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Topological quantum error-correcting codes are a family of stabilizer codes that are built using

a lattice of qubits covering some manifold. The stabilizers of the code are local with respect to

the underlying lattice, and logical information is encoded in the non-local degrees of freedom.

The locality of stabilizers in these codes makes them especially suitable for experiments. From

the condensed matter perspective, their code space corresponds to the ground state subspace of

a local Hamiltonian belonging to a non-trivial topological phase of matter. The stabilizers of the

code correspond to the Hamiltonian terms, and errors can be thought of as excitations above the

ground state subspace. Conversely, one can use fixed point Hamiltonian of a topological phase

of matter to define a topological quantum error-correcting code.

This close connection has motivated numerous studies which utilize insights from one view-

point to address questions in the other. This thesis further explores the possibilities in this di-

rection. In the first two chapters, we present novel schemes to implement logical gates, which

are motivated by viewing topological quantum error-correcting codes as topological phases of



matter. In the third chapter, we show how the quantum error correction perspective could be used

to realize robust topological entanglement phases in monitored random quantum circuits. And in

the last chapter, we explore the possibility of extending this connection beyond topological quan-

tum error-correcting codes. In particular, we introduce an order parameter for detecting k-local

non-trivial states, which can be thought of as a generalization of topological states that includes

codewords of any quantum error-correcting code.
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Chapter 1: Introduction

Condensed Matter physics, or at least a fair share of it, is about applying quantum mechanics

to understand the physics of many-body systems, and it covers many different topics such as the

study of fermi-liquids, superconductivity, magnetism, superfluidity, etc. Given the long history

of the field, numerous tools and concepts have been developed and perfected over the years to

arrive at a better understanding of the relevant underlying many-body physics in these systems.

On the other hand, quantum information utilizes quantum mechanics for information process-

ing tasks like communication and computation. Here, the system of interest is a set of qubits, and

ideally, one has complete control to measure and manipulate individual qubits. This naturally

leads to the study of few-body quantum systems as the main building blocks of the information

processing protocols.

Nevertheless, to completely harness the power of quantum mechanics and accomplish tasks

beyond the reach of classical protocols, one needs to maintain a high level of control over a

large number of qubits. Given the extreme fragility of quantum coherence against noise and

perturbation, this is practically impossible unless a systematic mechanism exists to overcome

decoherence. Quantum error correction has been developed to achieve just that. Roughly speak-

ing, quantum error-correcting codes protect quantum information against local noise by encoding

them in the many-body non-local degrees of freedom. Therefore, it would be fair to say that quan-
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tum error correction is fundamentally a many-body phenomenon. It is then natural to expect to

find close connections between condensed matter physics and quantum error correction.

Topological phases of matter provide a clear example of such a connection. From the con-

densed matter perspective, topological phases are characterized by properties that are invariant

under continuous local deformations of their corresponding Hamiltonian. This robustness against

local noise is also the defining feature of quantum error-correcting codes. Thus one may view

quantum error-correcting codes and topological phases of matter as two different approaches to

the same problem. For example, the Kitaev toric code model [1, 2], which is the archetype of

the bosonic topological phase, is probably the most studied quantum error-correcting code in the

quantum information literature where it is better known as the surface code [3, 4].

In general, topological phases on non-trivial manifolds like a torus exhibit robust ground state

degeneracy, meaning a degeneracy that local perturbations cannot lift. Since different ground

states look the same locally and only differ in long-range entanglement patterns, local operators

cannot distinguish between them. As such, all matrix elements of any local operator between

different ground states are zero [2]. If we treat ground states as codewords of a quantum error-

correcting code and local perturbations as errors, this statement basically becomes the Knill-

Laflamme quantum error correction condition [5]. This shows that topological phases can be

used to define quantum error-correcting codes [6]. Such codes are called topological quantum

error-correcting codes.

Various aspects of the connection between topological error-correcting codes and topological

phases of matter have already been studied. We list a few in the following. The relation be-

tween quantum error correction condition and the stability of topological phases has been studied

in Refs. [7–10]. Many studies are focused on finding more efficient quantum error-correcting
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codes by considering various topological phases on manifolds with different boundary condi-

tions [3,4,11–17]. It is also possible to consider the closely related symmetry-protected topolog-

ical phases of matter for quantum error correction and quantum computation [18–20]. Another

active field of research is finding novel and efficient ways for manipulating logical information

encoded in topological quantum error-correcting codes. Code deformation is the idea of perform-

ing logical operations in the code space via deformations of the manifold on which the code is

defined [3, 21–28]. Closely related is the notion of topological quantum computation [2, 29, 30]

where one performs computation via braiding of anyons which are the localized excitations of

2D topologically ordered systems. Studying the relations between error thresholds in topolog-

ical error-correcting codes and phase transitions in statistical models is also another interesting

direction of related research [3, 31, 32]. Topological phases in higher dimensions have also been

studied as potential candidates for self-correcting quantum memories [33, 34].

This thesis further explores the interplay of topological phases and quantum error-correcting

codes. We have organized our results into four chapters, and each chapter contains an independent

topic and can be read on its own.

In Chapter 2 we show how the measurement of carefully chosen string operators can be

utilized to perform Clifford gates on different variants of the surface code. This protocol is based

on the notion of topological charge measurement in topological phases of matter. An advantage

of this method is that it is quite general and can be used in different encoding schemes. We also

show how this scheme allows for Clifford gates to be applied on distant logical qubits without

bringing them next to each other. It is worth noting that, provided with a supply of specially

prepared ancillas known as magic states, Clifford circuits can be used for universal quantum

computation. This chapter is based on Ref. [35]
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In Chapter 3 we present constant depth quantum circuits to perform a particular type of code

deformation known as Dehn twist in topological quantum error-correcting codes defined on man-

ifolds with hyperbolic geometry. The main reason to use hyperbolic geometry is to obtain topo-

logical quantum error-correcting codes with a constant encoding rate. Dehn twists correspond

to certain unitary operations in the code space of a topological quantum error-correcting code.

For certain topological orders, Dehn twists make up a universal gate set, meaning that they can

efficiently approximate any other unitary gate. The result of this chapter is based on Ref. [36].

This chapter generalizes the result of Refs. [37,38] which pertains to codes defined on a manifold

with Euclidean geometry.

In Chapter 4 we consider emergent topological order in monitored random circuits. Ran-

dom unitary circuits are often used to model generic unitary evolution, which causes a system

to thermalize, resulting in volume law scaling of entanglement entropy for small enough sub-

systems (compared to the rest of the system). Monitored random unitary circuits are random

unitary circuits intercepted by rapid local measurements. Given that measurements can destroy

entanglement between non-local degrees of freedom while local unitaries can only generate lo-

cal entanglement, one would expect that the volume law entanglement vanishes in monitored

random circuits, meaning that any finite density of measurements would result in an area law

entangled steady state. However, it was discovered that random unitaries could act as encoding

circuits of a quantum error-correcting code, which hides a part of non-local entanglement from

local measurements. Hence such circuits can sustain volume law entanglement up to some finite

non-zero critical measurement rate. As the measurement rate is tuned above the critical rate, the

system undergoes an entanglement phase transition to an area law phase where the steady-state

looks like a product state. Here, we consider families of monitored random circuits which exhibit
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emergent topological order. Our circuit model includes multi-qubit measurements, which pro-

tect long-range entanglement from local measurements and random unitaries. The multi-qubit

measurements are chosen carefully to stabilize the code space of a topological quantum error-

correcting code. This chapter is based on Refs. [39, 40].

And Finally, in Chapter 5, we consider the possibility of defining k-local phases of matter. It

has been shown that topological phases can be used to construct quantum error-correcting codes.

However, not all quantum error-correcting codes correspond to a topological phase. Indeed,

many quantum error-correcting codes have algebraic constructions without any reference to a

particular geometry. In contrast, topological order is highly dependent on the geometry and

space dimension. Given that such codes still satisfy the Knill-Laflamme quantum error correction

condition, it is reasonable to ask whether they correspond to some generalized notion of the

topological phase. If it is the case, then an order parameter should exist that distinguishes a

trivial state from a codeword of a quantum error-correcting code. In Chapter 5, we make progress

towards finding such an order parameter. We present a proof of principle based on the notion of

irreducible multi-partite correlations. This chapter is based on Ref. [41]
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Chapter 2: Clifford gates from joint measurements in variants of surface code

A crucial pillar of universal fault-tolerant quantum computation is the ability to perform quan-

tum error correction [42, 43]. Schematically, given a physical qubit with an error probability p,

a quantum error correcting code allows one to reach a target error rate for a logical qubit with

error probability pfail ∼ (p/pth)
d/2, where d is the code distance and pth is the error threshold of

the code [44]. It is therefore desirable to implement a code which maximizes d and pth to the ex-

tent possible for a given set of physical resources. Codes that allow d to be arbitrarily large while

maintaining local interactions between the physical qubits are topological error correcting codes,

which utilize the physics of topological states of matter [2,30,45]. In topological error correcting

codes on the Euclidean plane with local interactions, the ratio of the number of physical qubits

Nphys to the number of logical qubits NL scales as Nphys/NL = O(d2) [46].

The simplest topological error correcting code is known as the Z2 surface code [3,4,11], and

possesses a relatively high error threshold; for certain error models the error threshold is quoted

to be pth ∼ 1% [47]. Given the rapid experimental advances in qubit technology using various

physical platforms, it is reasonable to expect that the Z2 surface code will play an important role

in near-term demonstrations of fault-tolerance. Indeed, there are already preliminary demonstra-

tions of quantum error correction using small surface codes [48–50] as well as limited logical

operations on them [51, 52]. Closely related error correcting codes are the color codes [13] and
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hyperbolic codes [27,53,54]. The color code is effectively two independent copies of the Z2 sur-

face code [55]; while it has a lower error threshold [56], it allows for transversal implementation

of Clifford gates and improves the space-time overhead [24]. The hyperbolic codes are related to

the Z2 surface code on a tiling of hyperbolic space; they allow one to improve the scaling of the

ratio Nphys/NL to be independent of d, at the cost of requiring non-local interactions [54].

As we review below, logical qubits can be encoded in the surface code in a number of differ-

ent ways: through (1) boundary defects, which are domain walls between alternating boundary

conditions, (2) holes, or (3) bulk twist defects. Hybrid approaches that combine any or all of the

above are also possible.

The set of fault-tolerant logical operations that can be performed using the Z2 surface code

form the Clifford group. In addition to Pauli operations on single qubits, this group is generated

by the single qubit Hadamard gate H , phase gate S, and two-qubit CNOT gate. A variety of

methods are known for implementing these gates in the Z2 surface code, however they depend

sensitively on the encoding scheme [3, 4, 23, 25, 26, 28, 57–59].

In the context of topological quantum computation, an approach has been developed based

on the idea of topological charge measurements. [60, 61] to implement logical unitary gates. In

particular, Ref. [61] demonstrated that topological charge measurements along certain ‘graph’

operators could in principle be utilized to implement non-trivial fault-tolerant logical unitary

gates (see also Ref. [62]).

In this chapter, we demonstrate how the idea of topological charge measurements in Z2 sur-

face codes can be utilized to devise low overhead fault-tolerant procedures that implement the

full Clifford group. Notably, this approach is not limited to any specific scheme and allows one

to implement single qubit Clifford gates and long range CNOT gates in all variants of the surface
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code, with minimal overhead.

We further apply our methods to both color codes and hyperbolic codes. In the context of

color codes, we also propose novel efficient methods for implementing Clifford group operations

in a hole based encoding scheme, which provides some advantages over alternate proposals [13,

24, 63].

We note that to obtain universal fault-tolerant quantum computation, the Clifford group must

be supplemented with an additional gate, such as the single qubit π/8 phase gate. In the codes

that we study in this chapter, this gate inevitably requires magic state injection and distillation.

In this chapter we focus on efficient fault-tolerant implementations of gates in the Clifford group,

and do not further consider the π/8 phase gate.

The rest of this chapter is organized as follows. In Section 2.1 we provide a review of active

error correction with the surface code, together with a brief review of the different encoding

schemes and proposals for carrying out quantum computation with them. In Section 2.2, we

explain the abstract joint measurement circuits that allow implementation of the full Clifford

group. In Section 2.3, we demonstrate how to implement these measurement circuits in the

surface code using a twist defect logical ancilla. In Sections 2.6 and 2.7 we further apply these

results to hyperbolic and color codes.

2.1 Review of logical qubit encodings and Clifford gates in surface code

We begin with a brief review of the various proposals [3,4,23,57,59] for quantum computing

with the surface code.
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2.1.1 Planar encoding

The simplest type of surface code is the planar code based on boundary defects. [3,11,12] We

consider a physical qubit at each site of a square lattice, as shown in Fig. 2.1a. Each plaquette

p is associated with a stabilizer Sp, with dark plaquettes representing X stabilizers and light

plaquettes representing Z stabilizers:

Sp =
∏
i∈∂p

σi, σ =


X, if p is dark

Z, if p is light,

(2.1)

where ∂p denotes the boundary of the p plaquette. In the bulk, the stabilizers have support on

four physical qubits. Violations of X-type stabilizers are referred to as e particles, and violations

of Z-type stabilizers are referred to as m particles. Local operators in the bulk can only create e

particles in pairs, and similarly for m particles.

On the boundary, the stabilizers, shown as semicircles in Fig. 2.1a, involve two physical

qubits. An edge with only Z type stabilizers is referred to as an e boundary, because applying a Z

operator on an edge qubit can create a single e particle; therefore, the e particles are ‘condensed’

on such an edge. Similarly, an edge with only X type stabilizers is referred to as an m boundary

(see Fig. 2.1a). To avoid drawing the entire lattice, we use schematic diagrams whenever possible,

as shown in Fig. 2.1b. The crosses on the edges, which are domain walls between the two types

of boundaries, are referred to as boundary defects.

The stabilizers all commute with each other. The code space C is defined as the set of states

that are eigenvectors of all stabilizer operators with eigenvalue +1:

9



(a) (b)

e

e

mm

Z̄

X̄

Z̄

X̄

Figure 2.1: a) A simple distance 6 surface code encoding 1 logical qubit. Black dots are physical
qubits. Each dark(light) plaquette represents a X(Z) stabilizer. The semicircles at the boundaries
are also stabilizers that involve just two qubits. The logical X̄ and Z̄ operators are shown by
horizontal blue (dark gray) and vertical red (light gray) strings respectively. b) Schematic diagram
of the surface code in (a).

C = {|ψ⟩ : Sp |ψ⟩ = + |ψ⟩ ∀p}. (2.2)

The dimensionality of C determines how many logical qubits can be encoded in this surface

code. For the lattice shown in Fig. 2.1a, there is one less stabilizer than physical qubits. Therefore

C is two-dimensional and corresponds to the encoded logical qubit. It is possible to encode more

than one logical qubit in one patch if one uses more defects on the boundary; 2n boundary defects

can be used to encode n − 1 logical qubits. However in the planar code, each logical qubit is

associated with a separate patch.

Logical operators are associated with those unitary transformations which leave the code

subspace C invariant, but which act non-trivially within C. Logical Pauli operators Z̄ and X̄

correspond to a tensor product of Pauli operators for each physical qubit along a given string:

Z̄ =
∏
i∈l

Zi, X̄ =
∏
i∈l′

Xi, (2.3)
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where l and l′ are the light red and dark blue strings, respectively, depicted in Fig. 2.1a. The choice

of l and l′ is unphysical; any string l that connects the top and bottom edges is sufficient for Z̄,

and analogously for X̄ . Physically, Z̄ corresponds to an e particle being transported between the

top and bottom edge, while X̄ corresponds to an m particle being transported between the left

and right edge.

The distance of the code, d, is the minimum number of Pauli operators that appear in a

nontrivial logical operator. For the code shown in Fig. 2.1, both Z̄ and X̄ have length 6, hence it

is a distance d = 6 code.

2.1.1.1 Error correction in surface codes

Here we briefly review the proposal for active quantum error correction using the surface

code. In this approach, all of the stabilizers Sp, for every plaquette, are measured in each round

of quantum error correction. By constantly measuring the stabilizers Sp for every plaquette, we

can ensure that the state of the system remains an eigenstate of each stabilizer.

Consider the planar code shown in Fig. 2.2. Let us say a bit flip error occurs on qubit number

1 and the wave function of the system changes to X1 |ψ⟩. Now, when we measure the stabilizers,

assuming a perfect measurement, all syndromes would be +1 except for the measurement out-

comes of Z stabilizers marked by blue circles in Fig. 2.2, which will be −1. Thus a single bit

flip error creates two adjacent m particles. If instead of a bit flip, a phase flip error had happened,

then it would be the X stabilizers marked by red triangles adjacent to qubit 1 that would give

different output, giving rise to a pair of adjacent e particles.

An arbitrary single qubit error on the qubit number 1 would change the wave function of the

11



1

2 3 4 5

Figure 2.2: Error syndromes can be used to detect and correct errors. A single bit flip error on
qubit 1 will create two neighboringm particles indicated here by blue (dark gray) circles whereas
a phase flip error will create two e particles (shown as red (light gray) triangles). Error strings
like the one shown at the bottom, can create isolated particles.

system to:

eiθn·σ1 |ψ⟩ =cos(θ) |ψ⟩+ i sin(θ)nxX1 |ψ⟩

+ i sin(θ)nyY1 |ψ⟩+ i sin(θ)nzZ1 |ψ⟩ . (2.4)

The four terms on the right hand side of Eq. (2.4) have different error syndromes and after one

round of measurement, the system will collapse to one of them. So, from the standpoint of error

correction, any single qubit error reduces to a bit flip or phase flip error, or a combination of the

two.

If instead of a single qubit error, many adjacent qubits flip at the same time, only the syn-

dromes at the end of the flipped string would give different values. Fig. 2.2 illustrates an exam-

ple. An error string, such as E =
∏

i∈sXi for some string i, creates an m particle at each end of

the string. Similarly an error string consisting of Pauli-Z errors creates a pair of e particles at its

ends. However if an error string ends on an appropriate boundary, such as a Z error string that
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ends on an e boundary, then only a single e particle is created, and therefore only one stabilizer,

at the endpoint of the string in the bulk, is violated.

Therefore, when an error occurs in the form of some strings, the only information we get

from syndrome measurements is the position of the e and m particles. However, given a set of

syndrome measurements (locations of e and m particles), the error string that can create it is non-

unique; many different errors can result in the same configuration of particles. The minimum

weight perfect-matching method [64, 65] can be used to track back the most likely error strings

from the error syndromes. The method finds the set of shortest possible strings that connect

a given set of particles. Since longer error strings occur with lesser probability, this algorithm

finds the most probable error configuration consistent with the measured syndromes. A logical

error occurs when the error string inferred from the minimum weight perfect matching algorithm

differs from the correct error string by a non-contractible string. On the other hand, if the inferred

error strings are always related to the true error strings by a contractible loop, then that means

that we have successfully tracked all of the errors in the software and can compensate for them

accordingly. Other variants of the matching algorithm can be used to improve the probability of

guessing the true error configuration [66, 67].

Since the standard minimum weight matching algorithm runs in polynomial time in system

size l, for large patches of surface code other methods like renormalization-group decoders with

O(log l) run time could become favourable [68, 69]. Having enough classical resources, one can

also solve the minimum weight matching problem in constant time using parallel computing [70].

The probability of a logical error pfail clearly depends on the underlying error model. For

uncorrelated single qubit errors, numerical and analytical studies suggest an exponential suppres-

sion of pfail with increasing code distance [3,44,71–73]. The rate of exponential decay depends on
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the physical error probability. Specifically, for fixed d and small probability of physical errors p,

pfail is best described by A(d)(p/pth)
d/2 where pth is called the accuracy threshold [44,71,72,74].

The same form applies for other variants of the surface code but with different values for pth.

So far we have assumed that the measurement process is perfect. But one also needs to con-

sider the errors that occur in the measurement process. Measurement errors can be addressed by

repeating the measurements many times to distinguish the measurement errors from other errors.

By repeating the measurement many times, we get a three dimensional map for the position of

quasiparticles: two dimensions are used to record the error syndromes in space for each round

of measurement and the third dimension is the discrete time. Now, we use the minimal weight

perfect-matching algorithm to connect the quasiparticles in this three dimensional lattice together,

allowing for the strings to have time segments as well as spatial ones [4, 74].

The number of measurement histories that are used for error correction depends on the code

distance and the probability of measurement errors. For equal error probability in measurement

and storage, O(d) rounds of previous error syndromes are used to correct the code where d is the

code distance [75, 76].

2.1.1.2 Measuring string operators in planar codes

Here we will discuss how to fault-tolerantly measure the string operators associated with X̄

and Z̄. These methods can also be used for initializing logical qubits in the X̄ or Z̄ basis.

We note that one method to measure X̄ and Z̄ is to measure all physical qubits in the X or

Z basis in order to measure the corresponding logical operator. However since this method is

destructive it cannot be used when there are more than one logical qubits encoded in a patch. In
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Z̄ Z̄Z̄

Figure 2.3: String initialization/measurement method. For initializing the code in an eigenstate
of the string operator Z̄ shown in a), one can turn off the X stabilizers adjacent to the string and
change Z stabilizers next to the string to detach the string and form the code shown in b). Then
measure the qubits on the string individually in the Z basis as well as the modified stabilizers for
the sake of error correction, which yields the value of Z̄. In this step the code effectively looks
like (c). After correcting errors, we initialize physical qubits in the |0⟩ state and turn back on all
stabilizers in their original form. After d rounds of syndrome measurement and correcting errors,
the code is initialized in the |0̄⟩ state.

contrast, the string measurement that we review below can be applied to more general encoding

schemes as well.

Suppose for example that we wish to measure the string operator Z1Z2Z3Z4Z5, shown in Fig.

2.3a. We proceed as follows:

1. We turn off every X stabilizer that shares a qubit with the string operator Z̄. We also

remove every qubit present in Z̄ from all Z stabilizers adjacent to it, thus changing the 4

qubit Z stabilizers adjacent to the string operator to a pair of 2 qubit Z stabilizers. After

making these changes, the code would look like Fig. 2.3b. Note that by doing so, we have

created a new e edge along Z̄.

2. We measure qubits 1-5 individually in the Z basis, in addition to performing the stabilizer

measurements. We do d rounds of measurements to make the the procedure fault tolerant.

Using the value of the individual qubit measurements, along with the measurement out-
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come of the modified stabilizers, we can recover the value of the original Z stabilizers as

well. This allows us to track the errors from before the measurement process began.

3. Finally, we turn on all stabilizers and change all the modified stabilizer operators back

to their original form. We need to do d rounds of stabilizer measurements to establish

stabilizer values and redefine the code space accordingly.

The measurement of Z̄ is obtained by multiplying the measured values for the individual Zi

measurements along the string. To make the measurement fault tolerant, it is important to correct

any bit flip errors on the Z̄ string before using individual measurement outcomes in step 2, and to

perform the measurement d times to protect against measurement errors. It is worth noting that

one can also measure a ribbon of qubits with thickness d once, instead of measuring a string d

times. However, to avoid decreasing the code distance, ribbon measurement requires using larger

code patches.

Note that phase flip errors that occur on qubits 1-5 will not change the measurement outcome

of Z̄ operator.

Measurement in the X̄ basis can be done by following similar steps. However, importantly,

measurement of Ȳ cannot be done in this encoding without introducing additional ingredients, as

we describe later.

2.1.1.3 Quantum computing with planar codes

In order to implement universal fault-tolerant quantum computation, we need to implement

a universal gate set fault-tolernatly. For the surface code, a natural choice is the Clifford group,

together with the T gate, which is the π/8 single-qubit phase gate. Here we will briefly review

16



the proposals for implementing logical Clifford gates in the encoding described above. The T

gate is then implemented fault-tolerantly using magic state distillation.

The Clifford group is generated by the single-qubit Clifford phase gate, S̄ =

1 0

0 i

, H̄ =

1√
2

1 1

1 −1

, and the two-qubit CNOT gate.

Note that logical Z̄ = S̄2 is easy to implement, as one can implement it transversally by

applying the single-qubit Z gates on physical qubits along the Z̄ string. X̄ = H̄Z̄H̄ can be

applied similarly.

The logical Hadamard gate, H̄ , is not as straightforward as X̄ and Z̄. Although applying the

Hadamard gate transversally to each individual physical qubit does exchange eigenstates of X̄

and Z̄, it will also change the boundary conditions, as an e boundary is converted to an m bound-

ary, and vice versa. Therefore, the transversal Hadamard operation does not yield the original

code, but rather yields a π/2 rotated version of it. One then needs to correct the orientation by

code deformation [3, 21, 23]. Code deformation changes the shape of a surface code geometri-

cally by adding physical qubits to the lattice or removing some from it. Adding and removing

here does not mean physical changes to the underlying lattice, but it refers to turning on some

stabilizers to include some idle physical qubits or turning off some stabilizers to exclude some

physical qubits from the code. These additional idle physical qubits add to the spatial overhead

required for implementing H̄ .

The Clifford phase gate S̄ is more complicated. Proposals for implementing S̄ in pure planar

encoding require encoding the logical |Y ⟩ state in the planar code through state distillation [3, 4]

and thus have a large space time over head. However there are proposed hybrid schemes [28] that
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control

MX

Figure 2.4: Quantum circuit for CNOT. The number above each measurement represents the
outcome of that measurement.

avoid state distillation for S̄ gate which we will mention shortly. It is a possible to keep track of

single qubit Clifford gates including S̄ at the classical level, thus eliminating the need for state

distillation by avoiding direct implementation of the S̄ gate [25].

The two-qubit logical CNOT gate has been proposed to be implemented as follows. One

method is to apply CNOT transversally between every physical qubit in one plane and the corre-

sponding qubit in the other [3, 77]. However this operation is non-local if we limit ourselves to a

single-layer two-dimensional layout, and thus will not be further considered.

A method for implementing CNOT using local interactions in planar codes uses a method

referred to as lattice surgery [23]. This method utilizes an extra logical ancilla qubit together

with the circuit shown in Fig. 2.4 [23]. MO in the circuit indicates measurement of operator O.

We have already explained how to perform the MX and MZ measurements. What remains

is to explain how to perform the joint measurement such as MXX and MZZ in planar codes. It

is important to note that measuring Z̄1 and Z̄2 separately and then multiplying the result is not

equivalent to a Z̄1Z̄2 measurement, as the former will project the code into a smaller subspace

than intended.

Consider two planar codes next to each other, as in Fig. 2.5a. Note that the neighboring

boundaries are both m boundaries. To measure the two body operator Z̄1Z̄2 we use the following
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Figure 2.5: a) Two disjoint planar codes with Z̄i operators shown. b) To measure the parity op-
erator Z̄1Z̄2, we turn on all Z stabilizers that are between two patches. We also combine two
2-qubit X stabilizers at the boundary into one full stabilizer. After d rounds of syndrome mea-
surement and error correction we can find the value of Z̄1Z̄2 by multiplying the newly measured
Z stabilizers.

steps:

1. We stop measuring the X2X3 and X6X7 stabilizers and start to measure the combined

X2X3X6X7 stabilizer. At the same time, we start measuring two newZ stabilizersZ1Z2Z6Z5

and Z3Z4Z8Z7. This modification effectively merges the two patches together and the code

will look like Fig. 2.5b.

2. We wait for d rounds of stabilizer measurements to establish the values of newly added Z

stabilizers.

3. We read the value of Z̄1Z̄2 by multiplying the measurement outcomes of newly added Z

stabilizers. After that we stop measuring all three shared stabilizers and turn back onX2X3

and X6X7 stabilizers to detach the codes again.

If the patches are oriented in such a way that e boundaries are next to each other, we can
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Z̄a Z̄1

X̄a

X̄2

Figure 2.6: Planar code layout to do the CNOT. The patch in the corner encodes the ancilla qubit,
the one in the right is the control qubit and the bottom one is the target qubit.

measure the X̄1X̄2 operator by turning on the shared X stabilizers. The procedure is similar to

the MZZ measurement.

Using the joint measurements, the quantum circuit shown in Fig. 2.4 can be implemented by

using the configuration shown in Fig. 2.6. The logical qubit in the corner is the ancilla qubit, the

bottom patch encodes the target qubit and the other one is the control qubit. Note that the patches

are oriented in such a way to make the joint measurements in Fig. 2.4 possible. In the last step,

we need to apply single qubit gates based on the outcome of previous measurements as shown in

Fig. 2.4.

2.1.2 Hole encoding

If we start with a planar code and remove some qubits from the bulk, we obtain a hole defect.

Fig. 2.7a shows a hole defect that is created by turning off nine stabilizers. Although the qubits

inside the hole are completely detached from the code, they are needed for moving the hole.

Each hole introduces new edges and like the outer edges, the boundary of a hole can be either an

e edge or m edge. In principle a hole can have mixed boundary conditions, but usually uniform

boundaries are used.
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Z̄

X̄
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Figure 2.7: a) Surface code with hole defect in the bulk. Note that both the outer boundary and
the hole’s boundary are m boundaries. b) Schematic diagram for the lattice structure shown in
(a).

Depending on the boundary type, e or m particles can condense on a hole boundary. This in

turn allows one to use hole defects to make new logical operators and thus new logical qubits.

The hole defect in Fig. 2.7, for example, encodes one logical qubit.

In general, n holes of the same boundary type define a 2n−1 dimensional code subspace.

The proposal described in Ref. [4], however, uses a sparse encoding, where each logical qubit is

encoded using two holes, as shown in Fig. 2.8. A logical qubit that is defined using a pair of e

boundaries is called a X-cut qubit (Fig. 2.8 left). Likewise, Z-cut qubit refers to a logical qubit

encoded in a pair of m boundaries (Fig. 2.8 right).

The sparse encoding allows for implementation of logical gates as described below. Our joint

measurement technique, described in the subsequent sections, allows Clifford operations to be

implemented using denser encodings, and thus may offer advantages in overhead.

2.1.2.1 Quantum computing with hole defects

The measurement and application of the logical X̄ and Z̄ operators proceeds analogously to

the case of the planar encoding. The single qubit Clifford phase gate, S̄, is also proposed to be

implemented using state injection and state distillation, as in the case of the planar encoding.
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X̄2

Figure 2.8: Logical qubits encoded in pairs of hole defects alongside the corresponding logical
operators. The outer boundary of the code can be far away and is not shown here.

Similar to the planar code, one can circumvent distillation by using the hybrid schemes [28]

which we will mention shortly.

