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The emerging Network Function Virtualization (NFV) paradigm, coupled with the highly flexible and programmatic control of
network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that
will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data
centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to
take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose
a number of challenges in terms of virtual network performance and customer isolation.This paper intends to provide some insights
on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it
can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is
presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant
and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV
on OpenStack.

1. Introduction

Despite the original vision of the Internet as a set of net-
works interconnected by distributed layer 3 routing nodes,
nowadays IP datagrams are not simply forwarded to their
final destination based on IP header and next-hop informa-
tion. A number of so-called middle-boxes process IP traffic
performing cross layer tasks such as address translation,
packet inspection and filtering, QoS management, and load
balancing. They represent a significant fraction of network
operators’ capital and operational expenses. Moreover, they
are closed systems, and the deployment of new communi-
cation services is strongly dependent on the product capa-
bilities, causing the so-called “vendor lock-in” and Internet
“ossification” phenomena [1]. A possible solution to this
problem is the adoption of virtualized middle-boxes based
on open software and hardware solutions. Network virtual-
ization brings great advantages in terms of flexible network
management, performed at the software level, and possible
coexistence of multiple customers sharing the same physical
infrastructure (i.e., multitenancy). Network virtualization

solutions are already widely deployed at different protocol
layers, includingVirtual Local AreaNetworks (VLANs),mul-
tilayer Virtual Private Network (VPN) tunnels over public
wide-area interconnections, and Overlay Networks [2].

Today the combination of emerging technologies such as
Network Function Virtualization (NFV) and Software Defined
Networking (SDN) promises to bring innovation one step
further. SDN provides a more flexible and programmatic
control of network devices and fosters new forms of vir-
tualization that will definitely change the shape of future
network architectures [3], while NFV defines standards to
deploy software-based building blocks implementing highly
flexible network service chains capable of adapting to the
rapidly changing user requirements [4].

As a consequence, it is possible to imagine a medium-
term evolution of the network architectures where middle-
boxes will turn into virtual machines (VMs) implementing
network functions within cloud computing infrastructures,
and telco central offices will be replaced by data centers
located at the edge of the network [5–7]. Network operators
will take advantage of the increased flexibility and reduced
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deployment costs typical of the cloud-based approach, paving
the way to the upcoming software-centric evolution of
telecommunications [8]. However, a number of challenges
must be dealt with, in terms of system integration, data
center management, and packet processing performance. For
instance, if VLANs are used in the physical switches and in
the virtual LANs within the cloud infrastructure, a suitable
integration is necessary, and the coexistence of different
IP virtual networks dedicated to multiple tenants must be
seamlessly guaranteed with proper isolation.

Then a few questions are naturally raised: Will cloud
computing platforms be actually capable of satisfying the
requirements of complex communication environments such
as the operators edge networks? Will data centers be able
to effectively replace the existing telco infrastructures at the
edge?Will virtualized networks provide performance compa-
rable to those achievedwith current physical networks, orwill
they pose significant limitations? Indeed the answer to this
questionwill be a function of the cloudmanagement platform
considered. In this work the focus is on OpenStack, which
is among the state-of-the-art Linux-based virtualization and
cloudmanagement tools. Developed by the open-source soft-
ware community, OpenStack implements the Infrastructure-
as-a-Service (IaaS) paradigm in a multitenant context
[9].

To the best of our knowledge, not much work has been
reported about the actual performance limits of network
virtualization in OpenStack cloud infrastructures under the
NFV scenario. Some authors assessed the performance of
Linux-based virtual switching [10, 11], while others inves-
tigated network performance in public cloud services [12].
Solutions for low-latency SDN implementation on high-
performance cloud platforms have also been developed [13].
However, none of the above works specifically deals with
NFV scenarios on OpenStack platform. Although some
mechanisms for effectively placing virtual network functions
within an OpenStack cloud have been presented [14], a
detailed analysis of their network performance has not been
provided yet.

This paper aims at providing insights on how the Open-
Stack platform implements multitenant network virtual-
ization, focusing in particular on the performance issues,
trying to fill a gap that is starting to get the attention
also from the OpenStack developer community [15]. The
paper objective is to identify performance bottlenecks in the
cloud implementation of the NFV paradigms. An ad hoc
set of experiments were designed to evaluate the OpenStack
performance under critical load conditions, in both single
tenant and multitenant scenarios. The results reported in
this work extend the preliminary assessment published in
[16, 17].

The paper is structured as follows: the network virtual-
ization concept in cloud computing infrastructures is further
elaborated in Section 2; the OpenStack virtual network
architecture is illustrated in Section 3; the experimental test-
bed that we have deployed to assess its performance is
presented in Section 4; the results obtained under different
scenarios are discussed in Section 5; some conclusions are
finally drawn in Section 6.

