
Dynamic Service Chain Composition in

Virtualised Environment

by

Wajdi Hajji

A Doctoral Thesis

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

28th October 2018

Copyright 2018 Wajdi Hajji

Abstract

Network Function Virtualisation (NFV) has contributed to improving the flex-

ibility of network service provisioning and reducing the time to market of new

services. NFV leverages the virtualisation technology to decouple the software im-

plementation of network appliances from the physical devices on which they run.

However, with the emergence of this paradigm, providing data centre applications

with an adequate network performance becomes challenging. For instance, virtu-

alised environments cause network congestion, decrease the throughput and hurt

the end user experience. Moreover, applications usually communicate through

multiple sequences of virtual network functions (VNFs), aka service chains, for

policy enforcement and performance and security enhancement, which increases

the management complexity at to the network level.

To address this problematic situation, existing studies have proposed high-level

approaches of VNFs chaining and placement that improve service chain perform-

ance. They consider the VNFs as homogenous entities regardless of their specific

characteristics. They have overlooked their distinct behaviour toward the traffic

load and how their underpinning implementation can intervene in defining resource

usage. Our research aims at filling this gap by finding out particular patterns on

production and widely used VNFs. And proposing a categorisation that helps in

reducing network latency at the chains.

Based on experimental evaluation, we have classified firewalls, NAT, IDS/IPS,

Flow monitors into I/O- and CPU-bound functions. The former category is mainly

sensitive to the throughput, in packets per second, while the performance of the

latter is primarily affected by the network bandwidth, in bits per second. By doing

so, we correlate the VNF category with the traversing traffic characteristics and

this will dictate how the service chains would be composed. We propose a heuristic

called Natif, for a VNF-Aware VNF insTantIation and traFfic distribution scheme,

to reconcile the discrepancy in VNF requirements based on the category they

belong to and to eventually reduce network latency. We have deployed Natif in

an OpenStack-based environment and have compared it to a network-aware VNF

composition approach. Our results show a decrease in latency by around 188% on

average without sacrificing the throughput.

ii

Acknowledgements

I would like to thank Loughborough University and Liverpool John Moores Uni-

versity for supporting me during my PhD study.

I am grateful to my supervisors, Dr Posco Tso, Dr Iain Phillips, and Prof

Qi Shi, for the help and guidance. I cannot forget how collaborative was the

administrative staff in the Universities above, Tricia Waterson, Elizabeth Hoare,

Bill Atherton, and Judith Poulton.

Thanks to my colleagues Akeel, Raul, Thiago for their kindness. My best

wishes to them.

My gratitude goes also to my friend Slim, who has helped me in developing

my career.

I would like to thank Ramzi, Riadh, Mohamed, my family, and my parents for

their kind words and support.

iii

Publications

Conference Proceedings

(i) Jeremy Singer, Herry Herry, Philip J Basford, Wajdi Hajji, Colin S Perkins,

Fung Po Tso, Dimitrios Pezaros, Robert D. Mullins, Eiko Yoneki, Simon J.

Cox, and Steven J. Johnston. “Next Generation Single Board Clusters”.

In:Network Operations and Management Symposium (NOMS), 2018 IEEE

/ IFIP (Accepted). IEEE.

(ii) Wajdi Hajji, Thiago Lopes Genez, Fung Po Tso, Lin Cui, and Iain Phillips.

“Dynamic Network Function Chain Composition for Mitigating Network

Latency”. In:Computers and Communications (ISCC), 2018 IEEE Sym-

posium on. IEEE. 2018.

(iii) Gabor Kecskemeti, Wajdi Hajji, and Fung Po Tso. “Modelling Low Power

Compute Clusters for Cloud Simulation”. In:Parallel, Distributed and Net-

work based Processing (PDP), 2017 25th Euromicro International Conference

on. IEEE. 2017, pp. 3945.

(iv) Wajdi Hajji, Fung Po Tso, Lin Cui, and Dimitrios P Pezaros. “Experi-

mental evaluation of SDN-controlled, joint consolidation of policies and vir-

tual machines”. In:Computers and Communications (ISCC), 2017 IEEE

Symposium on. IEEE. 2017, pp. 13381343.

Journal Papers

(i) Wajdi Hajji and Fung Po Tso. “Understanding the performance of low

power Raspberry Pi Cloud for big data”. In Electronics 5.2 (2016), p. 29.

iv

Contents

Abstract ii

Acknowledgements iii

Publications iv

1 Introduction 1

1.1 Motivation . 1

1.2 Research hypothesis and objectives 5

1.3 Original contributions . 5

1.4 Thesis overview . 6

2 Background and Key Concepts 8

2.1 Virtualisation . 8

2.2 Software Defined Networks . 9

2.3 Network Function Virtualisation . 11

2.3.1 NFV considerations . 11

2.3.2 NFV architecture . 12

2.4 Service Function Chaining . 12

2.4.1 SFC definitions . 13

2.4.2 SFC architecture . 14

2.4.3 A catalogue of middleboxes 15

2.5 Summary . 18

3 Literature Review 19

3.1 Data centre networks . 20

3.2 Network latency . 24

3.3 Service chains . 26

3.4 Summary . 32

4 Research Methodology 33

4.1 Finding system characteristics from testbed experiments 33

v

4.1.1 Studying the virtualisation impact 33

4.1.2 Characterising the NF performance 34

4.1.3 Running big data applications on a cluster of IoT devices . . 35

4.2 Mathematical modelling . 35

4.3 Tesbted evaluation . 36

4.4 Limitations of the method . 37

4.5 Other methods . 38

4.5.1 Simulation . 38

4.5.2 Emulation . 38

4.6 Summary . 39

5 Virtualisation and NF Characterisation 40

5.1 Virtual Network Function (VNF) 40

5.1.1 Experiment Setup . 40

5.1.2 Experiment Results . 42

5.2 Network Function performance bottlenecks 43

5.3 Network Function Software implementation 46

5.4 Network Function reordering in the network chain 47

5.5 Proof-of-concept experiments . 48

5.5.1 Idea . 49

5.5.2 Method . 49

5.5.3 Experiment set-up . 50

5.5.4 Results and conclusion . 54

5.6 Summary . 56

6 Dynamic Network Function Composition 57

6.1 Problem formulation and modelling 57

6.1.1 Problem notations . 57

6.1.2 Problem definition . 61

6.2 Natif ’s mechanisms . 62

6.2.1 Network Function instantiation 63

6.2.2 Traffic distribution . 65

6.2.3 Traffic prediction . 66

6.3 Conclusions . 67

7 Experimental Evaluation 68

7.1 System design and implementation 68

7.1.1 System architecture . 68

7.1.2 Controller modules . 68

7.2 Experimental evaluation . 70

7.2.1 Testbed experiment . 70

7.2.2 Network performance evaluation 71

7.2.3 Computational utilisation 73

7.2.4 Algorithm evaluation . 73

7.2.5 Prediction model evaluation 75

7.3 Conclusion . 76

8 Conclusions and Future Work 77

8.1 Summary . 77

8.2 Conclusions . 77

8.3 Future work . 78

8.3.1 Application performance benchmarking on Raspberry Pi . . 78

8.3.2 Service Chains Cloning and Placement in the Context of

Edge Computing . 79

References 81

A Understanding the Performance of Low Power Raspberry Pi Cloud

for Big Data 90

A.1 Experiment Setup . 90

A.1.1 Single Node Experiments . 91

A.1.2 Cluster Experiments . 91

A.2 Experiment Results . 93

A.2.1 Single Node Performance . 93

A.2.2 Spark and HDFS in the Native Environment 94

A.2.3 Spark and HDFS in Docker-Based Virtualised Environment 98

A.3 Summary . 101

B Experimental Evaluation of SDN-Controlled, Joint Consolidation

of Policies and Virtual Machines 103

B.1 Sync Algorithm . 103

B.1.1 Get Communicating VM Groups 104

B.1.2 Policy Migration . 104

B.1.3 VM Migration . 105

B.2 System Design and Implementation 105

B.2.1 System Architecture . 105

B.2.2 Controller Modules . 106

B.2.3 Communication . 108

B.3 Experimental Evaluation . 109

B.3.1 Experiment Set-up . 109

B.3.2 Group Formation . 110

B.3.3 Overall Performance Results 110

B.3.4 Resources Utilisation . 113

B.4 Summary . 113

List of Figures

1.1 Service function chains in data centre [1] 2

1.2 Latency traps . 3

1.3 Traffic changing effects of network functions. NF m1 doubles the

traffic volume while m2 cuts it in half [2] 3

1.4 VNF performance bottlenecks . 4

2.1 Logical layers in SDN [3] . 10

2.2 NFV architecture [?] . 13

2.3 Service classifier [4] . 15

2.4 SFC architecture [5] . 15

3.1 VNF placement problem: find a location of each VNF in the chain

on the available servers according to a specific goal, e.g., latency,

bandwidth, resource utilisation, and number of forwarding rules . . 27

5.1 Network Topology in pfSense Experiment 41

5.2 Latency measurements . 44

5.3 Netperf test with virtual VNF (pfSense FW) 45

5.4 Different impacts of high packet rate and throughput on the re-

sources utilisation at network functions 45

5.5 NF implementation impact on the CPU usage 46

5.6 Parallel “Detect” in Suricata IDS 47

5.7 Impact of VNF order on the end-to-end delay of network chains.

However, we ignore the implementation of the VNF. 48

5.8 A particular use case where N flows belong to SH traffic category

and M flows to FL category – see “Traffic characteristics” for SH

and FL meaning . 50

5.9 Traffic traversing a service chain composed of a NAT and an IDS . 51

5.10 Applied traffic: FHSH – Packets at high rate are sent to the NFs,

extreme network conditions. Traffic distribution takes place to re-

duce or avoid the packet loss and then to improve the network

latency and throughput as much as possible 52

ix

5.12 Applied traffic: FLSH – Same objective as for the traffic category

FHSL . 52

5.11 Applied traffic: FHSL – Traffic at high and low packet rates, the

traffic distribution plays crucial role to reduce latency and increase

throughput, and also to reduce the packet loss 53

5.13 Applied traffic: FLSL – The network conditions are ideal (traffic

at low rate), the objective of traffic distribtion is to stabilise the

network performance . 53

5.14 Packet loss has been significantly reduced for FH and SH traffics.

We must note that these results have been conducted as a proof

of concept for proving the usability of our approach. We stressed

our experiment environment to highlight the benefit of our idea.

So in real data centre, resources will be sufficiently supplied to the

infrastructure and we will not that high packet loss. 54

5.15 Network latency decreases for all kinds of traffic - except for FLSL

where it remains the same . 54

5.16 Network throughput increases more for FH traffic 55

6.1 Chain sub-branches . 60

6.2 Algorithms application . 66

7.1 OpenStack setup . 69

7.2 System design . 70

7.3 RTT (ms) . 71

7.4 Throughput (Mbps) . 72

7.5 CPU and memory usage captured at the compute node where all

the VNFs are running . 73

7.6 Runtime and CPU usage of the three algorithms while performing

VNF instantation and flow mapping. G, SB, and N refer to Greedy,

StratosB, and Natif, respectively . 74

7.7 Arima prediction mode accuracy . 76

8.1 Differences between Container, Unikernel, and Virtual Machine [6] . 79

8.2 Simple scenario of chain cloning and placement 80

A.1 Cluster Layout. (a) Native set-up; (b) Virtualised set-up. 92

A.2 Single server performance. (a) Server throughput; (b) Network

throughput; (c) CPU utilisation. 93

A.3 CPU and memory usage. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file. 95

A.4 Network transmission (TX) and reception (RX) rates. (a) 1 GB

file; (b) 4 GB file; (c) 6 GB file. 96

A.5 Energy measurement in a Raspberry Pi Worker node in WordCount

job. (a) WordCount Job (1-4-6 GB files); (b) WordCount Job (1-

4-8 GB files). 97

A.6 Energy measurement in a Raspberry Pi Worker node in Sort job.

(a) Sort job (1-4-6 GB files); (b) Sort job (1-4-8 GB files). 97

A.7 CPU and memory usage in WordCount job. (a) 1 GB file; (b) 4

GB file; (c) 6 GB file. 99

A.8 CPU and memory usage in Sort job. (a) 1 GB file; (b) 4 GB file;

(c) 6 GB file. 99

A.9 Transmission (TX) and reception (RX) rates in WordCount job.

(a) 1 GB file; (b) 4 GB file; (c) 6 GB file. 100

A.10 Transmission (TX) and reception (RX) rates in Sort job. (a) 1 GB

file; (b) 4 GB file; (c) 6 GB file. 100

A.11 Energy measurement in WordCount job. (a) 1 GB file; (b) 4 GB

file; (c) 6 GB file. 101

A.12 Energy measurement in Sort job. (a) 1 GB file; (b) 4 GB file; (c)

6 GB file. 101

B.1 Architecture design . 106

B.2 Group distribution . 109

B.3 Sync performance evaluated with growing number of flows, group

sizes in the three levels are 36, 31, 19, respectively. 109

B.4 Sync performance evaluated with growing number of VMs, group

sizes in the three levels are 4, 14, 19, respectively. 111

B.5 Sync performance evaluated with growing number of MBs, group

sizes in the three levels are 25, 21, 19, respectively. 111

B.6 Group average runtime measured with growing number of VMs,

Flows, and MBs . 113

List of Tables

2.1 Examples of middleboxes [7] . 16

3.1 Summary of efforts made in the area of data centre networks 22

3.2 Summary of some works tackling latency problem 25

3.3 Summary of service chains related works 29

5.1 Classification of studied VNFs . 47

A.1 Execution times for WordCount and Sort jobs in the Native Envir-

onment. 94

A.2 Execution times for WordCount and Sort jobs in Virtualised Envir-

onment. 98

xii

Chapter 1

Introduction

1.1 Motivation

A wide range of data centre applications are sensitive to latency, for example,

high-frequency trading [8], high-performance computing, RAM-Cloud [9–11], and

Online Data-Intensive (OLDI) [12]. As a result, a network performance degrad-

ation seen in these applications can risk user engagement and potential business

revenue [13]. It is reported that every 100ms of latency cost Amazon 1% in

sales [14].

