite-sample fluctuations because

Nsamples � ∞. This section examines the robustness of our conclusions regarding

separability of the engineered feature vectors under finite-sample effects. Finite sam-

pling means the outcome frequencies of the circuits will flucuate around the outcome

probabilities by an amount that goes as 1/
√
Nsamples. If the amount of fluctuation

is modest, then classifiers trained on fluctuation-free data sets should still be able
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to reliably classify a feature vector with finite-sample effects. The reason is simple:

suppose a hyperplane H had been learned by training a classification algorithm on

fluctuation-free data. H would also do well in classifying finite-sample data, provided

the statistical fluctuations are less than the geometric margin MH .

MH is a property of both the hyperplane H and the data it separates (recall Equation

(5.11)). As larger-margin hyperplanes are more robust under larger finite-sample

effects, a hyperplane that maximizes the margin is preferable. Consequently, the

linear SVM is the ideal choice for an ML algorithm to learn a separating hyperplane

that would later be used to classify finite-sample data.

As the feature spaces generated by the feature engineering maps φSQ and φPP are

linearly separable, and the linear SVM algorithm can learn a high-accuracy hyper-

plane, I investigated how the accuracy of the hyperplane learned by the algorithm

changes when classifying feature vectors with finite-sample effects.

To generate finite-sample versions of the feature vectors with Nsamples finite-sampling

effects, I first add finite-sample fluctuations to the feature vectors in C1. Then I

apply either φSQ or φPP. The resulting data collection is then mean-standardized

(seeSsection 5.3.5) using the estimated mean of the fluctuation-free data. The reason

for mean-standardizing the data is because the margin of a hyperplane is invariant

under translating the data – which is what mean-standardization does – but not

under variance-standardizing it. Due to the technical challenges of using a hard-

margin SVM to learn a hyperplane in the engineered feature spaces, a soft-margin

SVM with C = 105 was trained on the fluctuation-free data to learn a separating

hyperplane. The accuracy of this hyperplane is then evaluated on the finite-sample

feature vectors.

Results of this test are shown in Figure 5.11. (Cross-validation was done using 50

independent realizations of finite-sampling effects for each value of Nsamples.) The

vertical grey line shows the margin of the hyperplane learned by the SVM algorithm.
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(It turns out that the geometric margin of the hyperplanes learned on feature vectors

mapped using φSQ and φPP were comparable.) Once the statistical noise 1/
√
Nsamples

is less than the margin of the hyperplane, classification accuracy increases to 1.

The two feature engineering maps considered here add terms of the form p̂2
j (φSQ) or

p̂j p̂k (φPP) to the original feature vector. Simple algebra shows that the fluctuations

in p̂2
j and p̂j p̂k both also go as 1/

√
Nsamples. So adding these components doesn’t

make the engineered feature vector more sensitive to finite-sample effects.

This test confirms the intuition that maximum-margin hyperplanes are more robust

for classifying noise in the presence of finite-sample effects. The margin is not gen-

erally invariant under different feature maps, although this happened to be the case

here.

5.5 Conclusion and discussion

This work showed that supervised learning algorithms can successfully learn a QCVV

technique for distinguishing between coherent and stochastic noise on a single qubit.

The success of these algorithms depends strongly on the experiment design, the

algorithm’s own hyperparameters, and the feature map used to embed experimental

data into a feature space. QCVV practitioners developing their own machine-learned

QCVV technique will need to be mindful of how the quality of the technique learned

by the ML algorithm is impacted by the choices they make for the components of

the technique (recall Section 5.2).

As quantum computing enters the NISQ era, opportunities are opening up for demon-

strating how NISQ processors can help solve near-term problems of interest. The

central aim of QCVV is to improve performance of QIPs; for NISQ processors, im-

proved performance generally means it is capable of running longer-depth circuits.
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Figure 5.11: Classification accuracy under finite-sampling effects using fea-
ture engineering. A soft-margin linear SVM (C = 105) was trained using noiseless
feature-engineered feature vectors, and then its accuracy evaluated noisy versions of
that data. The geometric margin of the hyperplane learned by the SVM algorithm
was comparable between the two feature engineering maps, and is indicated by the
dashed vertical line. Once the statistical noise is less than the geometric margin, the
accuracy goes to 1.

Improving the performance requires lowering the error rate(s)2. (If the error rate

is ε, a circuit whose depth exceeds O(1/ε) will most likely output a state with low

fidelity to the correct answer.) Characterizing what’s going wrong with a processor

is a necessary first step in doing so. However, characterizing NISQ processors comes

with its own set of unique challenges, so new QCVV techniques are needed.

Machine learning (ML) algorithms can help develop new QCVV techniques, as dis-

cussed in Section 5.1.2. ML algorithms don’t model the underlying complexity of

a QIP in any significant detail, and they don’t rely on statistical theory. Instead,

they operate from the premise that all a QCVV technique needs to do is approxi-

2For some metrics of computational utility – such as the quantum volume (31) – lowering
the error rate past some effective threshold doesn’t improve the metric.
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mate the functional relationship between data and a QIP property. ML algorithms

excel at learning approximations to functions, and so, can help automate the task of

developing new QCVV techniques.

This doesn’t mean QCVV practitioners are unnecessary. They are still needed to

propose relevant QIP properties to be characterized, or to think about an appropriate

experiment design. They also need to choose between algorithms, evaluate their

performance, write code, interpret results, etc. ML algorithms augment the expertise

of QCVV practitioners, not replace it.

This kind of domain-specific expertise helps. For instance, it can guide wise choices

for the feature map, or suggest good feature engineering techniques. (As seen in

Section 5.4.3, knowing that coherent and stochastic noise affects gate sets in partic-

ular ways helped us realize that φSQ or φPP might be the good feature engineering

techniques.) Conversely, ML algorithms for dimensionality reduction help QCVV

practitioners understand the geometric structure of the data they are working with,

and could provide some physical insight about the underlying noise models.

The nature of the QIP characterization task determines the ML paradigm (super-

vised/unsupervised/transductive); within each, different algorithms will need to be

evaluated for their ability to learn a good QCVV technique for the task at hand.

Again, QCVV practitioners cannot expect ML to provide “on-demand” solutions to

QIP characterization tasks. This work showed that those interested in using ML will

need to become more conversant in the language, methodologies, and vagaries of ML

algorithms!

Because there are a plethora of ML algorithms for a wide variety of tasks, QCVV

practitioners will need to make informed and prudent judgements about which algo-

rithms to deploy. Here, supervised learning was prudent because the characteriza-

tion task involved inferring a particular property of the QIP, and because generating

synthetic (artificial) example data was easy. Given the characterization task consid-
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ered in this Chapter, supervised binary classification algorithms were an appropriate

choice of ML algorithm.

As NISQ processors increase in size and sophistication, supervised learning using

synthetic data will become more difficult, as these kinds of forward simulations will

become harder once quantum supremacy has been demonstrated, or quantum advan-

tage attained. At that point, well-calibrated devices can be used to generate example

data by, e.g., deliberately injecting specific kinds of noise into the QIP when running

various circuits.

Other ML paradigms, not examined here, include unsupervised and transductive

learning. Unsupervised learning would excel in discovering structure in a large num-

ber of data sets generated by a QIP. An example of a QCVV task where unsupervised

learning would be useful is one where algorithms could evaluate whether data from

experiments generated today (e.g., calibrations) are consistent with the historical

operation of the device, or whether they are wildly out-of-spec, a problem known as

outlier detection.

The question of machine-learned experiment design was alluded to in Section 5.1.2.

Experiment design is a non-trivial problem, and has spurred much research in statis-

tics. For this reason, this chapter borrows the experiment design used for GST

(Section 5.3.2), as it is well-studied and sufficient for characterizing coherent vs.

stochastic noise. There are two ways that “ML-learned experiment design” could be

pursued. The first is to use ML algorithms for feature selection by selecting, out of a

candidate set of circuits, a smaller subset that is useful for characterizing a property.

(This approach is explored in Chapter 6.) Another, potentially more powerful, ap-

proach is to use reinforcement learning (RL) (290) to construct QCVV experiment

designs from scratch. (See the conclusions of the next chapter.)

As QIPs advance and the rate of their advancement increases, QCVV theorists are
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faced with the challenge of developing increasingly-powerful characterization tech-

niques on ever-shorter timeframes. Leveraging ML algorithms can help solve some

of these problems.
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Machine-learned experiment

design for QCVV

The design of experiments is, however, too large a subject, and of too great importance

to the general body of scientific workers, for any incidental treatment to be adequate.

- Ronald A. Fisher, 1935 (103)

Chapter 5 focused on how ML1 algorithms can help with data processing, by learn-

ing inference tools for a targeted characterization problem on a qubit. This chapter

investigates how ML can improve the other component of QCVV techniques, the ex-

periment design. I show that ML algorithms for “feature selection” can pare down the

circuits used for gate set tomography (GST), and construct small subsets – smaller

experiment designs – that remain sufficient for characterizing particular qubit prop-

erties. The size of the subset constructed by these algorithms depends strongly on

the characterization task. But for each of the characterization tasks considered, ML

algorithms identify a set of circuits that is smaller than the original set used for GST.

This suggests that feature selection of GST circuits by these and other algorithms is

1As in Chapter 5, “ML” is used for ‘machine learning’, and not ‘maximum likelihood’
as it was in Chapters 3 and 4.
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a useful jumping off point for developing targeted QCVV experiment designs.

6.1 Introduction

Characterizing a QIP requires running experiments (circuits) on it and collecting

data about the outcomes of those experiments. That data is processed to yield an

inference about a particular property of interest. In this chapter, I’ll use the phrase

experiment design to denote a collection of circuits. An experiment design specifies

the experiments to be performed on the QIP; as noted in Chapter 5, one of the

questions that has to be answered in developing a QCVV technique is “What is

the experiment design?”. Different QCVV techniques require different experiment

designs, because different techniques target different properties, and different prop-

erties are best captured by different circuits. In this chapter, I take up the question

of using machine learning (ML) to come up with experiment designs. Unlike Chapter

5, I won’t focus on how ML algorithms could be used to analyze experimental data.

The complexity of an experiment design – the number of circuits it contains2 –

depends on the property being characterized. Generally speaking, less complex ex-

periment designs are preferable to more complex ones. Less complex experiment

designs take less time to run in the lab, thereby saving time and other experimen-

tal resources. Further, more complex experiment designs may have a high amount

of redundancy, the elimination of which would streamline data processing. These

points are extremely salient for characterizing NISQ processors. As noted in Section

2.4, experimental resources will need to be managed, and developing new experi-

ment designs for characterizing novel noise types will be necessary. For this reason,

studying how machine learning (ML) algorithms can help with experiment design is

2As far as I am aware, a formal definition for the complexity of an experiment design
in the context of QCVV has not been given. I use a fairly loose definition here that jives
with intuition, and acknowledge there may be difficulties in translating that intuition into
a formal definition.
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a worthwhile inquiry.

This chapter focuses on experiment design for QCVV techniques that characterize

targeted properties. The QCVV tasks considered are of the form “Distinguish noise

type A from noise type B”. These tasks are similar in spirit to the problem addressed

in Chapter 5. All the noise types considered here are Markovian. This ensures that

some subset of the circuits used for gate set tomography (GST) is sufficient for

successfully performing the task. GST can fully reconstruct the process matrices in

the presence of Markovian noise, so there has to exist a subset of the GST experiment

design that’s capable of distinguishing any two fixed Markovian noise models.

The trick, of course, is figuring out which circuits are sufficient. Collectively, the

circuits in a GST experiment design are sensitive to arbitrary Markovian errors, but

this does not mean that each circuit is sensitive to every Markovian error. Each GST

circuit amplifies a few linear combinations of the parameters of the gate set. A given

Markovian noise may not affect some linear combinations, but will affect others. If

the outcome probability of a circuit in the experiment design is not affected by noise

type A and noise type B, it follows that the the outcome probability of that circuit

provides no information on distinguishing the two noise types. Clearly then, that

circuit could be removed from the experiment design.

For instance, robust phase estimation (RPE) can be used to efficiently estimate the

angles of rotation of the gates in a single-qubit gate set (172) using a subset of

the circuits necessary for single-qubit GST. Phrased another way, for the particular

QCVV task that RPE performs, there are circuits necessary for GST that can be

removed from the experiment design; what’s more, removing those circuits does not

lessen the quality of the inferences derived from RPE. Quantifying the relationship

between the complexity of the experiment design and the nature of the QCVV task

and assumptions about the QIP’s behavior is an useful problem to tackle, but I do

not consider it here.

162



Chapter 6. Machine-learned experiment design for QCVV

Paring down the experiment design for GST requires selecting a sufficient number

of circuits out of the experiment design that are useful for solving a given task.

Physical intuition could help guide a search over the circuits, but could rapidly

become bogged down, since the same noise affects different circuits in different and

possibly hard-to-understand ways, and an exhaustive search over the circuits in a

GST experiment design can rapidly become prohibitive (see Section 6.3.1). For this

reason, ML algorithms offer a promising alternative.

In Chapter 5, I introduced the idea of a feature space into which the outcome prob-

abilities of GST experiments are embedded for processing by ML algorithms. That

feature space is a subset of Rd, where an identification is made between each canon-

ical unit vector of Rd and one particular circuit in the experiment design. The ML

task corresponding to the task “select relevant GST circuits” is called feature se-

lection, and the ML community has developed some algorithms for doing so (62).

Feature selection is something of a “dark art” in ML, and only fairly recently (c.

2015) is end-to-end automation of feature selection becoming possible (165; 13; 295).

For this reason, the feature selection approaches used in this chapter will require a

great deal of “manual hand-holding”.

The remainder of this chapter shows that ML algorithms can successfully identify a

reduced set of GST circuits that are useful for characterizing coherent and stochastic

noise, and also demonstrates that ML algorithms can also do this “circuit reduction”

for a wide variety of QCVV tasks of a similar spirit (Section 6.6). Other ML algo-

rithms for experiment design certainly could be investigated; in the conclusions (Sec-

tion 6.7) I’ll discuss how reinforcement learning could provide a powerful approach

to experiment design for complex Markovian noise, or possibly even non-Markovian

noise.
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Figure 6.1: The task of feature selection is to determine which features are
essential. Given a feature vector f = (x, y), task is to determine which cloud it be-
longs to. In the left panel, the x-component of f has little relationship to which cloud
a feature vector belongs to, so the feature “the x-component of f” can be removed
from the feature space without lessening our ability to tell which cloud f belongs to.
In the right panel, both features are necessary. Feature selection algorithms process
collections of data and determine which features are most necessary (i.e., which fea-
tures are informative). Note that the goal here is to select subsets of the features,
not subspaces of the feature space.

6.2 Experiment design by feature selection

Consider a set of features {fj}. The task of feature selection is to identify a good

subset of {fj} that is sufficient to accomplish some task. (For example, see Figure

6.1.) Just as there are different paradigms for developing machine-learned QCVV

tasks (supervised/unsupervised/transductive), there are also different ML paradigms

for feature selection. The three major paradigms for feature selection (135; 265) are

• The filter paradigm, in which an ML algorithm evaluates features one-by-one.

For each feature fj, the algorithm evaluates how important/good the feature

is, using some measure of importance/goodness. Features that are important

are kept, and those which are not are dropped. A forward selection algorithm

adds features one-by-one, while a backwards selection algorithm starts with the
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entire set of features {fj} and removes them one-by-one. (A hybrid algorithm

that combines adding and removing features is also common.) I will investigate

forward selection algorithms (Section 6.5).

• The wrapper paradigm, in which there are two ML algorithms: one that pro-

poses a subset of features, and another which evaluates how well the task can

be performed using those features (the “predictor” algorithm). Usually, this

evaluation is done by training the predictor algorithm on data that uses only

the proposed features and evaluating the accuracy of the inference tool it learns.

The wrapper paradigm is useful when the data has a high degree of correlation

over the features. However, searching over subsets of the features is non-trivial,

and requires re-training the predictor algorithm once a new subset is proposed.

I do not investigate wrapper algorithms here.

• The embedded paradigm, which does feature selection in the process of train-

ing. Two common ways of doing so are to regularize the behavior of the algo-

rithm (e.g., using a penalty for overly-complex decision rules), or by estimat-

ing how the objective function of the algorithm would change if features were

added/subtracted. I consider one algorithm in this paradigm, an L1-regularized

support vector machine (Section 6.5)

Each of these paradigms is appropriate under different circumstances. The filter

paradigm is most useful if each of the features is more-or-less independently related

to the property of interest. (Though as we’ll see, it can also be applied with some

success when there is correlation between the features.) Filtering is quick and com-

putationally cheap, because the measure of importance has to be computed only once

for each feature. The wrapper paradigm is most useful as an “off-the-shelf” method

for doing feature selection. Finally, algorithms in the embedded paradigm may be

more efficient in terms of time to solution, because they are trained only once.
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6.3 Feature selection for QCVV tasks

The central question of this chapter is “Can ML algorithms successfully select, from

the circuits in a GST experiment design, a reduced set of circuits such that distinct

noise types A and B can be reliably distinguished?”. I call this problem “circuit re-

duction”, and will use the phrases “feature selection” and “circuit reduction” almost

interchangeably (see next paragraph). The phrase “can be reliably distinguished”

should be taken to mean “can be separated using a linear decision surface”. A

GST experiment design with index L3 is said to be “circuit reducible for noise types

(A,B)” if there exists a subset of the circuits in the experiment design with the

property that using only those circuits, A and B can be reliably distinguished.

The distinction between “circuit reduction” and “feature selection” is necessary be-

cause of subtleties involved when doing feature selection on feature engineered feature

vectors. As an example, suppose f is a base GST feature vector of dimension d (i.e., is

a list of outcome probabilities of a GST experiment design), and feature engineering

is done to extend f to include all squares of its components: f → φSQ(f). If a feature

selection algorithm determines that none of the quadratic components of φSQ(f) are

necessary for distinguishing the the two noises, then feature selection has succeeded.

However, the circuits selected are still the d circuits originally used to construct f in

the first place, so circuit reduction has failed. Thus, feature selection is useful

insofar as it leads to circuit reduction.

6.3.1 Why feature selection is generally hard

Formally, feature selection is simply the construction of a new feature space out of a

set of features. If F is the “base” feature space for a problem, then feature selection

3Recall that each GST experiment design can be indexed by a family parameter L
introduced in 5.3.2 that controls the length of the longest-depth circuit in the design. In
what follows, I will use L as an index for GST experiment designs.
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is the task of deciding which basis vectors (features) in F are actually necessary

to solve the problem at hand, thereby defining a new, “reduced” feature space F ′,
where dim(F ′) < dim(F).