The single qubit Hadamard gate H̄ is performed through a series of code deformations [4,78],

as follows. Assume we have a pair of e holes encoding our logical qubit. Since, unlike the planar

code, there is generally more than one logical qubit encoded in a patch, first we isolate the target

logical qubit from the rest by measuring a Pauli X string which encircles the hole pair. As was

explained in Sec. 2.1.1.2, this would create anm boundary around the two e holes. By expanding

the holes one can turn them into e boundaries of the isolated patch, converting the logical qubit

to a patch of planar encoding. The Hadamard gate is then applied as it is in the planar code,

described above, and then finally the logical qubit is converted back to the hole encoding and

merged into the rest of the code.

The logical CNOT operation is quite different in the hole encoding as compared with the

planar encoding. If we have a Z-cut qubit and a X-cut qubit, one can show that moving a hole of

one qubit around a hole of the other, will perform CNOT between the two [4,78,79]. This process

is called hole braiding. However performing CNOT between two qubits with the same type of

holes is more complicated, because braiding two holes of the same boundary type is a trivial
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Figure 2.9: (a) A surface code with four twist defects marked by green crosses. The boundary
of the surface code is not important and hence has not been shown. Green dashed lines are called
dislocation lines. Every twist defect should be connected to another twist defect by a dislocation
line. To make a pair of twist defects, we start with a perfect lattice and draw the dislocation line.
Then we remove every qubit that lies on the dislocation line. Finally, we combine every two
stabilizers that share an edge over the dislocation line into one stabilizer which is given by the
product of original stabilizers. Clearly, the contribution of removed qubits have to be omitted.
The combined stabilizer is represented by plaquettes with color gradient since they are neither
X nor Z stabilizer, but have both operators. It is also possible to create dislocations without
removing qubits by having the dislocation lines parallel to the Burgers vectors of the dislocations
(not shown here) [15, 80]. (b) Schematic diagram of the surface code shown in (a).

operation in the code subspace. Instead, in this case one needs extra logical ancilla qubits encoded

using holes with the other type of boundary. One can then implement the CNOT gate between two

hole defects of the same type through a series of hole braidings and measurements [4]. Therefore,

to perform a CNOT on two logical qubits requires a total of six holes, if the two logical qubits

are both X- or Z- cut qubits.

2.1.3 Dislocation encoding

Making holes inside the bulk is not the only way to introduce non-trivial closed loops in

surface codes. Twist defects can also be used to induce topological degeneracies and thus to

encode logical qubits. Twist defects have been studied from a number of points of view, using

topological field theory (see Sec. V of Ref. [81] and Ref. [80, 82–85]), chiral Luttinger liquid
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theory [80, 82, 83, 86–89], and in lattice models for topological order [15, 90–92].

Fig. 2.9a illustrates a surface code with four twist defects in the bulk which are marked

by green crosses. As is clear from Fig. 2.9a, the physical qubits on the dislocation lines are

removed from the lattice and all pairs of stabilizers that share an edge over the dislocation line

are combined into one.1 The stabilizers located on a twist defect involve five physical qubits, and

one of the qubits should be measured in the Y basis. For example, the stabilizer S in Fig. 2.9a is

defined as:

S = X1Y2Z3Z4X7, (2.5)

and the stabilizer corresponding to the plaquette just below that is:

S ′ = Z7X4X5Z6. (2.6)

As with hole defects, non-trivial string operators encircling twist defects can be used to define

logical qubits. But an important property of dislocation lines is that whenever a string operator

passes through them, it changes its type; a Pauli-Z string would change to a Pauli-X string and

vice versa. As a result, a closed string operator needs to encircle at least two twist defects. A non-

trivial closed string operator is shown as an example at the bottom of Fig. 2.9a and it includes

both Pauli-X and Pauli-Z operators:

Z̄ =
∏

i∈light red part

Zi
∏

j∈dark blue part

Xj. (2.7)

1Fig. 2.9 illustrates dislocation lines that run perpendicularly to their Burgers vectors. It is also possible to
consider a lattice geometry with dislocation lines parallel to the Burgers vectors, so that qubits do not need to be
removed to create a dislocation.
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One can easily verify that this operator commutes with every stabilizer but is not a product of

stabilizers itself. Fig. 2.9b shows the schematic diagram of the code shown in Fig. 2.9a.

In general, n pairs of twist defects gives rise to 2n−1 dimensional code space. In a dense

encoding, therefore, there would be one logical qubit for every pair of twist defects (not counting

the first pair). Alternatively, sparser encodings are also possible, using three or four twist defects

to encode one logical qubit.

A key feature that distinguishes the dislocation code from planar and hole encodings is that

the logical Ȳ operator is also given by a simple Pauli string. Therefore the Ȳ operator can

be straightforwardly measured fault-tolerantly using the same methods for measuring X̄ and Z̄

operators in the planar and hole encodings. Alternatively, logical qubits can be initialized in the

Ȳ basis straightforwardly. Fig. 2.10 shows the logical X̄ , Ȳ and Z̄ operators for a logical qubit

encoded in three twist defects. It can be shown that any two loop operators that encircle the same

set of twist defects are equal to each other up to multiplication by some set of stabilizers and

hence represent the same logical operator. For example, both Pauli-X and Pauli-Z strings shown

in Fig. 2.10c are equal to Ȳ . To prove their equivalence one can use the fact that if a string

goes around a single twist twice and closes itself, it acts as the identity on the code subspace

(Fig. 2.11).

2.1.3.1 Initialization and measurement

Again, the string initialization and measurement that was described in Section 2.1.1.2 can

be used here too. It is notable that by using string initialization, one can prepare the |Y ⟩ state

without using state injection and state distillation procedures.
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X̄ Z̄

Ȳ

(a) (b) (c)

Figure 2.10: Logical operators related to a qubit encoded in three twists. (a) String operator
corresponding to X̄ . It is a mixed Pauli string, with red (light gray) parts corresponding to Pauli
X and blue (dark gray) parts corresponding to Pauli Z. Note that whenever the string passes
through a dislocation line, it changes color. An equivalent string operator for X̄ would be the one
with red (light gray) and blue (dark gray) interchanged. All that matters is the defects a string
enclose. (b) String operator corresponding to Z̄. (c) Two equivalent string operators representing
Ȳ .

Figure 2.11: The string that encircles a single twist defect twice and encloses itself can be written
as a product of stabilizers and hence acts as the identity operator in the code subspace.

2.1.3.2 Quantum Computation by twist defects

The fact that one can measure a logical qubit in the Ȳ basis as well as X̄ and Z̄, allows

one to ignore every single-qubit Clifford gate until there is a measurement, and then modify the

measurement according to the awaiting gates [57]. For example if we want to apply an S gate

on a logical qubit and measure it in the X basis, we can ignore the first gate and instead do the

measurement in the S†XS = Y basis. This point is explained in more detail in Section 2.2.4.

We can also easily implement CNOT using the circuit shown in Fig. 2.4. Joint measurements

in dislocation codes are not really different from single qubit measurements. Suppose we want

to measure the X̄1X̄2 operator where X̄1 is given by a string encircling twists 1 and 2 and X̄2

encircles twist defects numbered 3 and 4. It is easy to see that X̄1X̄2 is given by the simple string

that encircles all four twist defects 1 to 4. We will explain this point further in Section 2.3, since
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joint measurements and twist defects lie at the heart of our method.

2.1.4 Hybrid schemes

Hybrid schemes for encoding logical qubits are also possible [25, 28, 59, 93]. Mixing two

schemes also opens up the possibility of new methods to perform logical operations. Furthermore,

logical qubits in different encodings can be entangled with each other using hybrid schemes, for

example by braiding holes and twist defects.

For example, by converting boundary defects to bulk twist defects, braiding them and con-

verting them back to the boundary, one can implement the S̄ gate in planar codes [28] without

state distilation. A closely related encoding, known as triangular code [59], can be constructed by

starting with the planar encoding, moving one of the boundary defects to the bulk but leaving it

there as a twist defect. The S gate in tirangular codes can also be applied without state injection.

2.2 Measurement-based protocols for Clifford gates

Here we explain how one can implement all gates in the Clifford group using circuits based

on joint measurements. We only discuss the quantum circuits corresponding to the logical gates,

regardless of the underlying setup which is used to encode logical qubits. In the subsequent

sections, we will show how one can implement these circuits in surface codes, color codes and

hyperbolic codes.

In this section all operators are understood to be logical operators, so we will omit the ¯

notation; all qubits are understood to be logical qubits.
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2.2.1 CNOT gate

We have already mentioned the quantum circuit devised to implement CNOT using joint

measurements (Fig. 2.4). It is used in many variants of surface codes as well as color codes to

implement the CNOT gate [23–25, 57].

2.2.2 S gate

The circuit that is shown in Fig. 2.12 can be used to implement the S gate. Initially, the ancilla

qubit is prepared in the |+⟩ state, which is the +1 eigenstate of the Pauli Xa operator. Next, the

two qubit parity operator ZYa is measured, followed by a Za measurement. The subscript a is

used to distinguish the operators associated with the ancilla qubit. The Pauli operators associated

with the data qubit will have no subscript.

After the second measurement in Fig. 2.12, the state of the data qubit is given by:

1− i(−1)α+βZ√
2

|ψ⟩, (2.8)

where (−1)α and (−1)β are the the results of first and second measurements. Note that the S

gate can be written as:

S = eiπ/4
(
1− iZ√

2

)
. (2.9)

Thus, if the outcome of the two measurements have the same sign, the state after the second

measurement is, up to an overall phase, S |ψ⟩, and therefore the S gate has been implemented.

On the other hand, if the results of the two measurements are different, the state of the data

qubit would be S† |ψ⟩. Since S = ZS†, we can recover S |ψ⟩ by applying an additional Z gate
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Figure 2.12: Quantum circuit for S gate. The ancilla is prepared in |+⟩ = (|0⟩ + |1⟩)/
√
2

state. The joint measurement corresponds to measuring the parity of the operator ZYa, where the
subscript a stand for ancilla qubit and Z is associated with the data qubit. The outcome of each
measurement is written above its box.

to the data qubit.

2.2.3 SHS gate

We need another independent gate to fully implement the Clifford group. Usually it is the

Hadamard gate H , but here we choose SHS since it has a simpler circuit. The circuit is shown

in Fig. 2.13. Again, it is easy to check that after the second measurement, the state of the data

qubit would be:

|ϕ⟩ = 1 + i(−1)α+βX√
2

|ψ⟩, (2.10)

where (−1)α and (−1)β are measurement results. Similar to Eqn. 2.9, we have:

SHS =

(
1 + iX√

2

)
. (2.11)

So if the results of the two measurements have the same sign, we get the desired state SHS |ψ⟩.

Again, if we get different signs, the data qubit would be in the state S†HS† |ψ⟩. We can then

recover SHS |ψ⟩ by applying X , because SHS = iXS†HS†. Hence, at the end of the circuit,

we get |ϕ⟩ = SHS |ψ⟩.
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Za
|

Figure 2.13: Quantum circuit to implement SHS gate. The ancilla is prepared in the |−⟩ =
(|0⟩ − |1⟩)/

√
2 state. The joint measurement corresponds to measurement of the parity of the

operator XYa, where subscript a stands for ancilla qubit and X is associated with the data qubit.
The outcome of each measurement is written above its box.

2.2.4 Conjugated CNOT circuits

Since single qubit Clifford gates just permute the Pauli matrices (up to a sign), like the H

gate that exchanges X and Z, it turns out that one can just keep track of them classically instead

of actually applying them at the quantum level. One way to see this is to move all single qubit

Clifford gates to the end of the circuit and then modify the final measurements accordingly. The

price to pay is that for a general quantum circuit, we need to be able to implement CNOT and the

π/8 phase gate T in any Pauli basis. In other words, we need to be able to implement CNOT and

T conjugated by any single-qubit Clifford gate.

As an example, consider the quantum circuit shown in Fig. 2.14a. We use the identity

CNOT S = S (S† CNOT S) to move the S gate across CNOT. Also since S†H†Π±,ZHS = Π±,Y

, where Π±,σ denote the projection operator onto the ± eigenspace of σ operator, we can replace

the upper Z measurement at the end of the circuit with a Y measurement. So the probabilities

for each measurement outcome of this quantum circuit will be equivalent to performing instead

S† CNOT S, followed by measurement in a different basis (Fig. 2.14b). The quantum circuit for

S† CNOT S (Fig. 2.15) can be derived from the CNOT quantum circuit in Fig. 2.4.
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Figure 2.14: The two quantum circuits in (a) and (b) yield equivalent measurement outcomes,
provided the measurements are done in different bases.
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Figure 2.15: S†
t CNOT St circuit. Here the subscripts a, c, and t refer to the ancilla, control, and

target qubits, respectively.

2.3 Fault-tolerant joint measurements using twist defects

The measurement circuits for the implementation of the S̄, S̄H̄S̄, and CNOT gates discussed

above require the ability to perform joint measurements of operators such as Z̄Z̄a, X̄X̄a, and

Z̄Ȳa. Alternatively, if the logical ancilla can be prepared in the Ȳ basis, then we only need the

joint measurements Z̄Z̄a and X̄X̄a. In this section we introduce a method which utilizes twist

defects to carry out the required measurements fault-tolerantly and with low overhead.

The main point here is that if the ancilla qubit is encoded using bulk twist defects, the joint

measurements could be reduced to measuring simple string operators. Importantly, this is true

irrespective of the encoding scheme of the logical data qubits; they could have been encoded

using planar encoding, hole encoding or dislocation encoding. In general this procedure works

for any encoding scheme as long as the logical X̄ and Z̄ operators of the logical data qubits can

be represented by simple string operators rather than graph operators.
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Ȳa

(a) (b)
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X̄ ȲaZ̄ Ȳa

Figure 2.16: Finding the string corresponding to parity operator measurements in a hole based
encoding. Here a pair of Z-cut holes are used to encode a logical qubit. There is also an an-
cilla qubit encoded in four twist defects. Logical operators of the ancilla qubit are specified by
subscript a. In (a) (top panel), one can see the string operators corresponding to Z̄ and Ȳa sep-
arately. Both of them are given by a product of Pauli Z operators acting on individual physical
qubits. If we want to measure the parity operator Z̄ Ȳa, we can deform the string corresponding
to Z̄ in such a way to overlap the left side of the string corresponding to Ȳa. Since σ2

Z = 1 the
overlapping part cancels out, and we would get the connected string shown in the lower panel
of (a). In (b) we illustrate the string associated with the parity operator X̄Ȳa. Since the logical
qubit is encoded in a pair of Z-cut holes, the X̄ operator is given by a Pauli-X string operator
encircling one of the two holes. To do the joint measurement, we use a Pauli-X string encircling
the two twists to represent Ȳa shown in (b) up; As we explained, it is equivalent to the Pauli Z
string encircling the same twists which we used for the Z̄ Ȳa measurement. By deforming the X̄
string and making an overlap with the Ȳa string, the shared part cancels out and we get the string
shown in the lower panel of (b) for the X̄ Ȳa operator.
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Suppose that we have some string operator running through some patch of a surface code,

corresponding to a logical operator O. It can be a non-trivial loop encircling a hole or some twist

defects, or a string that connects two same-type edges in a planar code. Also assume we have

a logical qubit encoded in four twist defects in the bulk of the same patch. Imagine we want

to measure the parity operator Ō Ȳa. One can get a simple string corresponding to this operator

by deforming the string corresponding to Ō in a way to also encircle the pair of twists that Ȳa

encircles. Now, if we measure this new single string operator, using the usual procedures used to

measure string operators fault tolerantly, we would get the parity value, without measuring each

individual logical operator separately. The same procedure works if one wants to measure other

logical parity operators like Ō X̄a and Ō Z̄a; one just needs to deform the string associated with

Ō so it encircles the correct pair of twists. The explicit implementation of this procedure when Ō

is the logical X or Z operator of a qubit encoded in a pair of Z-cut holes is shown in Fig. 2.16.

Having the tools, implementing each protocol is quite easy. We only explain the S gate

implementation in the context of the hole based encoding, but the procedure is essentially the

same for other gates (CNOT and SHS) in other encoding schemes.

Assume we have a logical qubit |ψ⟩ encoded in a pair of Z cut holes and we want to apply

the S gate to it. Assume we have also an ancilla qubit nearby encoded in four twist defects. The

following is the step by step description for implementing the S gate:

1. Prepare the ancilla qubit in the |+⟩ logical state (Fig. 2.17a).

2. Measure the Z̄ Ȳa string operator shown in Fig. 2.17b using string measurement method ex-

plained in Section 2.1.1.2. After reading the measurement result, turn on all the stabilizers

and run d rounds of error correction to re-attach the lattice.
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3. Measure the Z̄a string shown in Fig. 2.17c. Again after doing the measurement, turn on all

the stabilizers and go through d rounds of error correction.

4. If the results of two measurements had the same sign, the logical qubit has been projected

in the S̄ |ψ⟩ state and the procedure has been finished. Otherwise, perform a transversal

phase flip Z̄ gate along the string shown in Fig. 2.17d to get the desired result.

e e

X̄a Z̄ Ȳa

e e

ee

Z̄a

Z̄

e e

(a) (b)

(c) (d)

Figure 2.17: S̄ gate implementation in hole encoding using a twist defect as ancilla. a) Initialize
the ancilla in |+⟩ state, using the string operator shown above. The red (light gray) and blue (dark
gray) parts correspond to X and Z Pauli strings respectively. b) Measure parity operator Z̄ Ȳa
using the Pauli-Z string shown above. After measurement, glue the patch together by doing d
rounds of error correction with full stabilizers. c) Measure Z̄a for ancilla qubit, using the string
operator shown above and again glue the surface together. d) If the results of two measurements
in part b and c had different signs, apply Z̄ transversally.

The procedures for implementing S̄H̄S̄ and CNOT are quite similar to what is described

above. One needs only to choose the right string for the measurement, and re-attach the lattice

together after each measurement by going through d rounds of error correction.

2.4 Long range joint measurements

An important advantage of joint measurement scheme for Clifford operations is that it allows

performing two-qubit gates between far apart logical qubits that are encoded in the same surface
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X̄1
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Ȳa

X̄2 Ȳa

Figure 2.18: A patch of holes encoding four X-cut logical qubits and an ancilla qubit encoded
using twist defects. a) Each pair encode a logical qubit with Z̄ connecting two holes and X̄
encircling the top hole. b) For each pair of holes, the Pauli-X string W̄ that encircles both holes
in topologically non-trivial but contains no information. We can initialize all such idle strings to
+1 and use them to extend other strings that need to be measured to maintain the code distance.
Note that the Pauli-Z string that encircles the holes can be absorbed into hole boundaries and so is
always equal to +1. c) How one can utilize idle strings to perform long range joint measurements.

code patch. This is in contrast to proposals which requires one to move two logical qubits next to

each other to perform two-qubit gates like CNOT between them. The reason that this is possible

is that measuring longer strings do not require deeper circuits. The required depth is rather fixed

by the code distance d.

However, it should be noted that the string measurement creates new edges in the system

and as such, it can potentially reduce the code distance. To avoid this problem during the string

measurements, it is always possible to encode the qubits far enough away from each other. How-

ever this could be inefficient since usually it increases the spatial overhead considerably. Other

workarounds may be possible in certain cases that will result in no or very small increases in

spatial overhead. As an example, we will explain how one can address this issue in sparse hole

encodings.

When a hole based encoding is used, typically one places holes on a square lattice with

distance d as is depicted in Fig. 2.18, and each pair stores one qubit of information as usual

(Fig. 2.18a). However, there are still some nontrivial loops, like the string W̄ in Fig. 2.18b,
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which are not used to encode any information. We call these strings idle strings and utilize these

unused degrees of freedom to perform long range string measurements without decreasing the

code distance. The idea is that we first initialize all idle strings encircling logical qubits to +1

and use them to extend the other strings through the code patch. For example, as is shown in

Fig. 2.18c, to perform the joint measurement X2Ya, where X2 and Ya are plotted in the figure,

one can use the string that also encircles the logical qubit in between, without affecting the mea-

surement result, which in turn helps to keep the code distance d. More details can be found in the

caption.

2.5 Classical tracking of single qubit gates

As was mentioned in Section 2.2.4, instead of applying single qubit gates in a quantum circuit,

one can trade CNOT gates in that circuit for conjugated versions of them and modify the final

measurements. But this will be useful only if one can implement conjugated versions of CNOT

with almost the same number of steps as the CNOT itself. Let us consider the S̄† CNOT S̄ circuit

(Fig. 2.15) as an example. The only non-trivial part of that circuit is the MX̄aȲt measurement,

since this time the Y operator appearing in the operator to be measured is associated with a logical

data qubit, whose encoding is arbitrary. For the dislocation code this is clearly not an issue [57]

because we can measure the logical qubits in any Pauli basis fault tolerantly and hence the same

joint measurement techniques described here can be utilized to measure the X̄aȲt parity operator.

If the logical qubits are encoded using other types of defects, one needs to find a simple string

(as opposed to graph) representation for the parity operator. Remarkably, this can be done in any

encoding scheme, as long as there exist ancilla qubits in the twist defect encoding. An example is
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(a) (b)

Figure 2.19: a) X̄a and Ȳt operators. b) X̄aȲt operator given by a simple string.

shown for the case of hole encoding in Fig. 2.19 where one can find a simple string representation

for the parity operator X̄aȲt. To identify the logical operators in Fig. 2.19 (a) and (b), we have

used the fact that the double loop around a single twist defect is a logical identity (see Fig. 2.11

). The Y measurement at the end of the modified quantum circuits can also be done similarly, by

initializing the ancilla qubit in |+⟩ state and then measuring the X̄aȲt operator.

.

2.6 Hyperbolic code

The hyperbolic code is another variant of the surface code that uses different tilings of 2D

surfaces to improve the encoding rate [54]. Ref. [27] proposes two possibilities for quantum

information processing: (1) to perform Dehn twists, which can be used to either move the qubits

around in storage, or to perform a logical CNOT between qubits stored in the same handle, and

(2) to use lattice surgery to convert encoded information to a surface code, perform the necessary

computations, and convert back to the hyperbolic code.

In this section we demonstrate how our methods can be used to implement fault-tolerantly

the full Clifford gate set directly within the hyperbolic code, without moving the information into

another quantum code patch.
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The hyperbolic code is based on a tiling of a closed surface with regular polygons. A specific

tiling is described by a set of two numbers {p, q}, known as Schläfli symbols, which represents

a tiling of the plane with regular p-sided polygons such that q of them meet at every vertex. On

a Euclidean plane, internal angles of a regular p-sided polygon are equal to (p − 2)π/p. On the

other hand if q polygons are to meet at a vertex, the internal angles should be equal to 2π/q.

Comparing these two, one can see that only tilings with 1/p + 1/q = 1/2 can be realized on

the Euclidean plane. However, one can use hyperbolic surfaces – surfaces with constant negative

curvature – to realize {p, q} tilings with 1/p + 1/q < 1/2, since the sum of the internal angles

of a regular polygon on a hyperbolic plane is less than (p− 2)π. Fig. 2.20a illustrates the {5, 4}

tiling of the hyperbolic plane.

Given a {p, q} tiling, one can define a stabilizer code where physical qubits lie on the edges

and each vertex (plaquette) represents a Z-type(X-type) stabilizer. A topologically non-trivial

closed hyperbolic surface with g handles has 2g non-trivial independent loops which can be used

to define 2g logical qubits that are stabilized by the code. For large distances and fixed number

of physical qubits, hyperbolic codes can encode more logical qubits compared to normal surface

codes. However in order to realize such codes in an experimental system that is constrained to

the Euclidean plane, non-local interactions are required.

If one prefers to work with a form similar to the surface code which was described in Sec-

tion 2.1, where qubits lie on the lattice sites and all stabilizers are given by plaquette operators,

one can use the rectified lattice, denoted by r{p, q}, which is constructed by connecting the mid-

points of the edges in a {p, q} lattice(Fig. 2.20b). The rectified lattice tiles the plane with regular

p-sided and q-sided polygons. In this new form, qubits lie on the vertices and p and q sided

plaquettes represent X and Z stabilizers respectively.
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Figure 2.20: a) {5, 4} tiling of the hyperbolic plane. b) The rectified tiling r{5, 4} can be con-
structed by connecting the midpoints of the edges in the {5, 4} tiling. The original {5, 4} tiling is
also shown with light solid lines for comparison

X1

Z 1

X3

Z 3

Ya

YaZ 1

a)

b)

Figure 2.21: a) Hyperbolic surface with 2 handles (genus g = 2) encoding 4 logical qubits and
four twist defects to encode the ancilla qubit. Logical qubits are encoded by using non-trivial
loops on the surface. Some logical operators are shown in the figure as examples. The X̄2 and
X̄4 (Z̄2 and Z̄4) operators are given by Pauli-X(Pauli-Z) strings that trace out the same loops as
Z̄1 and Z̄3 (X̄1 and X̄3) operators respectively. b) A sample two qubit parity operator.
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The joint measurement circuits for implementing Clifford gates can be used in the hyperbolic

codes as well. To perform joint measurements fault tolerantly, one can use the original {p, q}

lattice and create twist defects in the bulk by following a procedure similar to what was described

in Section 2.1.3. However one should be careful not to decrease the code distance and to keep

track of what happens to other logical qubits. A more straightforward approach would be to

select an arbitrary plaquette, divide it into a 2d× 2d square lattice and create a pair of dislocation

lines to encode the logical ancilla qubit. Dividing a plaquette by a square lattice clearly does not

change the topology of the surface and keeps the code distance fixed.

Having a logical ancilla qubit encoded with twist defects in hand, performing joint measure-

ments and implementing the quantum circuits described in Section 2.2 is straightforward. The

single and two qubit parity operators used for Clifford group gates would be given by simple Pauli

strings running through the hyperbolic plane (Fig. 2.21a) . Using the string measurement method,

these operators can be measured fault-tolerantly using d rounds of error correction. Fig. 2.21b

shows a typical Pauli string representing a two-qubit parity operator.

2.7 Color code

Color codes are another form of 2D topological codes, with the advantage of higher encod-

ing rates and also allowing for natural transversal logical operations on the qubits. However,

color codes usually have smaller error thresholds compared to surface codes. Nevertheless the

trade-off between overhead and error thresholds could potentially favor the color codes in future

experiments. Although there are already known methods for fault-tolerant quantum computing

with color codes [13,24,94], here we point out that implementing the logical Clifford gates using
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the joint measurement techniques of this chapter could have its own advantages. Specifically,

performing long-range two-qubit gates are more efficient with our method as compared with the

transversal or lattice surgery methods. In contrast to the case of the surface code, our joint mea-

surement protocols can be implemented in the color code in the case where the logical ancilla

arises from a hole-based encoding.

The color code can be defined on any three-colorable, three-valent lattice. Qubits lie on the

lattice sites and each plaquette corresponds to both X and Z stabilizer operators. The lattice

structure ensures that all stabilizers commute with each other. Each stabilizer violation corre-

sponds to a particle. To label the particles we use the color and type of the stabilizer it violates.

So, rx denotes a particle detected by a X stabilizer corresponding to a red plaquette. Since we

have three different color plaquettes (say red, blue and green), and each plaquette corresponds to

two stabilizers, naively there seems to be 6 independent particles in the theory. However, it can

be shown that one can annihilate three particles of the same type and different colors with each

other [13]. Thus, only 4 out of 6 are really independent particles. By considering composites of

these 4 types, we find that there are 16 topologically distinct particles. Indeed, it can be shown

that the color code is equivalent (after a finite-depth local unitary transformation) to two copies

of the surface code, [55] which has a total of 16 topologically distinct particles.

Just like the surface code, topologically distinct particles always appear in pairs and each pair

is connected via Pauli string operators. Since particles carry color, the string operators also would

be red, blue or green. For example, a red Pauli-Z string connects two rx particles. Note that a

Pauli-Z string violates X stabilizers at its ends but commutes with Z stabilizers.

Similar to the two topologically distinct e andm boundaries in the surface code, the color code

can have 6 topologically distinct types of boundaries, given that it is equivalent to two copies
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Figure 2.22: Making a twist defect in the color code. To make a twist defect, we first draw the
dislocation line (dashed blue line) and remove the qubits which lie on the line. Then we merge
pairs of X and Z stabilizers on the sides of the dislocation line into one. Note that in color code
each plaquette represents two stabilizers. In this figure half of modified stabilizers are shown. For
each stabilizer shown there is another one with X and Z operators exchanged. If the dislocation
line passes through a plaquette (like the blue plaquette in the middle), one should merge the X
and Z stabilizers corresponding to the same plaquette.

of the surface code (see Ref. [83, 95, 96] for a classification of topologically distinct boundary

conditions in topological phases and see Ref. [17] for detailed study of the boundaries in the

color code). In particular, the color code can have red, blue and green boundaries where red, blue

and green particles can condense.

As in the case of the surface code, logical qubits can be defined through boundary defects,

holes, bulk twist defects, or by having non-trivial genus [22, 84, 94, 97].

Holes are created by simply not measuring stabilizers within some region. To create a hole

with a red boundary, for example, we consider a closed loop of red string, and stop measuring

the stabilizers inside the loop. We also modify the stabilizers on the edge accordingly. Then we

have created a hole with a red boundary where red strings can start or end on it without violating

stabilizers.

The procedure to create bulk twist defects in the color code is similar to the case of the surface

code. One chooses a dislocation line, removes the physical qubits over that line and merges pairs
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ofX andZ stabilizers on either sides into one. Twist defects in surface codes transform e particles

tom particles and vice versa. Since color codes have more particles, there are more types of twist

defects one can create [85]. In Fig. 2.22 we have shown one possible example of a pair of twist

defects connected to each other with a dislocation line. The one shown in Fig. 2.22 changes rx to

gz, rz to gx, bx to bz and vice versa, as the particles enircle the twist defect.

Based on the underlying encoding scheme, different methods for initialization, measurement

and realization of quantum gates can be used. Most of the techniques used in surface codes like

lattice surgery and hole braiding have counterparts in color codes [24, 94]. To measure a string

operator, one can practically follow the same procedure used in surface codes. An example is

shown in Fig. 2.23. Let us say we want to measure the red Pauli-Z string operator OZ shown

in Fig. 2.23a. First, we detach from the stabilizers the qubits that lie on OZ . This will change

some of the green and blue stabilizers from 6 qubit to 4 qubit stabilizers. We also need to turn

off all red stabilizers which OZ passes through. After the modification, the color code will look

like Fig. 2.23b. Note that this has effectively created a red boundary along the string, where

red error strings can start and end without detection. But, just as in the case of the surface

code, these undetected errors will not change the value of OZ . In the next step, we measure each

individual qubit onOZ in the Z basis and also measure all stabilizers. By combining the outcome

of individual measurements and modified stabilizers and comparing them with the value of the

complete stabilizers, we can detect any error that happens during the measurement process. After

correcting the errors, multiplying the outcome of individual measurements would give the value

for the measurement outcome of OZ .