In data centres, applications are typically communicating through a set net-

work functions (NFs) [15], as demonstrated in Fig. 1.1, which are, according to

IETF, “functional building blocks within a network infrastructure”, having “well-

defined external interfaces and a well-defined functional behavior. In practical

terms, a Network Function is today often a node or physical appliance”. NFs such

as firewall, proxies and WAN optimisers have become a critical part of today’s

data centres. They are essential in guaranteeing security and improving perform-

ance. A survey on Enterprise middlebox (a synonym of network appliance) in

2011 has revealed that the number of middleboxes was on par with the number

of layer-3 routers [16]. Also, these NFs are rarely being used in isolation, they

are commonly deployed in chains and are typically interposed between the com-

municating hosts [17, 18]. For instance, to fulfil changing policy requirements,

multiple NFs need to be dynamically chained in an ordered sequence for the deliv-

ery of end-to-end services. Nevertheless, being in composition, NFs can provoke

a mutual interference as they can change the volume of the processed traffic [2],

which can cause resource, such as network and CPU, bottlenecks in the chain.

As a result, network latency starts to build up and degrade the performance of

latency-sensitive applications [19].

NFV has facilitated the transformation of NFs to software applications running

1

Figure 1.1: Service function chains in data centre [1]

on vendor-independent commodity servers in virtual forms (Virtual Machines or

Containers), which provides flexibility in offering dynamic services fulfilling rapidly

changing user demands [3].

Whereas, in addition to the performance problem caused by the NF chaining,

virtualisation technology leveraged by NFV is considered one of the main reasons

behind network congestion at computational and network appliances. Fig. 1.2

shows four latency traps in a simple network comprising communicating hosts

(Virtual Machines (VMs)), a virtual network function, and a forwarding device

(switch). At point (1) the hypervisor on the physical host schedules the transmis-

sion of the packets to the server VMs. This has turned out to be a real problem in

Amazon EC2, and it causes large tail latency between EC2 instances [20]. At (2),

the physical host network stack has to fulfil I/O requests for multiple VMs, which

is another source of excessive latency [21]. Similarly, at (3) both traps described

2

VM1 VM2 VM3

Switch
(4) Switch
queuing

delay

(1) VM scheduling delayVirtualisation layer

Host OS

Virtualisation layer

(3) queuing delay

Virtualisation layer

(3) queuing delay

Virtual Network Function

(2) Host network

queuing delay

Figure 1.2: Latency traps

Figure 1.3: Traffic changing effects of network functions. NF m1 doubles the traffic
volume while m2 cuts it in half [2]

in (1) and (2) coexist since the network function is running in a virtual host such

as VM or LXC (Linux Containers). Lastly, (4) is where traffic can experience

queuing at switch. Also, VMs on the same physical host can contend for lim-

ited bandwidth available to that host ignoring the specific requirements of each

other [21].

In service composition, current studies tackle the latency problem in the service

chains by proposing high-level strategies managing the VNF instances without

considering their characteristics such as the ways they are handling the traffic

load. For example, VNF placement optimisation [22], VNF chaining [23, 24] and

VNF parallelisation [25] improve latency by shortening end-to-end paths. How-

ever, they see VNFs as black boxes and neglect their internal packet processing

characteristics.

VNFs are software applications running inside a virtualised environment. While

software performance is bounded by either I/O or CPU or both of them. In gen-

3

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35

>90% CPU
interrupts

>90% CPU
interrupts

<5% CPU
interrupts

<5% CPU interrupts

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

20kpps x 1400 bytes / NAT
20kpps x 8 bytes / NAT

20kpps x 1400 bytes / IDS
20kpps x 8 bytes / IDS

(a) CPU use at pfSense NAT and Snort IDS

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

Suricata/core(1)
Suricata/core(2)

Snort/core(1)
Snort/core(2)

(b) Multi-threaded Suricata IDS vs. single-
threaded implementation in Snort

Figure 1.4: VNF performance bottlenecks

eral, I/O bound application is when the completion time primarily depends on the

waiting time for input/output operations to complete. CPU-bound application is

when the completion time principally depends on the speed of central processor

or widely known as CPU.

We argue that VNFs are no exception. To demonstrate this, we have eval-

uated the resources usage at three VNFs, pfSense Network Address Translator

(NAT), Snort Intrusion Detection System (IDS), and Suricata IDS. Each one of

them is deployed on a Virtual Machine (VM) with 1Gbps vNIC, 1vCPU, and 1GB

RAM. Fig. 1.4a depicts a distinct CPU usage, and CPU interrupts activities at

pfSense NAT and Snort IDS despite being allocated similar resources and hand-

ling the same network traffic. This is because pfSense NAT is insensitive to the

packet payload since it only handles the packet header. At each packet arrival,

it calls its subroutine running in the user space which results in high CPU inter-

rupts (interrupt-driven I/O), hence I/O-bound. We have found that the effective

computation of pfSense NAT is only around 2% of the total CPU usage. In com-

parison, the Snort IDS, using community rules1, buffers and inspects the data

carried out in the packet payloads, a CPU-intensive task, hence CPU-bound. In-

terestingly, our experiments have also revealed that Suricata IDS, a multi-threaded

application, efficiently uses the CPU resources while Snort IDS, a single-threaded

implementation, only uses one core at a time, as shown in Fig. 1.4b.

To sum up, we have shown three main challenges in the current data centre

environments, namely, virtualisation overhead effect on the application network

performance, VNF chaining, and lack of exploiting the VNF proprieties in the

existing VNF management schemes. In next section, we, therefore, present our

research hypothesis and aims in investigating and addressing the problems above.

1https://www.snort.org/downloads/#rule-downloads

4

1.2 Research hypothesis and objectives

We aim to mitigate the network latency at the service chain, ordered or partially

ordered sequence of general network functions (NFs). This will have a signific-

ant impact of the network performance of latency-sensitive applications. For this

purpose, we aim to experimentally understand to what extent the virtualised en-

vironment can degrade NFs performance. On the other hand, unlike the existing

NF management approaches that neglect the NF characteristics [22][23][24][25],

we are looking for studying different types of NFs to find out a particular pattern

relating them or an interesting characterisation that can be exploited in the chain

composition and traffic steering. To do so, we leverage Software Defined Net-

works, Service Function Chaining, and NFV paradigms in designing testbed and

for preliminary assessment and solution implementation. Lastly, we demonstrate

how our research can be an extension of the state-of-the-art through showing the

advantage of its outcomes comparing with concurrent works.

We define the following aim and the corresponding objectives.

• Aim: Provide a novel VNFs characterisation that is able, where exploited,

to improve the service chain network performance.

In order to achieve the above aim. We proceed with the following steps.

– Study a set of open source and production VNFs, namely, pfSense NAT,

pfSense firewall, Snort IDS, Suricata IDS, and Open vSwitch as a traffic

monitoring VNF.

– Exploit the experimental study of the above VNFs in a mathematical

formulation and modelling of the VNF instantiation and traffic distri-

bution problem.

– Propose a heuristic for VNF-aware service chain composition.

– Implement the proposed solution in an OpenStack based testbed to

demonstrate its efficiency compared to a network-aware approach.

1.3 Original contributions

Contrary to the existing approaches that work on VNF composition, parallelisation

and placement. Ours consider the specificity of each VNF. The classification we

propose is inspired from the fact that any software application can belong to one or

both of these categories I/O- and CPU-bound. This observation is still applicable

on VNFs and we aim to exploit it in our chain composition. In this section, we

5

show how the research questions we pose lead to the main contribution of our

work.

• RQ1: How can we understand the virtualisation affect on the network func-

tions performance?

– Study the network performance of a production VNF, virtual firewall,

and compare its performance with its counterpart in bare-metal deploy-

ment.

• RQ2: Is it possible to classify the network functions based on their perform-

ance bottlenecks?

– We use the categorisation that applies on any software application,

which is I/O- versus CPU-bound. We also experimentally study open

source and production virtual network functions regarding 1) the im-

pact of the software implementation on their resource utilisation, 2)

their sensitivity to traffic load, and 3) how their order can impact the

performance of the service chain.

• RQ3: How does the experimental analysis of the network functions help in

improving the service chains network performance?

– We exploit the experimental knowledge to mathematically model the

virtual network function instantiation and traffic distribution problem.

Since the problem has been proved NP-hard, we design a heuristic that

correlates the network function and the traffic characteristics based on

the VNFs categorisation. We validate our approach through conducting

testbed experiments in production environment.

• RQ4: How does our research advance the state-of-the-art?

– Through the literature review, we have identified occasions to improve-

ments in the existing service chain composition schemes. Current stud-

ies in service composition neglect the particularities of network func-

tions, they instead treat them as black boxes. We highlight how our

research differs from the existing studies. We demonstrate how exploit-

ing the VNF characteristics improve the overall performance of service

chains.

1.4 Thesis overview

This thesis is organised as follows.

6

Chapter 1 (this chapter) illustrates the main motivations of our research

work. It highlights the significance of latency in today’s data centre networks

and its particular impact on latency-sensitive applications. Also, it shows the

ubiquitousness of service chains and how the sequential processing of packets at

virtual NFs can degrade the network performance of data centre applications.

Moreover, it demonstrates the lack of considering the performance bottlenecks at

the NFs in the existing approaches. Afterwards, the chapter describes our aims

and objectives, and our contribution to the research, then it gives an overview of

the thesis structure (this section) and ends up with listing our publications.

Chapter 2 defines the background of our research such as the leveraged

paradigms, namely, virtualisation technology, SDN, NFV, and SFC.

Chapter 3 describes the literature review, e.g., works achieved in the con-

text of data centre networks, attempts made to reduce network latency, and more

related to our research, network function composition, chaining, design, and man-

agement studies.

Chapter 4 shows the methods we have adopted in our research. For example,

benchmarking VNFs and setting up an OpenStack based experiment to run mul-

tiple service chains. Also, the chapter illustrates other methods such as network

simulation used to evaluate joint policy management and VM placement approach.

Chapter 5 shows how the virtualisation can affect the performance of open

source and production VNFs. It also describes the conducted experiments regard-

ing the VNF characterisation, and it ends up with demonstrating how the ex-

ploited knowledge on the VNFs can improve the network performance of a sample

of service chains.

Chapter 6 describes the main contribution of our research work which is

proposing a dynamic VNF composition that relates the traffic characteristics with

the VNF performance bottleneck. We prove that the VNF instantiation and traffic

distribution problem is an NP-hard problem which means that it does not have

an optimal solution. As so, we formulate and model the problem, we propose our

heuristic called Natif, and we describe the algorithms behind.

Chapter 7 describes the experimental setup for the solution evaluation, we

show how Natif mitigates the latency without sacrificing the network throughput.

We also compare it with a well-known network-aware approach for NF orchestra-

tion. For instance, we evaluate the algorithms of the two methods as well as the

resources utilisation of service chains composed and managed by each one of them.

Chapter 8 concludes the thesis and shows the proposed approach’s limitations

and new research directions. It also demonstrates how the acquired knowledge as

well as the experimental evaluation can be usable and applicable in the context of

edge computing. It illustrates practical ideas regarding such applicability.

7

Chapter 2

Background and Key Concepts

In this chapter, we describe the main concepts and paradigms that have been

explored and leveraged. We explain the virtualisation technology as a key enabler

of the Network Function Virtualization (NFV) and the broad adoption of virtual

network appliances or functions (VNFs) in data centres. We also present the

Software Defined Networks (SDN) as a concept calling for the centralisation of

the network management and the dissociation of the control plane and the data

plane. In the end, we describe the Service Function Chaining, and we highlight how

it has enabled the application of our proposed approach in reducing the network

latency.

2.1 Virtualisation

Virtualisation has been widely leveraged to fulfil the growing user needs asso-

ciated with the advent of smart-phones and cloud computing service models. A

wide range of resources has been virtualised such as computation process, memory,

storage, and network [26]. Virtual Machines are the virtual form of the traditional

computer units, and they are nowadays ubiquitous in data centres and work-

places. Behind the concept of VM, related components have been consequently

virtualised such as NIC (Network Interface Cards) and CPU resources. Open

vSwitch, known as OVS, is among the first initiatives to implement virtual net-

work switches. Moreover, the network has been virtualised like VLAN (virtual

LAN) and VXLANs (virtual extensible LANs).

Virtualisation has been introduced for numerous reasons. 1) Sharing, which

means that the same cable/link can be utilised by two different networks, the same

processor or the same hard disk can be shared between more than a VM. As a

result, sharing reduces the cost of hardware. 2) Isolation is a critical feature when

multiple applications are running on the same server. Virtualisation ensures that

8

each resource can only be accessible by the right application or the right person.

3) Aggregation, contrary to the resources segregation, is achieved by grouping

inexpensive resources to make up reliable resource, e.g., storage or memory. 4)

flexibility, for, e.g., dynamic resource allocation, resource management and server

provisioning and deployment. Also, VMs can be instantiated, deleted, cloned

or migrated within minutes, which increases the productivity and reduces the

customer’s waiting time [27]. In our research, virtualisation is utilised in virtual

NFs and running data centre applications on testbed environments.

2.2 Software Defined Networks

SDN is an umbrella term that includes several technologies to facilitate the network

management and improve the network flexibility to respond to changing business

requirements. For example, network administrators can change network policies

for specific network traffic from the controller without directly re-configuring the

network devices, e.g., routers or switches. So, OpenFlow network protocol has

been proposed to ensure the communication between the controller and the for-

warding devices. Also, a network virtualisation approach is an SDN application

that allows flexible network provisioning and dynamic flow scheduling [28] due to

resources virtualisation. SDN is mainly bringing four innovations [27]:

• Separation of control and data plane: The traditional way to perform

traffic steering is to configure the forwarding devices individually. This is

apparently tedious especially if the traffic characteristics (e.g., source and

destination IPs) can change over the time or there are many points on the

forwarding path. Hence, SDN comes to resolve the problem above by separ-

ating the control plane, where forwarding decisions and policy are set, from

the data plane, where packets are forwarded. For example, implementations

of the control plane such as Ryu, NOX, Floodlight allow applying custom-

ised treatment over the packets and prepare the forwarding tables of the

connected OpenFlow switches.

• Centralisation of the control plane: Distributed methods in forwarding

packets were widely adopted before the emergence of SDN. For example,

through network protocols like OSPF, IS-IS, and BGP, routers exchange

information about their neighbours and available nodes in a way that the

forwarding decision would be shared between the existing routers on the net-

work. This achieves more reliable message transmission since the system can

tolerate the failure of some routers. However, it presents performance issues

comparing to the centralised approach in a sense that the routing algorithm

9

convergence depends on the routers’ status and consequently the information

takes a while to be exchanged between them. Whereas in the centralisation

approach, the controller probes the network topology, and since it would

have visibility on the network, it can, therefore, decide which path should

be used to forward the packers. Centralisation has scalability issues such

as the impact of increasing workload with growing traffic on the controller’s

performance, but this is addressed by setting up a controller cluster. For in-

stance, the set of controllers can share the workload, or standby controllers

can be launched in case of failure of the central controller.

