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Abstract 

In the past perpendicular magnetic recording on continuous media has 

served as the storage mechanism for the hard-disk drive (HDD) industry, allowing for 

growth in areal densities approaching 0.5 Tb/in2. Under the current system design, 

further increases are limited by the superparamagnetic effect where the medium’s 

thermal energy destabilizes the individual bit domains used for storage. In order to 

provide for future growth in the area of magnetic recording for disk drives, a number 

of various technology shifts have been proposed and are currently undergoing 

considerable research. One promising option involves switching to a discrete 

medium in the form of individual bit islands, termed bit-patterned magnetic 

recording (BPMR).  

When switching from a continuous to a discrete media, the problems 

encountered become substantial for every aspect of the hard-disk drive design. In 

this dissertation the complications in modeling and signal processing for bit-

patterned magnetic recording are investigated where the write and read processes 

along with the channel characteristics present considerable challenges. For a target 

areal density of 4 Tb/in2, the storage process is hindered by media noise, two-

dimensional (2D) intersymbol interference (ISI), electronics noise and written-in 

errors introduced during the write process. Thus there is a strong possibility that 

BPMR may prove intractable as a future HDD technology at high areal densities 

because the combined negative effects of the many error sources produces an 

environment where current signal processing techniques cannot accurately recover 
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the stored data. The purpose here is to exploit advanced methods of detection and 

error correction to show that data can be effectively recovered from a BPMR 

channel in the presence of multiple error sources at high areal densities. 

First a practical model for the readback response of an individual island is 

established that is capable of representing its 2D nature with a Gaussian pulse. 

Various characteristics of the readback pulse are shown to emerge as it is subjected 

to the degradation of 2D media noise. The writing of the bits within a track is also 

investigated with an emphasis on the write process’s ability to inject written-in 

errors in the data stream resulting from both a loss of synchronization of the write 

clock and the interaction of the local-scale magnetic fields under the influence of the 

applied write field.  

To facilitate data recovery in the presence of BPMR’s major degradations, 

various detection and error-correction methods are utilized. For single-track 

equalization of the channel output, noise prediction is incorporated to assist 

detection with increased levels of media noise. With large detrimental amounts of 

2D ISI and media noise present in the channel at high areal densities, a 2D approach 

known as multi-track detection is investigated where multiple tracks are sensed by 

the read heads and then used to extract information on the target track.  For BPMR 

the output of the detector still possesses the uncorrected written-in errors. Powerful 

error-correction codes based on finite geometries are employed to help recover the 

original data stream. Increased error-correction is sought by utilizing two-fold EG 



xvii 
 

codes in combination with a form of automorphism decoding known as auto-

diversity. Modifications to the parity-check matrices of the error-correction codes 

are also investigated for the purpose of attempting more practical applications of 

the decoding algorithms based on belief propagation. Under the proposed 

techniques it is shown that effective data recovery is possible at an areal density of 4 

Tb/in2 in the presence of all significant error sources except for insertions and 

deletions. Data recovery from the BPMR channel with insertions and deletions 

remains an open problem.  
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Chapter 1 – Advances in Magnetic Storage Channels 

As technology advances so do the demands placed on current embodiments of that 

technology. With the onset and aggressive growth of the information age, the need 

for greater and more reliable storage of the multitude of digital versions that 

embody human knowledge and interest continues to increase. One of the most 

important devices responsible for meeting such needs is the hard-disk drive (HDD). 

The HDD industry is currently undergoing a transition from today’s standard storage 

technologies to one that will handle the growing need for compact data storage in 

the approaching years. Four major competing technologies have taken shape that 

are capable of overcoming the physical limitations imposed upon the perpendicular 

magnetic recording systems currently utilized by HDD manufacturers. These four 

innovative technologies include shingled write recording (SWR) in conjunction with 

two-dimensional magnetic recording (TDMR); heat-assisted magnetic recording 

(HAMR); microwave-assisted magnetic recording (MAMR); and bit-patterned 

magnetic recording (BPMR). While all of these possibilities provide an avenue for 

growth, they also introduce their own unique problems embedded within the 

technology, making it difficult to determine which one or ones will spawn the next 

generation of magnetic storage for HDDs. Because the path leading to greater 

achievable storage densities is still unclear, many companies, organizations and 

universities are involved in extensive research initiatives that are attempting to push 

each possible technology out into the forefront ahead of other competing 
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technologies. Regardless of the final outcome of this partially collaborative effort, 

the development of the next generation of HDDs will take place as a migration from 

the current drive technology. This is not too surprising as only BPMR represents a 

truly radical jump from current perpendicular magnetic recording practice. While 

this dissertation will mainly explore cutting-edge advancements in bit-patterned 

magnetic recording, it is still instructive to highlight each technology in turn as well 

as to revisit some of the crucial elements of standard perpendicular recording in 

order to better understand the subsequent investigation into specifics of BPMR.   

1.1 Current State of HDD Magnetic Recording 

Perpendicular magnetic recording (PMR) on continuous media is the present 

cornerstone of the HDD industry and various elements of its functionality are 

embedded within each of its four possible successors. In PMR the write and read 

heads are always positioned in close proximity to the magnetic medium fabricated 

as a set of platters within a HDD. Each platter consists of a continuous field of 

perpendicularly magnetized ferromagnetic material that is polarized by the write 

field imposed by the main pole of the write head at the surface interface of the 

ferromagnetic layer [1]. The write field effectively organizes the disk into small 

groupings of magnetic grains where the magnetization is perpendicular to the 

direction of travel for the write head. Various groupings of these magnetic grains 

tend to sustain a common magnetic field pointing in either an upward or downward 

direction with respect to the surface of the platter and are referred to as magnetic 

domains (see Figure 1.1).  
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Figure 1.1 – A standard write head performing the write operation in 
perpendicular magnetic recording with an SUL present. 

These small magnetic domains comprised of individual magnetic grains are what 

represent individual bits from the input bit stream and are commonly referred to as 

bit cells. Within the media zeros and ones are differentiated by domain 

magnetizations of opposite direction. To switch a bit a write field is initiated at the 

main pole which travels down through the magnetic layer and into a magnetically 

soft under layer (SUL). The SUL’s purpose is to sufficiently diffuse the write field 

strength before the write field flux reenters the magnetic layer on its path back to 

the return pole of the write head.  This prevents the bits underneath the return pole 

from being rewritten. In order to recover the data during the reading process, the 

read head picks up the magnetic field within the medium and outputs a continuous 

signal tuned to the “change in flux” from the magnetized bit cells. This means the 

readback signal is sensitized to the transitions where the direction of the 
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magnetization flips. Thus changes in the readback signal coincide with either (0 → 1) 

or (1 → 0) transitions between bit cells in the recorded bit stream. Normally within 

magnetic recording channels a recorded bit stream actually represents an input 

bipolar sequence            of length  , which is just a mapping of the original 

0’s and 1’s. When transitions occur underneath the read head, a hyperbolic tangent 

function can be used to model the single isolated signal transition response      of 

the channel [2], 

 
            

   

   
     (1.1)  

where the parameter    is related to the amplitude of the waveform. The other 

parameter,    , is constant for a given media and is defined as the time required for 

the isolated transition response      to go from   
  

 
   to   

  
 

  . Since the 

parameter     is defined by the media, increasing the density of the recorded bits 

and thus the overall storage capacity of the drive comes at a cost. The density can be 

expressed as the ratio  
   

  
  where    is the bit period, or equivalently, the time 

allocated for a single bit cell. Placing more bits within a given area by decreasing the 

size of the bit cells (decreasing   ) effectively spreads the readback waveform across 

more bits as the isolated response requires a set time (   ) to switch [3]. The 

sensitivity of the read head is adequate enough to sense multiple transitions when 

bit cells of opposite magnetizations are adjacent. This results in an increased level of 

unwanted signal power in the readback waveform known as intersymbol 
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interference (ISI). Its presence impacts the information available in the readback 

signal and is a significant problem for perpendicular magnetic recording. In addition 

to the noise introduced by the ISI, transitions in the magnetization between bit cells 

also degrades the readback signal with a substantial amount of media noise, which is 

typically referred to as jitter position noise.  

 

Figure 1.2 – Diagram of a perpendicular magnetic recording channel with 
jitter noise and AWGN. 

The ever-present thermal noise within the electronic system is modeled as additive 

white Gaussian noise (AWGN) and will degrade the output of the storage channel as 

well. Other degrading factors are present within a HDD utilizing perpendicular 

recording on a continuous media, but the ISI, position jitter and AWGN are the main 

impediments considered here. Since the read head is sensitive to transitions in the 

magnetic states stored within the medium, the bipolar channel inputs    are 

mapped to a transition sequence using a       delay filter. The       outputs, 

denoted   , are then representative of both the transitions in    and the direction 

of transitions,         and vice versa, with the definition           .  

Incorporating these considerations with the isolated transition response (see Figure 

1.2) allows the storage channel output to be modeled as  
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       (1.2)  

where      is the channel output,    is the transition sequence resulting from the 

      versions of the original bipolar input sequence,   is the isolated transition 

response,    is the previously mentioned bit period,    is the jitter noise samples 

which are assumed to be independent and Gaussian with variance   
 , and      is 

the AWGN with single-sided power spectral density   . Since the jitter noise term    

is buried within the isolated response            , its overall contribution is 

masked, so it is actually more advantageous to rewrite (1.2) with the jitter noise 

term expressed outside of the channel response term by means of a Taylor series 

expansion in    [4] where 

 
             

                     
  

 

 
             

(1.3)  

Assuming the jitter noise contribution to the overall channel output is small 

compared to s       , a first-order approximation is adequate and the channel 

output becomes 

 
                 

 

    

  

                                              
        

 

    

        

(1.4)  
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This overall channel response provides the output as the sum of separate 

contributions from the noiseless transition response, jitter noise and AWGN 

 
                                      (1.5)  

This method is very useful and will be employed in subsequent chapters in the 

context of jitter noise contributions within BPMR. Robust systems for signal 

processing necessarily follow the output of the channel in order to recover from the 

effects imposed by the channel and degrading noises. A development of signal 

processing techniques for BPMR will be covered later. At this point it is necessary to 

expand on the reasons why PMR on continuous media cannot provide the storage 

densities needed in the future. 

1.2 Limiting Factors for Magnetic Storage Channels 

While PMR can effectively handle the combined impairments of ISI, position jitter 

and AWGN, its current implementation cannot exceed certain physical limits. On 

continuous media the most important among PMR’s detractions is the technology 

limiting encumbrance imposed by the superparamagnetic effect. When the physical 

size of ferromagnetic particles is drastically reduced, a point is reached where the 

ambient temperature of the medium alone can provide enough thermal excitation 

to flip the direction of the inherent magnetic field. Thus the medium has succumbed 

to the superparamagnetic effect [5] and is rendered unusable for reliable data 

storage. For magnetic storage channels, any technology must strike a balance 

between three physical limitations: the ability to write to the physical media, the 
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signal-to-noise ratio (SNR) supported by the medium, and the thermal stability of 

the media. Such a balance is often called the media trilemma [6] and its implications 

impose challenging restrictions on the design of HDDs. In order to achieve greater 

storage capacity within the same physical space using a given medium, the area 

associated with a given bit representation must be reduced, eventually reaching the 

limits of the medium. As such miniaturization occurs one or more aspects of the 

trilemma adversely restrains the process.  In terms of the characteristics of a given 

media, both the magnetic anistrophy and its coercivity determine its part in 

balancing the media trilemma. The magnetic anistrophy represents the medium’s 

ability for maintaining a given directional magnetic field in the absence of any 

external field. So a high anistrophic medium tends to hold its magnetization better 

than a medium with low anistrophy and would seem to be more desirable in 

magnetic recording. However, a high anistrophic medium also possesses a high 

coercivity, Hc, which is the resistance of the medium to being demagnetized. A high 

Hc implies that the material will hold its magnetization well and exhibit greater 

thermal stability against changes to its magnetic field. Unfortunately, Hc is 

equivalent to the write head field strength required to switch the direction of 

magnetization necessary when storing bits. A high head field requires a powerful 

and larger write head which then spreads its imposed magnetic flux across multiple 

bit cells in the medium. This give-and-take relationship is what establishes the need 

for a balance of the trilemma. 
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Overcoming the superparamagnetic effect is not possible with current PMR 

technology. The predicted storage limit for perpendicular magnetic recording on 

continuous media is estimated to be an areal density of 1 Tb/in2 [7]. This density 

estimate is far short of what future systems will require. Current industry regimes 

are hoping to extend the areal density to around 10 Tb/in2 [8] within the decade 

using new technologies. The four distinct possibilities of SWR/TDMR, HAMR, MAMR 

and BPMR have all been established to meet such an impressive goal by attacking 

the balancing act set forth by the media trilemma in their own unique way.  

1.3 Shingled Write Recording with TDMR 

Of the four leading technologies SWR is considered by many to be the most straight 

forward migration from the current methods and hardware. Its marriage with TDMR 

allows for a possible increase in areal density up to 10 Tb/in2 [8]. For this technology 

option the writing process consists strictly of shingled write recording where the 

local size of the write head is greatly expanded to allow multiple tracks to be written 

simultaneously. As illustrated in Figure 1.3 these tracks overlap much like shingles on 

a roof. By overwriting adjacent tracks in subsequent writes, a very narrow write 

margin can be achieved. This is possible because the expanded size of the write head 

allows for the generation of a much stronger write field. Thus the trilemma is 

handled by coupling a larger and more powerful head field with a higher anistrophic 

medium. The sharp corner edge field produced by the write head also results in a 

much narrower erase band between tracks, allowing individual tracks to lay closer 

together [9]. The size of an individual track of data can be squeezed down by 
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reducing the size of the individual magnetic grains or the total number of grains 

required to effectively store a bit of information. 

 

Figure 1.3 – Write head arrangement for shingled write recording where 
adjacent tracks are largely overwritten in subsequent passes. 

However, SWR coupled with conventional reading techniques is estimated at being 

able to achieve only up to 2-3 Tb/in2 [10]. This results because higher densities can 

only be obtained by shrinking the write margin, which places adjacent tracks close 

enough together for multiple tracks to influence the readback signal produced by 

conventional read heads. Noise from adjacent tracks results in intertrack 

interference (ITI) which will be an important consideration in the future of many 

HDD designs. Thus advances on the read side of the process must also be 

incorporated to reach an areal density goal of around 10 Tb/in2. TDMR makes this 

feasible by incorporating innovative 2D reading. A 2D architecture typically senses 

multiple tracks and then processes the two-dimensional information using advanced 
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signal processing algorithms to reconstruct the 2D waveform and then recover the 

recorded bit stream. A two-dimensional approach attempts to turn the ITI present in 

the readback signal into usable information for detection and decoding algorithms 

[11]. Thus the trilemma is approached from the read side as well by focusing on 

maintaining appropriate SNR in a high noise environment. For continuous media 

performing TDMR is a nontrivial task that requires knowledge of the bit cell 

boundaries which are commonly modeled as Voronoi regions [12] (see Figure 1.4). A 

grid coincident with individual bit cell sizes is then overlapped on the Voronoi 

regions to map the various magnetic centers to an array of individual bit cells. This 

results in sets of tracks where the bit cells either contain a perpendicular 

magnetization coincident with a “0” or “1” or they are empty. The empty bit cells are 

considered erasures so that the resulting channel output can be characterized as a 

binary erasure channel (BEC) with three transition probabilities p, e and 1 – p – e. 

 
Figure 1.4 – Geometric layout of the bit cells on a continuous medium used 
to model the readback signal in TDMR along with its BEC trellis 
representation. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0 

1 

0 

E 

1 

p 

p 

e 

e 

1-p-e 

1-p-e 

 

 



12 
 

Conceivable architectures for TDMR include designs with multiple heads or a single 

head capable of progressive scans of adjacent tracks. Regardless of the final designs, 

2D signal processing inherently includes greater complications, but it will almost 

certainly find its way eventually into all future HDD designs. The major 

disadvantages of SWR/TDMR are the loss of ability to update a single track during 

the write process [13] and the additional burden associated with the sophistication 

of 2D hardware and signal processing algorithms [14], [15]. Some advanced two-

dimensional techniques will be explored later in this dissertation in light of bit-

patterned magnetic recording. 

1.4 Heat-Assisted Magnetic Recording  

HAMR is an energy-assisted technology where heat generated by a focused laser 

influences the write head’s ability to affect changes in the medium’s inherent 

magnetization. When heat is engineered as an element of the write process, it is 

typically necessary in order to facilitate switching in high anisoptrophic magnetic 

fields. The technique, illustrated in Figure 1.5, works by heating a small region of the 

medium where the write head needs to impose a switch of the local magnetization 

held by the grains. This heating acts to reduce the coercive force, Hc, of the grains 

allowing them to be magnetized in the desired direction. During the remagnetization 

the heated region is rapidly cooled during the application of the write field, which 

still determines the direction of domain magnetization used to distinguish the 

individual bits. 
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Figure 1.5 – A write head modified for HAMR by adding a laser heat source to 
assist in writing a single bit within a high anistrophic medium. 

For this method to be effective the modeling of a HAMR drive must incorporate 

various influences of heat on the interaction of the magnetic fields. To better 

understand how the governing processes work, consider the following expression 

which describes the magnetization      of a single magnetic transition coincident 

with the writing of a bit [16], 

 

     
         

 
      

    

 
    

(1.6)  

where          is the temperature dependent remnant magnetization retained by 

the medium,    is the transition location, and   is the transition parameter. The 

thermal Williams-Comstock model, which was modified from the original Williams-

Comstock model to specifically include temperature dependencies within 

conventional magnetic recording systems, is used to determine the crucial values of 
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   and   for a given HAMR setup [17]. This is accomplished by iteratively solving the 

following set of equations which relates the unknown parameters (the parameters 

are actually buried inside expressions for the individual magnetic fields) to the 

changes within the interacting magnetic fields: 

 
                   

(1.7)  

 
 

     

  
 

     

      
 
      

  
 

      

  
 

      

  

  

  
    

(1.8)  

      is the medium’s coercivity,       is the head field, and       is the 

demagnetizing field. Furthermore, all of these fields are also subject to various 

medium specifications and write head design parameters [18]. Normally the 

magnetization gradient  
     

  
 of (1.8) is not highly dependent on the thermal 

gradient of the medium’s coercivity, given by 
      

  
, but with a HAMR design the 

local operating temperature is well above ambient temperature. The overall goal of 

this process is to locate where along the magnetization gradient curve the addition 

of heat energy allows the write head design in question to switch the direction of 

the medium’s magnetic field. Equation (1.7) identifies the transition location    as 

the point where the medium’s coercivity is matched by the combination of head 

field and demagnetizing field. Initially, a value for the transition parameter   is used 

within (1.7) to obtain a value for the transition center   . This value is then 

substituted into (1.8), the expression is set equal to the derivative of (1.6), and the 
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system solved for a new value of the transition parameter  . The process repeats 

until the solutions converge. This identifies the true operating transition center for 

the HAMR drive and thus the design’s overall usefulness. 

Using heat in the magnetization process of a HDD introduces some notable 

challenges [19], [20]. The thermal properties of the medium in addition to its 

magnetization characteristics must be designed to be adequately synergistic. Given 

the number of average writes that take place throughout the lifespan of a HDD, the 

use of heat degrades both the lubricant and the carbon overcoat of the platters, so 

higher quality replacements for conventional materials must be found. Perhaps the 

greatest challenge for HAMR may prove to be the mounting of a laser diode (the 

heating source) to a HDD write head. Regardless of the difficulties involved, HAMR 

may have both current and future applicability to the HDD industry. One possible 

future for a HAMR design would be an HDD that utilizes heat assistance to write on a 

high anisoptrophy BPMR island to push the bit density beyond what HAMR alone is 

capable. On continuous media HAMR has currently achieved an areal capacity of 

only 1 Tb/in2 [21], but when combined with BPMR, estimates indicate plausible 

increases up to 9 Tb/in2 [22]. 

1.5 Microwave-Assisted Magnetic Recording 

MAMR is another form of energy-assisted writing technology applicable to HDDs. 

While HAMR delivers energy directly to the lattice structure of the medium, MAMR 

uses microwave energy to assist in directly placing the correct magnetization within 



16 
 

the grains comprising an individual bit cell [23]. The underlying physics of the write 

process are best explained in light of the Landau-Lifshitz-Gilbert (LLG) equation, 

which is often used when modeling the precessional motion of magnetic fields 

within ferromagnetic solids [24], 

   

  
                   

  

  
   (1.9)  

The LLG equation basically expresses the magnetic change as the combination of 

two terms, a torque [- m × (Heff + Hac)] and a damping term [ m × 
  

  
]. In this 

equation   is the electron gyromagnetic ratio, Heff is the effective magnetic field 

which is equal to the difference between the media’s inherent magnetic field (HK) 

and the field imposed by the write head (Hwrite), Hac is the assistive magnetic field 

produced by the harmonized microwaves, and   is the Gilbert damping constant. 

With the help of Figure 1.6 and the rewritten LLG equation, 

 
  

  
                        

  

  
   

(1.10)  

the role of microwaves in assisting the write process is more easily visualized. 