2. Cloud Network Virtualization

Generally speaking network virtualization is not a new con-
cept. Virtual LANs, Virtual Private Networks, and Overlay
Networks are examples of virtualization techniques already
widely used in networking, mostly to achieve isolation of
traffic flows and/or of whole network sections, either for
security or for functional purposes such as traffic engineering
and performance optimization [2].

Upon considering cloud computing infrastructures the
concept of network virtualization evolves even further. It
is not just that some functionalities can be configured in
physical devices to obtain some additional functionality in
virtual form. In cloud infrastructures whole parts of the
network are virtual, implemented with software devices
and/or functions running within the servers. This new
“softwarized” network implementation scenario allows novel
network control and management paradigms. In particular,
the synergies between NFV and SDN offer programmatic
capabilities that allow easily defining and flexibly managing
multiple virtual network slices at levels not achievable before
[1].

In cloud networking the typical scenario is a set of
VMs dedicated to a given tenant, able to communicate with
each other as if connected to the same Local Area Network
(LAN), independently of the physical server/servers they are
running on. The VMs and LAN of different tenants have
to be isolated and should communicate with the outside
world only through layer 3 routing and filtering devices. From
such requirements stem two major issues to be addressed
in cloud networking: (i) integration of any set of virtual
networks defined in the data center physical switches with the
specific virtual network technologies adopted by the hosting
servers and (ii) isolation among virtual networks that must
be logically separated because of being dedicated to different
purposes or different customers. Moreover these problems
should be solved with performance optimization inmind, for
instance, aiming at keeping VMs with intensive exchange of
data colocated in the same server, keeping local traffic inside
the host and thus reducing the need for external network
resources and minimizing the communication latency.

The solution to these issues is usually fully supported
by the VM manager (i.e., the Hypervisor) running on the
hosting servers. Layer 3 routing functions can be executed by
taking advantage of lightweight virtualization tools, such as
Linux containers or network namespaces, resulting in isolated
virtual networks with dedicated network stacks (e.g., IP
routing tables and netfilter flow states) [18]. Similarly layer
2 switching is typically implemented by means of kernel-
level virtual bridges/switches interconnecting a VM’s virtual
interface to a host’s physical interface. Moreover the VMs
placing algorithms may be designed to take networking
issues into account thus optimizing the networking in the
cloud together with computation effectiveness [19]. Finally
it is worth mentioning that whatever network virtualization
technology is adopted within a data center, it should be
compatible with SDN-based implementation of the control
plane (e.g., OpenFlow) for improved manageability and
programmability [20].
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Figure 1: Main components of an OpenStack cloud setup.

For the purposes of this work the implementation of
layer 2 connectivity in the cloud environment is of particular
relevance. Many Hypervisors running on Linux systems
implement the LANs inside the servers using Linux Bridge,
the native kernel bridging module [21]. This solution is
straightforward and is natively integrated with the powerful
Linux packet filtering and traffic conditioning kernel func-
tions. The overall performance of this solution should be at
a reasonable level when the system is not overloaded [22].
The Linux Bridge basically works as a transparent bridge
with MAC learning, providing the same functionality as a
standard Ethernet switch in terms of packet forwarding. But
such standard behavior is not compatible with SDNand is not
flexible enough when aspects such as multitenant traffic iso-
lation, transparent VM mobility, and fine-grained forward-
ing programmability are critical. The Linux-based bridging
alternative is Open vSwitch (OVS), a software switching
facility specifically designed for virtualized environments and
capable of reaching kernel-level performance [23]. OVS is
also OpenFlow-enabled and therefore fully compatible and
integrated with SDN solutions.

3. OpenStack Virtual Network Infrastructure

OpenStack provides cloud managers with a web-based dash-
board as well as a powerful and flexible Application Pro-
grammable Interface (API) to control a set of physical hosting
servers executing different kinds of Hypervisors (in general,
OpenStack is designed to manage a number of computers,
hosting application servers: these application servers can
be executed by fully fledged VMs, lightweight containers,
or bare-metal hosts; in this work we focus on the most
challenging case of application servers running on VMs) and
to manage the required storage facilities and virtual network
infrastructures.TheOpenStack dashboard also allows instan-
tiating computing and networking resources within the data

center infrastructure with a high level of transparency. As
illustrated in Figure 1, a typical OpenStack cloud is composed
of a number of physical nodes and networks:

(i) Controller node: managing the cloud platform.
(ii) Network node: hosting the networking services for the

various tenants of the cloud and providing external
connectivity.

(iii) Compute nodes: asmany hosts as needed in the cluster
to execute the VMs.

(iv) Storage nodes: to store data and VM images.
(v) Management network: the physical networking infras-

tructure used by the controller node to manage
the OpenStack cloud services running on the other
nodes.