• Programmable control plane: The control plane can be programmed

according to the defined objectives. This has not been feasible in the dis-

tributed method. Network administrators can develop and deploy applica-

tions on the control plane, which offers high flexibility as well as innovation

opportunities for network developers.

• Standarised APIs: Control plane needs standardised APIs to facilitate

the development and deployment of network applications which are ensur-

ing the traffic management. For example, OpenFlow as a Southbound API;

interacting with the forwarding devices. Floodlight and OpenDaylight as

Northbound API as it enables the integration with the developed applica-

tions, and lastly the East-West API that enables the communication between

different controllers. We show in Fig. 2.1 such layers in SDN architecture.

Figure 2.1: Logical layers in SDN [3]

10

2.3 Network Function Virtualisation

Network infrastructure should respond to the growing demands and the perform-

ance challenges caused by the increasing workloads, a result of the proliferation

of cloud and mobile applications. However, the network functions (NFs) and the

computational nodes responsible for handling the incoming requests have been

deployed using physical proprietary equipment. Also, NFs usually belong to net-

work chains (sequence of NFs) and are configured within the chain according to a

specific order to correctly ensure network services. Because of these constraints,

deployment and validation could take weeks and months and require significant

human involvement to maintain and manage the network asset [29].

Therefore, Telecommunication Service Provides (TSPs) have been looking for

inventing ways and proposing new approaches to reduce their operating expenses

(OPEX) and capital expenses (CAPEX). The solution has been to adopt the

Network Function Virtualisation (NFV) leveraging the virtualisation technology to

break the dependency on proprietary hardware, improve the network management

and service agility, and reduce the time-to-market of new services. NFV is defined

as an initiative to decouple the physical network equipment from the functions

that are running on. NFV achieves that by virtualising the NF to mimic the VM

concept in a way, they can run on commodity hardware. For instance, a firewall

becomes a piece of software that can be installed on a VM or a container and

afterwards deployed on commodity servers, or it is possible to aggregate multiple

NFs and spin up them on the same server. As a consequence, managing NFs

becomes as simple as managing VMs through hypervisors which means offering

automation capabilities such as monitoring, deletion, live migration, instantiation

and configuration.

2.3.1 NFV considerations

NFV to be convincing to the industry and academia, it should satisfy the following

requirements. The first two requirements are exploited in our research while the

last ones have been highlighted for informational purpose.

• Network architecture and performance: NFV should provide a reliable

alternative to the physical deployment of the NFs. Otherwise, its contri-

bution would be questionable. For instance, NFV should address possible

network performance issues that can be a consequence of the virtualisation

technology.

• Network scalability and automation: NFV should scale with the grow-

ing number of subscribers and so the increasing computation needs. Auto-

11

mation can play a critical role to overcome the scalability challenge, e.g.,

setting up controllers for resources management and usage optimisation (en-

hancing the throughput or reducing the latency) [3].

• Security and high availability requirements: Diverse NFs can be de-

ployed on the same commodity server, but they can belong to different ten-

ants or subscribers. So, there is a need to isolate them from each other and

resources allocation should be reliable and consistent to avoid performance

interference between the NFs. Also, NF deployment plan should consider

the availability requirements of each NF.

• Support for heterogeneity: Since NFV is a new approach and not yet

totally adopted in production environments, its introduction should be pro-

gressive and should take into consideration the legacy support. As a con-

sequence, there should be an orchestration layer that can manage both vir-

tual and physical infrastructure. Another aspect of supporting heterogeneity

consists of breaking the dependence on proprietary hardware so that NFs

can be deployable on servers from different vendors.

2.3.2 NFV architecture

NFV architecture is composed of three main components as shown in Fig. 2.2.

1) Network Function Virtualisation Infrastructure (NFVI), which represents the

set of software and hardware needed to set up the environment on which VNFs

run. 2) VNFs, which are the deployed virtual network appliances. A VNF can

be deployed on VM. Moreover, 3) NFV Management and Orchestration (NFV

MANO), which provides tools for monitoring and provisioning of VNFs.

2.4 Service Function Chaining

Network service chaining, also known as service function chaining (SFC) is a cap-

ability that uses software-defined networking (SDN) capabilities to create a service

chain of connected network services (such as L4-7 like firewalls, network address

translation [NAT], intrusion protection) and connects them in a virtual chain.

This capability can be used by network operators to set up suites or catalogues

of connected services that enable the use of a single network connection for many

services, with different characteristics [?]. However, in this thesis, we refer to the

way VNF are instantiated and how traffic is steered within the chain by network

service composition.

12

Figure 2.2: NFV architecture [?]

2.4.1 SFC definitions

NFV has reduced the time-to-market of new network services by virtualising the

hardware-based network appliances or functions and thus accelerating their de-

ployment on commodity servers. However, a proper interconnection of the net-

work services is required to ensure the correct implementation of network policies.

The mechanism allowing various virtual functions to be connected for a complete

end-to-end service is called Service Function Chaining (SFC).

We list below essential definitions related to SFC.

• Classification: Locally instantiated matching of traffic flows against policy

for subsequent application of the required set of network service functions.

The policy may be a customer, network, or service specific.

• Network Overlay: A logical network built, via virtual links or packet encap-

sulation, over an existing network (the underlay).

• Network Service: An offering provided by an operator that is delivered using

one or more service functions. This may also be referred to as a composite

service. The term “service” is used to denote a “network service” in the

context of this document.

• Service Function (SF): it is a synonym to virtual functions, a function that

is responsible for specific treatment of received packets. A service function

can act at various layers of a protocol stack (e.g., at the network layer or

other OSI layers). As a logical component, a service function can be realised

13

as a virtual element or be embedded in a physical network element. One or

more service functions can be embedded in the same network element. Mul-

tiple occurrences of the service function can exist in the same administrative

domain. A non-exhaustive list of service functions includes firewalls, WAN

and application acceleration, Deep Packet Inspection (DPI), server load bal-

ancers, NAT44 [RFC3022], NAT64 [RFC6146], HTTP header enrichment

functions, and TCP optimisers. The generic term ”L4-L7 services” is often

used to describe many service functions.

• Service Overlay: An overlay network created for forwarding data to essential

service functions.

• Service Function Chain: it defines an ordered or partially ordered set of

general service functions (SFs) and ordering constraints that must be applied

to packets, frames, and flows selected as a result of classification. An example

of an abstract service function is a firewall. The implied order may not be a

linear progression as the architecture allows for SFCs that copy to more than

one branch, and also allows for cases where there is flexibility in the order

in which service functions need to be applied. The term “service chain” is

often used as shorthand for “service function chain” [30].

2.4.2 SFC architecture

The SFC architecture proposed by IETF suggests encapsulating the packets with

information describing the service path of a service function chain. This is achieved

by adding Network Service Header (NSH) to the packets at the service classifier

(SC) located at the data plane, e.g., as shown in Fig. 2.3. The SC determines

which packets need treatment and what the service path that should follow. The

SF Forwarder (SFF) considers the NSH field in the packet for the traffic steering.

An SFC Aware SF can update the NSH header. In particular, the first node in

the service chain adds NSH field while the last node removes it [31].

In case the SFC SF is NHS-unaware (e.g., legacy service functions), an SFC-

Proxy can be used to ensure the NSH packet encapsulation between the SF and

the SFF (Fig. 2.4).

14

Figure 2.3: Service classifier [4]

Figure 2.4: SFC architecture [5]

2.4.3 A catalogue of middleboxes

The table 2.1 introduces some examples of middleboxes to give an overview on

the types of middleboxes used in data centre networks.

15

Table 2.1: Examples of middleboxes [7]

Middlebox Description

NAT
Network Address Translator. A function, often built into a router, that dynamically assigns a globally

unique address to a host that doesn’t have one, without that host’s knowledge.

NAT–PT

NAT with Protocol Translator. A function, normally built into a router, that performs NAT between an

IPv6 host and an IPv4 network, additionally translating the entire IP header between IPv6 and IPv4

formats.

SOCKS gateway
It is a stateful mechanism for authenticated firewall traversal, in which the client host must communicate

first with the SOCKS server in the firewall before it is able to traverse the firewall

IP Tunnel Endpoints

Tunnel endpoints, including virtual private network endpoints, use basic IP services to set up tunnels

with their peer tunnel endpoints which might be anywhere on the Internet. Tunnels create entirely new

“virtual” networks and network interfaces based on the Internet infrastructure, and thereby open up

some new services. Tunnel endpoints base their forwarding decisions at least partly on their policies, and

only partly if at all on information visible to surrounding routers.

Packet classifiers,

markers and

schedulers

Packet classifiers classify packets flowing through them according to policy and either select them for

special treatment or mark them, in particular for differentiated services. They may alter the sequence of

packet flow through subsequent hops, since they control the behaviour of traffic conditioners.

TCP performance

enhancing proxies

“TCP spoofer” is often used as a term for middleboxes that modify the timing or action of the TCP

protocol in flight to enhance performance.

16

Load balancers that

divert/munge packets

There is a variety of techniques that divert packets from their intended IP destination or make that

destination ambiguous. The motivation is typical to balance the load across servers, or even to split

applications across servers by IP routing based on the destination port number.

IP Firewalls

The simplest form of firewall is a router that screens and rejects packets based purely on fields in the IP

and Transport headers (e.g., disallow incoming traffic to certain port numbers, disallow any traffic to

certain subnets, etc.)

Application Firewalls
Applicationlevel firewalls act as a protocol endpoint and relay (e.g., an SMTP client/server or a Web

proxy agent).

Application-level

gateways

These come in many shapes and forms. NATs require ALGs for certain addressdependent protocols such

as FTP; these do not change the semantics of the application protocol but carry out mechanical

substitution of fields. At the other end of the scale, still using FTP as an example, gateways have been

constructed between FTP and other file transfer protocols such as the OSI and DECnet (R) equivalents.

In any case, such gateways need to maintain state for the sessions they are handling, and if this state is

lost, the session will normally break irrevocably.

Gatekeepers/ session

control boxes

Particularly with the rise of IP Telephony, the need to create and manage sessions other than TCP

connections has arisen. In a multimedia environment that has to deal with name lookup, authentication,

authorisation, accounting, firewall traversal, and sometimes media conversion, the establishment and

control of a session by a thirdparty box seems to be the inevitable solution.

Transcoders Transcoders are boxes performing some onthefly conversion of application-level data.

Proxies
An intermediary program which acts as both a server and a client to make requests on behalf of other

clients.

17

2.5 Summary

This chapter has illustrated the background and fundamental concepts used in our

research. We have illustrated how the virtualisation technology is a key enabler

for NFV, SFC, and SDN paradigms. It has also presented the essential definitions

in the SFC context and illustrated examples of network functions. In the next

chapters, we show use cases of SDN, SFC, and NFV applications. For instance,

development of a joint consolidation of policies and virtual machines, VNF de-

ployment and characterisation VNFs, and service chain composition using SFC

principles to reduce the network latency.

18

Chapter 3

Literature Review

Many cloud applications in multi-tenant data centres are distributed in nature

and require guaranteed latency and bandwidth to afford an acceptable user ex-

perience [12]. Providing such guarantees has been challenging for several consid-

erations; queues the most disturbing factor of network performance is an additive

end-to-end property [12], and it is developing in many points in data centres, e.g.

Virtual Machines, Switches and Virtual Appliances. Moreover, low latency and

high throughput are two contradictory goals and prioritising one of them leads

to the regression of other [11, 13]. Recent studies have proposed approaches that

reconcile between these two ends, whereas after the emergence of NFV techno-

logy and with the broad adoption of network appliances in data centres, those

approaches have still been limited to improve network performance at the level of

the forwarding devices with no particular consideration of the network functions

performance. The existing studies are worth to explore as they present relevant

techniques to our current research. Thus, one of the aims of the chapter is to give

an overview of these works, what challenges they have been addressing and how

they have overcome.

We also cover the renewed focus on network latency metric and the efforts that

have been made to mitigate it in data centre environments. We also highlight

the noticeable degradation of network performance caused by the virtualisation

technology and how such an overhead has been addressed.

Lastly, we describe the studies that have been looking at improving the net-

work chains performance regarding the end-to-end delay and the throughput. We

illustrate the different approaches to tackling the problem, such as NF chaining

and placement, NF parallelisation, and NF resources requirement provisioning and

prediction.

19

3.1 Data centre networks

Several works have proposed techniques to assess the overall performance, under-

stand network topology, and detect network degradation within the data centre en-

vironment. For instance, Everflow [32], ECHO [33], Pingmesh [34] and SNAP [35]

have presented ways for debugging faults in data centre networks, measuring and

analysing latency of servers in large multi-tenant data centres and providing net-

work administrators with performance monitoring interfaces. They have contrib-

uted to mitigating servers’ downtime, improving the quality of services, helping

developers and operators to identify and diagnose network performance problems

in the reasonable and acceptable time frame.

Others have focused on improving and renewing the architecture of data centres

following the emergence of NFV and SDN. For instance, work in [36] has pointed

out the usefulness of the SDN approach to facilitate and enable network manage-

ment and programmability and allow more control of the underlying infrastructure.

Authors of [37] have proposed Open Network Operating System (ONOS) proto-

type for global network view on the network topology and state. Authors in [38]

have proven how VM placement can be efficient and improving the overall data

centre performance if network traffic and topology information have been taken

into account

Researchers have also drawn attention to the network policy issues in data

centres and have proposed mechanisms to tackle them. Work presented in [39]

has developed a high-level Policy Graph Abstraction (PGA) to describe network

policies clearly and independently, and by using graph theory, it has been proven

possible resolving conflicts between policies in a compelling way. The same re-

conciliation objective has been considered in [40] for network policies, and [41] for

routing rules and [42] for network updates.

In a virtualised environment, Virtual Machines placement has been thought

of as one of data centres management knobs that could improve general network

performance. Net-Cohort [43] has aimed at reducing the bisection bandwidth by

proposing VM ensembles detection and placement based on information collected

about VM network interactions. Cloud Mirror [44] has used as well the VM

placement technique and what called Tenant Application Graph (TAG) to set

guarantees for network bandwidth. AppAware [45] also has come up with an

application-aware VM migration algorithm that, in simulation, has led to a vital

network traffic reduction.