To see why feature selection is generally a challenging problem, consider a collection

of labeled feature vectors (fj, yj), yj ∈ ±1 in a generic feature space F ⊂ Rd. Suppose

further that in F the collection is separable. The task of feature selection is to choose

a minimal subset of the basis vectors of F such that when the feature vectors are

expanded in that basis, the collection remains separable. (If it becomes inseparable,

then the two classes cannot be distinguished using ML classification algorithms!)

The set of of all possible combinations of the basis vectors is quite large – it’s the

power set of F , denoted P(F), and has size 2d. Any element s ∈ P(F) defines a

feature space Fs, by the map

f ∈ F →
∑

j∈s

fjej ∈ Fs. (6.1)

The feature space Fs is simply F , but where every component of f where every index

j 6∈ s has been removed. The feature selection task we’re interested in is defined by

the following optimization problem:

s? = min
s∈P(F)

|s|

s.t. Fs is separable.

(6.2)

Here, |s| means “the cardinality of s”. Notice this problem may have degenerate

solutions (i.e., there could be many minimal elements of P(F) that yield separable

feature spaces). The introduction of other constraints would be necessary in order

to choose among them (see Section 6.7).

Equation (6.2) is a discrete combinatorial optimization problem over 2d possible

solutions, so in general, brute-force optimization is infeasible. For this reason, the ML

community has introduced several heuristic algorithms, mentioned in the discussion

of feature selection paradigms in Section 6.2.
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6.3.2 Problem statement

The problem considered in this chapter can now be formally stated: “Given a GST

experiment design L, two gapped noise models A and B, and a feature map φ or

φSQ, then (a) determine whether the experiment design is circuit reducible, and (b)

identify a less complex experiment design (a subset of circuits in the GST experiment

design) that is sufficient for distinguishing A from B using linear ML classification

algorithms”.

A solution to this problem statement is an element s ∈ P(F) with the following

properties: (a) |s| < d, where d is the dimension of the native feature space FL
defined by the action of φ, and (b) in the feature space Fs, the two noise models are

linearly separable. The existence of any such element provides a sufficient affirmative

answer to the question given in the problem statement.

Note that the problem statement doesn’t require finding the smallest experiment

design. That would be ideal, but certifying that a given experiment design is the

smallest possible would require a certificate showing all less-complex designs (i.e.,

designs with a smaller number of circuits) fail to be sufficient (i.e., showing the

reduced feature spaces are not linearly separable).

One subtle point in the problem statement is that A and B need to be gapped.

Ideally, “gapped” in this context would mean “the gate sets generated by arbitrary

realizations of noise type A or B would be non-intersecting“. However, the kinds of

noise I’ll consider here can be described as cones, parameterized by some strength

η. Therefore, as η → 0, two “gapped” noise models would limit to the same noise

model4, thereby rendering them un-gapped. To remedy this, I typically impose a

lower bound on the noise strength η to ensure that even at its smallest value, the

two noise models are gapped. The next section discusses the different noise models,

and explains how they are gapped.

4Namely; the noiseless one!
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As an overview of the remainder of this chapter, Section 6.4 discusses the noise

models I’ll be using. Section 6.5 introduces the feature selection algorithms that

were investigated. Section 6.6 presents the results, and demonstrates that circuit

reduction is possible for every pair of noise models considered. Finally, Section 5.5

concludes with a discussion on other experiment design problems for which feature

selection algorithms would be useful, and touches on the idea of using reinforcement

learning to create QCVV experiment designs from scratch.

6.4 Discussion of noise models

To demonstrate that feature selection/circuit reduction is possible in general using

GST circuits as the primitive set to optimize over, I’ll consider circuit reduction

for 4 QCVV tasks, all of which are classification problems. They are of the form

“distinguish between...

• ...arbitrary coherent and arbitrary stochastic noise”.

• ...amplitude damping noise and arbitrary stochastic noise”.

• ...isotropic Pauli stochastic noise and anisotropic Pauli stochastic noise”.

• ...arbitrary Pauli stochastic noise and significantly non-Pauli stochastic noise”.

These noise models are constructed in such a way that for a given lower bound on

the noise strength η, the two models are gapped. For ease of exposition on how

these noise types are simulated, the noise models are presented in terms of the time

dynamics they generate under the Lindblad master equation. The general Lindblad

equation describing noisy dynamics is

ρ̇ = −i[ρ,H0]/~− i[ρ,He]/~ +
3∑

j,k=1

hjk

(
σjρσk −

1

2
{σkσj, ρ}

)
, (6.3)

where the ideal gate is G0 = eiH0 . The Hamiltonian error term He generates unitary
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errors, and the coefficient matrix h generates non-unitary, Markovian noise and sat-

isfies h ≥ 0. In the following subsections, any Lindbladians written in matrix form

are written in the basis of matrix units, not the Pauli basis.

6.4.1 Coherent noise

Recall from Section 5.3.1 that coherent noise generates time dynamics that are purely

unitary, so that h = 0. To sample realizations of coherent noise, He is taken to be a

traceless matrix drawn from the Gaussian unitary ensemble:

He =
3∑

j=1

cjσj cj ∼ N (0, η2). (6.4)

To ensure the coherent noise model is gapped with respect to arbitrary stochastic

noise, I take η ≥ 10−4. See Appendix I for a complete description of the values of η

chosen.

6.4.2 Arbitrary stochastic noise

Recall from Section 5.3.1 that arbitrary stochastic noise has no unitary dynamics

except for those generated by H0, so that He = 0. Realizations of arbitrary stochastic

noise are generated by sampling h according to

h = S−1DS , D = diag(|a|, |b|, |c|) , a, b, c ∼ N (0, η2), (6.5)

where S is a random SO(3) matrix. To ensure this noise model is gapped with respect

to coherent noise, I take η ≥ 10−4. See Appendix I for a complete description of the

values of η chosen.

6.4.3 Isotropic/anisotropic Pauli stochastic noise

Pauli stochastic noise is an subclass of arbitrary stochastic noise where h is con-

strained to be a diagonal matrix. Consequently, Equation (6.3) can be written as
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ρ̇ = −i[ρ,H0]/~ +
3∑

j

hjSj[ρ], (6.6)

where

Sj[ρ] = σjρσj − ρ. (6.7)

The coefficients hj give the rate of dephasing about the σj axis.

Under isotropic Pauli stochastic noise, h1 = h2 = h3 ≡ c. That is, isotropic

Pauli stochastic noise generates the depolarizing channel. Defining anisotropic Pauli

stochastic noise is a bit more subtle, because we need to ensure the two models are

gapped. Here, “anisotropic Pauli stochastic” is taken to mean one of the hj is zero,

while the other two are equal, e.g., h1 = 0, h2 = h3 = c. This introduces a gap

between the two moels, as there will always be some hj that is 0 under anisotropic

noise, but is equal to c under isotropic noise. Unless c = 0, the two noise models are

different. If anisotropic meant h1 6= h2 6= h3, the models are not really gapped, since

as one could take hj = c(1 + εj), with εj � 1, and the noise would be essentially

isotropic.

To generate realizations of isotropic or anisotropic Pauli stochastic noise, I take

c ∼ |N (0, η2)|. To ensure the two noise models are gapped, I take η ≥ 10−2. (See

Appendix I for a complete description of the values of η chosen.)

6.4.4 Significantly non-Pauli stochastic noise

Non-Pauli stochastic noise is another subclass of arbitrary stochastic noise. Because

Pauli stochastic noise corresponds to h being diagonal, non-Pauli stochastic noise

corresponds to non-diagonal h. Ideally, “significantly” non-Pauli stochastic noise

would mean that h has no on-diagonal elements. However, this cannot be the case:

because h ≥ 0, if h has zeros along the diagonal, then h = 0. Therefore, “significantly
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non-Pauli stochastic noise” is taken to mean that h is weakly, off-diagonally dominant

in its rows:

|hjj| ≤
∑

k 6=j

|hjk| ∀ j. (6.8)

Because h is 3× 3 and satisfies h ≥ 0, these conditions are easily written as

0 ≤ h11 ≤ |h12|+ |h13|

0 ≤ h22 ≤ |h21|+ |h23|

0 ≤ h33 ≤ |h13|+ |h23|.

(6.9)

To generate realizations of significantly non-Pauli stochastic noise, I generate real-

izations of arbitrary stochastic noise, and then post-select on those realizations that

satisfy the weakly, off-diagonally dominant condition above. To ensure this noise

model is gapped with respect to Pauli stochastic noise, I take η ≥ 10−3. See Ap-

pendix I for a complete description of the values of η chosen.

6.4.5 Amplitude damping noise

Amplitude damping noise is a process that transfers population to some particular

state of the qubit. The canonical example is amplitude damping to the ground

state (e.g., energy dissipation by spontaneous decay). Unlike the other noise models

discussed, this model is more naturally described directly in terms of its Lindbladian

superoperator, as opposed to the time dynamics it generates given by Equation (6.3).

Appendix C.3 gives a derivation of the noise model.

The canonical model of amplitude damping noise is one that damps to the |0〉〈0| state

of the qubit at a rate γ. This noise model is generated by the following Lindbladian5:

5L is written here in the basis of matrix units.

172



Chapter 6. Machine-learned experiment design for QCVV

L =




0 0 0 γ

0 −γ/2 0 0

0 0 −γ/2 0

0 0 0 −γ



. (6.10)

Appendix C.3 provides details on amplitude damping noise. In contrast to the canon-

ical model – amplitude damping to the |0〉〈0| state – the noise model considered here

is more general, and allows for amplitude damping to any given pure state. There

exists a yet more general model (“generalized amplitude damping”), which allows

for damping to mixed states. However, the noise models “amplitude damping to

mixed states” and ”arbitrary stochastic noise” are not gapped. For this reason, I use

the slightly more general model of amplitude damping, but not its fully general ver-

sion.. To simulate amplitude damping to arbitrary pure states, it suffices to simulate

amplitude damping to the |0〉〈0| state, and then rotate the Bloch sphere, so that

E = Exp
[
H0 + U †LU

]
, (6.11)

where U [ρ] = UρU †, and U is a randomly-chosen element of SU(2), and H0 is the

superoperator representation of H0. In simulations, I take γ = η, which fixes the

rate of amplitude damping, and choose U at random by choosing a random polar

and azimuthal angle. To ensure this noise models is gapped with respect to arbitrary

stochastic noise, I take η ≥ 10−3. See Appendix I for a complete description of the

values of η chosen.

Using each of these noise models, I generated a collection of GST data for different

experiment designs (i.e., values of L). Appendix I provides details about the data sets

generated. These data sets are the input to the ML algorithms for feature selection,

discussed in the next section.
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6.5 Description of the algorithms

Section 6.2 introduced different paradigms for feature selection using ML algorithms.

I investigated five ML algorithms for feature selection. Four use the filtering

paradigm: randomized optimization (Section 6.5.1), principal component analysis

(Section 6.5.2), mutual information (Section 6.5.3), and perceptrons (Section 6.5.4).

The last – an L1 regularized support vector machine (Section 6.5.5) – uses the em-

bedded paradigm.

Recall that in the filtering paradigm, features are added or removed one by one

from a set of candidate features until a good set s has been selected. Here, a set

is “good” if the reduced feature space Fs is linearly separable. For the filtering

algorithms considered, forward selection was used: given a measure of “importance”

for a feature fj, denoted g(fj), forward selection starts with s = {} and adds features

in ranked order of their importance until Fs is linearly separable:

s = min
M

M⋃

j=1

fj,

s.t. g(f1) ≥ g(f2) ≥ · · · g(fM)

Fs is linearly separable.

(6.12)

This algorithm works well if (a) each feature is independently important, and (b)

there are large disparities in the goodness of each feature. As an example of how

this algorithm would perform poorly, consider a measure of goodness that is uniform

over the features. Then, forward feature selection will have to choose all of them!

I defer a discussion of the embedded paradigm until Section 6.5.5.

6.5.1 Randomized optimization: a baseline heuristic

One of the most naive heuristics to solving Equation (6.2) would be to randomly pick

a subset of the features of some given size and see if the resulting feature space is
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Figure 6.2: Pictorial description of randomized optimization heuristic. By
generating random subsets of a given size C and estimating the probability that
subset of size C is linearly separable, we can estimate an upper bound on how many
features are necessary for circuit reduction. (In the figure, it’s 12, because if C ≥ 12,
p̂C ∼ 1.) In this example, if an ML algorithm cannot find fewer than 12 circuits,
that algorithm is not really providing any advantage over randomized optimization.

separable. Admittedly, this isn’t a particularly efficient approach, but it does provide

a baseline. In particular, let pC = Pr(randomly-selected Fs is separable given |s| =

C). This probability can be estimated by Monte Carlo sampling Nsamples elements

s ∈ P(F) of size |s| = C, and counting the fraction of times the resulting feature

space is linearly separable:

p̂C =
# times Fs was linearly separable given |s| = C

Nsamples

. (6.13)

Notice that the number of elements s of size C is
(
d
C

)
,which means that any fixed

choice of Nsamples will necessarily undersample the power set. In general then, we

expect p̂C ∼ 0 for many values of C. However, suppose almost every element of size C

that is selected gives a linearly separable Fs. This provides strong evidence that any

element whose size |s| ≥ C will give a linearly separable Fs. In this way, randomized

sampling estimates an upper bound on the number of features that should need to

be selected (see Figure 6.2).
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Phrased another way, if p̂C ∼ 1, then with high probability, any randomly-selected

subset of that size will yield a separable feature space. Thus, if an ML algorithm

doesn’t select a subset whose size is less than C, that algorithms is performing

quite poorly, because we could just randomly sample one! On the other hand, if

p̂C ∼ 0, then random selection of subsets may not yield a linearly separable feature

space. This doesn’t mean intelligent selection won’t find a subset. To evaluate

the performance of the randomized optimization heuristic, for each value of C, I

generated 50 random subsets of that size, and computed the fraction of those subsets

that were linearly separable. If p̂C ≥ .95, C is accepted as the number of circuits

selected by the algorithm; otherwise, C → C + 1.

In this sense, randomized optimization provides a baseline measure of performance

to compare the ML algorithms to. It won’t provide a lower bound for C – what’s

the best that could be done, even in principle – but it does provide an estimate of

an upper bound.

Note that randomized optimization doesn’t use any notion of importance of the

features. For this reason, we expect methods that do use such information to tend

to outperform randomized optimization.

6.5.2 Principal component analysis (PCA):

a geometric measure of feature importance

Recall that the PCA of a given data set yields a list of eigenvectors of the covariance

matrix of the data, {ej}Kj=1. In general, the eigenvectors will not line up with the

basis for the feature space {fk}, and so they usually have a dense representation in

terms of them:

ej =
d∑

k=1

fjkfk. (6.14)
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There’s a major caveat to using PCA for feature selection; namely, PCA focuses on

the directions of maximal variance within the data, and those directions may actually

not be particularly useful for classifying the noise. For example, consider a simple

problem in R3 with 2 “pancakes” in the x − y plane, separated by a vertical offset

in the z-direction. Clearly, the feature to use in distinguishing which pancake you

have is to look at the z-component of the feature vector. However, if the vertical

separation is small compared to the variation in x and y (i.e., σx, σy � σz), then

PCA identifies z as an “uninformative” direction, because the data don’t vary much

along it.

That issue aside, there are several ways of taking a PCA analysis of the data and

doing feature selection. I explored several. My first attempts used methods that

quantified how much a given feature “contributed” to the PCA components. There

are several notions of “how much a given circuit contributes to the PCA components”

(i.e., how important that circuit is). I looked at:

• Absolute value of components: let

g(fk) =
K∑

j=1

|fjk|. (6.15)

This quantity is closely related to
∑K

j=1 I[fjk], with I[x] as the indicator func-

tion, which counts the number of times the feature fk shows up in the PCA

components. By considering an absolute value, g(fk) reduces the significance

of features that show up in many PCA components, but where the coefficient

is small.

• Variance-weighted sum of components: let

g(fk) =
K∑

j=1

σj|fjk|. (6.16)

This quantity weights the contributions by the variance, and assigns higher
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Determining a sufficient number of PCA components

Figure 6.3: Determining the value of q in Equation (6.17). q is specified by
thresholding the cumulative explained variance ratio v(q) =

∑q
j=1 σj/

∑
j σj. In

particular, q is chosen as the smallest value satisfying v(q) = .95. For this simple
example (5 i.i.d isotropic Gaussian blobs in R20, with variance 4), q = 7.

importance to features that show up in PCA components that explain larger

amounts of the variance in the data.

• Projector component: let Πq =
∑q

j=1 eje
T
j , and define

g(fk) = (Πq)kk =

q∑

j=1

(fjk)
2. (6.17)

This measure places higher importance on features that would be most useful

for dimensionality reduction. Recall Section 5.4.2, where the PCA of C1 was

used to embed a 92-dimensional feature space into a 2-dimensional represen-

tation, by projecting each feature vector onto the 1st and 2nd eigenvectors of

the covariance matrix.

Note that in defining g(fk) in Equation (6.17), the value of q first needs to be specified.

In most ML applications, q is chosen by looking at how much variance the first q

components explain about the data. (That is, if PCA component ej has variance

σj, it explains σj/
∑

k σk of the variance in the data.) Here, q is set so that the first

q components explain 95% of the variance in the data (see Figure 6.3). Note that

setting q = d means Πq = I, so setting q too high is undesirable.
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Preliminary results indicated that the “absolute value of components” and “variance-

weighted sum of components” measures of goodness tended to perform poorly (i.e.,

selected more features) than the “projector component” measure of importance. For

this reason, I excluded them from the analysis that follows.

I also considered one other heuristic based on the observation that the diagonal

elements of covariance matrix of the data indicates how much the data varies along

each feature. If Σ̂ is the estimated covariance matrix for the data, a natural measure

of importance is

g(fk) = (Σ̂)kk = σ2
k, (6.18)

which is the variance of the data along fk.

6.5.3 Mutual information: an information-theoretic mea-

sure of feature importance

If knowing the value of a given feature is sufficient for inferring the noise label,

then clearly that feature is important. Another way of phrasing that statement is

“feature fk is important if it contains a lot of information about the noise label”.