(vi) Instance/tunnel network (or data network): the phys-
ical network infrastructure connecting the network
node and the compute nodes, to deploy virtual tenant
networks and allow inter-VM traffic exchange and
VM connectivity to the cloud networking services
running in the network node.

(vii) External network: the physical infrastructure enabling
connectivity outside the data center.

OpenStack has a component specifically dedicated to
network service management: this component, formerly
known as Quantum, was renamed as Neutron in the Havana
release. Neutron decouples the network abstractions from the
actual implementation and provides administrators and users
with a flexible interface for virtual network management.
The Neutron server is centralized and typically runs in the
controller node. It stores all network-related information
and implements the virtual network infrastructure in a
distributed and coordinated way. This allows Neutron to
transparently manage multitenant networks across multiple
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compute nodes and to provide transparent VM mobility
within the data center.

Neutron’s main network abstractions are

(i) network, a virtual layer 2 segment;
(ii) subnet, a layer 3 IP address space used in a network;
(iii) port, an attachment point to a network and to one or

more subnets on that network;
(iv) router, a virtual appliance that performs routing

between subnets and address translation;
(v) DHCP server, a virtual appliance in charge of IP

address distribution;
(vi) security group, a set of filtering rules implementing a

cloud-level firewall.

A cloud customer wishing to implement a virtual infras-
tructure in the cloud is considered an OpenStack tenant and
can use the OpenStack dashboard to instantiate computing
and networking resources, typically creating a new network
and the necessary subnets, optionally spawning the related
DHCP servers, then starting as many VM instances as
required based on a given set of available images, and speci-
fying the subnet (or subnets) to which the VM is connected.
Neutron takes care of creating a port on each specified subnet
(and its underlying network) and of connecting the VM to
that port, while the DHCP service on that network (resident
in the network node) assigns a fixed IP address to it. Other
virtual appliances (e.g., routers providing global connectivity)
can be implemented directly in the cloud platform, by means
of containers and network namespaces typically defined in
the network node. The different tenant networks are isolated
by means of VLANs and network namespaces, whereas the
security groups protect the VMs from external attacks or
unauthorized access.When someVM instances offer services
that must be reachable by external users, the cloud provider
defines a pool of floating IP addresses on the external
network and configures the network node with VM-specific
forwarding rules based on those floating addresses.

OpenStack implements the virtual network infrastruc-
ture (VNI) exploiting multiple virtual bridges connecting
virtual and/or physical interfaces that may reside in different
network namespaces. To better understand such a complex
system, a graphical tool was developed to display all the
network elements used by OpenStack [24]. Two examples,
showing the internal state of a network node connected to
three virtual subnets and a compute node running two VMs,
are displayed in Figures 2 and 3, respectively.

Each node runs OVS-based integration bridge named
br-int and, connected to it, an additional OVS bridge for
each data center physical network attached to the node.
So the network node (Figure 2) includes br-tun for the
instance/tunnel network and br-ex for the external network.
A compute node (Figure 3) includes br-tun only.

Layer 2 virtualization and multitenant isolation on the
physical network can be implemented using either VLANs
or layer 2-in-layer 3/4 tunneling solutions, such as Virtual
eXtensible LAN (VXLAN) orGeneric Routing Encapsulation
(GRE), which allow extending the local virtual networks also

to remote data centers [25]. The examples shown in Figures
2 and 3 refer to the case of tenant isolation implemented
with GRE tunnels on the instance/tunnel network. Whatever
virtualization technology is used in the physical network,
its virtual networks must be mapped into the VLANs used
internally by Neutron to achieve isolation. This is performed
by taking advantage of the programmable features available
in OVS through the insertion of appropriate OpenFlow
mapping rules in br-int and br-tun.

Virtual bridges are interconnected by means of either
virtual Ethernet (veth) pairs or patch port pairs, consisting
of two virtual interfaces that act as the endpoints of a pipe:
anything entering one endpoint always comes out on the
other side.

From the networking point of view the creation of a new
VM instance involves the following steps:

(i) The OpenStack scheduler component running in the
controller node chooses the compute node that will
host the VM.

(ii) A tap interface is created for each VM network
interface to connect it to the Linux kernel.

(iii) A Linux Bridge dedicated to each VM network inter-
face is created (in Figure 3 two of them are shown)
and the corresponding tap interface is attached to it.

(iv) A veth pair connecting the new Linux Bridge to the
integration bridge is created.

The veth pair clearly emulates the Ethernet cable that would
connect the two bridges in real life. Nonetheless, why the
new Linux Bridge is needed is not intuitive, as the VM’s tap
interface could be directly attached to br-int. In short, the
reason is that the antispoofing rules currently implemented
by Neutron adopt the native Linux kernel filtering functions
(netfilter) applied to bridged tap interfaces, which work only
under Linux Bridges. Therefore, the Linux Bridge is required
as an intermediate element to interconnect the VM to the
integration bridge.The security rules are applied to the Linux
Bridge on the tap interface that connects the kernel-level
bridge to the virtual Ethernet port of theVM running in user-
space.