There have also been application-aware approaches to improve the applica-

tion and network performance. For instance, [46] and [47] have implemented an

application-aware data plane processing and packet forwarding mechanisms in

20

the light of SDN paradigm. Also, work in [48] has demonstrated how YouTube

application performance can be enhanced if application recognition is leveraged

while serving web requests. Table 3.1 summarises the above works and tells if the

described technique can be applied in the perimeter of service chains.

21

Table 3.1: Summary of efforts made in the area of data centre networks

Ref. Context
Affected
object

Applicable on
service
chains?

Summary of the main technique

ECHO [33]
Network workload
modelling

Data centre
applications

Yes
Markov Chain model trained on real traces to
capture temporal and spatial network patterns

Pingmesh [34]
Network latency
measurement and
analysis

Latency and
packet loss

Yes

Create a latency graph based on the probes of
servers between each other, then data are
visualised and analysed in Data Storage and
Analysis.

SNAP [35]
Performance problem
detection

Data centre
applications

Yes
Collect and correlate TCP statistics and
socket-level logs across shared resources and
connection to locate performance problem

[36] SDN Data centres Yes Survey

[37] SDN
Data centre
network and
applications

Yes
Collect data from network devices (ONOS
instance) to construct a global network view
which in turn updated by applications

[39]
Network policies
modelling

Network
appliances

Yes

PGA (Policy Graph Abstraction) specifies the
packet processing behaviour of service function,
identifies overlapping endpoint membership, and
adds composition constraints to avoid policy
violation

[40]
Network control
conflict detection

SDN controllers Yes
Model the controller function as a deterministic
finite-state transducer

22

Fibbing [41]
Routing and traffic
steering

Network traffic Yes
Inject fake network nodes to the existing
topology to change the routing behaviour

Net-Cohort [43] Dependency analysis

Application
throughput,
bi-section
bandwidth

Yes
Monitor traffic exchanged between VMs in order
to use it for VM placement

CloudMirror [44]
Application
performance

Bandwidth and
High-
Availability

No

Propose TAG (Tenant Application Graph) to
allow applications to precise their network
requirements which defines the workload
distribution scheme to guarantee bandwidth and
high availability requirements.

AppAware [45]
Application-aware
VM placement

Network traffic No

Model the VM placement problem based on the
dependency of applications running on VMs, the
underlying topology, and the capacity of hosting
physical servers

[46] SDN Data plane Yes
Augment the programmable Open vSwitch with
stateless app processing capability (app table),
similar to the typical OpenFlow flow table.

Atlas [47]
Application
classification

Data centre
applications

Yes
Implement a Machine Learning consuming traffic
data from OpenFlow switch to recognise
applications

[48]
Quality of Experience
(QoE)

Data centre
applications

Yes
Improve the QoE for a YouTube user by using
application signature to define a custom network
behaviour particularly regarding path selection

23

3.2 Network latency

Researching in reducing network latency has gained momentum because of the

application strict requirements and the significance of latency metric to the user

experience satisfaction. We aim in this section to give an overview on the tech-

niques addressing network latency in data centre environment.

Work in [21] has introduced a novel host-centric solution to mitigate latency in

a virtualised environment, it tackles three latency traps induced by VM scheduling

delay, host network queuing delay, and Switch queuing delay. It relies on applying

the Shortest Remaining Time First (SRTF) scheduling policy at the level of end-

host to control traffic to reduce latency in respect to the throughput requirement.

Fastpass [49] has proposed a data centre network architecture that in a cent-

ralised arbiter schedules all network traffic at a fine-grained level so that packets

queuing would be reduced. Silo [12], QJUMP [13] and HULL [11] have aimed at

improving the network performance of two types of applications; latency-sensitive

and throughput-intensive. The idea in QJUMP consists of recognising these ap-

plications and set up a sort of packet-level prioritisation at network Switches. Silo

relies on VM placement and end-host packet limiters to lower congestion and also

to improve throughput. However, another work like [50] shows how the software

rate limiters can increase the latency by order of magnitude in cloud networks.

CONGA [51] and Presto [52] have proposed mechanisms for load balancing that

aims at reducing congestion and so mitigating latency. The above works have

been summarised in Table 3.2.

24

Table 3.2: Summary of some works tackling latency problem

Ref. Context
Location of
latency

Applicable on
service
chains?

Summary of the main technique

[21] GuaranteedLatency
VMs, hosts, and
switches

Yes
Use Shortest remaining time first to schedule
traffic at the end-hosts

Fastpass [49]
Data centre network
architecture

Switches Yes
Schedule packets transmission in specific timeslot
and network path

Silo [12] Guaranteed Latency Switches Yes VM placement + rate limiter at end-hosts

QJUMP [13] Guaranteed Latency Switches Yes
Packets are prioritised at the switches according
to their application sensitivity to latency

HULL [11]
Data centre network
architecture

Switches Yes

Define a bandwidth headroom that triggers a
phantom queues signal which invokes the
application of DCTCP algorithm used for
congestion control

CONGA [51] Load balancing Switches Yes
Split TCP flows into flowlets and use switch
feedback to balance traffic to reduce congestion

Presto [52] Load balancing Switches Yes
Fine-grained flowcells (defined portion of flow)
load balancing at virtual switches

25

3.3 Service chains

SFC and NFV have facilitated the introduction of network services implement-

ing network policies for security and performance purposes. Also, service chains

have become ubiquitous in data centre environment which explains the significant

growth in a number of studies on this topic.

In this context, Stratos [53] has investigated a network-aware orchestration

layer for middle-boxes. For this purpose, it has come up with three mechanisms;

1) elastic scaling, to determine how many middle-boxes needed to be deployed. 2)

middle-boxes Rack-aware placement algorithm that considers the bandwidth avail-

ability on network links, and 3) network-aware flow distribution that is triggered

once a scaling decision is taken to improve the network utilisation. Sync [54] has

proposed a synergistic middle-boxes and VMs placement that reduces the end-to-

end delay and the communication cost.

Other studies issued from the telecom industry have proposed architectures

and models to manage the virtual appliance instances. VNF-P [55] has presented

a model for efficient placement of virtualised network functions, [56] and [57] have

offered ways for efficient dynamic placement of chains of virtual network functions,

other general works like [58] and [59] have aimed at improving the performance of

middle-boxes and facilitating its management. Even though the context and the

environment to which these studies belong are partly different from those of data

centres, they are worthy to be investigated for possible reuse.

The number of studied on the optimal and efficient middle-boxes placement

has increased significantly in the recent years. For instance, the authors in [22]

have proposed a middle-boxes placement algorithm to decrease the number of

rules implemented on SDN switchs responsible for traffic steering. Work in [60]

has presented an incremental solution that seeks to reduce the utilisation of the

links and the available CPU cores. Quokka [61] schedules the deployment of

middle-boxes according to the changing traffic in a bid to reduce the transmission

latency. Work in [62] has introduced a pre-planned placement scheme that con-

siders the tenants’ requirement for network bandwidth to reduce the migration

cost due to dynamic middle-boxes placement. [63] and [64] have also proposed

heuristic middle-boxes placement algorithms to reduce the end-to-end delay and

the bandwidth consumption. Moreover, [65] has described and formulated the

problem of placing the network functions with minimal resource consumption.

Other approaches proposed in [23, 25] focus on the placement problem to reduce

the end-to-end delay at the chains without considering the VNF performance.

Instead, they model and manage the VNFs as identical entities.

SIMPLE [66] uses both an online and offline formulation to keep limiting the

26

Figure 3.1: VNF placement problem: find a location of each VNF in the chain on
the available servers according to a specific goal, e.g., latency, bandwidth, resource
utilisation, and number of forwarding rules

size of forwarding rules due to the limits in the TCAM memory of SDN switches.

The online formulation is for online load balancing on the available switches.

OpenBox [67] proposed an SDN-based framework for developing, deploying, and

managing network functions. The platform is composed of data plane entities

called OpenBox instances (OBIs) and logically-centralised control plane, called

OpenBox controller (OBC). One of the interesting ideas presented in this work is

how to move a typical core logic (usually computationally-intensive) of multiple

network functions to the control plane so that that logic will be executed once (in-

stead of executing it each time the packet goes through an NF). ClickOS [68] is a

runtime platform for virtual NFs based on the Click modular router as the under-

lying packet processor and running on Xen MiniOs. ClickOS provides I/O optim-

isations for NFs and reduced latency for packets that traverse multiple NFs in the

same physical location. CoordVNF [69]: coordinate the resolution of resource al-

location problem on network substrate by formulating the chain composition and

VNF-FG embedding (VMs hosting NFs) sub-problem to reduce the bandwidth

utilisation. Research presented in [15] has demonstrated how poor CPU schedul-

ing can lower throughput of NF chains by 50%, and inefficient NF placement is

causing service chains to cross sockets can triple latency and reduce throughput

by 60%. The work has presented a way that allows the service chains to share

the same CPU cores rather than spread them across multiple cores, despite fewer

resources being available.

VNF-VITAL [70], close work to ours dealing with the VNF performance, has

27

presented a framework for VNF characterisation. The study has been based on

Clearwater IMS VNF and two IDS VNFs (Snort and Suricata). It examines the

horizontal and vertical scaling impact on the VNF performance regarding the CPU

and memory utilisation. However, the study shows no consideration of the pos-

sible performance interference incurred by the VNFs since the evaluation did not

cover performance of a sequence of VNFs where chained, which we have achieved

in this paper. Work presented in [71] has proposed a graph neural network-based

algorithm that predicts future VNF components (VNFCs) resource requirements

based on the collected CPU and RAM utilisation data. So, it would be possible

to proactively allocate necessary resources to the VNFCs even before they could

experience performance degradation. However, we believe that in some cases only

considering the CPU or memory utilisation to understand the VNF performance

would not be sufficient since the CPU usage metric can be misleading such as in

the case of pfSense NAT. In the experiments presented in Section 5.2 of Chapter 5,

we show how the high CPU usage at pfSense NAT does not reflect the real com-

putation need but it is a consequence of high CPU interrupts caused by the high

rate of incoming packets (only 2% effective computation of the total CPU usage).

The authors in [2] have focused on an interesting aspect in the service chains.

They have illustrated the traffic changing effects of middleboxes and formulated

the middleboxes placement problem to reduce the maximum link load ratio. Their

proposed VNF chaining is relying on the gain/drop factor of each VNF but neg-

lecting the fact that such chaining should fulfil well-defined requirements such as

the order of the VNF within the chain. Otherwise, this could probably lead to

breaching the network policies that should have been correctly implemented by

the chains. Table 3.3 summarises the service chain related works.

28

Table 3.3: Summary of service chains related works

Ref. Context
Affected
metric

Summary of the main technique
Consider
VNF
performance?

Stratos [53]
Middlebox
orchestration

Number of MBs
and network
utilisation

MBs rack-aware placement + network-aware
traffic distribution

Only CPU
utilisation

Sync [54]
Chain performance
optimisation

communication
cost and
end-to-end delay

A joint consolidation of policy migration and VM
placement + shortest path for the policy
implementation

No

VNF-P [55] NF placement
Resource
utilisation

NFs placement based on their resources
requirements (mathematical formulation)

Generic capacity
assigned to
VNFs

[56]
Service Chain
placement

Resource
utilisation

Service chains based on the physical host limited
resources and NF requirements (mathematical
formulation)

Generic capacity
assigned to
VNFs

[57] NF placement
Resource
utilisation

Dynamically placing VNFs based on the
behaviour of the resources

No

[58] NF design State of the NF
Store the state of an NF in a separate backend
store using DRAM technique

No

[59] MB management MB state
Explain the MB state management and
representation

No

LightChain [22] VNF placement
Flow rules in
the switches

Place VNF in a way to reduce the number of
rules on the switches using Directed Acyclic
Graph (DAG)

No

29

[60]
NF placement and
routing

Resource
utilisation and
end-to-end delay

Formulate the problem of network function
placement and routing as a mixed integer linear
programming (MILP) problem

Generic capacity
assigned to
VNFs

Quokka [61] NF placement Latency
Define two model of latency at NF based on its
packet processing and places NFs to reduce
latency

Yes in latency
modelling

[62] VNF placement Bandwidth
Pre-planned allocation of NFs based on changing
workload to reduce network resources utilisation
including VM migration overhead

No

[63] MB placement
End-to-end
delay and
bandwidth

Formulate the MB placement problem as 0-1
programming problem

No

[64]
VNF placement and
chaining

Resource
utilisation and
end-to-end delay

Formulate the VNF placement and chaining as
Integer Linear Programming (ILP) model

No

[65]
VNF placement and
chaining

Resource
utilisation

Formulate the VNF placement as an Integer
Linear Programming problem

No

[23] VNF embedding

Cost of VNF
mapping on
physical
network

Use VNF decomposition in resolving the Virtual
Network Embedding Problem (VNEP)

No

[25] VNF parallelisation
End-to-end
delay and
throughput

Run NFs at the same level of the chains for
packet parallel processing

No

OpenBox [67] MB design NA
Provide platform to develop MBs with the
possibility to run computationally-intensive tasks
shared between NFs at the controller

Yes

30

ClickOS [68] MB design
Latency and
I/O

Locate MiniOS-based VNF on same physical
server

Yes

CoordVNF [69] Resource allocation Bandwidth
Formulate the chain composition and VNF-FG
embedding problem

Generic capacity
assigned to
VNFs

[15] Resource allocation
Service chain
throughput

Allow service chains to share the same CPU cores
rather than spread them across multiple cores

Yes

VNF-
VITAL [70]

VNF characterisation
Resource
utilisation

Experimental VNF resource utilisation
assessment

Yes

[71] Resource allocation
Resource
utilisation

Predicts future VNF components (VNFCs)
resource requirements based on the collected
CPU and RAM utilisation data

Yes

[2] VNF placement
End-to-end
delay and
throughput

Place VNFs based on their gain/drop factor No

31

3.4 Summary

In the literature review, we have classified the works related to our research in three

main categories. 1) works on data centre networks that aim to improve the quality

of service and the application performance in the data centres. For example,

monitoring network activity and optimising the resources utilisation and workload

distribution. 2) works for reducing the network latency. These studies have tackled

the latency in two main locations: VMs/hosts and switches. techniques such

as optimising traffic scheduling, fine-grained traffic management, and traffic rate

limiters at end hosts have improved both latency and throughput. 3) Category

of works that aims at improving the performance of service chains provides. For

instance, schemes for service chaining and composition, VNF design, and VNF

optimal placement. These studies show a lack of considering the VNF performance

sensitivity and bottlenecks in the chain composition. They consider the VNFs as

black-boxes that all of them in the chains have the same behaviour toward network

traffic. Our idea captures the fact that any application can be either I/O- or/and

CPU-bound. We consider this to treat the VNFs inside the chain. Our research

firstly shows the difference between these types/categories of VNFs and then use

the resulting information in the chain composition problem modelling. This is

different from what we have found in the literature review which avoids getting

into the details of each VNF and hence misses opportunities of improving the

performance of service chains.