The mutual information (72) (defined below) is a principled way to compute how

much information one random variable contains about the another. To see why the

mutual information is a good measure of feature importance, consider the following

scenario. Let f be a feature that’s going to be used to classify whether the noise is

type 1 or 2. Suppose f has the following distribution

f ∈





Unif(0, a) when noise is type 1

Unif(a+ ε, 1) when noise is type 2.
(6.19)

Knowing whether f ∈ [0, a] or [a+ ε, 1] immediately allows for an exact inference of

the noise type. A feature with this distribution would have high mutual information
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Figure 6.4: Example: Mutual information between a continuous and dis-
crete variable. The mutual information I(X;Y ) indicates how much information
X contains about Y . Left: When knowledge of X provides no information about
Y (i.e., they are independent), the mutual information is 0. Middle: When knowl-
edge of X provides some information about Y , the mutual information is non-zero
(in this example, Î(X;Y ) = .44). Right: When knowledge of X provides complete
information about Y , the mutual information is maximal (Î(X;Y ) = .698). NOTE:
Here Î(X;Y ) is computed in nats (base-e), so the maximum amount of information
contained in a Boolean random variable is ∼ .693 nats.

with respect to the noise label. Figure 6.4 gives toy example showing how the

distribution of the feature (the random variable X and the noise label Y ) affect the

mutual information. At one extreme, if the noise label is independent of the feature,

then the mutual information is 0 (left-most panel). If the noise label depends strongly

on the feature (right-most panel), the mutual information is high.

If X and Y are two random variables with joint probability density function p(x, y)

and marginals p(x) ≡
∫
p(x, y) dy and p(y) ≡

∫
p(x, y) dx, the mutual information

I(X;Y ) is

I(X;Y ) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dx dy. (6.20)

Equivalently, I(X;Y ) is the Kullback-Leibler divergence between the joint distribu-

tion p(x, y) and the product of its marginals p(x)p(y):

I(X;Y ) = DKL(p(x, y) || p(x)p(y)). (6.21)
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Notice that I(X;Y ) = 0 if, and only, if p(x, y) = p(x)p(y), meaning X and Y are

independent from one another. If X and Y are independent, there’s no correlation

between them (Cov(X, Y ) = 0), so knowing one cannot yield any information about

the other.

Each feature fj is a continuous random variable (because it is the outcome probability

of a noisy circuit), while the noise label is discrete. This is easily accommodated in

the definition of mutual information by replacing one of the integrals by a sum:

I(fj;Y ) =
∑

y∈±1

∫
p(fj, y) log

(
p(fj, y)

p(fj)p(y)

)
d(fj). (6.22)

The features derived from a GST experiment design are not independent from one

another, since the same noisy gate set is used to estimate the outcome probabilities

of the various circuits. For this reason, using the conditional mutual information

I(fj;Y |fk, fl, · · · ) would be the proper measure of mutual information to use. How-

ever, estimating this quantity could be hard, especially given that the features are

continuous, but the noise label is discrete. Here, I make the simplifying assumption

that the features can be treated as independent random variables, and use known

algorithms for estimating I(fj;Y ) (179; 261). That is, the measure of importance is

the estimated mutual information: g(fk) = Î(fk;Y ).

There’s an important caveat to be mindful of when using this feature selection al-

gorithm on engineered feature vectors. The mutual information is invariant under

homeomorphisms (continuous functions that are bijections, and whose inverses are

continuous), which means that reparameterizing the features doesn’t change their

information content. In particular, this means that I(fj; y) = I(f 2
j ; y), and that if

the feature map φSQ is used, then this algorithm will select both fj and f 2
j .
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6.5.4 Perceptron-based feature selection

Because a linear classifier learns a hyperplane, the coefficients of that hyperplane

itself indicate which circuits are useful for classification. Recall that a linear classi-

fication algorithm learns a decision rule of the form

c(f) = sign[β · f + β0]. (6.23)

If any component βj of the hyperplane is zero, it follows that the feature fj is not

necessary for predicting the noise label. Thus, the coefficients themselves can be

used to guide a feature selection process. This can also be seen by computing the

gradient of the argument of the sign function with respect to fj:

∂(β · f + β0)

∂fj
= βj. (6.24)

Therefore, βj controls how much fluctuations in fj affect the classification rule. A

sensible measure of importance derived from a separating hyperplane is absolute

value of the coefficients:

g(fj) = |βj|. (6.25)

Figure 6.5 gives an example of this idea.

A crucial assumption here is that the hyperplane does in fact separate the data. A

hyperplane that doesn’t separate the data doesn’t provide useful information about

which features are important. I use separating hyperplanes learned by the perceptron

algorithm. Recall that the perceptron algorithm will converge to some hyperplane

(provided one exists), but not necessarily an optimal one (Appendix D.2). For this

reason, this approach is perhaps best used in the following way: run the perceptron

algorithm with many different initializations, which leads to a distirbution of im-

portance values g(fj), which can then be post-processed to select, e.g., the features

which tend to have the most weight in that distribution.
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Figure 6.5: Example: Using a perceptron for feature selection. The coeffi-
cients of the hyperplane learned by the perceptron algorithm can be used for feature
selection. In the left panel, the hyperplane has coefficients β = (0.01, 2.8), indicating
that perturbations in x-component of the feature vector will not dramatically affect
the classification output, so it can be removed from the feature vector. On the right
panel, the hyperplane has coefficients β = (−1.64, 2.28) indicating that perturba-
tions in both features will impact the classification output, so they both need to be
kept.

6.5.5 The embedded paradigm: L1-regularized SVM

The four algorithms just discussed use the filtering paradigm for feature selection.

This paradigm has a notable drawback – the algorithms don’t have access to infor-

mation about how well a (different) ML algorithm can do in solving the given task

using the features selected! Knowing this information – “If feature fj is added, clas-

sification accuracy goes up 10%” – would be extremely useful for feature selection.

This observation gives rise to the embedded paradigm for feature selection wherein

feature selection and actually solving the ML task are done concurrently.

A paradigmatic algorithm that falls into this paradigm is an L1-regularized support

vector machine (SVM). Note this algorithm is different than soft-margin SVM algo-

rithm discussed in Chapter 5. The following remainder of this section goes through

a derivation showing that by starting with the soft-margin SVM, reinterpreting the
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slack variables as loss functions, and thinking of the margin as an L2-regularization

of the hyperplane learned by the SVM, there is a straightforward generalization of

the soft-margin SVM algorithm to one that imposes and L1-regularization penalty.

Importantly, the resulting algorithm will no longer strive to maximize the margin of

the hyperplane it learns.

Consider the optimization problem defining the soft-margin SVM:

min
β,β0

1

2
||β||2 + C

∑

j

ξj

s.t. yj(β · fj + β0) ≥ 1− ξj ∀ j

ξj ≥ 0 ∀ j.

(6.26)

The slack variables {ξj} give the algorithm the flexibility to bring the hyperplane

closer to some points. Another way to think about them – one that naturally leads to

a useful generalization of the SVM algorithm – is to observe that the slack variables

relate to the hyperplane by the requirement

ξj ≥ 1− yj(β · fj + β0), (6.27)

as well as the requirement ξj ≥ 0. This leads to the idea of the slack variables as

quantifying the loss incurred by a given hyperplane. Recall that if the slack variables

are all zero, then the hyperplane learned by the algorithm is one where every point

either lies on the ±1 decision boundary, or is further away from it.

Viewed this way then, the loss for a given hyperplane can be defined as

L(β, β0, j) = max(0, 1− yj(β · fj + β0)). (6.28)

This loss function is called the hinge loss, because it looks like a “hinge” about 1

(see Figure 6.6).

By viewing the slack variables as loss functions, the SVM algorithm can be reinter-

peted as one that minimizes the hinge loss, while also imposing an L2-regularization
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Figure 6.6: Behavior of the hinge loss. The hinge loss (Equation (6.28)) is
a common loss function for ML algorithms. It penalizes misclassification with a
severity that’s proportional to (β · fj + β0). If a hyperplane successfully classifies a
point, the loss is zero.

penalty on the hyperplane:

min
β,β0

[
1

2
||β||2 + C

∑

j

L(β, β0, j)

]
(6.29)

The hyperparameter C specifies the relative importance of minimizing the loss versus

having a sufficiently L2-regularized hyperplane. By viewing the SVM algorithm in

this way, other generalizations of the SVM algorithm are possible, by considering

different regularization penalties. For the purposes of feature selection, we want the

SVM algorithm to learn a hyperplane whose normal vector β is sparse. The canonical

measure of sparseness of a vector is the L0 “norm”:

L0(f) =
∑

k

I[fk] I[x] =





1 x 6= 0

0 x = 0
. (6.30)

The function L0 simply counts the number of non-zero elements in f . However, it’s

not a true norm, because L0(af) 6= |a|L0(f) (i.e., is not homogenous), as can be

seen directly from the definition. L0 also has the issue that it’s a discrete function

of f , which means optimizing it is a combinatorial optimization problem. For this

reason, “relaxing” it in such a way that its relaxation can be optimized efficiently is
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necessary. The convex relaxation of L0 is the L1 or nuclear norm:

L1(f) =
∑

k

|fk|. (6.31)

To see why, consider any set of vectors satisfying L0(x) = 1. Construct the convex

hull of that set. For any vector on this hull, L1(x) = 1. Because the hull contains the

points used to construct it, and it is convex, L1 is said to be the convex relaxation

of L0. Notice L1(0) = L0(0), which ensures that the optimal point is included in the

feasible set of the L1 norm. Further, L1 norm penalizes small components just as

much as it does larger ones, thereby driving all components to zero uniformly. So, to

use an SVM-like algorithm to determine a sparse set of features, we can change the

regularization term from L2 to L1. The L1-regularized optimization problem used to

define the SVM algorithm is

min
β,β0

[
||β||1 + C

∑

j

L2(β, β0, j)

]
, (6.32)

where L is given in Equation (6.28) (93). Note though that the objective function

defining this algorithm cares only about sparse solutions and minimizing the loss

- we’ve discarded the idea of maximizing the margin. In particular, this change

also means that the hyperplane learned by the SVM is not a maximal-margin one!

Because ||x||22 ≤ ||x2
1|| ≤ d||x||22 ∀ x ∈ Rd, it follows that 1/||β||22 ≥ 1/||β||21. Conse-

quently, the margin of the hyperplane learned by an L2-regularized SVM is greater

than that of a L1-regularized SVM, in general.

This algorithm has a hyperparameter (C) that needs to be tuned appropriately, and

which will affect the number of features chosen. (If C is small, then the L1 penalty

dominates the objective function.) Because we are interested in a subset of circuits

in a GST experiment design that give rise to a linearly separable feature space, C

should be set just high enough so that the classification accuracy is 1. Recall the

discussion about the perceptron feature selection algorithm – if the hyperplane is
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extremely inaccurate, it won’t provide any useful information about which features

to keep.

6.6 Results

6.6.1 Separability of the feature spaces

Feature selection for noise classification only makes sense in a feature space where the

two noise models can be separated. (If they cannot be separated in the full feature

space, they won’t be separable in any subset of it.) Chapter 5 showed the feature

engineering enabled linear separability for distinguishing coherent and stochastic

noise under the L = 1 GST experiment design. Here, I also use feature engineering

to enable linear separability, though I only use one feature engineering map: φSQ,

defined in Equation (5.21). Table 6.1 shows which feature spaces are separable for

the noise model comparisons discussed in Section 6.4.

For most of the noise comparisons, the feature spaces under that result from φ or φSQ

are linearly separable, particularly at higher-L experiment designs. This makes sense,

as those experiment designs add higher-depth circuits to the experiment design, and

therefore amplify the noises more. Having established that the feature spaces are

linearly separable, the next question is whether the corresponding experiment designs

are circuit reducible for the noise models.

6.6.2 Circuit reduction possible for all noise models

I used the ML algorithms discussed in Section 6.5 to find heuristic solutions to the

circuit reduction problem introduced in Section 6.3.2. Table 6.2 shows how many

circuits were selected by each ML algorithm for a given value of L, feature map, and

noise model. It also shows what fraction of circuits in the experiment design were

selected. Crucially, every fraction is less than one – some substantially
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Separable
L Feature map Noise

1

φ

I No
II No
III Yes
IV No

φSQ

I Yes
II Yes
III Yes
IV Yes

2

φ

I No
II Yes
III Yes
IV ??

φSQ

I Yes
II Yes
III Yes
IV Yes

4

φ

I Yes
II Yes
III Yes
IV Yes

φSQ

I Yes
II Yes
III Yes
IV Yes

Table 6.1: Separability of feature spaces under different noise models. For
the “Noise” column, I = amplitude damping/stochastic, II = coherent/stochastic,
III = isotropic/anisotropic Pauli stochastic, and IV = Pauli/non-Pauli stochastic.
Using a higher-L experiment design or using feature engineering generally enables
linear separability of all the noise models. NOTE: the “??” for IV at L = 2 indicates
that the separability test was inconclusive (because the solvers used all failed). If
the entry is “No”, there is a certificate for the inseparability; see Appendix E.

so – indicating that circuit reduction is possible for all the noise models

considered . Again, I emphasize that the experiment designs selected are not known

to be minimal, meaning further reductions could be possible.

The amount of circuit reduction depends on many factors, including the noise models
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L1 SVM MI Naive PCA PCA Perceptron Random
L Feature map Noise

Circuits

1

φ III 49 87 74 74 70 73

φSQ

I 55 6 31 30 54 41
II 62 12 31 5 27 34
III 55 79 31 31 36 55
IV 19 19 35 36 23 62

2

φ
II 91 114 111 128 83 141
III 21 126 32 49 12 55

φSQ

I 66 7 41 27 47 44
II 111 24 37 9 31 44
III 18 125 43 33 8 58
IV 38 33 57 57 44 81

4

φ

I 178 212 216 191 183 206
II 83 163 146 181 86 184
III 74 300 52 83 13 59
IV 75 160 158 157 101 163

φSQ

I 95 10 77 14 74 56
II 289 55 78 17 48 66
III 83 299 87 67 21 71
IV – 58 118 102 – 112

Reduction

1

φ III 0.53 0.95 0.80 0.80 0.76 0.79

φSQ

I 0.6 0.07 0.34 0.33 0.59 0.45
II 0.67 0.13 0.34 0.05 0.29 0.37
III 0.6 0.86 0.34 0.34 0.39 0.60
IV 0.21 0.21 0.38 0.39 0.25 0.67

2

φ
II 0.54 0.68 0.66 0.76 0.49 0.84
III 0.12 0.75 0.19 0.29 0.07 0.33

φSQ

I 0.39 0.04 0.24 0.16 0.28 0.26
II 0.66 0.14 0.22 0.05 0.18 0.26
III 0.11 0.74 0.26 0.20 0.05 0.35
IV 0.23 0.20 0.34 0.34 0.26 0.48

4

φ

I 0.4 0.48 0.49 0.43 0.41 0.47
II 0.19 0.37 0.33 0.41 0.2 0.42
III 0.17 0.68 0.12 0.19 0.03 0.13
IV 0.17 0.36 0.36 0.36 0.23 0.37

φSQ

I 0.22 0.02 0.17 0.03 0.17 0.13
II 0.66 0.12 0.18 0.04 0.11 0.15
III 0.19 0.68 0.20 0.15 0.05 0.16
IV – 0.13 0.27 0.23 – 0.25

Table 6.2: Circuit reduction results. “Noise” labels the same as those used in
Table 6.1. The top half (“Circuits”) counts are the absolute number of circuits,
while the bottom half (“Reduction”) gives the fraction of circuits selected relative
to the dimension of the feature space defined by the action of φ. NOTE: “Naive
PCA” uses the importance measure defined in Equation (6.18), while “PCA” uses
the importance measure defined in Equation (6.17).

being compared, the algorithm, and the feature space. An examination of the table

indicates that the algorithms based on mutual information, PCA (Equation (6.17)),

and running a perceptron tend to do much better than random circuit selection
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or “Naive PCA” (Equation (6.18)). Also of note is that the embedded algorithm

(L1-regularized SVM) doesn’t do as well in general.

The role of feature engineering in enabling circuit reduction is complex. Feature

engineering increases the dimension of the feature space (because it adds new features

to the feature vector). Note that the fractions presented in Table 6.2 are computed

with respect to the dimension of the non-feature-engineered feature space. As the

table makes clear, feature engineering sometimes helps with circuit reduction, and

sometimes not.

Circuit reduction using mutual information either does really well, or really poorly.

This is particularly true for the “isotropic vs. anisotropic Pauli stochastic” com-

parison (III). Figure 6.7 gives some hint about why this might be the case. The

outcome probabilities under the two noise models tend to fall into two camps. In the

first, the GST circuit is highly insensitive to the noise, so the outcome probability

of the circuit tells us essentially nothing about the noise (rightmost plot). Circuits

that are sensitive to the noise tend to have the same mutual information (leftmost

plot), meaning that an optimization heuristic based on choosing features with high-

est mutual information will tend to have to choose many features. This problem is

exacerbated under feature engineering, since fj and f2
j tell us the same amount of

information about the noise type.

The “randomized optimization” heuristic (Section 6.5.1) was introduced as a baseline

to compare the other ML algorithms to. Examining Table 6.2, this heuristic is

generally outperformed by all the ML algorithms except the L1-regularized SVM.

See, e.g., L = 4, φSQ, noise type II (coherent/stochastic), where the randomized

heuristic selects 66 circuits, while the L1-regularized SVM selects 289!

Looking at the bottom half of Table 6.2, different ML algorithms also achieve sub-

stantially different levels of circuit reduction. Generally speaking, it appears that

filtering algorithms based on mutual information, PCA, or running a perceptron can
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Figure 6.7: Example: estimated mutual information (MI) for the L = 1, φ
feature space for isotropic vs. anisotropic Pauli stochastic noise. For noise
type III in Table 6.2, most of the features end up either having very low mutual
information for the noise type (rightmost plot), or the mutual information is almost
the same across every feature (leftmost plot). The middle plot shows a typical
distribution of the estimated outcome probability when the mutual information is
high.

provide a level of reduction below 10% for some noise models. That is, for those noise

models, they select fewer than 10% of the total circuits used in the GST experiment

design.

Finally, Table 6.2 shows that all the noise models except Pauli vs. non-Pauli stochas-

tic (IV) are substantially circuit-reducible, particularly with higher-L experiment

designs and feature engineering. Compare the “Reduction” portion of the table for

L = 4, φSQ to L = 1, φSQ.