The joint measurement circuits discussed in this chapter for implementing the Clifford group

can also be implemented in color codes. If qubits are encoded in a single patch, for example using
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(a)

(b)

OZ

OZ

Figure 2.23: String measurement in color codes. a) If we want to measure the red (dark gray)
Pauli-Z string operator OZ , first we detach the qubits of OZ from neighboring stabilizers and
turn off all red (dark gray) stabilizers in its way. b) Then we measure individual qubits in Z basis
and multiply the results to find the value of OZ . One can correct errors by comparing the value of
individual measurements and modified stabilizers with the original value of complete stabilizers.
For example, the syndrome of the green stabilizer corresponding to the dashed plaquette before
cutting the code, should be equal to the product of measurement outcomes of those two individual
qubits and the 4 qubit stabilizer bellow them.
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holes or dislocations, the quantum circuits described in section 2.2 can be implemented using a

single logical ancilla encoded with twist defects. The rest of the protocol is directly analogous to

the case of the surface code.

However, unlike the surface code, in color codes we are not restricted to use twist defects as

the logical ancilla to implement the joint measurement method. An interesting feature of color

codes is that one can measure not onlyX-type and Z-type strings fault tolerantly, but also Y -type

strings. The reason is that in the color code, in contrast to the surface code, for a given plaquette

we measure both X and Z stabilizers and the product of these outcomes gives the value of the

corresponding Y stabilizer (we need to multiply it by (i)n where n is the number edges in the

plaquette). This feature is a result of the fact that the color code is a CSS code [98] constructed

from two copies of a single classical code. It is the same property that makes transversal methods

natural in this architecture. This in turn enables us to create logical qubits where Ȳ is given by a

simple Pauli string, without using twist defects.

To implement measurements involving Ȳ with a hole encoding, we encode the logical ancilla

qubit using three holes associated with different colors, similar to the proposed hole-based en-

coding in Ref. [94], but with a small modification. Consider the three holes and the graph G that

connects them, shown in Fig. 2.24a. We define X̄ as the GX operator, which means the product

of Pauli-X operators along the graph, and, similarly, the Z̄ as the GZ operator. Since the graph G

consists of an odd number of qubits, GX anti-commutes with GZ . The advantage of this scheme

is that the logical Y operator would be a Pauli-Y graph operator, denoted GY (in contrast to the

proposed method in Ref. [94]) and can be measured fault tolerantly.

If we encode the ancilla qubit in the aforementioned three hole structure, no matter how the

data qubits are encoded, as long as the logical X and Z operators of the data qubits are given
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Figure 2.24: a) Three holes and the G graph that connects them encode the logical ancilla qubit.
Blank plaquettes represent holes where we do not measure any stabilizer. X̄a, Z̄a and Ȳa are given
by GX , GZ and GY respectively. At the top, part of a Pauli string is shown which is a portion
of X̄ operator related to another logical qubit. b) To measure two qubit parity operator ȲaX̄ one
should deform G in such a way to overlap with the string related to X̄ and measure the resulting
string.

by deformable strings, we can use joint measurement for quantum computation. The idea is

similar to what was described in surface codes. For parity measurements, we deform the strings

to overlap and measure the resulting string (Fig. 2.24b). Since the G graph has all three different

colors, we can deform it to overlap with any other string operator along a line. Then, the string

measurement method can be used to find the parity value fault tolerantly.
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Chapter 3: instantaneous Dehn twists for hyperbolic quantum codes

The significant effects of decoherence on quantum systems require that a fault-tolerant quan-

tum computer appropriately encode logical quantum information and furthermore apply logical

gates directly on the encoded qubits [99,100]. However it is currently an open question to under-

stand the ultimate asymptotic resource costs required for performing quantum error correction

and fault-tolerant quantum computation. In this chapter we presents a protocol which improves

upon the known optimal asymptotic space-time resource costs by proposing constant depth topo-

logically protected unitary circuits that implement a universal set of logical gates for the Tuarev-

Viro codes [101] defined on hyperbolic surfaces. Our protocols demonstrate that protected uni-

versal gate sets can be applied in parallel and with constant space overhead using constant depth

unitary circuits.

The fault-tolerant storage and processing of quantum information come at significant resource

costs in both space overhead, n/k, and the time overhead for implementing logical gates. Fam-

ilies of QECCs that are known to possess a finite error threshold, code distance d growing with

n, and constant space overhead, where n/k is a constant independent of code distance d, have

been proposed through two basic constructions. The first is in terms of topological codes defined

on the cellulation of hyperbolic space [102, 103]. The second is various types of tensor product

codes [104–107]1.
1Many other QECCs with constant space overhead are also known (see e.g. Ref. [108, 109]), however it is not

47



While constant space overhead is known to be possible, it is unclear what the fundamental

time overhead must be for performing a universal set of logical gates. Universal logical gate

sets on encoded qubits can in general be implemented through three known methods: (1) state

distillation and gate implementation through measurements [99, 112, 113], (2) code switching

[114], and (3) braiding or Dehn twist operations in appropriate classes of topological codes [2,

60, 61, 101, 115–117].

The methods (1) - (3) necessarily require either (a) measurements, which are non-trivial to

take fault-tolerantly, together with follow-up operations that depend on the results of those mea-

surements, or (b) unitary circuits whose depth grows linearly with the code distance. An excep-

tion is the class of protocols introduced in Ref. [37, 38], which demonstrate how universal gate

sets can be applied through constant depth unitary circuits (with the depth independent of n and

d).

To date, it has not been demonstrated how methods (2) or (3) can be combined with QECCs

that have constant space overhead. Moreover, to our knowledge the optimal space-time overhead

achieved using method (1) is due to a proposal of Gottesman [112], who showed that constant

space and time overhead are simultaneously achievable for sequential quantum circuits on Pauli

stabilizer codes. This means that a generic quantum circuit of depth D, which can be imple-

mented in O(D) time using parallel gate operations, could take up to time O(kD) if implemented

sequentially. Note that for quantum codes with constant encoding rate, k is proportional to n and

as such, the circuit depth of the sequential implementation could grow linearly with the system

size.

clear whether they possess a finite error threshold, as they are not low density parity check (LDPC) codes [110]. The
LDPC property guarantees that a stabilizer code with d ∼ nα for α > 0 will have finite error threshold. [111, 112].
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In this chapter we consider the most general class of topological codes, which we refer to

as Turaev-Viro codes. These are based on Turaev-Viro-Barrett-Westbury topological quantum

field theories (TQFTs) [118, 119] and are stabilized by the Levin-Wen string-net Hamiltonians

[116]. This class of TQFTs include, as special cases, the theories that describe the Kitaev surface

code and quantum double models [2]. The use of these TQFTs and the associated Levin-Wen

Hamiltonians as quantum codes was discussed explicitly in Ref. [101].

Here we consider Turaev-Viro codes defined on triangulations of hyperbolic surfaces. As

we review below, the constant negative curvature of the hyperbolic surface allows for a finite

encoding rate and thus constant space overhead for the associated topological code [102]. Such

hyperbolic codes can be implemented in a flat two-dimensional layout of physical qubits by al-

lowing long-range couplings between the physical qubits – a possibility allowed by a variety of

quantum computing architectures (e.g. ion traps [120, 121], modular architectures of supercon-

ducting cavity networks [122–125], Rydberg atoms [126–129] and silicon photonics [130]), and

a necessity for any QECC with constant space overhead. In particular, experimental realization

of hyperbolic circuit QED lattices [131, 132] is achieved by utilizing the feature that the cavity

quantum bus (used to connect superconducting qubits) can have a wide range of length scales.

The main result of our chapter is an explicit protocol for implementing Dehn twist operations

in hyperbolic Turaev-Viro codes through constant depth unitary circuits. Here constant depth

refers to the fact that the depth of the circuit is independent of n and d. We note that through-

out this chapter, by constant depth unitary circuit, we assume implicitly that every gate in the

circuit also acts on a constant number (independent of d and n) of physical qubits. In contrast

to the proposal of Ref. [112] which implements logical gates sequentially via gate teleportation,

our approach allows parallel gate operations on encoded qubits via unitary circuits. Our circuit
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takes the form of a permutation on qubits, followed by a constant depth unitary circuit which is

local with respect to the hyperbolic metric that abstractly defines the code. The permutation can

be implemented with a depth-two circuit by applying long-range SWAP operations in parallel

throughout the code. These results generalize the proposals of Refs. [37, 38, 133] demonstrat-

ing that braids and Dehn twists in general topological codes associated with triangulations of

Euclidean space can be implemented by similar constant depth unitary circuits. The extension

to hyperbolic space described here implies that these protocols are also compatible with having

constant space overhead. Our results demonstrate explicitly an advantage in terms of space com-

plexity for implementing the mapping class group of closed manifolds in topological codes, as

compared with the more well-studied braid group of punctures [2, 30, 134].

Our protocols are inherently protected from errors in the sense that all error strings that are in-

troduced to the system by faulty physical operations have O(1) length; moreover, all pre-existing

error strings grow by at most an O(1) factor. Stated differently, our circuits map local operators

to local operators: an operator with support in a local region R is mapped to an operator with

support in a local region R′, such that the area of R and R′ are related by a constant factor inde-

pendent of d. However, since this constant factor is greater than unity, our circuits may grow error

strings by a constant factor that is larger than unity. In the presence of syndrome measurement

errors we thus require O(d) rounds of error correction for every O(log d) logical gates that are

applied.

Our protocols demonstrate how to apply logical gate operations in hyperbolic codes without

increasing the space overhead. The constant depth logical gates developed here for the general

hyperbolic Turaev-Viro code can also be applied to the hyperbolic surface code as a specific

case, where a subset of Clifford logical gates [133] can be implemented through constant depth
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unitary circuits. We note that Ref. [135] also discussed Dehn twists in hyperbolic stabilizer

codes, however constant depth protocols that can preserve the constant space overhead were not

presented.

As we discuss, our protocols have important implications for improving the asymptotic scal-

ing of the space-time overhead required for fault-tolerant universal quantum computation. In

particular, they suggest that universal fault-tolerant quantum computation with constant space

overhead and a time cost of O(dD/ log d) is possible for a logical quantum circuit of depth D.

This chapter is organized as follows. In Section 3.1, we review the construction of hyperbolic

Turaev-Viro codes. In Section 3.2, we sketch the two key steps for how to implement logical

operations corresponding to Dehn twists in hyperbolic Turaev-Viro codes. The first step requires

explicit maps representing Dehn twists on hyperbolic surfaces, which we present in Section 3.3.

The second step, explained in Section 3.4 demonstrates how Turaev-Viro codes associated with

different triangulations of hyperbolic space can be related to each other through local constant

depth circuits. In Section 3.5 we discuss the fault-tolerance of these protocols and and their

implications for asymptotic space-time resource costs for universal fault-tolerant quantum com-

putation.

3.1 Hyperbolic Turaev-Viro code

The Turaev Viro code [101, 116] is a quantum error correcting code which is defined based

on a given unitary fusion category C and is constructed using qudits that reside on the edges of a

triangulation Λ of a surface Σ. Below we briefly review the construction of such codes.

Consider a unitary fusion category [117] C with N simple objects. We associate a vector
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Bp

Qv

Figure 3.1: A triangulation Λ drawn by light gray solid lines and its dual trivalent graph Λ̂ drawn
by dark blue lines. The arrows on the edges define the branching structure. Black dots represent
the physical qubits. Examples of vertex operators Qv and flux operators Bp and their support are
also illustrated.

space V c
ab to any triplet of simple objects (a, b, c), whose dimension corresponds to the fusion

rules N c
ab = dim V c

ab. We may write fusion rules formally as:

a× b =
∑
c

N c
ab c. (3.1)

Associativity of the fusion rules gives a constraint on the fusion coefficients N c
ab. In particular,

the vector spaces
⊕

e V
e
ab⊗V d

ec and
⊕

f V
f
bc⊗V d

af are isomorphic. The unitary map between these

two vector spaces are the F -symbols of the theory,

F abc
d :

⊕
e

V e
ab ⊗ V d

ec 7→
⊕
f

V f
bc ⊗ V d

af (3.2)

Consider a surface Σ together with a triangulation Λ (see Fig. 3.1) of Σ. The triangulation is

also equipped with a branching structure (i.e. a local ordering of vertices). To each edge of the

triangulation we assign an N -state qudit with states labeled |ai⟩, where ai are the simple objects
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in C. For simplicity of the construction we assume that the fusion rules N c
ab are 0 or 1, although

this can be easily generalized by including additional degrees of freedom at the vertices.

To define the code, it is simpler to work with the cellulation dual to Λ, which we denote by

Λ̂. Note that since Λ is a triangulation of the surface, Λ̂ is a trivalent graph. If a qudit is in

state |a⟩, we say a type a string is passing through the corresponding edge on Λ̂ and label the

edge by a. The wave functions of the code space then can be seen as superpositions of string-net

configurations that are consistent with certain string branching rules [116].

The code space HΛ(Σ) is a subspace of the full Hilbert space of the physical qudits. The

topological nature of the code guarantees that different choices of triangulations Λ and branching

structures yield isomorphic code subspaces.

In particular HΛ(Σ) corresponds to the ground state subspace of a local Levin-Wen Hamilto-

nian [116]:

HΛ̂ = −
∑
v

Qv −
∑
p

Bp, (3.3)

where
∑

v and
∑

p sum over all vertices and plaquettes of Λ̂ respectively (see Fig. 3.1). One can

think of this model as a generalization from the abelian surface code to arbitrary (abelian and

non-abelian) non-chiral topological orders in 2D. We note that the Levin-Wen Hamiltonian as

defined in Ref. [116] requires a certain tetrahedral symmetry for the F -symbols, which makes the

branching structure of the triangulation unnecessary, although the construction can be generalized

to relax this condition.

The vertex operator Qv is a local projection operator which ensures that the ground state

wave function is consistent with the branching rules of the theory. The action of Qv on a state

|ψ⟩ depends only on the states of qudits that reside on the edges which are incident to v and is
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defined as:

Qv
a

b

c
v

= N c
ab

a
b

c
v

(3.4)

The action of the flux operator Bp on a wave function depends only on the edges which are

incident on the vertices of p and is defined using the F -symbols. It can be thought of as the

generalization of the local plaquette operators in Z2 surface codes. Its exact form is rather com-

plicated and we refer the interested reader to References [101, 116] for a complete and through

review of the Turaev-Viro codes.

Just like the surface code, the eigenstates of the Hamiltonian (3.3) can be realized in an active

error correction approach by repeated measurement of all Qv and Bp operators, each of which

can be performed by a local constant depth circuit together with an ancilla. The measurement

results are then used to detect and correct possible errors. Designing explicit quantum circuits for

syndrome measurements and finding fault tolerant error correction schemes for specific variants

of Turaev-Viro codes are subjects of ongoing research [136–141].

A hyperbolic Turaev-Viro code is a Turaev-Viro code which is defined on a triangulation of

a closed hyperbolic surface Σ. A closed hyperbolic surface is a closed surface endowed with a

Riemannian metric of constant curvature −1. Due to the Gauss-Bonnet theorem, the area of such

a surface can be found from its genus g:

AΣ = 4π(g − 1). (3.5)

The number of logical qubits (i.e. log[dim HΛ(Σ)]) for a topological quantum code on a closed
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genus g surface is proportional to g. On the other hand, for a fine triangulation with bounded

geometry, where by bounded geometry we mean that the edge lengths and angles are bounded

from above and below, the number of physical qubits n is proportional to the surface area AΣ and

the code distance d scales as log(n) [102]. Therefore, according to (3.5), by using hyperbolic

surfaces of increasing genus we can construct a family of hyperbolic Turaev-Viro codes with

constant encoding rate and increasing code distance. Note that the encoding rate for a quantum

code defined on a Euclidean surface is O(1/d2) and goes to 0 as one goes to large distances [46].

We further note that the existence of a lower bound on the angles in the fine triangulation

also ensures that the associated error-correcting code is in essence a low-density parity check

(LDPC) code, which has a low-weight (upper-bounded) plaquette syndrome Bp on the dual triva-

lent graph Λ̂ (the vertex operator Qv is always weight-3 due to the definition of a triangulation or

equivalently the trivalent structure of its dual graph). As is the case with stabilizer codes [111],

the LDPC property is important for the possibility of an error threshold in the

We note that numerical evidence for a finite error threshold in hyperbolic surface (stabilizer)

codes was established in Ref. [54, 135].

3.2 Geometric gate sets for hyperbolic Turaev-Viro codes

Consider a Turaev-Viro code defined using a unitary fusion category C on a triangulation

Λ of a closed surface Σ with genus g. It is well-known that the code space HΛ(Σ) forms a

non-trivial representation of the mapping class group (MCG) of the surface Σ. In other words,

elements of the MCG implement certain non-trivial operations on the code space. Recall that the

MCG is the group of homeomorphisms of the surface modulo those homeomorphisms that are
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continuously connected to the identity. We call the set of such operations the geometric gate set.

Gates corresponding to MCG operations are naturally topologically protected (and thus can be

made fault-tolerant) and can be implemented through a variety of methods [30, 38, 61, 101, 117,

133]. For certain codes, such as the Fibonacci Turaev-Viro code, the geometric gate set forms a

universal gate set [115].

Here we consider a way of implementing MCG elements in terms of constant depth unitary

circuits that is closely related to the method proposed in [38], although our presentation below is

somewhat different and more general. This method can then be applied to the case of hyperbolic

codes which yield constant space overhead.

Let U be a mapping class group element of the surface Σ. We denote its representation on the

code space HΛ(Σ) by U . For a given U , one can implement U using the following procedure:

• (Step 1) Let fU : Σ → Σ be a specific homeomorphism representing U . We move the

vertices of Λ using fU , and connect them as they were connected originally to get a new

triangulation of Σ which we denote by Λ′. This operation corresponds to a permutation

of the physical qubits. If the qubits are mobile, this transformation can be carried out by

shuttling the qubits around. Otherwise, it can be implemented as a depth-two circuit by

using long-range SWAPs in parallel throughout the system [38].

• (Step 2) Since the Turaev-Viro code was defined using the triangulation Λ, after the first

step the wave function of the system would no longer be in the original code space HΛ(Σ).

Rather it would be associated to the code space HΛ′(Σ) of a different triangulation Λ′. To

remedy this, we apply a local quantum circuit that effectively implements a local geom-

etry deformation and transforms the code defined on the Λ′ triangulation back to the one
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defined on the original Λ triangulation. We will show in subsequent sections that this re-

triangulation can be performed via a constant depth local quantum circuit. If we regard

this transformation as a homeomorphism of the surface Σ, it would be equivalent to the

trivial element of MCG, which ensures that it will not result in another nontrivial transfor-

mation on top of the map U . Details of the geometry deformation circuit are explained in

Section 3.4.

As an example, take Σ to be the torus T 2 with a regular triangulation Λ which is used to

define the Turaev-Viro code. To construct the torus, we can take a square of side 1 and identify

the opposite sides.

Alternatively, we can start with the complex plane C and identify points according to equiv-

alence relations z ∼ z + 1 and z ∼ z + i. We can use these identification rules to define a

universal covering map from C to T 2. A triangulation of T 2 then translates to a triangulation of

the complex plane (see Fig. 3.2a).

Let U = Dα be the Dehn twist along α, the meridional loop of the torus(for a brief review of

Dehn twists, see Appendix A). Consider the shearing map fD(x+ iy) = x+ i(x+ y). It is easy

to verify that this map respects the equivalence relations and corresponds to a Dehn twist along

the α loop. If we move (permute) the qubits according to fD, we get the configuration shown

in Fig. 3.2b. Note that as a result of this map, the string along the β loop now encircles both

handles while the string along the α loop remains unchanged, as one would expect form a Dehn

twist along α. As a result of the previous step, the triangulation of the torus has been changed,

as one can see by comparing Fig. 3.2c and Fig. 3.2a. To compensate for that, we will apply a

local unitary circuit, which corresponds to the trivial element of the MCG, to restore the original
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(a) (b)

(c) (d)

β̃α

β̃α
β̃α

α

β

Figure 3.2: (a) The complex plane C as the universal cover of the torus T 2. Blue and red lines
correspond to the canonical loops on the torus. The triangulation Λ of the torus is shown as
well. The shaded region can be taken as the fundamental domain of the covering. By applying
fU(x + iy) = x + i(x + y) (green arrows), the shaded region in (a) maps to the sheared region
in (b) and the β loop maps to β̃ while the α loop remains intact. By looking at the original
fundamental domain as in (c) it becomes clear that β̃ goes around both handles. Application of
the local geometry deformation circuit then recovers the original triangulation as shown in (d)
and maps the wave function back into the original code space.
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triangulation without applying any further logical gate. The final result is shown in Fig. 3.2d.

In Ref [37, 38], the above procedure has been used extensively to implement MCG elements

by finite depth quantum circuits in QECCs which are defined on Euclidean surfaces. The main

result of this chapter is that the same basic idea can be used to implement logical gates in QECCs

which are defined on a hyperbolic surface. In the following we are going to explain in detail how

one can implement geometric gates in hyperbolic Turaev-Viro codes.

Let Σ denote a hyperbolic surface that is used to define the hyperbolic Turaev-Viro code.

Since the MCG can be generated by the Dehn twists around the handles of Σ, to implement an

arbitrary geometric gate it suffices to be able to implement Dehn twists around the handles of

Σ [38].

In Section 3.3, we construct specific diffeomorphisms that correspond to the basic Dehn

twists, which then can be used to carry out Step 1 of the above procedure. Next, in Section 3.4,

we introduce the local finite depth quantum circuit that converts two given triangulations to one

another. By combining the results of these two sections and following the above procedure, one

can implement the representation of any basic Dehn twists on the code space HΛ(Σ), and hence

implement any geometric gate by a constant depth unitary circuit.

3.3 Continuous Maps for Dehn Twists

First we concentrate on the g = 2 case. After developing the maps for the simplest case, we

show how these maps can be generalized for a surface of arbitrary genus.
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H2

(a) (b) (c)

H2

α1

α1

β1
β1

β1

α1

α2

α2

α2

β2
β2

β2

Figure 3.3: (a) The canonical octagon plotted on the Poincare disk model of the hyperbolic plane.
Edges with the same color (label) have to be identified such that the arrows on the two edges line
up to each other. (b) The Σ2 surface resulting from identifying the edges of the canonical octagon.
(c) Tilling of the hyperbolic plane by the canonical octagon.

3.3.1 Dehn Twists on a Double torus

Let Σ̃2 be an arbitrary genus 2 surface. As a surface with negative Euler characteristic,

χ(Σ̃2) = −2, it admits a hyperbolic metric, i.e. a complete finite area Riemannian metric of

constant negative curvature −1.

One way to define a hyperbolic metric on Σ̃2 is to start with the regular hyperbolic octagon

on H2 whose interior angles sum to 2π, known as the Fricke canonical polygon [142, 143]. If

we identify every other edge as shown in Fig. 3.3a with the arrows specifying how the edges

should be lined up, we obtain a genus g = 2 hyperbolic surface Σ2 shown in Fig. 3.3b, which

is homeomorphic to Σ̃2. According to Ref. [144], the homeomorphism can be upgraded to a

diffeomorphism and thus induces a hyperbolic metric on Σ̃2. From now on, we concentrate

on Σ2, knowing that our statements about Σ2 can be generalized to the Σ̃2 surface using the

aforementioned diffeomorphism.

As a result of the identification scheme, all vertices of the canonical polygon represent a
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single point on Σ2 and thus the sides of the polygon correspond to closed loops with a common

base point on Σ2 (see Fig. 3.3b). Conversely, if we start with the double torus in Fig. 3.3b and

cut the surface along these loops, we will obtain the octagon in Fig. 3.3a. In fact, these loops can

be taken as the generators of the fundamental group π1(Σ2),

π1(Σ2) = ⟨α1, β1, α2, β2 |
2∏
i=1

αiβiα
−1
i β−1

i = 1⟩. (3.6)

An element of the MCG will take these loops to some other loops on Σ2, and thus naturally

induces a map over π1(Σ2). More precisely, it can be shown [145, 146] that the mapping class

group is isomorphic to the group of outer automorphisms of the fundamental group,

MCG(Σ2) ≈ Out(π1(Σ2)) = Aut(π1(Σ2))/Inn(π1(Σ2)), (3.7)

where Aut(G) and Inn(G) denote the automorphism group and inner automorphism group of G

respectively.

Let U denote an arbitrary element of the mapping class group and hence an equivalence class

of homeomorphisms on Σ2. Due to Eq. (3.7), U also corresponds to an equivalence class of

automorphisms of π1(Σ2). In the rest of this chapter, in an abuse of notation we use the same

symbol U to denote both the equivalence classes of homeomorphisms and Out(π1(Σ2)) and also

representatives of these classes.

Consider the canonical octagon on the hyperbolic plane. By attaching a copy of the octagon

on each edge according to the identification rules and continuing this procedure indefinitely for

the edges of the newly added octagons, one will end up with the {8, 8} tiling of the hyperbolic
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plane (see Fig. 3.3c). The result can be used to define a covering map p : H2 −→ Σ2 which along

with H2 makes up the universal cover of Σ2.

In what follows we provide explicit expressions for the homeomorphisms of Σ2 to itself cor-

responding to the Dehn twists along the primary loops of Σ2.

3.3.1.1 Dehn twists along the α and β loops

We start with the Dehn twist along α1.

Dα1 : Σ2 −→ Σ2 (3.8)

To find an element of Aut(π1(Σ2)) which represents Dα1 , it is enough to see how it acts on the

canonical loops of the Σ2 surface. To this end we can use the Dehn surgery method described in

Appendix A. However, for simplicity, first we push the α1 slightly to the left to detach it from

the α2 and β2 loops and consider the twist map along this new loop. Note that the Dehn twist

Dα1 depends only on the isotopy class of α1. Then, as one can verify by looking at Fig. 3.3b and

using the Dehn surgery method, Dα1 maps β1 to β1α−1
1 and leaves all the other canonical loops

invariant. Note that we use the left to right convention for loop multiplication; if f and g are two

loops with a common base point, fg corresponds to a loop that traces f first and then g.

Instead of specifying Dα1 , we provide an explicit form for its lift to the covering space D∗
α1

:

H2 −→ H2 such that the diagram below commutes:

H2 H2

Σ2 Σ2

D∗
α1

p p

Dα1

(3.9)
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β1α
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β1α
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1
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D
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M

M

x

x

(c)

Figure 3.4: (a) The fundamental domain (the shaded region) can be identified with Σ2. We define
the action of the shearing map on the points in this region. The action of the map on the other
points is defined according to the identification scheme. (b) Image of the fundamental domain
under the shearing map D∗

α1
. (c) Example of the action of the map: the point x inside the triangle

∆ABC maps to the point x′ inside ∆ACE. See the text for details.

To this end, we define how D∗
α1

acts on the points of a fundamental domain. Its action on the

other points of H2 are defined accordingly to ensure commutativity of the diagram in Eq. (3.9).

We take the fundamental domain to be the canonical octagon (shaded region in Fig. 3.4a). The

action of D∗
α1

on the fundamental domain gives the sheared octagon shown in Fig. 3.4b. As one

can easily verify, it transforms the β1 loop to β1α−1
1 as desired, while all the other loops remain

unchanged. In particular note that the α1 loop is mapped to itself and thus has not changed.

We define the mapD∗
α1

more precisely as follows. We map ∆ABC in Fig. 3.4b to ∆ACE and

∆ACD to ∆AED, where ∆ABC denotes the hyperbolic triangle made by connecting A,B and

C via geodesics on H2. All the other regions in the octagon are left untouched. Mapping ∆ABC

to ∆ACE is done as follows. Consider an arbitrary point, x, inside ∆ABC (see Fig. 3.4c).

To find its image x′ = D∗
α1
(x), first draw the geodesic line that passes through A and x, and

continue it to find its crossing point M with the line BC. Now choose M ′ on line CE such that

|CM ′|/|CE| = |BM |/|BC|. By |PQ| we mean the length of the geodesic line connecting P
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and Q, measured using the hyperbolic metric. Finally, we choose x′ on the AM ′ line such that

|Ax′|/|AM ′| = |Ax|/|AM |. ∆ACD is mapped similarly to ∆AED.

It is clear that this map is continuous for the points inside the fundamental domain. It is also

straightforward to check that this map is consistent with edge identification rules and thus is con-

tinuous throughout the H2 plane. Moreover, the diagram in Eq. (3.9) commutes by construction

and hence Dα1 is continuous on Σ2. Furthermore, as we explicitly verify in Appendix B, this

map does not change the area of any region by more than a constant factor. This is an important

property which allows the second step of our Dehn twist protocol, as we explain in subsequent

sections.

Dehn twists along β1, α2 and β2 are defined in a similar manner.

3.3.1.2 Dehn twists along the γ loop

To generate all elements of the MCG we need the Dehn twist along the γ loop as well (see

Fig. 3.5a). The canonical octagon which we used to define Dα1 has two important features: first,

Dα1 only changes the β1 sides while leaving other sides of the octagon invariant; second, α1 and

β1 were neighboring sides of the octagon. However, since both β1 and β2 transform non-trivially

under Dγ and since the γ loop is not one of the polygon’s sides, the action of Dγ on the canonical

octagon is not as simple as Dα1 and looks rather complicated. Therefore to construct Dγ , it is

easier to work with a different fundamental domain. To find the appropriate fundamental domain,

we cut Σ2 along a new set of loops rather than the standard α’s and β’s.

Let α̃i denote the αi loop translated through βi:

α̃i = βiαiβ
−1
i . (3.10)
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δ

δ
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α̃2
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Figure 3.5: (a) α̃1 = β1α1β
−1
1 and γ loops on the Σ2 surface. (b) The shaded region can be taken

as the fundamental domain of the covering map. (c) Image of the the shaded region in (b) under
the shearing map D∗

γ .