32

Chapter 4

Research Methodology

In this chapter, we present how we can approach the existing challenges to achieve

the aim and objectives initially set. In particular, we justify our choice of con-

ducting testbed experiments rather than using network simulation framework. We

also highlight the significance of VNF characterisation as a prior step in defining a

service composition scheme where the network latency can be reduced. Moreover,

we discuss the limitation of the adopted method, and we describe other methods

such as network simulation and emulation.

4.1 Finding system characteristics from testbed

experiments

One of our research aims is to limit the impact of virtualisation on the network

performance of the service chains. So first we need to concretely measure that im-

pact and evaluate to what extent it can influence the computational and network

metrics of NFs. Initially, we have made some attempts to simulate a virtualised

environment. However, it has turned out to be impractical due to the high com-

plexity of the virtualisation layer and the time constraints. Also, to the best of

our knowledge, there has been no study simulating the virtualisation layer itself.

In addition to that, NFs have many particularities so their simulation or emula-

tion would be very sophisticated and so, inaccurate and questionable. Therefore,

we have proceeded with setting up our testbed on which we can run experiments

examining virtualisation and NF characteristics.

4.1.1 Studying the virtualisation impact

We study the virtualisation impact on the computational and network perform-

ance of a pfSense Firewall. We implement firewall rules using Linux iptables and

33

compare it with its counterpart in pfSense. We aim to measure the following

metrics.

• Throughput (Transactions/second)

• Round Trip Latency (µs/transaction).

• 90th Percentile Latency (µs).

• 99th Percentile Latency (µs).

We will use the following software tools for network performance assessment:

• Ping ”is a network administration utility used to test the reachability of a

host on an Internet Protocol network. It is also used to measure the Round-

Trip Time (RTT)” [72].

• hping3 ”is a command-line oriented TCP/IP packet assembler/analyzer.

The interface is inspired to the ping(8) Unix command, but hping is not

only able to send ICMP echo requests. It supports TCP, UDP, ICMP and

RAW-IP protocols, has a traceroute mode, the ability to send files between a

covered channel, and many other features” [73].

4.1.2 Characterising the NF performance

We aim to determine the factors that can influence the performance of VNFs. For

example, understand the VNFs’ behaviour towards different types of traffic and

the role of their underpinning software implementation on their performance, and

evaluate how the order of VNFs can impact the overall network performance of

the service chains.

For this purpose, we intend to use one commodity server which is enough to

run multiple NFs in separate VMs running Ubuntu 14.04 and FreeBSD. We study

the following NFs:

• pfSense (Firewall and NAT) ”is a free, open source customised distribution

of FreeBSD specifically tailored for use as a firewall and router that is en-

tirely managed via web interface. In addition to being a powerful, flexible

firewalling and routing platform, it includes a long list of related features

and a package system allowing further expandability without adding bloat

and potential security vulnerabilities to the base distribution” [74].

• OVS switch, as a monitoring NF, ”is a production quality, multilayer virtual

switch licensed under the open source Apache 2.0 license. It is designed to

34

enable massive network automation through programmatic extension, while

still supporting standard management interfaces and protocols (e.g. NetFlow,

sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag). It is also used for traffic

monitoring” [75].

• Snort IDS/IPS ”is an open source network intrusion prevention system, cap-

able of performing real-time traffic analysis and packet logging on IP net-

works. It can perform protocol analysis, content searching/matching, and

can be used to detect a variety of attacks and probes, such as buffer overflows,

stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and

much more” [76].

• Suricata IDS ”is a free and open source, mature, fast and robust network

threat detection engine. The Suricata engine is capable of real-time intru-

sion detection (IDS), inline intrusion prevention (IPS), network security

monitoring (NSM) and offline pcap processing. Suricata inspects the net-

work traffic using powerful and extensive rules and signature language and

has powerful Lua scripting support for detection of complex threats” [77].

4.1.3 Running big data applications on a cluster of IoT

devices

In order to simulate a data centre environment, we created a cluster of Raspberry

Pis running application in virtualised setup using Docker. It was an attempt to

understand and confirm the effect of virtualisation layers on network performance

of data centre applications. This has thoroughly been discussed in Appendix A.

4.2 Mathematical modelling

Our problem needs to be expressed mathematically before proposing a heuristic

approach. The study will be described in chapter [?]. We follow the following

steps for the mathematical modelling and formulation.

• Define the problem variables and constraints: We split the initial

chain composition problem into two sub-problems, namely, VNF instanti-

ation and traffic distribution. We formulate and model each of these sub-

problems. We leverage queuing and graph theories in our modelling. We

also define constraints and assumptions in our equations.

• Prove the problem is NP-hard to introduce the heuristic approach:

We need to prove that the VNF instantiation and traffic distribution problem

35

is NP-hard by reducing it to the Multiple Knapsack Problem, whose decision

is demonstrated NP-hard, into a simplified version of our studied problem.

This means it is impossible to find an optimal solution to the problem and

then a heuristic approach should be followed.

• Propose the algorithms to resolve the research problem: We intend

to propose a heuristic solution resolving the formulated problems. Then,

we need to develop the proposed algorithms in a testbed environment. We

intend to use OpenStack to manage VNF instantiation and traffic steering.

4.3 Tesbted evaluation

We aim to use the knowledge from the VNF characterisation experiments to design

a chain composition to reduce network latency in the service chains. Only one

server would not be sufficient since we need to run multiple instances of NF and set

up at least two subnets. For this purpose, we can use the available two commodity

servers in the lab on which we can deploy OpenStack (Newton Release).

OpenStack has a modular architecture with various code names for its com-

ponents [78,79]:

• Keystone (Identity Service) is a shared service that provides authentication

and authorisation services throughout the entire cloud infrastructure. The

Identity service has pluggable support for multiple forms of authentication.

• Nova (Compute) provides services to support the management of virtual

machine instances.

• Swift (Object Storage) provides support for storing and retrieving arbitrary

data in the cloud. The Object Storage service provides both a native API

and an Amazon Web Services S3-compatible API. The service provides a

high degree of resiliency through data replication and can handle petabytes

of data.

• Cinder (Block Storage) provides persistent block storage for compute in-

stances. The Block Storage service is responsible for managing the life-cycle

of block devices, from the creation and attachment of volumes to instances,

to their release.

• Glance (Image Service) is the Image Registry, it stores and manages guest

(VM) images, Disk Images, and snapshots. It also contains prebuilt VM

template. Instances are booted from glance image registry.

36

• Neutron (Networking) provides various networking services to cloud users

(tenants) such as IP address management, DNS, DHCP, load balancing,

and security groups (network access rules, like firewall policies). This service

provides a framework for software-defined networking (SDN) that allows for

pluggable integration with various networking solutions.

• Horizon (Dashboard) provides a web-based interface for both cloud admin-

istrators and cloud tenants. Using this interface, administrators and tenants

can provision, manage, and monitor cloud resources. The dashboard is com-

monly deployed in a public-facing manner with all the usual security concerns

of public web portals.

• Ceilometer (Telemetry) is responsible for metering Information. It can be

used generate bills and based on the statistics of usage. Its API can be used

with external billing systems. Administrators can create certain alarms that

are triggered based on performance statistics.

• Heat (Orchestration) creates a human and machine-accessible service for

managing the entire lifecycle of infrastructure and applications within Open-

Stack clouds. It contains human-readable templates with simple instruction

that is read by the Heat Engine. Heat along with Ceilometer can create an

auto-scaling the cloud.

4.4 Limitations of the method

Running experiments on testbed is usually reproducible, provides accurate res-

ults, and its outcomes can be applied in production systems. We have deployed

the same applications like the ones used in data centres or workplaces. However,

the method fails in the scalability test since its environment cannot support large

workloads and has a few computational instances. To overcome this problem, we

stress the existing infrastructure to approach the real production environment con-

ditions. Nevertheless, the question arises whether we still have the same outcomes

if we apply our approach in a large-scale environment. The answer is affirmative

because we have merely reproduced all the setup and configuration of a production

environment but on less number of computational nodes (two servers instead of

hundreds).

37

4.5 Other methods

At the beginning of our research, we studied Sync, a synergistic scheme to jointly

consolidate network policies and virtual machines. Sync has been proven effective

in reducing the end-to-end delay by nearly 40% and network-wide communication

cost by 50% while ensuring full compliance with network policies [54]. We aim to

implement Sync in both simulated and emulated networks at apprehending the

best practices in developing such research techniques and acquiring technical skills

usable in testing and evaluating our research proposals. In the following sections,

we briefly illustrate these implementations.

4.5.1 Simulation

ns-31 is a discrete-event network simulator for Internet systems, targeted primarily

for research and educational use, it is free software, licensed under the GNU GPLv2

license.

In Sync implementation, we develop and helper classes in C++ programming

language. The model defines the objects that Sync should deal with. For instance,

we define what an application, a flow, a policy, and a middle-box (MB) are, and

how they can interact between each other, e.g., application should emit a flow,

policy should be associated to a sequence of MBs. The helper classes aim to ease

the setup of other model classes, e.g., change the flow rate or update the policy

routing in case of an update on the chain. Our source code is published on the

GitHub repository https://github.com/wajdihajji/sync-ns-3.git

4.5.2 Emulation

Mininet2 allows the setup of a realistic virtual network where it is possible to issue

commands on hosts or configure the virtual switches. The classes are pre-defined

in mininet so that they can be used directly. However, it is sometimes required to

customise the classes standard behaviour to fit our needs, for example, change the

OVS switch to behave as an MB. We develop Sync’s network controller running on

an emulated network in Python programming language. The Sync implementation

is described in the Appendix B.

1https://www.nsnam.org/
2http://mininet.org/

38

https://github.com/wajdihajji/sync-ns-3.git

4.6 Summary

Our research methodology is based on three cornerstones. 1) Testbed experiments

(see 5.1) to assess the virtualisation overhead on VNF performance and for VNF

characterisation. 2) We leverage queuing, and graph theories in a mathematical

formulation (see 6.1) and modelling of the VNF instantiation and traffic distri-

bution problem and we prove its NP-harness. 3) We explore other methods such

as network simulation and emulation (see B), and we develop SDN controller to

evaluate joint consolidation of network policy and VMs.

39

Chapter 5

Virtualisation and NF

Characterisation

In this chapter, we have conducted experiments to characterise a set of open source

and production NF to understand the impact of the virtualised deployment, their

resource utilisation as well as their order in the chain on their performance. We also

present an experimental approach exploiting the NF characterisation to improve

the end-to-end delay of the service chains. In summary, the contribution of this

chapter is as follows:

• We show how moving the hardware-based NFs to the virtual form can have

a severe impact on their network performance.

• Through NF characterisation, we have found that NFs can be classified to

I/O and CPU bound functions, the former category is sensitive to the traffic

rate in packets per second while the performance of the latter is mostly

affected by the traffic rate in bits per second.

• We show how understanding the software implementation of VNFs can help

to optimise resource utilisation.

• The order of the NF in the chain has an impact on the end-to-end of the

traffic traversing it, but taking into account that such reordering may en-

gender policy violation.

5.1 Virtual Network Function (VNF)

5.1.1 Experiment Setup

We aim in this experiment to measure the experienced performance degradation

by a VNF. We utilise three commodity servers in this test-bed, two Pentium and

40

one Dell servers. The Dell server hosts the VNF (pfSense firewall) while the two

other servers host the Client and Server VMs.

We use ping and Netperf utilities to measure the network latency and the TCP

request/response (RR) performance. pfSense NAT and firewall are interposed

between the internal and exterior networks. We run two sets of tests. The first

is where the pfSense firewall is enabled while in the second set, it is disabled

and replaced by custom forwarding rules implemented directly on a server OS, a

representation of hardware-based NF. Fig. 5.1 summarises the experimental setup.

Server 01

VM01

Server 03

VM02

Server 02

pfSense

installed as a VM

Ping

& Netperf

traffic

Server 01

VM01

Server 03

VM02

Server 02

pfSense is disabled

Only routing rules

enabled

Ping

& Netperf

traffic

Figure 5.1: Network Topology in pfSense Experiment

• Test set 1: pfSense is enabled. Measure latency and TCP RR for:

– ICMP traffic between HW-based server and HW-based server.

– ICMP traffic between HW-based server and VM.

– ICMP traffic between VM and HW-based server.

– ICMP traffic between VM and VM.

• Test set 2: we measure the same metrics as in test set 1 but when pfSense is

disabled and yet replaced by custom routing rules installed directly on the

Ubuntu OS.

For each test stated above, we send 10,000 ICMP packets in 10 seconds. Also,

we run Netperf to measure the round-trip latency, TCP throughput (transactions

41

per second) and variants of latency measurements (e.g. max, min, mean, Stddev,

90th and 99th percentiles). In our analysis, we notably shed the light on the 90th

and 99th percentiles metrics as they are the most relevant to user experience.

5.1.2 Experiment Results

The results are represented In Fig. 5.2. Where pfSense is disabled, the RTT

is minimum for the different combinations of sender/receiver whether they are

VM or commodity server. Packets take less time to travel from client to server.

Whereas in the virtualised firewall, the RTT increases of more than 100%. For

instance, in Fig. 5.2a the 99th percentile of RTT in the case of pfSense is disabled

is nearly 0.5ms while it is more than 1.1ms where traffic needs to traverse the

firewall. The same observation is still true in Fig. 5.2b, 5.2c, and 5.2d where the

99th percentiles are 0.5ms, 0.5ms, and 0.6ms respectively on condition pfSense is

running and RTT are more than 1.2ms, 1.2ms, and 1.2ms respectively in the other

situation (forwarding by routing rules).

Even the four graphs correspond to different setup and nature of sender/re-

ceiver; the network performance is similar when pfSense is disabled, and it is

significantly affected in the opposite case (pfSense is enabled). This proves how

traversing a virtualised network function can delay packets forwarding and cause

considerable latency.

Using Netperf benchmarking tool has helped to measure the TCP request/re-

sponse performance as well as the latency in different percentiles. Precisely, we

have used Omni tests to be able to perform and display several measurements in

a single run and on a single output. We have reported four metrics in this test:

• Metric 1: Throughput (Transactions/second)

• Metric 2: Round Trip Latency (µs/transaction).