4. Experimental Setup

The previous section makes the complexity of the OpenStack
virtual network infrastructure clear. To understand optimal
design strategies in terms of network performance it is of
great importance to analyze it under critical traffic conditions
and assess the maximum sustainable packet rate under
different application scenarios. The goal is to isolate as much
as possible the level of performance of the main OpenStack
network components and determine where the bottlenecks
are located, speculating on possible improvements. To this
purpose, a test-bed including a controller node, one or two
compute nodes (depending on the specific experiment), and
a network node was deployed and used to obtain the results
presented in the following. In the test-bed each compute node
runs KVM, the native Linux VMHypervisor, and is equipped
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Figure 2: Network elements in an OpenStack network node connected to three virtual subnets. Three OVS bridges (red boxes) are
interconnected by patch port pairs (orange boxes). br-ex is directly attached to the external network physical interface (eth0), whereas GRE
tunnel is established on the instance/tunnel network physical interface (eth1) to connect br-tun with its counterpart in the compute node. A
number of br-int ports (light-green boxes) are connected to four virtual router interfaces and three DHCP servers. An additional physical
interface (eth2) connects the network node to the management network.

with 8GB of RAM and a quad-core processor enabled to
hyperthreading, resulting in 8 virtual CPUs.

The test-bed was configured to implement three possible
use cases:

(1) A typical single tenant cloud computing scenario.
(2) A multitenant NFV scenario with dedicated network

functions.
(3) A multitenant NFV scenario with shared network

functions.

For each use case multiple experiments were executed as
reported in the following. In the various experiments typ-
ically a traffic source sends packets at increasing rate to
a destination that measures the received packet rate and
throughput. To this purpose the RUDE & CRUDE tool was
used, for both traffic generation and measurement [26].

In some cases, the Iperf3 tool was also added to generate
background traffic at a fixed data rate [27]. All physical
interfaces involved in the experiments were Gigabit Ethernet
network cards.

4.1. Single Tenant Cloud Computing Scenario. This is the
typical configuration where a single tenant runs one or
multiple VMs that exchange traffic with one another in
the cloud or with an external host, as shown in Figure 4.
This is a rather trivial case of limited general interest but
is useful to assess some basic concepts and pave the way
to the deeper analysis developed in the second part of this
section. In the experiments reported, asmentioned above, the
virtualization Hypervisor was always KVM. A scenario with
OpenStack running the cloud environment and a scenario
without OpenStack were considered to assess some general
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Figure 3: Network elements in an OpenStack compute node running two VMs. Two Linux Bridges (blue boxes) are attached to the VM tap
interfaces (green boxes) and connected by virtual Ethernet pairs (light-blue boxes) to br-int.

comparison and allow a first isolation of the performance
degradation due to the individual building blocks, in par-
ticular Linux Bridge and OVS. The experiments report the
following cases:

(1) OpenStack scenario: it adopts the standardOpenStack
cloud platform, as described in the previous section,
with two VMs, respectively, acting as sender and
receiver. In particular, the following setups were
tested:

(1.1) A single compute node executing two colocated
VMs.

(1.2) Two distinct compute nodes, each executing a
VM.

(2) Non-OpenStack scenario: it adopts physical hosts
running Linux-Ubuntu server and KVMHypervisor,
using either OVS or Linux Bridge as a virtual switch.
The following setups were tested:

(2.1) One physical host executing two colocated
VMs, acting as sender and receiver and directly
connected to the same Linux Bridge.

(2.2) The same setup as the previous one, but with
OVS bridge instead of a Linux Bridge.

(2.3) Two physical hosts: one executing the sender
VM connected to an internal OVS and the other
natively acting as the receiver.



Journal of Electrical and Computer Engineering 7

Single tenant 

Customer VM

Virtual switch

External host

Figure 4: Reference logical architecture of a single tenant virtual
infrastructure with 5 hosts: 4 hosts are implemented as VMs in
the cloud and are interconnected via the OpenStack layer 2 virtual
infrastructure; the 5th host is implemented by a physical machine
placed outside the cloud but still connected to the same logical LAN.

Tenant 2

Virtual
router

Tenant 1

Customer VM DPI

· · ·

Tenant N

Figure 5: Multitenant NFV scenario with dedicated network func-
tions tested on the OpenStack platform.