6.6.3 Mean depth of selected circuits

Table 6.2 indicates how many circuits were selected by the ML algorithms, but

doesn’t indicate what they were or what properties they have. Some circuits are

more useful for characterizing certain kinds of noise, and part of the reason for using

ML algorithms to identify such circuits is in the hope that they might yield some
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L1 SVM MI Naive PCA PCA Perceptron
L Mean Max Feature map Noise

1 4.45 7

φ III 4.4 4.6 4.4 4.4 4.5

φSQ

I 4.3 5.3 4.5 4.5 4.6
II 4.5 6.4 4.7 4.8 5.3
III 4.7 4.5 4.4 4.4 4.5
IV 4.7 4.6 4.1 4.3 5

2 5.12 8

φ
II 5.2 6.0 5.3 5.5 5.3
III 6.6 5.2 6.4 5.5 5.8

φSQ

I 5.4 6.6 6.0 5.7 5.7
II 5.2 6.8 5.8 5.7 6.1
III 6.8 5.2 5.8 5.8 5.8
IV 5.2 5.6 5.2 5.2 5.6

4 6.40 10

φ

I 6.7 6.8 6.6 7.0 6.6
II 6.2 8.1 6.5 7.4 6.4
III 7.7 6.4 7.2 6.5 7.5
IV 7 6.3 6.3 6.3 7.3

φSQ

I 7.2 7.6 6.7 6.5 7.6
II 6.4 8.3 6.5 8.0 8
III 7.8 6.4 6.5 6.6 7
IV – 6.6 7.0 6.7 –

Table 6.3: Mean circuit depth of circuits chosen by ML algorithms. For
comparison, the mean and maximum depth of all circuits in the experiment design
are given (columns “Max” and “Mean”, respectively). The algorithms choose a set
of circuits whose average circuit depth is close to the average for the circuits in the
experiment design.

intuition about the kind(s) of experiments that help us characterize the noise.

One intuition about GST circuits is that longer-depth circuits are more useful for

amplifying noise. However, longer-depth circuits can also make noise less distin-

guishable: consider depolarization noise at rates r1 and r2. In the limit the circuit

depth is very large, the outcome probability of that circuit is .5, regardless of the

rate. Table 6.3 shows the mean circuit depth for the circuits selected by each algo-

rithm when learning to select features in the feature space given by φSQ. Comparing

this to the mean and maximum depth over all circuits for a given value of L, we see

that the algorithms aren’t necessarily selecting long circuits. Further, no algorithm

in particular is selecting circuits that have wildly different average depth.

The properties of the feature space depend strongly on the experiment design. Sec-

tion 5.4.5 discussed how the margin of hyperplane learned by the support vector
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machine (SVM) algorithm relates to robustness of classification accuracy under finite-

sample noise. Different experiment designs may have different levels of robustness to

such finite-sample effects. Robustness to finite-sample effects is investigated in the

next section, by considering the margin of the data in the reduced feature spaces.

The next section investigates this property, shows that training an SVM was difficult,

and presents simple bounds on the margin of the optimal-margin hyperplane.

6.6.4 Margins of the reduced feature spaces

A subset of the circuits for a given experiment design defines a new experiment design

and a reduced feature space. Smaller subsets (less complex experiment designs) are

more desirable if all else is equal – but usually all else is not equal! Therefore, other

considerations may need to be taken into account when evaluating the experiment

designs selected by feature selection algorithms.

For example, suppose algorithm A chooses 5 circuits, and algorithm B, 20. Algorithm

A clearly found a smaller subset with lower experimental complexity. On the basis of

“number of circuits to do”, the experiment design selected by A might be preferable

– it requires one quarter the number of experiments as that selected by B. But this

might come at a price. For instance, if the margin separating the feature vectors is

10 times smaller in the reduced feature space selected by A, then 100 times as many

samples will need to be taken to have the requisite statistical precision to ensure a

reliable inference of the noise. Other properties of the reduced feature space may

also be relevant, but its dimension (complexity of the experiment design) and margin

are clearly critical.

The margin of the reduced feature spaces defined by the reduced experiment designs

of Section 6.6.2 can be computed by training an SVM and then computing the

margin of the hyperplane it learns. Because the data is linearly separable, a maximal-

margin hyperplane exists, and an SVM can learn it. However, I encountered some
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Figure 6.8: Cross-validated accuracy of hyperplane learned by the SVM
algorithm as a function of the maximum number of algorithm iterations M .
Each colored line is specified by a feature selection approach, GST experiment design,
and feature map. For each value of M , a soft-margin SVM (C = 1010) algorithm is
run for M iterations, terminated, and then the accuracy of the hyperplane learned
is computed. Cross-validation was done using a 10-fold shuffle-split approach, with
10% of the data held back for testing.

computational challenges in evaluating the margin of the reduced feature space; the

SVM algorithm took an extremely long time before converging for any one reduced

feature space.

The SVM algorithm solves the optimization problem given in Equation (D.25),

(equivalently, Equation (D.26)). This optimization problem can be solved in an

iterative fashion, say by gradient ascent. To get a handle on why the SVM algorithm

was taking so long, I ran the following test: run the SVM for M iterations, terminate

it, and evaluate the accuracy of the hyperplane it learns. As M →∞, the accuracy

should increase to 1, as the data sets are linearly separable. Figure 6.8 show that

the rate at which the algorithm’s accuracy increases depends strongly on the noise

model.
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Figure 6.9: Cross-validated runtime of the SVM algorithm as a function
of the maximum number of algorithm iterations M . The runtime of the
algorithm appears to blow up around M = 106. Note the different y-axis scales for
the different panels; in particular, for Pauli vs. non-Pauli stochastic noise, a single
run takes upwards of 10 minutes on average.

A deeper look at the behavior of the algorithm also indicates that the runtime is

highly dependent on the noise models, as indicated in Figure 6.9. For every noise

comparison except “coherent vs. stochastic”, the fact that the learned hyperplane

has not yet achieved an accuracy of 1 suggests that runtimes in Figure 6.9 will

generally keep increasing. Once the accuracy reaches 1, the algorithm terminates, so

the fact that accuracies are not yet 1 means the algorithm will need to keep running,

thereby increasing the runtime.

This behavior suggests there a difficulty in using the SVM algorithm to learn a

hyperplane separating the noises. The general theory of SVMs indicates the runtime

for separating N data points in a feature space with d dimensions goes as O(d∗N2)

or O(d ∗N3). For this reason, the SVM algorithm is usually not recommended when

the number of data points is on the order of a few tens of thousands. However, the

data set with the largest number of points – coherent vs. stochastic – has the lowest

runtimes! I am not entirely sure why this is the case.
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Figure 6.10: Geometry to determine an upper bound on the margin of
any separating hyperplane. Given any separating hyperplane H, its margin is
upper-bounded by the minimum of d(xj,yk)/2, where xj,yk are feature vectors with
different labels. To prove this, it suffices to observe that H bisects the line joining
xj and yk.

These complications do pose a problem to determining the exact margin of the

reduced feature spaces. However, the margin can be bounded using two simple ar-

guments. First, the margin of any separating hyperplane is upper bounded by the

half of the minimum distance between any two feature vectors with different noise

labels.

This can be proven as follows (see Figure 6.10): consider two sets of feature vectors

{xj}Mj=1, {yj}M
′

j=1, and assume the two sets are linearly separable. Take any hyper-

plane H that separates them. Because H is a separating hyperplane, it bisects the

line joining any xj to any yk. Let zjk denote the point where that intersection occurs.

Notice

d(xj,yk) = d(xj, zjk) + d(yk, zjk). (6.33)

Now,

d(xj, zjk) ≥ d(xj, H) and d(yk, zjk) ≥ d(yk, H). (6.34)

196



Chapter 6. Machine-learned experiment design for QCVV

Therefore,

d(xj,yk) ≥ d(xj, H) + d(yk, H). (6.35)

Finally, MH is the minimum distance from H to any feature vector, meaning

d(xj, H) ≥MH and d(yk, H) ≥MH . (6.36)

From this, it follows that

MH ≤
d(xj,yk)

2
∀ j, k =⇒ MH ≤ min

j,k

d(xj,yk)

2
. (6.37)

The conditions under which the equality saturates are easily understood. The in-

equalities in Equation (6.34) saturate when H bisects the line joining xj and yk at

a right angle. The inequalities in Equation (6.36) saturate when both of xj and yk

correspond to feature vectors that are closest to H. Putting these two facts together,

it follows that Equation (6.37) saturates when xj and yk are support vectors.

Computing all pairwise distances has a complexity that is O(MM ′), so this up-

per bound can be computed efficiently. Demonstrating a lower bound is simple, as

the margin of any separating hyperplane gives a lower bound on the margin of the

maximal-margin hyperplane. What’s more, this lower bound is easy to compute in

practice, as we can use the margin of the hyperplane used to certify linear separabil-

ity in Section 6.6.1. Let MLP denote the margin of this hyperplane. Note that the

lower bound could be easily improved by constructing a different separating hyper-

plane with a higher margin. Such hyperplanes could be found by, e.g., running the

perceptron algorithm with many different initializations and post-selecting on the

hyperplane with the largest margin.

Therefore, the margin of the optimal-margin separating hyperplane in the reduced

feature space is bounded as MLP ≤Moptimal ≤ minjk d(xj,yk)/2. These bounds are

presented in Figure 6.11 as a function of L, the feature map, and the noise models

being compared. Focusing on coherent and stochastic noise (blue-hued lines), the
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Figure 6.11: Bound on the optimal margin Moptimal for the reduced feature
spaces. The vertical range of each solid vertical line denotes an interval containing
Moptimal. The two panels split out the feature map. Data are grouped by value of
L indexing the GST experiment design; each color indicates the noise models being
compared.

interval containing the optimal margin are rather narrow, extending only over 3

orders of magnitude. This is in contrast with the other noise models, where the

range is anywhere from 4 to 6 orders of magnitude. This may relate to the fact the

SVM algorithm succeeded in learning a separating hyperplane (Figure 6.8).

Each reduced feature space given in Figure 6.11 is specified by a choice for L, the ML

algorithm for doing feature selection, the feature map, and the noise models being

compared. Figure 6.11 aggregates the data in terms of L and the noise model. Figure

6.12 shows another view on this data, by plotting the bound as a function of the

number of features selected, with different choices of the aggregating variable. The

panels in this figure indicate that the bound doesn’t depend strongly on the number of

features selected. Taking Figures 6.11 and 6.12 together, the bounds on the margin

depend more strongly on the noise models being compared than anything else.
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Figure 6.12: Relation between number of features chosen and bound on
Moptimal. Each panel splits out the data presented in Figure 6.11 in different ways,
either by the experiment design L, the ML algorithm, or the feature map. The bound
appears not to depend strongly on these properties.

6.7 Conclusion and discussion

To characterize a property of a QIP, experimental data is required. Creating an

experiment design – a specification of experiments (circuits) to be performed – suf-

ficient for characterizing a given property is a non-trivial task. This chapter showed

that ML algorithms can generate experiment designs. In particular, focusing on

experiment designs for characterizing Markovian noise affecting a single qubit, ML

algorithms for feature selection can generate suitable experiment designs by pruning

the experiment design used for GST.

As mentioned in Section 6.2, feature selection is something of a dark art. A brute-

force search over all possible experimental designs is generally impractical, since the

number of experiment designs over d features is 2d. For this reason, various heuristics

are typically necessary. While state-of-the-art ML algorithms (e.g., deep feature

synthesis) can automate much of the feature selection process, the work presented

here is probably more typical, in the sense that the algorithms are used with a lot

of “hand-holding”. A fruitful research direction would be to examine whether state-
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of-the-art algorithms can be deployed for more-or-less automated QCVV experiment

design.

Imposing different requirements on the experiment design learned by ML algorithms

leads to different experiment designs being selected. Here, the focus was solely on

the criteria “the experimental design has to contain fewer circuits than the original

GST experimental design” and “the resulting feature space has to be linearly sepa-

rable”. For the noise models and ML algorithms considered, meeting these criteria

was feasible (Table 6.2). A reasonable conjecture would be that loosening the second

requirement from “linearly separable” to “separable by some decision surface” will

lead to further reductions in the number of circuits in the experimental design.

Another desideratum that would be useful to consider is maximizing the margin of

the reduced feature spaces. This work made some progress in understanding this

property for some of the reduced feature spaces (Section 6.6.4), by showing that

the margin of the optimal-margin separating hyperplane is (a) upper-bounded by a

geometric property of the data set that can be computed efficiently, and (b) lower-

bounded by the margin of any separating hyperplane, such as a hyperplane used to

establish linear separability of the data. The lower bound follows trivially from the

definition of the optimal margin.

This analysis may be of independent interest for quickly determining an upper bound

on the amount of statistical noise that would be tolerable, and establishing a lower

bound on the number of samples required. In addition, since any separating hyper-

plane provides a lower bound on the margin, the margin of that hyperplane immedi-

ately yields an upper bound on the number of samples required. Note that the data

has to be linearly separable for this analysis to be applicable.

One notable result from this investigation is that maximizing the margin of the re-

duced feature space and minimizing its dimension may be constraints that are at odds

with one another. In particular, the derivation of the L1-regularized SVM (Section
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6.5.5) showed that “maximizing the margin” was equivalent to “L2-regularizing the

hyperplane”. Using a different regularization principle (such as L1) inevitably leads

to a hyperplane that need not have the maximal margin. One way to balance both

properties would be to define an SVM with both L1 and L2 penalties, in addition to

a loss penalty.

For the problem of characterizing Markovian noise, the results presented in this

chapter suggest that circuit reduction should be generally feasible . In all

4 of the noise comparisons considered, every ML algorithm successfully identified a

reduced experiment design. The experiment design selected by the algorithms de-

pended strongly on the noise, the original GST experiment design, and the algorithm

itself. Algorithms that seemed to do well include filtering algorithms based on mu-

tual information or PCA. One result of note is the behavior of the L1-regularized

SVM. Based on its performance for the 4 noise comparisons considered here, whether

this algorithm would do well for other QCVV tasks is not clear.

The results shown in Table 6.2 indicate that higher-L GST experiment designs,

and using feature engineering, can lead to big impacts in the amount of reduction

achievable by the ML algorithms. Of course, the absolute number of circuits selected

tends to be a bit higher, simply because the original GST experiment design contains

more circuits.

This chapter considered circuit reduction based on GST experimental designs. The

algorithms presented here could also be applied to other experimental designs, such as

those used randomized or unitarity benchmarking. The QCVV problem considered

in Chapter 5 was motivated in part by the fact that the amount of coherence of the

noise impacts the feasibility of quantum error correction (18; 133; 77; 314; 273). The

amount of coherent noise can be estimated by randomized/unitarity/purity bench-

marking. Identifying a simpler experiment design that could provably demonstrate

the noise is purely stochastic – or would provide a high-accuracy estimate of the
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unitarity itself – would be useful. This could be done by using circuit reduction on

the circuits necessary for those benchmarking protocols.

Another way ML algorithms could create QCVV experiment designs is by reinforce-

ment learning (RL) (290). RL algorithms learn a policy that dictates their action in

response to external variables (the “environment”), with the goal of maximizing the

reward associated with their actions. RL has already been used to create new quan-

tum error correction techniques (108), and has been used to construct experimental

designs for simple classical problems (115; 116).

As QCVV practitioners and theorists work to flesh out the spectrum of QCVV

techniques, a variety of experiment designs will be required. ML algorithms for

feature selection or RL can help develop them.
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Chapter 7

Conclusions and outlook: scalable

QCVV of NISQ processors

7.1 Conclusions

Characterizing NISQ processors is a challenging problem. The QCVV techniques

that worked well for few (1 or 2) qubit QIPs are beginning to show the limits of

their applicability on many (5-10) qubit QIPs, and suggests they will need to be

modified or replaced to characterize 20+ qubit QIPs. This is not to say that the

techniques themselves are flawed; on the contrary, they have been quite successful

and useful! Instead, what should be modified is the methodology of QCVV. The

methodology that underlies most existing QCVV techniques today is “use statistical

models to describe a QIP’s behavior”. There are two reasons why that methodology

is inadequate for characterizing NISQ processors. First, the number of parameters in

commonly-used models grows too rapidly with the number of qubits (the “curse of

dimensionality”). Second, models with a small number of parameters can fail to cap-

ture some of the complexities of noise affecting a NISQ processor (see the discussion

in Section 2.4). Both of these inadequacies imply that the next generation of QCVV
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techniques will need to use modest-complexity, yet expressive, models. This thesis

presents two methodologies for developing such techniques; namely, statistical model

selection and machine learning. These two methodologies are largely complementary

to one another, and address different problems to scalability.

Taming the curse of dimensionality for any model is a well-studied statistics problem.

One solution is to use statistical model selection to choose between several competing

models in a principled way. However, tomography (of all kinds) subtly differs from

canonical statistical inference problems. This difference arises because the models

used in tomography have boundaries, which imposes constraints on the parameters

of the model. Examples of constraints in tomography include positivity of quantum

states and complete positivity of quantum channels.

Constraints couple the parameters together, so they cannot be varied independently.

This is unlike the setting of most statistical inference problems where model selection

is used, where the models typically do not have boundaries. Most classical model

selection results were not derived with the presence of boundaries in mind. This

means blithely porting over statistical model selection to tomography in particular

(and QCVV in general) has complications.

Chapter 3 considered this issue in great detail, and focused on the impact of the

positivity constraint ρ ≥ 0 on the behavior of the maximum likelihood estimator. I

showed that quantum state space, viewed as a statistical model, does not satisfy a

powerful property called local asymptotic normality (LAN). This follows immediately

from the fact that maximum likelihood estimates in quantum state space may not

be Gaussian distributed. (For details, see Section 3.3.)

Since quantum state space doesn’t satisfy LAN, it follows that most classical sta-

tistical model selection techniques will give erroneous results. Chapter 3 examined

the behavior of the loglikelihood ratio statistic λ, and presented numerical evidence

showing that its behavior under the classical Wilks theorem is nothing like its ob-
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served behavior in practice. The Wilks theorem generally over-predicts 〈λ〉, which

itself is used to set thresholds for rejecting smaller (fewer-parameter) models in favor

of larger (more complex) ones. Because the Wilks theorem over-predicts, thresholds

set based on its prediction for 〈λ〉 would be too high, and would fail to reject smaller

models when there is in fact enough evidence to do so. I remedied this situation in

two ways.

First, I defined a generalization of LAN that is applicable to any model with convex

constraints, classical or quantum. This generalization, metric-projected local asymp-

totic normality (MP-LAN) embeds a constrained model into one that does satisfy

LAN (usually, by lifting the constraints). For models satisfying MP-LAN, many

properties of the maximum likelihood estimator follow from considering properties

of the maximum likelihood estimator in the unconstrained model, and then deter-

mining how those properties change when the constraint(s) is (are) imposed.

A subtle point is that while the positivity constraint clearly imposes the same con-

straint everywhere in state space, the way it manifests itself in statistical inference

(i.e., state tomography) is not the same: as Chapter 3 shows, the behavior of the

maximum likelihood estimator depends strongly on the rank of ρ0.