• Metric 3: 90th Percentile Latency (µs).

• Metric 4: 99th Percentile Latency (µs).

By analysing the results in Fig. 5.3, there are two dimensions of perform-

ance degradation that can be noticed. Firstly, it depends on whether the sender-

/receiver is virtualised, for instance, throughput decreases slightly from 1061.06

Trans/s to 1008.78 Trans/s in case of traffic between Server-VM and VM-VM

respectively. Latency as well increases from Server-Server to VM-VM, in which

case, 90th percentile latency rises from 1162 µs to 1173 µs. This means that the

network traffic experiences more latency in case both ends are virtualised than the

42

case they are not. The same remark has been recorded for 99th percentile latency

and Round Trip Latency.

Also, performance degradation becomes more perceptible when traffic has been

set to traverse a virtualised firewall (pfSense). It is clear in the same Fig. 5.3 how

all the measured network metrics are impacted. Throughput is almost the double

in case both sender and receiver are not virtualised than in the opposite case. It is

2592.98 Trans/s and 1056.80 Trans/s when the test is done between Server-Server

where pfSense is off and on respectively. In the same configuration (Server-Server)

Round Trip Latency is 385.657 µs/trans when pfSense is disabled whereas it is

significantly higher in case pfSense is enabled (nearly 946.250 µs/trans). This

difference is attenuated when all the environment is virtualised (both sender and

receiver are), it is 991.298 µs/trans and 498.260 µs/trans where pfSense is on and

off respectively. The degradation is still witnessed for the 90th and 99th latency

metrics. For instance, in Server-Server setup, 90th percentile latency is 1162 µs

and 426 µs where pfSense is on and off respectively, a decrease of more than 50%.

In VM-VM configuration, 99th percentile latency has seen the same trend; it drops

from 1286 µs to 634 µs where switching on and then off pfSense, i.e. a decrease

of more also than 50%.

Therefore, two factors are causing the network performance degradation. The

nature of sender and receiver as well as of the network function intercepting the

traffic. The cause behind this is the virtualisation technology that adds a layer

for the packet forwarding either in hosts or network functions. By this, it deepens

the problem of congestion and latency.

5.2 Network Function performance bottlenecks

We have deployed two NFs, namely Snort1 IDS, configured with community rules2,

pfSense3 NAT. They are deployed on top of KVM on a server that has 8 cores, 1.2

GHz CPU, 8 GB memory, and Ubuntu 14.04 as OS. We have used hping34 packet

generator tool to generate testing traffic.

We first investigate the diversity of the CPU performance among different

types of NFs. We have used Snort and pfSense, each configured to use one core.

For each one of them, we have applied flows comprising large and small packet

payload, both at high packet rate (20kpps).

Fig. 5.4a demonstrates the CPU usage of the Snort IDS. For large-payload

1version 2.9.11; https://www.snort.org/
2https://www.snort.org/faq/what-are-community-rules
3version 2.3; https://www.pfsense.org/
4https://linux.die.net/man/8/hping3

43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

CD
F

-
N

um
be

r
of

 P
in

g
(x

10
,0

00
)

Latency (ms)

Traffic through pfSense
pfSense disabled

(a) Server to Server

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

CD
F

-
N

um
be

r
of

 P
in

g
(x

10
,0

00
)

Latency (ms)

Traffic through pfSense
pfSense disabled

(b) Server to VM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

CD
F

-
N

um
be

r
of

 P
in

g
(x

10
,0

00
)

Latency (ms)

Traffic through pfSense
pfSense disabled

(c) VM to Server

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

CD
F

-
N

um
be

r
of

 P
in

g
(x

10
,0

00
)

Latency (ms)

Traffic through pfSense
pfSense disabled

(d) VM to VM

Figure 5.2: Latency measurements

packets, the CPU usage has several fluctuations and is more intense than the case

of small-payload packets. This is because IDS aggregates and inspects packets,

including payloads, for anomalies. Hence, the larger the payload is, the more time

it needs to inspect the packet.

Fig. 5.4b shows that for both types of traffic the CPU usage almost remains the

same for the pfSense NAT. This is because NAT only acts on the packet header by

replacing the destination address by a predefined one (e.g., an IP in the internal

network) regardless of the content of packet payload.

Then, this kind of mapping uses less CPU time comparing to the parsing

process seen in Snort.

Further, both figures show distinctive levels of CPU usage at the IDS and the

NAT (at around 20% and 90% respectively) for flow comprising small payload at

high packet rate. The high CPU usage at the NAT is mainly caused by the CPU

44

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

Server-Server Server-VM VM-Server VM-VM

Th
ro

ug
hp

ut
 (

Tr
an

s/
s)

FW enabled
FW disabled

(a) Metric 1

0

200

400

600

800

1,000

1,200

Server-Server Server-VM VM-Server VM-VM

R
ou

nd
 T

rip
 L

at
en

cy
 (
μs

/t
ra

n)

FW enabled
FW disabled

(b) Metric 2

0

200

400

600

800

1,000

1,200

1,400

Server-Server Server-VM VM-Server VM-VM

90
th

 P
er

ce
nt

ile
 L

at
en

cy
 (
μs

)

FW enabled
FW disabled

(c) Metric 3

0

200

400

600

800

1,000

1,200

1,400

1,600

Server-Server Server-VM VM-Server VM-VM
99

th
 P

er
ce

nt
ile

 L
at

en
cy

 (
μs

)

FW enabled
FW disabled

(d) Metric 4

Figure 5.3: Netperf test with virtual VNF (pfSense FW)

interrupts not by the processing effort since the packet header modification is a

fractional operation that consumes a few CPU cycles. To verify this assumption,

we have analysed the CPU usage details, and we have found that nearly 90% of

CPU usage is dedicated to the interrupts while only 1.7% was used by the NAT

to perform its computation.

This experiment demonstrates the crucial impact of network traffic type on

the CPU usage in different VNF categories.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

Large payload
Small payload

(a) Snort IDS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

Large payload
Small payload

(b) pfSense NAT

Figure 5.4: Different impacts of high packet rate and throughput on the resources
utilisation at network functions

45

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

1st core
2nd core
3rd core
4th core

(a) pfSense NAT

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

1st core
2nd core
3rd core
4th core

(b) Snort - IDS

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

1st core
2nd core
3rd core
4th core

(c) Suricata - IDS

Figure 5.5: NF implementation impact on the CPU usage

5.3 Network Function Software implementation

Next, we increased the number of allocated CPU cores from one to four for Snort

and pfSense VMs to improve their performance and we applied high-throughput

traffic. Surprisingly we have observed that Snort consistently uses only one core at

a time. As we can see from Fig. 5.5b, it was using first core 3s to 12s, the third core

from 11s to 22s, and second core from 21s to 32s. Fig. 5.5a illustrates the same

behaviour for the pfSense NAT but with sporadic and low fluctuations of the other

cores, which can be caused by background OS tasks. Our further investigation

by examining the source code of both Snort and pfSense has concluded that this

observation is attributed to their single-threaded implementation (see Fig. 5.6).

To confirm our conclusion, we identified and tested a multi-threaded version

of IDS, Suricata5, using default rules and the same experimental setup as Snort.

Suricata is multithreaded at the Detect stage as shown in Fig. 5.6.

As expected, the results illustrated in Fig. 5.5c demonstrates that the four

allocated cores are simultaneously at high usage level during the runtime.

This experiment shows that even VNFs of the same type can have remarkably

diverse performance due to the underpinning implementation techniques.

To sum up, we illustrate in Table 5.1 the studied characteristics in some NFs.

The gain/drop factor of a VNF means the ratio of incoming to outgoing traffic

5version 3.2.4; https://suricata-ids.org/

46

Network
Decode
Decodes
packets

Stream
app. Layer
Performs
stream-
tracking

and
reassembly

Detect

Detect
Compare
signature

Detect

Outputs
Processes
all events
and alerts

Packet
acquisition

Reads
packets

from the
network

1 2 3 4 5

Figure 5.6: Parallel “Detect” in Suricata IDS

Table 5.1: Classification of studied VNFs

NF Action Compute attribute
Gain/drop

factor

FlowMon R header I/O bound 1

IDS R header/payload CPU bound 1

Firewall R header I/O bound 0 ≤ x ≤ 1

NAT R/W header I/O bound 1

Load

Balancer
R/W header I/O bound 1

Redundancy

Eliminator
R/W paylaod CPU bound 0 < x ≤ 1

volume at that NF; it mainly depends on the logic implemented by the NF.

5.4 Network Function reordering in the

network chain

In this experiment, we change the order of some VNFs in the chains. For example,

the first chain has a NAT, IDS, and FlowMon, the second has an FW, IDS, and

FlowMon. With three distinct NFs, there are six different possible permutations

of VNF sequence in each chain. For all the permutations, we apply the same

network traffic.

The end-to-end delay of the chain is different from one permutation to another

and is also dependent on the VNFs involved in the experiment. Here are the main

47

 0

 2

 4

 6

 8

 10

 12

 14

 16

99
th

 p
er

ce
nt

ile
 o

f R
TT

 (
m

s)

N->M->I
N->I->M
I->N->M
I->M->N
M->I->N
M->N->I

(a) Network Chain NAT–IDS–FlowMON

 0

 2

 4

 6

 8

 10

 12

 14

 16

99
th

 p
er

ce
nt

ile
 o

f R
TT

 (
m

s)

F->M->I
F->I->M
I->F->M
I->M->F
M->I->F
M->F->I

(b) Network Chain FW–IDS–FlowMON

Figure 5.7: Impact of VNF order on the end-to-end delay of network chains.
However, we ignore the implementation of the VNF.

remarks for Fig. 5.7a.

• When the NAT is in the first order, we get the highest RTT.

• When the NAT is in the third order, it is less high RTT.

• When the NAT is in the second order - in the middle - we get the lowest

RTT.

When the NAT is in the middle of the chain, ingress and egress packets take

more time to reach it (they go first through either FlowMon or IDS), and this

reduces the packet rate and the queuing time at its level. The NAT is then able

to influence the performance of the whole chain as it is the weak link (I/O-bound

NF). When the NAT is in the first order, it receives a high packet rate (directly

from the source), and that creates congestion, so delay. When it is in the third

order, ingress packets have a less high rate (compared to the case of the NAT in

the first position), but egress packets (going back to the source) comes directly

from the destination (so no processing).

The same reasoning can still explain Fig. 5.7b but in this case, there are two

weak VNFs which are the FlowMon and the IDS compared to the FW. So these

former VNFs will influence more the end-to-end delay in the chain.

However, we should consider that in some cases the VNF re-ordering could

violate the network policy implemented by the chain.

5.5 Proof-of-concept experiments

In this section, we describe the aim and setup of the proof-of-concept experiment.

48

5.5.1 Idea

We sum up the finding on the VNF characterisation as follows.

• Single-threaded application cannot use all available cores on commodity serv-

ers, in particular, single-threaded NFs suffer from this limitation.

• Single-threaded NF that performs one function, e.g. NAT, IDS, Traffic shap-

ing, etc. need only one core to run properly on a multi-core processor (in

analogy to a bus carrying one passenger, who obviously needs only one seat.).

• NF has distinct sensitivity towards packet rate and payload size. For in-

stance, the performance of NFs handling packet payload affects the network

performance of throughput-intensive traffic, the packet rate impacts other

NFs writing/reading packet header, and their performance influences both

latency-sensitive and throughput-intensive traffics.

5.5.2 Method

Practical steps for the chain composition setup.

• Allocate only one core to the single-threaded NFs so that we save more cores

that can be utilised by other applications or particularly to create multiple

instances of the same NF for parallel packet processing.

• For traffic entering NFs dealing with packet headers, we distribute its flows

based on their packet rates. We make sure that each flow goes to the right

instance of the NF depending on its packet rate. This will attenuate or

even avoid the performance degradation experienced by the NF when it is

receiving packets at a high rate and where packet loss likely occurs.

• For traffic entering NFs dealing with packet payload, we make a distribution

of its flows based on both packet rate and payload size (i.e. the throughput),

so each flow goes to the right instance of such NFs.

• Packet rate and payload size firmly depend on the application that creates

the flow. For example, online gaming is a real-time application which is

latency-sensitive, this means, e.g. when players take simple actions that go

over the network, the packets carrying them are not large but they need

to be transmitted as soon as possible. Otherwise, troubles can be seen on

the application (see also the example of video control - Pause/Play/Volume

on YouTube). Besides, for example, Hadoop exchanges data between the

workers, packets here are large (fat) and at a high rate.

49

NF X (i)

NF X (ii)

NF Y (i)

NF Y (ii)

NF intra-// (l=2)

Latency-sensitive traffic
N flows – Small packets

Throughput-intensive traffic
M flows – “Fat” packets

R/W packet header NF

R/W packet payload NF

M flows

N flows

(1-β)M flows

αN flows

M flows

NF intra-// (m=2)

NF Z (i)

NF Z (ii)

NF intra-// (n=2)

βM flows

(1-β)M flows

 R/W packet header/payload NF

N flows

α and β depend on the packet rate and
payload size of the ingress traffic

Figure 5.8: A particular use case where N flows belong to SH traffic category and
M flows to FL category – see “Traffic characteristics” for SH and FL meaning

Traffic characteristics

We consider different types of traffic as shown below.

• Traffic where the packets have a large payload (fat packets, F for fat) and

high packet rate (H for high): we call this traffic category FH

• Packets with large payload and low packet rate (L for low): FL

• Packets with small payload (S for small) and high packet rate: SH

• Packets with a small payload and low packet rate: SL

5.5.3 Experiment set-up

We thus consider FH, FL, SH, and SL traffic. We use 4 VMs as senders; each

couple sends the same kind of traffic, first two VMs always have large packet

payload (F), the two remaining VMs always have small packet payload (S) so that

in all cases we introduce a candidate of each traffic (throughput versus latency).

We use two VMs for the same traffic to show and prove the traffic distribution

benefit/effect.

Without loss of generality, we send ICMP packets using hping3 network tool

so that we can customise the packet payload and rate. All packets belonging to

FH traffic carry a payload of the size of Ethernet MTU (1500 bytes) and at a rate

of 20kpps, FL: 1500 bytes payload at 2kpps, SH: 16 bytes payload at 20kpps, and

lastly, SL: 16 bytes payload at 2kpps.