Initially the magnitude of the write field is less than what is required to switch the 

embedded magnetization state of the grains in a bit cell of the high anistrophic 

media. So a targeted burst of microwaves is supplied which produces its own 

assistive magnetic field, Hac, orthogonal to the plane of the switching field. The 

result is a precessional field capable of switching the direction of the magnetic field 
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in the bit cell [25]. The precessional field can be either clockwise (CW) or 

counterclockwise (CCW) depending on the direction of the assistive field. 

 

Figure 1.6 – Vector representation of the magnetic fields interacting under 
the influence of a MAMR write head in order to switch the direction of the 
current magnetic domain. 

A clockwise procession results in a downward magnetization and a CCW precession 

produces the opposite upward magnetization. The combination of a high anistropic 

medium coupled with a reasonable switching field makes it possible to shrink the 

size of the bit cells to achieve higher densities and thus manages to balance the 

media trilemma. One possible representation of a MAMR write head is illustrated in 

Figure 1.7 where the field generating layer (FGL) is responsible for producing the 

assistive microwaves. However, the problems that come with MAMR make it an 

unviable technology for targeting 10 Tb/in2 areal density without coupling it with 

BPMR [26]. One of the main challenges lies in maintaining a workable balance 

between the flying height of the write head and the strength of the assistive field. 
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Figure 1.7 – One possible rendition of a MAMR write head where the 
microwave field assists in modifying the magnetization of a bit cell. 

Since the strength of the assistive field decays rapidly with distance from the 

recording location, the height at which the write head passes above the medium 

must be kept as small as possible. Also, an innovative microwave oscillator coupled 

with a magnetic writing head which meets all design specifications still needs to be 

engineered before MAMR can move to the forefront ahead of its competitors or be 

realized in a high density combination with BPMR. 

1.6 Bit-Patterned Magnetic Recording 

The particulars of bit-patterned magnetic recording break from the traditional mold 

of PMR specifications significantly. No longer is the medium continuous, but instead 

is a manufactured plane of individual islands standing in a sea of non-magnetic 

material as illustrated in Figure 1-8. As an HDD technology, BPMR makes use of 



19 
 

conventional write and read heads but requires a radically different media. In BPMR 

each island represents a single bit recorded on yet a single magnetic grain. This is 

possible because each island is lithographically manufactured as a singular magnetic 

domain residing within a single grain [27].   

 

Figure 1.8 – An array of individual islands as they would appear at a local 
scale on the surface of a platter within a HDD. 

Because lithography is utilized, it is also possible to manufacture islands comprised 

of individual grains of varying shapes and sizes. Square, rectangular, circular and 

elliptical island geometries have all been proposed [28], [29]. The islands can also be 

generated so that adjacent tracks follow either a rectangular or hexagonal pattern. 

With such variations at hand, a target areal density is reached by manipulating the 

island shape and size in conjunction with the distance between adjacent islands. 

However, these manipulations are not unconstrained because the size and shape of 

the islands affect the design space of the read and write heads as well as the various 



20 
 

interactions of the magnetic fields during both the writing and reading processes. 

Islands spaced closer together will naturally experience greater interference from its 

neighbors.  

1.6.1 Bit Aspect Ratio and Grain Volume 

A typical BPMR arrangement of islands in two dimensions is shown in Figure 1.9 

where the islands are arranged in a rectangular array. The size of each island is 

denoted    and    where   and   coincide with the along-track and cross-track 

directions. The center of each island is a set distance apart in each direction.    is 

the bit period and represents the distance between individual island centers in the 

along-track direction.    is called the track pitch and represents the same measure 

as    but in the cross-track direction. The islands occupy a given area of       nm2 

and in a perfect world would exert a magnetic influence only within the boundary 

defined by       where the island is located at the center of that locale.  

 

Figure 1.9 – Two-dimensional island layout of five adjacent tracks in BPMR 
with square island geometry. 
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It should be noted that when the islands are centered within their respective tracks, 

the gap distance between neighboring islands in the along-track and cross-track 

directions is equal to    and    respectively, and the distance between adjacent 

island centers is equal to    and    respectively. For square islands the quantities    

and    are equal and so are    and   . In BPMR the bit aspect ratio (BAR) is a 

measure of the relative size of the island and is defined as the ratio of the cross-

track island size to the along-track island size, 

 

    
  

  
   

(1.11)  

Thus, for circular and square islands the BAR is equal to 1. For rectangular or 

elliptical islands the BAR is greater than 1, and the longest side of an individual island 

is typically placed in the cross-track direction. This definition of BAR is not 

appropriate for continuous media since its magnetic domains are comprised of 

multiple grains. The bit aspect ratio in BPMR plays an important role in both the 

fabrication of the medium and the design of the write and read heads. In 

conventional PMR the BAR is usually determined by the design specifications of the 

write and read head since multiple grains are magnetized within a single bit domain. 

In contrast BPMR island size is determined by the fabrication process, which strongly 

favors a BAR of 1 [30], [31]. This would not at first appear to be a problem except 

that the design of conventional recording heads, which are used with BPMR, favors 

larger BARs. This is because larger BARs allow for a larger write and read head which 

in turn allows for stronger write head fields with steeper magnetic gradients and 
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better SNR levels for sensing by the read head. Larger heads are also easier to design 

and fabricate. The tradeoffs associated with the bit aspect ratio become even more 

complicated when fabrication tolerances are considered. Less stringent fabrication 

results in larger variations in island size (   and   ), island position (   and   ) and 

island amplitude which all degrade system performance [32], [33]. 

 In light of such competing design issues, one might wonder why proceed 

with BPMR at all. One of the compelling reasons BPMR was proposed is because it 

offers thermal stability for the media coupled with a scalable path to higher areal 

densities [34], [35]. Thus BPMR circumvents the media trilemma by utilizing 

increased media thermal stability, which is accomplished by increasing the grain 

volume beyond what conventional continuous media can support. While this might 

at first seem counterintuitive since increasing areal density requires the scaling 

down of the island size, the volume associated with a given island and thus a given 

grain is actually larger for BPMR than for the grain sizes used in continuous media 

[36]. For a given magnetic grain, the quantity     represents the energy that can be 

stored in a single grain of volume   with magnetic anistrophy energy density   . For 

a grain to be useful for magnetic storage, it must successfully compete with the 

thermal energy     of the medium, where    is Boltzmann’s constant and   is the 

operating temperature in Kelvin. In BPMR the size of the island dictates the grain 

volume. When this is reduced, requirements for thermal stability are normally still 

satisfied, so    does not have to be increased unless the current anistrophy results 
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in        . Thus, BPMR can take advantage of media with grain materials that 

possess conventional levels of anistrophy.  

1.6.2 Writing to BPMR Islands 

As areal densities are pushed forward, the scaling down of island sizes places ever 

increasing constraints on the design. In both continuous and bit-patterned media 

the write function can be thought of as a two-step process which involves (1) 

positioning the write head at the correct location and then (2) effectively 

manipulating the embedded field within the targeted bit domain to flip its magnetic 

state. BPMR greatly differs from conventional recording in its constraints for step 

(1). In order to successfully switch magnetizations of individual islands, the write 

head must maintain synchronous positioning over the islands within its targeted 

track or successful writing cannot occur. This stringent requirement is not upheld for 

continuous media HDDs as the write process is asynchronous. While an 

asynchronous write process is possible for BPMR, it has been shown to induce too 

high of a penalty on the channel capacity for BPMR to even be considered for future 

HDDs [37]. Fortunately for the synchronous case the technology is still viable for 

future HDD design in terms of limits on the channel capacity [38], [39].  

But this still brings to bear the problem of advantageously placing the write 

head over a given island. Current servo tolerances, mechanical vibrations, spindle 

speed variations and various other physical factors limit the ability to place the write 

head exactly where it needs to be during the write process. In a simplified sense the 
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collective adversities to write head placement can be represented as a synchronizing 

jitter,   , that acts to degrade the writing process. With regard to the previously 

mentioned second step of the writing process involving write field, once the write 

head is in place, the interactions of magnetic fields determine whether or not a bit is 

actually written. In BPMR no assistive magnetic fields are present so the imposed 

head field must overcome the island’s inherent resistive field as well as any resistive 

fields induced by the nearest neighbors of the targeted island. The opposing forces 

acting against the head field are referred to as the switching field distribution (SFD) 

and its contribution can be denoted with an associated standard deviation of     . 

The write process is also affected by the fabrication jitter,   , which causes variations 

in the interactions of the magnetic fields. Using an approach analogous to [40], the 

design space for BPMR from the write perspective can be explored. In terms of an 

upper bound, the write ability for BPMR islands can be expressed as a bit error rate, 

    , subject to the following constraint 

 
        (1.12)  

Here the quantity    refers to the bit period and    is the one-dimensional size of 

the region required by a centered island in order to achieve the upper bound on 

    . The quantity  , referred to as the uncertainty zone in [40] and [41], can be 

defined as 
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(1.13)  

where     
  is the variance of the switching field distribution,   

  is the variance of 

the fabrication jitter,   
  is the variance of the placement of the write head, and  

     

  
 is the gradient of the effective write field. All variances are considered to be 

independent and Gaussian distributed. The parameter    simply links the 

uncertainty zone to the targeted upper bound on bit error rate of write ability: 

 

     
 

 
     

  

  
    

(1.14)  

Equations (1.12 – 1.14) are only approximate as they ignore a number of justifiable 

interactions and degradations as well as require the effective write field to be closely 

linear within the operable range of the applied write field. However, the linear slope 

assumption is not a bad model, and the total approximations for the current scope 

are quite reasonable. If    is chosen as the upper bound for equation (1.12) then the 

achievable areal density,   , will be given by 

 

   
  

  
     

   
(1.15)  

where    is a constant and BAR refers to the bit aspect ratio. With    in nanometers 

the constant    = 645.16 for an areal density in Tb/in2, and equation (1.15) can be 

used for some insightful calculations: 
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(1.16)  

As the areal density is doubled from 2 to 4 Tb/in2 at a BAR of 1, the size of the bit 

period must be reduced from 17.96 nm to 12.7 nm. But when the BAR is 2, the 

increase in density from 2 to 4 Tb/in2 still requires a substantial decrease in bit 

period from 12.7 nm to 8.98 nm. Thus, ISI will remain a problem for all scaled island 

sizes in the along-track direction regardless of the bit aspect ratio. Since the islands 

are uniformly distributed, the ITI is also expected to remain if islands are scaled in 

the cross-track direction.  

Unfortunately the analysis from equations (1.12 – 1.16) does not reveal the 

most troublesome part of write errors. The synchronizing jitter,   , can actually lead 

to a compounding problem. As the write head proceeds from the start of a sector, it 

will procure some form of synchronization information so that it begins the sector 

more or less on target with the first island. From that point the write head will 

continue its write function until reaching the end of the sector, which could be 

either around 4K bits later or 32K bits later if long sectors are employed [42]. Given 

that the write clock phase offset can accumulate with every single positioning of the 

head over a target island, the total write offset can exceed half a bit period. This 

places the write head over the wrong island in what is known as an 

insertion/deletion condition. If this error is not corrected by resynchronizing the 
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write clock, the write head will continue to wrongly address islands until the end of 

the sector is reached. The result can be a sector with a multitude of errors. Since 

these errors occur at the writing stage, they are not seen by the channel detection 

as anything other than correctly written bits. This leaves the cleanup of such a mess 

solely to the decoding, which means the sector information may not be recoverable 

unless some form of synchronizing correction occurs within the sector [43]. If the 

written-in errors can be limited to only single or short runs of substitution errors 

without incurring insertion/deletion errors, then sophisticated detection algorithms 

can assist in correcting the written-in errors [44].  

1.6.3 Reading from BPMR Islands 

Because individual islands are separated by physical free space where theoretically 

the read head would register significantly less signal power, the problematic 

transition noise between adjacent bits of opposite magnetization within a 

continuous media does not exist. So the transitional jitter noise present in all of the 

other competing technologies does not plague BPMR. However, BPMR is not 

without its own significant engineering challenges for the read head including 

contributions to media noise specific only to bit-patterning technology. These noise 

contributions are the result of patterning tolerances from the governing fabrication 

process.  Thus, bit-patterning does not result in a media with perfectly shaped 

islands, orthogonal island distributions or homogeneous magnetic properties. In 

BPMR the media noise affecting the performance of the write head will also 

negatively impact the performance of the read head. The read back process will pick 
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up multiple variations in the media which include island height and size variations, 

island positions that vary in both along-track and cross-track position, and variations 

in the inherent magnetizations of individual islands. Figure 1.10 provides an example 

of what some of these individual media jitter effects would look like. Under the 

influence of a position jitter (    or    )  the island shape remains unchanged but 

the island itself is displaced from the center of the bit cell. When the jitter affects 

the size of an island (    or    ) the island becomes a rectangle that is either 

elongated or shortened in the direction of the jitter. In a true channel, various 

combinations of these jitters are possible and can result in significant degradations 

on the write and read processes.  

 

Figure 1.10 – BPMR array of islands with various types of fabrication media 
noise. The dashed boxes show the size and positions of the islands without 
media noise. The solid boxes illustrate what the position or shape would be 
under the appropriate jitter influence. 
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For example a larger than average island (      ;       ; or        and 

      ) displaced slightly along the positive z-axis (      ) would produce an 

amplified readback signal for itself and exacerbate the ITI for its neighbor in the 

positive z-direction. In [45] variations in media jitter were shown to have a 

substantial negative effect on the read channel performance in terms of BER for 

BPMR while island shape had none. Thus, the choice of square or circular islands 

does not noticeably affect channel performance so either geometry can be used to 

model the individual bit cells. 

1.7 Dissertation Overview 

The preceding discussions help reveal the extent of many of the design challenges 

facing BPMR as one of four future candidates for HDDs. It faces significant obstacles 

on both the write and read side of the design. And since the media itself is not 

continuous, the write head will be required to maintain a synchronous position close 

to the center of each and every island, which is a daunting challenge for any areal 

density goal above 1 Tb/in2.  Solving this problem alone is paramount to the success 

of BPMR; for without it, the number of errors introduced into the readback signal by 

a loss of write synchronization can easily exceed the recovery threshold of any 

known combinations of detection and error correction. Despite these daunting 

challenges, many in the HDD industry are striving to develop the technology. This is 

understandable because even if one of the aforementioned promising contenders 

establishes itself as the successor to perpendicular magnetic recording, bit-

patterned magnetic recording is still likely to be embedded within the future 
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magnetic recording technology achieving an areal density of 10 Tb/in2 or more. 

While many resources have come to light over the past decade regarding BPMR, few 

have honestly attempted to extend the areal density beyond 1 Tb/in2 in any practical 

sense. Most notable is the work of Chang and Cruz [46] and Cai et al. [47] who have 

addressed some of the difficult signal processing problems facing BPMR with varying 

degrees of success. Thus the main topic of this dissertation will focus on BPMR, and 

more specifically, on the signal processing aspects and associated models coincident 

with a future transition to this form of HDD. These efforts are both necessary and 

timely as the costs associated with producing a new media are high, so confidence 

must be established in signal processing techniques that can manage their share of 

the problems before investing in expensive retooling facilities. 

 In the second chapter of this dissertation, models of both the read and write 

process will be developed that include the most relevant aspects of the strengths 

and weaknesses of a BPMR design. The write model will encompass the three major 

types of written-in errors: substitution, insertion and deletion errors. Chapter 3 will 

then address a system model for the purposes of detection based on the channel 

output. Since the channel is characterized by significant levels of both ISI and ITI, 

TDMR detection techniques will be explored to determine their usefulness in dealing 

with elevated levels of this kind of interference. At the detection stage the written-in 

errors are decoupled from the system model since they occur outside of the 

detection process. In Chapter 4 error-correction coding will be added to the system 

model to help determine its possible role in dealing with the written-in errors in 
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combination with the ISI, ITI and media noise. Finally, in Chapter 5 the dissertation 

will be concluded and some relevant suggestions for future research will be 

expounded. 
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Chapter 2 - Modeling the BPMR Channel 

As seen earlier with traditional perpendicular magnetic recording on continuous 

media, the key component to addressing the many problems faced by a BPMR hard 

disk drive resides in the establishment of a simulation model capable of capturing 

the essence of the proposed technology. This is never a simple task especially with a 

fledgling technology where many unknowns are certain to be encountered. While 

BPMR represents a substantial jump from conventional PMR systems, it will still 

utilize many of the standard components typical of PMR drives. This allows many of 

the modeling constructs and algorithms used in PMR to be extended for use within a 

BPMR context. 

2.1 Elements of a Magnetic Recording System 

In all of the magnetic recording systems considered here, the goal is to utilize the 

magnetic properties of a given medium to safely and reliably store as much user 

data as possible so as to meet the demands of the user. Both storage and retrieval 

must be relatively quick and the integrity of the data must be maintained across the 

lifetime of the drive. To accomplish this feat a HDD typically accepts the user data in 

the form of 1’s and 0’s, encodes this information in a variety of forms and then 

stores it on the physical platters. The data recovery is simply the reverse procedure 

subject to additional constraints because the physical write and read actions are not 

inverse processes. From both the write and read perspectives a number of 
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embedded processes are necessary. These processes are depicted within the 

simplified block diagram in Figure 2.1. 

 

Figure 2.1 – Typical block diagram for a magnetic recording system. 

User data {1’s and 0’s} is first processed by an error-correcting encoder where the 

data is mapped to an allowable codeword within the error-correcting code’s set. 

Based on the redundancy of the particular ECC, the total number of bits to be 

written is expanded to accommodate the parity-check bits. The bits are then passed 

to a concatenated inner modulation encoder where the bits are once more 

remapped. While the purpose of the ECC is to assist in recovering message bits from 

a corrupted message, the modulation encoder mainly seeks to assist in timing 

recovery during the read process. Depending on the particulars of a chosen 

modulation code, the inner encoder may also attempt to enhance the distance 

properties of the message bits. If the message bits at the output of the modulation 
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encoder are in a non-return-to-zero (NRZ) form, then the message bits are passed to 

the write head and subsequently impressed on the HDD media. If not, then a 

precoder can be used to perform the appropriate mapping on the modulation 

output to achieve an NRZ format. In this work only polar binary inputs are assumed, 

which is an NRZ format with the basic mapping (0’s and 1’s) → (-1’s and +1’s). A true 

modulation encoder will not be included in the subsequent chapters as its presence 

does not enhance the discussions and only adds to the processing time for the 

channel simulations. 

 On the read side the recovery process begins with a sector scan by the read 

head to recover the stored information. The output of the read head is a continuous 

time signal that is passed to an analog front end where the continuous signal is 

prefiltered and then sampled at bit rate. This produces a finite power noisy sample 

of the readback signal which can be utilized by the equalizer.  The equalizer attempts 

to recast the samples as a desired target response to within some predetermined 

limits on the equalizer error. One of the most effective equalizer designs seeks to 

minimize the mean-square-error of the equalizer output with respect to the desired 

target response. This type of equalizer will be developed in later sections with 

regard to two-dimensional ISI. Once equalization is completed the output is sent to 

the channel detector which is usually based on either the Viterbi algorithm (VA) [48], 

[49] or on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [50]. When the detection is 

based on the VA, the output represents a hard decision on the bit sequence that 

coincides with the most-likely sequence given the detector inputs. Such hard 
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decisions would then dictate the usage of a hard-decision ECC as well. When soft 

decisions on each bit are desired, the BCJR algorithm represents the optimum a 

posteriori bit detector. Its outputs can be fashioned as log likelihood ratios (LLRs) for 

individual bits representing the probabilities that each bit is either a one or a zero. 

Even though its complexity is quite high, the BCJR algorithm is usually the detector 

of choice as its soft output can be handed off to a message-passing decoder. When a 

reduced complexity alternative is sought, the soft-output Viterbi algorithm (SOVA) 

can be used. It is an extended version of the VA where the output results in soft 

information on the individual bits [51]. When a modulation encoder is present in the 

write process, its bit manipulations must be undone on the reading side before 

proceeding to the decoder. The decoder makes an attempt to match the received 

sequence to a valid codeword which most likely matches the codeword produced by 

the encoder. In a hard decision decoder the input accepts the bit decisions of the 

detector. For a soft-decision decoder, LLRs from the detector are utilized as initial 

guesses on the individual bits before iterating on a decoding solution for the 

received codeword. If the decoder manages a successful decision on the bits, then it 

returns the output sequence that matches the sequence input at the encoder.  

All of the components shown in Figure 2.1 are basically required in some 

form or fashion within a HDD. Thus, a viable simulation model for a magnetic 

channel must incorporate reasonable representations of an encoder/decoder, 

plausible filtering and sampling, an equalizer and a channel detector. In addition the 

synergistic compilation of all model components must be tailored to match the 
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characteristics of a read head pulse response, a channel response, and a realistic 

noise model. For BPMR a fairly representative system model must be constructed in 

order to substantiate its role as a prominent technology for future HDDs. 