MP-LAN is a natural generalization of LAN, in the sense that models satisfying

MP-LAN have similar properties to models that satisfy LAN . As shown in

Section 3.4.1, if a model satisfies MP-LAN, then: (a) the loglikelihood ratio statistic

λ is equivalent to squared loss as measured by the Fisher information, (b) asymp-

totically, the behavior of the maximum likelihood estimator is entirely determined

by its behavior in a shrinking region around ρ0, and (c) this region is equivalent to

the tangent cone at ρ0. All three of these properties also hold for models that satisfy

LAN.

Second, I derived an approximation for 〈λ〉 for d-dimensional quantum state spaces.

Classically, 〈λ〉 is equal to the number of parameters in the model. The result
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given in Equation (3.43) indicates that in the presence of constraints, the

expected value of the loglikelihood ratio statistic is usually less than the

number of parameters in the model, and depends strongly on properties

of the underlying true parameter . In particular, the result I derived depends

on the rank of ρ0. This result suggests that thinking about an “effective” state-

space dimension is a good way to get a handle on statistical model selection, by

treating different regions in state space as different-dimensional models within the

larger d-dimensional state space.

One of the consequences of this result is that the number of parameters of a model

may be less important than the “effective” number of parameters when doing model

selection. Consider two state spaces with dimension D and D + d. Classically

〈λ(MD,MD+d)〉 = 2Dd + d2, while Equation (3.43) gives 〈λ(MD,MD+d)〉 ∼ 6rd,

where r = Rank(ρ0). In the presence of constraints, the expected value of the

loglikelihood ratio statistic is not the difference in the number of parameters of the

two models. Instead, it’s a difference of the effective number of parameters.

Chapter 3 introduced MP-LAN, proved properties of models that satisfy it, and used

those properties in one particular application (computing 〈λ〉). Chapter 4 developed

further applications of the MP-LAN formalism, and identified some connections be-

tween maximum likelihood and quantum compressed sensing. The first was that the

expected rank of the maximum likelihood estimator provides a certificate of the rank

of ρ0. Most quantum compressed sensing protocols in use today that do not use this

estimator are also self-certifying, though usually in a different sense than the certifi-

cate presented in Section 4.1. An interesting question is whether other techniques –

which may use estimators other than maximum likelihood – are self-certifying in the

sense described in Section 4.1.

I found a second connection by computing the expected rank of the maximum likeli-
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hood estimator in idealized tomography1 and showing that it is usually much smaller

than the dimension of the state space. This implies that the positivity con-

straint yields low-rank estimates for free when doing state tomography

using maximum likelihood estimation.

Chapter 4 also examined whether the results derived in Chapter 3 hold up in a

non-idealized tomographic setting. Section 4.2 discussed an application of statistical

model selection in a situation where the Fisher information was not close to isotropic:

choosing a Hilbert space dimension for a continuous-variable (CV) system. In that

problem, the model is a d-dimensional quantum state space, and model selection

is necessary because formally, the dimension of a CV system is infinite. For the

particular measurement considered – optical heterodyne tomography – I presented

numerical evidence showing that the Fisher information is not isotropic (evidenced

by large condition numbers). Still, the expression derived in Equation (3.43) for 〈λ〉
held up reasonably well against numerical results for heterodyne tomography (Figure

4.6).

This result is surprising because it means that some results derived for idealized to-

mography also hold up in the non-ideal case. One reason why (at least in heterodyne

tomography) is the fact that the contributions to λ from each matrix element of the

estimate depend very strongly on the number of heterodyne counts (Figure 4.9).

Analogizing heterodyne tomography to estimating the rate of a Poisson process, I

showed that unless the number of counts in optical phase space is sufficiently high,

then the contribution of the corresponding matrix element is very low (Appendix G).

Taking a holistic view of the first half of this thesis, my research on the challenges of

model-based QCVV for NISQ processors indicates that the geometry of the model is

extremely important when fitting model parameters and deploying statistical model

1Recall that the idealized setting is where the Fisher information of the measurement
is isotropic, so that the state-space metric is Hilbert-Schmidt.
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selection techniques. Although the results given in Chapters 3 and 4 were derived in

the context of state tomography, they can also be applied in the context of process or

gate set tomography. The notion of “an effective number of parameters for a model”

is an important one, and highlights the importance of constraints in tomography2.

The first half of this thesis addressed some of the pitfalls of model-based QCVV, by

identifying and overcoming obstacles to using statistical model selection to tame the

complexity curse of tomography. The second half picks up on the other reason men-

tioned at the start of these conclusions for why model-based QCVV isn’t scalable:

models with small numbers of parameters may not be adequate for characterizing

new kinds of noise. Using machine learning algorithms, I showed that tailored, tar-

geted QCVV techniques can be developed. These algorithms don’t rely on statistical

models3; instead, they search over a space of hypotheses to learn an analysis map

that takes experimental data and returns an inference of a property of interest. The

key insight that enabled the successful deployment of machine learning algorithms

is QCVV data sets can be treated as feature vectors (input to machine

learning algorithms) and by doing so, ML algorithms can learn using

QCVV data .

Chapter 5 showed that machine learning algorithms can learn new QCVV techniques.

I presented a formalism for using supervised learning to develop targeted characteri-

zation techniques, and applied it with great success to the problem of distinguishing

coherent and stochastic noise on a single qubit. However, there are several factors

that contribute to the success or failure of machine learning algorithms for such tasks.

They include the native geometry of the QCVV data sets (thought of as feature vec-

2An open research question is identifying which parameters of the model have to be
inferred from data and which can be inferred from the constraint. An intriguing possibility
is that that any random subset of the parameters whose size is close to the effective number
of parameters is sufficient.

3Here, I am ignoring generative machine learning algorithms, which are used to generate
samples from a probability distribution. Those algorithms do learn a statistical model.
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tors), hyperparameter settings, and whether or not feature engineering is used. I

investigated both hyperparameter tuning and feature engineering.

Hyperparameter turning – changing an algorithm’s hyperparameters – boosted clas-

sification accuracy for many algorithms. That this should happen is intuitively obvi-

ous: by turning more knobs specifying the behavior of an algorithm, its performance

can improve. However, as Figure 5.8 shows, if the geometry of the data set isn’t

amenable to being learned by a given algorithm, then hyperparameter tuning isn’t

necessarily going to help. For this reason, other techniques may be necessary to

improve accuracy.

Changing the geometry of the data is a less straightforward but possibly more pow-

erful way to do so. An algorithm makes certain assumptions about the geometry of

the data, and when those assumptions don’t hold, the algorithm performs poorly.

This issue manifested itself in Section 5.4.1, which showed how different algorithms

can behave quite differently on the same data. Feature engineering changes the

geometry of the data, and can make the data more amenable to learning

by different algorithms (recall Section 5.4.3). Knowledge of the geometry can de-

veloped either by considering a priori first principles (“domain-specific knowledge”),

or by using dimensionality reduction (Section 5.4.2). For the problem considered in

Chapter 5, feature engineering does help (Figure 5.10). The reason why is because

the natural geometry of QCVV data sets generated by coherent and stochastic noise

resembles a radio dish. That kind of “physics-informed” knowledge is extremely

useful in evaluating which algorithms should be used.

Model-based QCVV techniques typically come with error bars to quantify the ac-

curacy of the estimated parameters. At first glance, the fact that machine learning

algorithms don’t use statistical models would seem to imply that defining error bars is

not possible. However, there are several ways to quantify the certainty of the QCVV
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technique learned by the algorithm, such as the margin of a separating hyperplane4.

As shown in Section 5.4.5, the margin quantifies how robust the classification ac-

curacy is to perturbations of the data. Some algorithms, such as the hard-margin

support vector machine (SVM) learn a decision rule (separating surface) that has the

highest possible margin. As a consequence, if the inference tool learned by the

algorithm needs to robust against finite-sample (statistical) noise, then

the SVM is the best one to use .

The work in Chapter 5 relied on the experiment design (set of circuits) that’s used

for gate set tomography. Targeted QCVV techniques don’t necessarily require many

circuits, and Chapter 6 took up the question of whether machine learning algorithms

can come up with lean and simple experiment designs for targeted QCVV. Because

the outcome probability of a given circuit in an experiment design is treated as one

component of a feature vector, the problem of experiment design can be framed as the

problem of feature selection: determining the right features (circuits) for solving the

QCVV task. If the noise is assumed to be Markovian, then the circuits that comprise

the experiment design for gate set tomography provide a natural “candidate set” of

circuits to select from, since they are sensitive to arbitrary Markovian noise.

The features selected by the feature selection algorithms define a reduced feature

space whose dimension is less than the dimension of the “native” feature space for

the experiment design. One important consideration when deploying feature selec-

tion algorithms is “What property(ies) should the reduced feature space possess?”.

Chapter 6 required the reduced feature space identified by the feature selection al-

gorithms to satisfy two properties: the number of circuits in the experiment design

selected by the algorithm needed to be less than the number of circuits in the original

experiment design, and the QCVV data should be linearly separable in the reduced

feature space.

4Other approaches are possible, such as using Platt scaling to transform a classification
output into a probability distribution over the noise types.

210



Chapter 7. Conclusions and outlook: scalable QCVV of NISQ processors

One important caveat concerns the interplay between feature selection and feature

engineering, because feature engineering adds new features by combining existing fea-

tures. Thus, a situation could arise wherein, relative to the dimension of the feature-

engineered feature space, the dimension of the reduced feature space is smaller, but

relative to the original feature space, it’s the same. Therefore, feature engineering is

useful in this context only insofar as it leads to a reduced feature space that’s smaller

than the original one.

By considering several different characterization problems of the form “Determine if

the noise is type A or B”, I showed that machine learning algorithms could identify a

small subset of the circuits used for gate set tomography that met the desiderata given

above. As each of the 4 characterization problems I considered was circuit reducible,

I think pruning gate set tomography experiment designs circuits using

feature selection algorithms is a viable approach to creating experiment

designs for targeted QCVV tasks .

Different feature selection algorithms approach the task of feature selection with

different assumptions. For instance, algorithms that use a filtering paradigm rate

each feature on the basis of some measure of importance, and then iteratively add

features in decreasing order of importance. These algorithms (such as PCA or mutual

information estimation) work particularly well when the features are more-or-less

independent of one another. Other algorithms, such as the L1-regularized SVM,

approach the task from an embedded paradigm, in which the algorithm is trying to

select few features while also taking into consideration the feasibility of classification

in the reduced feature space. The embedded paradigm makes sense when the features

are correlated (as is the case for gate set tomography feature vectors). Because

outcome probabilities of the circuits are usually correlated in some way – after all,

they are generated by the same underlying noisy gate set – the embedded paradigm

might be preferable when developing new QCVV experiment designs.
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Finally, different requirements on the reduced feature spaces may be necessary de-

pending on what properties are of importance. For instance, by focusing solely on

the properties “fewer circuits than the native feature space” and “linearly separable”,

the optimal separating hyperplane for the reduced feature space may have very small

margin. The margin would be an important property to keep in mind because, as

noted earlier, a high-margin hyperplane is more robust to finite-sample effects, and

other kinds of noise.

Taken together, chapters Chapter 5 and Chapter 6 indicate that the subject matter

expertise of QCVV practitioners can be leveraged in new ways through the use of

machine learning algorithms. These algorithms do not entirely replace the need for

human knowledge and insight; instead, the algorithms can be put in service to it. In

this way, machine learning algorithms help QCVV practitioners extend the reach of

their expertise.

7.2 Outlook

There are many challenges to realizing the near-term potential of quantum com-

puters. At all levels of the “stack” – from device hardware, to control software, to

programming libraries – more work will need to be done to strengthen and integrate

the components of a QIP. By focusing on device characterization, my research ad-

dresses problems “close to the metal”, as it were. As with the other levels in the

stack, there is a lot of work to do in the QCVV “layer”, especially with respect to

developing new, scalable QCVV techniques.

Most traditional QCVV techniques rely on statistical models. This thesis has pointed

out some of the ways statistics-based QCVV goes awry. However, this doesn’t mean

modeling is unnecessary. An emphasis on device modeling at all levels, from physics-

informed modeling (e.g., electromagnetic fields on a chip) to abstract, statistical

models that incorporate some physics knowledge (e.g., reduced GST), remains nec-
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essary. There are numerous scientific questions about how to model the noise affect-

ing NISQ processors. For example, the locality of the noise (the number of qubits

it concurrently acts on) will significantly influence the kind(s) of models necessary

for characterizing a QIP. If errors in a QIP can occur across arbitrarily many qubits

concurrently (i.e., the error generators are high-weight) then increasingly-complex

models are going to need to be developed to capture those kind(s) of noise. In

turn, there is a commensurate increase in the difficulty in estimating model pa-

rameters. On the other hand, if errors occur in bounded regions of the QIP, and

in non-overlapping patches, then simple, locality-respecting models can be used to

describe those noises, and there may not be as great an increase in the resources

necessary to estimate model parameters.

Machine-learned QCVV techniques offer one way to go beyond these parametric

QCVV techniques. This thesis showed that machine learning algorithms can develop

new QCVV techniques using data necessary for existing QCVV techniques (namely,

GST). Those same algorithms could be used to, e.g., develop more efficient versions

of randomized benchmarking (RB), either by learning a new technique for processing

RB data, or by determining a small subset of RB circuits that’s sufficient for inferring

the RB number.

In this thesis, I trained machine learning algorithms using synthetic (computer-

generated) data. As NISQ processors scale in size, generating such data will become

increasingly difficult. Therefore, a potential path to scalable characterization using

machine learning could involve using a highly-calibrated QIP to generate the training

data by, e.g., injecting known noise into it. By bootstrapping from one generation

of QIPs to the next, the need to do highly-involved computer simulations would be

bypassed.

—
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As quantum computing enters the NISQ era, there are numerous challenges to the

development of next-generation quantum information processors. This thesis has

contributed several ideas on methodologies for developing scalable QCVV techniques

for NISQ processors, and gives me optimism that despite the hard and difficult path

ahead, advances are achievable.

214



Appendices

215



Appendix A

Software acknowledgements

Much of this research relied on and leveraged software packages written by others.

I’d like to thank those who write and maintain code for: cvxpy (86; 3), Jupyter (234),

matplotlib (151), mpi4py (76), NumPy (303), pandas (211), pyGSTi (222), Python

2.7 (307), scikit-learn (233), SciPy (226), seaborn (316), and SymPy (215).

216



Appendix B

Solving Equation (3.39)

In Chapter 3, I state without a derivation the solution to Equation (3.39):

rq

ε
=

4n1/4

15π

(
2
√
n− q

ε

)5/2

(B.1)

in terms of the variable z ≡ q/ε, where n = d − r. In this section, I present a

simple derivation of the solution. For details and comparisons between analytic

approximations and numerical results, see this Jupyter notebook.

As previously mentioned, the above equation is a quintic polynomial in q/ε, meaning

that an algebraic solution is generally impossible. Consequently, we’ll end up having

to make some approximations in order to obtain a tractable solution. Let’s first start

by defining z ≡ q/ε, and then squaring both sides:

r2z2 =

(
4

15π

)2√
n
(
2
√
n− z

)5
. (B.2)

Then, define y = z/2
√
n, and factor the equation to give

y2 = 32

(
2n

15πr

)2

(1− y)5 . (B.3)

For convenience, define A = 32
(

2n
15πr

)2
:

y2 = A (1− y)5 . (B.4)
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Our task is to now solve this equation for y. Observe that we may write the defining

equation for y as

y2/5 + A1/5(y − 1) = 0. (B.5)

As mentioned in Section 3.5.3, with high probability z ∼ 2
√
n, meaning y ∼ 1. Using

this fact, we can sipmlify the above equation by computing a Taylor series of y2/5

about y0 = 1. Using a computer algebra system gives the following Taylor series

y2/5 ≈ 1 + .4(y − 1)− .12(y − 1)2 +O((y − 1)3). (B.6)

As r → d, n → 0, and the solution to Equation (B.1) is q = 0. In turn, this means

there will be discrepancies between the exact value of y2/5 and its Taylor series.

Replacing y2/5 by its Taylor series gives a quadratic equation in y:

1 + (.4 + A1/5)(y − 1)− .12(y − 1)2 = 0. (B.7)

This equation is easily solved, and yields two roots:

y =
25 5
√
A

6
± 5

6

√
25A

2
5 + 20

5
√
A+ 16 +

8

3
. (B.8)

By comparing the predicted values for y with numerical results, it turns out the

negative root is the right one to pick. In turn, z is given by

z = 2
√
n

(
25A1/5

6
− 5

6

√
25A2/5 + 20A1/5 + 16 +

8

3

)
. (B.9)

with A = 32
(

2n
15πr

)2
. This expression can be greatly simplified by taking the n→∞

limit (again, using a computer algebra system). Doing so yields a series expansion

for z:

z = 2
√
n−

(
15πr

2

)2/5

n1/10 +
1

5

(
15πr

2

)4/5

n−3/10

− 1

100

(
15πr

2

)6/5

n−7/10 − 1

100

(
15πr

2

)8/5

n−11/10.

(B.10)

218



Appendix B. Solving Equation (3.39)

Keeping the n1/10, n−3/10, and n−7/10 terms gives the best agreement to numerical

results. Therefore the approximate expression for z is

z ≈ 2
√
n−
(

15πr

2

)2/5

n1/10 +
1

5

(
15πr

2

)4/5

n−3/10− 1

100

(
15πr

2

)6/5

n−7/10. (B.11)

Finally, a little bit of work is necessary to re-write this expression in a convenient

way. Observe that it’s possible to factor out a 2
√
n from the entire expression:

z = 2
√
n

(
1− 1

2

(
15πr

2

)2/5

n−2/5 +
1

10

(
15πr

2

)4/5

n−4/5 − 1

200

(
15πr

2

)6/5

n−6/5

)
.

(B.12)

Define x ≡
(

15πr
2n

)2/5
, and the expression for z takes the simple form given in Equation

(3.40):

z ≡ q/ε = 2
√
n

(
1− 1

2
x+

1

10
x2 − 1

200
x3

)
. (B.13)
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Quantum noise affecting single

qubits

C.1 Purely coherent and stochastic noise on single

qubits

Consider a single-qubit unitary U = eiθn·σ, where σ is a vector of single-qubit Pauli

matrices and n is a unit vector |n| = 1. Under the action of purely coherent noise,

U goes to some other unitary V , and the purity of the input state is preserved:

Tr[(V ρV †)2] = Tr[V ρV †V ρV †] = Tr[ρ2]. (C.1)

On the other hand, purely stochastic noise will generally change the purity. As an

example, consider

E [ρ] =
1

2

(
UρU † + U †ρU

)
. (C.2)

This channel can be interpreted operationally as “With probability 1/2 rotate ρ

about the axis n through angle θ, and with probability 1/2 rotate ρ about the axis
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n through an angle −θ.” Utilizing the fact that U = I cos θ+ i(n ·σ) sin θ, E [ρ] can

be written as

E [ρ] =
1

2
[(I cos θ + in · σ sin θ)ρ(I cos θ − in · σ sin θ)

+(I cos θ − in · σ sin θ)ρ(I cos θ + in · σ sin θ)]

= cos2 θρ+ sin2 θ(n · σ)ρ(n · σ)

= (1− sin2 θ)ρ+ sin2 θ(n · σ)ρ(n · σ).