50

NAT
pfSense

2 cores, 2G
Memory

IDS
Snort

2 cores, 2G
Memory

VM1
FL

VM2
FL

VM3
SL

VM4
SL

Server
Destination

VM1
FL

VM2
FL

VM3
SH

VM4
SH

VM1
FH

VM2
FH

VM3
SL

VM4
SL

VM1
FH

VM2
FH

VM3
SH

VM4
SH

1st
setup

2nd
setup

3rd
setup

4th
setup

Figure 5.9: Traffic traversing a service chain composed of a NAT and an IDS

We consider a service chain composed of two virtualised NFs (using KVM

virtualisation technology on Ubuntu server 14.04), pfSense 2.3.3 as a NAT (R/W

packet header), and Snort 2.9.9 as an IDS (R packet payload).

Sender VMs are on server-01 (8 cores/1200.00 MHz, 8G memory), virtual-

ised NFs are located on server-02 (8 cores/1256.718 MHz, and 8G memory), the

destination is a server with four cores/1998.000 MHz and 4G memory.

Here is the possible set-ups for the senders:

• VM1 (FH), VM2 (FH), VM3 (SH) and VM4 (SH): we call this set-up FHSH

• VM1 (FH), VM2 (FH), VM3 (SL) and VM4 (SL): FHSL

• VM1 (FL), VM2 (FL), VM3 (SH) and VM4 (SH): FLSH

• VM1 (FL), VM2 (FL), VM3 (SL) and VM4 (SL): FLSL

Baseline experiment

We measure the packet loss and network latency and throughput through the

service chain when we apply each set-up of senders described in the previous

section. We allocate two cores and 2G memory for each NF.

Proof-of-concept experiment

We change the resources dedicated to the NFs to be one core and 1G memory for

each one of them. However, we create two instances of each NF (each has one core

and 1G memory), and we apply our approach under each traffic set-up (FHSH,

FHSL, FLSH, FLSL), like what we exactly do in the baseline experiment. We

measure again the packet loss, latency and throughput and lastly, we compare the

results of the two experiments.

51

NAT (i)
1 core

1G Mem

IDS (i)
1 core

1G Mem Server
Destination

Flow1-FH

Flow2-FH

Flow3-SH

Flow4-SH

Flow1-FH

Flow2-FH

Flow3-SH

Flow4-SH

VM1
FH

VM2
FH

VM3
SH

VM4
SH

1st
setup

NAT (ii)
1 core

1G Mem

IDS (ii)
1 core

1G Mem

Strategy: Mitigate damage

Figure 5.10: Applied traffic: FHSH – Packets at high rate are sent to the NFs,
extreme network conditions. Traffic distribution takes place to reduce or avoid
the packet loss and then to improve the network latency and throughput as much
as possible

NAT (i)
1 core

1G Mem

IDS (i)
1 core

1G Mem Server
Destination

Flow1-FL

Flow2-FL

Flow3-SH

Flow4-SH

Flow1-FL

Flow2-FL

Flow3-SH

Flow4-SH

VM1
FL

VM2
FL

VM3
SH

VM4
SH

3rd

 setup

NAT (ii)
1 core

1G Mem

IDS (ii)
1 core

1G Mem

Strategy: Reduce latency and increase
throughput

Figure 5.12: Applied traffic: FLSH – Same objective as for the traffic category
FHSL

52

NAT (i)
1 core

1G Mem

IDS (i)
1 core

1G Mem Server
Destination

Flow1-FH

Flow2-FH

Flow4-SL

Flow1-FH

Flow2-FH

Flow4-SL

VM1
FH

VM2
FH

VM3
SL

VM4
SL

2nd
setup

NAT (ii)
1 core

1G Mem

IDS (ii)
1 core

1G Mem
Flow3-SL

Strategy: Reduce latency and increase
throughput

Figure 5.11: Applied traffic: FHSL – Traffic at high and low packet rates, the
traffic distribution plays crucial role to reduce latency and increase throughput,
and also to reduce the packet loss

NAT (i)
1 core

1G Mem

IDS (i)
1 core

1G Mem Server
Destination

Flow1-FL

Flow2-FL

Flow3-SL

Flow4-SL

Flow1-FL

Flow2-FL

Flow3-SL

Flow4-SL

VM1
FL

VM2
FL

VM3
SL

VM4
SL

4th
setup

NAT (ii)
1 core

1G Mem

IDS (ii)
1 core

1G Mem

Strategy: Stabilise network performance

Figure 5.13: Applied traffic: FLSL – The network conditions are ideal (traffic at
low rate), the objective of traffic distribtion is to stabilise the network performance

53

5.5.4 Results and conclusion

 0

 20

 40

 60

 80

 100

src1 (FH)

src2 (FH)

src3 (SH)

src4 (SH)

%

FHSH (packet loss)

Packet loss Packet loss*

 0

 5

 10

 15

 20

 25

 30

src1 (FH)

src2 (FH)

src3 (SL)

src4 (SL)

%

FHSL (packet loss)

Packet loss Packet loss*

 0

 5

 10

 15

 20

src1 (FL)

src2 (FL)

src3 (SH)

src4 (SH)

%

FLSH (packet loss)

Packet loss Packet loss*

 0

 0.5

 1

 1.5

 2

 2.5

 3

src1 (FL)

src2 (FL)

src3 (SL)

src4 (SL)
%

FLSL (packet loss)

Packet loss Packet loss*

Figure 5.14: Packet loss has been significantly reduced for FH and SH traffics.
We must note that these results have been conducted as a proof of concept for
proving the usability of our approach. We stressed our experiment environment
to highlight the benefit of our idea. So in real data centre, resources will be
sufficiently supplied to the infrastructure and we will not that high packet loss.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

src1 (FH)

src2 (FH)

src3 (SH)

src4 (SH)

src1 (FH)

src2 (FH)

src3 (SH)

src4 (SH)

src1 (FH)

src2 (FH)

src3 (SH)

src4 (SH)

RT
T

(m
s)

FHSH (RTT)

98th Percentile
98th Percentile*

90th Percentile
90th Percentile*

75th Percentile
75th Percentile*

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

src1 (FH)

src2 (FH)

src3 (SL)

src4 (SL)

src1 (FH)

src2 (FH)

src3 (SL)

src4 (SL)

src1 (FH)

src2 (FH)

src3 (SL)

src4 (SL)

RT
T

(m
s)

FHSL (RTT)

98th Percentile
98th Percentile*

90th Percentile
90th Percentile*

75th Percentile
75th Percentile*

 0

 5

 10

 15

 20

src1 (FL)

src2 (FL)

src3 (SH)

src4 (SH)

src1 (FL)

src2 (FL)

src3 (SH)

src4 (SH)

src1 (FL)

src2 (FL)

src3 (SH)

src4 (SH)

RT
T

(m
s)

FLSH (RTT)

98th Percentile
98th Percentile*

90th Percentile
90th Percentile*

75th Percentile
75th Percentile*

 0

 1

 2

 3

 4

 5

 6

 7

 8

src1 (FL)

src2 (FL)

src3 (SL)

src4 (SL)

src1 (FL)

src2 (FL)

src3 (SL)

src4 (SL)

src1 (FL)

src2 (FL)

src3 (SL)

src4 (SL)

RT
T

(m
s)

FLSL (RTT)

98th Percentile
98th Percentile*

90th Percentile
90th Percentile*

75th Percentile
75th Percentile*

Figure 5.15: Network latency decreases for all kinds of traffic - except for FLSL
where it remains the same

54

 0

 2

 4

 6

 8

 10

 12

 14

src1 (FH)

src2 (FH)

src3 (SH)

src4 (SH)

M
bi

ts
/s

FHSH (throughput)

Throughput Throughput*

 0

 2

 4

 6

 8

 10

 12

 14

 16

src1 (FH)

src2 (FH)

src3 (SL)

src4 (SL)

M
bi

ts
/s

FHSL (throughput)

Throughput Throughput*

 0

 0.5

 1

 1.5

 2

 2.5

 3

src1 (FL)

src2 (FL)

src3 (SH)

src4 (SH)

M
bi

ts
/s

FLSH (throughput)

Throughput Throughput*

 0

 0.5

 1

 1.5

 2

 2.5

 3

src1 (FL)

src2 (FL)

src3 (SL)

src4 (SL)

M
bi

ts
/s

FLSL (throughput)

Throughput Throughput*

Figure 5.16: Network throughput increases more for FH traffic

• FHSH (Fat-High and Small-High)

– Affected traffic: both throughput-intensive and latency-sensitive.

– Packet loss dropped from 62% to 32% i.e., an improvement of 48.59%.

– RTT decreased by 6.87%.

– Throughput increased by 13.98%.

• FHSL (Fat-High and Small-Low)

– Affected traffic: throughput-intensive.

– Packet loss for throughput-intensive traffic reduced from 23% to 1%,

i.e., by 95.65%.

– Latency dropped by 43.27%.

– Throughput increased by 4.10%.

• FLSH (Fat-Low and Small-Low)

– Affected traffic: latency-sensitive.

– Packet loss reduced from 15% to 3%, i.e., by 83.34%.

– Latency decreased by 15.10%.

– Throughput increased by 6.75%.

• FLSL (Fat-Low and Small-Low)

– Ideal conditions, none of the traffic is affected.

55

– Packet loss went from 1% to 0%.

– Throughput and latency are still the same.

In a nutshell, our results show how packet loss is reduced by 75.86%, latency

dropped by 21.74%, and network throughput increased by 8.28%.

This experiment illustrates how the network chain performance cannot simply

be improved by scaling out/in (horizontal scaling) or up/down (vertical scaling)

the VNFs comprising the chain. It depends on the implementation and the sens-

itivity of VNFs towards the network traffic. For instance, the implementation

of some VNFs limits the benefit of vertical scaling especially when the VNFs is

single-threaded application.

5.6 Summary

In this chapter, we have evaluated the virtualisation impact on the network per-

formance of a firewall. Then, we have conducted a set of experiments targeting a

firewall, a NAT, a flow monitor, and two IDSs. We have experimentally demon-

strated that the VNF can be I/O or CPU-bound depending on how it is hand-

ling the traffic. The VNF underlying software implementation can significantly

determine its resource utilisation so understanding this detail can be helpful in

optimising the resource allocation. VNF reordering is not usually possible since it

may violate the network policies and could bring more harm than benefit, that’s

why reordering was not considered in our solution.

The idea behind this study is to leverage the resulting knowledge in the math-

ematical formulation of the VNF instantiation and traffic distribution problem,

which will be the focus of the next chapter.

56

Chapter 6

Dynamic Network Function

Composition

In this chapter, we propose Natif 1, a VNF-Aware VNF insTantIation and traFfic

distribution scheme. Natif proposes a VNF instantiation, and traffic distribution

that relates the VNF characteristics to the network flows attributes. Based on

the study presented in the previous chapter, we propose to classify the VNFs as

I/O bound and CPU bound functions. For example, when dealing with a VNF

classified as I/O bound, Natif calculates the number of needed instances based

on the packet rate of the ingress flows, and it prioritises the packet rate criterion

over the network throughput in the traffic distribution. For a CPU bound NF,

it mostly relies on the throughput either in the VNF instantiation or the traffic

distribution. We have conducted proof-of-concept experiments as an initial step

to prove Natif ’s efficiency compared to a typical chain composition set up.

6.1 Problem formulation and modelling

6.1.1 Problem notations

Network Function

We consider the virtual form of NFs. Let M = {m1,m2, . . .} be the list of NFs.

Each mi ∈ M is defined by a set of parameters. For instance, mi.s, mi.cpu, and

mi.mem represent, respectively, the server ID where mi is deployed, the required

CPU and memory by mi. Let also the parameter mi.proc (proc for processing)

denote whether the VNF is I/O bound or CPU bound. If mi.proc = 1, the VNF

is CPU bound, else, i.e. mi.proc = 0, it is I/O bound. In case the VNF is both

1https://github.com/wajdihajji/natif.git. Natif is a French word that means innate, original,
or natural

57

CPU and IO bound, for example, a DPI, we set mi.proc = 2.

Depending on mi.proc, we evaluate the processing capacity distinctively. For

an I/O bound NF, we quantify it by the number of processed packets per second,

referred to by mi.cpps, for a CPU bound category, we rely on the amount of data

parsed per second, i.e. the throughput, which is noted mi.cdps.

We also consider the software implementation of the NFs. We use the para-

meter mi.thd for this. If mi.thd = 0, mi is single-threaded VNF and if mi.thd = 1,

it is multi-threaded. In particular, if mi.thd = 0, we impose that the number of

allocated cores to mi should be equal to the number of its created instances, so,

each instance only uses one core.

We define the gain/drop factor for an VNF mi as mi.gd, where mi.gd ∈ R≥0.
For example, mi.gd = 1 for NAT or IDS since they perform header field mapping

or traffic inspection, and 0 < mi.gd ≤ 1 for Redundancy Eliminator (RE) as it

reduces the volume of egress traffic by removing redundant data.

The way we calculate the gain/drop factor varies in accordance with the VNF

category. Thus, we use two versions of mi.gd: mi.gdp to note the gain/drop factor

regarding the packet rate, when mi.proc = 0, and mi.gdd for throughput gain/drop

factor, in case mi.proc = 1.

The end-to-end delay of flow when traversing a VNF is composed of a trans-

mission delay and a processing delay. The former depends on the link capacity

(the bandwidth) which is considered relatively stable in data centres [34]. The

latter is due to the processing time, i.e. service time, of the incoming traffic plus

the latency incurred by the packet queuing at the NFs, i.e., the waiting time. Let

D be the transmission delay matrix, where D(mi,mj) = D(mj,mi) is the delay

between mi and mj, and D(mi,mj) = −1 if the delay is unknown or mi and mj

are not reachable. We define the service time as the time that the VNF takes to

process a packet or a bit of data based on its category.

The service time of a VNF mi is given as follows.

tis = 1/mi.cap (6.1)

where,

mi.cap =

mi.cpps, mi.proc = 0

mi.cdps/δi, otherwise
(6.2)

where δi = avg(pktsize) is the average packet size in the flows traversing mi.

For simplicity and without loss of generality, we consider M/D/1 queue at

VNFs and VNFs process packets in a First-Come-First-Service (FCFS) discipline.

We refer by λi to the arrival rate of all flows traversing mi, i.e., how many packets

per second traversing the VNF mi. λ
i is determined by a Poisson process [80] and

58

is defined as follows. The use of Poisson process is backed as it is widely used to

model random points in time and space such as times of radioactive emissions and

arrival times of customer at the service point.