2.2 The Readback Signal 

Determining the readback pulse response in magnetic recording systems is crucial 

for establishing any reasonable simulations. Unfortunately, the exact readback signal 

is only known by individual HDD manufacturers, so it becomes necessary to develop 

a model for the readback pulse response. As with most models, it is best if a pulse 

response can be formulated that captures the essence of what a true readback 

signal will most likely entail. For BPMR this amounts to capturing the characteristics 

of an individual island subject to the sensing process of a typical read head. To 

obtain a model of the readback waveform, it is assumed that the read head is 

located directly over the center of an island and is a specified distance away that is 

equal to the set fly height for the read head. In terms of all required specifications, 

the combination of a read head in the process of sensing an individual island would 

look like the image shown in Figure 2.2 where the island’s image in the magnetically 

soft under layer is also shown. The presence of an SUL is somewhat questionable as 

it serves conflicting roles within PMR. An SUL has been shown to actually improve 

the writing performance in perpendicular recording by allowing for a larger write 

gradient through the magnetic layer [52], [53]. On the read side, however, the SUL 

introduces a negative impact by increasing the amplitude of the readback pulse, and 

with greater amplitude comes an undesirable broadening of the pulse [54]. The 
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development of BPMR is still too preliminary to ascertain whether or not the 

presence of an SUL is advantageous or not, so for now it is assumed as part of the 

medium. 

 

Figure 2.2 – Orientation of the read head in BPMR with the sensing element 
centered directly above a single magnetized island. 

No intermediate layers are assumed between the SUL and the magnetic island. The 

island is assumed to have a rectangular shape with side lengths a and b. The height 

of the island is designated as delta (δ). It is also assumed that the island possesses 

perfect along-track and cross-track orientation. The island’s perpendicular 

magnetization is considered uniform with magnitude M. The read head is comprised 

of a sensing element and side shields. The sensing element has thickness T, width W, 

and semi-infinite height. The shields are nonmagnetic and considered to have semi-

infinite dimensions so as to perfectly shield the read head element from stray 
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magnetic flux. The read element is centered between the side shields and is a set 

distance G, called the gap length, from each shield. The read element’s flying height 

above the island is denoted F. The read head functions by sensing the magnetization 

of an individual island and then responding with an output voltage. This output 

voltage is proportional to the magnetic flux injected into the read element at its air 

bearing surface (ABS), 

                 (2.1)  

By normalizing the amplitude of the readback waveform, the constant   can be 

ignored and the problem of arriving at a model for the readback signal reduces to 

modeling the output voltage as a two-dimensional magnetic flux. The flux is 

modeled in two dimensions because the individual islands will be close enough to 

experience interference in both the along-track and cross-track directions, which 

complicates the readback waveform considerably. Fortunately, much work has 

already been done with modeling two-dimensional magnetic flux. One practical 

method involves using the three-dimensional reciprocity integral [55] to analytically 

calculate two-dimensional flux, 

 
       

  

 
    

 

  

    
   

 

    
 

  

             

                    

(2.2)  

where    is the permeability of free space,   is the current residing within the 

imaginary coil of the read head,    is the magnetic field produced by the read head 

within its imaginary coil, and    is the perpendicular magnetization of the island. 
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The reciprocity integral can be expanded if a substitution is made for both magnetic 

fields    and   . Following [55], the magnetic fields can be represented by their 

respective gradients in magnetic potential, 

 
       

  

 
    

 

  

    
   

 

    
 

  

            

 
                 

   
    

(2.3)  

To continue deriving the readback response based on the specifications from Figure 

2.2 and using (2.1), the three-dimensional gradient of magnetic potential of the read 

head and the magnetization of the medium must be known. Given the island is 

square (a = b) with uniform magnetization, then    is the only magnetization 

component present and it has a constant value of   confined within the boundaries 

of the island: 

 

    
  

 
 

 
     

 

 
       

 

 
          

    (2.4)  

Since the magnetization is simply a single square pulse, taking the derivative with 

respect to   results in two impulse functions at the boundaries of the island. Thus 

the magnetization of the island within the reciprocity integral is known. The 

magnetic potential, however, still needs to be obtained. 

 Since the magnetic flux of the read head system must flow into the SUL 

beneath the island (somewhat like the flux for the write head in perpendicular 
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recording illustrated in Figure 1.1), the SUL affects the magnetic flux and thus the 

corresponding magnetic potential. To incorporate such effects, the SUL is assumed 

to have semi-infinite dimensions coupled with infinite magnetic permeability. This 

allows the SUL’s influence to be modeled as a perfect mirror image of the true read 

head across the SUL boundary. Thus the total magnetic potential is equal to the 

potential of the true read head minus the magnetic potential of the image read 

head, which is at a distance of            from the top of the island. Based on 

the assumptions for the read head, SUL and island magnetization, the reciprocity 

integral can be simplified, 

 
       

  

 
    

 

  

    
   

 

    
 

  

                 

 
                 

   
    

(2.5)  

 

        
  

 
    

 

  

    
   

 

    
 

  

             

                  
                 

   
    

(2.6)  

 

             
 

  

    
 

  

               

                                   

(2.7)  

Again,   is just a constant that goes away with normalization and    is defined by 

(2.4). Even with this simplification, the values of magnetic potential are still 

undetermined. The strategy for managing these unknowns starts by defining the 
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magnetic potential on the ABS of the read element. This function is at best an 

approximation and represents the magnetic potential where 

                      (2.8)  

Now it is necessary to utilize the normal derivative at the read element surface of 

the three-dimensional Green’s function assuming the perfect image in the SUL, 

   

  
 

  

   
       

   

                       
   (2.9)  

With (2.9) the magnetic potential at any point under the read head can be 

determined by the following well-defined Dirichlet boundary value solution to 

Laplace’s equation,      , [56], 

         

  
 

  
           

  

  
      

 
 

  
  

 

  

 
               

                    
 

  

 

  

   

(2.10)  

In order for this somewhat convoluted process to be useful,          must be 

provided. Depending on the exact form for          , (2.10) can be solved either 

analytically or numerically for the two functions               and           

      . Finally, these two evaluations of the magnetic potential can be used within 

the reciprocity integral of (2.7) which can then be solved numerically to arrive at the 

two-dimensional magnetic flux. All unspecified constants are simply incorporated 
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into a final coefficient for the magnetic flux and then dropped under normalization. 

This effectively results in a two-dimensional readback waveform.  

 Since these derivations are based on a single magnetic island, the specified 

parameters for the read head and island size tend to scale the readback pulse 

response. To demonstrate this, consider the following sets of parameters shown in 

Table 2.1 that represent two different recording densities, one at 2 Tb/in2 and 

another at 4 Tb/in2.  

Table 2.1 – Various design parameters describing the dimensions of an 
individual island and read head at recording densities of 2 Tb/in2 and 4 
Tb/in2. 

 Recording Density (Tb/in2) 

Parameter Symbol 2 4 

Read element thickness T 3 3 

Read element width W 15 15 

Shield gap G 6 6 

Flying height F 10 3 

Island height   10 8 

Island size (along track) a 9 6.35 

Island size (cross track) b 9 6.35 

Bit period Tx 18 12.7 

Track pitch Tz 18 12.7 
 

In conjunction with the parameters for a recording density of 2 Tb/in2, the magnetic 

potential on the ABS can be defined by the following [57] 
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   (2.11)  

This represents a potential on the ABS that is linearly attenuated between the read 

element and the two side shields. A graph of this potential is shown in Figure 2.3.  

 

Figure 2.3 – The magnetic potential along the air bearing surface of a read 
head with linear attenuation between sensing element and side shields.  

As can be seen in the figure, the magnetic potential on the unshielded sides is 

assumed to fall off immediately to zero. When this simple magnetic potential is 

substituted into (2.10), the following analytical solution exists [58]: 
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(2.12)  

   

   
    

        

        
  

  
 
   

   
       

            

  
  

   
 
 

  
 
 

   

The entire expression is evaluated across  
 

 
    

 

 
 and the R-term is defined as 

                     . This result allows for the evaluation of the 

magnetic potential at any point beneath the read head. Fortunately, only two 

locations are of interest:               and                 . By evaluating the 

analytical expression at the top of the island (    ) and then again at the top of the 

island’s image in the SUL (       ), the magnetic potentials at the locations of 

interest are obtained and shown in Figures 2.4 and 2.5. These evaluations are the 

exact expressions required in the evaluation of the reciprocity integral of (2.7). To 

determine the overall flux and thus the readback signal pulse response per (2.1), the 

reciprocity integral should be evaluated numerically using the two previous 

evaluations of the magnetic potential and the island magnetization defined by (2.4). 

The resulting normalized pulse response is shown in Figure 2.6.          
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Figure 2.4 – Magnetic potential measured by the read head coincident with 
the top of a BPMR island for an island height of 10 nm. 

 

Figure 2.5 – Magnetic potential measured by the read head coincident with 
the top of a BPMR island’s image in the SUL at a distance of 30 nm. 
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Figure 2.6 – Normalized magnetic flux of a single BPMR island at a recording 
density of 2 Tb/in2. 

The normalized pulse response is basically the readback waveform for an individual 

island sensed by the read head. Its shape is closely Gaussian and very nearly 

symmetrical in both along-track and cross-track directions as can be seen in the 

contour profile of Figure 2.7 and two-dimensional signal profiles of Figure 2.8. Closer 

inspection reveals that the cross-track profile is slightly broader compared to the 

along-track profile. This phenomenon has been observed by others utilizing similar 

analytical methods [59] and even more sophisticated techniques involving numerical 

micromagnetic simulations in combination with various analytic aspects [60]. 
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Figure 2.7 – Contours for the normalized pulse response of a single BPMR 
island showing slight asymmetry in the cross-track direction compared to the 
along-track direction. 

 

Figure 2.8 – Along-track and cross-track profiles of the individual pulse 
response of a single BPMR island. 
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To better see how the individual pulse response scales with increased recording 

density, the entire derivation process was repeated with parameters suitable for a 

density of 4 Tb/in2. The final computed magnetic flux and corresponding profiles are 

shown in Figures 2.9 and 2.10.  

 

Figure 2.9 – Normalized magnetic flux of a single BPMR island at a recording 
density of 4 Tb/in2. 

At first glance the pulse response seems to be a scaled down version of the previous 

response at a recording density of 2 Tb/in2 but with a noticeable depression at the 

center directly over the island. This is most likely due to the extreme proximity of 

the read head to the island. The original assumption of linear attenuation in the 

magnetic potential along the ABS was also highly simplified and is likely contributing 
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to the misshaped peak. The pulse profiles provide a clearer picture of the depression 

at the center of the pulse. 

 

Figure 2.10 – Along-track and cross-track profiles of the individual pulse 
response of a single BPMR island at a recording density of 4 Tb/in2. 

In a comparison between Figures 2.8 and 2.10, it can be seen that the pulses at the 

two different recording densities are somewhat scaled with the broader cross-track 

profile showing up in each. However the feature at the peak for 4 Tb/in2 is cause for 

some concern. The model for linear attenuation along the ABS does not work as well 

at high recording densities when the islands are significantly close together and the 

flying height is necessarily reduced. A better model for the potential would have 
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been the one proposed by Ruigrok [61] where a curvature term is added to the 

linear variation between the shields and sensing element. 

 

        
  

 
     

  
 

 

 
       

  
 
     

 
    

(2.13)  

While this results in steeper falloff of the potential along the ABS, the increased 

curvature will still be insufficient to adequately display the true nature of the 

potential on the ABS in a high density BPMR design. If a cleaner representation of 

the readback pulse response is to be obtained, then better approximations or 

modeling techniques must be employed. Fortunately, a number of researchers have 

already traveled this road and met with various levels of success. The approaches 

aimed at determining better signal response models typically stem from established 

methods and models used previously for perpendicular recording on continuous 

media. 

 To arrive at a pulse response either an analytical approach or a strictly 

numerical approach can be taken. Either one must incorporate approximations 

regarding the magnetic potential on the ABS and in the region directly beneath the 

ABS with how the potentials interact with the specified medium. No approach is 

error free and all suffer some form of degradation based on extent of the 

approximations used. In this work an analytic approach was taken that suffices to 

model the pulse response until the scaling down of the island and read head 

dimensions to achieve an areal density of 4 Tb/in2 brings the head too close to the 
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island. Nabavi [59] used the same method but made different assumptions on the 

ABS potential. She chose the potential recommended by Wiesen and Cross [62] in 

combination with the mesh splicing techniques of Lindholm [63] to reproduce a 

more realistic ABS potential. Unfortunately, Nabavi never scaled her resulting pulse 

response beyond 2Tb/in2, so it is unknown if it would suffer the same degradation 

from a drastically reduced flying height. Along similar lines Nutter in combination 

with various other authors [45], [56], [64] investigate readback pulse responses 

constructed using 3D reciprocity in the Fourier transform domain: 

 
                 

                     

        
                           

(2.14)  

where        and      are Fourier transform pairs,    
  is the complex 

conjugate of    
 , IFT designates the inverse Fourier transform, and    and    are the 

Fourier transform wave numbers in their respective directions. When formulating a 

pulse response with Fourier transforms the magnetization distribution along the 

plane of the ABS and the projected potential distribution on any plane below the 

ABS are required. Nutter et al. wisely used an excellent method by Wilton et al. [65] 

that approximates such potential distributions with results that closely match 

numerical simulations. Nutter et al.’s resulting pulse responses closely match 

Nabavi’s and the one shown in Figure 2.6, but again, the simulations are not 

attempted at an areal density of 4 Tb/in2. Another possible approach would be to 

perform micromagnetic simulations with the parameters appropriate for 4 Tb/in2 to 



52 
 

determine a readback response. This requires a finite-element method based on 

various physics-constrained approximations and is capable of handling differing 

magnetic properties of the materials in combination with complex write/read head 

and medium geometries. It is strictly numerical, computationally heavy and sensitive 

to localized boundary conditions. However, given that the methods of [65] nearly 

match the results from a finite-element method, the approach is unlikely to produce 

a pulse response much different than those found by Nutter et al.  

2.2.1 Modeling with a 2D Gaussian Pulse 

While much of this work is beneficial, performing sophisticated microsimulations or 

intensive numerical calculations to determine the nature of every island does not 

lend itself to further extension where the inner simulations are wrapped within an 

error-correction code. Fortunately, a good deal of the cumulative results are 

consistent and point to the alternative model using a two-dimensional (2D) Gaussian 

distribution function [59]. A 2D Gaussian pulse closely matches the results for the 

pulse response derived earlier as well as the results of others [45], [56], [64]. It has 

also been used successfully to model the channel response in conjunction with both 

two-dimensional detection techniques [46], [55], [66], [67] and error-correcting 

codes [47], [68]. There are various characteristics of this pulse that make it versatile 

for use within simulations. In terms of a readback response, a 1D Gaussian pulse can 

be expressed  
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(2.15)  

where   is the amplitude of the pulse,      is the pulse width at half maximum in 

the x-direction and   is a constant           used to associate the      to the 

standard deviation of a Gaussian. When expanded as a 2D Gaussian pulse with 
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(2.16)  

This expression allows for separable treatment of the readback response in both the 

along-track and cross-track directions. This function can also be expressed as 

 

               
 

    
 

 

        
 

    
 

 

   
(2.17)  

where   and   are parameters whose values depend on various read head and 

media parameters which vary for a given areal density, and     is simply the rise 

time for the transition response to go from negative 50% amplitude to positive 50% 

amplitude. A 2D Gaussian pulse for both 2 and 4 Tb/in2 areal densities along with 

their corresponding profiles can be seen in Figures 2.11 – 2.13 where the broader 

cross-track profile compared to the along-track profile is easily seen. What is not so 

apparent is the correspondence between the along-track profiles at the two 

different densities. For the parameters from Table 2.1, the readback pulse at 2 
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Tb/in2 is slightly broader in the along-track direction than at 4 Tb/in2. This is not 

completely expected and will be explained in a later section.  

 

Figure 2.11 – Normalized 2D Gaussian readback pulse response at an areal 
density of 2 Tb/in2. 

 

Figure 2.12 – Normalized 2D Gaussian readback pulse response at an areal 
density of 4 Tb/in2. 
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Figure 2.13 – Along-track and cross-track profiles for both 2 and 4 Tb/in2 
areal densities. 

At the higher areal density the pulse broadens significantly in the cross-track 

direction and this will contribute to increased ITI. Thus, at 4 Tb/in2 significantly more 

ITI will be present in the channel while the ISI levels will remain relatively steady 

when compared to the ITI and ISI at half that areal density. The full extent at which 

ITI exists at 4Tb/in2 is displayed in the contour plot of the pulse response in Figure 

2.14. Obviously the island will exert a localized influence in both along-track and 

cross-track directions. If the 1D readback response profiles are expressed as a train 

of five pulses as in Figures 2.15 and 2.16, then the extent of the two-dimensional 

interference can be seen. 
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Figure 2.14 – Contour plot of the normalized 2D Gaussian pulse response for 
an areal density of 4 Tb/in2. 

 

Figure 2.15 – Along-track profiles of the normalized 1D Gaussian pulse as a 
train of five adjacent pulses at an areal density of 4 Tb/in2. The centers of the 
various islands are a distance    away and coincide with the pulse peaks. The 
center island pulse is in red, the adjacent island pulses are in green, and the 
next two adjacent island pulses are blue. 
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Figure 2.16 – Cross-track profiles of the normalized 1D Gaussian pulse as a 
train of five adjacent pulses at an areal density of 4 Tb/in2. The centers of the 
various islands are a distance    away and coincide with the pulse peaks. The 
center island pulse is in red, the adjacent island pulses are in green, and the 
next two adjacent island pulses are blue. 

When analyzing the pulse overlaps in Figures 2.15 and 2.16, it should be noted that 
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at      do not directly increase the ISI on the center pulse. But as expected, the ITI 

is a more difficult issue. The influence on the center pulse from adjacent pulses is 

quite high. So much so that the outer set of pulses exert a non-zero interference on 

the center pulse. When the islands are perfectly arranged within their respective 

tracks, the ITI from distances of      is not very significant. But when media noise is 
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arrange the islands differently. Figure 2.17 shows what a small array of pulses look 

like from the read head perspective. 

 

Figure 2.17 – Array of 81 normalized 2D Gaussian pulses shown as contours 
for an areal density of 4 Tb/in2.  

From the contours in Figure 2.17, one can observe a low spot in the pulse response 

field located at the geometric intersections of island center cross diagonals. This 

indicates that a staggered pattern of adjacent tracks (hexagonal packing of the 

individual islands) might allow for decreased levels of ITI. However, moving  adjacent 

tracks to the indicated intersection  
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hexagonal packing of the islands could solve. This type of hexagonal packing is best 

implemented where the condition of (1.12) is not at its minimum and the islands are 

physically separated by a distance greater than half of the track pitch, 
  

 
.  Another 

similar strategy though, would be to shift adjacent tracks forward by half the bit 

period, 
  

 
, while maintaining the same track spacing,   . This still places adjacent 

islands at a geographic low in a rectangular equivalent arrangement and maintains 

the BAR and track spacing at the same time. In a hexagonal packing such as this, ITI 

is basically traded off as ISI. Given the previous investigation of the track pulse 

profiles, this could prove advantageous. Figure 2.18 gives a clearer picture of the 

extent of the ISI at the 2 and 4 Tb/in2 areal densities. 

 

Figure 2.18 – ISI present in the normalized 2D Gaussian readback pulse at 
areal densities of 2 and 4 Tb/in2. 
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As noted earlier, the ISI is marginally more of a concern for the lower areal density 

channel, but in either case, the level of total ISI in the channel is below 10% of the 

magnitude of the pulse. In terms of the ITI, moving to a hexagonal pattern shows 

some improve (see Figure 2.19) but not anything drastic. 

 

Figure 2.19 – ITI present in the normalized 2D Gaussian readback pulse at 
areal densities of 2 and 4 Tb/in2 for both rectangular and hexagonal island 
patterns. 
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additional hardship of media noise may make even a 5% decrease in ITI well worth 
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distributions to manufacture, and it does not significantly affect costs in terms of 

signal processing complexity. 
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2.2.2 Media Noise and its Effects on the Readback Response 

During fabrication the individual islands are always constructed with less than 

perfect dimensions, position and intrinsic magnetic properties. The sum total of all 

the adversities which impact the readback response cannot be determined exactly, 

but some level of influence from the major contributing degradations can be 

incorporated into the pulse response. This is unique for BPMR compared to PMR, 

SWR/TDMR, HAMR and MAMR as the localization of the magnetic domains to 

individual islands eliminates the transition noise present in conventional continuous 

media magnetic recording schemes. While transitional noise is gone, the expansion 

of the pulse response into two dimensions increases the noise sources of the 

readback response. In all recording channels there are actually more noise sources 

than can be practically monitored. So the focus is always on those sources which 

cause a particular media the most trouble. For BPMR these have been found to be 

variations in island position and island size [64]. It was discovered in [69] that high 

BAR islands suffer more from island size jitter           than lower BAR islands or 

islands with unit BAR. It was also concluded that these jitters were most detrimental 

to read head performance when the target island was small compared to the size of 

its neighbors. In [55] and [67] results showed that after jitter noise was incorporated 

into the design of the detector, position jitter         became the most detrimental 

jitter noise contributor.  