(C.3)

This form of E makes it clear the action of this channel is to dephase ρ about the

axis n · σ, an operation that generally decreases its purity. However, if ρ is a state

whose Bloch vector lies along n, the purity is unchanged :

ρ =
1

2
(I + kn · σ), k ∈ [−1, 1] =⇒ E [ρ] = ρ. (C.4)

Another way to see this is to directly calculate Tr[E2]:

Tr[E2] =
1

2

(
Tr[ρ2] + Tr

[
U2ρ(U †)2ρ

])
. (C.5)

The second term can be expressed as the Hilbert-Schmidt inner product between

U2ρ(U †)2 and ρ; applying the Cauchy-Schwarz inequality, it follows that

Tr
[
U2ρ(U †)2ρ

]
≤ Tr[ρ2], (C.6)

which implies

Tr[E2] ≤ Tr[ρ2]. (C.7)

E is purity-preserving if and only if the Cauchy-Schwarz inequality saturates, which

happens if and only if

U2ρ(U †)2 = kρ. (C.8)

That is, the two matrices U2ρ(U †)2 and ρ are parallel when thought of as vectors

in Hilbert-Schmidt space. Taking the trace of both sides, it follows that k must be
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equal to 1. Further, pre-multiplying by (U †)2, we find that the inequality saturates

if and only if [ρ, (U †)2] = 0. That is, if ρ is an eigenstate of U2.

Thus, if the input state is not an eigenstate of U2, then the channel E in Equation

(C.2) does not preserve its purity.

C.2 Numerically simulating purely coherent

or purely stochastic noise on single qubits

There are at least two ways to simulate the evolution of a quantum system. The

first is to simulate the time dynamics of the system, and the second, the quantum

channels generated by those dynamics. This is most clearly illustrated in the case

of simulating unitary evolution of a pure quantum state. The Schrödinger equation

gives the evolution of a state vector |ψ〉

˙|ψ〉 = −(i/~)H(t) |ψ〉 . (C.9)

An entirely equivalent description of the evolution is |ψ(t)〉 = U(t, t′) |ψ(t′〉, where

U(t, t′) is the unitary operator generated by time-order-integrating the Hamiltonian:

U(t, t′) = T
[
Exp

(
− i
~

(∫ t

t′
H(t) dt

))]
. (C.10)

The time dynamics description focuses on the instantaneous evolution of the state,

while the channel description focuses on the operator that results when the state

evolves for a time t− t′.

Describing how to simulate arbitrary realizations of coherent and stochastic noise,

is easier using a time dynamics description. Both coherent and stochastic noise (as

defined in Section 5.3.1) are Markovian. The most general Markovian, continuous-

time dynamics of a d-dimensional quantum system is described by the Lindblad
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master equation (48; 194; 120):

ρ̇ = − i
~

[H(t), ρ] +
d2−1∑

j,k=1

hjk(t)
[
Aj(t)ρA

†
k(t)

− 1

2
{A†k(t)Aj(t), ρ}

]
,

(C.11)

where H(t) is the Hamiltonian, and {Aj(t)} are the Lindblad jump operators. The

first term in the Lindblad equation generates unitary dynamics, while the second

generates noisy dynamics such as dephasing, amplitude damping, or bit-flip noise.

In simulations, I make a simplification to Equation (C.11) by assuming the operators

H, {Aj} are all time-independent. In this simplification, we imagine that regardless

of when the Hamiltonian that generates an ideal gate is (instantaneously) turned on

in the course of running a circit, the exact same set of noise operators are turned on

at the same time. Under this simplification, Equation (C.11) is time-homogenous :

ρ̇ = − i
~

[H, ρ] +
d2−1∑

j,k=1

hjk

[
AjρA

†
k

− 1

2
{A†kAj, ρ}

]
,

(C.12)

Just as evolution by unitary operators is an equivalent representation of Schrödinger

evolution, Lindbladians provide an equivalent operator-based representation to time

evolution under the Lindblad equation. For the time-homogenous Lindblad equation

in Equation (C.12), the evolution of ρ can be written as ρ(t) = eLt[ρ(0)]. This follows

from the fact that the quantum channels generated by the Lindblad equation form a

quantum dynamical semigroup. In the circuit model, the updates are discrete (from

one timestep of the circuit to the next), so we can take t = 1, and the corresponding

quantum channel is E [ρ] = eL[ρ].

For purely coherent noise, the dynamics generated by the Lindblad equation must

be purely unitary, so the jump coefficients hjk are all 0:

ρ̇ = − i
~

[H, ρ]. (C.13)
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To simulate coherent noise, we write H = H0 +He, where H0 is the Hamiltonian of

the ideal gate G0, and He is the error Hamiltonian. In terms of the 4× 4 generators

of the dynamics the noisy channel is

E [ρ] = eH0+He [ρ], (C.14)

where H[ρ] = −i[H, ρ]/~.

Each parameter in H0 is usually associated with some external classical control field:

H0 =
∑

j=X,Y,Z

cjσj, (C.15)

where the coefficient cj controls the evolution of the qubit about the σj axis. Thus,

a natural choice for He is to draw it from the Gaussian unitary ensemble:

He = aσX + bσY + cσZ a, b, c ∼ N (0, η2). (C.16)

For this model of purely coherent noise, each control cj is subject to i.i.d. noise

with mean zero, variance η2, and is constant in time. (Recall that I use a time-

homogenous version of the Lindblad equation.) Of course, it’s possible that the

controls will experience noise with the same functional form (Gaussian), but with

different variance. All that would be necessary in that case is to then keep use a

different value of η for the coefficient of each Pauli matrix.

For purely stochastic noise, there should be no unitary dynamics except the action

of H0:

ρ̇ = − i
~

[H0, ρ] +
3∑

j,k=1

hjk

[
AjρA

†
k +

1

2
{A†kAj, ρ}

]
. (C.17)

Defining a superoperator S as

S[ρ] =
3∑

j,k=1

hjk

[
AjρA

†
k +

1

2
{A†kAj, ρ}

]
, (C.18)
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the noisy channel can be written as

E = eH0+S [ρ]. (C.19)

The jump operators are taken to be the Pauli matrices: Aj = σj. To simulate this

noise, I generate the coefficient matrix h as

hjk = (S−1DS)jk

D = diag(a, b, c)

a, b, c ∼ |N (0, η2)|,

(C.20)

where the columns of S form a randomly-chosen basis for R3. The variables a, b, c

are drawn from a folded normal distribution.

A particular randomly-generated value for He or the coefficient matrix h is called

a realization of the corresponding noise type. Again, because we are using a time-

homogenous master equation, once a realization has been generated, then any time

G0 shows up in a given circuit, it is replaced by the same noisy version. Commonly

when simulating these noise types, different realizations of the noise are generated

each time the ideal gate G0 occurs in a given quantum circuit. I do not use this

approach.

For both coherent and stochastic noise, as η → 0 both He and h go to zero. (That

is, at η = 0, the channel is noiseless.) The role of η can also be formalized as follows.

For purely coherent noise, notice that the average over all realizations of the noise of

the Hamiltonian H is H0:

〈H〉 = H0 + 〈a〉σX + 〈b〉σY + 〈c〉σZ = H0. (C.21)

On average, the Hamiltonian generates correct evolution. Next, consider 〈H2〉:

〈H2〉 = H2
0 +H0〈He〉+ 〈He〉H0 + 〈H2

e 〉

= H2
0 + 3η2I,

(C.22)
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because the noise realizations a, b, c are i.i.d. random variables. Therefore, the

variance ∆H = 〈H2〉− 〈H〉2 is 3η2I. As η → 0, H more tightly concentrates around

its expected value, H0.

For purely stochastic noise, consider the expected value of the coefficients hjk in

Equation (C.17). To compute 〈hjk〉, it’s important to note that the randomly-chosen

basis for R3 is independent of the random variables a, b, c:

〈hjk〉 = 〈(S−1DS)jk〉 =
∑

qr

〈(S−1)jqDqrSrk〉

=
∑

r

〈(S−1)jqSrk〉〈Drr〉 ∝ η.
(C.23)

The expected value of h2
jk is

〈h2
jk〉 =

〈∑

qr

(S−1)jqDqrSrk
∑

q′r′

(S−1)jq′Dq′r′Sr′k

〉

=

〈∑

qq′rr′

(S−1)jqSrk(S
−1)jq′Sr′kDqrDq′r′

〉

=
∑

qq′

〈(S−1)jqSqk(S
−1)jq′Sq′k〉〈DqqDq′q′〉

=
∑

q 6=q′
〈(S−1)jqSqk(S

−1)jq′Sq′k〉〈Dqq〉〈Dq′q′〉

+
∑

q=q′

〈([S−1)jqSqk]
2〉〈D2

qq〉 ∝ η2.

(C.24)

Similar to the case of purely coherent noise, as η → 0, the noise terms more and

more tightly concentrate around 0.

Because η2 controls how the noisy channel deviates from the ideal one, I say η relates

to the “strength” of the noise.
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C.3 Amplitude damping noise

This section derives the Lindbladian for amplitude damping noise, introduced in

Section 6.4.5. Recall that the channel generated by Lindbladian L is E [ρ] = eL[ρ]. If

the Lindbladian is small, the exponential can be expanded to first order, giving

E [ρ] ≈ I[ρ] + L[ρ], (C.25)

which implies the Lindbladian can be computed by taking the noisy channel, con-

sidering the small-noise limit, and then subtracting off the superoperator identify.

I’ll start by considering the simplest model of amplitude damping, which is amplitude

damping to the |0〉 state of the qubit at rate γ. This noise is described by the following

Kraus operators (223, Section 8.3.5)

K0 =


1 0

0
√

1− γ


 K1 =


0

√
γ

0 0


 , (C.26)

and the action of the channel is

E [ρ] = K0ρK
†
0 +K1ρK

†
1. (C.27)

To represent E as a 4× 4 superoperator whose action is matrix multiplication on the

vectorized form of ρ, apply the vec operation (see Equation (H.6)):

vec[E ] = (K?
0 ⊗K0 +K?

1 ⊗K1)

=







1 0 0 0

0
√

1− γ 0 0

0 0
√

1− γ 0

0 0 0 1− γ




+




0 0 0 γ

0 0 0 0

0 0 0 0

0 0 0 0







=




1 0 0 γ

0
√

1− γ 0 0

0 0
√

1− γ 0

0 0 0 1− γ



.

(C.28)
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To compute the Lindbladian, consider amplitude damping in the small-rate limit, so

γ << 1. The noisy channel is then

vec[E ] =




1 0 0 γ

0 1− γ/2 0 0

0 0 1− γ/2 0

0 0 0 1− γ



. (C.29)

Therefore, the Lindbladian L = E − I is

L =




0 0 0 γ

0 −γ/2 0 0

0 0 −γ/2 0

0 0 0 −γ



. (C.30)

A related representation can also be derived by considering how the channel acts on

the operators |j〉〈k|. In particular, this action can be used to define a representation

according to

E(jk),(lm) = Tr(|l〉〈m|E [|j〉〈k|]) = 〈m|E [|j〉〈k|]|l〉. (C.31)

The calculation of these matrix elements is expedited by the observation

K0 = |0〉〈0|+
√

1− γ|1〉〈1| K1 =
√
γ|0〉〈1|, (C.32)

so that

E [|j〉〈k|] =
(
|0〉〈0|+

√
1− γ|1〉〈1|

)
|j〉〈k|

(
|0〉〈0|+

√
1− γ|1〉〈1|

)

+ γδj1δk1|0〉〈0|

= δj0δk0|0〉〈0|+ (1− γ)δj1δk1|1〉〈1|+
√

1− γδj1δk0|1〉〈0|

+
√

1− γδj0δk1|0〉〈1|+ γδj1δk1|0〉〈0|.

(C.33)

Hence,

E(jk),(lm) = δj0δk0δm0δl0 + (1− γ)δj1δk1δl1δm1 +
√

1− γδj1δk0δm1δl0

+
√

1− γδj0δk1δm0δl1 + γδj1δk1δl0δm0,
(C.34)
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or in matrix form

E =




1 0 0 0

0
√

1− γ 0 0

0 0
√

1− γ 0

γ 0 0 1− γ




(C.35)

Compare this with Equation (C.28). The reason for the difference is that the vec()

operator stacks ρ by its columns, while the representation used here goes across the

rows of ρ. Therefore, the two representations are related by a transposition operation.

Again, by considering the small-rate limit and subtracting off the superoperator

identity I, we arrive at the transposed form of Equation (C.30), as expected.

The Pauli transfer matrix representation is a matrix whose elements are given by

Ejk = Tr[bjE(bk)], where bj = σj/
√

2 and Tr[bjbk] = δjk. (See H.3 for details on this

representation.) Explicitly computing these matrix elements gives

E =




1 0 0 0

0
√

1− γ 0 0

0 0
√

1− γ 0

0 0 0 1− γ




→
γ<<1




1 0 0 0

0 1− γ/2 0 0

0 0 1− γ/2 0

0 0 0 1− γ



.

(C.36)

In this representation, it’s clear that the action of E is to reduce the Bloch vector

components rX , rY , rZ at two different rates: the rate for rX , rY is γ/2, while the
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rate for rZ is γ. The Lindbladian L is given by

L =




0 0 0 0

0 −γ/2 0 0

0 0 −γ/2 0

0 0 0 −γ



. (C.37)
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Machine learning classifiers

This appendix describes in detail the classification algorithms discussed in the main

text. In what follows, let C = {fj, yj} be a collection of d-dimensional feature vectors

fj with associated class label yj ∈ {±1}.

D.1 Linear and quadratic discriminant analysis

Linear and quadratic discriminant analysis (LDA and QDA, respectively) are well-

motivated from a statistics viewpoint, as they use Bayes factors to determine a

decision rule. The basic ideas of LDA and QDA originated with the work of Fisher

in the mid-1930’s (104). Both techniques assume that the feature vectors belonging

to class k are N (µk,Σk) random variables.

For the case of binary classification, there are two hypotheses to consider when

classifying an unlabeled feature vector f :

H1 : f belongs in class 1

H2 : f belongs in class 2.
(D.1)
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The Bayes factor K comparing these two hypotheses is

K =
Pr(f |class 1)

Pr(f |class 2)
. (D.2)

Notice that K > 1 implies that f is more probable under the assumption it is drawn

from class 1, and if K < 1, then it is more probable under the assumption it is drawn

from class 2. Therefore, a reasonable classification rule is to compare the value of

K to 1. Or equivalently, log(K) can be compared to 0. Under the assumption the

feature vectors are Gaussian-distributed,

K =

( |Σ2|
|Σ1|

)1/2 Exp
[
−(f − µ1)TΣ−1

1 (f − µ1)/2
]

Exp
[
−(f − µ2)TΣ−1

2 (f − µ2)/2
]

=⇒ log(K) =
1

2
log

( |Σ2|
|Σ1|

)
+

1

2
(f − µ2)TΣ−1

2 (f − µ2)

− 1

2
(f − µ1)TΣ−1

1 (f − µ1).

(D.3)

Generally, the means and covariances of the distributions are not a priori known.

Therefore, it is necessary to estimate them from C.

LDA estimates the mean for each class separately, but assumes the covariance is the

same for each:

Σ1,Σ2 → Σ̂

µ1 → µ̂1

µ2 → µ̂2.

(D.4)

Plugging these values into Equation (D.3) yields the following decision rule:

cLDA(f) = sign
[
fT Σ̂−1(µ̂1 − µ̂2)

+ (µ̂T1 Σ̂−1µ̂1 − µ̂T2 Σ̂−1µ̂2)/2
]

= sign [β · f + β0] ,

(D.5)

where β = Σ̂−1(µ̂1 − µ̂2) and β0 = (µ̂T1 Σ̂−1µ̂1 − µ̂T2 Σ̂−1µ̂2)/2. The decision rule is

linear in f , which gives rise to the name “linear” discriminant analysis.
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QDA estimates the means and covariances for each class separately:

Σ1 → Σ̂1 , µ1 → µ̂1

Σ2 →, Σ̂2 , µ2 → µ̂2,
(D.6)

although in practice usually each estimate Σ̂k is regularized: Σ̂k → (1 − s)Σ̂k + sI,

with I as the d × d identity matrix. The resulting classification rule is a quadratic

function of f :

cQDA(f) = sign

[
1

2
log

(
|Σ̂2|
|Σ̂1|

)
+

1

2
(f − µ̂2)T Σ̂−1

2 (f − µ̂2)

− 1

2
(f − µ̂1)T Σ̂−1

1 (f − µ̂1)

]
.

(D.7)

While QDA and LDA are well-motivated from a statistical standpoint, they require

strong assumptions on the feature vectors (such as being Gaussian-distributed) in

order to be useful in practice. For this reason, algorithms which relax those assump-

tions are also useful for binary classification, such as the perceptron.

D.2 Perceptrons

Similar to LDA, the perceptron learns a separating hyperplane H = (β, β0), with an

associated decision rule

cPerceptron(f) = sign (β · f + β0) . (D.8)

Conceptually, the perceptron is simple – it is the hyperplane, and the main challenge

in using perceptrons is determining β and β0. To do so, the perceptron is trained

using C. Training the perceptron involves minimizing a loss function, L. This loss

function depends on the hyperplane (i.e., the values of β and β0). A natural choice

for L is

L(β, β0) = −
∑

fj

yj(β · fj + β0). (D.9)
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If yj and (β · fj + β0) have the opposite sign (i.e., f is misclassified by H), then the

corresponding term adds to the loss. On the other hand, if they have the same sign

(so f is correctly classified by H) the corresponding term subtracts from the loss.

Therefore, all of terms which increase the loss are those which correspond to feature

vectors that are misclassified. Without loss of generality then, to minimize the loss

it suffices to minimize its value on the set of misclassified points. LetM denote the

set of misclassified points given particular values of β and β0. Given fj ∈ M with

label yj, the gradients of the loss with respect to the parameters of the perceptron

are

∂L

∂β0

= −yj (D.10)

∂L

∂β
= −yjfj. (D.11)

These observations suggest the following training algorithm:

1. Choose initial values for β and β0.

2. Compute the set of misclassified points M.

3. For each point in M, update the parameters of the hyperplane:

β → β + ρyjfj (D.12)

β0 → β0 + ρyj, (D.13)

where ρ is the learning rate of the algorithm. (To descend down the loss

function, the steps need to take in a direction opposite the direction of the

gradient.)