α̃1 is illustrated in Fig. 3.5a. Note that we can write γ as:

γ = α−1
2 α̃1 = α−1

2 β1α1β
−1
1 . (3.11)

We also define δ as:

δ = β2β1, (3.12)

which represents a loop that encircles both holes of Σ2.

As was the case for the α1 Dehn twist, to find an automorphism of π1(Σ2) corresponding to

Dγ first we push the γ loop shown in Fig. 3.5a slightly to the right and then use the Dehn surgery

method to find its action on various loops. We remark that if we used another loop, e.g. if we

pushed the γ loop slightly to the left instead, we would find the same automorphism up to an

action of Inn(π1). Note that due to Eq. (3.7), all such maps represent the same element of the

mapping class group.

The representative automorphism induced by Dγ on π1(Σ2) can then be summarized in the
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following four equations:

Dγ(α1) = α1, Dγ(β1) = γ−1β1,

Dγ(α̃2) = α̃2, Dγ(β2) = β2γ. (3.13)

Note that Dγ leaves the δ loop invariant. To find the appropriate fundamental domain, we trade

the {α1, β1, α2, β2} loops with {γ, β1, α̃2, δ}. The group relation in Eq. (3.6) can be expressed in

terms of these loops as well:

α̃−1
2 δ−1α̃2δβ

−1
1 γβ1γ

−1 = 1. (3.14)

Note that {γ1, β1} as well as {α̃2, δ} have algebraic intersection 1 while the two sets are mutually

detached, i.e. the algebraic intersection number of a loop from the first set and a loop from the

second set is 0. So the {γ, β1, α̃2, δ} loops could have been taken as the primary loops of Σ2 in

the first place.

This in turn suggests using an octagon with its sides following the δ,α̃2,β1 and γ loops. Such

an irregular octagon is shown in Fig. 3.5b. As one can easily verify, this can be taken as the

fundamental domain of the mapping p. Moreover, it has the features we are looking for: under the

action ofDγ , only the β1 loop gets deformed and, furthermore, the γ and β1 loops are represented

by neighboring sides of the polygon.

D∗
γ (the lift of Dγ to H2) shears the octagon shown in Fig. 3.5b to the one shown in Fig. 3.5c.

More precisely, ∆FGA is mapped to ∆FAH and ∆FAB is deformed to ∆FHB. Mapping the

triangles is done through the same procedure described in Section 3.3.1.1. The action of D∗
γ on

the other points of H2 is then defined according to the identification rules. It is straightforward to
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verify continuity of the map. Moreover, as we verify in Appendix B, these maps do not change

the area of any region of the surface by more than a constant factor.

Any element of the MCG of the double torus can be generated using Dαi , Dβi and Dγ . In the

next section we discuss how these constructions generalize to higher genus surfaces.

3.3.2 Dehn Twists on Genus g surface

A hyperbolic genus g surface can be obtained by identifying every other edge of a 4g-gon,

whose angles sum to 2π, in hyperbolic space. The space of different hyperbolic metrics, Te-

ichmüller space, corresponds to inequivalent choices of the locations of the vertices of the 4g-

gon [147]. Here we consider the canonical 4g-gon, i.e. a regular 4g-gon on H2. The sides of the

polygon can be used to generate the fundamental group of the Σg surface:

π1(Σg) = ⟨α1, β1, · · · , αg, βg |
g∏
i=1

αiβiα
−1
i β−1

i = 1⟩. (3.15)

The MCG of Σg can be generated by Dehn twists along αi and βi for i = 1, · · · , g and γi for

i = 1, · · · , g − 1. γi can be written as,

γi = α−1
i+1α̃i. (3.16)

where α̃i is defined as in (3.10). Since our maps for the Dehn twists on the double torus modify

only a specific corner of the polygon while leaving the other parts of it fixed, they generalize

naturally to maps on the 4g-gons. Also as in the previous g = 2 case, to construct Dγi , it is easier

to work with an irregular g-gon. As an example, the g = 3 case is analyzed in more detail in the
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Appendix C.

Furthermore, in Appendix B we show that this map does not change the area of any region by

more than a constant bounded factor, even in the limit g → ∞. As explained in the next section,

this feature is important to ensure that the depth of the local geometry change circuit remains

constant as one increases the code distance.

3.4 Change of triangulation

As described in Section 3.2, step (1) of our protocol permutes the qubits by applying the

continuous shear map of Section 3.3 to the triangulation Λ. After the permutation, the original

triangulation Λ is changed to a sheared triangulation Λ′. In order to return to the original Hilbert

space HΛ and hence reach a non-trivial unitary map preserving the code space, we need to switch

the triangulation back from Λ′ to Λ.

In this section, we devise a local unitary circuit to switch a Turaev-Viro code between two

arbitrary triangulations Λ and Λ′. We consider Λ and Λ′ to have the same number of vertices and

edges for any given region, up to at most a constant factor, c [as illustrated in Fig. 3.6a]. Since the

switching circuit can be parallelized by acting throughout the whole space at once, the depth of

the circuit only depends on c. To present our algorithm it is more convenient to show the switch

between the two dual trivalent graphs instead, as indicated by the thick blue lines in Fig. 3.6a.

For clarity, we drop the branching structure (previously indicated by arrows on the edges) of

the graphs in this section. Many theories of interest, such as the Ising code and the Fibonacci

code, do not require the branching structure.
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Figure 3.6: (a) Example of two different triangulations Λ and Λ′ (and their dual graphs) with
the same average vertex density, which we wish to switch between. (b,c) Elementary gadgets:
2-2 and 1-3 Pachner moves on the triangulation (represented by Λ̂I to Λ̂II in the top row) and its
dual trivalent graph (represented by Λ̂I to Λ̂II in the bottom row). The black dots represent data
qubits, while the white dots represent ancilla qubits initialized to |0⟩. (d) The quantum circuit
implementing the 2-2 Pachner move (F operation) in the Fibonacci model. (e) The “edge-sweep”
algorithm to merge two edge-sharing plaquettes on a trivalent graph by s−3 steps of 2-2 Pachner
moves followed by a 1-3 Pachner move in the end. (f) A parallel merging algorithm.
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3.4.1 Gadgets

The elementary re-triangulation gadgets we use are associated with the 2-2 and 1-3 Pach-

ner moves, shown in Fig. 3.6b and Fig. 3.6c. They correspond to unitary transformations that

take the wave function defined on a triangulation ΛI to the wave function defined on a different

triangulation ΛII, which differs locally:

ΨΛ̂I

(
e

b

a

c

d

)
=
∑
f

F abc
def ΨΛ̂II

 f
b

a

c

d

 (3.17)

ΨΛ̂I

 b

a

cd
e f

 = [F abd
fce ]

∗
√
dddf
dc

ΨΛ̂II

 b

a

c
 , (3.18)

where F abc
def is the F-symbol that defines the Turaev-Viro code, and dc, dd, and df are the quantum

dimensions of anyons labeled by c, d and f . For the 2-2 Pachner move [Eq. (3.17)], the state

labels on the four external legs (a,b,c and d) are fixed, while the internal edge is flipped (both in

the triangulation and trivalent graph) with the state labels changing from e to f . The 2-2 Pachner

move can be implemented by unitary gates acting on physical qubits as will be illustrated below.

For the 1-3 Pachner move [Eq. (3.18)], the state labels on the three external legs (a,b,c and d) are

fixed, while a triangle with three new edges (e, d and f ) is added at the center of the trivalent

graph (from Λ̂I to Λ̂II). Correspondingly, in the original triangulation, a three-legged vertex is

added in the center of a triangle (from ΛI to ΛII) [see Fig. 3.6c]. These new edges come from

ancilla qubits initialized at |0⟩, which then get entangled into the code by the 1-3 Pachner move,

which can be considered as a fine graining procedure. The reverse of this process is a coarse
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graining procedure. The 1-3 Pachner move can also be implemented by unitary gates, which can

be decomposed into 2-2 Pachner moves and two other simple unitary gates (see Ref. [37, 38] for

details).

As an example we may consider the Fibonacci Turaev-Viro code. In this code, we have two

simple objects in the unitary fusion category, labeled 0 and 1, with fusion rules 1 × 1 = 0 + 1,

and the only non-trivial F -matrix is:

F 111
1 =

ϕ−1 ϕ− 1
2

ϕ− 1
2 −ϕ−1

 , (3.19)

where ϕ =
√
5+1
2

is the golden ratio. All other F -symbols are either 1 or 0, depending on whether

they are consistent with the fusion rules and Eq. (3.17). A specific quantum circuit implement-

ing the 2-2 Pachner move (F -operations) in the Fibonacci code was presented in Ref. [136]

and is shown in Fig. 3.6d. The circuit inside the dashed box is composed of a 5-qubit Toffoli

gate sandwiched by two single-qubit rotations, which implements the F -matrix in (3.19). Here,

Ry(±θ) = e±iθσy/2 represents single-qubit rotations about the y-axis with angle θ=tan−1(ϕ− 1
2 ).

All the other maps are taken care of by the rest of the quantum circuit in panel (d). For the other

widely considered case, the Z2 hyperbolic surface codes, the F-symbols and Pachner moves can

be implemented via only CNOTs (see Ref. [38] for details).

Based on these gadgets, we introduce the following two lemmas about the trivalent graphs,

which serve as additional gadgets for the main algorithm.

Lemma 3.1. Two edge-sharing plaquettes on a trivalent graph can be merged into a single

plaquette using s − 2 steps of Pachner moves, where s is the number of edges in the smaller
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Figure 3.7: The main switching algorithm between trivalent graphs Λ̂ and Λ̂′.

plaquette (i.e., plaquette with fewer edges).

An “edge-sweeping” algorithm implements the above statement as shown in Fig. 3.6e with

s− 3 steps of 2-2 Pachner moves and a 1− 3 Pahcner move in the end.

Using the above plaquette-merging gadget, we can also demonstrate the following lemma

when considering merging many plaquettes in parallel, as illustrated in Fig. 3.6f. In particular,

one merges all mergeable neighboring pairs in each step.

Lemma 3.2. A collection of m contiguous plaquettes can be merged with O (log2(m)) rounds

of merging of the edge-sharing plaquettes. The depth of the algorithm is upper bounded by

O (l log2(m)) steps of Pachner moves. Here, l is chosen to be the number of edges of the largest

plaquette in this collection.

3.4.2 The main algorithm

Here, we present the main algorithm to switch between the triangulations Λ and Λ′ (and

equivalently the dual graphs Λ̂ and Λ̂′). For the clarity of presentation, we choose a particular

order by switching from Λ̂ to Λ̂′, although the algorithm and corresponding quantum circuit are

reversible. The detailed algorithm is as follows:

1. We first introduce a trivalent graph Λ̂C coarser than the two fine trivalent graphs Λ̂ (starting
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graph) and Λ̂′ (target graph) we want to switch between. In particular, we consider a coarser

graph Λ̂C that encircles at most m plaquettes of the starting finer graph Λ̂. We note that m

needs to be bounded and independent of code distance d. We also require that any plaquette

in the coarser graph Λ̂C contains at least one plaquette of the finer graphs, as illustrated in

Fig. 3.7a.

Now the coarser graph Λ̂C also encircles at most m′ plaquettes of the target finer graph Λ̂′.

As discussed in Section 3.3 and Appendix B, the area ratio for a given infinitesimal code

patch before and after the application of the shear maps (belonging to Λ̂ and Λ̂′ respec-

tively) is a bounded constant independent of d (and thus also independent of the number of

physical qubits n). This ensures that the ratio m/m′ is also bounded and independent of d.

Since m is bounded and independent of d, m′ is also a bounded constant independent of d.

This is a crucial property to ensure the O(1) depth of the switching circuit and the logical

gates.

2. We now match the vertices (vC) of the coarser graph Λ̂C with vertices (v) on the starting

graph Λ̂ by pinning the vertices of Λ̂C to the closest vertices to them on Λ̂, as shown

in Fig. 3.7b. We can now bend each edge (eC) on the coarser graph Λ̂C to match with

multiple edges (e) on the starting graph, as shown in Fig. 3.7c. In this way, each plaquette

in the fine graph Λ̂ is strictly enclosed in only one plaquette in the coarser graph Λ̂C . This

step does not require any quantum operations and is done entirely in the classical software.

Note that the deformation of the coarser graph Λ̂C leads to a slight change of the maximal

number of enclosed fine plaquettes in any coarser plaquette, i.e., m and m′, into O(m) and

O(m′).
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3. We coarse grain the finer graph Λ̂ into the coarser graph Λ̂C by using the parallel plaquette

merging algorithms introduced in Lemma 3.2, as shown in Fig. 3.7d. This procedure takes

O(log2(m)) merging steps with O(l log2(m)) time steps of Pachner moves, where l is the

largest number of edges among all plaquettes in the starting finer graph Λ̂.

4. We match vertices (vC) and the edges (eC) of the coarser graph Λ̂C with those (v′ and e′)

in the finer graph Λ̂′ using the same procedure as above, as shown in Fig. 3.7e.

5. We fine grain the coarser graph Λ̂C into the target finer graph Λ̂′ by reversing the par-

allel merging algorithms in Lemma 3.2, as shown in Fig. 3.7f. This procedures takes

O(log2(m
′)) splitting steps with O(l′ log2(m

′)) time steps of Pachner moves, where l′ is

the largest number of edges among all plaquettes in the target finer graph Λ̂′.

As we see the total time complexity of the switching algorithm is O[max(l log2(m), l′ log2(m
′))],

i.e., dominated by the larger complexity from the coarse graining and fine graining process. Since

m,m′, l, l′ can all be bounded values independent of the code distance d (or equivalently graph

size), we reach the following theorem:

Theorem 3.1. If two triangulations Λ and Λ′ have bounded ratios in terms of their vertices,

edges, and plaquettes per unit area, then there exists a bounded depth circuit to convert between

them with Pachner moves. The depth of the circuit is independent of the area of the surface, and

therefore independent of the code distance d.

We emphasize again that the requirement of the bounded ratios of vertices, edges and plaque-

ttes per unit area is ensured by the bounded ratio of the areas corresponding to the infinitesimal

code patches before and after the shearing maps, as discussed in Section 3.3 and Appendix B.
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We also note that in the above discussions, we focused on proving the existence of a constant

depth local unitary circuit, rather than giving the most efficient switching algorithm. To be more

efficient, one does not need to follow the fine→coarse→fine pattern, but can rather directly find

the shortest circuit to directly switch between the two fine graphs via Pachner moves.

3.5 Fault tolerance and space-time overhead

So far we have shown that a generating set of Dehn twists for the MCG of a genus g hyperbolic

surface can be implemented by a constant depth unitary circuit, where the depth is independent

of the code distance and therefore also the number of physical and logical qubits, n and k. In this

section, we briefly discuss fault tolerance of these circuits.

Our circuit breaks up into two basic pieces: A permutation of the physical qubits and a local

constant depth circuit that implements the retriangulation. Since local unitary circuits have a

linear light cone, the latter, i.e. the local constant depth circuit, is intrinsically fault tolerant. So,

to ensure the fault tolerance of our procedure, we concentrate on the first part which permutes the

physical qubits.

The permutation in our maps requires qubits to be permuted over long distances. Due to its

non-local nature, there are two main concerns in regard to the propagation of errors that we need

to address: (1) What happens to the pre-existing local error strings? Is it possible for them to

be enlarged to lengths of O(d)? (2) Is it possible to introduce new non-local (O(d) long) error

strings by a noisy implementation of the permutation circuit, e.g. noisy SWAP gates?

For a generic non-local permutation, both issues mentioned above could possibly arise. Nev-

ertheless the permutations that we utilize have a special structure. To address the first issue, note
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that the continuous maps introduced in Section 3.3, take two points which are O(1) apart to new

points which are still O(1) apart. This can be seen from the analysis carried out in Appendix B

as well. However, to enlarge a local error string to a large error string of length O(d) we have

to separate its endpoints by a factor of O(d). Thus, we can conclude that after the permutation,

all pre-existing local error strings would remain local; at worst their length will be increased by

a constant factor independent of d. Stated differently, our constant depth circuits map any oper-

ator with support in a spatial region R to an operator with support in a spatial region R′, where

the area of R and R′ are related by a constant (independent of code distance) factor. Here the

areas are with respect to the hyperbolic metric. In this sense, the whole circuit is also “locality-

preserving,” although strictly speaking the phrase “locality-preserving” is often reserved for the

case where the constant factor is unity [134, 148].

Now we consider the possibility of introducing new non-local error strings during a noisy

implementation of the permutation. Let’s say the permutation is implemented by a set of noisy

long range SWAPs. The important point to note is that while the SWAP operations are long

ranged, they are still low weight operators. In particular, each SWAP operation acts on 2 qubits.

On the other hand, a logical error string is a high weight operator, consisting of O(d) single qubit

errors. So, if we assume the errors occur independently on different SWAPs, the possibility of

introducing a logical error by a set of noisy SWAPs is still exponentially small in d. Therefore

the second question can be answered in the negative as well.

Therefore, our Dehn twists and the corresponding logical gates are inherently protected from

errors, in the sense that they do not stretch error strings by more than a constant factor, nor can

they introduce error strings that have length more than a constant, independent of code distance.

However, if we apply the same collection of Dehn twists (logical gates) repetitively in the
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same region of the manifold, in the worst case the length of error strings could grow exponen-

tially with the number of logical gates being applied. In the absence of measurement noise, the

error string can be decoded and corrected in O(1) time [138] immediately after the application of

a single logical gate (here we have ignored the classical computation time of the decoder which

still typically scales with system size). Hence the computation scheme will have an O(1) (con-

stant) time overhead. However, in the presence of measurement noise, the error string cannot

be immediately decoded and corrected in O(1) time, so the growth of such a string would be

inevitable. After performing O(log d) logical gates in the same region without any measurement

or error correction in between, the error string may grow to a length of O(d), which will cause

the decoder to fail. Therefore, one has to insert O(d) rounds of measurements, decoding, and

error corrections for every O(log d) of logical gates in the same region. This suggests a sub-

linear overhead O(d/ log d) in the computational time when repetitively applying logical gates

in the same region, if the measurement error is taken into account. It may be possible to further

reduce such overhead by some additional tricks, at least for certain types of logical circuits, but

there may still be such a sub-linear overhead in the most generic situation. We note that the

above O(d/ log d) time overhead is an estimate suggested by the considerations stated above;

further work is required to develop efficient decoders to concretely demonstrate the validity of

this estimate.

The above statements for the asymptotic space-time resource costs have assumed that the

codes have a finite error threshold and that an efficient decoder exists and requires O(d) rounds

of syndrome measurements to decode errors. We note that finding such a decoder is still an active

filed of research [138, 141, 149].
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Chapter 4: Measurement induced topological entanglement phase transitions

Generic unitary dynamics drive quantum many-body systems into highly entangled states

characterized by volume-law scaling of subsystem entanglement entropies. When this dynamics

is intercepted by rapid local measurements, individual quantum trajectories are expected to col-

lapse into low entanglement states characterized by area-law scaling of subsystem entanglement

entropies. Recently, it was discovered that, at least in a class of models, these two phases are

separated by a scale-invariant “critical point” at a finite measurement rate [150–152]. Several

aspects of this transition and its generalizations have been studied recently [150–190].

In the limit of infinitely rapid local measurements, the state of the system crucially depends

on the choice of measurement basis. Assuming one measures only commuting single-qubit op-

erators, the wave-function collapses into an unentangled trivial product-state. However, if one

chooses to measure a set of stabilizer operators that stabilize a topological or a symmetry pro-

tected topological (SPT) wave-function, the resulting state, despite having area-law scaling of

entanglement as well, would be topologically distinct from the product state [191, 192].

This raises the question of whether the notion of a topological phase is well-defined in random

quantum circuits that include both unitary dynamics and local measurements. Given that the

symmetry plays an important role in the topological classification of phases of matter, we consider

two different setups of hybrid random circuit. First we investigate the question of whether one can
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sustain symmetry protected topological order in hybrid random circuit models. To this end, we

consider a (1+1)D quantum random circuit model which is constrained by a Z2 × Z2 symmetry.

The symmetry is chosen so the circuit dynamics could sustain a specific SPT state known as the

cluster state. In the next part, we consider (2+1)D hybrid random circuits without any symmetry

constraint which are designed to be able to sustain long range topological order similar to that of

the toric code.

Entanglement phase transitions involving topological or SPT phases, also seem to be closely

related to quantum error correction. In particular, the rapid stabilizer measurements are remi-

niscent of syndrome measurements in active error correction schemes. Moreover, random single

qubit measurements can be viewed as faulty syndrome measurements or qubit decoherence, while

unitary dynamics models the random noise affecting the qubits. In this context, “entanglement

phase transitions” could be related to “error-thresholds” beyond which the long range entangle-

ment structure of the code space, which is responsible for the topological protection of the en-

coded information, is entirely lost, hence rendering recovery of logical information impossible.

Within this framechapter, our results might have natural applications to quantum error correcting

codes. Note that this is a different analogy to quantum error correction than the one presented in

Ref. [154,157], where the volume law phase is considered to be a quantum error correcting code.

4.1 (1+1)D symmetric monitored random quantum circuits

4.1.1 Circuit Model

We study a family of (1+1)D random quantum circuits that realize quantum trajectories ex-

trapolating between wave functions in an SPT phase, a trivial product state, and a volume-law
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Figure 4.1: The 1D chain cutting used to define the generalized topological entanglement entropy.

entangled phase.

We take our SPT to be the Z2 × Z2 symmetry protected phase realized by the cluster model

defined on an open chain of N qubits (we take N even throughout) in (1+1)D [193, 194],

H0 = −
N−1∑
i=2

Xi−1ZiXi+1, (4.1)

whereXi andZi denote Pauli matrices. Note that all terms commute with each other and therefore

this model is exactly solvable. This model realizes a SPT phase [195–197] protected by the

Z2 × Z2 symmetry generated by

G1 =
∏

i is even

Zi ; G2 =
∏
i is odd

Zi. (4.2)

We say an eigenstate of H0 is a symmetry invariant eigenstate if it is an eigenstate of all terms in

H0 as well as G1 and G2. All symmetry invariant eigenstates within the same symmetry sector

can be related to each other by a symmetry-preserving constant depth local unitary circuit.

On an open chain, a particular generalization of the topological entanglement entropy [19,

194, 198, 199] can be used as an order parameter for this SPT phase. Consider dividing the

system as shown in Fig. 4.1. The generalized topological entanglement entropy Stopo is defined

as

Stopo ≡ SAB + SBC − SB − SABC . (4.3)
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SAB stands for the von Neumann entanglement entropy of the region A ∪ B in the chain. Other

terms are defined similarly. One can show that for all symmetry invariant eigenstates of H0,

Stopo = 2.

To realize a wave function in this SPT phase, that is, a symmetry invariant eigenstate of H0,

we can for example use a quantum circuit that starts with an arbitrary eigenstate of G1 and G2

and then proceed to measure all stabilizer operators gi ≡ Xi−1ZiXi+1.

To realize wave functions in the trivial phase, we use a quantum circuit that measures all

single qubit operators in the Zi basis. The choice of the single qubit measurement basis Zi is

fixed by demanding all measurement operators commute with the symmetry generators G1 and

G2. All wave functions in the trivial phase have Stopo = 0.

To realize wave functions in the volume law phase, we use random Clifford unitary gates that

are allowed by the symmetry. The simplest class of gates to consider would be two qubit nearest-

neighbor random unitaries. However, due to the symmetry restrictions, this set is not effective in

entangling the qubits. Ergo, we work with three-qubit random unitary gates.

We are now in a position to construct our full quantum circuit model: We start with the |0⟩⊗N

state. In each updating step we either: (a) apply a random 3-qubit Clifford unitary between qubits

i− 1, i and i + 1 with probability pu, for a random i drawn from 2, · · · , N − 1, (b) measure the

single qubit operator Zi with probability ps, for a random i drawn from 1, · · · , N , or (c) measure

the stabilizer gi ≡ Xi−1ZiXi+1 with probability pt = 1 − ps − pu, for a random i drawn from

2, · · · , N − 1. A time step is defined as N consecutive updating steps. A typical snapshot of the

circuit is shown in Fig. 4.2a.

In the limiting case pu = 1 and ps = 0, the random unitary circuit drives the system into a

volume law phase, whereas for the other two limiting cases, i.e. pu = 0, ps = 0 and pu = 0, ps =
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Figure 4.2: Schematic of the circuit and its corresponding phase diagram. a, Schematic diagram
of a typical quantum circuit. Yellow (light) boxes corresponds to a three qubit random Clifford
unitary, blue and green boxes represent projective measurements. b, The phase diagram describ-
ing the entanglement structure of the steady state. Red squares and blue circles are obtained from
numerical simulations, while the rest of the phase boundaries are extrapolated. c, Mapping the
dynamics of the random circuit on the pu = 0 axis to the 2D percolation on a square lattice.

1, the system is in an area law phase, one with SPT order and the other without. Using suitably

defined order parameters, we discover study the rest of the phase diagram.

4.1.2 Order Parameters

We detect the presence of the different phases in several distinct ways. First, at each time

step we calculate Stopo, averaged over quantum trajectories, and run the circuit until a steady state

value is obtained.

In addition to Stopo, to detect the phase transition from the area to volume law phase we

extensively use the order parameter originally introduced in Ref. [155]. To do so, first we run the

circuit for time 2N to reach the steady state. Then, we entangle an ancilla qubit to the two qubits
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in the middle of the chain by measuring the following stabilizers,

ZN/2−1Za, ZN/2+1Za, XN/2−1XaXN/2+1, (4.4)

where Xa and Za act on the ancilla qubit. Note that all three stabilizers commute with the

symmetry generators G1 and G2. Next, we let the circuit run for an extra O(N) time steps, and

then measure the entanglement entropy of the ancilla qubit. As shown in Ref. [155], if the system

is in the area law phase, the ancillla’s entanglement entropy Sa should be zero by the time we

measure it while in a volume law phase, the ancilla should be still entangled with the system.

We also use a slightly modified version of the ancilla order parameter [155], which we call

the scrambled ancilla order parameter denoted by S̃a, such that instead of 1 ancilla we use 10 and

instead of measuring the stabilizers listed in equation (4.4) the ancillas are entangled to the system

via 10 time steps of a scrambling circuit, where at each updating step a random (non-symmetric)

3-qubit Clifford gate is applied to three randomly drawn qubits. As was the case for Sa, we

measure the entropy of the ancilla subsystem after the qubit chain evolvesO(N) time steps under

the symmetric random circuit. While in the trivial phase the ancilla subsystem would have been

entirely disentangled from the qubit chain, giving S̃a = 0, in the SPT phase the ancilla subsystem

should have remained entangled to the two edge degrees of freedom which are protected by the

symmetry, resulting in S̃a = 2. In the volume law phase the ancilla subsystem should remain

entangled to the bulk as well and hence S̃a > 2.

It turns out that compared to S̃a and Stopo, Sa shows a sharper SPT to volume law phase

transition when pu > 0 –and hence it is used to extract the corresponding critical exponents– but

is unable to detect the topological phase transition at pu = 0. On the other hand, S̃a can be used
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as an experimentally accessible probe to detect the phase transition at pu = 0.

We note that a type of Edwards-Anderson glass order parameter can also be used to detect the

topological phase, although it cannot distinguish the trivial and volume law phases.

Finally, we note that the random quantum circuits studied here, viewed as a quantum channel,

eventually transform the initial state of the system into the maximally mixed state allowed by the

symmetry (see Appendix E for a proof and a bound on how fast this happens). Therefore, the

steady state expectation value of any operator stays the same throughout the phase diagram and

thus cannot serve as an order parameter.

4.1.3 Mapping The Case Without Unitary Dynamics pu = 0 to Classical Per-

colation

Here we show how to map the entire pu = 0 line in the random circuit presented above to

two copies of a classical 2D percolation problem on a square lattice. This percolation model is

non-standard, although our numerical results indicate that it has the same critical properties as

the standard classical percolation model on the square lattice.

Let us divide the operators measured by the random circuit into two sets. One set, which

we call the odd site operators, is comprised of single qubit operators Zi for odd i alongside the

stabilizers gj which end on the odd sites, i.e. for even j. The even site operators are defined

analogously. Note that each member of one set commutes with all elements of the other set.

Let us focus on the measurements of odd site operators. Consider the N/2 × M square

lattice as shown in Fig. 4.2c, where M is the total number of updating steps in the circuit. We

call this lattice the odd sites’ percolation lattice. The N/2 vertices on each row corresponds to
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the odd sites of the system and we label them accordingly. The vertical (horizontal) links ending

(residing) on them’th row are related to the Zi (gj) measurements in them’th step of the circuit in

the following way: if Zi is not measured at updating step m, we draw a vertical link between the

(i,m−1) and (i,m) vertices. Also if the stabilizer gj is measured at stepm, we draw a horizontal

link between the (j − 1,m) and (j + 1,m) vertices. At the end, we assign a unique color to each

connected cluster of vertices. We construct the even sites’ percolation lattice analogously. The

randomness of the quantum circuit translates into random connections in the percolation lattices.

The entanglement structure of the system at step M can be extracted from the colors of

the vertices on the last row of the two aforementioned percolation lattices. As the following

proposition makes precise, qubits of the same color make up their own SPT state:

Proposition 4.1. Group the qubits based on their color on the last row of the percolation lattice.

Let Aj = {qi}ni=1 denote the ordered set of qubit indices corresponding to j’th color; that is, the

qi label a set of qubits all with the same color at step M . Then, up to a minus sign, the operators

that stabilize the state of the system at step M are of the following form,

n∏
i=1

Zqi and gqi,qi+1
for i = 1, 2, · · · , n− 1, (4.5)

where gqi,qi+1
is defined as

gi,j = Xi

 j−i
2

−1∏
k=0

Zi+2k+1

 Xj. (4.6)

By considering similarly defined stabilizer operators for all different colors (Aj’s with dif-

ferent j), we get a complete set of stabilizers that specify the state of the system. The proof of

Proposition 4.1 is left for Appendix F.
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As shown in Lemma D.1 in Appendix D, the minus sign ambiguity in Proposition 4.1 has no

bearing on the entanglement spectrum of the system’s state. Thus the percolation lattices exactly

determine the (von Neumann or Rènyi) entanglement entropy for any subset of qubits.

4.1.4 The duality mapping ps to 1− ps and vice versa

When pu = 0, there is a local duality between circuits with paramter ps and circuits with

parameter 1− ps. As we will see, this duality explaines why the phase transition point is pinned

at pc = 1/2.

