246 research outputs found

    Ultra-reliable Low-latency, Energy-efficient and Computing-centric Software Data Plane for Network Softwarization

    Get PDF
    Network softwarization plays a significantly important role in the development and deployment of the latest communication system for 5G and beyond. A more flexible and intelligent network architecture can be enabled to provide support for agile network management, rapid launch of innovative network services with much reduction in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits, 5G system also raises unprecedented challenges as emerging machine-to-machine and human-to-machine communication use cases require Ultra-Reliable Low Latency Communication (URLLC). According to empirical measurements performed by the author of this dissertation on a practical testbed, State of the Art (STOA) technologies and systems are not able to achieve the one millisecond end-to-end latency requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This dissertation performs a comprehensive introduction to three innovative approaches that can be used to improve different aspects of the current software-driven network data plane. All three approaches are carefully designed, professionally implemented and rigorously evaluated. According to the measurement results, these novel approaches put forward the research in the design and implementation of ultra-reliable low-latency, energy-efficient and computing-first software data plane for 5G communication system and beyond

    Dynamic service chain composition in virtualised environment

    Get PDF
    Network Function Virtualisation (NFV) has contributed to improving the flexibility of network service provisioning and reducing the time to market of new services. NFV leverages the virtualisation technology to decouple the software implementation of network appliances from the physical devices on which they run. However, with the emergence of this paradigm, providing data centre applications with an adequate network performance becomes challenging. For instance, virtualised environments cause network congestion, decrease the throughput and hurt the end user experience. Moreover, applications usually communicate through multiple sequences of virtual network functions (VNFs), aka service chains, for policy enforcement and performance and security enhancement, which increases the management complexity at to the network level. To address this problematic situation, existing studies have proposed high-level approaches of VNFs chaining and placement that improve service chain performance. They consider the VNFs as homogenous entities regardless of their specific characteristics. They have overlooked their distinct behaviour toward the traffic load and how their underpinning implementation can intervene in defining resource usage. Our research aims at filling this gap by finding out particular patterns on production and widely used VNFs. And proposing a categorisation that helps in reducing network latency at the chains. Based on experimental evaluation, we have classified firewalls, NAT, IDS/IPS, Flow monitors into I/O- and CPU-bound functions. The former category is mainly sensitive to the throughput, in packets per second, while the performance of the latter is primarily affected by the network bandwidth, in bits per second. By doing so, we correlate the VNF category with the traversing traffic characteristics and this will dictate how the service chains would be composed. We propose a heuristic called Natif, for a VNF-Aware VNF insTantIation and traFfic distribution scheme, to reconcile the discrepancy in VNF requirements based on the category they belong to and to eventually reduce network latency. We have deployed Natif in an OpenStack-based environment and have compared it to a network-aware VNF composition approach. Our results show a decrease in latency by around 188% on average without sacrificing the throughput

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks

    Virtual Networking Performance in OpenStack Platform for Network Function Virtualization

    Get PDF
    The emerging Network Function Virtualization (NFV) paradigm, coupled with the highly flexible and programmatic control of network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose a number of challenges in terms of virtual network performance and customer isolation. This paper intends to provide some insights on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV on OpenStack

    Deployment of NFV and SFC scenarios

    Get PDF
    Aquest ítem conté el treball original, defensat públicament amb data de 24 de febrer de 2017, així com una versió millorada del mateix amb data de 28 de febrer de 2017. Els canvis introduïts a la segona versió són 1) correcció d'errades 2) procediment del darrer annex.Telecommunications services have been traditionally designed linking hardware devices and providing mechanisms so that they can interoperate. Those devices are usually specific to a single service and are based on proprietary technology. On the other hand, the current model works by defining standards and strict protocols to achieve high levels of quality and reliability which have defined the carrier-class provider environment. Provisioning new services represent challenges at different levels because inserting the required devices involve changes in the network topology. This leads to slow deployment times and increased operational costs. To overcome the current burdens network function installation and insertion processes into the current service topology needs to be streamlined to allow greater flexibility. The current service provider model has been disrupted by the over-the-top Internet content providers (Facebook, Netflix, etc.), with short product cycles and fast development pace of new services. The content provider irruption has meant a competition and stress over service providers' infrastructure and has forced telco companies to research new technologies to recover market share with flexible and revenue-generating services. Network Function Virtualization (NFV) and Service Function Chaining (SFC) are some of the initiatives led by the Communication Service Providers to regain the lost leadership. This project focuses on experimenting with some of these already available new technologies, which are expected to be the foundation of the new network paradigms (5G, IOT) and support new value-added services over cost-efficient telecommunication infrastructures. Specifically, SFC scenarios have been deployed with Open Platform for NFV (OPNFV), a Linux Foundation project. Some use cases of the NFV technology are demonstrated applied to teaching laboratories. Although the current implementation does not achieve a production degree of reliability, it provides a suitable environment for the development of new functional improvements and evaluation of the performance of virtualized network infrastructures

    NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case Study

    Full text link
    Virtualization enables the sharing of a same wireless sensor network (WSN) by multiple applications. However, in heterogeneous environments, virtualized wireless sensor networks (VWSN) raises new challenges such as the need for on-the-fly, dynamic, elastic and scalable provisioning of gateways. Network Functions Virtualization (NFV) is an emerging paradigm that can certainly aid in tackling these new challenges. It leverages standard virtualization technology to consolidate special-purpose network elements on top of commodity hardware. This article presents a case study on NFV based gateways for VWSNs. In the study, a VWSN gateway provider, operates and manages an NFV based infrastructure. We use two different brands of wireless sensors. The NFV infrastructure makes possible the dynamic, elastic and scalable deployment of gateway modules in this heterogeneous VWSN environment. The prototype built with Openstack as platform is described
    corecore