4.2. Multitenant NFV Scenario with Dedicated Network Func-
tions. Themultitenant scenariowewant to analyze is inspired
by a simple NFV case study, as illustrated in Figure 5: each
tenant’s service chain consists of a customer-controlled VM
followed by a dedicated deep packet inspection (DPI) virtual
appliance and a conventional gateway (router) connecting the
customer LAN to the public Internet. The DPI is deployed
by the service operator as a separate VM with two network
interfaces, running a traffic monitoring application based on
the nDPI library [28]. It is assumed that the DPI analyzes
the traffic profile of the customers (source and destination IP
addresses and ports, application protocol, etc.) to guarantee
the matching with the customer service level agreement
(SLA), a practice that is rather common among Internet
service providers to enforce network security and traffic
policing. The virtualization approach executing the DPI in
a VM makes it possible to easily configure and adapt the
inspection function to the specific tenant characteristics. For
this reason every tenant has its own DPI with dedicated con-
figuration. On the other hand the gateway has to implement
a standard functionality and is shared among customers. It
is implemented as a virtual router for packet forwarding and
NAT operations.

The implementation of the test scenarios has been done
following the OpenStack architecture. The compute nodes
of the cluster run the VMs, while the network node runs
the virtual router within a dedicated network namespace. All
layer 2 connections are implemented by a virtual switch (with
proper VLAN isolation) distributed in both the compute and
network nodes. Figure 6 shows the view provided by the
OpenStack dashboard, in the case of 4 tenants simultaneously
active, which is the one considered for the numerical results
presented in the following. The choice of 4 tenants was made
to provide meaningful results with an acceptable degree of
complexity, without lack of generality. As results show this is
enough to put the hardware resources of the compute node
under stress and therefore evaluate performance limits and
critical issues.

It is very important to outline that the VM setup shown
in Figure 5 is not commonly seen in a traditional cloud
computing environment. The VMs usually behave as single
hosts connected as endpoints to one or more virtual net-
works, with one single network interface andnopass-through
forwarding duties. In NFV the virtual network functions
(VNFs) often perform actions that require packet forwarding.
NetworkAddress Translators (NATs),DeepPacket Inspectors
(DPIs), and so forth all belong to this category. If such
VNFs are hosted in VMs the result is that VMs in the
OpenStack infrastructure must be allowed to perform packet
forwarding which goes against the typical rules implemented
for security reasons in OpenStack. For instance, when a
new VM is instantiated it is attached to a Linux Bridge to
which filtering rules are applied with the goal of avoiding
that the VM sends packet with MAC and IP addresses
that are not the ones allocated to the VM itself. Clearly
this is an antispoofing rule that makes perfect sense in a
normal networking environment but impairs the forwarding
of packets originated by another VM as is the case of the NFV
scenario. In the scenario considered here, it was therefore
necessary to permanently modify the filtering rules in the
Linux Bridges, by allowing, within each tenant slice, packets
coming from or directed to the customer VM’s IP address to
pass through the Linux Bridges attached to the DPI virtual
appliance. Similarly the virtual router is usually connected
just to one LAN. Therefore its NAT function is configured
for a single pool of addresses. This was also modified and
adapted to serve the whole set of internal networks used in
the multitenant setup.

4.3. Multitenant NFV Scenario with Shared Network Func-
tions. We finally extend our analysis to a set of multitenant
scenarios assuming different levels of shared VNFs, as illus-
trated in Figure 7. We start with a single VNF, that is, the
virtual router connecting all tenants to the external network
(Figure 7(a)). Then we progressively add a shared DPI
(Figure 7(b)), a shared firewall/NAT function (Figure 7(c)),
and a shared traffic shaper (Figure 7(d)).The rationale behind
this last group of setups is to evaluate how NFV deployment
on top of an OpenStack compute node performs under a
realistic multitenant scenario where traffic flows must be
processed by a chain of multiple VNFs.The complexity of the
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Figure 6: The OpenStack dashboard shows the tenants virtual networks (slices). Each slice includes VM connected to an internal network
(InVMnet𝑖) and a second VM performing DPI and packet forwarding between InVMnet𝑖 and DPInet𝑖. Connectivity with the public Internet
is provided for all by the virtual router in the bottom-left corner.

virtual network path inside the compute node for the VNF
chaining of Figure 7(d) is displayed in Figure 8. The peculiar
nature of NFV traffic flows is clearly shown in the figure,
where packets are being forwarded multiple times across br-
int as they enter and exit the multiple VNFs running in the
compute node.

5. Numerical Results

5.1. Benchmark Performance. Before presenting and dis-
cussing the performance of the study scenarios described
above, it is important to set some benchmark as a reference
for comparison. This was done by considering a back-to-
back (B2B) connection between two physical hosts, with the

same hardware configuration used in the cluster of the cloud
platform.

The former host acts as traffic generator while the latter
acts as traffic sink. The aim is to verify and assess the
maximum throughput and sustainable packet rate of the
hardware platform used for the experiments. Packet flows
ranging from 103 to 105 packets per second (pps), for both
64- and 1500-byte IP packet sizes, were generated.