 To incorporate jitter noise and its adverse effects to system performance, 

each kind of fabrication jitter must be included in the pulse response       . This 
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means either (2.16) or (2.17) must be modified. In reference to the two system 

designs listed in Table 2.1, the parameters for an areal density of 2 Tb/in2 match 

(2.16) while the parameters for an areal density of 4 Tb/in2 match (2.17). Thus both 

equations must actually be modified. Starting with (2.16), the incorporation of jitter 

terms results in  

                                

 

      
  

 
 

    

         
 

 

       
  

 
 

    

         
 

 

   
(2.18)  

where    is the island height variation,    is the along-track position jitter,    is the 

cross-track position jitter,     is the along-track island size variation, and     is the 

cross-track island size variation. All of these jitters are modeled as white Gaussian 

random processes with zero means, and none of the jitters are considered to be 

correlated. When an equivalent jitter treatment is applied to (2.17), the result is 

                                

 

        
    

        
 

 

        
    

        
 

 

    
(2.19)  

where the jitters are the same as before. For (2.18) and (2.19) one simplification can 

be made if a high-resolution numerical pulse response is known. Based on the 

results of such a numerical simulation of the pulse response at a specific density, the 

parameters of the analytic 2D Gaussian pulse can be fitted to closely match. This 

procedure was implemented in [67] where it was revealed that the island size jitter 

affected both the amplitude and width of the numerical pulse. This characteristic of 
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the readback response is distinguished by a pulse amplitude that is nearly linear in 

the island size variation at the target island’s geometric center in the along-track and 

cross-track directions. Thus a best-fitting line can be constructed in each direction 

based on a minimum mean-squared error (MMSE) criteria to get             

and             where       and       are the respective slopes and  -

intercepts in each direction of the best-fitting MMSE lines. Incorporating this 

characteristic of the readback response into (2.19) results in 

                       

 

        
    

    
 

 

             
    

    
 

 

        
(2.20)  

where    and    are the jitter lines in each direction. If the constants are combined 

with the parameter values, (2.20) can be written in more compact form as 

                                              

 
                        

(2.21)  

with       ,          
 ,        ,          

 , and         where       

simply refer to their previous parameter values unnormalized by      and     . To 

understand how these jitters adversely affect the readback pulse response, 

contributions from each jitter term are examined individually in Figures 2.20 – 2.23. 
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Figure 2.20 – Normalized along-track 2D Gaussian pulse readback waveform 
at an areal density of 4 Tb/in2 under the influence of along-track island size 
variation. The red curve indicates a zero jitter value. The blue curves indicate 
jitter between  50% of the island’s along-track size at intervals of 10%. 

 

Figure 2.21 – Normalized cross-track 2D Gaussian pulse readback waveform 
at an areal density of 4 Tb/in2 under the influence of cross-track island size 
variation. The red curve indicates a zero jitter value. The blue curves indicate 
jitter between  50% of the island’s cross-track size at intervals of 10%. 
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Figure 2.22 – Normalized along-track 2D Gaussian pulse readback waveform 
at an areal density of 4 Tb/in2 under the influence of along-track island 
position jitter. The red curve indicates a zero jitter value. The blue curves 
indicate jitter between  25%,  15% and  5% of the bit period. The green 
curves indicate the position of the nearest along-track neighbors. 

 

Figure 2.23 – Normalized cross-track 2D Gaussian pulse readback waveform 
at an areal density of 4 Tb/in2 under the influence of cross-track island 
position jitter. The red curve indicates a zero jitter value. The blue curves 
indicate jitter between  25%,  15% and  5% of the track pitch. The green 
curves indicate the position of the nearest cross-track neighbors. 
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Based on the figures for island size variations, islands that are either bigger or 

smaller than their nominal size will produce only slight changes in the broadness of 

the pulse response but large changes in the amplitude. This is actually good news as 

the falloff from a higher amplitude island does not increase greatly with increasing 

island size. Thus only islands experiencing very large size jitter will cause problems in 

terms of ISI and ITI on its neighbors. Small islands will be a problem though as this 

directly decreases the desired signal amplitude and allows the high ITI present to 

cause single-bit written–in errors as also seen in [69]. As expected, the cross-track 

size jitter results in slightly greater amplitude variation compared to its along-track 

jitter counterpart. In terms of the position jitters, one can easily see why these 

fabrication defects result in damaging the readback response especially in the along-

track direction. If an island experiences the maximum along-track jitter, the 

amplitude of the along-track pulse response drops by 20%. Given that its neighbors 

will also experience some level of position jitter, the resulting pulse response could 

very easily lead to a detector error. For the cross-track jitter, the broader pulse 

prevents steep drop-off in the pulse amplitude. But because of the high ITI 

environment, the influence of the neighboring islands results in greater relative 

decay of the pulse response compared to the same position jitter value in the along-

track direction.  

In order to actually implement the channel response with jitter noise, the 2D 

Gaussian response needs to be expanded to isolate the different contributions to 

the channel response. Referencing the method used previously in Section 1.2, the 
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individual jitter terms can be expressed as first-order Taylor series expansions with 

reasonable accuracy. This results in the following expression for the pulse response 

                
 

    
     

  
   

     

  
    

     

     
    

     

     
    

(2.22)  

where       designates the partial derivative of the expression for the full pulse 

response including jitters with respect to a given jitter. When modeling the channel 

output, the jitters will be considered Gaussian random variables normalized by   , 

  ,    and    respectively with variances of    
 ,    

 ,     

  and     

 . In the absence of 

a numerical model, the pulse response would fall back to (2.18) and (2.19). Under a 

first-order jitter approximation, (2.18) would become 

                  
     

  
  

 

    
     

  
   

     

  
    

     

      
    

     

      
    

(2.23)  

where the variation in island height is included. 

2.3 Defining the SNR 

For various PMR channels there are a number of ways to specify the signal-to-noise 

ratio (SNR), which is a common metric utilized to compare performance levels for 

both detection schemes and error-correcting codes. In continuous media PMR 

defining a functional SNR is a sensitive issue as the average bit energy associated 

with a single isolated signal response works out to be infinity. There is also the 
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additional problem caused by the presence of the transition jitter noise between bit 

cells of opposite magnetization which complicates the SNR definition. This resulted 

in a typical SNR definition of  

 

    
  

     
    

(2.24)  

where    is the energy of the isolated pulse response,    is the AWGN single-sided 

power spectral density and    is a power spectral density version of the average 

transition jitter noise energy associated with a single transition. While this equation 

seems simple enough, arriving at this expression and determining the individual 

values for the signal and noise contributions are far from trivial [71]. 

As mentioned in the previous section, BPMR suffers from multiple jitter noise 

sources since its two-dimensional signal representation allows for increased sources 

of noise. This jump to two dimensions substantiates a revisited treatment of the 

typical SNR definition. Unfortunately, such an investigation of SNR and its many 

facets is lacking for BPMR. Thus an SNR definition which includes all contributions to 

an isolated bit response has yet to be formulated. If the contributions from the jitter 

are simply assumed to be masked within the signal power of an island’s individual 

pulse response, then the standard 1D definition of SNR can be used: 

 

    
  

  
    

(2.25)  
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For a binary-input channel subject to an error-correcting code, this definition is 

slightly modified to better suit the channel simulations which come later: 

 

    
  

  
     

   

   
   

(2.26)  

where    is the average energy per information bit,      is the two-sided power 

spectral density of the AWGN (equal to   ) corresponding to the channel output of a 

bit with energy   ,   is the code rate of the ECC, and   is the amplitude of the 

isolated pulse response [72]. This definition requires a little explanation. The code 

rate   will reduce the channel’s average energy per bit as it adds an overhead of 

parity bits with a ratio equal to the code rate. Also, for the remainder of this 

dissertation, the pulse amplitudes will be normalized so      throughout. In the 

log domain the SNR definition used will be 

 

                
   

   
    

(2.27)  

2.4 Errors in the Writing Process 

As mentioned previously, one of the greatest challenges facing BPMR lies in cleaning 

up the write process as it can introduce written-in errors into the channel that the 

system’s signal processing design must handle. This is unfortunate because the 

errors created while writing the bits to the disk are unknown to the detection 

algorithms since detection is based on the readback response acquired while 

scanning islands in a track. If one of the islands was mistakenly written as a      



70 
 

instead of as a      or vice versa, then the detection has no choice but to treat any 

such bit errors as correct writes. Thus, only the system’s ECC has an opportunity to 

correct the written-in errors, and it must do so in conjunction with correcting 

mistakes made by the detector as well. Since continuous media PMR systems do not 

suffer significantly from miswritten bits, the error-correction codes used in BPMR 

must perform a dual function in guarding the information stored in the medium. 

 In BPMR written-in errors can basically be classified into two types: errors 

created by problems in write field when an individual island is addressed, and errors 

that occur because of miscues in write timing. The errors due to problems in the 

magnetic field fluctuations during writing are single-bit errors and are often referred 

to as either substitution errors or as reversal errors. Substitution errors only happen 

when the target island ends up magnetized in the wrong direction. There are a 

number of factors which determine if a given bit is miswritten or not. These include 

the intrinsic switching field distribution of an individual island       , the interfering 

magnetic fields from neighboring islands     , and the deviation in position (jitter) 

of the target island     . When these factors are taken to be independent, the total 

field fluctuation     can be expressed [73] 

 

       
    

   
  

  
   

 

   
(2.28)  

The island position jitter deviation can be expressed as the product of the write field 

gradient with the position deviation. Often the write head is in shingled write 

orientation so it can have a large dimension in the along-track direction and a much 
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smaller size in the cross-track position. This means that the trailing edge of the write 

head determines the write condition as the next few future bits are overwritten at 

the same time. When the trailing edge of the write head is over its target island, it 

may still be close enough to the preceding island to overwrite that island’s current 

magnetic condition. This actually depends on a number of interacting factors related 

to (2.28). The overwrite condition for the previous adjacent island can be stated 

 

     
  

  
               

     
     

    
(2.29)  

where      is the applied write head field; 
  

  
 is the trailing edge head field 

gradient;          represents the island’s distance from the write head’s trailing 

edge;     is the medium’s coercivity;    
   is the trailing island’s deviation from the 

medium’s magnetic field and represents the switching field distribution (SFD); 

  
     

  represents the interference from the nearest neighbors as a set of 

demagnetizing fields. Values for     , 
  

  
,    and    are determined by a given 

head-media design. All of the other terms in (2.29) are considered to be normalized 

random variables following a Gaussian distribution with some appropriate standard 

deviation. The interfering fields from the nearest neighbors are determined by their 

previous writing condition. This means if the islands are magnetized in the same 

direction as the bit trailing the write head, then there fields are in unison and the 

demagnetizing field is absent. If the neighbors are magnetized in the opposite 

direction as the trailing island, then they facilitate overwriting the trailing island by 
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contributing an amount   
    and/or   

  to the right-side of (2.29). To help establish 

some bounds on the design parameters, (1.12 – 1.14) can be used as they allow for a 

simplified examination of the design space for BPMR from only the perspective of 

the write head. Considering the areal densities of interest to range from 1 to 5 

Tb/in2, Figures 2.24 and 2.25 show the relationship between the switching field 

distribution    
   and the effective head field gradient 

  

  
 for BAR = 1 in both cases. 

 

Figure 2.24 – Design chart showing the design space for areal densities 
ranging from 0.5 – 2 Tb/in2. Parameter values are set at BAR = 1;      nm; 
     nm;          . 

For the design chart at higher densities, the values for    and    have been scaled 

appropriately for a target areal density of 4 Tb/in2. Both charts reflect the design 

tradeoff between the need for high trailing field gradients and the respective 

magnitude of the SFD. Sharper gradients in the head field unfortunately dictate high 
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corresponding levels in the switching field distribution. For example, if a trailing edge 

gradient of 500 Oe/nm is desired at 4 Tb/in2, then the resulting magnitude of the 

SFD will approach 600 Oe. 

 

Figure 2.25 – Design chart showing the design space for areal densities 
ranging from 2 – 10 Tb/in2. Parameter values are set at BAR = 1;        nm; 
       nm;          . 

Based on the above design chart for an areal density of 4 Tb/in2, the following list of 

plausible values can be taken: 
  

  
     Oe/nm; SFD =    

       Oe; with SFD 

set to 10% of   , then         Oe;           Oe. With these values and the 

constraint imposed by (2.29), an assessment of the write error rate for substitution 

errors as a function of the write head’s offset from the center of the target island is 

shown in Figure 2.26. From the graph it can be seen that the chosen parameter 
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Figure 2.26 – Write error rates obtained by counting erroneously written bits 
as a function of the write head offset from the center of the target island. 

Simulations were performed with the following parameters: 
  

  
     

Oe/nm;         Oe;           Oe;         ;          ; 
        ;         nm. 

 

Figure 2.27 – Write error rates obtained by counting erroneously written bits 
as a function of the write head offset from the center of the target island. 

Simulations were performed with the following parameters: 
  

  
     

Oe/nm;         Oe;           Oe;         ;          ; 
        ;         nm. 
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values actually perform quite well for the BPMR channel as all write error rates for 

write head offsets between         have write error rates below 10-6. 

Unfortunately, slight changes in the parameter values can result in substantially 

different write error rates. In Figure 2.27 very different write error rates are 

obtained when the standard deviations are doubled for the variations in the island 

position jitter, the variation in the island’s coercivity, and the variation in the 

neighboring islands’ interference. When these variances are not changed in favor of 

selecting different values for the magnetic fields  
  

  
,   , and      , the write error 

rates show an improvement from the previous graph. This implies that the 

parameters selected for a given write head from the design chart in Figure 2.25 are 

highly sensitive in terms of the corresponding write error rate performance. 

 

Figure 2.28 – Write error rates obtained by counting erroneously written bits 
as a function of the write head offset from the center of the target island. 

Simulations were performed with the following parameters: 
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A better strategy would be to match a set of parameters for a design to some 

measurements from an actual write head or sophisticated numerical model. 

Otherwise the variations possible for write head performance based on simulations 

with a given set of parameters cause the results to be somewhat questionable. 

The second type of written-in error mentioned earlier can actually be the 

most detrimental to the channel. When write synchronization is lost, the write head 

can drift into a position where it starts writing on the wrong islands. Since the 

hardware is normally unaware of this situation, long runs of islands can be written 

with the incorrect bits. Written-in errors occur after the bits have been encoded and 

before the detection takes place, which leaves only the decoder to correct the 

resulting errors. Thus the written-in errors show up within the received codeword. 

To better quantify how insertions and deletions can affect a channel, consider the 

structure of a codeword   with length  , 

 
                                       

(2.30)  

In error-free data recovery (2.30) would be both the codeword sent to and the 

codeword retrieved from the channel. If during the writing of the codeword, a 

deletion occurs at bit    in the codeword, then the recovered codeword would be 

missing this bit and all subsequent bits would be shifted one place to the left. The 

codeword received from the channel would then be 

 
                                        

(2.31)  
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and all of the bits following      could be in error. The bit at the end of the channel 

is now in an unknown state denoted by   . Now if instead bit    is inserted in the 

channel after bit     , then the codeword received from the channel would be 

 
                                      

(2.32)  

where the bits following the inserted bit    are all shifted one bit position to the right 

toward the end of the channel and the last bit      is lost. Now all bits following      

could again be in error. In a BPMR channel it is also possible for insertions or 

deletions to occur multiple times within the same sector and in various 

combinations. For example, it is possible for a deletion to occur somewhere in the 

channel sector and then later, before reaching the end of the channel, an insertion 

occurs. This means that a subset of the bits comprising the codeword will likely be in 

error as they have effectively been shifted one bit position to the left in the 

codeword. The opposite situation can also take place where an insertion occurs 

before a subsequent deletion. With a sector size equivalent to 32Kbits, loss of write 

synchronization can easily cause more bit errors than conventional HDD error-

correction codes can handle. As it turns out the write process for BPMR can be 

modeled as an interaction between three consecutive islands where the center 

island is the intended target to be written. When the write head possesses a write 

clock phase jitter, it can be modeled as a continuously accumulating variable from a 

Gaussian distribution with a given standard deviation based on the magnitude of the 

expected write clock phase error. During the course of writing to the islands in a 
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sector, the write head can address only a single island at a time. If the write head is 

in a situation where it is accumulating a drift that places it further than half of a bit 

period away from the target island, then an insertion or deletion can occur and one 

of the neighboring islands may be written to instead. As the write head accumulates 

phase drift, it can also start to cause substitution errors because it is closer to the 

center of a trench than to the center of an island. The position jitter of the islands 

will then increase the probability of substitution errors occurring. Five simulations of 

write clock phase jitter accumulation are shown in Figure 2.29. 

 

Figure 2.29 – Accumulated write clock phase error for a BPMR channel of 
length 32 Kbits for a total of five different simulations. The standard 
deviation of the write clock jitter is equal to 0.10%. 
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The tendency of the write clock to both accumulate and self-correct is as it passes 

through the channel is evident. The corresponding written-in errors for these five 

simulations are shown in Figure 2.30. 

 

Figure 2.30 – Accumulated written-in error types for the five simulations 
shown in Figure 2.29. Error type 3 is an insertion and error type 6 is a 
deletion.   

The insertions and deletions tend to occur in pairs and average more than four per 

sector run. Other combinations of written-in errors are possible and they do tend to 

occur multiple times within long sectors. The corresponding run lengths of these 

written-in errors will determine if the data can be recovered by the ECC [74].  

2.5 Parameter Sensitivity and Selection 

In developing an adequate model for BPMR a large number of parameters is 

required. These parameters actually help to define and support the design space 

utilized by engineers working on a specific media and recording head pairs. 

Unfortunately this also limits the scope of any modeling or simulations so that one 
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must be careful when examining any given results as they will be sensitive to the 

many parameter values specific to an areal density goal. To avoid any 

misinterpretations, the parameters used in subsequent sections will be limited to 

those specified in Table 2.1. The parameter values at 2 Tb/in2 are from [59] and 

represent a more generic treatment of the BPMR readback response. The values 

have not been optimized to match any derived numerical pulse response. Despite 

this, the parameters are still widely applicable in defining a pulse response that will 

be heavily influenced by ISI, ITI and media noise. Thus the major degradations of the 

channel are adequately represented. At an area density of 4 Tb/in2, the parameters 

have been optimized in some sense to a numerical model [75]. Hence the resulting 

pulse response and corresponding channel behavior are expected to be heavily 

indicative of the true channel. Regretfully, there is no way of assessing the model’s 

accuracy since no BPMR drives exist for this density. But given these particular 

parameters are known, it makes sense to use them. 
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Chapter 3 - Detection Strategies for BPMR 

Now that the write and read specifics of BPMR have been examined, it is time to 

introduce the signal processing responsible for processing the signal coming out of 

the channel. At this point the channel output is a continuous-time signal 

contaminated with ISI, ITI, media noise in two dimensions, electronics noise and 

possibly a number of written-in errors. Obviously this is far from desirable, but a 

number of standard detection techniques can be employed to help reshape the 

channel output into something more workable. At this point though, little can be 

done about the written-in errors as they occur outside of the scope of the detection. 

As shown previously in Figure 2.1, the continuous-time channel output must first be 

filtered and then sampled at time interval    to provide a digital output with signal 

values at the specified interval. For the initial filtering a low-pass filter matched to 

the channel response       on the targeted track will always be used. Since the 

channel contains ITI, jitter noise and AWGN, these degradations are included in the 

signal fed to the matched filter (see Figure 3.1) where all components of the media 

noise are combined into a single jitter term      to help simplify the model. At this 

point the signal is ready for equalization and subsequent detection. The easiest 

method with which to begin involves equalizing a single track of data and then 

feeding it to a detection algorithm. In the context of TDMR techniques used with 

BPMR, this process is labeled single-track equalization and it forms the basis for 

extending conventional 1D detection into two dimensions.  
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Figure 3.1 – Block diagram of a magnetic recording channel model with 
AWGN, first-order jitter noise, ISI, and ITI from two adjacent tracks that are 
input to a matched filter and then sampled at bit rate   . 

3.1 Single-Track Equalization 

Once the sampled output of the channel is available, the ISI can be dealt with by 

altering the signal’s spectrum. In magnetic channels this is managed by using an 

equalizer that “equalizes” the frequency content of the sampled channel output. 

This is best accomplished by using a filter that maps the frequency content to a 

generalized-partial-response (GPR) target with non-integer coefficients [76]. The 

equalization process allows for some mitigation of the effects of the ISI imposed by 

the channel before the signal is passed off to a detector that attempts to determine 

which bits make up the original signal. Based on work in [77] the design of an 

effective equalizer begins by assuming the equalizer will be an FIR filter with      

coefficients (or taps) which is typically designated                  . The size of 

the filter is often taken to be      which results in 21 equalizer taps, and this 

convention is also followed here. The goal of the equalizer is to alter the output 



83 
 

signal frequency to match as nearly as possible the spectrum of the desired causal 

target, typically designated                  which has length  . The 

combination of equalizer and target with the BPMR channel is shown in Figure 3.2, 

where the equalizer’s output is designated as    and the target’s output is denoted 

as     with   the time index.  

 

Figure 3.2 – Block diagram of BPMR under single-track equalization with 
AWGN, first-order jitter noise, ISI, and ITI from two adjacent tracks. The 
equalizer is represented by   and the GPR target is shown as  . The equalizer 
error is designated    and the APP detector output is shown as an estimation 
of the channel input.  