For simplicity, consider the system with periodic boundary conditions. Let us define the

Clifford unitary Ud such that for i = 1, · · · , N ,

Ud Xi U
†
d = Xi (4.7)

Ud Zi U
†
d = Xi−1 Zi Xi+1 (4.8)

Note that under Ud, the stabilizer gi transforms as

Ud gi U
†
d = Zi. (4.9)

equation (4.9) and equation (4.8) together show that the ensemble of random quantum circuits at

ps (and pu = 0) is mapped to the ensemble of random quantum circuit at 1 − ps (and pu = 0)

under Ud. However, the unitary Ud is not local, i.e. it cannot be written as the tensor product of

on-site unitaries and therefore does not keep the entanglement structure invariant. Nonetheless, it

is clear from equation (4.7) and equation (4.8) that Ud maps local stabilizers to local stabilizers.
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Since the entanglement in stabilizer states is related to the number of independent stabilizers that

traverse the boundary of a region [200], one can still say that Ud maps a state with the area-law

entanglement to an area-law entangled state. Hence, if there exists a continuous phase transition

which has logarithmic entanglement scaling, it has to occur at ps = pc = 1/2.

4.1.5 Numerical Results

We start by briefly reviewing the quantities we numerically calculate to obtain the phase

diagram and to characterize the critical phase boundaries.

A signature of criticality in (1+1)D systems is the logarithmic scaling of the entanglement

entropy. Thus, we calculate the entanglement entropy at the tth time step (which corresponds to

tN updating steps), S(x, L; t) of a subsystem of length x for a system of total length L = N ,

averaged over all of the quantum trajectories of the circuit.

In the large time limit, this averaged entanglement entropy saturates to a logarithmic form at

the phase transitions as in (1+1)D CFTs [201]:

S(x, L) = ax log

(
L

π
sin

πx

L

)
+ b. (4.10)

We can also characterize the entanglement growth with time. At criticality, for timescales much

smaller than the saturation time we have,

S(x, L; t) = at log(t) + b′. (4.11)

Note that as opposed to unitary CFTs the coefficient of the logarithmic scaling ax is not given by
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the central charge of any underlying CFT. In the context of the area law to volume law transition,

Ref. [202] provides an appealing interpretation of ax and at as universal quantities given by the

scaling dimension of certain “boundary condition changing” operators. b and b′ are non-universal

constants

Throughout the phase boundaries, we find ax = at within the margin of error, which is

consistent with a dynamical exponent z = 1, as the entanglement growth rate is similar along

time and space directions.

We can use the averaged topological entanglement entropy, Stopo as the order parameter to

distinguish the three different phases: Stopo would be extensive in the volume law phase, while in

the thermodynamic limit it should converge to values 2 and 0 in the topological and trivial phases

respectively. Let Stopo(p, L) denote the steady state value of Stopo when some tuning parameter

(e.g. single qubit measurement probability) is p and system size is L. On general grounds, we

expect the following scaling form in the vicinity of the critical point,

Stopo(p, L) = F ((p− pc)L
1/ν), (4.12)

where F (x) is some unknown function, pc is the critical value of tuning parameter p, and ν is the

correlation length critical exponent, ξ ∝ |p− pc|−ν .

As explained in Section 4.1.2, the entanglement entropy of a suitably entangled ancilla sys-

tem, Sa or S̃a can also be used as the order parameter to distinguish the volume law phase from

the other two area law phases. Assuming the dynamical exponent z = 1, for the ancilla entropy

Sa we have [155],

Sa(p, L, t) = G((p− pc)L
1/ν , t/L), (4.13)
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where G(x) is some unknown function. S̃a has a similar scaling form.

We now present our numerical results. We study system sizes up to 512 qubits and average

over 105 random quantum trajectories. We start with the |0⟩⊗N state and let the circuit run for

2N time steps for the system to reach the steady state. We have explicitly verified that saturation

is reached before t = 2N . After entangling the ancilla qubit, we simulate the system for an

additional O(N) time steps to calculate Sa (as explained above).

Fig. 4.3 shows numerical results along the pu = 0 line. Fig. 4.3a and c show the steady state

value of Stopo and S̃a versus ps for different system sizes. As is evident from both diagrams, there

is a clear continuous phase transition at pc = 1/2 in the thermodynamic limit. This is consistent

with what we expected from the duality argument presented in Section 4.1.4. Interestingly we

find that Sa seems to be unable to capture the area-law to area-law phase transition at pu = 0, at

least for numerically accessible systems sizes. On the other hand, From collapsing the data near

the critical point pc = 1/2, we find ν = 4/3 results in a near perfect collapse (see Fig. 4.3c and

d).

Fig. 4.3e shows the steady state value of entanglement entropy S(x) of the subregion [1, x] at

the critical point pu = 0 and ps = 1/2, for L = 512. As shown, the entanglement entropy fits the

CFT form of equation (4.10) with ax = 0.20(1).

Fig. 4.3f shows the entanglement entropy of the half chain versus time at p = pc for different

chain sizes. The entanglement entropy grows logarithmically with time, until the finite size

effects show up. By comparing the corresponding fitted analytical expressions we find at =

ax = 0.20(1).

We now proceed to the case with unitary dynamics pu ̸= 0. Fig. 4.4 shows Stopo, Sa and S̃a

versus ps for the fixed value of pu = 0.3. For ps = 0, the system is in the topological phase as
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Figure 4.3: The numerical results pertaining to the tricritical point at pu = 0. a, Topological
entanglement entropy Stopo near the tricritical point versus single qubit measurement probability
ps. b, Scaling collapse of the data in panel a. c, Ancilla entropy S̃a measured t = N time steps
after scrambling. d, Scaling collapse of the data in panel c. e, The entanglement entropy of the
[0, x] segment of the chain, S(x, L), at late times for p = pc and L = 512. f, The entanglement
entropy of the half-chain versus time for ps = pc. All entropies are in units of log 2. See Appendix
F for an analytical derivation of the a coefficient using the percolation map.
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Figure 4.4: The phase transitions across the pu = 0.3 line. a, Stopo verses ps. b, The ancilla
entropy Sa measured t = N time steps after it was entangled, versus ps. c, The ancilla entropy
Sa measured t = N time steps after it was entangled, versus ps. In all three panels, the first
crossing corresponds to the phase transition from the SPT phase into the volume law phase while
the second crossing corresponds to the phase transition from the volume law phase to the trivial
phase. The critical points are marked on the phase diagram in Fig.4.2b as well.

can be seen from Fig. 4.4a. By increasing ps, the entropies exhibit a continuous phase transition

to the volume law phase at first and then another continuous phase transition to the trivial phase.

By using analogous plots for different values of pu, we can determine the 2D phase diagram

in the (ps, pu) space. The result is illustrated in Fig. 4.2b. Note that since the probability of

measuring a stabilizer is 1−pu−ps, the phase diagram is restricted to the region pu+ps ≤ 1. The

data points on the plot have been extracted using numerical simulations and then the schematic

phase diagram is drawn based on them.

The SPT/volume law phase boundary intersects the pu axis at pu = 0.355(3) and the volume

law/trivial phase boundary ends at pu = 0.663(4) on the pu + ps = 1 line. Our numerical

simulations demonstrate that the volume law phase still exists for pu as low as 0.1. Unfortunately,

clearly detecting the SPT to volume law transition requires increasingly large system sizes as pu

is lowered. Therefore, we extrapolate the phase diagram for smaller values of pu. By following

the trend of the data points, it appears that the volume law phase survives all the way down to

pu = 0, hence suggesting that the critical point at ps = 0.5 and pu = 0 is actually a tricritical
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point. This in turn means that at ps = 1/2, arbitrarily sparse random Clifford gates in the quantum

circuit can still drive the system into the volume law phase.

By using the scaling form in equation (4.12) and collapsing the data, we can extract the corre-

lation length critical exponent ν along the phase boundaries. Taking into account the margins of

error, our numerical results are consistent with ν = 4/3 everywhere along the phase boundaries.

However ax = at changes significantly along the phase boundaries at the largest system sizes we

have studied. If the ax = at that we extract are indeed close to their values in the thermodynamic

limit, this suggests that the volume to area law critical lines may be related to two copies of the

classical percolation fixed point by marginal deformations.

4.2 (2+1)D topological monitored random quantum circuits

In the second part of the chapter, we consider a class of (2+1)D random quantum circuits that

extrapolate between (1) a topologically ordered phase, characterized by non-zero topological en-

tanglement entropy (TEE) [203, 204] and realized by measuring the Z2 toric code stabilizers [2],

(2) a volume law entangled phase realized by random Clifford unitaries and, (3) the trivial, area

law phase realized by single-site measurements. In contrast to the previous section, no symmetry

restriction has been assumed.

4.2.1 Circuit Models

We consider N = L2 qubits laid on the vertices of a two dimensional periodic square lattice

of linear length Lx = Ly = L. Three different sets of gates are considered where each gate set,

when applied exclusively, drives the system into one of distinct phases discussed above.
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For the topological phase, we consider measurements corresponding to toric code stabilizers,

gi,j =


Xi,j Xi+1,j Xi,j+1 Xi+1,j+1 i+ j is even

Zi,j Zi+1,j Zi,j+1 Zi+1,j+1 i+ j is odd

, (4.14)

where (i, j) denotes the coordinates and Xi,j and Zi,j are the Pauli operators acting on the corre-

sponding qubit. We denote the set of all gi,j operators as Mg.

For the trivial phase, we can pick any set of single qubit measurements. We use MP to denote

the set of single qubit Pauli-P operators (P could be either X,Y or Z). For the volume law phase,

we use the set C4 consisting of four qubit Clifford unitaries Ui,j , acting on neighboring qubits

located at (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1).

We study two types of random circuits. First, we consider measurement-only random circuits

comprised of only measurements. More specifically, we start with the product state |0⟩⊗N and

at each updating step, we measure an operator which is chosen uniformly at random from either

MZ with probability pz, MY with probability py or Mg with probability pg = 1 − pz − py.

Each time step is defined as N consecutive updating steps. A typical example of such a circuit is

shown in Fig. 4.5a.

We also consider hybrid random circuits, which are comprised of unitary gates as well as

measurements. We start with |0⟩⊗N and at each updating step we either apply a gate chosen

uniformly at random from C4 with probability pu or measure an operator chosen uniformly at

random from MZ or Mg with probabilities pz and pg = 1 − pu − pz respectively. A typical

example of such a circuit is shown in Fig. 4.5c.
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Figure 4.5: (a) A typical measurement-only random circuit. (b) Phase diagram of (2+1)D
measurement-only random circuits. (c) A typical hybrid random circuit. (d) Phase diagram of
(2+1)D hybrid random circuits. (e) Entanglement dynamics at the py = 0 line of measurement-
only random circuits (as well as the pu = 0 line of hybrid random circuits) maps to a classical
bond percolation problem on a cubic lattice.
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4.2.2 Order Parameters

One can use TEE [203, 204] denoted by to distinguish phases. In an abuse of notation,

we denote TEE by Stopo, although it is different from the generalized topological entanglement

entropy introduced in the previous section. Stopo equals 1 for the eigenstates of the toric code

Hamiltonian while it is 0 for quantum states in the trivial phase. As for the volume law phase,

the contribution which is proportional to the size of each region cancels out and one may expect

Stopo to vanish in this phase as well. However, the (1 + 1)D results [169, 188] suggest that the

entanglement entropy of a region has sub-extensive contributions [186, 188] in the volume law

phase, which results in a system-size dependent value for Stopo. Our numerical results support

this scenario.

We also use the scrambled ancilla order parameter introduced in section 4.1.2. Since it will

be the only ancilla order parameter that we use in this section, we simply call it the ancilla order

parameter and drop the ”scrambled” part. We utilize Na = 10 ancilla qubits in addition to the

system qubits, as follows. First a random local Clifford unitary circuit of depthO(N) is applied to

the entire set (system + ancilla) of qubits, which results in a maximally entangled stabilizer state

of all qubits. Next, the system qubits are evolved under the random quantum circuit of interest

for T time-steps and then the entanglement entropy of the set of all ancilla qubits, denoted by

Sa(T ), is measured. For large enough system sizes and at T = O(L), Sa(T ) will be 0, NL

and Na in trivial, topological and volume law phases respectively, where NL denotes the number

of logical qubits in the topological phase (NL = 2 for the torus topology). We assumed that

NL ≪ Na ≪ L2.
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Figure 4.6: The diagrammatic illustration of the action of the duality map (a) U defined by
Eqs.(4.15) and (b) Ũ defined by Eqs.(4.16). The white dots correspond to single qubit Y operators
and squares correspond to g stabilizers. The vertical red lines and horizontal blue lines in panel
b represent XX and ZZ operators respectively

4.2.3 Duality Mappings for the pz = 0 line

Here, we present the two dualities related to the projective random circuit model with pz = 0.

First duality maps the family of circuits at py to the ones at 1−py, hence fixing any possible phase

transition at py = 1/2. The second duality maps the g and Y operators to the gauge operators of

the Bacon-Shor code [205, 206], which might be helpful in understanding the numerical results

which will be presented later. For simplicity, we consider the infinite plane geometry.

Consider the Clifford unitary U transforming stabilizer and Y operators in the following way

U † Yi,j U = gi,j

U † gi,j U = Yi+1,j+1, (4.15)

where gi,j is defined in the main text, and i, j ∈ Z. Diagrammatically, it acts as a half-translation

in both i and j directions (see Fig. 4.6a) such that U2 is just the lattice translation (i, j) 7→

(i+ 1, j + 1).

It is straightforward to verify that this transformation yields the right commutation relations
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for the images of g and Y operators. Clearly, the images of Y operators commute among them-

selves, and similarly for the images of the g operators. On the other hand, note that a stabilizer

operator g anti-commutes only with the four single qubit Y operators acting on its corners. The

U transformation maps g to a single qubit Y operator and maps the four Y operators to the four

neighboring stabilizers, keeping the anti-commutation relations.

To uniquely specify the unitary U , one has to define its action on a complete basis of Pauli

strings. The set of Y and g operators is not a complete basis for Pauli strings on an infinite plane

and as such, the transformation in (4.15) does not fully specify U . However, since the projective

random quantum circuits at pz = 0 are only comprised of g and Y measurements, no matter how

one extends Eq.(4.15) to a complete basis, the Clifford U maps a projective random quantum

circuit chosen with probability distribution corresponding to pz = 0 and py = p to a projective

random quantum circuit chosen according to the probability distribution corresponding to pz = 0

and py = 1− p.

Moreover, if the stabilizer set describing the state of the system is generated only by operators

comprised of g and Y operators, Eq.(4.15) is enough to specify the image of the wave function

under U transformations. It also ensures that U keeps the local entanglement structure of the state

intact, i.e. changing the entanglement of a region by at most a term proportional to the region’s

area. These considerations then enforce the pz = 0 line of the phase diagram to be symmetric

around py = 0.5 point.

The second duality maps the Y and g operators to the gauge operators of the Bacon-Shor

code. More specifically, consider the Clifford unitary Ũ which transforms the stabilizer and Y
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operators as

Ũ † Yi,j Ũ = Zi,jZi+1,j

Ũ † gi,j Ũ = Xi+1,jXi+1,j+1. (4.16)

It is illustrated diagrammatically in Fig. 4.6b. As before, we consider the infinite plane geometry.

It is easy to verify that Ũ preserves the commutation relations and hence could be extended to a

complete unitary. We note that the measurements of g and Y operators, when viewed in the dual

picture, resembles the syndrome measurements of the Bacon-Shor subsystem code in the active

error correction scheme.

4.2.4 Numerical results

We start by studying the phase diagram of the measurement-only circuits. First, we focus on

the py = 0 line. Notably, as shown in Appendix F, there is an exact mapping which maps the

entanglement dynamics at this line of the phase diagram to a classical bond percolation problem

on a 3D cubic lattice. Fig. 4.7a and b show the TEE and the ancilla order parameter as a function

of pz. As can be seen from the plots, there exists a stable topological phase extending up to

pc ≈ 0.2, at which point a continuous phase transition takes the system to the trivial phase.

On general grounds, we may assume the following scaling forms governing the order param-
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Figure 4.7: Phase transitions across the py = 0 (top row) and pz = 0 (bottom row) lines of the
phase diagram for the measurement-only circuit: (a) Stopo and (b) Sa measured at t = 4L versus
pz for fixed py = 0. Insets show the corresponding data collapse. (c) SR(x) for system size
L = 64 at the percolation critical point (pz, py) = (0.188, 0), with the best fit of scaling functions
Sqlm(x) (solid line) and Sq1D (dashed line). The inset is the best fit value of the b parameter in
Eq.(4.20) as a function of L. (d) Stopo and (e) Sa measured at t = 0.6 L1.46 versus py for fixed
pz = 0. Insets show the corresponding data collapse. (f) SR(x) for system size L = 64 at the
self-dual critical point (pz, py) = (0, 0.5), with the best fit of scaling functions Sq1D (solid line)
and Sqlm(x) (dashed line). The inset shows the linear dependence of the best fit value of the a
parameter in Eq.(4.19).
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eters near the phase transition

Stopo(p;L) = LγF ((p− pc)L
1/ν), (4.17)

Sa(p, t, L) = G((p− pc)L
1/ν , t/Lz), (4.18)

where F (x) and G(x) are arbitrary functions and ν and z are the correlation length critical ex-

ponent and dynamical critical exponent respectively. We find our data for the percolation critical

point to be consistent with setting γ to 0. By collapsing Stopo near the critical point for different

system sizes, we find pc = 0.188(2) and ν = 0.85(6). Note that ν is consistent with the values

obtained from numerical simulation of classical percolation in 3D [207]. By investigating the

time dependence of the ancilla order parameter Sa at p = pc, we find it to be consistent with

z = 1. Collapsing Sa at t = O(L) then yields ν = 0.88(7), in agreement with the value found

via collapsing Stopo.

Another quantity of interest is the scaling form of the entanglement entropy with sub-system

size at the critical point. We consider the cylindrical region R with a smooth boundary, which

has length x in one direction and goes all the way around the torus in the other direction. Let

SR(x) denote its EE. Note that the boundary length |∂R| is 2L, independent of x. As is discussed

in Appendix F, in the percolation picture this quantity is related to the number of clusters with

shared support on region R and its complement.

For a conventional CFT in (2 + 1)D, the non-universal leading area-law term scales with

|∂R| = 2L. The sub-leading term for a cylindrical subregion is less well-understood and several

forms have been suggested, among which two are of particular interest. One is a quasi-(1 + 1)D

scaling function, inspired by the exact form found in (1 + 1)D CFTs, which seems to decently
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capture entanglement entropy scaling in certain (2+1)D gapless models [208]

Sq1d
R (x) = b+ a log

(
L

π
sin
(π x
L

))
, (4.19)

where b contains the non-universal area law term. The other relevant scaling form was originally

derived for the quantum Lifshitz model [209] but was found to describe the entanglement entropy

scaling in various other (2+1)D gapless models as well, including some (2+1)D CFTs [210].

Sqlm
R (x) = b+ aJλ(x/L) (4.20)

Jλ(u) = log

(
θ3(iλu)θ3(iλ(1− u))

η(2iu)η(2i(1− u))

)
, (4.21)

where θ3(z) and η(z) are the Jacobi theta function and the Dedekind eta function respectively. b

contains the non-universal area-law contribution and λ is a model parameter, which we will use

to find the best fit.

Fig. 4.7c shows SR(x) for system size L = 64 at pc alongside the best fit of the scaling

functions. As can be seen from the graph, Sqlm
R (x) results in a good fit (solid line), while Sq1D

R

cannot capture the scaling form. Moreover, we find that the best fit values of a = −1.16(1) and

λ = 0.91(5) for SqlmR remain constant for different system sizes within the margin of error. As is

shown in the inset, the b parameter scales linearly with system size, which shows that the leading

term scales with |∂R|.

We now turn our attention to the pz = 0 line. Here the circuit has a self-duality mapping

py → 1 − py. Note that along this line, the system has 2L subsystem symmetries generated by

the product of Y (or stabilizer) operators along horizontal or vertical loops, e.g.
∏

j Yi,j . On a
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related note, as was shown in Section 4.2.3, there is a unitary transformation which maps the g

and Y operators to the gauge operators of the 2D Bacon-Shor subsytem code [211, 212] on a

square lattice. Under this unitary, the subsytem symmetries are maped to the stabilizers of the

Baco-Shor code.

By examining the TEE Stopo(Fig. 4.7d), we find the topological phase to be extended up to

the self-dual point py = 0.5. However, at py = 0.5, Stopo grows with system size, which suggests

a non-zero γ exponent. Collapsing Stopo data near the critical point yields pc = 0.502(1), γ =

1.0(2) and ν = 0.47(8), which shows that this critical point is distinct from the percolation fixed

point. Moreover, by looking at the time dependence of the ancilla order parameter at py = 0.5,

we find that, in contrast to the percolation critical point, the best fit to the scaling form in Eq. 4.17

corresponds to z = 1.46(8). Accordingly, by collapsing Sa(p, t, L) data at t = O(L1.46) (Fig.

4.7e), we find ν = 0.48(3), in agreement with the result obtain from collapsing Stopo.

As for the cylindrical subregion entanglement entropy SR(x) (Fig. 4.7f), we find that the

quasi-1d scaling form Sq1d(x) – rather than Sqlm(x) – fits the data. However, as is shown in

the inset, the a parameter in Eq.(4.20) is not constant, but has a linear dependence on system

size L, demonstrating that the leading term scales as L logL rather than L as is expected in an

area law state. The origin of the L logL violation is unclear; it may be related to the existence of

subsystem symmetries along the pz = 0 axis, which translates to the stabilizers of the Bacon-Shor

code under the aforementioned duality map.

The rest of the phase diagram can be determined analogously (Fig. 4.5a). We find that

the percolation critical point is part of a critical line that persists up to some finite non-zero

value of py, while the self-dual critical point at (pz, py) = (0, 0.5) splits into two critical lines

with an intermediate volume law entangled phase in between, making it tricritical. Interestingly,
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Figure 4.8: (a) The ancilla entanglement entropy Sa measured at t = L as a function of pz
for fixed pu = 0.01 in the hybrid random circuit. (b) Sa as a function of time at (pz, pu) =
(0.17, 0.01) in the hybrid random circuit. The inset is the same, plotted as a function of t/L.

the numerical data for all critical points that we considered, other than (pz, py) = (0, 0.5), are

consistent with z = 1 and γ = 0, with ν remaining close to 0.8, similar to the percolation critical

point. Their entanglement entropy scaling is given by Sqlm(x) as well, with an area law scaling

leading term. Remarkably, this makes the self-dual point special in this regard, as it is the only

point in the phase diagram with L logL violation of area law, as well as quite different ν and γ

exponents. We also note that the extracted a and λ parameters in Sqlm(x) change throughout the

phase diagram.

lastly we present the numerical results for the hybrid random circuit which has unitary dynam-

ics. The pu = 0 line of phase diagram is exactly the same as pz = 0 line of the measurement-only

random circuit. Fig. 4.8a shows the ancilla order parameter along pu = 0.01, which signals the

emergence of an intervening phase between topological and trivial phases, suggesting that the

percolation critical point is actually a tricritical point in this phase diagram. In the intermediate

phase, Sa does not saturate to Na = 10, as is expected to be the case in the volume law phase,

but rather increases weakly with system size, showing indications that it may saturate at a finite

value less than 10. Indeed, for a point in the intermediate phase and for large systems, Sa(t;L)
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seems to be a function of only t/L (Fig. 4.8b) which is a signature of a critical phase with z = 1

(see Eq. 4.18). Moreover, we find that in the intermediate phase, Sqlm(x) fits the entanglement

entropy of a cylindrical subregion as well. These points suggest that the intermediate phase is a

critical region. Nonetheless, we remark that the observed behavior could be just related to finite

size effects and the proximity to the critical lines.

The critical region extends to the pu axis, ending at pu ≈ 0.06, which appears to be a tricritical

point, although within the precision of this study, we cannot rule out the existence of a narrow

critical region around pu = 0.06. By collapsing the Sa data along the pu axis, we find pc =

0.059(1) with critical exponent ν = 0.78(8). On the right, the critical region ends on the boundary

of the trivial phase and the volume law phase. The trivial phase itself ends at pu = 0.238(2) along

the pu + pz = 1 line. We find ν = 0.80(7) at the corresponding phase transition. The overall

phase diagram of the hybrid circuit in 2D is illustrated in Fig. 4.5b.
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Chapter 5: Irreducible multi-partite correlations as an order parameter for k-

local nontrivial states

Understanding and classifying quantum phases of matter is one of the major goals of theo-

retical condensed-matter physics. Non-trivial quantum phases are sometimes characterized using

the “quantum circuit definition”: States belonging to a d dimensional non-trivial phase cannot be

obtained from the product state using a finite depth geometrically local (d-dimensional) unitary

quantum circuit [213, 214].

However, intriguingly, for non-invertible topologically ordered states the minimum circuit

depth required remains infinite even if we replace the condition of geometric locality and demand

only the much weaker condition of k-locality [215, 216]. That is, if we only consider unitary

gates that act on at most k qubits at a time, without any restriction on their relative placement (as

opposed to unitary gates that act on a geometrically local region), we still cannot transform trivial

states into topological states in a finite depth. This suggests that the classification of quantum

phases of matter can be extended beyond the geometrically-local phases to the k-local setting.

In addition to conventional topological states, examples of nontrivial k-local states without any

underlying geometrical structure are prevalent in the quantum information context, e.g. quantum

LDPC codes [217, 218] and random quantum codes [180, 219].

Given their relevance to both condensed matter and quantum information physics, it is inter-
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esting to see how much of the tools and concepts which were developed for the study of topolog-

ical phases of matter can be generalized to study ’k-local’ non-trivial states. In particular, we ask:

is it possible to construct an entirely non-geometric order parameter for such k-local non-trivial

states? For example, is it possible to distinguish the ground state of the toric code from a typical

state in the trivial phase without having access to the underlying geometry, i.e. by removing the

position label of all qubits? Or, is it possible to distinguish an encoded state of a quantum code

from a typical trivial state without having access to the underlying interaction graph?

In this chapter we show that, at least in a large class of examples, this question can be an-

swered in the positive. We argue that irreducible multi-partite correlations, i.e. correlations that

can be inferred only by accessing the global density matrix as opposed to its marginals, amongst

random subsystems at a suitably chosen sampling rate can serve as an order parameter for such

k-local nontrivial states (precise definitions are provided in the body of the text). We will use this

feature to define a non-geometric order parameter for k-local nontrivial states and numerically

demonstrate that it can be used to detect a phase transition from a nontrivial phase to a trivial

phase.

Using a combination of numerical and analytical methods, we study several examples rep-

resenting a wide class of k-local non-trivial states including geometric topological phases (toric

code), random stabilizers states, quantum LPDC codes (quantum expander codes [220]), and

Holographic error correcting codes (the holographic hexagon state [221]).

106



5.1 Irreducible multipartite correlations

Consider a density matrix ρ shared between a set of M non-overlapping parties A1, · · · , AM .

The marginal density matrix ρj is defined as the reduced density matrix obtained by tracing out

Aj , i.e. ρj = TrAj ρ. The parties A1, · · · , AM have non-zero irreducible M-partite correlations if

there is more information in ρ than in the set of its marginals {ρj}Mj=1.

Let ρ̃ denote the maximum entropy state consistent with all marginals of ρ, meaning trAj ρ̃ =

ρj for all j. As discussed in Refs. [222–225], a quantitative measure of irreducible M-partite

correlations can then be defined as:

DM(ρ,A) = S(ρ̃)− S(ρ), (5.1)

where the function S(ρ) = −Tr(ρ log2 ρ) is the von-Neumann entanglement entropy and A =

{A1, · · · , AM} denotes the partitioning. Intuitively, this object quantifies how many bits of infor-

mation in ρ cannot be read-off unless all M parties are accessed. Perhaps, the simplest example

of a state with DM > 0 is provided by the GHZ state [222, 226].

5.1.1 Irreducible multipartite correlations in stabilizer states

Computing DM is not easy in general. However, for stabilizer states it can be efficiently

computed. Let A denote a set of nA qubits in a mixed stabilizer state specified by the stabilizer

density matrix ρA given as

ρA =
1

2nA

∑
g∈GA

g. (5.2)
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where GA is a the stabilizer group corresponding to ρA. The entanglement entropy of ρ can be

related to its stabilizer group as follows [200] (see also Appendix D),

S(ρ) = nA − dimGA. (5.3)

Let A denote a partitioning of A into a set of M non-overlapping parties (subsystems) A =

∪Mj=1Aj . DM can then be equivalently written as [224, 226],

DM(ρ,A) = dim GA − dim GA;(M−1), (5.4)

whereGA;(M−1) is defined as the stabilizer group generated by stabilizers inGA which are shared

by at most (M − 1) parties in A. The generator set for GA;(M−1) can be written as ∪Mj=1GA\Aj .

In the case where the system studied is pure S(ρA) = 0, it was shown in Ref. [226] that

DM(ρ,A) is equal to the M partite GHZ extraction yield of the stabilizer state with respect to

A, that is, the maximum number of M partite GHZ states that can be extracted by local unitaries

(local to each party). We further remark that if the M -partite GHZ extraction yield of stabilizer

states is non-zero for a macroscopic M , i.e. for M growing with system size, it immediately

follows that the state cannot be prepared with a constant depth k-local unitary circuit and is

therefore k-local nontrivial.

To develop intuition, let us consider the multipartite correlations shared between different

regions (subsystems) of the ground state of the Kitaev’s toric code on a torus (or any other 2D

topological phase), with logical stabilizers going around both the non-contractible loops of the

torus. As a simple example, divide the torus into a set of M equal size “cake-slices” correspond-
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Figure 5.1: a) The toric code state on a torus. Thick lines represent some of its stabilizers.
The system is partitioned into five disjoint parties A = ∪5

j=1Aj . b) The marginal A \ A1. All
stabilizers except the one that goes around the large handle of the torus can be read from the
marginals, resulting in D5 = 1.

ing to A1, · · · , AM (see Fig. 5.1). Apart from the logical qubit that goes around the torus, all of

the information is encoded locally and therefore present in M − 1 party density matrices (all the

other stabilizer generators or Wilson loops can be taken to have support only in one region or in

the boundary of two). However, the logical operator that goes around the cake cannot be accessed

without having all M of cake slices (cannot be contracted to any M − 1 of the subsystems). We,

therefore, have DM = 1.