For 1500-byte packets, the throughput saturates to about
970Mbps at 80Kpps. Given that the measurement does not
consider the Ethernet overhead, this limit is clearly very close
to the 1 Gbps which is the physical limit of the Ethernet
interface. For 64-byte packets, the results are different since
the maximum measured throughput is about 150Mbps.
Therefore the limiting factor is not the Ethernet bandwidth
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Figure 7: Multitenant NFV scenario with shared network functions tested on the OpenStack platform.

but the maximum sustainable packet processing rate of the
computer node. These results are shown in Figure 9.

This latter limitation, related to the processing capabilities
of the hosts, is not very relevant to the scopes of this work.
Indeed it is always possible, in a real operation environment,
to deploy more powerful and better dimensioned hardware.
This was not possible in this set of experiments where the
cloud cluster was an existing research infrastructure which
could not be modified at will. Nonetheless the objective
here is to understand the limitations that emerge as a
consequence of the networking architecture, resulting from
the deployment of the VNFs in the cloud, and not of the
specific hardware configuration. For these reasons as well as
for the sake of brevity, the numerical results presented in the
followingmostly focus on the case of 1500-byte packet length,
which will stress the network more than the hosts in terms of
performance.

5.2. Single Tenant Cloud Computing Scenario. The first series
of results is related to the single tenant scenario described in
Section 4.1. Figure 10 shows the comparison of OpenStack

setups (1.1) and (1.2) with the B2B case. The figure shows
that the different networking configurations play a crucial
role in performance. Setup (1.1) with the two VMs colocated
in the same compute node clearly is more demanding since
the compute node has to process the workload of all the
components shown in Figure 3, that is, packet generation and
reception in two VMs and layer 2 switching in two Linux
Bridges and two OVS bridges (as a matter of fact the packets
are both outgoing and incoming at the same time within the
same physical machine). The performance starts deviating
from the B2B case at around 20Kpps, with a saturating effect
starting at 30Kpps. This is the maximum packet processing
capability of the compute node, regardless of the physical
networking capacity, which is not fully exploited in this
particular scenario where the traffic flow does not leave the
physical host. Setup (1.2) splits the workload over two phys-
ical machines and the benefit is evident. The performance is
almost ideal, with a very little penalty due to the virtualization
overhead.

These very simple experiments lead to an important
conclusion that motivates the more complex experiments
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Figure 8: A view of the OpenStack compute node with the tenant VM and the VNFs installed including the building blocks of the virtual
network infrastructure. The red dashed line shows the path followed by the packets traversing the VNF chain displayed in Figure 7(d).

0

200

400

600

800

1000

100

Th
ro

ug
hp

ut
 re

ce
iv

ed
 (M

bp
s)

Traffic generated (Kpps)

Ideal, 1500 bytes
B2B, 1500 bytes
B2B, 64 bytes

0 10 20 30 40 50 60 70 80 90
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for 64- and 1500-byte packets. Comparison with ideal 1500-byte
packet throughput.

that follow: the standard OpenStack virtual network imple-
mentation can show significant performance limitations. For
this reason the first objective was to investigate where the
possible bottleneck is, by evaluating the performance of the
virtual network components in isolation. This cannot be
done with OpenStack in action; therefore ad hoc virtual
networking scenarios were implemented deploying just parts

Tr
affi

c r
ec

ei
ve

d 
(K

pp
s)

Traffic generated (Kpps)

B2B
2 VMs in 2 compute nodes
2 VMs in 1 compute node

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

Figure 10: Received versus generated packet rate in the OpenStack
scenario setups (1.1) and (1.2), with 1500-byte packets.

of the typicalOpenStack infrastructure.These are calledNon-
OpenStack scenarios in the following.

Setups (2.1) and (2.2) compare Linux Bridge, OVS, and
B2B, as shown in Figure 11. The graphs show interesting and
important results that can be summarized as follows:

(i) The introduction of some virtual network component
(thus introducing the processing load of the physical
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Figure 11: Received versus generated packet rate in the Non-
OpenStack scenario setups (2.1) and (2.2), with 1500-byte packets.

hosts in the equation) is always a cause of perfor-
mance degradation but with very different degrees of
magnitude depending on the virtual network compo-
nent.

(ii) OVS introduces a rather limited performance degra-
dation at very high packet rate with a loss of some
percent.

(iii) Linux Bridge introduces a significant performance
degradation starting well before the OVS case and
leading to a loss in throughput as high as 50%.

The conclusion of these experiments is that the presence of
additional Linux Bridges in the compute nodes is one of the
main reasons for the OpenStack performance degradation.
Results obtained from testing setup (2.3) are displayed in
Figure 12 confirming that with OVS it is possible to reach
performance comparable with the baseline.