The difference between the equalizer output and the target response represents the 

equalizer error,          . If the equalizer were perfect, it could reproduce the 

target response exactly and the error would always be zero. Unfortunately this is 

hardly the case so the equalization must seek to minimize the error,   , under some 

constraint. As it turns out there are many ways to accomplish the minimization. Here 

the error will be minimized in the mean-squared-error sense and follows [4]. To 

begin, the equalizer mean-squared-error can be written as  
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(3.1)  

Given that the input bits are independent, the last term can be simplified as 

 

     
                   

 

   

 

   

  

                   

 

   

 

   

 

          

 

   

 

   

 

    
 

 

   

      

(3.2)  

where the   of    denotes the usual matrix transpose and     is the Kronecker delta,  

equal to one with     and zero otherwise. Now considering the middle term of the 

expansion of     , 
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The expectation between the two signals   and   can be represented as a 

covariance matrix   defined as 

 
                                             

(3.4)  

Thus the middle term of      can be expressed compactly as 

 
              , 

(3.5)  

and the first term of      follows along the same lines as the last term of (3.1), 

 

    
                   

 

    

 

    

  

       

 

    

            

 

    

  

(3.6)  

where similar to before, the expectation between the two different signals   can be 

represented as a covariance matrix   defined as 

 
                                  

(3.7)  

Now the first term of (3.1) can be expressed as 

 
    

         
(3.8)  

This leaves the full but compact expression for the mean-squared-error as 

 
                    . (3.9)  
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To minimize the above expression a Lagrange multiplier,  , will be used with a monic 

constraint on   to avoid the all-zero solution and enforce minimization on 

 
                               

(3.10)  

where the last term uses             to enforce     , and the factor of 2 acts 

only to rescale lambda. Now it is only necessary to take the derivative with respect 

to   ,    and   separately and then solve each expression at zero in order to 

complete the minimization. 

 
     

   
        

 

        

 

     (3.11)  

In matrix form this can be expressed as 
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(3.12)  

The process continues by minimizing with respect to    

 
     

   
             

 

         (3.13)  

where again in matrix form and with substitution for   from before, 

 
                

(3.14)  
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where   is just an identity matrix. Finally the last term is computed for the Lagrange 

multiplier with   substituted from the previous result, 

 
     

  
            

     

                   

  
 

               
  

(3.15)  

Thus the expressions for  ,   and   provide the MMSE solution for the equalizer and 

target under the monic constraint based on the inputs   and  . 

3.2 The BCJR Algorithm 

The BCJR algorithm originally proposed in [50] is a maximum a posteriori (MAP) 

probability detection scheme. It operates on a trellis that represents the possible 

state transitions for the symbols input to the channel. For binary transmission 

individual symbols and bits are one and the same. So for a given binary input    at 

time  , the BCJR algorithm calculates the a posteriori probability (APP) that bit    is 



88 
 

either    or    based on knowledge of the trellis, the received signal at the output 

of the equalizer, and any a priori probability information made available on the bits 

in the codeword. It accomplishes this by computing a log likelihood ratio (LLR) for 

every bit within the received codeword. The LLR can be defined as 

 

         
          

          
   

(3.16)  

Based on knowledge of the trellis, the LLR can be restated in more applicable terms, 

 

         
                        

                        
   

(3.17)  

Here    is the trellis state at time  ,      is the previous state at time  ,   is the 

received codeword,    is the set containing all pairs        that coincide with all 

possible state transitions in the trellis of                  under the 

assumption that      , and    is the equivalent set based on the assumption 

that      . The common term      in the summations can be cancelled leaving 

the shorthand pdf expression           in the numerator and denominator. Through 

more applications of Bayes’ rule, this joint probability can be further factored into 

the product of three terms, 

 
                

                 
(3.18)  

The term       
   represents a forward recursion over the previous states prior to 

the current state and can be computed as 
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  (3.19)  

The term       represents a backward recursion over the future states ahead of the 

current state and can be calculated as 

 

      
                 

 

  (3.20)  

The term          represents the branch transition probability that must be 

computed for every branch connecting consecutive states within the trellis. It can be 

written as 

 

         
       

     
 
          

       
 

                    

(3.21)  

where         is the a priori probability that bit    was the input that resulted in a 

transition from state      to state   . Figure 3.3 illustrates an example section for a 

trellis with four states showing the relationship between the forward and backward 

metrics and the branch transition. In the presence of AWGN with variance    
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(3.22)  

where       represents the expected output from the transition connecting branch 

        to      in the absence of noise assuming    was the corresponding 
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input of the channel. Thus the LLRs can be computed by first initializing the  ’s and 

the  ’s, calculating all branch metrics, computing the forward and backward metrics, 

and then calculating LLRs for each bit in the codeword.  

 

Figure 3.3 – Example of forward and backward recursions shown on a 
reduced 4-state trellis for binary inputs with discrete time unit  . Not all 
possible branches and corresponding branch transitions are shown. 

Typically the BCJR algorithm is performed in the logarithm domain to avoid 

numerical instability while also simplifying implementation. This slightly modifies the 

earlier expressions for calculating the LLRs: 
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(3.25)  

where    ,     and     designate the log-domain versions of   ,    and   . During 

implementation the algorithm is usually constrained to start and stop at the zero 

state of the trellis and the forward and backward metrics are initialized by, 

 

        
            
         

  
(3.26)  

 

        
            
         

   
(3.27)  

where the subscript   on    denotes the length of the expanded trellis terminating at 

the zero state and the      value is substituted with some suitably large negative 

value. Substituting with the log domain versions    ,     and     in conjunction with 

the appropriate initializations, the LLRs are calculated as 

 

         
       

                 

                        
  

                  
                    

  

 

                 
                    

  

   

(3.28)  

As a decoder the BCJR algorithm can return the LLRs as the soft information on the 

bits based on the channel output or it can make a hard decision based on the LLRs. 

For hard decisions on the bits, the BCJR algorithm’s outputs are made by 
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(3.29)  

where        when                           and        otherwise. 

While the full implementation of the BCJR algorithm is preferred, there have been 

several attempts to reduce its overall complexity without significantly sacrificing 

decoder performance [78], [79]. In this work the log-domain version is the preferred 

implementation. 

3.3 TDMR with Multi-Track Detection Techniques 

In a high ITI environment like BPMR, the interference of the surrounding tracks in 

combination with ISI can substantially degrade the detection ability of a one-

dimensional approach. Thus it only makes sense to explore extending 1D detection 

strategies into 2D equivalent methods. As it turns out, this is precisely one of the 

strategies behind TDMR which was introduced in Chapter 1. One obvious way to 

proceed is to expand the 1D equalization and detection for a single track to cover 

multiple tracks. There are also a number of different ways in which this can be done. 

The development here will follow the methods outlined in [46] and [66] as these 

sources outline the most natural progression from the 1D single-track equalization 

previously discussed. As noted in [46] the expansion from 1D into 2D detection is 

best done by utilizing multi-track detection (MTD) techniques where information 

from the adjacent side tracks must be acquired prior to processing the readback 

signal from the target track. This dictates a redesign of the physical read head so 

that multiple-track sensing is possible. While this seems like a difficult requirement, 
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TDMR may likely be required to expand with this functionality anyway [80] and 

multiple-head designs for HDDs have been considered as a future technology option 

for some time now [81]. In terms of detection performance, it was shown in [46] 

that using TDMR techniques on data acquired from only a single track produces 

substantially less performance gain when compared to MTD. Thus, MTD will be used 

here where the goal is only to recover the bits on a single targeted track and not to 

attempt readings with data recovery on multiple tracks simultaneously. Multiple-

track data recovery is beyond the scope of the current discussion. 

3.3.1 MTD with 2D Equalization 

To perform 2D equalization with information from multiple tracks, a substantial 

expansion from the 1D equalization depicted in Figure 3.2 will be required. Given 

that previous modeling of the ITI showed that its influence spreads across two rows 

of adjacent tracks, it is only necessary to sense five adjacent tracks (the target track 

plus two sets of side tracks) in order to adequately capture the extent of the ITI 

influence on the center track. Thus an expansion to 2D equalization would appear as 

shown in Figure 3.4. With the help of this diagram, a derivation of the optimum 

equalizers and targets in the mean-square-error sense can be formulated as an 

extension of the single-track equalization case. Here the 2D equalizer error can be 

expressed as  

 
             

(3.30)  
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where the notation follows from before and  ,  ,   and   are all vectors in matrix 

form.  

 

Figure 3.4 – Block diagram of BPMR under multi-track detection of five 
adjacent tracks with 2D equalization, AWGN, first-order jitter noise, ISI, and 
ITI from two adjacent tracks. The equalizers are represented by   and the 
GPR targets are shown as  . The equalizer error is designated    and the APP 
detector output is shown as an estimation of the channel input. 

By concatenating the various 1D equalizer and target coefficients describing their 

respective FIR filters, the representative vectors in 2D become  

 
                             

(3.31)  

 
                         

(3.32)  

 
                             

(3.33)  



95 
 

 
                   

(3.34)  

for the equalizers where their corresponding lengths are taken to be      taps as 

usual. Then for the targets 

 
                       

(3.35)  

 
                    

(3.36)  

 
                        

(3.37)  

 
                     

(3.38)  

where the lengths of the side-track targets are designated    and the length of the 

center-track target is designated   . Note that    does not have to equal   . The 

respective channel inputs passed to each target are also arranged in a corresponding 

format 

 
                         

(3.39)  

 
                      

(3.40)  

 
                         

(3.41)  

 
                     

(3.42)  

where   is the time index. The outputs of the channel that are passed to the 

equalizers follow 
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(3.43)  

 
                            

(3.44)  

 
                                

(3.45)  

 
                     

(3.46)  

where   is the same time index as for the GPR target inputs. With the given model 

the 2D equalizer error,            , needs to be minimized in the same way as 

for the 1D case in single-track detection. Thus the minimization of the mean-

squared-error takes the form 

 
         

                     
(3.47)  

where          and         . A monic constraint is again enforced with 

       such that  

 
               

(3.48)  

with length equal to        so as to match the size of  . The use of a Lagrange 

multiplier   to enforce minimization results in 

 

  
 

               
 

                  

          

(3.49)  
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which is also consistent with the work of [82]. This development allows for different 

length GPR targets between the center and side tracks. Before passing the 3-track 

equalized channel output,                    to the BCJR detector, the symmetry of 

the channel outputs imposed by the equalizers can be used to reduce the expansion 

of the states needed by the BCJR algorithm. 

3.3.2  Expanded-State BCJR for TDMR 

When the equalization makes use of 2D equalizers, 2D targets or both, the standard 

1D BCJR algorithm must be modified to accommodate the added dimensionality. 

Since the BCJR operates on a trellis which models the possible state transitions for 

the polar binary inputs        , the trellis must be expanded for the additional 

inputs from tracks     and    . The symmetry of the channel model results in 

identical equalizers and targets for both adjacent tracks     and    , meaning that 

        and        . This implies that their respective contributions to the 

detection can be combined as                     which is now a single 

ternary input as opposed to two separate binary inputs [46]. Thus, instead of 

expanding the number of states in the trellis to a total of                   

states for inputs   ,     and    , the trellis needs to only be expanded to a total of 

            states for inputs    and   . The number of required branches 

connecting consecutive states will also be reduced from eight         per state 

to only six       per state. Given the BCJR algorithm is fairly complex when only 

one input is expected, the opportunity to reduce states is well advised for the 2D 

trellis. 
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 This still leaves the 1D BCJR algorithm to be modified to correctly implement 

the expanded trellis. Modifications to the standard BCJR algorithm based on an 

expanded trellis for 2D equalization targets where explored in [83] and the same 

methodology is used here. For a trellis with the two inputs    and    only the 

branch metric calculation within the BCJR needs to be modified, which is typical of 

other trellis state expansions such as those used in noise-predictive techniques [84]. 

The modified branch transition probability takes the form 

 
                                                 

(3.50)  

where           indicates the previous and next state of a specific trellis branch and 

             is the a priori probability with                            . For the 

ternary input the following holds by definition 

 
                  

                        

(3.51)  

 
                  

                        

(3.52)  

 
                

                       

                         

(3.53)  
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The a posteriori probability for the two inputs is then given by 

 

               
 

    
                      

    

        

(3.54)  

with   being the corresponding block of the equalizer output. The APP is then 

marginalized over the ternary input to compute the desired APP for      as 

 

                                   

    

   (3.55)  

This completes the detector design and implementation from the 2D equalizer and 

target through to the output of the detector’s modified BCJR algorithm where one 

would expect improved performance. In [46] a substantial detector performance 

gain was obtained using 2D equalization where it was also noted that full 2D 

equalization only performs slightly better than a less complex version known as 

joint-track equalization. 

3.3.3 Joint-Track Equalization with MTD 

In joint-track equalization the equalizer is one-dimensional while the targets are 

two-dimensional. Thus the 1D equalizer is forced to mimic the frequency content of 

a desired 2D target response [85]. This simplifies the overall detector design as the 

equalizers for the side-track data labeled as     and     in Figure 3.4 for 2D 

equalization are zeroed out. Thus, equations (3.47) – (3.49) still hold for the design 
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of the equalizer. In joint-track equalization the target response can be viewed as an 

equivalent     matrix G 

 

   

   

  

   

   

                 

              

                 

 , (3.56)  

used in conjunction with a corresponding representation for the equalizer F in the 

MMSE process, 

 

   

   

  

   

   
   

              

   

   
(3.57)  

where the equalizer’s 1D constraint is apparent. Care must be taken when using 

joint-track equalization because it does not result in better detection performance 

than single-track equalization when a priori information from the side tracks is not 

provided. Thus it must be used with some form of MTD so as to provide prior 

knowledge on the adjacent tracks before initiating detection on the target track [46], 

[86]. When MTD is paired with joint-track equalization, the technique provides near 

2D equalization detection performance even when an ML detector is used [87].  

3.4 Noise Prediction 

While TDMR techniques have shown considerable promise for BPMR, they require 

much greater complexity and in the case of multi-track detection can dictate difficult 

redesigns of the read head. They also concentrate on managing the high levels of ITI 

and ISI in the channel while mostly ignoring negative contributions of the media 
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noise and AWGN. A better strategy would be to also incorporate some sort of 

correction for the media noise and AWGN. As it turns out, a very powerful technique 

known as noise prediction emphasizes signal correction based on the characteristics 

of the noise after equalization. Noise prediction was originally employed as a 

maximum likelihood improvement to the computation of the branch metric in the 

Viterbi detector as a means of correcting the coloration of the noise by the equalizer 

[88], [89]. For a zero-mean Gaussian-Markov signal-dependent noise process, [90], 

[91] derived the optimum maximum-likelihood sequence detection (MLSD) solution 

for the VA branch metric. In [92] this method was thoroughly expounded in light of 

pattern-dependent noise prediction (PDNP) where it was paired with soft-output 

detectors, most notably the BCJR algorithm. Since a BCJR detector is used here, the 

work of [92] is closely followed to apply PDNP to the case of single-track equalization 

for BPMR. 

 To begin, the output of the equalizer is assumed to be                    

where      is the signal output of the equalizer and      is the corresponding noise. 

Both signal and noise are considered to be dependent on the input bit pattern  . For 

MLSD an input bit sequence is found that maximizes the conditional probability of 

receiving      given   where     ,       and      all have length  , 

 
                      

(3.58)  

If the noise is assumed Gaussian-Markov then the mean of      can be substituted 

by the conditional probability mean which in turn can be determined by the optimal 
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linear prediction of the noise     . The variance follows the same argument and this 

allows for  

 

       
 

     
    

     
 

 

          
 

  
    

   
(3.59)  

where       is the optimal linear prediction of    for time index   and   
     is the 

error variance of the predictor. Thus the linear prediction and error variance must 

be determined. For Markov noise of order   they are given as follows, 

 
                           (3.60)  

with      the row vector of   predictor coefficients and                 
 

. To 

solve for the predictor coefficients one must apply the Yule-Walker equation to each 

specified bit pattern   such that 

 
                   

(3.61)  

where             and            . The corresponding predictor error 

variance can be found from  

 
  

                             
(3.62)  

with           
  . This development, while for MSLD, easily extends into soft-

output detectors where the APP on each bit is the desired metric [93]. This is 

accomplished quite easily by modifying the branch metric from the BCJR algorithm 

where, as before, the derivation of [92] is preferred. This is very similar to the 
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expansion of the trellis within MTD for BPMR where two-dimensional information 

was passed to a trellis with expanded states. When the trellis was previously 

expanded for MTD, the forward and backward recursions of the BCJR algorithm did 

not require modification and only the branch metric necessitated changes. The same 

situation applies here where the BCJR branch metric can be computed as 

 
           

 
 

     
          

     
 

 

                     

  
          

 

         

(3.63)  

where           indicates the previous and next state of a specific trellis branch, 

             and   
           represent the noise prediction and its error variance 

for branch             and bit pattern   . As before, a substitution is made for 

            , 

 

                

 

   

                        
(3.64)  

so that the noise predictors and corresponding error variances can be obtained from 

(3.20) and (3.21) for each branch transition of the trellis. To use noise prediction in 

practice, the length of the Markov noise process  , and an effective spread of past 

and future bits, denoted by   and  , must be determined to make the method 

effective. This means that parameters for each must be established and these 
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parameters will determine the expansion of the trellis used in the BCJR algorithm. 

Normally the standard 1D BCJR algorithm requires a trellis with    states where   is 

one less than the memory of the GPR target paired with the equalizer. With noise 

prediction this expands to               states as determined by the length of the 

corresponding bit pattern. When the underlying noise processes are not Gaussian-

Markov of order  , the noise prediction is suboptimal but it can still produce 

considerable gains in detector performance [94], [95] depending on the true nature 

of the noise in the channel. Even in the situation where the noise from the channel 

possesses a strong characteristic such as a mean value, PDNP can be modified to 

capture this characteristic of the channel and still provide substantial detection 

improvement [96]. The overall complexity of the noise-predictive method depends 

on the number of predictor taps, the number of predictors selected and the number 

of trellis branches. Since each of these choices plays a part in the expansion of the 

overall trellis, sub-optimal selections are often made to reduce the complexity 

added to the detection design at the cost of detector performance. When noise 

prediction is extended to two-dimensions, the problem of additional complexity 

becomes even more significant as the detector’s 2D equalization and APP scheme 

are already sub-optimized to make them tractable for implementation [97], [98]. 

Thus, productive implementation of noise-predictive techniques in multiple 

dimensions remains an open problem.  
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3.5 Simulations with MTD 

In order to assess the various detection techniques previously discussed on the 

BPMR channel, a set of simulations were designed to compare different strategies. 

Initially the areal density is held at 1.61 Tb/in2 and coincides to square islands with 

11 nm side lengths and bit period and track pitch equal to 22 nm. The remaining 

parameters affecting the read head and readback pulse response coincide with the 

first column of Table 2.1. A fair comparison between single-track equalization, MTD 

and a bound are used in the various simulations. In single-track equalization the 1D 

target has length three and is denoted SE-3. For MTD the span of the ITI coverage 

consists of five adjacent tracks with target track    and two virtual side tracks     

and    . The GPR target has length three on the center track, length two on the first 

virtual track and length one on the second virtual track, which is denoted MTD-321. 

For MTD the center track is always equalized using joint-track equalization while the 

side tracks use single-track equalization. To establish a basis with which to compare 

the performance of MTD on the BPMR channel, a bound is estimated by using MTD 

with equivalent target lengths assuming all side-track information is error free. 

Initially only ITI, ISI and AWGN are present. Then media noise is imposed on the 

channel. First, a determination on the difference between the hexagonal and 

rectangular patterns is attempted to see if one performs better than the other under 

the various detection schemes. This is managed by starting with the initial areal 

density and then reducing     and    while maintaining a BAR = 1, which effectively 

scales the density at the cost of increasing the ISI and ITI present in the channel. In 
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Figure 3.5 it is worth noting that the rectangular and hexagonal patterns both 

perform similarly under single-track equalization, but as the ITI and ISI become 

increasingly problematic, single-track equalization does not work well for staggered 

islands (see Figures 3.6 – 3.8). 

 

Figure 3.5 – BPMR channel detection with single-track equalization at an 

areal density of 1.61 Tb/in2              in the presence of ISI, ITI and 

AWGN. “Rec” refers to a rectangular array of islands while “Hex” refers to a 
hexagonal array.  

In Figures 3.6 – 3.8 some interesting patterns emerge. Despite the poor performance 

under single-track equalization for high interference environments, the hexagonal 

island pattern always outperforms the rectangular arrangement under MTD 

although this gap does not increase substantially as the channel interference 

increases. Also the bounds between the two patterns are nearly the same with the 

rectangular pattern only just slightly better than the hexagonal pattern. 
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Figure 3.6 – BPMR channel detection with single-track equalization, MTD and 

a bound at an areal density of 2 Tb/in2              in the presence of 

ISI, ITI and AWGN for both rectangular and hexagonal island geographies. 

 

Figure 3.7 – BPMR channel detection with single-track equalization, MTD and 

a bound at an areal density of 2.52 Tb/in2              in the presence 

of ISI, ITI and AWGN for both rectangular and hexagonal island geographies. 
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Figure 3.8 – BPMR channel detection with single-track equalization, MTD and 

a bound at an areal density of 3.29 Tb/in2              in the presence 

of ISI, ITI and AWGN for both rectangular and hexagonal island geographies. 