5.1.2 Upper bound from conditional quantum mutual information

We can use the strong subadditivity of von-Neumann entropy to upper bound DM . Consider

dividing the M parties in A into any three disjoint sets B, C and D such that BC, CD and BD

are all subsets of marginals of A - e.g. B = ∪M−2
i=1 Ai, C = AM−1 and D = AM . Let ρ̃ be the

maximum entropy state consistent with all marginals of ρ. Strong subadditivity for ρ̃ entails,

S(ρ̃) ≤ S(trC(ρ̃)) + S(trD(ρ̃))− S(trCD(ρ̃)). (5.5)
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Since ρ̃ has the same marginals as ρ, we can compute the entropies on the right hand side on ρ

instead of ρ̃. Therefore, we have the following upper bound on DM

DM(ρ,A) ≤ S(BD) + S(BC)− S(B)− S(BCD)

= I(C : D|B), (5.6)

where I(C : D|B) is the conditional quantum mutual information, and in an abuse of notation,

we have used S(X) to denote S(trA\X ρ) for a subset X of the qubits. Note that all entropies on

the right hand side correspond to ρ rather than ρ̃ and hence are easily computable.

5.2 Irreducible multipartite correlations between random subsystems in differ-

ent quantum phases of matter

We now define our proposed quantity of interest. We start with the explicit definition and then

explain the intuition behind it.

Consider a quantum state ofN qubits. For a givenM and q such that 0 < Mq ≤ 1, choose the

subset A and its M -partitioning as follows; Label every qubit with a random number xi chosen

uniformly from [0, 1]. Define Aj as the set of qubits with labels between (j − 1)q and j q and let

A denotes union of A1 through AM , i.e.

Aj = {i : (j − 1) q < xi < j q} for j = 1, · · · ,M , (5.7)

A = ∪Mj=1Aj, , A = {A1, · · · , AM}. (5.8)

Let ρ denote the reduced density matrix of the system onA. We define C(N,M, q) as the average
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of DM(ρ,A) over different random labelings of the qubits,

C(N,M, q) = E[DM(ρ,A)]. (5.9)

Roughly speaking C(N,M, q) measures irreducible multipartite correlations between M ran-

domly chosen subsystems, each of size ∼ qN . In this chapter, we study the behavior ofC(N,M, q)

as one changes q and M (the number of parties), and discuss how it can be used as an order pa-

rameter for k-local nontrivial states.

The basic idea is that the presence of generic irreducible multipartite entanglement for a

macroscopic number of parties in a quantum state suggests that the state is non-trivial. To gain a

better understanding of this fact, it is helpful to see what can be said about C(N,M, q) on general

grounds, before considering specific examples.

Consider evaluating C(N,M, q) for a state which belongs to a particular k-local nontrivial

state. The set A in Eq. (5.8) can be thought of as the random subset which includes each qubit

with probability p =Mq. In the small sampling rate limit p ≃ 0, we expectA to be a set of sparse

uncorrelated qubits and hence ρ (the reduced density matrix on A), to be indistinguishable from

a typical state in the trivial phase, which in turn implies we can not distinguish the underlying

phase of matter from the trivial phase. However, for large sampling rates p ≃ 1, we expect the

global state to be approximately recoverable from ρ as we have access to global information,

and hence, we can determine the underlying phase of matter. This observation suggests a phase

transition in the complexity of the density matrix of a random subsystem [227] as a function of

sampling rate p. The quantity C(N,M, q) is designed to capture this phase transition.

To see this, consider fixing M ≫ 1 and changing q from 0 to 1/M . For p =Mq near zero, as
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mentioned before, the density matrix ρ is approximately a tensor product of independent density

matrices which implies C(N,M, q) ≈ 0. As we increase q, ρ starts to see some correlations

between fewAjs, but sinceDM catches only irreducible M-partite correlations and sinceM ≫ 1,

we still get C(N,M, q) ≈ 0. However, as soon as p = Mq becomes large enough that the

global entanglement structure of the state can be read off from ρ, C becomes non-zero. On the

other hand, as we increase q further, the global information would now become accessible by

the marginals of ρ as well and therefore C drops to zero again. This discussion suggests two

phase transitions happen as one tunes q from 0 to 1/M ; first, when ρ starts to see the global

entanglement at Mq = pc, and the second, when this information becomes accessible to the

marginals of ρ as well, i.e. at (M − 1)q = pc.

We will back up the scenario described in the previous paragraph by (1) Computing C in

various specific examples in the next section, (2) Providing a geometrical picture in terms of bond

percolation in the case of geometric topological phases and (3) Providing a more quantitative

argument in the case of error correcting codes with a finite erasure threshold.

5.3 Examples

5.3.1 Random Haar and random stabilizer states

In this subsection, we study the behavior of C(N,M, q) for random Haar and random sta-

bilizer states. The entanglement structure of subsystems of random Haar and random stabilizer

states is well studied. In particular, if |ψ⟩ is a random state ofN qubits and if ρ denotes its reduced

density matrix on a subset A of qubits with size nA < N/2, it is known that the average entan-
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glement entropy of ρ is exponentially close to its maximum possible value, i.e. nA [228, 229]:

E[S(ρ)] = nA −O(2−2(N/2−nA)). (5.10)

As we shall explain below, it follows then that C(N,M, q) = 0 for Mq < 1/2 as well as for

(M − 2)q > 1/2, up to exponentially small corrections in N .

First consider theMq < 1/2 case. LetA be the random subset of qubits as defined in Eq. (5.8)

and let ρ denote the corresponding reduced density matrix. Note that nA/N ≃ Mq and that the

equality becomes exact in the N → ∞ limit. This shows E[S(ρ)] = nA − O(2−N(1/2−Mq)).

Since for any density matrix ρ̃ on nA qubits we have S(ρ̃) ≤ nA, it follows from Eq. (5.4) that

C(N,M, q) = O(2−N(1/2−Mq)).

For the (M − 2)q > 1/2 case, let B = ∪M−2
j=1 Ai, C = AM−1, D = AM denote three non-

overlapping subsets of A such that A = B ∪ C ∪ D. Note that |B|/N ≃ (M − 2)q > 1/2 and

that the equality becomes exact in the N → ∞ limit. Roughly speaking, in this case B,C,D

form an approximate quantum Markov chain, and therefore one could recover the whole state of

A just from its marginals [230,231]. To get a more precise formulation, note that B,C,D satisfy

the condition of the strong subadditivity bound in Eq. (5.6). The value of the upper bound can be

found using Eq. (5.10),

I(C : D|B) = S(BC) + S(BD)− S(B)− S(BCD)

= O(2−εN). (5.11)

Hence we get C(N,M, q) = O(2−εN).
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Figure 5.2: C(N,M, q)/N evaluated numerically for a random stabilizer state, on a fixed system
size N = 5184 and for different M ’s as a function of p = Mq. The thick solid lines correspond
to the analytic result. The dashed lines correspond to the analytic upper bound in Eq. (5.13)

We now turn to the regime where Mq > 1/2 but (M − 1)q < 1/2. First we consider the

random stabilizer states. Since (M−1)q < 1/2 it follows that for large enough N , |A\Aj|/N <

1/2 for any j = 1, · · · ,M . Therefore, comparing Eq. (5.10) and Eq. (5.3) shows E[dimGA\Aj ]

is exponentially small, which in turn means the contribution of E[dimGA;(M−1)] in Eq. (5.4) is

exponentially small. On the other hand, Mq > 1/2 implies that |Ac|/N < 1/2, where Ac stands

for the complement of A. Therefore we can find dimGA from Eq. (5.3) by noting S(A) = S(Ac)

and using Eq. (5.10) to find S(Ac). Hence, we find E[dimGA]/N ≃ 2Mq−1, where the equality

becomes exact in the thermodynamic limit. This shows C(N,M, q)/N = 2Mq − 1 up to small

errors vanishing in the thermodynamic limit. We expect the same behavior in random Haar states

because in the intermediate regime, all M − 1 marginal density matrices are exponentially close

to the maximally mixed state and therefore the maximum entropy state consistent with all of them

is expected to have the maximum entropy allowed by that system size, i.e. S(ρ̃) ≃ NMq, which

implies C(N,M, q)/N ≃ 2Mq − 1, similar to the random stabilizer states.

In the final regime where (M − 1)q > 1/2 but (M − 2)q < 1/2, we can only upper
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bound C(N,M, q). Note that the subadditivity bound Eq. (5.6) with the choice of regions

B = ∪M−2
j=1 Ai, C = AM−1, D = AM gives (following the same logic as the (M − 2)q > 1/2

regime),

I(C : D|B) = S(BC) + S(BD)− S(B)− S(BCD)

= N − 2nB +O(2−εN). (5.12)

This implies that, in the regime (M −1)q > 1/2 but (M −2)q < 1/2, we have C(N,M, q)/N <

1− 2(M − 2)q.

We remark that the combination of this bound with the results in the regimeMq > 1/2, and, (M−

1)q < 1/2, already implies that C(N,M, q)/N is non-analytic at (M − 1)q = pc = 1/2 (this is

the second transition discussed in Section 5.2). Numerically, we find that the bound above is not

tight in this regime.

Putting everything together, for the random stabilizer state we have the following result:



C/N = 0, Mq < 1
2

C/N = 2Mq − 1, (M − 1)q < 1
2
< Mq

C/N < 1− 2(M − 2)q, (M − 2)q < 1
2
< (M − 1)q

C/N = 0, 1/2 < (M − 2)q

(5.13)

up to small corrections vanishing in large N .

Our numerical, as well as analytical results, are displayed in Fig. 5.3.1. The thick solid

lines correspond to the analytic expressions and the dashed lines represent the analytical upper
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bound. The numerical result are computed for a system size N = 5184. The slight discrepancy

between the numerical and analytical results is due to finite size effects and will vanish in the

thermodynamic limit [232]. Consistent with the discussion of Section 5.2, we find (at least) two

phase transitions where the behavior of C(N,M, q) is non-analytic - One where the set of all M

parties start to have access to global information about the stateMq = pc = 1/2 and a second one

where the set of M − 1 parties starts to have access to global information (M − 1)q = pc = 1/2.

In analogy with the usual theory of critical phenomena, close to the phase transition at Mq =

1/2, we find the scaling ansatz

C(N,M, q = p/M)

N
= (M − 1)−βf((p− pc)(M − 1)α), (5.14)

will collapse the data perfectly with pc = 1/2, α = 1, and β = 1. In the following subsections,

we successfully apply the same scaling ansatz to study several analogous phase transitions.

5.3.2 Topological Phases of Matter

We now consider the behavior ofC(N,M, q) in the conventional topological phases of matter.

We will focus on the toric code model, but we expect a similar result to hold for all topological

phases.

Consider the toric code model on a L×L torus. In Section 5.1.1 we discussed the behavior of

DM for a particular choice of subsystems in the toric code. Here we discuss the behavior of DM

for generic subsystems. Let A = {Ai}Mi=1 denote a set of disjoint subsystems of the qubits on

the torus. Their union A = ∪Mi=1Ai, can be viewed as a collection of patches with some holes on

the torus. Let ρ denote the reduced density matrix of the system on A. Stabilizers that stabilize ρ
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can be taken to be either (1) normal 4-qubit toric code stabilizers, or (2) stabilizer loops around

the holes in A, or (3) logical loops around the torus. If we take M > 4, DM(ρ,A) can only have

contributions from the stabilizers of type (2) and (3). Moreover, such stabilizers contribute only

if they are not stabilizing any of its marginals. Hence, we see that DM(ρ,A) counts the number

of independent non-trivial loops in A that are not present in any of its (M − 1)-party subsystems.

In the context of more general CSS quantum codes, this can be put more formally as a question

about how much of the homology/cohomology properties of A, thought of as cellulation of a

manifold or more generally a chain complex can be read-off from its subsystems.

When the Ai subsystems are chosen randomly as described in Section 5.2, one can gain

further insights into the behavior of DM from the theory of bond percolation. We can view A as

the set of qubits on the torus each chosen with probability p =Mq. Similarly, any (M −1)-party

union set, i.e. A \ Aj for any j, can be viewed as the set of qubits on the torus each chosen with

probability p′ = (M − 1)q. Now if p > pc while p′ < pc (with pc = 1/2 denoting the bond

percolation threshold on the square lattice), the set A percolates with probability one while no

(M−1)-party union set does. Hence, while the two logical qubits are accessible to A, their value

can not be deduced from any of the (M − 1)-party marginals. This ensures that C(N,M, q) ≥ 2

for pc
M
< q < pc

(M−1)
. Note that this region of q shrinks asM increases, which implies that for large

Ms we are close to the percolation critical point and should therefore be careful with the order

of limits and finite-size effects. Proximity to the percolation threshold Mq ≈ pc, in turn, implies

that A is likely to include macroscopically large holes. Each one of these large punctures (with

perimeter larger than M ) has some chance of contributing to DM(ρ,A) depending on whether

it is present in M − 1 partite systems or not (note that these contributions are also present on

surfaces without a logical qubit, e.g. a sphere).
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Figure 5.3: C(N,M, q)/N for the toric code on a torus. Plotted at a fixed system sizeN = 72×72
and for different Ms as a function of p = Mq. Inset: the best data collapse for the toric code
around the point Mq = 1/2, using the scaling ansatz of Eq. (5.14) with parameters pc = 0.5,
α = 1.2 and β = 3.2.

Putting everything together, we expect C(N,M, q) to be small unless we choose our pa-

rameters such that A and its (M − 1)-party subsystems are on different percolation phases

pc
M
< q < pc

(M−1)
. Furthermore, the calculation of C(N,M, q) can be mapped into a calculation of

the distribution of large punctures in the percolation theory near the critical point. However, we

do not attempt this analytical computation here and instead use numerical results to find a phe-

nomenological form for C(N,M, q) and discuss its universal properties which should be entirely

set by the percolation CFT. We expect a similar picture to hold in all topological phases (with

stabilizers replaced by generic Wilson loop operators).

Before proceeding further, we’d like to emphasize that the discussion above was simplified

by the fact that both X and Z stabilizers of the toric code live on a square lattice (square lattice is

self dual). In the case of more generic lattices, or more generic CSS codes, one needs to carefully

separate the discussion of X and Z stabilizers to be precise.

We now proceed to present the numerical results for the case of the toric code on a torus
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(square lattice): Based on numerics, we find that in the large system size limitN ≫ 1,C(N,M, q)

becomes proportional to the system size N . This is consistent with the percolation picture be-

cause the distribution of punctures is proportional to the area of the system. In Fig. 5.3, we have

plotted C(N,M, q)/N at fixed system size N = 72 × 72 as a function of p = Mq for a number

of different Ms. Consistent with our expectation, we find that C(N,M, q) is nonzero in a region

of width ∆p ≈ 1/M around pc = 1/2. Furthermore, the inset shows that we can collapse the

data around the Mq = 1/2 point, using the scaling ansatz of Eq. (5.14). We find that pc = 0.5,

α = 1.2 and β = 3.2 results in the best collapse.

5.3.2.1 Using C(N,M, q) to detect a phase transition

To claim that the behavior of C(N,M, q) can be used to distinguish trivial and non-trivial

states we need to understand how C(N,M, q) behaves across a phase transition. As an exam-

ple, we look into the phase transition from the toric code fixed point into the trivial phase. In

the Hamiltonian setting, this can be done by following the ground state of the troic code in an

external magnetic field [194]. This approach is not suitable for us since our computational power

in computing is C(N,M, q) is limited to stabilizer states. As we saw in Chapter 4, in the con-

text of monitored random quantum circuits we can stabilize topological phases and study their

transitions entirely within the stabilizer formalism. This convenient feature makes these models

suitable to study using our computational method.

In particular, we shall use a simplified monitored random circuit model which is equivalent

to a special case of the measurement-only circuit introduced in Section 4.2. We consider a radom

circuit on a 2D square lattice of qubits (on a torus) where at each step, with probability py a

119



M-1

C
/N

Topological Trivial

pypy=0.5

(a)

(b)

Figure 5.4: a) The phase diagram of the random quantum circuit, consisted of measuring either
single qubit Y with probability py or four qubit toric code stabilizers with probability 1− py. b)
C(N,M, q) at Mq = pc = 0.5 and N = 56 × 56 as a function of M evaluated on the late time
states of the random quantum circuit and average over many realizations.

randomly chosen single qubit is measured in the Y basis, and with probability 1 − py a random

stabilizer of the toric code is measured. The entanglement structure of the late time state of this

circuit exhibits an entanglement phase transition at py = 1/2, as shown in Fig. 5.4a. We refer the

reader to Section 4.2 for further details about this phase transition.

We study the behavior of the C(N,M, q) averaged over different circuit realizations as we

change py across the phase transition. In particular, for each py, we look at C(N,M, q) at

Mq = 0.5 as a function M . Based on the ansatz in Eq. (5.14), we expect C(N,M, q = pc/M)

to be a power law as a function of M − 1 in the topological phase. On the other hand, in

the trivial phase, we expect C to vanish faster than any power-law due to the absence of long-

range entanglement. The numerical results are presented in Fig. 5.4b. As evident from the plot,

C(N,M, q = pc/M)/N behaves as a power-law throughout the topological phase. The expo-
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d
n1/2

Figure 5.5: Average distance and its variance of quantum expander code with n qubits as a
function of

√
n, based on random bi-partite graphs with left and right degrees 5 and 6 respectively.

nent also seems to remain constant (within the error bar), suggesting that the power-law shape of

C(N,M, q = 1/2
M

) as well its exponent are universal in the topological phase. In the trivial phase

py > 0.5, we find that C(N,M, q = 1/2
M

) decays faster than any power law (shown in Fig. 5.4b)

- establishing a sharp, qualitative difference between the behavior C(N,M, q = pc/M) in trivial

and topological phases.

5.3.3 Quantum Expander Code

Code states of a [[n, k, d]] quantum error correcting code with k > 0 and d growing with

system size can not be prepared via constant-depth k-local unitary circuits [215,216]. Therefore,

it is interesting to study the irreducible multipartite entanglement in the quantum states which

correspond to code words of a quantum error correcting code.

In particular, we will focus on the quantum expander code family [220]. Quantum expander

codes have finite rate and their distance scales as
√
n, so they make a family of [[n, k = Θ(n), d =

Ω(
√
n)]] quantum codes. A brief review of the quanutm expander code construction is proided in

Appendix G. In what follows, we consider quantum expander codes on n qubits which are based

on classical random bi-partite graphs with left and right degrees ∆L = 5 and ∆R = 6 respectively.
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p=Mq

C
/N

p’

C
’

α=1.0, β=1.5, pc=0.49

Figure 5.6: C(n,M, q) as a function of p = Mq for different Ms at fixed n = 2196. The inset
shows the collapsed data corresponding to the first phase transition, where the horizontal axis is
rescaled to p′ = (Mq − pc)(M − 1)α and the vertical axis is rescaled to C ′ = C (M − 1)β , with
pc = 0.49, α = 1.0 and β = 1.5.

It can be shown [233] that with probability P > 1 − O(n−β), the resulting quantum code has

distance d > α
√
n for some positive constants α and β and encodes k = (∆R−∆L)

2

∆2
R+∆2

L
n = 1

61
n

logical qubits. This result in an upper bound on the erasure threshold of eth ≤ (1−1/61)/2 ≃ 0.49

[234]. Fig. 5.5 shows the average code distance of this family and its variance as a function of

√
n.

We now present the numerical results corresponding to the irreducible many-partite correla-

tions for code states of the aforementioned quantum expander codes. All results are averaged

over different selections of random partition as well as different realizations of random quantum

expander codes. Fig. 5.6 shows C(n,M, q) as a function of p =Mq for different values of M at

fixed system size of n = 2196. As expected from general considerations, C vanishes for small

and large values of p and becomes nonzero in a window of width ∆p ∼ 1
M

near p ∼ 1/2. The
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Figure 5.7: The holographic state on n = 30 qubits constructed by two layers of 6-legged perfect
tensors. The white dots denote the physics qubits.

inset shows the collapsed data according to the scaling ansatz in Eq. (5.14) We find pc = 0.49,

α = 1.0 and β = 1.5 collapses different curves on top of each other.

5.3.4 Holographic states

The holographic quantum error correcting codes and the closely related holographic states

were introduced as simple toy models of the AdS/CFT correspondence [221, 235]. These con-

structions utilize a special type of tensor, known as a perfect tensor. The tensor network which

results from contracting a finite number of perfect tensors according to a compatible tessellation

of the hyperbolic plane represents a holographic quantum error correcting code or a holographic

state depending on whether the tensors in the bulk have any uncontracted leg left or not. The

dangling legs on the boundary correspond to physical qubits while the uncontracted bulk legs

(if any) correspond to logical qubits. Here, we focus on a holographic state which is defined by
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p=Mq

C
/N

p’

C
’

α=1.0, β=2.5, pc=0.5

Figure 5.8: C(N,M, q) as a function of Mq for different Ms, computed for the the holographic
hexagon state with N = 1590 physical qubits. The inset shows the data collapse according to the
scaling ansatz of Eq. (5.14), with pc = 0.5, α = 1.0 and β = 2.5. The horizontal axis of inset is
p′ = (Mq − pc)(M − 1)α and the vertical axis is C ′ = (M − 1)βC.

contracting 6-legged perfect tensors according to the {6, 4}-tiling of the hyperbolic plane (see

Fig. 5.7). The perfect tensor in this construction corresponds to a [[6, 0]] stabilizer code which

is closely related to the well-known 5-qubit code. This makes the resulting holographic state, a

stabilizer state as well (see Ref. [221] for more details). In what follows we refer to this state as

the holographic hexagon state.

Fig. 5.8 shows C(n,M, q = p/M) as a function of p =Mq, for fixed n = 5934 and different

Ms. This particular number of n corresponds to contracting r = 6 layers of edge-adjacent

hexagons on the hyperbolic plane (see Fig. 5.7 for r = 2). Similar to other cases, C vanishes

for small and large ps and it peaks near p = 0.5. The inset of the plot, shows the same data but

collapsed according to the scaling ansatz of Eq. (5.14), with parameters pc = 0.5, α = 1.0 and

β = 2.5.
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5.4 Relation to erasure threshold

In this subsection, we discuss the relation between C(N,M, q) and the erasure threshold in

quantum error correcting codes. Let ρ be a given code state in a quantum error correcting code

Q. Consider the situation in which the subset E of the qubits are erased. The quantum error

correcting code Q can correct for this erasure error if and only if it can reconstruct ρ using only

the remaining qubits. We say an error correcting code has a finite erasure threshold eth > 0 if

with probability one it can correct random erasure errors below a certain rate e < eth, where e is

the probability of a given qubit being erased. Equivalently, in a quantum error correcting code

with erasure threshold eth, if we consider a subset A of qubits where each qubit is kept at random

with probability p > (1− eth), it includes all the information about the state of the logical qubits

with probability one. By no-cloning theorem, this implies that the erased subsystem includes no

information about the state of the logical qubits.

Consider the stabilizer state ρ = |0L⟩⟨0L| in a stabilizer code Q with a finite erasure threshold

eth. Let ZL denote the logical operator associated with |0L⟩, which along with other stabilizers,

generates the stabilizer group of ρ. Consider the closely related stabilizer state ρ̃ = 1
2
(|0L⟩⟨0L|+

|1L⟩⟨1L|). The generators for the stabilizer group of ρ̃ can be taken to be the same as the generators

of the stabilizer group for ρ but with ZL dropped. For a given M and q, consider A to be the

randomly chosen subsystem defined in Section 5.2 and let ρA = trAc(ρ) and ρ̃A = trAc(ρ̃) denote

the associated reduced density matrices on A. From the discussion in the previous paragraph, we

know that if Mq < eth, with probability one ρA does not include ZL or a logically equivalent

operator (for brevity, in the rest of this paragraph we drop the phrase “or a logically equivalent

operator”). We also know that if Mq > 1 − eth, with probability one ρA does include ZL. Now
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consider the smallest Mq = pc such that ρA has a nonzero probability to include ZL. Note that

at this point, marginals of ρA do not include ZL, therefore, all marginals of ρA and ρ̃A would

be equal. In that case, the stabilizer group associated with ρA has a finite chance to have one

extra generator which is not present in the stabilizer group of ρ̃A, which in turn entails that there

is a finite chance to get S(ρ̃) > S(ρA) (see Eq. (5.3)). Therefore we are guaranteed to get

C(N,M, q) > 0 for the interval (M − 1)q < pc < Mq (Note that eth < pc < 1− eth). Roughly

speaking, this implies that all states which belong to an error correcting code with a finite erasure

threshold have long-range irreducible multipartite correlations amongst their random subsystems

(for suitably chosen subsystem sizes).

5.5 Final remarks and future directions

In this chapter, we proposed a non-geometric order parameter for k-local nontrivial phases

and demonstrated its utility by studying a wide variety of examples. In this section, we conclude

by speculating about the behavior of C(N,M, q) in generic quantum systems and list several

interesting future directions.

The following is a summary of the expected behavior of C(N,M, q) in generic systems: (1)

C(N,M, q) is expected to be nonzero in all geometric topological phases, including states de-

fined on surfaces without a ground state degeneracy, e.g. the surface of a sphere. This is because

even though the contribution from the logical qubit vanishes, the large holes close to percola-

tion transition still contribute to C(N,M, q) (see Section 5.3). Therefore, a nonzero value of

C(N,M, q) is not necessarily tied with the existence of a protected logical qubit. (2) C(N,M, q)

is expected to be nonzero in all “k-local” quantum error-correcting codes with a finite erasure
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threshold (see Section 5.4). (3) C(N,M, q) is expected to be zero in some gapless phases. In

particular, C(N,M, q) is expected to vanish in eigenstates of free systems. This is because in

these systems, Wick’s theorem implies that two partite density matrices include all the global

information. i.e. C(N,M > 2, q) = 0. (4) C(N,M, q) is expected to be nonzero in gapless

phases that have error correcting properties. Examples include the Motzkin chain [236, 237] and

CFTs important in AdS/CFT correspondence [221,238]. It would be intriguing to understand the

behavior of C in these systems.

The results of this chapter demonstrate the basic utility of C(N,M, q) in studying k-local

systems - However, much work remains to be done. In particular: (1) It would be interesting if the

computation scheme used in this chapter can be extended to states beyond the stabilizer states. (2)

While we demonstrated, the applicability of the scaling ansatz in Eq. (5.14) to many examples,

we do not have a clear understanding of the meaning of these exponents and the underlying

field theory. In particular, it is plausible that the value of these critical exponents encodes some

universal information (e.g. dimensionality) of the underlying k-local phase. (3) It would be

interesting if we can understand the relation between C(N,M, q) and the circuit complexity. In

particular, it is intriguing to see if it is possible to prove the non-triviality of a state that has

power-law decaying C(N,M, q) (as a function of M ). (4) It is interesting to understand if our

order parameter can be used to differentiate distinct volume law phases.
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Appendix A: Dehn Twist

Consider the annulus A shown in Fig. A.1a which consists of the points in the (r, θ)-plane

with 1 ≤ r ≤ 2 and 0 ≤ θ < 2π. Let T : A→ A denote the twist map given as:

T (r, θ) = (r, θ + 2π(r − 1)). (A.1)

Note that T is an orientation preserving homeomorphism which reduces to the identity map on

the boundaries of A. Fig. A.1b shows the image of a line in A under T .

Now, let Σ denote an arbitrary oriented surface and let α be a simple closed curve on Σ. To

define the Dehn twist around α, first we choose a regular neighborhood A of α on Σ which is

homeomorphic to A. Let ϕ : A → A denote an orientation preserving homeomorphism from A

to A. We define the twist map around α by the following homeomorphism Tα : Σ → Σ

Tα(x) =


ϕ ◦ T ◦ ϕ−1(x) x ∈ A

x x /∈ A
(A.2)

Tα clearly depends on the choice of N , ϕ and α. We define the Dehn Twist around α, denoted

by Dα to be the isotopy class of Tα, i.e. the class of homeomorphisms of Σ to itself that can be

deformed continuously to Tα. We remark that Dα depends only on the isotopy class of α.
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(a) (b)

(c) (d)

β Dα(β)

α

Figure A.1: (a) Annulus A with a typical line connecting its boundaries together. (b) Image of
the region A under the twist map. (c) and (d) show the β loop and its image under the Dehn twist
around the α loop, respectively.

As an example, one can consider the Dehn twist around the α loop on the simple torus shown

in Fig.A.1c. Figure A.1d shows how the β loop gets deformed by the action of Dα.

A simple way to find the image of a given loop like β under the action of the Dehn twist

around another loop like α, called the Dehn surgery, is as follows: We start by tracing out the β

loop until we hit an intersection with the α loop. Then we turn left to trace out the α loop until

we return to the intersection point, where we turn right to continue tracing out the β loop. We

need to do the same at any intersection of α and β until we get back to the starting point. Note

that with the above definition the Dehn twist around α does not depend on any direction that the

α loop might have.
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Appendix B: Area scaling calculation

In this appendix we analyze the shearing maps introduced in Section 3.3 to see by how much

they scale the area locally. Because these maps do not have any singularity on a genus g surface,

the local area scaling is bounded from below and above as one considers a fixed g. But more

importantly, we will show that if we consider a family of maps on surfaces with increasing genus

g, the local area scaling remains finite and bounded from below. Note that this result is crucial

for the retriangulation circuit described in Sec. 3.4 to be constant depth.

As in Chapter 3, we use the Poincare disk model for H2, namely the open unit disk in C with

the Reimannian metric:

ds2 = 4
dx2 + dy2

(1− r2)2
. (B.1)

In this model, the geodesics connecting two points would be either circular arcs perpendicular to

the unit disk or straight lines passing through the origin. It would be useful to note that a line

reflection in H2 looks like circle inversion in the unit disk model.

A genus g hyperbolic surface can be obtained by compactifying a canonical N -gon for N =

4g. A canonical N -gon plotted in the Poincare disk model and centered at the origin would have

its vertices at points:

zj =

√
cos

(
2π

N

)
ei2πj/N , j = 0, · · · , N − 1. (B.2)
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The length of the sides, as measured using the hyperbolic metric, would be (see Fig.B.1a):

|AB| = 4 tanh

(
cos(π/N)− sin(π/N)√

cos(2π/N)

)
. (B.3)

The {N,N}-tiling of H2 can be obtained by reflecting the canonical N -gon with respect to its

sides and repeating this procedure indefinitely.