5.3. Multitenant NFV Scenario with Dedicated Network Func-
tions. The second series of experiments was performed with
reference to the multitenant NFV scenario with dedicated
network functions described in Section 4.2. The case study
considers that different numbers of tenants are hosted in the
same compute node, sending data to a destination outside the
LAN, therefore beyond the virtual gateway. Figure 13 shows
the packet rate actually received at the destination for each
tenant, for different numbers of simultaneously active tenants
with 1500-byte IP packet size. In all cases the tenants generate
the same amount of traffic, resulting in as many overlapping
curves as the number of active tenants. All curves grow
linearly as long as the generated traffic is sustainable, and
then they saturate. The saturation is caused by the physical
bandwidth limit imposed by the Gigabit Ethernet interfaces
involved in the data transfer. In fact, the curves become flat
as soon as the packet rate reaches about 80Kpps for 1 tenant,
about 40Kpps for 2 tenants, about 27Kpps for 3 tenants, and
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Figure 12: Received versus generated packet rate in the Non-
OpenStack scenario setup (2.3), with 1500-byte packets.
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Figure 13: Received versus generated packet rate for each tenant (T1,
T2, T3, and T4), for different numbers of active tenants, with 1500-
byte IP packet size.

about 20Kpps for 4 tenants, that is, when the total packet rate
is slightly more than 80Kpps, corresponding to 1 Gbps.

In this case it is worth investigating what happens for
small packets, therefore putting more pressure on the pro-
cessing capabilities of the compute node. Figure 14 reports
the 64-byte packet size case. As discussed previously in
this case the performance saturation is not caused by the
physical bandwidth limit, but by the inability of the hardware
platform to cope with the packet processing workload (in fact
the single compute node has to process the workload of all
the components involved, including packet generation and
DPI in the VMs of each tenant, as well as layer 2 packet
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Figure 14: Received versus generated packet rate for each tenant (T1,
T2, T3, and T4), for different numbers of active tenants, with 64-byte
IP packet size.

processing and switching in three Linux Bridges per tenant
and two OVS bridges). As could be easily expected from
the results presented in Figure 9, the virtual network is not
able to use the whole physical capacity. Even in the case of
just one tenant, a total bit rate of about 77Mbps, well below
1Gbps, is measured. Moreover this penalty increases with the
number of tenants (i.e., with the complexity of the virtual
system). With two tenants the curve saturates at a total of
approximately 150Kpps (75 × 2), with three tenants at a total
of approximately 135Kpps (45 × 3), and with four tenants at
a total of approximately 120Kpps (30 × 4).This is to say that
an increase of one unit in the number of tenants results in a
decrease of about 10% in the usable overall network capacity
and in a similar penalty per tenant.

Given the results of the previous section, it is likely
that the Linux Bridges are responsible for most of this
performance degradation. In Figure 15 a comparison is pre-
sented between the total throughput obtained under normal
OpenStack operations and the corresponding total through-
put measured in a custom configuration where the Linux
Bridges attached to each VM are bypassed. To implement the
latter scenario, the OpenStack virtual network configuration
running in the compute node was modified by connecting
each VM’s tap interface directly to the OVS integration
bridge. The curves show that the presence of Linux Bridges
in normal OpenStack mode is indeed causing performance
degradation, especially when the workload is high (i.e., with
4 tenants). It is interesting to note also that the penalty related
to the number of tenants is mitigated by the bypass, but not
fully solved.

5.4. Multitenant NFV Scenario with Shared Network Func-
tions. The third series of experiments was performed with
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Figure 15: Total throughput measured versus total packet rate
generated by 2 to 4 tenants for 64-byte packet size. Comparison
between normal OpenStack mode and Linux Bridge bypass with 3
and 4 tenants.
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(T1) when four tenants are active, with 1500-byte IP packet size and
different levels of VNF chaining as per Figure 7. DPI: deep packet
inspection; FW: firewall/NAT; TS: traffic shaper; VR: virtual router;
DEST: destination.

reference to the multitenant NFV scenario with shared net-
work functions described in Section 4.3. In each experiment,
four tenants are equally generating increasing amounts of
traffic, ranging from 1 to 100Kpps. Figures 16 and 17 show the
packet rate actually received at the destination from tenant
T1 as a function of the packet rate generated by T1, for
different levels of VNF chaining, with 1500- and 64-byte
IP packet size, respectively. The measurements demonstrate
that, for the 1500-byte case, adding a single sharedVNF (even
one that executes heavy packet processing, such as the DPI)
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(T1) when four tenants are active, with 64-byte IP packet size and
different levels of VNF chaining as per Figure 7. DPI: deep packet
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does not significantly impact the forwarding performance
of the OpenStack compute node for a packet rate below
50Kpps (note that the physical capacity is saturated by the
flows simultaneously generated from four tenants at around
20Kpps, similarly to what happens in the dedicated VNF
case of Figure 13). Then the throughput slowly degrades. In
contrast, when 64-byte packets are generated, even a single
VNF can cause heavy performance losses above 25Kpps,
when the packet rate reaches the sustainability limit of the
forwarding capacity of our compute node. Independently of
the packet size, adding another VNF with heavy packet pro-
cessing (the firewall/NAT is configuredwith 40,000matching
rules) causes the performance to rapidly degrade. This is
confirmedwhen a fourthVNF is added to the chain, although
for the 1500-byte case the measured packet rate is the one
that saturates the maximum bandwidth made available by
the traffic shaper. Very similar performance, which we do not
show here, was measured also for the other three tenants.