 

Figure 3.9 – BPMR channel detection with single-track equalization, MTD and 
a bound at areal densities from 2 Tb/in2 to 3.29 Tb/in2 in the presence of ISI, 
ITI and AWGN for a rectangular island geography. 
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As the areal density increases so does the dispersion between the curves for a given 

island configuration which is shown explicitly in Figure 3.9 for islands in the 

rectangular pattern. With MTD the bound is nearly achieved as long as the island 

size is kept at half the bit length. Beyond that the increased ITI and ISI tend to 

deteriorate the technique’s performance gains. Since the hexagonal pattern under 

MTD performs better than a rectangular pattern in the presence of high interference 

conditions and it displays a nice bound, it makes sense to proceed assuming this 

configuration. When the areal density is scaled to reach the desired 4 Tb/in2 level 

with the parameters in Table 2.1, MTD performs exceptionally well on the uncoded 

channel while single-track equalization still lags by almost 9 dB (see Figure 3.10). The 

performances shown in the previous graphs would increase slightly if longer targets 

were used, so the target for MTD and the bound on the first virtual track was 

increased to length three. This should only result in marginal increases to the overall 

complexity. In Figure 3.11 the performance of the channel is degraded by the 

addition of 10% media noise. With an island position jitter in conjunction with island 

size variation of 10%, the detection suffers considerable performance loss. For MTD 

on the staggered islands the loss is more than 4 dB at around a BER of 10-4. The 

bound is not greatly affected as the media noise on the side tracks does not impact 

the detection. The single-track equalization is also heavily penalized by the presence 

of the media noise. But this can be somewhat accounted for by incorporating noise-

prediction into the detection (see Figure 3.12). 
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Figure 3.10 – Uncoded BPMR channel with areal density 4 Tb/in2 with ITI, ISI 
and AWGN. 

 

Figure 3.11 – Uncoded BPMR channel with areal density 4 Tb/in2 with ITI, ISI, 
10% media noise and AWGN. 
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Figure 3.12 – Uncoded BPMR channel with areal density 4 Tb/in2 with ITI, ISI, 
10% media noise and AWGN. 

While noise prediction results in an impressive performance improvement in single-

track equalization, it cannot compete with MTD. Its contribution might improve 

further if it is later determined that the true BPMR media noises possess some form 

of a pattern. 
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Chapter 4 - Possible Coding Enhancements for BPMR 

While MTD techniques have shown promise in dealing with the ITI, ISI, media noise 

and AWGN present in the BPMR channel, detection alone cannot ensure that error-

free recovery of the stored bits will be reliable at the bit error rates necessary for 

high-density HDDs. In addition to these problems, BPMR suffers from the inclusion 

of written-in errors which occur outside of the scope of the detection. Such errors 

are the result of island position jitter, variations in the switching field of an individual 

island, the disturbing fields of neighboring islands, and variations in the write clock 

phase. Most often written-in errors occur only as single-bit errors mixed with an 

occasional double-bit error where both types are only substitution errors. But when 

the write clock phase is allowed to drift without timing recovery, insertion and 

deletion errors can occur that result in a shift of all subsequent bits within the 

sector. Given that such error events can occur multiple times within a long sector of 

length 32 Kbits before resynchronization of the write clock takes place, large 

portions of the recovered sector may be in error. Thus a powerful ECC is needed to 

assist in recovering data from a high-density BPMR channel. 

 There has been some recent work dealing with written-in errors for BPMR, 

but none have managed a workable solution that takes into account all of the 

inherent problems. In [99] a very powerful non-binary LDPC code was used to 

successfully recover bits in the presence of single-bit written-in errors, but such a 

code is not yet practical for hardware implementation and it is not clear how such a 

non-binary code would handle insertions and deletions. In [68] Reed-Solomon (RS) 
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codes were employed within a picket-shift code design specifically targeted to 

recover data subject to multiple insertions and deletions with good results if the 

code rate and write clock phase drift were both decreased to low levels. The 

resulting tradeoff on the code rate was unfortunately lower than what is normally 

required for a HDD. The Levenshtein code has been shown to be effective at 

correcting single insertion or deletion events within a simplified channel [100], [101] 

and this work has been extended by others to include both double and multiple 

error events in the same channel block [102], [103]. Unfortunately, these 

developments did not include the full list of impairments specific to BPMR. Also as 

the number of multiple insertions and deletions grows, the constraints imposed by 

the Levenshtein-based codes necessitate further drops in the code rate which is 

already too low for HDDs. This makes them operationally impractical for BPMR. 

Marker codes have also been explored for insertion and deletion environments, 

where markers within the code allow for the correction of errors caused by a loss of 

synchronization, but again the code rate penalty is high [104], [105]. Thus the search 

for a solution to the written-in errors continues. Here, an attempt is made to apply 

practical ECCs and decoding techniques to the adversities of BPMR to help gain 

insight into possible solutions. In terms of practical implementation and 

performance, cyclic LDPC codes based on finite geometries are known to perform 

well on a variety of channels. So it makes sense to start with these codes to 

determine if they can provide enough error-correction capability to mitigate the 

multiple degradations of the BPMR storage channel. 
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4.1 Low-Density Parity-Check Codes 

In the past several years interest in low-density parity-check (LDPC) codes has 

become more prevalent due to their ability to perform close to capacity on various 

channels when iteratively decoded [72]. As a set of error-correction codes, they 

possess many rich properties that enable them to be practically implemented across 

a variety of communication channels. Since LDPC codes are linear block codes, they 

can be represented by either a generating matrix,  , or a corresponding parity-check 

matrix,  . Either representation is sufficient and basically equivalent. To 

differentiate LDPC codes from codes with denser parity-check matrices, the null 

space of an       parity check matrix,  , designates an LDPC code of length   if   

is sparse having    ones per column and    ones per row where both    and    are 

small compared to the size of the code n. This definition is somewhat ambiguous, 

but understandably so, as there is no true density that separates a low versus a 

medium density code. An LDPC code is regular if all rows have equivalent weight   

and all columns have equivalent weight  . Otherwise the LDPC code is considered 

irregular. Decoding of LDPC codes typically makes use of an iterative algorithm that 

accepts soft information from the channel in the form of LLRs on each bit. It then 

performs a number of operations with the LLRs to estimate the symbol for each bit. 

The algorithm chosen is normally a form of belief propagation (BP) known as the 

sum-product algorithm (SPA). This algorithm was originally proposed by Gallager as 

the soft-decoding method for his LDPC codes [106]. The algorithm is fairly robust 

and possesses many variations, most of which trade off performance for a less 
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complex process. BP algorithms typically perform on a parity-check matrix’s bipartite 

Tanner graph representation [107] (see Figure 4.1). When the Tanner graph contains 

few short cycles, a BP algorithm can usually achieve near optimum performance. 

The smallest possible size for a cycle has length 4 (also shown in Figure 4.1) and 

these cycles can substantially degrade the decoding performance of a BP algorithm 

[108].  

 

Figure 4.1 – Illustration of a parity-check matrix and its corresponding Tanner 
graph representation in (A) where no cycles exist and (B) where one cycle of 
length 4 is shown with both bold entries in the parity-check matrix and bold 
lines in the Tanner graph. 

Thus when choosing a BP decoder, it is best to pair it with a version of the parity-

check matrix which contains few if any short cycles. When the decoder succeeds at 

converging to a valid codeword,              of length  , then 

 
       

(4.1)  
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Since BP algorithms perform iterative decoding, the decoder will either converge to 

a valid codeword or reach a preset number of maximum iterations where it declares 

a decoding failure. In the worst case scenario, the decoder can converge to the 

wrong codeword which results in an undetectable decoding failure. 

4.2 Cyclic Linear Block Codes 

While the density of the parity check matrix offers one distinction for a code, 

another useful designation describes an automorphic characteristic. When a linear 

block code   possesses the property by which any cyclic shift, right or left, of a 

codeword in   results in a different valid codeword in  , the linear block code   is 

said to be cyclic: 

 
                                      . (4.2)  

Cyclic linear block codes can also be represented by either a generator matrix   or a 

parity-check matrix  . In the proper form each one of these matrices will display the 

cyclic property within their respective rows. For example if   is the binary cyclic 

      Hamming code with generator polynomial       , then it has the 

generator matrix, 

 

               

       
       
       
       

    
(4.3)  

where each subsequent row is simply one shift to the right of the preceding row. 

Cyclic codes are often desirable because they can be easily encoded using shift 
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registers with feedback connections. They can also be used to generate a larger class 

of quasi-cyclic codes which are themselves often desirable codes because they can 

be easily implemented in both the encoder and decoder [109]. 

4.3 Finite Geometry Codes as Cyclic LDPC Codes 

Among the many different types of LDPC codes that have been constructed or 

designed, there is yet only a single class of cyclic LDPC codes. These codes are 

constructed from finite geometries which include both Euclidean and projective 

geometries. In such geometries the presence of only a finite number of points allows 

for some interesting mathematics. When considering finite geometries it is helpful 

to recognize the following base axioms shared with typical geometry: 

1. Any two points can be connected by a line. 
2. Any two lines must either intersect at a single point or not intersect at all. 
3. Any two lines intersecting on more than one point must be the same line. 

These simple axioms form the basics of finite geometries whose representation can 

be accomplished using the algebra of finite fields, which is often used to formulate 

linear block codes. Even though finite geometry codes were formulated many years 

ago, it was not until recently that Kou, Lin, and Fossorier [110] recast them as cyclic 

LDPC codes that could be iteratively decoded using belief propagation with near 

capacity performance. The associated cyclic parity-check matrices of these finite 

geometry codes are constructed from the incidence vectors of their many lines. They 

can be subjected to iterative decoding as their corresponding Tanner graphs are free 

of cycles of length four and thus have a minimum girth of length at least six. It has 
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been shown that these codes have large minimum distance and do not possess 

trapping sets of weight smaller than their minimum distance. Because of these 

properties finite geometry codes tend to perform exceptionally well on many 

different channels. In fact they are often designated as baseline codes in terms of 

BER performance when designing comparable LDPC codes. 

4.3.1 Euclidean Geometry as a Realization of a Code 

A number of parameters and notations need to be established in order to develop 

the structures within the finite geometry. As with typical geometry, finite geometry 

can be multidimensional. For the current context, only dimensions two and higher 

are useful. If m is used to designate the dimension of the geometry, its value must 

be two or greater. Let GF(q) be the standard notation designating a finite field of q 

elements with q defined as a power of a prime. When using finite fields to design 

linear block codes it is helpful to write q as 

            (4.4)  

With this notation a finite Euclidean geometry of m dimensions over the finite field 

GF(q) can be designated EG(m, q) or as EG(m, ps). This geometry will constitute 

points, lines and flats. To establish these structures, each point will be represented 

as an m-tuple over GF(q). From q elements the vector space of all m-tuples over 

GF(q) defines the total number of points, n, of the geometry. Thus, 

        (4.5)  
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and a point can be viewed as either a subspace or a coset of a subspace of the vector 

space of m-tuples of subspace dimension zero. With a set of points defined in the 

finite geometry, lines can be constructed to connect between various points. These 

lines can be viewed as one-dimensional structures that form a subspace or a coset of 

a subspace of the vector space of m-tuples with subspace dimension 1. A finite 

geometry with qm points that does not violate the three stated axioms is 

characterized by 

 
       

          

   
 (4.6)  

unique lines with q points connected by each line. The set of all lines for EG(m, q) 

can be partitioned into groups of either parallel or intersecting lines.  

By further generalizing the definitions of points and lines, higher dimensional 

structures can be formed within the geometry which are referred to as flats. Given 

the vector space over GF(q) can be partitioned into either various dimensional 

subspaces or into cosets of various dimensional subspaces, the dimensionality m of 

the geometry limits the extent of the partitioning and thus the dimensions for flats. 

Flats are often denoted as μ-flats where for EG(m, q) μ-flats can range from 0 ≤ μ ≤ 

m. Thus the number of flats possible for EG(m, q) is 

 
            

        

        

 

   

   (4.7)  

For EG(2,q) the finite geometry is limited to points (0-flats), lines (1-flats) and 2-flats. 

In order to formulate these structures into a genuine linear block code, it is best to 
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make use of the properties of finite fields by introducing an extension field of GF(q). 

When doing so, an extension field GF(qm) of GF(q) represents a vector space of 

dimension m of all possible m-tuples over GF(q) where any given element in the 

extension field is an m-tuple over GF(q). Thus the relationships of the extension field 

and the finite geometry to GF(q) are equivalent and GF(qm) becomes a realization of 

EG(m, q). Given a primitive element   of GF(qm), its various powers can be mapped 

to the various n points of the finite geometry: 

      
 

    
 
  

         

    (4.8)  

where the point mapped to alpha at negative infinity is the origin of the geometry. It 

is helpful to also define a set of q points passing through the origin of EG(m, q) by 

               (4.9)  

This arrangement allows for the following distinction  

                       (4.10)  

Since zero is one of the values for beta, the statement above describes a set of q 

points which form a line passing through both points represented by αn. To make 

the jump from finite geometry to cyclic linear block code, it is necessary to remove 

the origin point. This effectively limits the set to (qm – 1) points and it also removes 

all lines passing through the origin point leaving 
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   (4.11)  

lines within the geometry - now more appropriately referred to as the subgeometry 

of EG(m, q). Any line in the subgeometry can be represented by q distinct powers of 

the primitive element  , 

                                  (4.12)  

as each line still passes through q points. If this line, or any given line in the 

subgeometry for that matter, is multiplied by any allowable representation of a non-

origin point, 

               (4.13)  

The result is simply a shifted version of the original line taken modulo qm – 1. For 

example, 

                                 

                 
(4.14)  

represents a different line in the finite geometry and reveals the inherent cyclic 

structure. All of the lines in the subgeometry can be partitioned into  

         

   
 (4.15)  

cyclic classes. A binary vector    of length qm – 1 can be constructed from any given 

line of the subgeometry by taking the powers of alpha as the column indices where 

ones should be located and filling the remaining vector positions with zeros,  
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(4.16)  

where the point designated    is either on line   if       or not on line   if      . 

This binary vector can then be used as the first row of a parity check matrix of a 

linear block code. Its subsequent qm – 2 right circular shifts result in the remaining 

rows of the parity check matrix. 

From the preceding development consider a finite two-dimensional 

Euclidean plane denoted as EG(2, q) with parameter q ≡ 2S with s some positive 

integer. For any choice of s the given plane will contain q2 points and q2 + q lines. 

Each point will lie on q + 1 lines and each line will contain q points. For the resulting 

code to be cyclic, the point at the origin (the zero point) is removed along with the q 

+ 1 lines passing through it. This leaves q2 – 1 points and q2 – 1 lines in the plane. The 

set of points and lines are used to construct a corresponding parity-check matrix H 

by letting the set of points coincide with the columns and the set of lines correspond 

to the rows. By appropriately ordering the lines and columns, the resulting parity-

check matrix is cyclic and a Type-1 EG(2, q) code emerges with the characteristics 

shown in Table 4.1. By taking subsequent values of s, Table 4.2 can be constructed to 

show the actual values for the parameters. The code rate for a given code is denoted 

  and is equivalent to the code dimension divided by the code length. Because these 

codes form the only class of binary cyclic LDPC codes, it is necessary to examine the 

structure behind this class. Furthermore, only binary codes corresponding to two-

dimensional geometries are considered here. 
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Table 4.1 – Various descriptive parameters for Type-1 EG(2, q) cyclic LDPC 

codes. 

Parameter  

size of H n × n 

code length n = q2 – 1 

code dimension k = n – 3s + 1 

minimum distance dmin = q + 1 

row weight of H   = q 

column weight of H   = q 

 

Table 4.2 – Examples of Type-1 EG(2, q) cyclic LDPC codes. 

s (n, k) dmin   ;     

2 (15, 7) 5 4 0.4667 

3 (63, 37) 9 8 0.5873 

4 (255, 175) 17 16 0.6863 

5 (1023, 781) 33 32 0.7634 

6 (4095, 3367) 65 64 0.8222 

7 (16383, 14197) 129 128 0.8666 

8 (65535, 58975) 257 256 0.8999 

 

Higher finite dimensional geometries       exist and can be used to generate 

non-binary and quasi-cyclic codes. In addition to Type-1 Euclidean geometry (EG) 

codes, Type-1 projective geometry (PG) codes will also be included as they share 

very similar structure and properties with the Type-1 EG codes. 

4.3.2 Projective Geometry as a Realization of a Code 

A Euclidean geometry is not the only finite geometry capable of formulating a linear 

block code. Projective geometries have also been shown to be an effective tool for 
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constructing codes. Other finite geometries exist and may yet have a useful role to 

play in the future of error control codes [111]–[113], but that particular problem is 

not covered here. Projective geometries stem from Euclidean geometries and thus 

they share a number of commonalities. A projective geometry contains points, lines 

and flats that are usually formed by projecting higher dimensional constructs from a 

Euclidean geometry onto a lower dimensional space. Thus a two-dimensional 

projective geometry can be constructed by projecting two-dimensional lines from a 

Euclidean geometry into one-dimensional points for the projective geometry. This 

also works for lines and flats in the projective geometry. Remember that a line in 

Euclidean geometry is also a 1-flat and that a 2-flat is just a construct one dimension 

greater than a 1-flat, or line. So 2-flats in a Euclidean geometry can be projected into 

1-flats for the projective geometry which effectively establishes its lines. To 

generalize, any m-flat with m > 0 in a Euclidean geometry can be projected as an (m 

– 1)-flat for a projective geometry. One interesting point worth noting, a projective 

geometry does not possess an origin simply because individual points from a 

Euclidean geometry cannot be projected as they have zero dimension. Thus, all lines 

passing through the origin of a Euclidean geometry project to non-origin points 

within a projective geometry. 

Once the points of a projective geometry are established, they can be used 

to construct lines that can then be used to construct 2-flats which can then be used 

to construct flats of higher dimension and so forth. If the projective geometry is held 

to the axioms for finite geometries, then the projective geometry behaves in many 
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respects like its Euclidean geometry counterpart. Its points can also be represented 

using an extension field covering a base finite field. Following from Euclidean finite 

geometries, for dimension m and finite field GF(q) with q elements, a projective 

geometry with m dimensions can be constructed. This geometry will be designated 

PG(m, q). Each point in PG(m, q) can be represented as an (m + 1)-tuple over the 

finite field GF(q) where any given primitive element of GF(q) along with all of its 

multiples represent the same point. Thus the GF(qm+1) extension field over GF(q) can 

be used to designate the points within PG(m, q). Based on the number of lines in a 

EG(m+1, q), which would project as points into PG(m, q), the number of points for 

PG(m, q) will be 

 
  

      

   
   (4.17)  

A primitive element of the extension field,  , represents the points in PG(m, q). With 

two distinct points from PG(m, q), designate them    and   , a line can be drawn 

connecting them and it has the form 

        
     

    (4.18)  

with Si and Sj scalars from the base field GF(q). There exist (q2 – 1) possible choices 

for the scalars and of these (q – 1) of them are simply multiples of the given points. 

For a line of this form there will be 

     

   
     (4.19)  
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points per line. The number of lines intersecting at a point in PG(m, q) can be found 

by determining the number of 2-flats intersecting at a 1-flat in EG(m + 1, q). For any 

EG(m, q) the number of intersecting 2-flats on a line can be found from  

 
             

        

   
   (4.20)  

which for lines intersecting points in PG(m, q) becomes 

 
             

        

   
                (4.21)  

 
                          

(4.22)  

 
           

          

   
 

    

   
   (4.23)  

Now that the number of points, the definition of a line, the number of points per 

line, and the number of lines intersecting at a point are known for PG(m, q), the total 

number of distinct lines can be found as follows: 

 
         

        

   
 

 

   
 

      

   

 
        

      

      

     
   

(4.24)  

Unlike its Euclidean counterpart, to develop a cyclic linear block code from PG(m, q) 

there is no need to form a subgeometry by removing the origin point because PG(m, 

q) has no origin. Any point in PG(m, q) can be represented by one of the n distinct 

powers of the primitive element   of GF(qm+1). The points incident on a given line 

can be designated by the powers of   where       . These powers then 
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constitute the column indices where ones should be placed within a vector of length 

n. This vector contains only zeros in all other positions, 

 
  

                    
(4.25)  

where the point designated    is either on line   if       or not on line   if      . 

The vector can then be used as a row of a parity check matrix. Any right or left cyclic 

shift of this vector results in another line within PG(m, q). Thus a parity check matrix 

of size (n x n) can be constructed which represents a cyclic linear block code.  

Based on the previous development, the corresponding PG codes of interest 

can be established. First consider a finite projective plane designated PG(2, q). This 

plane will contain q2 + q + 1 points and q2 + q + 1 lines. Each line will contain q + 1 

points and each point lies on q + 1 lines. A parity-check matrix H can be formulated 

by using the set of points as the columns and the set of lines as the rows. Again with 

appropriate ordering the parity-check matrix will be cyclic. This results in a Type-1 

PG(2, q) LDPC code with parameters listed in Table 4.3. 

Table 4.3 – Various descriptive parameters for Type-1 PG(2, q) cyclic LDPC 

codes. 

Parameter  

size of H n × n 

code length n = q2 + q + 1 

code dimension k = n – 3s – 1 

minimum distance dmin = q + 2 

row weight of H   = q + 1 

column weight of H   = q + 1 
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For subsequent values of s, Table 4.4 can be enumerated to show the parameters 

for Type-1 PG codes. The code rate for a given code is again denoted  . 