4. Re-compute the set of misclassified points M.

This training algorithm is a stochastic gradient descent with a batch size of 1 (i.e.,

an “online” training algorithm). It has the property that if a separating hyperplane

exists, the algorithm is guaranteed to converge to it in a finite number of steps.
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Commonly though, the training is stopped after steps 2 through 4 have been done

Nepochs times, or when the error
∑

j=1(c(fj) − yj) ≤ t for some tolerance t. It is

known that if C is linearly separable, then provided Nepochs is sufficiently large, the

perceptron will learn a separating hyperplane (254). However, determining Nepochs

a priori is difficult; Novikoff showed that the number of epochs necessary to achieve

convergence under the assumption C is linearly separable by a hyperplane H with

margin MH goes as (R/MH)2, where ||fj|| < R ∀ j (225). If MH is small, there’s very

little space separating the two classes – a separating hyperplane with that margin has

to “thread the needle” between the two very carefully, resulting in a large number of

misclassified points during training, and requiring many epochs before the perceptron

learns it.

While the perceptron is appealing from the perspective that it can learn a separating

hyperplane should one exist, its main drawback is that the number of iterations

necessary for convergence may be prohibitive. What’s more, the perceptron may

find different hyperplanes depending on its initial parameters or the first feature

vector used for updating them. For this reason, the support vector machine is useful,

as it remedies some of the deficiencies of perceptrons by imposing the constraint that

the hyperplane should maximize the geometric margin, thereby singling out a unique

separating hyperplane.

D.3 Support vector machines (SVMs)

Like perceptrons, an SVM learns a separating hyperplane for the data. Unlike per-

ceptrons, SVMs learn a hyperplane which maximizes the margin. That is, of all

the hyperplanes that could separate the data, the one learned by the SVM is the

farthest away from the points closest to it. For this reason, SVMs were also known

as “perceptrons of optimal stability”, because small perturbations of the data set do

not generally result in dramatically different hyperplanes learned by the SVM, while
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this is not the case for perceptrons. (For a detailed overview of SVMs, see (74).)

D.3.1 Hard-margin SVM

Under the assumption C is linearly separable, it is straightforward to derive the

conditions that an optimal hyperplane should satisfy. Recall the signed, functional

distance from a point f to a hyperplane H = (β̂, β0) is given by β̂ · f + β0. The

functional margin of this hyperplane, M , is given by

M = min
fj

yj(β̂ · fj + β0). (D.14)

Therefore, the hyperplane that maximizes the functional margin is the solution to

the following optimization problem:

max
β̂,β0

M

s.t. yj(β̂ · fj + β0) ≥M ∀ j.
(D.15)

Re-writing β̂ = β/||β|| and re-defining β0, the optimization problem can be re-

written as

max
β,β0

M

s.t. yj(β · fj + β0) ≥M ||β|| ∀ j.
(D.16)

In this form, it is clear that if (β, β0) is the solution to (D.16), then so is (αβ, αβ0)

for any α > 0. It then follows that the norm of β is arbitrary. Thus, we can

arbitrarily set ||β|| = 1/M . Maximizing the functional margin is then equivalent to

minimizing the norm of β. Because the minimizer of ||β|| also minimizes ||β||2, we

can re-formulate (D.16) as a simple convex optimization problem:

min
β,β0

1

2
||β||2

s.t. yj(β · fj + β0) ≥ 1 ∀ j.
(D.17)
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In this formulation, the two classes are separated by a “slab” of thickness 2/||β||.

The Lagrangian dual of this problem is given by (See (140))

max
α

∑

j

αj −
1

2

∑

j,k

αjαkyjyk(fj · fk)

s.t. αj ≥ 0 ∀ j.
(D.18)

By solving the problem in its dual form, the Krush-Kuhn-Tucker (KKT) conditions

imply that the optimal solution α satisfies

αj[yj(β · fj + β0)− 1] = 0 ∀ j. (D.19)

Importantly, the KKT conditions imply that if αj 6= 0, then the signed, functional

distance yj(β · fj + β0) must be equal to 1. Examining Equation (D.17), this implies

fj lies exactly on the boundary of the slab. For this reason, fj is said to “support” the

hyperplane, and is called a “support vector”. On the other hand, if yj(β · fj +β0) > 1

(i.e. the point is located beyond the boundary of the slab), then αj = 0.

In the dual form, it can also be shown that

β =
∑

j

αjyjfj, (D.20)

(i.e., β depends on the feature vectors in C), and that

β0 = 1/yj − β · fj, (D.21)

where fj is any support vector.

The geometric margin for the hard-margin SVM is given by

MH =
1

||β|| min
fj
|(β · fj + β0)| = 1

||β|| = M, (D.22)

because the minimum is 1, and is attained by any support vector. Therefore, for

a hard-margin SVM, the geometric margin and the functional margin

are the same, and given by 1/||β||. (As we will see later, this is not the case

for soft-margin SVMs.)
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D.3.2 Soft-margin SVM

In the event C is not linearly separable, it still makes sense to speak of identifying an

optimal hyperplane. However, this hyperplane may not separate the data exactly –

some points may be misclassified. To accommodate this possibility, the soft-margin

SVM (71) allows for some data points to be on the wrong side of the yj(β · fj +β0) =

1 boundary. This is done by returning to Equation (D.16) and introducing slack

variables ξj, so that the feasibility condition is

yj(β̂ · fj + β0) ≥M(1− ξj) ∀ j. (D.23)

Notice that ξj should be greater than or equal to zero – if it were negative, this would

impose a more stringent condition than that for the hard-margin SVM! Further, if

ξj > 1, then the right-hand side is negative, and the feasibility condition implies

that yj and (β̂ · fj + β0) have the opposite sign, implying that fj is mis-classified.

To minimize the number of mis-classified points, the total sum of the slack variables

should be bounded:
∑

j ξj ≤ m.

Any scalar multiple of β and β0 will satisfy the feasibility conditions, so M again

can be set to 1/||β||, yielding

min
β,β0

1

2
||β||2

s.t. yj(β · fj + β0) ≥ 1− ξj ∀ j

ξj ≥ 0 ∀ j and
∑

j

ξj ≤ m.

(D.24)

Finally, the constraint
∑

j ξj ≤ m can be embedded into the objective function

itself through the use of a Lagrange multiplier C. This observation gives rise to the
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standard form of the soft-margin SVM:

min
β,β0

1

2
||β||2 + C

∑

j

ξj

s.t. yj(β · fj + β0) ≥ 1− ξj ∀ j

ξj ≥ 0 ∀ j.

(D.25)

The Lagrangian dual of Equation (D.25) is

max
α

∑

j

αj −
1

2

∑

j,k

αjαkyjyk(fj · fk)

s.t. 0 ≤ αj ≤ C ∀ j.
(D.26)

In typical use, a soft-margin SVM may be used in place of a hard-margin SVM even

if C is linearly separable. If C 6=∞, then the geometric and functional margins need

not be the same:

MH =
1

||β|| min
fj
|β · fj + β0| =

1

||β|| min
j
|1− ξj|. (D.27)

Because C is separable, no point should be misclassified, so 0 ≤ ξj ≤ 1. Assuming

H doesn’t mis-classify a point, it follows that MH = 1/||β|| if and only if ξj = 0 ∀ j
(i.e., the slack variables are all 0, and the SVM has actually identified a hard-margin

hyperplane). In general then, MH ≤ 1/||β|| for a soft-margin SVM that was trained

using a linearly separable data set.

D.3.3 Kernel methods

The hard and soft-margin SVMs presented in the preceding sections use linear de-

cision boundaries to separate C. However, there are data sets that are separable,

but not with a linear decision boundary (e.g., two concentric circles or spheres). A

common way to do so is to map the data into a new feature space so that in this new

feature space a linear decision boundary can be found. Let φ denote a (nonlinear)
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map acting on C:

φ : C → C ′ = {(φ(fj), yj)}. (D.28)

Ideally, φ maps C in such a way that a linear decision boundary can be learned. That

is, ∃H = (β, β0) s.t. sign(β · φ(fj) + β0) = yj ∀ j.

Examining the feasibility conditions of the optimization problems defining the hard

and soft-margin SVM, it is clear that the feature vectors fj are “carried along”

in defining the problem, so to speak. Without loss of generality, the optimization

problem defining the optimal separating hyperplane in the new feature space has a

Lagrangian dual given by

max
α

∑

j

αj −
1

2

∑

j,k

αjαkyjyk(φ(fj) · φ(fk))

s.t. 0 ≤ αj ≤ C ∀ j.
(D.29)

In practice, coming up with the map φ is difficult. For this reason, “kernel methods”

(42) are used to completely bypass the need to explicitly construct φ. In Equation

(D.29), notice that the way in which φ appears is through the dot products φ(fj) ·
φ(fk). Thus, it’s natural to associate a kernel with φ, denoted Kφ, as Kφ(x,y) =

φ(x) · φ(y).

It’s clear that to every map φ there is an associated kernel Kφ. But what of the

converse – given a map K : Rd × Rd → R, is there a map φ such that K(x,y) =

φ(x) · φ(y)? As long as K satisfies the Mercer condition K ≥ 0, then the answer is

yes.

Thus for every K satisfying the Mercer condition, an “SVM with kernel K” is defined
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by the optimization problem (71)

max
α

∑

j

αj −
1

2

∑

j,k

αjαkyjykK(xj,xk)

s.t. 0 ≤ αj ≤ C ∀ j,
∑

j

yjαj = 0.

(D.30)

Equation (D.30) defines a quadratic program with linear equality and inequality

constraints, and efficient algorithms exist for finding a solution (224).

Letting α denote the solution, the decision rule for the SVM on any data point f is

simple:

cSVM(f) = sign

[
N∑

j=1

yjαjK(fj, f) + β0

]
. (D.31)

As seen in the previous subsections, if αj 6= 0, the corresponding feature vector fj

is said to be a support vector. Using any support vector fk, the bias β0 can be

computed as

N∑

j=1

yjcjK(fj, fk) + β0 = yk

=⇒ β0 = yk −
N∑

j=1

yjcjK(fj, fk).

(D.32)

For the radial basis function (RBF) SVM, K(x,y) = Exp [−γ||x− y||2]. We can

recover the linear SVM by taking K(x,y) = x · y.

241



Appendix E

Testing for linear separability as a

linear programming problem

There is a straightforward test for determining whether a given data set is linearly

separable using linear programming. Various formulations of this problem have been

put forth (263; 23). Our formulation is simple – if the data is not linearly separable,

the corresponding linear programming problem should not be feasible. The derivation

below closely follows the line of reasoning presented in (311).

Consider two data sets A = {a1, · · · an} and B = {b1, · · ·bm} where aj,bk ∈ Rd. If

A and B are linearly separable, there exists a hyperplane H = (β, β0) such that

β · aj > β0, β · bk < β0 ∀ j, k. (E.1)

This decision rule implies that the label for A is 1, while the label for B is −1, as

the decision rule implied by this hyperplane is f → sign [β · f − β0].

Multiplying the first inequality by −1 flips the sign of the inequality, resulting in the
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following conditions:

−β · aj + β0 < 0

β · bk − β0 < 0 ∀ j, k.
(E.2)

These two inequalities can be formulated as a single matrix inequality by defining a

new vector β̃ = (β, β0) and new feature vectors aj → (−aj, 1) and bk → (bk,−1).

In terms of these variables, the inequality constraints become




−aT1 , 1

−aT2 , 1
...

−aTn , 1

bT1 ,−1
...

bTm,−1




β̃ < 0. (E.3)

Defining D to be the (n + m) × (d + 1) matrix above, it follows that if A and B

are linearly separable, there exists a β̃ such that Dβ̃ < 0. Determining if

any such β̃ exists can be done by recasting the problem as a linear programming

problem:

β̃ = argmin
x∈RN+1

0 · x

s.t. Dx < 0.

(E.4)

If A and B are linearly separable, there exists at least one feasible solution to this

problem. If Equation (E.4) is feasible, then a convex optimization problem should be

able to solve it. Suppose, though, that a solver didn’t find a solution – how could we

tell that this happened because the problem was in fact infeasible, and not because

the solver terminated or crashed prematurely?

Thankfully, solving Equation (E.4) is simply solving a strict system of inequalities.
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For any such problem, a theorem of alternatives (45, Example 2.21) gives the condi-

tions under which it is feasible. Given a system of strict inequalities

Ax < b, (E.5)

the system is infeasible if, and only if, there exists y satisfying

y 6= 0, y > 0, ATy = 0, y · b ≤ 0. (E.6)

Thus, suppose that in the course of solving Equation (E.4), a solver doesn’t find a

solution. We can easily check whether the problem is infeasible by demonstrating a

solution to the following problem:

y 6= 0, y > 0, DTy = 0. (E.7)

This system is nothing more than the dual problem of the original LP (Equation

(E.4)). Thus, determining whether a given data set is linearly separable gives rise

to a set of alternatives: if the primal problem is infeasible, then the dual problem is

feasible. This allows us to certify that a given data set is inseparable by forming the

dual problem and finding a solution.

In sum, A and B are separable if, and only if, the optimization problem

(E.4) is feasible.
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Hyperparameter sweeps for

Chapter 5

As noted in Sections 5.4.1 and 5.4.4, the performance of ML algorithms can depend

quite strongly on their hyperparameters. Table F.1 gives the values of the hyperpa-

rameters examined for the ML classifiers of Chapter 5.

Algorithm Hyperparameter Default value Values used in this work

LDA τ 10−4 10−5, 10−4, 10−3, 10−2, .1, .25, .5,
.75, 1

QDA s 0 0, .25, .5, .75, 1

Linear
SVM

C 1 1,2,5,10,20,50,75,100,150,200,250

RBF SVM C 1 1,2,5,10,20,50,75,100

γ 1/d .01, .1, 1, 10, 100

Perceptron Nepochs 5 5, 50, 100 250, 300, 500, 750,
1000

Table F.1: Algorithm hyperparameters. The hyperparameters of each classifica-
tion algorithm affect how it learns from the data. By sweeping the hyperparameters,
its possible to determine good settings such that the classifier learned by the algo-
rithm has high accuracy. (Default values are those used in scikit-learn 0.19.1.)
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Algorithm φ Hyperparameter value Accuracy I Accuracy II
LDA PP 10−1 0.87
LDA SQ 10−5 0.86 0.87
Linear SVM PP 75 0.991
Linear SVM SQ 250 0.997 0.994
Perceptron PP 100 0.999
Perceptron SQ 100 0.9996 0.9994
QDA PP 0 1.0
QDA SQ 0 0.90 0.90
RBF SVM PP C = 20, γ = .01 0.998
RBF SVM SQ C = 10, γ = 1 0.997 0.97

Table F.2: Best classifier hyperparameters, as measured by mean classifi-
cation accuracy. Column “Accuracy I” gives the average accuracy of the classifier
under a K = 20-fold shuffle-split cross-validation using the feature vectors in C1.
Column “Accuracy II” shows the average accuracy when the classifier is trained us-
ing all the feature vectors, and then is used to predict the noise type for ∼ 20, 000
previously unseen feature vectors.

To determine which hyperparameter choices were best, we cross-validated the ac-

curacy of the ML algorithms using 20 independently sampled training and testing

sets, with 10% of the total data held back for testing. Figure F.1 show the results

of sweeping the hyperparameters and evaluating classification accuracy on CL. Fig-

ure F.2 shows results for the feature engineered feature vectors. Finally, Table F.2

gives best hyperparameter values for learning using the engineered feature vectors,

as determined by mean cross-validation accuracy.
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Figure F.1: Classification accuracy on CL depends on the hyperparameter
of the classification algorithm. For the top 4 plots, the hue indicates the value of
L. For the bottom 2, the average classification accuracy is indicated in the heatmap.
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Figure F.2: Hyperparameter sweep on engineered feature vectors. For the
top 4 plots, hue indicates which feature map was used. For the bottom 2, average
classification accuracy is indicated in the heatmap.
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Appendix G

The “Poisson bump/dip”

phenomenon

Below, I show how, for Poisson-distributed data, the expected value of the loglikeli-

hood ratio statistic depends strongly on the expected number of counts. In particular,

the expected value is 1 only when the expected number of counts is large; otherwise,

it very rapidly goes to zero.

If K ∼ Poisson(θ0), then

Pr(K) =
e−θ0θK0
K!

, (G.1)

where θ0 is the rate parameter, and the expected number of counts 〈K〉 = θ0.

Consider two models: M0 = {θ0} and M1 = {θ ∈ [0,∞)}. The loglikelihood ratio

statistic comparing these two models is

λ(M0,M1) = −2 log

(
L(θ0)

L(θ̂ML,1)

)
. (G.2)

For M1, if K = k counts were actually observed, θ̂ML,1 = k. Plugging in the ML
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Appendix G. The “Poisson bump/dip” phenomenon

estimate and writing out the likelihood function:

λ(M0,M1) = −2 log

(
ek−θ0

(
θ0

k

)k)

= −2 (k − θ0 + k log(θ0)− k log(k)) .

(G.3)

The expected value of the statistic is

〈λ〉 = −2(〈k〉 − θ0 + 〈k〉 log(θ0)− 〈k log(k)〉). (G.4)

Using the fact 〈k〉 = θ0, the above equation simplifies some:

〈λ〉 = −2(θ0 log(θ0)− 〈k log(k)〉). (G.5)

It is important to note 〈k log(k)〉 6= θ0 log(θ0), as 〈f(X)〉 6= f(〈X〉), in general. The

expected value of k log(k) can be computed as

〈k log(k)〉 =
∞∑

k=0

k log(k)Pr(k) =
∞∑

k=0

k log(k)
e−θ0θk0
k!

= e−θ0
∞∑

k=1

log(k)θk0
(k − 1)!

= θ0e
−θ0

∞∑

k=0

log(k + 1)θk0
k!

.

(G.6)

Notice that the ratio of successive terms in the sum goes to zero as k →∞:

ak =
log(k + 1)θk0

k!
; lim

k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣ = 0 (G.7)

so that the sum is convergent. Here, I do not concern myself with computing the sum

exactly, though I will make several approximations to get a handle on its behavior.

Putting this expression into equation (G.5) gives

〈λ〉 = −2

(
θ0 log(θ0)− θ0e

−θ0
∞∑

k=0

log(k + 1)θk0
k!

.

)
(G.8)
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A simple reindexing (k = u− 1) allows us to pull out a factor of θ0:

〈λ〉 = −2

(
θ0 log(θ0)− θ0e

−θ0
∞∑

u=1

log(u)θu−1
0

(u− 1)!