We start by analyzing the α1 Dehn twist in detail. With minor modifications, the same cal-

culation applies to the other maps as well, so we will only mention the end results for the other

maps.

For the points in the shaded region but outside theABCD hyperbolic 4-gon in Fig. 3.4b, Dα1

acts as identity and hence it is preserves area locally. Next we consider the points inside ∆ABC

which are mapped to points inside ∆ACE (See Fig.B.1).

We start by calculating some lengths and angles. As in the main text, | | denotes the hyperbolic

length. |AC| can be obtained using the hyperbolic law of cosines (see Fig.B.1a):

cosh(|AC|) = cosh(|AB|)2 − sinh(|AB|)2 cos(2π/N), (B.4)

where we used the fact |BC| = |AB|. Then, we can calculate the angle Φ ≡ ∠BAC = ∠BCA

by the hyperbolic law of sines:

sin(Φ) =
sinh(|AB|)
sinh(|AC|) sin(2π/N). (B.5)

Note that |CE| = |AB| and ∠ECD = 2π/N . Therefore, |AE| and Φ′ ≡ ∠CAE can be
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Figure B.1: (a) D∗
α1

maps the ∆ABC and ∆ACD triangles to the ∆ACE and ∆AED triangles
respectively. (b) By moving the origin of the Poincarè disk to the point A, the geodesics AB, AC
and AE turn into straight lines while the angles between them remains the same. A typical area
element at point x alongside its image at x′ is shown on the figure.
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computed using the hyperbolic laws of cosines and sines respectively:

cosh(|AE|) = cosh(|AB|) cosh(|AC|)

− sinh(|AB|) sinh(|AC|) cos(4π/N − Φ)

(B.6)

sin(Φ′) =
sinh(|AB|)
sinh(|AE|) sin(4π/N − Φ). (B.7)

To make calculations simpler, we place the origin of the Poincarè disk on point A; by doing so,

the geodesics that come out of the point A will look like straight lines on the disk. In Fig. B.1b,

∆ABC and ∆ACE are plotted in this new coordinate frame.

Consider an infinitesimal area element ds at x = (r, θ) inside ∆ABC which is mapped to the

area element ds′ at x′ = (r′, θ′) inside ∆ACE; r and r′ are the Euclidean distance from origin in

Fig. B.1b and the θ and θ′ angles are measured with respect the lines AB and AC respectively.

we define λ(r, θ) as the scale factor of the area:

λN(r, θ) ≡
ds′

ds
=

√
g(r′)

g(r)

r′dr′

rdr

dθ′

dθ
, (B.8)

where g(r) is the determinant of the hyperbolic metric:

g(r) =
16r2

(1− r2)4
. (B.9)

We want to show that λ is bounded from above and below:

L < λN(r, θ) < U, (B.10)
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for some real positive L and U . First, we need to find r′ and θ′ in terms of r and θ.

Using the law of cosines for the angles in ∆ABM (see Fig. B.1b) gives:

cos(∠AMB) =− cos(θ) cos

(
2π

N

)
+ sin(θ) sin

(
2π

N

)
cosh(|AB|) (B.11)

And we can use this result to find |BM | and |AM |:

sinh(|AM |) = sin(2π/N)

sin(∠AMB)
sinh(|AB|) (B.12)

sinh(|BM |) = sin(θ)

sin(∠AMB)
sinh(|AB|) (B.13)

D∗
α1

is defined such that:

|CM ′| = |BM |
|BC| |CE|. (B.14)

Note that in this case |BC| = |CE| and hence:

|CM ′| = |BM |. (B.15)

We can find |AM ′| by using the law of cosines in ∆ACM ′:

cosh(|AM ′|) = cosh(|CM ′|) cosh(|AC|) (B.16)

− sinh(|CM ′|) sinh(|AC|) cos
(
4π

N
− Φ

)
. (B.17)
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It is then straight forward to find r′ and θ′. According to the way the map D∗
α1

is defined, we

have:

|Ax′| = |AM ′|
|AM | |Ax|. (B.18)

Note that r′ = tanh(|Ax′|/2) and |Ax| = 2arctanh(r). So we have:

r′ = tanh(ρ arctanh(r)), (B.19)

where ρ is equal to |AM ′|
|AM | and depends only on θ(not r). By taking the derivative of (B.19) with

respect to r we get:

dr′

dr
= ρ(θ)

1− r′2

1− r2
(B.20)

θ′ can also be obtained by using the hyperbolic law of sines in ∆ACM ′:

sin(θ′) =
sinh(|CM ′|)
sinh(|AM ′|) sin

(
4π

N
− Φ

)
(B.21)

By plugging (B.19),(B.20) and (B.9) into (B.8) we find:

λN(r, θ) =

(
tanh(ρ arctanh(r))

r

)2(
1 + r

1 + tanh(ρ arctanh(r))

)(
1− r

1− tanh(ρ arctanh(r))

)
ρ(θ)

dθ′

dθ
.

(B.22)

First, we fix θ and see how λ changes as one varies r in the range [0, rmax = tanh(|AM |/2)].

It is straight forward to show that tanh(ρ arctanh(r))/r is bounded by 1 and ρ. The second

parentheses in (B.22), which is equal to (1+ r)/(1+ r′), also is bounded by 1/2 and 2. The third

parenthesis in (B.22) is a monotonic function of r, as one can verify by taking the derivative,
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and so is bounded by 1 and (1 − tanh(|AM |/2))/(1 − tanh(|AM |′/2)). Therefore, to make

sure that λN(r, θ) is bounded, it suffices to show that ρ(θ) = |AM |′
|AM | , (1 − tanh(|AM |/2))/(1 −

tanh(|AM |′/2)) and dθ′

dθ
remain finite as one changes θ from 0 to Φ.

So far, all expressions were exact. But, since we are interested in the N → ∞ limit, the

calculation can be simplified greatly by computing the large N expansion of each expression. In

particular, (B.3),(B.4),(B.6),(B.5) and (B.7) have the following asymptotic forms:

|AB| = −2 ln
( π

2N

)
− 7π2

6N2
− 487π4

720N4
+O(1/N5)

|AC| = −2 ln
( π

4N

)
− 61π2

24N2
+O(1/N3)

|AE| = −2 ln
( π

14N

)
+O(1/N)

Φ =
π

2N
+

3π3

8N3
+O(1/N4)

Φ′ =
π

14N
+O(1/N2) (B.23)

To find the asymptotic form of functions that involve θ, first we trade θ for η ≡ θ
Φ

. The reason is

that θ varies in the range [0,Φ] and so has an implicit 1/N dependence because of Φ. By using η

instead of θ, the only small parameter of our expressions would be 1/N . Note that 0 ≤ η ≤ 1. In

terms of η, we get the following asymptotic forms for the expressions in B.12,B.16 and B.21:

|AM | = − ln

(
π
√
η(1− η)

4N

)
+O(1/N) (B.24)

|AM ′| = − ln

(
π
√
η(1− η)

(16 + 33η)N

)
+O(1/N) (B.25)

θ′ =
7πη

(32 + 66η)N
+O(1/N2) (B.26)
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The first two expressions are only valid for 0 < η < 1; for η = 0, 1 we have to use the expressions

listed in (B.23) instead. Note that for η = 0, we have |AM | = |AB| and |AM ′| = |AC|.

Similarly, |AM | = |AC| and |AM ′| = |AE| when η = 1. It follows then,

lim
N→∞

ρ(η) = 1

lim
N→∞

1− tanh(|AM |/2)
1− tanh(|AM |′/2) =

4

16 + 33η

lim
N→∞

dθ′

dθ
=

122

(16 + 33η)2
, (B.27)

and clearly all of them are bounded as a function of η. Thus we conclude that the inequality

(B.10) holds and therefore, when mapping ∆ABC to ∆ACE, local area scaling is finite and

bounded form above and belllow.

It remains to show that the same holds when mapping ∆ACD to ∆AED. The steps are

quite the same. First we calculate the side lengths and angles of these triangles. Note that

|DE| = |AC|,|CD| = |AB| and ∠ACD = 2π/N − Φ. |AD| and Φ′′ ≡ ∠CAD can then be

obtained using the hyperbolic law of cosines and sines respectively:

cosh(|AD|) = cosh(|AC|) cosh(|AB|)

− sinh(|AC|) sinh(|AB|) cos
(
2π

N
− Φ

)
,

(B.28)

sin(Φ′′) =
sinh(|AB|)
sinh(|AD|) sin

(
2π

N
− Φ

)
. (B.29)

Let M be a point on the side CD and M ′ its image which will be on ED. According to the
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definition of the map,

|EM ′| = |DE|
|CD| |CM | = |AC|

|AB| |CM | (B.30)

We define ρ, θ, θ′, and η similar to the previous case: θ ≡ ∠MAC, θ′ ≡ ∠M ′AE, ρ(θ) ≡

|AM ′|/|AM | and η ≡ θ/Φ′′. As in the previous section, we only need to compute the corre-

sponding limits listed in (B.27). The calculation follows the same steps and at the end we will

find that:

lim
N→∞

ρ(η) = 1 (B.31)

lim
N→∞

1− tanh(|AM |/2)
1− tanh(|AM |′/2) =

8

49− 45η
(B.32)

lim
N→∞

dθ′

dθ
=

112

(49− 45η)2
. (B.33)

Since all of them are bounded for 0 ≤ η ≤ 1 it follows that the area elements in ∆ACD also

expand or shrink by a finite factor under this transformation.

Putting everything together, we conclude that D∗
α1

has finite local area scaling over the entire

polygon and this ends the proof.

The situation for β Dehn twists are exactly the same up to some relabeling and needs no more

analysis. One can also carry out similar calculations to check that the same remains true for the

γ Dehn twists. Note that D∗
γ is essentially the same as D∗

α; the only difference is that the polygon

is no longer regular.
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Appendix C: Dehn Twists on Σ3

Although we used a g = 2 hyperbolic surface to describe our procedure, as we mentioned in

the main text the protocols can be easily generalized to higher genus surfaces. In this section, we

briefly explain how the generalization applies in the g = 3 case. The genus 3 surface Σ3, shown

in Fig. C.1, can be constructed by identifying every other edge of a 12-gon (see Fig. C.2a). The

space of possible hyperbolic metrics – Teichmüller space – corresponds to inequivalent choices

for the locations of the vertices of the 12-gon. Here we consider a regular 12-gon for simplicity.

The sides of the 12-gon then correspond to the canonical closed loops of the closed surface

which generate the fundamental group of Σ3:

π1(Σ3) = ⟨α1, β1, · · · , α3, β3 |
3∏
i=1

αiβiα
−1
i β−1

i = 1⟩. (C.1)

Similar to the genus 2 case, we can tile the hyperbolic plane by attaching copies of the stan-

dard 12-gon appropriately together, which then specifies a universal covering for Σ3. We can

choose one of the standard 12-gons as the fundamental domain of the covering. Such a tiling is

plotted in Fig.C.2a.

The mapping class group of Σ3 can be generated by the Dehn twists around the α and β loops
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α1

β1

β2

β3

α3α2

Figure C.1: Σ3 surface and generators of its fundamental group.

plus the Dehn twists along γ1 and γ2 loops, where:

γi = α−1
i+1α̃i, i = 1, 2 (C.2)

and where α̃i is the αi but transported along βi:

α̃i = βiαiβ
−1
i (C.3)

To implement the Dehn twists, it suffices to find appropriate shearing maps to permute the

qubits accordingly. The subsequent step, which is the re-triangulation, has already been described

in the general case in Section 3.4. The representative maps for the Dehn twists along α and β

loops are essentially the same as the ones described in Section 3.3 for the g = 2 case. As an

example, Fig. C.2b shows how the fundamental domain is transformed by D∗
α1

in this case.

The representative maps for Dehn twists along γis are also straightforward generalizations of

the map described in Section 3.3; the trick is to choose a 12-gon as the fundamental domain such

140



α1

β1

α1

β1

β2β2

β3

β3

α3

α3

α2

α2

α1

β1

α1

α1

β1

β2β2

β3

β3

α3

α3

α2

α2

β1α
−1
1

β1α
−1
1

γ1

β1

α̃2

α3
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β2β2

β3

β3

α3

α3

α2

α2α̃2

α̃2

γ1

γ1
β1

β1δ2

δ2

(a) (b)

(c) (d)

Figure C.2: (a) The regular 12-gon corresponding to the Σ3 surface. (b) The image of the funda-
mental domain shown in (a) under the action of D∗

α1
. (c) New set of loops on the surface of Σ3

(d) The fundamental domain that is used to define D∗
γ1

which can be obtained by cutting the Σ3

surface along the loops shown in (c). The sides associated with α̃2, β1, δ1 marked by the arrows
could not be drawn completely due to size constraint.
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that it has the γi loop as two of its sides and only the sides neighboring γi transform non-trivially

by the representative Dehn twist map. Here we consider the Dehn twist along γ1. The Dehn twist

along γ2 follows similarly. The action of Dγ1 on α1, α2, β1 and β2 follows from the expressions

in (3.13) by replacing γ with γ1. Furthermore, it keeps α3 and β3 invariant. The loop δ2 = β2β1

also remains invariant under Dγ1 . Just like (3.14) for the g = 2 case, we can rewrite the group

relation in (C.1) as:

δ−1
2 α̃2δ2β

−1
1 γ1β1γ

−1
1 α̃−1

2 α3β3α
−1
3 β3 = 1. (C.4)

This form then suggests trading {α1, β1} with {γ1, β1} and {α2, β2} with {α̃2, δ2}. Fig. C.2c

shows these new set of loops on the surface of Σ3. If we cut Σ3 along these loops, we end up

with the the shaded irregular 12-gon shown in Fig. C.2d, which can be taken as the fundamental

domain of the covering map. Note that in this 12-gon all sides remain invariant by Dγ1 except

the two sides labeled by β1. Moreover, the β1 sides are neighboring the γ1 sides as was the case

in g = 2. Therefore a shearing map directly analogous to D∗
γ in Section 3.3 would work here as

well.
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Appendix D: Entanglement entropy in stabilizer formalism

A stabilizer state |ψ⟩ over N qubits is specified by a set S = {s1, · · · , sN} of N independent,

mutually commuting Pauli strings operators si, such that

si |ψ⟩ = |ψ⟩ . (D.1)

Clearly, there are many equivalent choices of S that result in the same stabilizer state |ψ⟩. How-

ever, given a stabilizer set S, the elements si generate an abelian group Gψ = ⟨s1, s2, · · · , sN⟩

under multiplication, which is determined uniquely by the stabilizer state |ψ⟩.

The density matrix of the system in the stabilizer state |ψ⟩ can be written as [200]

ρ = |ψ⟩⟨ψ| = 1

2N

∑
g∈Gψ

g. (D.2)

Given a bipartition of the qubits into two sets A and B, the reduced density matrix of ρ over A

can be obtained by tracing equation (D.2) over B, which yields

ρA =
1

2nA

∑
g∈GA,ψ

g, (D.3)

where nA is the number of qubits in A and GA,ψ ⊆ Gψ is the subgroup of the stabilizers which

143



are entirely contained in A, i.e. they act as identity on the qubits outside A. The von Neumann

entanglement entropy of ρA is given by

SA(|ψ⟩) = nA − log2 |GA,ψ|, (D.4)

where |G| stands for the number of elements in group G [200]. Moreover, Rα(ρA), the Renyi

entropy of order α, is actually independent of α and is equal to von Neumann entanglement

entropy.

Let |ψ⟩ be a stabilizer state specified by the stabilizer set S = {s1, s2, · · · , sN}. Consider a

closely related stabilizer state |ψ′⟩ which is specified by the stabilizer set S ′ = {(−1)n1s1, (−1)n2s2, · · · , (−1)nNsN}

where each ni is either 0 or 1. The following Lemma shows that |ψ⟩ and |ψ′⟩ are indistinguishable

as far as the entanglement entropy is concerned.

Lemma D.1. For |ψ⟩ and |ψ′⟩ defined as above and for any subset A of the qubits,

SA(|ψ⟩) = SA(|ψ′⟩). (D.5)

Proof. Let Gψ and Gψ′ denote the stabilizer groups associated with |ψ⟩ and |ψ′⟩ respectively.

Consider the group homomorphism h between Gψ and Gψ′ defined by its action on the generators

of Gψ as

h : Gψ 7−→ Gψ′

h(si) = (−1)nisi.
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Since h maps a generator set to another, it is bijective. Moreover, it is straightforward to verify

that for any subset A of qubits, h maps GA,ψ to GA,ψ′ . The Lemma’s claim then follows immedi-

ately from equation (D.4).

Given a stabilizer state |ψ⟩, one has the freedom to choose any N independent elements from

Gψ to form the stabilizer set S. We can use this gauge freedom to impose certain conditions on

the elements of S.

Define the left (right) endpoint of a stabilizer s to be the first (last) site on which s acts non-

trivially. Given a set of stabilizers S, let ρl(i) denote the the number of stabilizers whose left

endpoint resides on site i and define ρr(i) similarly with regard to the right end points. As is

shown in Ref. [239], one can always choose S such that

1. For all sites we have ρr(i) + ρl(i) = 2.

2. If ρl(i) = 2 (or ρr(i) = 2) for a site i, the two corresponding stabilizers have a different

Pauli operator at i.

Such a stabilizer set S is said to be in the clipped gauge [153]. The utility of the clipped gauge is

that the entanglement entropy has a simple form in this gauge. In particular, if the stabilizer set

S is in the clipped gauge, the entanglement entropy of a contiguous region A equals to half the

number of stabilizers in S which have one endpoint in A and another in its complement [153].
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Appendix E: Time dynamics of the density matrix in monitored Clifford ran-

dom quantum circuit

Let Q denote a specific realization of the quantum circuit laid out in the main text. If we

fix the initial state to be |0⟩⊗N and run the same circuit many times, due to the randomness in

the measurement outcomes, the final state of the system could be different each time. Instead

of considering quantum trajectories, we can calculate the expectation value of operators over

different runs by viewing the measurements in Q as quantum channels. Accordingly, the entire

circuit can be described as a quantum channel EQ, which transforms the initial pure density matrix

ρ0 = (|0⟩⟨0|)⊗N to a mixed final density matrix ρ∗ = EQ(ρ0).

ρ∗ can be used to compute the expectation values of measurements which are averaged over

many runs of the circuit without post-selection on the measurement outcomes. In particular, if

we run the circuit Q many times, measure a fixed operator O each time and average the result

over a large number of runs, the value we get would be

Ō = tr(Oρ∗). (E.1)

Here we show that with probability one, ρ∗ is actually independent of the underlying circuit.

In other words, if Q is any fixed quantum circuit chosen with the distribution associated with
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probabilities 0 < ps, pt < 1 and pu < 1, the final density matrix of the system is always given by

ρ∗ = EQ(ρ0) =
1

2N−2
ΠG1,+ΠG2,+. (E.2)

where ΠGi,+ is the projection operator on the Gi = 1 subspace. Note that, not only does ρ∗

not depend on the specific realization Q, but it is also independent of ps and pu, which means

that as far as the expectation value of operators is concerned, the entire phase space looks the

same. Moreover, we show that the time it takes for the density matrix to reach the steady state is

constant for pu = 0 while it is at most O(N) for pu ̸= 0.

For a general Pauli string operator S, the quantum channel corresponding to its measurement

is given by

ES(ρ) = ΠS,+ ρ ΠS,+ +ΠS,− ρ ΠS,− (E.3)

where Π± denote the projectors onto S = ±1 subspaces, i.e.

ΠS,± =
1

2
(1± S). (E.4)

By using the explicit form of the projectors ΠS,±, equation (E.3) can be written as

ES(ρ) =
1

2
(ρ+ S ρ S). (E.5)

Consider a mixed stabilizer state ρ

ρ(G) = 1

2N

∑
g∈G

g, (E.6)
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for a Pauli group G = ⟨e1, ·, en⟩ with n ≤ N independent generators. According to equation

(E.5), under the measurement of a Pauli string S, we have

ES(ρ) =
1

2N+1
(
∑
g∈G

g +
∑
g∈G

SgS) (E.7)

=
1

2N

∑
g∈CG(S)

g (E.8)

= ρ(CG(S)). (E.9)

HereCG(S) is the centralizer of S in G. If S commutes with all elements in G, clearlyCG(S) = G.

Otherwise, without loss of generality, we can assume S commutes with all generators of G except

one of them, say en. Thus CG(S) = ⟨e1, · · · , en−1⟩.

The above analysis shows that for a mixed stabilizer state, whenever a Pauli string is mea-

sured, it either leaves the density matrix untouched or takes it to another mixed stabilizer state

with one less generator, depending on whether the measured Pauli string commutes with the

corresponding Pauli group or not.

In our case, the initial state of the system is given by

ρ(G0) =
1

2N

∑
g∈G0

g, G0 = ⟨G1, G2, Z2, · · · , ZN−1⟩. (E.10)

Let us first consider the pu = 0 case. Based on the discussion above, it is clear that Zi

measurements never change ρ and thus can be ignored for our purpose. Each time a stabilizer gi

is measured, ρ(G) is transformed to ρ(CG(gi)). Note that in general we have

CCG(S1)(S2) = CG({S1, S2}). (E.11)
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Thus after all stabilizers gi have been measured at least once, the density matrix of the system

would be given by:

ρ(CG0({g2, · · · , gN−1})) = ρ(⟨G1, G2⟩)

=
1

2N−2
ΠG1,+ΠG2,+ = ρ∗. (E.12)

Let mj denote the updating step at which gj is measured for the first time. It is easy to show that

E[mj] = (N − 2)/pt, where E[X] denotes the expectation value of X . Therefore, the average

time it takes for the system to reach the steady state ρ∗ would be

τ∗ =
1

N
E[max

j
(mj)] =

1

N
max
j

(E[mj]) = O(1), (E.13)

where the pre-factor 1/N is there to convert updating steps to time steps.

Now consider the pu ̸= 0 case. Again, we start by the same initial density matrix given by

equation (E.10). Each time a measurement is performed, either Zi or gi, the Pauli group associ-

ated with the density matrix of the system either remains the same or shrinks to one of its sub-

groups with one less generator, as was explained above. On the other hand, whenever a Clifford

unitaryU is applied, it just transform ρ(G) to ρ(U †GU) with the same number of generators. Now,

note that any Pauli group that commutes with every element in the set M = {Zi}Ni=1 ∪ {gi}N−1
i=2

should be a subgroup of ⟨G1, G2⟩ (or the ones which are obtained by substituting Gi with −Gi).

Therefore, for any Pauli group G with more than two generators, there is at least one element

of M that does not commute with G. Ergo, at each updating step with probability of at least

min(ps/N, pt/(N − 2)), the Pauli group associated with the density matrix would shrink to a
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subgroup with one less generator, until only two generators G1 and G2 remain. Thus, on average,

at most it takes O(N) updating steps until a stabilizer is measured which decreases the number

of generators by one. Since we start with N generators, the average time it takes to reach the

steady state with only G1 and G2 as generators, i.e. ρ∗, would be:

τ∗ ≤
1

N
(N − 2)O(N) = O(N). (E.14)
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Appendix F: Mapping the entanglement dynamics to the classical bond perco-

lation

In this section we provide the details regarding the percolation mappings discussed in Chapter

4. The first part pertains to the (1+1)D symmetric random circuit studied in Section 4 and shows

how the entanglement dynamics can be related to two decoupled 2d classical bond percolation

problems. this section also includes the proof of Proposition 4.1. In the next part, we consider

the (2+1)D monitored circuit of Section 4.2 and we show how one can map the entanglement

dynamics to a 3d classical bond percolation problem.

F.1 (1+1)D symmetric monitored random quantum circuit

F.1.1 Graphical representation of the state

In this section we develop a graphical description to follow the system’s state as it evolves

under the random quantum circuit described in the main text for pu = 0. Moreover, this graphical

representation provides the basic intuition behind the percolation mapping.

The initial state of the system is given by the stabilizer set S0 = {Z1, Z2, · · · , ZN}. At each

step of the circuit, we measure either a stabilizer gi or a single qubit operator Zi on a qubit and

update the stabilizer set accordingly. Let Sm denote the stabilizer set that corresponds to the
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system’s state after m updating steps.

First, we prove the following Lemma:

Lemma F.1. Sm can be chosen such that each of its elements, up to a minus sign, is in one of the

following forms:

Z2j+1,2k+1 ≡
k∏
i=j

Z2i+1,

Z2j,2k ≡
k∏
i=j

Z2i,

g2j+1,2k+1 ≡
k∏

i=j+1

g2i = X2j+1Z2j+2,2kX2k+1,

g2j,2k ≡
k−1∏
i=j

g2i+1 = X2jZ2j+1,2k−1X2k, (F.1)

for some integers j and k.

Proof. We prove the lemma by induction. The claim is clearly true for S0. Assume it is true for

Sm. First consider the case where we measure Z2j+1 in the next step. We follow the procedure

proscribed by the Gottesman-Knill theorem [240, 241] to obtain the stabilizer set Sm+1. If Z2j+1

commutes with every stabilizer in Sm, then nothing happens by measuring Z2j+1, hence Sm+1 =

Sm. So consider the case where some elements of Sm anti-commute with Z2j+1.

Any element of Sm that does not commute with Z2j+1 has either the form g2j+1,2k+1 or

g2k+1,2j+1 for some k. If there is only one of them, then one only needs to replace it with ±Z2j+1

(with the sign chosen arbitrarily) to obtain Sm+1. If there are more than one, we replace the

first one with ±Z2j+1, again with the sign chosen arbitrarily, and multiply the others with the

stabilizer that was replaced, to get Sm+1. In either cases, Sm+1 will have the stated form.
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(a)

(b)

(c)

Figure F.1: The diagrammatic representation of the quantum state. a, The diagrammatic rep-
resentation of the product state |0⟩N . b, The diagrammatic representation of the stabilizer state
specified by S = {gi}Ni=1. c the same as b, but including just the odd sites.

The other possibilities, i.e. measuring other operators at step m+ 1, can be treated similarly.

Based on Lemma F.1, we can use a diagrammatic notation to specify Sm; we put N dots

along a line representing the qubits, as is shown in Fig. F.1. Then, for every ga,b element in Sm,

we draw a line between sites a, b from below and for every Za,b element in Sm draw a line from

above. Fig. F.1a and Fig. F.1b show the diagrams corresponding to S = {Zi}Ni=1 and S = {gi}Ni=1

respectively, with g1 and gN defined as g1 ≡ G1 and gN ≡ G2.

The form of the stabilizers listed in Lemma F.1 suggests a decomposition of the system into

odd and even sites. Note that if we measure, for example, Z2i+1, the only stabilizers that could

be replaced are in the form g2j+1,2k+1 while the g2j,2k stabilizers whose endpoints reside on even

sites remain unchanged. Also, if one measures g2i−1,2i+1 = g2i whose ends points are on odd
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Z

X XZ

X XZ

X XZ

Figure F.2: Step by step evolution of the system under the quantum circuit shown on the left. The
diagrammatic representation of the system’s state is shown on the right after each measurement.

sites, the only stabilizers that could change have the form Z2j+1,2k+1. So, if the stabilizer we are

measuring has endpoints on odd sites, we only need to know about the stabilizers in Sm which

also end on odd sites to find Sm+1. In other words, we can keep track of the set of stabilizers that

start and end on odd sites, without knowing anything about the other stabilizers which start and

end on the even sites and vice versa. This allows us to consider odd sites and even sites separately.

Fig. F.1c shows the same state as in Fig. F.1b but restricted to odd sites only. For simplicity, we

will only consider odd sites in what follows, while similar statements hold for even sites as well.

Using this diagrammatic formalism, it is easy to track Sm. Fig. F.2 shows a typical quantum

circuit and the step by step evolution of the system’s stabilizer set using the diagrammatic notation

developed above.
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1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

Figure F.3: Step by step evolution of the system under the quantum circuit shown in Fig. F.2 in
the percolation picture for the odd sites. At each step, the sites with the same color on the last
row represent an isolated SPT phase. There is an analogous diagram for the even sites. The two
diagrams together fully specify the entanglement structure of the system.

F.1.2 Proof of Proposition 4.1

We start by noting that for the circuit shown in Fig. F.2, the state of the system can always

be described as a collection of isolated SPT states and decoupled qubits, as can be seen from

the accompanying diagrammatic representation. For example, in the final state, qubits 1, 5 and 7

form an isolated SPT state, while qubit 3 is decoupled. This observation is indeed true in general.

We start by putting forward a precise definition of an isolated SPT state and then show that there

is an efficient description of Sm as a partition of {1, 2, · · · , N}.

Definition F.1. Consider a set of numbers A = {qi}ni=1, such that,

1 ≤ q1 < q2 < · · · < qn ≤ N. (F.2)

Assume that all numbers are either odd or even. Define its associated stabilizer set, denoted by

S(A), as

S(A) = {gqi,qi+1
}n−1
i=1 ∪ {

n∏
i=1

Zqi}. (F.3)
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We call such a stabilizer set, an isolated SPT state.

Note that the g stabilizers in S(A) generate the set of all g strings between any two points inA.

Also, note that the stabilizers in equation (F.3) are the same as the ones appearing in Proposition

1.

Lemma F.2. Let Sm denote the stabilizer set that corresponds to the system’s state after m

updating steps. Sm can always be chosen such that, up to minus signs,

Sm = ∪iS(Ai), (F.4)

where Ais correspond to a partition of the qubits into disjoint sets,

∪iAi = {1, 2, · · · , N}. (F.5)

and S(Ai) denotes the isolated SPT state corresponding to subset Ai.

Proof. We prove it by induction. It is obviously true for S0 with Ai = {i} for i = 1, · · · , N .

Now assume it is true for Sm, so there exists a partition of qubits given by {1, 2, · · · , N} =

∪iAi such that Sm = ∪iS(Ai). First consider the case in which a single qubit operator Z2j+1 is

measured in the next step. Suppose 2j +1 is in subset Ak for some k. Note that Z2j+1 commutes

with any element in S(Ak′) with k′ ̸= k. If Ak is the single element set {2j + 1} (which means

S(Ak) = {Z2j+1}) then Z2j+1 is already in Sm and thus Sm+1 = Sm. If Ak has more than

one element, we will show that measuring Z2j+1 corresponds to breaking Ak to two subsets of

Ak \ {2j + 1} and {2j + 1}.