Table 4.4 – Examples of Type-I PG(2, q) cyclic LDPC codes. 

s (n, k) dmin   ;     

1 (7, 3) 4 3 0.4286 

2 (21, 11) 6 5 0.5238 

3 (73, 45) 10 9 0.6164 

4 (273, 191) 18 17 0.6996 

5 (1057, 813) 34 33 0.7692 

6 (4161, 3431) 66 65 0.8246 

7 (16513, 14326) 130 129 0.8676 

8 (65793, 59231) 258 257 0.9003 

 
Note that these PG codes in combination with their corresponding EG codes are the 

best iteratively decodable cyclic LDPC codes currently known. There are in fact other 

cyclic EG codes, but these codes contain a larger number of ones in their parity-

check matrices making them less supportive of iterative decoding. The cyclic parity-

check matrices for EG and PG codes are all square (n × n) and can be formulated as a 

Tanner graph with n variable nodes and n check nodes. A square H matrix is not 

typically a characteristic of LDPC codes, but it is characteristic of cyclic codes. All of 

the cyclic H matrices from these codes contain no cycles of length four. The 

following shows an example of a parity-check matrix (not in systematic form) from 

each geometry. 
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 (4.27)  

It is worth noting that the smallest PG(2,  ) code above is equivalent to the 

generating matrix of the [7, 4] Hamming code with generator polynomial        

shown in (4.3). BP handles matrices such as the ones above easily and with good 

decoding results [110]. But before using a finite geometry LDPC code on a BPMR 

channel, it is necessary to create another type of LDPC code of the same length and 

code rate to assist in establishing the performance of a finite geometry LDPC code.  

4.3.3 Progressive Edge Growth LDPC Codes 

For the finite geometry codes previously discussed, there is basically a single 

procedure for designing the code. While finite geometry codes tend to perform well, 

LDPC codes based on computer-based searches have often been associated with 

better performance on a channel [114]. Unfortunately, these types of LDPC codes do 

not possess inherent structures that allow for simple encoding, although there have 
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been some proposed methods that offer improved encoding [115]. But their use is 

still currently limited. Here an LDPC design method known as progressive edge 

growth (PEG) will be used to generate a code of the same length   and code rate   

which can be used in comparison with finite geometry codes on the BPMR channel. 

 The PEG algorithm functions by attempting to construct a Tanner graph with 

a large girth which typically provides good iterative decoding performance by 

avoiding small cycles [116]. It is initiated with a set of   variable nodes   and a set of 

  check nodes  . The sets of nodes   and   are not connected so that the graph 

starts out with no edges. Edges are then progressively added to the graph based on 

the algorithm’s edge-selection procedure. Since the procedure progresses locally, 

the PEG algorithm keeps track of a neighborhood within depth   of a given variable 

node   . This neighborhood set is denoted   
  and it has a complementary set 

defined as    
      

 . As edges are added, they are selected in such a way as to 

maximize the local girth of the connecting node. Selection of an edge to a variable 

node    is performed by constructing a path tree    with    as the root node and 

then growing the tree to a depth of   where one of two conditions occurs: 

(1) The cardinality of   
  stops increasing and is less than the number of 

check nodes,  , or 

(2)    
    but    

     . 

Under condition (1) the check node    in   
  with the smallest degree that connects 

   and    is selected as the edge. Under condition (2) an edge is added that 

connects    to the check node at the      -level that has the largest distance from 
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  . The procedure then progresses to the next variable node    until the entire 

Tanner graph is constructed with maximized local girth. 

4.3.4 Simulations on the BPMR Channel 

Following the results of the previous chapter, simulations are arranged to take 

advantage of the hexagonal island configuration. The density of interest is 4 Tb/in2 

and coincides to square islands with 6.35 nm side lengths and bit period and rack 

pitch equal to 12.7 nm. Sector size is set at 512 bytes. As before, single-track 

equalization, MTD and a bound are selected for comparison. In single-track 

equalization the 1D target has length three and is denoted SE-GPR3. For MTD the 

span of the ITI coverage consists of five adjacent tracks with target track    and two 

virtual side tracks     and    . The GPR targets have lengths of three on the center 

and first virtual track and length one on the second virtual track which is denoted 

MTD-331. For MTD the center track is always equalized using joint-track equalization 

while the side tracks use single-track equalization. The bound is estimated using 

MTD with equivalent target lengths by assuming all side-track information is error 

free. Initially only ITI, ISI and AWGN are present. Then media noise and written-in 

errors are imposed on the channel. In Figure 4.2 the uncoded channel is shown 

along with a constructed PEG code whose characteristics have been matched to 

those of the EG(4095, 3367) code displayed in Figure 4.3. Both LPDC codes have 

length 4095 and a code rate equal to 0.8222. The EG code is cyclic, has a large 

minimum distance          , and a large column weight of 64.  
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Figure 4.2 – BPMR channel with areal density 4 Tb/in2 with ITI, ISI and AWGN. 
BER curves represent both the uncoded channel and the performance of a 
PEG code of length 4095 with code rate 0.8222. 

 

Figure 4.3 – BPMR channel with areal density 4 Tb/in2 with ITI, ISI and AWGN. 
BER curves represent both the uncoded channel and the performance of a 
EG(4095, 3367) with code rate 0.8222. 
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The PEG code is not cyclic, has a much smaller column weight of four and has a less 

dense parity-check matrix than the EG code. Both codes result in large coding gains 

for both single-track equalization and MTD. The gain in performance for single-track 

equalization is so large that it can compete with the MTD. 

 

Figure 4.4 – BPMR channel with areal density 4 Tb/in2 with ITI, ISI and AWGN. 
BER curves represent the uncoded channel and the performance of both the 
PEG code and EG(4095, 3367) codes both with code rate 0.8222. 

In Figure 4.4 a close comparison between the two codes can be made. The PEG code 

outperforms the EG code by more than 0.5 dB for MTD. The PEG code’s MTD and 

single-track equalization curves are also slightly closer to their bound than the 

corresponding curves for the EG code. While the PEG code’s performance is worth 

noting, it is only a measure of comparison for the EG code whose cyclic structure 

coupled with its impressive performance makes it attractive. Since it can handle the 
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ITI, ISI and AWGN in the channel for both single-track equalization and MTD, it is left 

to determine whether or not it can also handle the more problematic case caused by 

the presence of both media noise and written-in errors. 

 

Figure 4.5 – BPMR channel with areal density 4 Tb/in2 with ITI, ISI, 10% media 
noise, AWGN and written-in errors. Written-in errors are substitution type 
errors only. BER curves represent both the uncoded channel and the 
performance of a EG(4095, 3367) with code rate 0.8222. 

Based on the results in Figure 4.5, it is apparent that a finite geometry code is 

capable of effectively recovering data from the BPMR channel even when many of 

the degradations of the channel are introduced. The coding loss is substantial for 

MTD and amounts to almost 5 dB at a BER of 10-5, but this is somewhat expected 

given the presence of 10% media noise and substitution error rate of         . 

Unfortunately, the EG(4095, 3367) code is not capable of solving the problems 

caused by insertions and deletions. On a long sector of length 32 Kbits, whenever an 

insertion or deletion is inserted anywhere except near the end of the sector, the 

6 8 10 12 14 16 18 20 22 24 26
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

User SNR (dB)

B
E

R

 

 

SE-GPR3(uncoded)

MTD-331(uncoded)

Bound-331 (uncoded)

SE-GPR3 (EG)

MTD-331(EG)

Bound-331 (EG)

MTD-331 (EG) WR



135 
 

decoder fails to converge to a codeword. Thus it is necessary to look for another 

option of dealing with the insertions and deletions. One option would be to utilize 

the finite geometry code in a more judicious way that offers significant decoding 

gains. Since finite geometry codes are cyclic, there may be a way to utilize some of 

their automorphic properties to augment their decoding performance. 

 4.4 Permutation Decoding 

 The ability to morph from one codeword to another within a code C can be utilized 

in a decoding environment. One of the first such applications was proposed by F.J. 

MacWilliams in a 1964 paper that initiated a method called permutation decoding 

[117]. While MacWilliams mainly made use of the two known automorphisms of 

cyclic codes, her methods were easily extendable to include any known 

automorphisms. One of the best descriptions of the permutation algorithm is 

provided by Huffman and Pless [118] in which they prove a couple of necessary 

theorems for the algorithm. The overall mechanics of the algorithm are explained 

below.  

For a codeword in systematic form with corresponding parity-check matrix 

            and generating matrix             , the transmitted information bits 

are in order within the codeword followed by the parity bits. The premise of 

permutation decoding is to move the errors in the received codeword into the parity 

positions so that all the information bits are correct. Then the information bits can 

be retrieved, error free, and the permuted codeword can be un-permuted to 
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recover the information bits actually sent over the channel. This can be 

accomplished with a known set of automorphisms given that the number of bits in 

error in the received codeword does not exceed the error correction capability of 

the code. Thus multiple automorphisms are required to move not more than t error 

positions within the n bit positions {0, 1, …, n – 1} into the parity bit positions 

indexed by {k, k + 1, …, n – 1}. The process of permutation decoding can be stated 

succinctly as the following set of steps. 

1. Find a set of valid automorphisms that form a PD-set of C with cardinality 
|σi| = x 

2. For the received codeword y, calculate the weight of the syndromes: 
H(yσi)

T for i = 1, 2, …, x until such weight is t or less or until x is exceeded. 
3. If no weight is t or less declare a decoding failure and stop. 
4. For the codeword (yσi) with i ≤ x, extract the information bits. 
5. Apply the parity check equations to the information bits to obtain the 

correct parity bits for the morphed codeword. 
6. Use the correct information and parity bits to construct a valid codeword 

for (yσi). 
7. Apply the inverse automorphism to (yσi) to obtain codeword y. 

Since automorphisms are in practice difficult to find, the need for a minimum set of 

automorphisms to effect the changes in the received codeword serves dual 

purposes. A minimum set is less complex to implement and hopefully easier to 

determine. The following, taken from and proven in [118], is a lower bound on the 

size of a minimum PD-set. 

Bound: A PD-set of size P for a t-error correcting [n, k] code with redundancy 
r = n – k satisfies 

 

   
 

 
 
   

   
  

     

     
       

(4.28)  
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For the well-known extended Golay code [24, 12, 8], the bound requires a set of no 

less than 14 automorphisms. Given that this code has been extensively studied, at 

least one PD-set for it is known. However, for a given code there is no guarantee 

that such a set exists nor that the set AUT(C) contains enough automorphisms to 

construct such a set. There has been much work on finding PD-sets and s-PD-sets as 

mentioned in a survey by Key [119], but nothing yet that sheds light on decoding 

long codes such as LDPC codes. MacWilliams did show in her paper that the set of 

automorphisms for a cyclic code, σC, will be a PD-set for C when k < 
 

 
. Thus, in a 

strict sense permutation decoding cannot be used with an LDPC code of any great 

length as the number of required automorphisms is too high. But the concepts of 

applying automorphisms to the parity-check matrices of a linear block code can still 

be put to use. 

4.5 Automorphism Decoding 

For the specific purpose of error-control coding, a linear block code C with code 

words represented as code vectors, an automorphism of C is any permutation of the 

column indices that maps a given codeword to another codeword in C. So if one 

starts with a codeword of C, then applying an automorphism simply results in a 

different valid codeword of C. Automorphisms allow individual pieces of a codeword 

to be manipulated in terms of position without invalidating the structure or 

properties of the code C. This flexibility is being used at the decoding end of 

communication systems to help recover the information transmitted across the 
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channel. As the knowledge of AUT(C) is limited for any given code, the idea of using 

automorphisms in the context of decoding error-control codes automatically meets 

with considerable challenges. Luckily, for the class of cyclic linear block codes there 

exist two well-known automorphisms of AUT(C). The first automorphism is easily 

recognized when referenced to cyclic codes. By the very definition, the cyclic 

property represents a valid automorphism which can be stated as follows: 

                       (4.29)  

where the index i represents the position, or column index, in a codeword vector c. 

Also, any power of the cyclic automorphism represents a repeated application of a 

single shift and can be expressed as 

 
                       

(4.30)  

 
                       

(4.31)  

                             (4.32)  

The second automorphism for cyclic codes can be expressed as the following: 

                     (4.33)  

Repeated applications of this automorphism are also represented as powers of σA-F. 

In the early work by MacWilliams [117] she showed that automorphisms can be 

decomposed into products of disjoint cycles. These disjoint cycles are invariant 

under the given automorphism. For the cyclic automorphism σC the entire set of 

shifts forms a single disjoint set. For σA-F the number of disjoint cycles equals the 

number of cosets of the n-roots of unity. It is important to keep these cycles in mind 
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when using a particular automorphism since they basically represent a sub-cycle of 

the overall automorphism. Thus, the cyclic automorphism does not contain internal 

looping that maps columns back onto themselves before the nth cyclic shift. In 

contrast the Artin-Frobenius transform does. For a cyclic code of length seven, three 

consecutive applications of the automorphism are all that is required to reproduce 

the original matrix. This is illustrated in Table 4.5. 

Table 4.5 – Permutation of column indices for σA-F with n = 7. 

σ1 σ2 σ3  

0 → 0 → 0 → 0  
1 → 4 → 2 → 1  
2 → 1 → 4 → 2  
3 → 5 → 6 → 3  
4 → 6 → 1 → 4  
5 → 2 → 3 → 5  
6 → 3 → 5 → 6  

 

Table 4.6 – Permutation of column indices for σA-F with n = 15. 

σ1 σ2 σ3 σ4  

0 → 0 → 0 → 0 → 0  
1 → 8 → 4 → 2 → 1  
2 → 1 → 8 → 4 → 2  
3 → 9 → 12 → 6 → 3  
4 → 2 → 1 → 8 → 4  
5 → 10 → 5 → 10 → 5  
6 → 3 → 9 → 12 → 6  
7 → 11 → 13 → 14 → 7 
8 → 4 → 2 → 1 → 8 
9 → 12 → 6 → 3 → 9 
10 → 5 → 10 → 5 → 10 
11 → 13 → 14 → 7 → 11 
12 → 6 → 3 → 9 → 12 
13 → 14 → 7 → 11 → 13 
14 → 7 → 11 → 13 → 14 
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For such a short code the only column that does not experience a shift is the zero 

(first) column. This will always be true when applying the Artin-Frobenius 

automorphism. Other cycles can appear as n gets larger as can be seen in Table 4.6. 

The highlighted numbers in Table 4.6 reveal the sub-cycle (5, 10) where these two 

column indices switch back and forth between consecutive applications of the 

automorphism. A recent development makes use of the Artin-Frobenius 

automorphism for the purpose of decoding medium-density parity-check codes. 

4.5.1 Auto-Diversity Decoding 

Ouzan and Be’ery [120] proposed a method of decoding medium-density parity 

check (MDPC) codes that made use of automorphisms of cyclic codes. They refer to 

it as auto-diversity (AD) decoding and showed that it could be used to effectively 

decode codes that were typically denser than standard LDPC codes. The algorithm is 

basically an extension of the standard iterative belief propagation method which 

functions as follows: 

 The AD decoder requires a parity-check matrix  , a known set of 
automorphisms from the automorphism group of the code Aut(C), the LLR 
input vector representing the soft information about the channel, the 
number of iterations for the SPA, and the number of iterations for the AD 
decoder. 

 It applies the standard Sum Product Algorithm and attempts to decode the 
channel vector through a set number of iterations. 

 If a valid codeword is found, the process is stopped. 
 If the output of the SPA is not a valid codeword, then the AD decoder 

randomly selects an automorphism from the code’s automorphism group 
Aut(C) and applies it to the interim vector. This has the effect of shifting the 
bits upon which the given error patterns are affecting. 
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 This interim vector is then submitted once more to the SPA and the process 
repeats until either a valid codeword is obtained or a set number of 
iterations for the AD decoder is reached. 

 If the decoder does not converge to a valid codeword, the decoder estimates 
the codeword using a least metric selector. 

To help illustrate the functioning of the AD decoder the following algorithmic 

description is provided and follows that of Ouzan and Be’ery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When examining the AD decoding algorithm there are a number of points worth 

making. Since this algorithm makes use of only one known automorphism of a cyclic 

code (the Artin-Frobenius automorphism), it can be applied to any cyclic code. The 

Supports:  parity-check matrix H and set of automorphisms 

Inputs:  LLRin (soft input vector, length n) 

 Ispa (maximum number of iterations for sum product algorithm) 

 Nad (maximum number of iterations for AD decoder) 

Process: 

 for 1 ≤ j ≤ Nad   

      for 1 ≤ i ≤ Ispa  

           perform SPA based on LLRin  and H  

           return estimated codeword, ci  

      end for loop (SPA) 

      if ci × HT = 0 then 

                c = ci  

                return codeword c and STOP 

           else 

                randomly choose σ from Aut(C) 

                H = σH (apply the automorphism) 

           end else 

      end if 

 end for loop (AD) 

 if valid codeword not found 

      estimate codeword c with least metric selector 

      return codeword c  

 end if 

 STOP 

Output:  codeword c 
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strategy involved by AD is to avoid error patterns that cause BP to not converge 

during the decoding process by permuting the bit positions of the parity-check 

matrix. The AD decoder attempts to provide a different arrangement of bits for the 

error pattern, which could prove decodable by a further run of the BP algorithm. 

When actually running this algorithm, the parity-check matrix   is not permuted by 

the automorphism σ in practice. Instead the equivalent operation of permuting the 

LLR vector with σ-1 is performed and the output of the decoder is subsequently un-

permuted to avoid any rearrangement of   inside the BP algorithm. Gains in 

decoding performance via AD are at a cost of increased complexity, which will be at 

most Nad times the complexity of running straight BP.  

4.5.1.1 Remarks on AD Decoding 

The true attractiveness of AD decoding lies in its simplicity. If one is already running 

BP decoding on a cyclic code, then advancing to an AD decoder is relatively straight 

forward. However the implementation of the AD algorithm leaves much to be 

desired. Applying automorphisms in a random fashion is a hit-or-miss strategy. One 

does not know if the resulting error patterns are easier to decode or not. It is also 

possible for the algorithm to burn one or more outer iterations by applying 

subsequent automorphisms that result in cycling back to a previously used version 

of the parity-check matrix. Albeit, the probability of this happening is small with 

codes of even moderate length and highly improbable for practical LDPC codes. 

Given such considerations one has to wonder if there is not a smarter way to apply 

the automorphisms used in AD decoding so as to increase the algorithms 
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effectiveness. It just so happens that another form of automorphism decoding called 

automorphism group decoding deals with these issues but it requires knowledge of 

a code’s set of minimum codewords [121] which cannot be practically acquired for 

long LDPC codes. Since the EG(4095, 3367) code used earlier on the BPMR channel is 

cyclic and its parity-check matrix is relatively dense for an LDPC code, implementing 

AD decoding may provide the gains needed to hopefully deal more effectively with 

the written-in errors of the channel. 

4.5.1.2  AD Decoding on the BPMR Channel 

To test if the AD decoder will provide significant gains when used over a BPMR 

channel, simulations are arranged using a hexagonal island configuration with an 

areal density of 4 Tb/in2. The sector size is set at 512 bytes. Single-track equalization, 

MTD and a bound are all used for comparison where the GPR target lengths are set 

to match the previous simulations. Initially only ITI, ISI and AWGN are present so 

that a fair comparison can also be made with the corresponding PEG code. The 

results are shown in Figure 4.6 in terms of both BER and frame error rate (FER) for 

EG(4095, 3367). The code simulations were performed using first a standard BP 

decoder and then once more using an AD decoder. In Figure 4.6 the result is clear, 

AD decoding does not provide any decoding performance gain when used with the 

EG code on the BPMR channel. The decoder’s performance is exactly the same as 

running straight BP decoding. Now the question remains as to why. If the AD 

decoder is functioning properly, why is there no change in the decoding 



144 
 

performance? This question can be answered if one looks into how the AD decoder’s 

application of the automorphisms affects the EG code. 

 

Figure 4.6 – BPMR channel with areal density 4 Tb/in2 with ITI, ISI and AWGN. 
BER/FER curves represent both the BP and AD decoding performance with a 
EG(4095, 3367). 

4.5.2 Automorphism Decoding with Finite Geometry LDPC Codes 

As was noted previously, finite geometry LDPC codes based on a two-dimensional 

geometry is normally designated by its parity-check matrix. Since these codes are 

cyclic, each subsequent row of the parity-check matrices is just a cyclic shift of the 

initial row. All EG and PG parity-check matrices exhibit this same cyclic symmetry. 

Thus AD decoding can be applied successfully provided the automorphisms of σA-F 

do not result in row images of the parity-check matrix. This would manifest itself as a 

simple reshuffling of the given rows of the parity-check matrix. To determine if in 

fact this is the case, both geometries will need to be checked individually.  
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If the small PG(7, 3) parity-check matrix is subjected to a single shift of the 

Artin-Frobenius automorphism, denoted σA-F
1, the resulting parity-check matrix 

becomes 

 

    
          

 

 
 
 
 

       
       
       
       
       
       
        

 
 
 
 

   
(4.34)  

and it can be seen that the rows of this H matrix for the PG code simply switch 

positions under the automorphism. Any automorphism representing a power of σA-F
1 

that is subsequently applied to this H matrix will simply produce more row shuffling. 