)

= −2

(
θ0 log(θ0)− e−θ0

∞∑

u=1

log(u)θu0
(u− 1)!

)
.

(G.9)

Notice limθ0→0+ 〈λ〉 = 0. This implies that when the expected number of counts is

small, the ML estimate doesn’t fluctuate too much, and so its contribution to the

expected value of the loglikelihood ratio statistic is small.

Another interesting observation is that 〈λ〉 at θ0 = 1 is greater than 1:

〈λ(θ0 = 1)〉 = 2e−1

∞∑

u=1

log(u)

(u− 1)!
≈ 1.15. (G.10)

This implies that if the expected number of counts is about 1, then fluctuations in

the ML estimate contribute more than 1 unit to the expected loglikelihood.

These two results show that 〈λ〉 depends on θ0. Figure G.1 plots 〈λ〉 as a function

of θ0, where the sum is truncated to 150 terms. This plot has two features of note:

〈λ〉 ∼ 1 as θ0 → ∞ (the expected number of counts is high), and that 〈λ〉 plunges

to zero quickly if θ0 < .5.
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Figure G.1: Behavior of loglikelihood ratio statistic for Poisson-distributed
data. For Poisson-distributed data, the behavior of λ depends strongly on the ex-
pected number of counts θ0. The single parameter in the model can be fully con-
tributing – i.e., the expected value of the statistic is 1 – only when the expected
number of counts is large. Inset: Zooming in at θ0 ≈ 1. The statistic grows for a bit
after the expected number of counts is 1, and then begins to turn over and approach
its asymptotic value.
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Appendix H

Representations of Quantum

Channels

The action of general quantum channel E on a state ρ is often denoted E [ρ]. However,

suppose we actually wanted to calculate the output of E when it acts on ρ. How

exactly would we do that? That depends on the representation used for both E
and ρ. This appendix discusses 3 commonly-used representations of ρ, and the

corresponding representations for E .

H.1 Kraus representation

In Chapter 2, we came across several representations of a quantum channel. The

simplest is the Kraus representation, which generalizes the idea of unitary dynamics.

(Recall that the unitary evolution of ρ is described by a channel ρ→ UρU †.) If ρ is

a d× d density matrix, then the Kraus representation of E is

E [ρ] =
k∑

j=1

KjρK
†
j ,
∑

j

K†jKj = Id, (H.1)
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where k ≤ d2 is the Kraus rank of the channel. The Kraus representation is nice in

the sense that it has a straightforward connection to unitary evolution: the channel

is unitary if, an only if, its Kraus rank is 1.

However, the action given by the Kraus representation is a bit weird: we have to

sandwich ρ between two operators, and do two matrix multiplications. For the

purposes of calculating an output state, this representation isn’t the best. A repre-

sentation where the action is just one matrix multiplication would be useful. This

representation is called the superoperator representation.

H.2 Superoperator representation

A simple way to get to a superoperator representation is to use the vectorization

operation, denoted vec(). This is a linear operation takes linear operators (matrices)

and maps them to vectors. That is, if A is a d × d matrix, vec(A) is a vector of

length d2.)We say A is row-vectorized if vec(A) takes the rows of A and stacks them

on top of one another, and column-vectorized if vec(A) stacks the columns. In what

follows, we use column-vectorization.

Consider the single-qubit density matrix

ρ =


a b

b? 1− a


 , ρ ≥ 0. (H.2)

The column-vectorized form of ρ is given by

vec(ρ) ≡ |ρ) =




a

b?

b

1− a



. (H.3)

This operation is linear as required, so that vec(aρ + bσ) = avec(ρ) + bvec(σ). For
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clarity, I’ll use the notation |ρ) to more indicate that ρ is now being treated as a

column vector.

Applying vec() to do column-vectorization of a product of matrices yields:

vec(ABC) = (CT ⊗ A)vec(B). (H.4)

Finally, because vec() is linear, its application on a sum of terms of the form in

Equation (H.4) is simply the sum of their vectorized form:

vec

(∑

j

AjBCj

)
=
∑

j

((
CT
j ⊗ Aj

)
vec(B)

)
=

(∑

j

CT
j ⊗ Aj

)
vec(B). (H.5)

The right-most expression makes it clear that the vectorized form of the left-most

side gives rise to an action that’s just matrix multiplication on the vectorized form

of B. Hence, a superoperator representation of E [ρ] is

E =
∑

j

(K?
j ⊗Kj), (H.6)

and its action is

E [ρ] = E|ρ). (H.7)

If we used row-vectorization instead, the superoperator representation would be

E =
∑

j(Kj ⊗ K?
j ). This makes sense, as the difference between row and column-

vectorization amounts to taking a complex conjugate, and that operation is invariant

under multiplication and addition.

The representation of a linear operator depends on the representation of the vector

space it acts on. In Equation (H.2), ρ is expressed in the basis of matrix units

|0〉〈0|, |0〉〈1|, |1〉〈0|, and |1〉〈1|. Therefore, another way of representing E [ρ] is to

consider its action on each basis vector. Because each basis vector is orthonormal,

it’s straightforward to define a 4× 4 superoperator representation

E(jk),(lm) = Tr (|j〉〈k|E [|l〉〈m|]) , (H.8)
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where I’ve used a multi-index notation for simplicity. The matrix elements E(jk),(lm)

tell us “If the basis vector |l〉〈m| is acted on by E , what is the overlap of the output

with |j〉〈k|?”.

Of course, we could use any basis we want to expand ρ. This observation leads to the

idea of the Pauli transfer matrix representation, discussed in the next subsection.

H.3 Pauli transfer matrix representation

Another common way to express a single-qubit state ρ is by using the Pauli matrices:

ρ =
1

2
(I + r · σ) . (H.9)

However, the Pauli matrices aren’t orthonormal, but the matrices bj = σj/
√

2 are.

In terms of these matrices,

ρ =
√

2 (bI + r · b) . (H.10)

ρ can then be expressed in a vectorized form as

ρ→
√

2




1

rX

rY

rZ



. (H.11)

The corresponding representation of a channel E , known as the Pauli transfer matrix

representation or Liouvillian, is given by

Ej,k = Tr(bjE [bk]) =
1

2
Tr(σjE [σk]). (H.12)

Recall that channels are linear, which allows us to pull out the 1/
√

2 factor from

bk. More generally, given any basis of Hermitian matrices for the state (e.g., the

Gell-Mann matrices or their generalization), then we can define this representation.
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H.4 Deriving a superoperator representation for

the Lindblad equation

Recall that the quantum channels generated by our noise models are a subset of those

generated by general Lindbladian dynamics, described by the differential equation

ρ̇ = −i[H(t), ρ] +
∑

jk

hjk

[
Aj(t)ρA

†
k(t)−

1

2
{A†k(t)Aj(t), ρ}

]
. (H.13)

In this section, I show how to use the results of Section H to write the above equation

using the vectorized representation of ρ, which will end up simplifying the differential

equation to the form

d|ρ)

dt
= L(t)|ρ). (H.14)

Recall that the vec() operation is linear:

d|ρ)

dt
= −i(vec(Hρ)− vec(ρH))

+
∑

jk

hjkvec
(
AjρA

†
k

)
− 1

2

∑

jk

hjk

(
vec
(
A†kAjρ

)
+ vec

(
ρA†kAj

))
.

(H.15)

With the identities given in Equations (H.4) and (H.5), the above equation becomes

d|ρ)

dt
= −i

(
I ⊗H −HT ⊗ I

)
|ρ) +

∑

jk

hjk
(
(A†)Tk ⊗ Aj(t)

)
|ρ)

− 1

2

∑

jk

hjk

[(
I ⊗

(
A†kAj

))
|ρ) +

((
A†kAj

)T
⊗ I

)
|ρ)

]
.

(H.16)

This equation can be simplified using the fact that (AB)T = BTAT , and that (A†)T =

A?, where ? denotes the conjugation operation. Putting these pieces together yields

d|ρ)

dt
= −i

(
I ⊗H −HT ⊗ I

)
|ρ)

+
∑

jk

hjk (A?k ⊗ Aj) |ρ)− 1

2

∑

jk

hjk

[
I ⊗ A†kAj + ATj A

?
k ⊗ I

]
|ρ).

(H.17)
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This equation can be nicely re-written in the form given in Equation (H.14), where

the (generally time-dependent) Lindbladian L is

L = −i
(
I ⊗H −HT ⊗ I

)
+
∑

jk

hjk

[
A?k ⊗ Aj −

1

2

(
I ⊗ A†kAj + ATj A

?
k ⊗ I

)]
.

(H.18)

Because the units of L are “per unit time”, the coefficients hjk are interpreted as

rates.

In the noise models I consider, L is time-invariant, so the formal solution to Equation

(H.14) is

|ρ(t)) = eLt|ρ(0)). (H.19)

Taking t to be one fundamental timestep of the QIP, L is the generator of a quantum

channel:

|ρ)→ E|ρ) where E = eL. (H.20)
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Description of data for Chapter 6

# realizations
η

Amplitude damping

0.001000 300
0.002000 300
0.005000 300
0.008000 300
0.010000 300
0.020000 300
0.050000 300
0.080000 300
0.100000 300

Stochastic

0.001000 300
0.002154 300
0.004642 300
0.010000 300
0.021544 300
0.046416 300
0.100000 300

Table I.1: Data set description for amplitude damping and stochastic noise
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# realizations
η

Non-Pauli stochastic

0.001 300
0.002 300
0.005 300
0.008 300
0.010 1562
0.020 300
0.050 300
0.080 300
0.100 1562
0.250 1562

Pauli stochastic

0.001 800
0.002 600
0.005 600
0.008 600
0.010 4200
0.020 600
0.050 600
0.080 600
0.100 4200
0.250 4200

Table I.2: Data set description for non-Pauli stochastic and Pauli-stochastic noise
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# realizations
η

Anisotropic

0.01 300
0.02 300
0.05 300
0.08 300
0.10 300
0.25 300

Isotropic

0.01 300
0.02 300
0.05 300
0.08 300
0.10 300
0.25 300

Table I.3: Data set description for isotropic and anisotropic Pauli-stochastic noise
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# realizations
η

Coherent

0.000100 300
0.000215 300
0.000464 300
0.001000 300
0.002154 300
0.004642 300
0.010000 300
0.021544 300
0.046416 300
0.100000 300
0.119581 300
0.142997 300
0.170998 300
0.204481 300
0.244521 300
0.292402 300
0.349658 300
0.418126 300
0.500000 300

Stochastic

0.000100 300
0.000215 300
0.000464 300
0.001000 300
0.002154 300
0.004642 300
0.010000 300
0.021544 300
0.046416 300
0.100000 300
0.119581 300
0.142997 300
0.170998 300
0.204481 300
0.244521 300
0.292402 300
0.349658 300
0.418126 300
0.500000 300

Table I.4: Data set description for coherent and stochastic noise

262



Appendix J

Calculations for Chapter 4

J.1 Expected maximum of Gaussian random vari-

ables

Consider N i.i.d. N (0, ε2) random variables δ1, · · · , δN , and let m be the maximum

value of the sample:

m = max
j

δj. (J.1)

In this section, I compute an upper bound on 〈m〉.

Consider the quantity Exp[t〈m〉]. Applying Jensen’s inequality gives Exp[t〈m〉] ≤
〈Exp[tm]〉. Because the exponential is a monotonically increasing function, Exp[tm]

is the same as the maximum, over δj, of Exp[tδj]:

〈Exp[tm]〉 =

〈
max
j

Exp[tδj]

〉
. (J.2)

Now, maxj Exp[tδj] is itself upper-bounded by the sum of Exp[tδj], which allows us

to pull the expectation through and gives

〈
max
j

Exp[tδj]

〉
≤

N∑

j=1

〈Exp[tδj]〉. (J.3)
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Finally, Exp[tδj] is the moment generating function of these Gaussian random vari-

ables, from which it follows that 〈Exp[tδj]〉 = Exp [t2ε2/2]. Therefore,

N∑

j=1

〈Exp[tδj]〉 = NExp
[
t2ε2/2

]
. (J.4)

Putting all these equalities and inequalities together gives

Exp[t〈m〉] ≤ NExp
[
t2ε2/2

]
(J.5)

for any t. Taking the logarithm of both sides gives

〈m〉 ≤ log(N)

t
+
tε2

2
, (J.6)

valid for any t > 0. To find the lowest upper bound, minimize over t by differentiating

the above expression with respect to t and setting it to zero:

d〈m〉
dt

= − log(d)2

t2
+ ε2/2 = 0 =⇒ t =

√
2 log(d)/ε. (J.7)

Plugging this expression for t back into Equation (J.6) gives

〈m〉 ≤ ε
√

2 log(N). (J.8)

J.2 Solving Equation (4.29)

In this section, I derive an approximate solution to Equation (4.29):

−z + A
(
e−z

2/2 + zΦ1(z)
√

2π
)

= 0, (J.9)

where A = (1 − (r/d))/
√

2π. As noted in the main text, z ∼ O(1), meaning that

the above equation can be solved approximately by (a) expanding every term about

z = c for some choice of c, and (b) solving the resulting equation. For simplicity, I

take c = 1.
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The Taylor series for e−z
2/2 about z = 1 is easily computed as

e−z
2/2 = e−1/2(2− z) +O((z − 1)3) (J.10)

Computing Taylor series of zΦ1(z) about z = 1 is also straightforward, though we

need to recall the fundamental theorem of calculus when taking the derivatives:

zΦ1(z) = Φ1(1) +

(
Φ1(z) +

z√
2π
e−z

2/2

)∣∣∣∣
z=1

(z − 1)

+
1

2

(
2e−z

2/2

√
2π
− e−z

2/2

√
2π

z2

)∣∣∣∣∣
z=1

(z − 1)2 +O((z − 1)3)

= Φ1(1) +

(
Φ1(1) +

e−1/2

√
2π

)
(z − 1) +

e−1/2

2
√

2π
(z − 2)2 +O((z − 1)3)

(J.11)

With these approximations, the defining equation for z becomes

− z
A

+e−1/2(2−z)+

[
Φ1(1) +

(
Φ1(1) +

e−1/2

√
2π

)
(z − 1) +

e−1/2

2
√

2π
(z − 2)2

]√
2π = 0,

(J.12)

which simplifies to a nice quadratic equation

Ae−1/2

2
z2 + (

√
2πAΦ1(1)− Ae−1/2 − 1)z +

3A

2
e−1/2 = 0. (J.13)

The roots to this equation are

z± =
e1/2

A

(
1−
√

2πAΦ1(1) + Ae−1/2 ±
√
D
)
, (J.14)

where

D = 2πA2(Φ1(1))2−2
√

2πA2Φ1(1)e−1/2−2A2e−1−2
√

2πAΦ1(1)+2Ae−1/2+1. (J.15)

Because there are a lot of factors of
√

2π floating around, take A = B/
√

2π (where
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B = 1− r/d), and simplify:

z± =

√
2πe

B

(
1−BΦ1(1) +B

e−1/2

√
2π
±
√
D

)
,

D = B2

(
(Φ1(1))2 −

√
2

π
Φ1(1)e−1/2 − 1

π
e−1

)

+B

(
−2Φ1(1) +

√
2

π
e−1/2

)
+ 1.

(J.16)

Comparison to numerical results indicates we need to take the negative root, giving

z =

√
2πe

B

(
1−BΦ1(1) +B

e−1/2

√
2π
−
√
D

)
. (J.17)

266



References

[1] S. Aaronson. PDQP/qpoly = ALL. arXiv, 1805.08577.

[2] S. Aaronson and A. Arkhipov. The Computational Complexity of Linear Op-

tics. Theory of Computing, 9(4):143–252, 2013. doi:10.4086/toc.2013.v009a004.

[3] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A Rewriting System for

Convex Optimization Problems. Journal of Control and Decision, 5(1):42–60,

2018. doi:10.1080/23307706.2017.1397554.

[4] D. Aharonov and M. Ben-or. Fault-tolerant quantum computation with con-

stant error rate. arXiv. URL https://arxiv.org/abs/quant-ph/9906129.

[5] H. Akaike. A New Look at the Statistical Model Identification.

IEEE Transactions on Automatic Control, 19(6):716–723, dec 1974.

doi:10.1109/TAC.1974.1100705.

[6] J. B. Altepeter, E. R. Jefferey, and P. G. Kwiat. Photonic State Tomography.

In Advances in Atomic, Molecular, and Optical Physics, volume 52, chapter 2,

pages 1–54. Elsevier B.V., 2005. doi:10.1016/S1049-250X(05)52003-2.

[7] A. Ambainis. Quantum Search Algorithms. arXiv. URL https://arxiv.org/

abs/quant-ph/0504012.

[8] D. Amelunxen and M. Lotz. Living on the edge: Phase transitions in convex

267

http://arxiv.org/abs/1805.08577
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.1080/23307706.2017.1397554
https://arxiv.org/abs/quant-ph/9906129
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/S1049-250X(05)52003-2
https://arxiv.org/abs/quant-ph/0504012
https://arxiv.org/abs/quant-ph/0504012


REFERENCES

programs with random data. Information and Inference, 3(3):224–294, 2014,

1303.6672. doi:10.1093/imaiai/iau005.

[9] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the

edge: Phase transitions in convex programs with random data. Informa-

tion and Inference: A Journal of the IMA, 3:224–294, 2014, 1303.6672.

doi:10.1093/imaiai/iau005.

[10] A. Anis and A. I. Lvovsky. Maximum-likelihood coherent-state quan-

tum process tomography. New Journal of Physics, 14, 2012, 1204.5936.

doi:10.1088/1367-2630/14/10/105021.

[11] M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu. Introducing the Qplex:

a novel arena for quantum theory. European Physical Journal D, 71(7), 2017,

1612.03234. doi:10.1140/epjd/e2017-80024-y.

[12] G. M. D. Ariano, M. G. A. Paris, and M. F. Sacchi. Quantum Tomography.

Advances in Imaging and Electron Physics, 128:205–308, 2003. URL https:

//books.google.com/books?id=wmD8LFmAsgoC.

[13] I. Arnaldo, U.-M. O. Reilly, and K. Veeramachaneni. Building Predictive Mod-

els via Feature Synthesis. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, pages 983–990, Madrid, Spain, 2015.

doi:10.1145/2739480.2754693.

[14] L. M. Artiles, R. D. Gill, and M. I. Guta. An invitation to quantum

tomography. Journal of the Royal Statistical Society, 67:109–134, 2005.

doi:10.1111/j.1467-9868.2005.00491.x.

[15] K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan, L. Masanes,
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