Note that Z2j+1 anti-commutes only with the ga,b elements in S(Ak) where either a or b equals
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2j + 1. If 2j + 1 is the smallest or largest number in Ak, there is only one such element and by

measuring Z2j+1, we just need to replace that element by Z2j+1 (with an arbitrary sign) to get the

updated stabilizer set Sm+1. If 2j + 1 is neither the smallest nor the largest number in Ak, there

are two such elements, ga,2j+1 and g2j+1,b for some odd numbers a and b. Thus by measuring

Z2j+1, one is replaced by Z2j+1 (with an arbitrary sign) and the other by ga,2j+1g2j+1,b = ga,b

to get the updated stabilizer set. It is easy to verify that in both cases, Sm+1 is equivalent to the

stabilizer set obtained by the union of isolated SPT states corresponding to the same partitioning

as for Sm, but with Ak broken to two sets of Ak \ {2j + 1} and {2j + 1}.

Next consider the case where an stabilizer g2j−1,2j+1 = g2j is measured in the next step. If

2j − 1 and 2j + 1 belong to the same subset in the partition, nothing happens. If not, let say

one belongs to Ak and the other to Ak′ , then g2j−1,2j+1 anti-commute with the two Z chains in

S(Ak) and S(Ak′) and commutes with everything else in Sm. Therefore, by measuring g2j−1,2j+1,

we replace one of the Z chains with ±g2j−1,2j+1 (with an arbitrary sign) and the other with

the product of the two Z chains, which is just the Z chain over Ak ∪ Ak′ , to get Sm+1. It is

straightforward to verify that Sm+1 is equivalent to the stabilizer set obtained by union of isolated

SPT states corresponding to the same partitioning as for Sm, but by merging the two subsets Ak

and Ak′ into a single subset Ak ∪ Ak′ .

Based on Lemma F.2, there is a one-to-one mapping between partitions of {1, 2, · · · , N} and

the state of the system. Moreover, as can be seen from the Lemma’s proof, the dynamics of the

system can be translated into merging and splitting of the subsets.

Let us specify a partition by assigning unique colors to the qubits in the same subset. Then,

whenever a Z operator is measured, a new unique color should be assigned to the corresponding
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qubit to account for the new single element subset that is created in the new partitioning. On

the other hand, when a g operator with end points in different subsets is measured, the two

subsets merge together which translates into assigning the same color to qubits in either one.

The dynamics we have just described emerges naturally in the percolation model and thus can

be used to map the quantum circuit to an instance of percolation on the square lattice. We use a

N/2 ×M square lattice, where M is the total number of updating steps. The m’th row of the

lattice corresponds to the state of the system after the updating step m. We start by N/2 dots

with distinct colors at the lowest row which corresponds to the initial product state. If Z2i+1

is measured at step m, we leave the vertical link between (2i + 1,m) vertex and its history at

(2i + 1,m − 1) broken, while connecting all the other vertical links between the rows m and

m − 1. By doing so, the (2i + 1,m) vertex gets a new color, while all the other vertices retain

their color form the previous row, which agrees with the aforementioned splitting. On the other

hand, if a stabilizer g2i−1,2i+1 is measured at stepm, we first connect all the vertical links between

the rows m and m + 1, and then connect the vertices at (2i − 1,m) and (2i + 1,m) to enforce

their colors to be the same, thus accounting for the aforementioned merging. Therefore, in each

step, the colors of the last updated row can be used to find the partitioning of qubits mentioned in

Lemma F.2, which completes the proof of Proposition 1.

As an example, Fig. F.3 shows the step by step development of the circuit described in Fig. F.2,

in the percolation picture.

It is worth noting that the stabilizer set given in Lemma F.2 is already in the clipped gauge

(see Supplementary Section D for the definition of clipped gauge). Therefore, the entanglement

structure can be inferred readily from the percolation picture. In particular, the entanglement

entropy S(x) of the region [1, x], is equal to the number of clusters with support on both inside
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and outside of the region [1, x] on the top row of the percolation lattices. Such a quantity can be

computed using the percolation CFT and the coefficient of the logarithm turns out to be:

ax =
ln(2)

√
3

2π
≃ 0.191 (F.6)

See for example equation (3) in Ref. [242] (see also [168, 243]). The 2 ln(2) discrepancy be-

tween equation (F.6) and equation (3) of Ref. [242] is due to the fact that we have two copies of

percolation and the logarithm in our definition of entanglement entropy is in base 2.

F.2 (2+1)D topological monitored random quantum circuit

In this section we present the mapping between the random quantum circuit with only stabi-

lizers and single qubit Z measurements to a classical bond percolation problem on the 3D cubic

lattice. The quantum circuit could be viewed as either the py = 0 line of the projective random

quantum circuit or the pu = 0 line of the hybrid random quantum circuit.

For simplicity, we consider the infinite plane geometry so we can ignore the non-trivial cycles

of the torus as well as the subtleties arising near the boundary. Moreover, we work with the

standard version of toric code where the qubits are on the edges and the X and Z stabilizers

correspond to the star and plaquette operators respectively.

We take the initial state to be the eigenstate of all the star and plaquette operators. Note

that since single qubit measurements are only in Z direction, the system will remain to be an

eigenstate of plaquette operators. Therefore, we ignore all plaquette operator measurements in

what follows.

We place a square on each vertex which represents the corresponding star operator (Fig.F.4a).
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We start with all squares having a unique color. At each time step, the colors are updated as

follows

• Whenever a star operator is measured, it acquires it own unique color (Fig.F.4b)

• Whenever a single qubit is measured, the two adjacent squares acquire the same color

(Fig.F.4c)

As we will show, these rules represent how the stabilizer state of the system evolves. On the

other hand, these set of rules arise naturally in a percolation picture. Consider a 3D cubic lattice,

henceforth called the percolation lattice, and place a square on each vertex. The vertical direction

corresponds to time. If a star operator is not measured at time t, we connect the corresponding

squares on the (t − 1)’th and t’th layers. And if a qubit is measured at time t, we connect the

corresponding adjacent squares on the t’th layer. At the end, we assign a unique color to each

cluster of connected squares. The coloring that will arise is exactly what one would have found

if the rules listed above were followed (see Fig.F.4).

The following proposition shows how the stabilizers specifying the state can be inferred from

a given coloring configuration.

Proposition F.1. Let Aj = {si}ni=1 denote the set of squares corresponding to j’th color, in some

arbitrary order. Up to a minus sign, the following operators stabilize the state:

X j =
n∏
i=1

Xsi and Zsi,si+1
, (F.7)

where Xsi is the star operator at square si and Zsi,si+1
is the Pauli Z string operator which starts

on si and ends on si+1.
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a b c

X q

Figure F.4: Diagrammatic representation of coloring rules outlined in the text arise naturally
in the 3D percolation picture. (a) The initial coloring of the squares (top) and the corresponding
state in the percolation lattice (bottom). (b) The state of the system after the star stabilizer marked
by a X in panel ”a” is measured. (c) the state of the system after the qubit marked by q in panel
b is measured in Z basis.

Note that, because the quantum state is an eigenstate of every plaquette operator and because

the space manifold has trivial topology, we don’t need to specify the exact path that Zsi,si+1
string

operator takes.

Proof of Proposition F.1. We prove by induction. At t = 0 it is clearly the case.

Now assume it is true at step m. Let’s say we measure the star operator at some vertex s1

at step m + 1. If the corresponding square has a unique color already, nothing happens and the

statement holds trivially afterwards. So let us consider the case where there are more than one

squares with the same color as s1, denoted by the set A1. Based on the induction assumption, the

quantum state is an eigenstate of
∏

s∈A1 Xs operator at step m. Therefore, after measuring Xs1 ,

the system will be an eigenstate of Xs1 as well as Xs1 ×
∏

s∈A1 Xs =
∏

s∈A1\{s1}Xs. Moreover,

any Zi,j string operator that doesn’t end on s1 commutes with Xs1 and as such, measurement

of Xs1 has no bearing on the system being an eigenstate of it or not. As for the string operator

stabilizers starting or ending on s1, one of them will be replaced with Xs1 stabilizer, and the
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other with the product of the two which will be an string operator starting and ending on the set

A1 \ {s1}. Ergo the statement holds at step m+ 1 as well.

Now consider the case in which, at step m+1, we measure a single qubit – say qubit q which

is between squares s1 and s2 – in the Z basis. If s1 and s2 have the same color, it results from the

induction hypothesis that Zq already stabilizes the state and the statement trivially holds at step

m + 1. So let us consider the case where s1 and s2 have different colors, such that s1 ∈ A1 and

s2 ∈ A2. Since
∏

s∈A1∪A2 Xs stabilizes the state at step m and commutes with Zq, it stabilizes the

state at step m+ 1 as well. Based on the induction assumption, the state is stabilized by any Zi,j

string that has both end points either on A1 or A2. Moreover, it is now stabilized by the string

operator which connects s1 ∈ A1 and s2 ∈ A2, namely Zq. Therefore the state of the system at

step m + 1 is stabilized by any Zi,j string that has end points on A1 ∪ A2. Hence the statement

holds at step m+ 1 as well.

Proposition F.1 allows us to study the entanglement structure of the steady state, using the

percolation picture. In particular, the entanglement entropy of a rectangular region A is equal to

the number of clusters which have shared support in A and Ac, minus one.

Proposition F.2. LetA be a rectangular region with smooth boundary and letB = A\∂A denote

its bulk (see Fig.F.5). For a given coloring configuration of the squares (star operators), let CA

denote the set of colors that appear inside A. Also define Cex
B to be the colors that exclusively

appear in the bulk. Then, for the stabilizer state which is associated with that coloring, the

entanglement entropy of the subset of qubits inside A can be expressed as,

SA = |CA \ Cex
B | − 1. (F.8)
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B

A

Figure F.5: An example of a rectangular regionA with sides lx = 2 and ly = 3. Its bulk is marked
by B. In the example shown above, CA and Cex

B have 6 and 1 elements respectively.

Proof. Let A be a lx × ly rectangular region. By an abuse of notation, we use A to denote the set

of qubits which reside inside region A as well. We prove this claim by direct calculation of the

entanglement. For stabilizers states we have

SA = nA − dimGA, (F.9)

where nA is the number of qubits in A and GA is the subgroup of stabilizers which act trivially

on the qubits in Ac. It is easy to see that GA can be generated by Z plaquette stabilizers, Zi,j

string stabilizers and X j stabilizers (see Proposition F.1 for their definition) which are themselves

contained in A. Let n□, nS and n+ denote the number of independent Z plaquette stabilizer, Zi,j
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string stabilizer and X j stabilizers which are contained entirely within A, respectively. Then we

have,

SA = nA − n□ − n+ − nS (F.10)

Now we compute each quantity separately. finding nA and n□ is quite easy,

nA = 2lxly + lx + ly, (F.11)

n□ = lxly. (F.12)

Also we have n+ = |Cex
B |, because any X j operator which has a star operator outside B has

nontrivial support in Ac. For a given color c, define mc,A to be the number of squares in A with

color c. Then we can write nS as,

nS =
∑
c∈CA

(mc,A − 1) =
∑
c∈CA

mc,A − |CA|. (F.13)

Now, the
∑

c∈CAmc,A sum is just the total number of squares inside A, which is (lx + 1)(ly + 1).

Thus we have

nS = lxly + lx + ly + 1− |CA|. (F.14)

Putting everything together we get,

SA = |CA| − |Cex
B | − 1 = |CA \ Cex

B | − 1, (F.15)

where in the last part we used the fact that Cex
B ⊆ CA.

164



Appendix G: Classical and quantum expander codes

Classical linear codes - A classical linear code C over n bits can be defined as the kernel of a

m×n parity check matrixH ∈ Fm×n
2 , i.e. c ∈ Fn2 is a code word in C iffHc = 0. A classical code

associated with the parity check matrix H encodes k = dim(ker(H)) = n − rank(H) logical

bits and has distance d where d is the minimum Hamming distance between pairs of different

code words in C. For future convenience, we set d = ∞ for codes with k = 0. The standard

notation C = [n, k, d] is used to compactly specify the code properties. Note that k ≥ n−m since

rank(H) ≤ m. Furthermore, different parity check matrices can give rise to the same classical

code C.

A classical code can also be specified by a Tanner graph. For a given classical linear code and

its parity check matrix H ∈ Fm×n
2 , its Tanner graph is a bipartite graph with n bit vertices on the

left and m check vertices on the right. A check vertex i is connected to a bit vertex j iff Hi,j = 1.

Since the parity check matrix of a code is not uniquely defined, so neither is its Tanner graph. As

an example, the Tanner graph of the [7, 4, 3] Hamming code with the parity check matrix of,

H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 (G.1)
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(a) (b)

Figure G.1: (a) The Tanner graph associated with the 7-bit Hamming code, given by the parity
check matrix in Eq.(G.1). (b) Random construction of biregular graphs for (∆L,∆R) = (3, 4).

is shown in Fig.G.1a. Conversely, given a bipartite graph, one can define a parity check matrix

H accordingly and associate a classical code C to it.

For a given classical code C = [n, k, d] and its parity check matrix H ∈ Fm×n
2 , the transpose

code of C, denoted by CT = [m, k̃, d̃] is defined as the classical code associated to the parity

check matrix HT which is the matrix transpose of H . Note that CT depends on the choice of

parity check matrix for C and is not uniquely defined by C. Since rank(H) = rank(HT ), it

follows that k̃ = k − (m − n). The Tanner graph for CT , is the same as C with bit and check

vertices interchanged.

Classical Expander Code - Consider a bipartite graph G = (V,C,E) with V and C denoting

the set of vertices on left and right respectively and E denoting the set of edges between V and

C. The degree of a vertex is the number of edges connected to it. A bipartite graph is said to be

biregular if all vertices on each part have the same degree. Let G be a biregular graph with left

and right degrees ∆L and ∆R respectively, i.e. all vertices in V have degree dL and all vertices in

C have degree dR. We say G is (α, δ)−left expanding if for any subset of left vertices S ⊂ V for

which |S| ≤ α|V |, we have |Γ(S)| ≥ (1 − δ)∆L|S| where Γ(S) is the set of neighbors of S on
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the graph G. The classical code whose Tanner graph is (α, δ)-left expanding for some positive

α and δ < 1/2, is an instance of classical expander code. The distance of such a code is lower

bounded by αn [233].

A biregular graph G with good expansion may be obtained via random construction. Imagine

we want to construct a biregular graph G with n vertices of degree ∆L on the left and m = ∆L
∆R
n

vertices of degree ∆R on the right. We start by putting n vertices on the left with ∆L stubs

connected to each and putting m vertices on the right, each with ∆R stubs connected to it. Note

that there are N = n∆L = m∆R stubs on each side. Now, we choose a random permutation π of

numbers 1, · · · , N uniformly at random and for each i, we connect the i’th stub on left to the πi’th

stub on the right (see Fig.G.1b). It can be shown that for any δ > 1/∆L, there exists a strictly

positive α such that the resulting graph is (α, δ)-expanding with a probability that approaches 1

for large enough ns [233].

Hypergraph product code - The hyper graph product code is a quantum code built out of two

classical codes. Let C1 = [n1, k1, d1] and C2 = [n2, k2, d2] denote two classical codes corre-

sponding to two given parity check matrices H1 ∈ Fm1×n1
2 and H2 ∈ Fm2×n2

2 respectively. The

hypergraph product code of C1 and C2 is a CSS stabilizer code Q defined on n1n2+m1m2 qubits.

TheX and Z stabilizers of the quantum code Q is given by the parity matricesHX andHZ which

are defined as

HX =
(
In1 ⊗H2 | HT

1 ⊗ Im2

)
(G.2)

HZ =
(
H1 ⊗ In2 | Im1 ⊗HT

2

)
, (G.3)

where In is the n-dimensional identity matrix and (A | B) is the matrix which results from the
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horizontal concatenation of A and B matrices. It can be shown that Q encodes kQ = k1k2+ k̃1k̃1

logical qubits and its distance is lower bounded by min(d1, d2, d
T
1 , d

T
2 ), or in the standard notation

Q = [[n1n2 +m1m2, k1k2 + kT1 k
T
2 ,min(d1, d2, d

T
1 , d

T
2 )]].

Quantum expander code - Quantum expander code is the hypergraph product code of a clas-

sical expander code with itself [220].
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[33] Robert Alicki, Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. On thermal
stability of topological qubit in kitaev’s 4d model. Open Systems & Information Dynamics,
17(01):1–20, 2010.

[34] Hector Bombin, Ravindra W Chhajlany, Michał Horodecki, and Miguel-Angel Martin-
Delgado. Self-correcting quantum computers. New Journal of Physics, 15(5):055023,
2013.

[35] Ali Lavasani and Maissam Barkeshli. Low overhead clifford gates from joint measure-
ments in surface, color, and hyperbolic codes. Physical Review A, 98(5):052319, 2018.

[36] Ali Lavasani, Guanyu Zhu, and Maissam Barkeshli. Universal logical gates with con-
stant overhead: instantaneous dehn twists for hyperbolic quantum codes. arXiv preprint
arXiv:1901.11029, 2019.

[37] Guanyu Zhu, Ali Lavasani, and Maissam Barkeshli. Universal logical gates on topo-
logically encoded qubits via constant-depth unitary circuits. Physical Review Letters,
125(5):050502, 2020.

[38] Guanyu Zhu, Ali Lavasani, and Maissam Barkeshli. Instantaneous braids and dehn twists
in topologically ordered states. Physical Review B, 102(7):075105, 2020.

[39] Ali Lavasani, Yahya Alavirad, and Maissam Barkeshli. Topological order and criticality
in (2+ 1) d monitored random quantum circuits. Physical review letters, 127(23):235701,
2021.

[40] Ali Lavasani, Yahya Alavirad, and Maissam Barkeshli. Measurement-induced topological
entanglement transitions in symmetric random quantum circuits. Nature Physics, pages
1–6, 2021.

[41] Yahya Alavirad and Ali Lavasani. Irreducible multi-partite correlations as an order param-
eter for k-local nontrivial states. arXiv preprint arXiv:2106.05269, 2021.

171



[42] Barbara M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys.,
87:307–346, Apr 2015.

[43] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant
universal quantum computation. Nature, 549(7671):172–179, 09 2017.

[44] Austin G. Fowler. Analytic asymptotic performance of topological codes. Phys. Rev. A,
87:040301, Apr 2013.

[45] Zhenghan Wang. Topological Quantum Computation. American Mathematical Society,
2008.

[46] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for reliable quantum infor-
mation storage in 2d systems. Physical review letters, 104(5):050503, 2010.

[47] Ashley M Stephens. Fault-tolerant thresholds for quantum error correction with the surface
code. Physical Review A, 89(2):022321, 2014.

[48] Google Quantum AI. Exponential suppression of bit or phase errors with cyclic error
correction. Nature, 595(7867):383, 2021.

[49] Youwei Zhao, Yangsen Ye, He-Liang Huang, Yiming Zhang, Dachao Wu, Huijie Guan,
Qingling Zhu, Zuolin Wei, Tan He, Sirui Cao, et al. Realizing an error-correcting surface
code with superconducting qubits. arXiv preprint arXiv:2112.13505, 2021.

[50] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Cather-
ine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann,
et al. Realizing repeated quantum error correction in a distance-three surface code. arXiv
preprint arXiv:2112.03708, 2021.

[51] JF Marques, BM Varbanov, MS Moreira, Hany Ali, Nandini Muthusubramanian, Christos
Zachariadis, Francesco Battistel, Marc Beekman, Nadia Haider, Wouter Vlothuizen, et al.
Logical-qubit operations in an error-detecting surface code. Nature Physics, 18(1):80–86,
2022.

[52] Alexander Erhard, Hendrik Poulsen Nautrup, Michael Meth, Lukas Postler, Roman
Stricker, Martin Stadler, Vlad Negnevitsky, Martin Ringbauer, Philipp Schindler, Hans J
Briegel, et al. Entangling logical qubits with lattice surgery. Nature, 589(7841):220–224,
2021.

[53] M. H. Freedman, D. A. Meyer, and F. Luo. Z2-systolic freedom and quantum codes.
In Mathematics of Quantum Computation, pages 287–320. Chapman and Hall, London,
U.K., 2002.

[54] N. P. Breuckmann and B. M. Terhal. Constructions and noise threshold of hyperbolic
surface codes. IEEE Transactions on Information Theory, 62(6):3731–3744, June 2016.

[55] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the color code.
New Journal of Physics, 17(8):083026, 2015.

172



[56] Ashley M Stephens. Efficient fault-tolerant decoding of topological color codes. arXiv
preprint arXiv:1402.3037, 2014.

[57] M. B. Hastings and A. Geller. Reduced space-time and time costs using dislocation codes
and arbitrary ancillas. 2014.

[58] Daniel Litinski. A game of surface codes: Large-scale quantum computing with lattice
surgery. Quantum, 3:128, 2019.

[59] Theodore J. Yoder and Isaac H. Kim. The surface code with a twist. Quantum, 1:2, April
2017.

[60] Parsa Bonderson, Michael Freedman, and Chetan Nayak. Measurement-only topological
quantum computation via anyonic interferometry. Annals of Physics, 324(4):787 – 826,
2009.

[61] Maissam Barkeshli and Michael Freedman. Modular transformations through sequences
of topological charge projections. Phys. Rev. B, 94:165108, Oct 2016.

[62] Iris Cong, Meng Cheng, and Zhenghan Wang. Topological quantum computation with
gapped boundaries. 2016.

[63] Daniel Litinski and Felix von Oppen. Braiding by majorana tracking and long-range cnot
gates with color codes. 2017.

[64] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–
467, 1965.

[65] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[66] Bettina Heim, Krysta M Svore, and Matthew B Hastings. Optimal circuit-level decoding
for surface codes. arXiv preprint arXiv:1609.06373, 2016.

[67] P Baireuther, MD Caio, B Criger, CWJ Beenakker, and TE O’Brien. Neural net-
work decoder for topological color codes with circuit level noise. arXiv preprint
arXiv:1804.02926, 2018.

[68] Guillaume Duclos-Cianci and David Poulin. Fast decoders for topological quantum codes.
Physical review letters, 104(5):050504, 2010.

[69] Guillaume Duclos-Cianci and David Poulin. Fault-tolerant renormalization group decoder
for abelian topological codes. arXiv preprint arXiv:1304.6100, 2013.

[70] Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological quantum
error correction in average o(1) parallel time. arXiv preprint arXiv:1307.1740, 2013.

[71] Chenyang Wang, Jim Harrington, and John Preskill. Confinement-higgs transition in a dis-
ordered gauge theory and the accuracy threshold for quantum memory. Annals of Physics,
303(1):31–58, 2003.

173



[72] Austin G. Fowler. Proof of finite surface code threshold for matching. Phys. Rev. Lett.,
109:180502, Nov 2012.

[73] Fern HE Watson and Sean D Barrett. Logical error rate scaling of the toric code. New
Journal of Physics, 16(9):093045, 2014.

[74] Austin G Fowler, Adam C Whiteside, Angus L McInnes, and Alimohammad Rabbani.
Topological code autotune. Physical Review X, 2(4):041003, 2012.

[75] Robert Raussendorf, Jim Harrington, and Kovid Goyal. Topological fault-tolerance in
cluster state quantum computation. New Journal of Physics, 9(6):199, 2007.

[76] Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. Towards practical clas-
sical processing for the surface code. Physical review letters, 108(18):180501, 2012.

[77] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A,
57(1):127, 1998.

[78] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski. High-threshold universal
quantum computation on the surface code. Physical Review A, 80(5):052312, 2009.

[79] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quantum computer.
Annals of Physics, 321(9):2242 – 2270, 2006.

[80] Maissam Barkeshli and Xiao-Liang Qi. Topological nematic states and non-abelian lattice
dislocations. Phys. Rev. X, 2:031013, Aug 2012.

[81] Maissam Barkeshli and Xiao-Gang Wen. u(1) × u(1) ⋊ z2 chern-simons theory and z4
parafermion fractional quantum hall states. Phys. Rev. B, 81:045323, 2010. See Sec. V. A.

[82] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Twist defects and projective
non-abelian braiding statistics. Phys. Rev. B, 87:045130, Jan 2013.

[83] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Theory of defects in abelian
topological states. Phys. Rev. B, 88:235103, Dec 2013.

[84] Jeffrey C.Y. Teo, Abhishek Roy, and Xiao Chen. Unconventional fusion and braiding of
topological defects in a lattice model. 2013.

[85] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, and Zhenghan Wang. Symmetry,
defects, and gauging of topological phases. 2014.

[86] David J. Clarke, Jason Alicea, and Kirill Shtengel. Exotic non-abelian anyons from con-
ventional fractional quantum hall states. Nature Comm., 4:1348, 2013.

[87] Meng Cheng. Superconducting proximity effect on the edge of fractional topological in-
sulators. Phys. Rev. B, 86:195126, Nov 2012.

[88] Netanel H. Lindner, Erez Berg, Gil Refael, and Ady Stern. Fractionalizing majorana
fermions: Non-abelian statistics on the edges of abelian quantum hall states. Phys. Rev. X,
2:041002, Oct 2012.

174



[89] Jason Alicea and Paul Fendley. Topological phases with parafermions: Theory and
blueprints. Annual Review of Condensed Matter Physics, 7(1):119–139, 2016.

[90] Alexei Kitaev and Liang Kong. Models for gapped boundaries and domain walls. Comm.
Math. Phys., 313(2):351–373, 2012.

[91] Yi-Zhuang You and Xiao-Gang Wen. Projective non-abelian statistics of dislocation de-
fects in a 𭟋N rotor model. Phys. Rev. B, 86:161107, Oct 2012.

[92] Yi-Zhuang You, Chao-Ming Jian, and Xiao-Gang Wen. Synthetic non-abelian statistics by
abelian anyon condensation. Phys. Rev. B, 87:045106, Jan 2013.

[93] Nicolas Delfosse, Pavithran Iyer, and David Poulin. Generalized surface codes and pack-
ing of logical qubits. 2016.

[94] Austin G. Fowler. Two-dimensional color-code quantum computation. Phys. Rev. A,
83:042310, Apr 2011.

[95] Michael Levin. Protected edge modes without symmetry. Phys. Rev. X, 3:021009, May
2013.

[96] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Classification of topological
defects in abelian topological states. Phys. Rev. B, 88:241103(R), Dec 2013.

[97] Jacob C Bridgeman, Stephen D Bartlett, and Andrew C Doherty. Tensor networks
with a twist: Anyon-permuting domain walls and defects in peps. arXiv preprint
arXiv:1708.08930, 2017.

[98] Michael A Nielsen and Isaac L Chuang. Quantum computation and information theory,
2010.

[99] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, 2010.

[100] Barbara M Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys.,
87(2):307–346, April 2015.

[101] Robert Koenig, Greg Kuperberg, and Ben W Reichardt. Quantum computation with
Turaev-Viro codes. Annals of Physics, 325(12):2707–2749, December 2010.

[102] Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and quantum
codes. Mathematics of quantum computation, Chapman & Hall/CRC, pages 287–320,
2002.

[103] Larry Guth and Alexander Lubotzky. Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds. Journal of Mathematical Physics, 55(8):082202, August
2014.

175



[104] J.-P Tillich and Gilles Zémor. Quantum ldpc codes with positive rate and minimum dis-
tance proportional to the square root of the blocklength. Information Theory, IEEE Trans-
actions on, 60:1193–1202, 02 2014.

[105] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes. pages
810–824, 2015.

[106] Nikolas P Breuckmann and Jens N Eberhardt. Balanced product quantum codes. IEEE
Transactions on Information Theory, 67(10):6653–6674, 2021.

[107] Pavel Panteleev and Gleb Kalachev. Quantum ldpc codes with almost linear minimum
distance. IEEE Transactions on Information Theory, 68(1):213–229, 2021.

[108] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys.
Rev. A, 54:1098–1105, Aug 1996.

[109] Sergey Bravyi and Matthew B. Hastings. Homological product codes. Proc. of the 46th
ACM Symposium on Theory of Computing (STOC 2014), pages 273–282, 2014.

[110] Nikolas P Breuckmann and Jens Niklas Eberhardt. Quantum low-density parity-check
codes. PRX Quantum, 2(4):040101, 2021.

[111] Alexey A. Kovalev and Leonid P. Pryadko. Fault tolerance of quantum low-density parity
check codes with sublinear distance scaling. Phys. Rev. A, 87:020304, Feb 2013.

[112] Daniel Gottesman. Fault-Tolerant Quantum Computation with Constant Overhead. Quan-
tum Information & Computation, 14(15-16):1338–1371, November 2014.

[113] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates
and noisy ancillas. Phys. Rev. A, 71:022316, Feb 2005.

[114] Adam Paetznick and Ben W Reichardt. Universal Fault-Tolerant Quantum Computation
with Only Transversal Gates and Error Correction. Phys. Rev. Lett., 111(9):090505–5,
August 2013.

[115] M H Freedman, M Larsen, and Z H Wang. A modular functor which is universal for
quantum computation. Communications in Mathematical Physics, 227(3):605–622, June
2002.

[116] Michael A. Levin and Xiao-Gang Wen. String-net condensation: a physical mechanism
for topological phases. Phys. Rev. B, 71:045110, Jan 2005.

[117] Zhenghan Wang. Topological Quantum Computation. American Mathematics Society,
2010.

[118] V.G. Turaev and O.Y. Viro. State sum invariants of 3-manifolds and quantum 6j-symbols.
Topology, 31:865–902, 1992.

[119] John W. Barrett and Bruce W. Westbury. Invariants of piecewise-linear 3-manifolds. Trans.
Amer. Math. Soc., 348:3997–4022, 1996.

176



[120] N M Linke, D Maslov, M Roetteler, S Debnath, C Figgatt, K A Landsman, K Wright, and
C Monroe. Experimental Comparison of Two Quantum Computing Architectures. PNAS
13, 3305–3310, February 2017.

[121] Bjoern Lekitsch, Sebastian Weidt, Austin G. Fowler, Klaus Mølmer, Simon J. Devitt,
Christof Wunderlich, and Winfried K. Hensinger. Blueprint for a microwave trapped ion
quantum computer. Science Advances, 3(2), 2017.

[122] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart,
C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. Deterministic re-
mote entanglement of superconducting circuits through microwave two-photon transitions.
Phys. Rev. Lett., 120:200501, May 2018.

[123] Philipp Kurpiers, Paul Magnard, Theo Walter, Baptiste Royer, Marek Pechal, Johannes
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