In fact for this code with n = 7, only three consecutive permutations, σA-F
3, are 

necessary to arrive back at the original matrix. If a row-reduced version (row-

reduced here simply implies that some of the rows have been removed) of the 

original matrix is used instead, such as the one below, 

 

          

       
       
       
       

    
(4.35)  

then three consecutive applications of the automorphism will reconstitute the 

original matrix again. Any number of applied consecutive permutations less than 

three only acts to reproduce the rows that were removed from the original matrix, 
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(4.36)  

 

    
           

       
       
       
       

    
(4.37)  

Note that the second row is immobile under these automorphisms. Obviously one 

has to be very careful when applying automorphisms. Since all Type-1 PG codes 

incorporate the same structure regardless of the code length (specified by the 

parameter s) none of them can be used with the AD decoder unless the format of 

the parity-check matrix is changed. In the case of PG codes, shifted versions of the 

first row in the parity-check matrix cannot be used in any constructions of a different 

parity-check matrix for the same code where the Artin-Frobenius automorphism is 

to be utilized.  

After examining PG codes under the Artin-Frobenius automorphism, it is 

quite possible that the structure incorporated into the Type-1 EG codes may also 

make them essentially immune to the permutations. Following the same procedure 

as before, the parity-check matrix for the EG(15, 7) code is subjected to various 

powers of the σA-F automorphism 
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 (4.38)  

Again the rows are simply shuffled by an application of the automorphism and the 

second row of the H matrix is immobile. Row-reducing this matrix to its equivalent 

full row rank size and then applying the σA-F automorphism once more yields the 

following 

    
           

 

 
 
 
 
 

               
               
               
               
               
               
               
                

 
 
 
 
 

   

 
 (4.39)  

It appears that Type-1 EG codes exhibit the same behavior as Type-1 PG codes when 

the Artin-Frobenius automorphism is applied to the standard form of their parity-

check matrices. This means that the AD-version of automorphism decoding cannot 

be used with the parity-check matrices for the cyclic EG and PG codes. Even if the 

parity-check matrices are reduced to full-row rank by removing the bottom 
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redundant rows, there will be no gains from using AD decoding! In order to use 

automorphisms on these codes either a parity-check matrix must be constructed 

that does not contain rows which are shifts of any other row or a new set of 

automorphisms that form a PD-set must be found. The odds of finding a new PD-set 

are slim and there is no guarantee that such a set exists. It might prove more 

beneficial to utilize some of the ideas from Hehn et al. to attempt to construct 

parity-check matrices for these finite geometry codes that can make use of an AD 

decoder. This would involve finding optimum cyclic orbit generators, which for most 

short cyclic codes may be feasible. But for codes of even moderate length it is not 

possible to find all of the minimum weight codewords of the dual codes. In the case 

of an [n, k, d] cyclic EG or PG code the best that can be done is to generate some low 

weight codewords based on the parity-generating polynomial. Out of the codewords 

that can possibly be generated, a set of distinct cyclic orbit generators can be chosen 

with which to construct a new full row rank matrix H for the AD decoder. 

Unfortunately such a process would involve a computer generated search that may 

only result in a version of the parity-check matrix that exhibits less decoding 

performance than the standard form for H. As an alternative, there is yet another 

class of Euclidean geometry codes that are cyclic which can be formulated based on 

the points and lines in the finite geometry. They possess a much larger density of 1’s 

in their respective parity-check matrices, so they must be considered at least an 

MDPC code.  
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4.6 Another Class of Finite Geometry as Cyclic MDPC Codes 

Recall that an EG(m, q) over the finite field GF(q) contains 

 

       
          

   
   

(4.40)  

lines, each consisting of q points. If point p is contained on line  , then line   is said 

to intersect at point p. For every point p there are  

 
    

   
   

(4.41)  

lines that intersect it. All of these lines intersecting at point p form an intersecting 

bundle of lines which are orthogonal at point p. Any other point in EG(m, q) can 

appear on only one of the lines in the intersecting bundle of lines. Within the 

subgeometry of EG(m, q) there will be  

 
    

   
     

(4.42)  

lines in each intersecting bundle. Lines in EG(m, q) can also be partitioned based on 

their parallel structure. Lines that do not intersect at a point and that do not share 

common points can be considered parallel lines. For each line L in EG(m, q) there will 

be  

 
         

(4.43)  

lines that will be parallel to line L. All of the lines in EG(m, q) can be sorted into  
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(4.44)  

parallel bundles of lines, each containing qm-1 parallel lines. For the subgeometry of 

EG(m, q) this leaves qm-1 – 1 lines per parallel bundle. This parallel structure can be 

utilized to formulate another class of cyclic codes. 

4.6.1 Two-fold EG Codes 

While Type-1 EG and PG codes can be used to construct cyclic LDPC codes, there is 

another class of cyclic finite geometry codes that stems from the same geometries 

but results in a denser parity check matrix. Such codes make use of the parallel 

structure of lines in a Type-1 EG code and are called two-fold EG codes. These finite 

geometry codes are cyclic, dense, and possess good minimum distance properties 

[122]. Starting with a parallel bundle from the subgeometry of EG(m, q), two lines 

from this bundle will have no points in common. This pairing of two distinct parallel 

lines constitutes a (1, 2)-frame within the subgeometry and consists of 2q points, q 

points from each line. By taking a third line from the same parallel bundle, two 

distinct (1, 2)-frames can be formed,         and         that intersect at line   . 

Thus these two (1, 2)-frames both share the q points of line   . From a given parallel 

bundle in the subgeometry, any selected line can be used to form (1, 2)-frames with 

all of the other lines in the bundle, resulting in  

 
         

(4.45)  
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(1, 2)-frames that intersect on the given line. All of the (1, 2)-frames incident on this 

line are said to be orthogonal on the line as they share no other points in common. 

Thus a point not on the incident line can only be part of one of the orthogonal (1, 2)-

frames. For a given parallel bundle a total of  

 
                

 
   

(4.46)  

(1, 2)-frames that are distinct can be constructed. This implies that for a given 

subgeometry of EG(m, q), the total number of (1, 2)-frames that can be constructed 

is given by the expression 

 
                      

      
   

(4.47)  

To establish the cyclic property of the resulting two-fold EG code, take a single (1, 2)-

frame from the subgeometry and designate it 

 
                 

(4.48)  

For a binary code, the geometry is taken over GF(2) and an incidence vector       

for    can be defined as a (qm – 1)-tuple over GF(2), 

 
                           

(4.49)  

The (qm – 2) vector components correspond to zeros and ones with the ones 

corresponding to the points contained in   . Since (1, 2)-frames are formed from the 

lines in EG(m, q) and these lines possess a cyclic structure, the (1, 2)-frames will also 



152 
 

possess the cyclic property. This can be shown as follows. If   is a line from EG(m, q) 

and   a primitive element of the extension field used to represent points in EG(m, 

q), then the cyclic nature of the lines in EG(m, q) assures that    is also a line in 

EG(m, q). This property translates directly to (1, 2)-frames within EG(m, q) and 

assures that  

 
                    

(4.50)  

is also a (1,2)-frame in EG(m, q). This means that the left or right shift of any 

incidence vector       for a (1, 2)-frame is a valid incidence vector for a different (1, 

2)-frame. To utilize this cyclic structure as a linear block code, a binary parity check 

matrix is formed from the incidence vectors of all (1, 2)-frames within the 

subgeometry of EG(m, q). With the following two designations, 

 

            
                      

      
  

(4.51)  

 
                       

(4.52)  

The null space of the r x n parity check matrix formed from the incidence vectors of 

all the (1, 2)-frames produces a cyclic code of length n. Codes of this kind are 

referred to as two-fold EG codes. In short, two-fold EG codes are constructed by 

partitioning the parallel lines found in the corresponding EG(2, q). These parallel 

lines then form a (1, 2)-frame of EG(2, q). The incidence vectors of these (1, 2)-

frames can be used as the rows of a parity-check matrix H. Since the right-cyclic shift 

of one of these incidence vectors corresponds to another valid incidence vector of 
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another (1, 2)-frame, the frames are cyclic in nature and so is the corresponding 

parity-check matrix. It is only necessary to generate one incidence vector and then 

shift it n times to construct a valid H matrix. When compared with standard EG 

codes, two-fold EG codes are slightly higher rate codes which are characterized by 

slightly smaller minimum distances. The following table of parameters provides a 

way of comparing them to the standard cyclic EG and PG codes.   

Table 4.7 – Examples of cyclic two-fold EG(2, q) codes. 

s (n, k) dmin   ;     

2 (15, 11) 3 8 0.7333 

3 (63, 45) 7 16 0.7143 

4 (255, 191) 15 32 0.7490 

5 (1023, 813) 31 64 0.7947 

6 (4095, 3431) 63 128 0.8379 

 

Even though two-fold EG codes are all very similar to the usual EG codes, their 

parity-check matrices are denser and plagued by cycles of length four. This makes 

them unsuitable for decoding based on belief propagation and would normally only 

be majority-logic decodable. However, auto-diversity decoding works well with 

codes characterized by parity-check matrices that are typically categorized as MDPC 

codes. As can be seen from Table 4.7 above, the parity-check matrices of two-fold 

EG codes contain twice the number of ones as their contemporary EG code’s H 

matrices. It is because of this fact that the Artin-Frobenius automorphism can be 

used to some advantage because the applied permutations do not strictly result in 

shuffling of the rows.  
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4.6.2 More Simulations with AD Decoding 

Armed with the knowledge of how AD decoders work, some simulations involving an 

AD decoder used with both Type-1 EG and two-fold EG codes can be attempted. All 

simulations that follow were performed on a binary input additive white Gaussian 

noise channel. The definition of the signal-to-noise ratio (SNR) follows as well as the 

adjustment from SNR to Eb/No: 

 

    
 

  
   

(4.53)  

 
  

  
                 

(4.54)  

where   represents the code rate. The following simulation results (see Figures 4.7 – 

4.9) show the decoding performances in terms of the BERs and FERs of the BP 

decoder in the form of the sum-product algorithm and the AD decoder for different 

two-fold EG codes. A comparison between the performances of SPA and AD 

decoding of two-fold EG(63,45), two-fold EG(255,191), and two-fold EG(1023,813) 

reveals that AD decoding provides a noticeable gain over SPA (~ 1dB at 10-5 BER) for 

the larger codes. For the smaller two-fold EG(63,45) there is very little observable 

difference in the performance of the two algorithms. The reason for the gain in the 

larger codes is that the AD decoder better handles the dense parity-check matrices 

of two-fold EG codes compared to strict SPA decoding. The combination of shifting 

the error patterns of the received codeword vector inside the AD decoder and 



155 
 

running the SPA through many more iterations in the process, results in the better 

decoding performance.  

 

Figure 4.7 – BER/FER decoding performance curves for both the SPA and AD 
decoders on an AWGN channel with the two-fold EG(63, 45) code. 

 

Figure 4.8 – BER/FER decoding performance curves for both the SPA and AD 
decoders on an AWGN channel with the two-fold EG(255, 191) code. 
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Figure 4.9 – BER/FER decoding performance curves for both the SPA and AD 
decoders on an AWGN channel with the two-fold EG(1023, 813) code. 

Based on  previous arguments about changing the parity-check matrix of a 

cyclic finite geometry code to possibly enhance decoding performance, the initial 

“square” parity-check matrix of the two-fold EG(255,191) code was modified by 

reducing it to a full-rank matrix. For such dense codes this could prove advantageous 

to the decoder if the performance loss is negligible when compared to the decoding 

iterations saved by utilizing far fewer checks in the parity-check equations. In the 

simulations both square and full-rank versions of the H matrix are used with the AD 

and SPA decoders. The results in terms of BER only are shown in Figure 4.10. It can 

be noted that AD decoding still outperforms SPA decoding, but the “full-rank” matrix 

representation does not perform better than the “square” matrix representation. 
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Figure 4.10 – BER decoding performance curves for both the SPA and AD 
decoders on an AWGN channel with the two-fold EG(255, 191) code with 
both “square” and “full-rank” versions of the parity-check matrix. 

It seems the “full-rank” version suffers from the trimming away of too many rows to 

compete with the “square” version. In essence the matrix has not been modified in a 

beneficial manner. It is possible that the “full-rank” matrix is nothing more than a 

truncated version of the “square” matrix so the same performance gain is provided 

to both matrices under AD decoding. The greater number of rows in the “square” 

matrix in combination with the structure in the code is providing the larger gain. The 

same sort of experiment can be used with a Type-1 EG code as well. In the following 

simulations the performance of a two-fold EG code and an EG code are shown (see 

Figure 4.11). The EG code has been divided into both a full-rank (denoted “FR”) 

version and the standard “square” version based only on differences in parity-check 

matrices. 
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Figure 4.11 – BER decoding performance curves for both the SPA and AD 
decoders on an AWGN channel with both the two-fold EG(255, 191) code and 
the EG(255, 175) code. A “square” and a “full-rank” version of the parity-
check matrix is utilized by the EG code. 

In the curves above there is a leveling off in the waterfall region of the “full-rank” 

parity-check matrix before reaching the performance of the “square” matrix version 

for the EG code. The difference in performance between the two curves at a BER of 
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automorphism works with Type-1 EG and PG codes, the green and black curves are 
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check matrix that were chopped off during the reduction to a “full-rank” matrix. In 
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check matrix under the Artin-Frobenius automorphism, the green curve would lie on 

top of the black curve, indicating identical performance. Strictly speaking this would 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E

R

Performance of AD vs SPA for 2-fold EG(255,191) & EG(255,175)

 

 

AD: 2-fold EG(255,191)

SPA: 2-fold EG(255,191)

AD: EG(255,175) FR

SPA: EG(255,175) FR

SPA: EG(255,175)



159 
 

only be true at the iteration point where further runs of the SPA would produce no 

additional gains in the decoding performance.  

 While two-fold EG codes possess a number of nice properties, they do not 

appear to outperform their cyclic EG LDPC contemporaries on an AWGN channel. 

This does not mean that their usefulness on the BPMR channel is wholly 

predetermined. But given the number of structural similarities between the types of 

codes, it is unlikely that the AD decoder paired with a two-fold EG code will 

outperform a similar EG or PG code on any given channel. Unfortunately, none of 

the coding methods previously described solves the problem caused by the presence 

of insertions and deletions within the BPMR write process. 
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Chapter 5 – Conclusion 

The challenges faced by engineers attempting to bring BPMR from concept to 

profitable product are significant and multifaceted. Not the least of which are its 

modeling and signal processing problems. For BPMR to progress as a possible 

avenue for future HDDs, the technology must successfully circumvent its many 

standing problems.   

5.1 Concluding Remarks on BPMR 

One of the most significant problems faced by BPMR resides in the requirement to 

synchronize the write clock to the locations of individual islands to within a tiny 

fraction of an error. At the areal recording densities of interest, current servo motor 

tolerances in combination with other electrical and mechanical limitations cannot 

place the write head to within the margins required by the write process. Thus the 

introduction of insertion and deletion errors into the storage channel is currently 

assured. While error-correction codes are available, none can currently handle the 

level of written-in errors expected within the channel at coding rates appropriate for 

HDDs. The solution of this problem still awaits in the future and will likely be solved 

by a combination of decreasing write head design tolerances and targeting ECCs that 

can handle any remaining levels of written-in errors. 

For the most part, this dissertation was able to identify and model the BPMR 

channel in conjunction with all of its major error sources. The use of a 2D Gaussian 

pulse to model the channel response was shown to work well within simulations 
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while incorporating the effects of the fabrication jitter which manifested itself as 

both position jitter and island size variations. The simulations with multi-track 

detection revealed its ability to greatly neutralize the detrimental effects of both 

high levels of ISI and ITI present in the channel at high areal densities, but it suffers 

greatly in high levels of media noise present in BPMR. Given that the noise 

prediction used with single-track equalization provided some improvement to the 

1D method’s dismal performance in high ITI conditions, it should be incorporated in 

some fashion into the MTD technique. An attempt to model the written-in errors 

was made which identified the extent to which these kinds of errors can degrade the 

overall performance of the channel. Despite various coding techniques, the worst of 

the written-in errors still cannot be effectively handled. The class of cyclic finite 

geometry LDPC codes was tapped to show the impressive levels of decoding 

performance possible with these codes for the BPMR channel when faced with all 

but insertion and deletion errors. Automorphism decoding in the form of auto-

diversity decoding was explored with various finite geometry codes, including a 

lesser-known class of cyclic code known as two-fold EG codes. It was shown that AD 

decoding improves the performance of these codes and allows for iterative decoding 

of this type of MDPC code. It was also discovered that the cyclic finite geometry 

codes are not compatible with current methods of automorphism decoding as there 

structure invalidates the two known applicable automorphisms for cyclic codes. It 

was also determined by investigation that reduced versions of the parity-check 
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matrices of finite geometry codes do not offer any benefit to the decoder in 

automorphism decoding. 

5.2 Suggestions for Future Research 

During the formulation of this dissertation a number of interesting questions arose 

out of the many thought-provoking challenges which ensued. Several of these 

instances are worth mentioning and hopefully will inspire someone to investigate a 

problem that needs solving. 

1) The insertion and deletion types of written-in errors are extremely difficult to 

handle when they occur in multiple random positions throughout a long 

sector. Low rate codes can be devised to correct for multiple instances of 

these errors, but this does not help for an application where extended 

latency should be avoided. One has to wonder if an algorithm can be devised 

that attempts to shift the bits in local neighborhoods and then checks the 

outcomes against the resulting parity checks to determine if significantly 

fewer bits are in error. The algorithm would only need to localize a given 

error and then treat the neighborhood of surrounding bits as an erasure. 

2) While the Auto-Diversity decoder works with only cyclic codes, many quasi-

cycle codes are simply formed from circulants of cyclic codes. It seems 

reasonable that a quasi-cyclic version of the AD decoder could be formulated 

that would operate on the individual circulants while also decoding the 
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entire codeword as a whole. This would certainly increase the decoder’s 

applicability. 

3) Noise prediction is a powerful tool for extending the detection algorithm’s 

performance and it works best when the properties of the noise are known. 

Thus a better description of the fabrication media noise introduced as jitter 

into the channel would likely help a great deal in noise predictive techniques 

applied to the BPMR channel. 

4) TDMR techniques are an obvious forward step for signal processing. 

Unfortunately, the complexity of many of the one-dimensional algorithms 

used in detection grows exponentially when expanded into two dimensions. 

Thus these algorithms can only be approximated in any real sense under 

TDMR. Can efficient alternatives to the 2D BCJR algorithm be formulated that 

effectively allow for noise prediction in MTD? 

5) Only a few binary LDPC finite geometry codes can be constructed which are 

also cyclic codes. From the known cyclic FG codes, descendent codes can be 

constructed that are also cyclic and less dense than the parent code. Are 

these codes subject to the same constraint as the parent codes with regard 

to their use in AD decoding? 

6) The switching field distribution in BPMR can have a significant detrimental 

impact on the writing process. But as of yet there has been no work 

describing how the distribution is affected by different island patterns across 

various increases in areal densities with respect to BAR = 1 or BAR = 2. This 
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could heavily impact a hexagonal island arrangement where more islands are 

in greater proximity.  
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Appendix A – List of Acronyms 

2D  Two-Dimensional 
3D  Three-Dimensional 
ABS  Air Bearing Surface 
AD  Auto-Diversity 
APP  a posteriori Probability 
AWGN  Additive White Gaussian Noise 
BCJR  Bahl-Cocke-Jelinek-Raviv 
BEC  Binary Erasure Channel 
BER   Bit Error Rate 
BP   Belief Propagation 
BPMR   Bit-Patterned Magnetic Recording 
CCW  Counterclockwise 
CW  Clockwise 
ECC   Error Correcting Code 
EG  Euclidean Geometry 
FER  Frame Error Rate 
FFT   Fast Fourier Transform 
FG  Finite Geometry 
FGL  Field Generating Layer 
FIR   Finite Impulse Response 
FR  Full Rank 
GF  Galois Field 
GMR   Giant Magnetoresistive 
GPR   Generalized Partial-Response 
HAMR   Heat-Assisted Magnetic Recording 
HDD  Hard Disk Drive 
ISI   Intersymbol Interference 
ITI  Intertrack Interference 
LDPC   Low-Density Parity-Check 
LLR   Log Likelihood Ratio 
MAMR  Microwave-Assisted Magnetic Recording 
MAP   Maximal a posteriori 
ML   Maximum Likelihood 
MLSD   Maximum Likelihood Sequence Detector 
MMSE   Minimum Mean-Squared Error 
MRC   Magnetic Recording Channel 
MSE   Mean-Squared Error 
MTR   Maximum Transition Run 
NRZ   Non-Return-to-Zero 
PDNP   Pattern-Dependent Noise Predictive 
PEG   Progressive Edge-Growth 
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PG  Projective Geometry 
PMF   Probability Mass Function 
PMR   Perpendicular Magnetic Recording 
PMRC   Perpendicular Magnetic Recording Channel 
PR   Partial-Response 
PRML   Partial-Response Maximum Likelihood 
RLL   Run Length Limited 
RS   Reed-Solomon 
SER   Sector-Error Rate 
SISO   Soft-Input Soft-Output 
SNR   Signal-to-Noise Ratio 
SOVA   Soft Output Viterbi Algorithm 
SPA  Sum Product Algorithm 
SUL   Soft Under Layer 
SWR  Shingled Write Recording 
TDMR   Two-Dimensional Magnetic Recording 
VA   Viterbi Algorithm 

 

 

 

 