To further investigate the effect of VNF chaining, we
considered the case when traffic generated by tenant T1 is not
subject to VNF chaining (as in Figure 7(a)), whereas flows
originated from T2, T3, and T4 are processed by four VNFs
(as in Figure 7(d)). The results presented in Figures 18 and
19 demonstrate that, owing to the traffic shaping function
applied to the other tenants, the throughput of T1 can reach
values not very far from the case when it is the only active
tenant, especially for packet rates below 35Kpps.Therefore, a
smart choice of the VNF chaining and a careful planning of
the cloud platform resources could improve the performance
of a given class of priority customers. In the same situation,we
measured the TCP throughput achievable by the four tenants.
As shown in Figure 20, we can reach the same conclusions as
in the UDP case.
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Figure 18: Received throughput versus generated packet rate for
each tenant (T1, T2, T3, and T4) when T1 does not traverse the VNF
chain of Figure 7(d), with 1500-byte IP packet size. Comparison
with the single tenant case. DPI: deep packet inspection; FW: fire-
wall/NAT; TS: traffic shaper; VR: virtual router; DEST: destination.
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Figure 19: Received throughput versus generated packet rate for
each tenant (T1, T2, T3, and T4) when T1 does not traverse the
VNF chain of Figure 7(d), with 64-byte IP packet size. Comparison
with the single tenant case. DPI: deep packet inspection; FW: fire-
wall/NAT; TS: traffic shaper; VR: virtual router; DEST: destination.

6. Conclusion

Network Function Virtualization will completely reshape the
approach of telco operators to provide existing as well as
novel network services, taking advantage of the increased
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flexibility and reduced deployment costs of the cloud com-
puting paradigm. In this work, the problem of evaluating
complexity and performance, in terms of sustainable packet
rate, of virtual networking in cloud computing infrastruc-
tures dedicated to NFV deployment was addressed. An
OpenStack-based cloud platform was considered and deeply
analyzed to fully understand the architecture of its virtual
network infrastructure. To this end, an ad hoc visual tool was
also developed that graphically plots the different functional
blocks (and related interconnections) put in place by Neu-
tron, theOpenStack networking service. Some exampleswere
provided in the paper.

The analysis brought the focus of the performance inves-
tigation on the two basic software switching elements natively
adopted by OpenStack, namely, Linux Bridge and Open
vSwitch. Their performance was first analyzed in a single
tenant cloud computing scenario, by running experiments on
a standard OpenStack setup as well as in ad hoc stand-alone
configurations built with the specific purpose of observing
them in isolation. The results prove that the Linux Bridge is
the critical bottleneck of the architecture, whileOpen vSwitch
shows an almost optimal behavior.

The analysis was then extended to more complex scenar-
ios, assuming a data center hosting multiple tenants deploy-
ing NFV environments. The case studies considered first a
simple dedicated deep packet inspection function, followed
by conventional address translation and routing, and then
a more realistic virtual network function chaining shared
among a set of customers with increased levels of complexity.
Results about sustainable packet rate and throughput perfor-
mance of the virtual network infrastructure were presented
and discussed.

The main outcome of this work is that an open-source
cloud computing platform such as OpenStack can be effec-
tively adopted to deploy NFV in network edge data centers
replacing legacy telco central offices. However, this solution
poses some limitations to the network performance which
are not simply related to the hosting hardware maximum
capacity but also to the virtual network architecture imple-
mented by OpenStack. Nevertheless, our study demonstrates
that some of these limitations can be mitigated with a careful
redesign of the virtual network infrastructure and an optimal
planning of the virtual network functions. In any case, such
limitations must be carefully taken into account for any
engineering activity in the virtual networking arena.

Obviously, scaling up the system and distributing the
virtual network functions among several compute nodes will
definitely improve the overall performance. However, in this
case the role of the physical network infrastructure becomes
critical, and an accurate analysis is required in order to isolate
the contributions of virtual and physical components. We
plan to extend our study in this direction in our future work,
after properly upgrading our experimental test-bed.
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