λi =
∑

fi∈E(∗,mi)

fi.pr (6.3)

Given the utilisation ρi = λi × tis, the average waiting time tiw of mi is

tiw =
tis × ρi

2(1− ρi)
=

λi × tis
2

2(1− λi × tis)
(6.4)

And the processing delay of mi is:

tp(mi) =

tis, λi ≤ mi.cap

tiw + tis, otherwise
(6.5)

Network chain

We represent a chain as a Directed Acyclic Graph (DAG) G = (V, E), where V

is the set of vertices representing a subset of VNFs in M , while E is the set of

edges representing the links joining them. The first node of the DAG is called

entry VNF, and the last node is called exit NF. We assume that all DAGs have

only one entry and one exit NF. If a DAG has more than one entry or more than

one exit, one entry VNF and one exit NF, both with zero cost (functionless NF),

are added to the graph, along with costless (no delay) edges connecting them to

the original entry/exit nodes.

Each path from the entry to the exit nodes is a traversable path called a branch.

When a procedure of vertical scaling is performed in an NF, e.g., increasing or

decreasing the number of its instances, new branches are created in the graph. In

this case, we call these new branches as sub-branches. Let CH = {ch1, ch2, . . .}
be the list of deployed network chains in the data centre, Bi and SBi the lists of

branches and sub-branches, respectively, in the chain chi.

Initially, there were three branches in Fig. 6.1; b1, b2 and b3. Then, after scaling

out nf2 and nf3, the chain has got six sub-branches.

The number of sub-branches equals to the sum of the product of the number

of instances of each distinct VNF on all branches.

|SBi| =
∑
b∈Bi

∏
m∈b

|M | (6.6)

where SBi and Bi are the lists of sub-branches and branches, respectively, in chi,

M is the list of instances of the VNF m, and m ∈ b means m is deployed on the

59

nf1

nf2

nf3

nf6

nf5

nf4

nf7

b1_1

nf2

nf3

Figure 6.1: Chain sub-branches

branch b. For example, in Fig. 6.1, |SB| = (1× 2× 1× 1) + (1× 2× 1× 1) + (1×
2× 1× 1) = 6.

Flows

We examine flow-based traffic. Each set of flows traverses the appropriate network

chain according to the policy defined for it. We note F = {f1, f2, . . .} as the list

of existing and active flows. Each flow has a non-static 5-tuple since it can be

altered by one of the VNF while traversing the chain (e.g. a NAT). Nevertheless,

it is still possible to determine in advance the flow 5-tuple at each hop of the chain

as we know what type of operations the VNFs perform. The number of flows can

also be known in the data centre, since we know the ensemble of communicating

hosts. For example, the application server interacts with the interface and stores

data to the database instance.

We define the following variables to describe a network flow. Flow throughput

by fi.thp, packet rate by fi.pr, source IP by fi.sip, destination IP by fi.dip,

source port by fi.sport, destination port by fi.dport, and protocol by fi.proto.

To determine the attributes of the egress flow at the VNF mi, we refer to the

following equations:

fout.pr =

mi.gdp ×
∑

fi∈E(∗,mi)
fi.pr, if λi ≤ mi.cap

mi.gdp ×mi.cpps, otherwise
(6.7)

fout.thp =

mi.gdd ×
∑

fi∈E(∗,mi)
fi.thp, if λi ≤ mi.cap

mi.gdd ×mi.cdps, otherwise
(6.8)

where fi ∈ E(∗,mi) refers to all the flows entering mi.

We primarily consider the flow packet rate and throughput in our model. We

use these two metrics when they are available. Otherwise, we use the statistics

collected at the switches to feed the prediction model to infer them (section 6.2.3).

60

Policy

Let P = {p1, p2, . . .} be a list of policies. We note pi.list the list of VNFs used

by pi and pi.len its length. Each policy can rule one or many flows, and it is in

many-to-one correspondence with the network chain. We assume the number of

policies equals to the number of branches of all chains, i.e., ∀p ∈ P, ∃!chi,∃!b ∈
Bi s.t. b implements p.

6.1.2 Problem definition

The expected delay of a flow fi traversing a branch bi governed by a policy pi is

construed as follows.

T (pi) = D(fi.src, pi.list[1])

+

pi.len−1∑
j=1

(D(pi.list[j], pi.list[j + 1]) + tp(pi.list[j]))

+D(pi.list[pi.len], fi.dst)

(6.9)

We aim to reduce the end-to-end delay of the traffic traversing the network

chains. On the one hand, we adequately scale in/out the VNFs in a way that

the incoming flow packet rates and throughout do not exceed the sum of the

maximum capacities of the existing instances. On the other hand, we shape the

traffic distribution scheme by logically linking the flows and the VNF through

their characteristics.

Problem definition. Given the set of flows F , policies P , NFs M , chains

CH, their branches B, their sub-branches SB, and delay matrix D. We aim to

determine the needed number of instances of each VNF to ensure that all ingress

flows are accommodated. Afterwards, we map the flows on the resultant chain sub-

branches SF based on both flow and VNF properties to reduce the total end-to-end

delay at the chains.

Minimise
∑
pk∈P

T (pk) Subject to:

∀pk ∈ P, pk is satisfied (C1)

∀pk ∈ P, ∀mi ∈ pk.list,
∑

fi∈E(∗,mi)
fi.pr ≤

∑
mj∈Mi

mj .cpps, mi.proc = 0∑
fi∈E(∗,mi)

fi.thp ≤
∑

mj∈Mi
mj .cdps, otherwise

(C2)

∀ fi ∈ E(∗,mi),∃mj ∈ Mi,fi.pr ≤ mj .cpps, mi.proc = 0

fi.thp ≤ mj .cdps, otherwise
(C3)

61

The constraints (C1) impose that all policies should be satisfied. (C2) ensure

that there should be |Mi| VNFs capable of handling all the incoming flows, either

for I/O bound or CPU bound NFs. (C3) highlight that in a flow-based distribution

scheme, we might have individual flows that cannot be accommodated by any of

the existing VNF instances. Hence, we ensure that for any flow traversing a group

of VNF instances, there should be a mi that has the sufficient capacity either

regarding the packet rate or throughput.

The above problem can be proven to be NP-Hard.

Proof. Consider a special case of the NF Scaling and Traffic Distribution

Optimisation problem that includes a chain composed of three NFs: nf1, nf2,

and nf3. They are sequentially connected: nf1 is directly connected to nf2 and

nf2 is directly connected to nf3. They are organised in a way that there is only

1 = 1× 1× 1 branch in this chain to be traversed by the n existing flows. In this

case, flows have to enter in nf1, pass through nf2, and leave the chain by nf3.

Suppose the capacity of nf1 is enough to accept all flows, but the capacities of

nf2 and nf3 are not, which indicates that they are overloaded. In this case, a

reasonable solution is to scale nf2 and nf3 out in at least one unit each so that they

can be able to accept all the n flows. In this new setup which is composed of 1 nf1,

2 nf2, and 2 nf3, three new sub-branches are created, totalising 4 = 1× 2× 2 sub-

branches in the chain. Then, the original problem becomes to find an appropriate

sub-branch for each of the n flows that results in the overall low latency in this

new setup.

Consider each flow to be an item, where its requirement (throughput or packet

rate) is the item size. Thus, each VNF can be seen as a knapsack kj with limited

capacity kj.cap. The profit of assigning flows to each VNF is the negative of the

flow delays. Then, the NF Scaling and Traffic Distribution Optimisation problem

becomes finding a path for each flow through the VNFs that maximises the total

profit. In other words, this becomes a Multiple Knapsack Problem (MKP) [81],

whose decision version has already been proven to be NP-hard. Therefore, the

MKP problem is reducible to our problem in polynomial time, and hence the NF

Scaling and Traffic Distribution Optimisation problem is NP-hard.

6.2 Natif ’s mechanisms

The network administrators set up the traffic steering decisions in the chains in

advance, they consider the traffic attributes (e.g., the 5-tuple) and also the VNF

functionality. For instance, in the FW configuration, we define what is the re-

quired action when “drop” or “allow” conditions are met. However, in particular

62

Algorithm 1 NF Instantiation()

Input: CH, F , B, M
Output: updated CH

1: for each ch ∈ CH do
2: for each b ∈ B do
3: F ′ = {flows traversing b}
4: fpr =

∑
f∈F ′ f.pr

5: fthp =
∑

f∈F ′ f.thp
6: for each m ∈M on b do . in order
7: if m.proc = 0 then
8: m.reqCapH = fpr
9: m.instNb = ceil(m.cpps/m.reqCapH)

10: else
11: m.reqCapP = fthp
12: m.instNb = ceil(m.cdps/m.reqCapP)
13: end if
14: fpr = fpr ∗m.gdp
15: fthp = fthp ∗m.gdd
16: end for
17: CreateInstances()
18: end for
19: end for
20: Output the new structure of the chains in CH

cases, like for an LB, the steering is offloaded to the VNF itself which internally

determines how to forward the traffic. For consistent traffic distribution, we pro-

pose to overwrite the internal steering decisions made directly by the VNF (like

the LB traffic distribution since it may degrade the performance of VNFs in one

of the introduced categories). Further, we impose a flow-based traffic distribution

in chains so that it does not impair the logic in the stateful NFs.

6.2.1 Network Function instantiation

We calculate, using a network tool called dstat [82], the total packet rates (number

of packets per second) and throughput (size of network traffic per second) of all

flows traversing each branch of the chain. Then, depending on the VNF category

(whether it is I/O or CPU bound), we determine how many instances needed for

that NF. As we monitor the flows and we know the implemented logic of each NF,

we can identify the path they need to traverse.

In Algorithm 1, lines 1 and 2 show the scope of the instantiation process, which

is all the existing chains. On each branch, we sum the flows (line 3), then, we

determine the required capacity of each VNF (lines 8 and 11) and the number

of needed instances (lines 9 and 12) using the ceiling mathematical function that

63

Algorithm 2 Flow Distribution()

Input: F , M
Output: New mapping of the flows on the existing paths

1: F̂ = ∅ . structure for mapped flows
2: for each m ∈M do
3: F ′ = {flows traversing m in order}
4: l = length(F ′)
5: I = {list of instances of m}
6: while F ′ 6= ∅ do
7: if m.proc = 0 then
8: if m.cpps/(fi.pr × l) > neg thsd h then
9: if m.capp/(fi.thp× l) > neg thsd p then

10: fi ← arg maxf∈F ′ f.pr
11: mj ← arg maxm∈I m.cpps
12: else
13: fi ← arg maxf∈F ′ f.thp
14: mj ← arg maxm∈I m.cdps
15: end if
16: else
17: fi ← arg maxf∈F ′ f.pr
18: mj ← arg maxm∈I m.c cps
19: end if
20: UpdateNFCapacity(mj)
21: else
22: if m.cdps/(fi.thp× l) > neg thsd p then
23: if m.cpps/(fi.pr × l) > neg thsd h then
24: fi ← arg maxf∈F ′ f.thp
25: mj ← arg maxm∈I m.cdps
26: else
27: fi ← arg maxf∈F ′ f.pr
28: mj ← arg maxm∈I m.cpps
29: end if
30: else
31: fi ← arg maxf∈F ′ f.thp
32: mj ← arg maxm∈I m.cdps
33: end if
34: UpdateNFCapacity(mj)
35: end if
36: F̂ (fi) = F̂ (fi) +mj . F̂ (fi) is a list
37: F ′ = F ′ \ {fi}
38: end while
39: end for
40: Output the mapped flows F̂

rounds a number up to the nearest integer. Following that, to move to the next

NF, we amend the flow characteristics according to the gain/drop factor (lines 14

and 15). Finally, we call CreateInstances(), line 17, to create the needed instances.

64

6.2.2 Traffic distribution

After the vertical scaling decision and implementation, the chain will have new

sub-branches, and therefore the flows need to be mapped again onto the new paths.

The problem consists of having a set of flows traversing different VNF sequences

that are including similar instances at each level. We aim to accommodate all

the flows in a flow-based mode with consideration of the VNF characteristics. So,

for n flows traversing m VNF instances, the distribution module should provide

which flow should traverse which instance and ensure that no flow is left or a VNF

is overloaded.

In the mapping strategy, to reduce the likelihood of having no accommod-

ated flows, we start by assigning the most massive flows (either in packet rate or

throughput) to the VNF instances having the considerable maximum remaining

capacity. Following that, the flow status (mapped or not) and the VNF remain-

ing capacity will be updated, and the process will resume until the completion of

mapping all the flows on all the instances of all the branches. In Algorithm 2,

we adopt a different approach to the instantiation module, we mainly look at the

VNFs and their associated flows, and we match between them as described in lines

6 to 37. For a given NF, the mapping finishes when there is no flow left untreated.

The output of the algorithm is a data structure in which the distribution mod-

ule describes the path of each flow. However, in some cases, only relying on the

VNF category and the flow attributes can lead to poor mapping decisions. For

instance, if at a CPU bound NF, we are receiving flows with negligible throughput

(relatively to the VNF capacity) but with high packet rate, considering only the

throughput in the traffic distribution will create congestion at one of the VNF

instances (the victim NF). Thus, we define the variable negligibility threshold for

both VNF categories. It means if the flow size (either in packet rate or through-

put) cannot influence the VNF performance, then we consider another criterion

of distribution. For the same VNF above, the flow throughput does not affect the

VNF performance, so we rely on the packet rate instead.

As an illustration, in Fig. 6.2, there are six flows, a, b, c, d, e, f , traversing

the chain composed of two VNFs X and Y . The first VNF X is I/O bound, the

second VNF Y is CPU bound. So, the performance of the VNF X is bounded

by its capacity regarding the packet rate, for Y ’s performance, its throughput

capacity limits it. In the first step, we sum the total packet rates and throughput

of all flows; then, we calculate how many instances needed for each NF. Following

that, we create the required instances, and we perform the flows mapping, step

by step, as explained below. In this case, none of the flows has a negligible size

comparing to the VNFs capacity.

65

Flow a (2, 26)

Flow b (3, 13)

Flow c (6, 41)

Flow d (2, 72)

Flow e (9, 17)

Flow f (5, 25)

X: Header-
handler NF

Y: Payload-
handler NF

(10, *, 1.3) (*, 100, 0.6)

(27, *) (*, 252.2)

(35.1, 252.2)

X1

X2

X3

Y1

Y2

Y3

e

c/a/d

f/b

d

c/e

a/f/b

Flow (packet rate, throughput)
NF

(rate capacity,
throughput capacity,

gain/drop factor)

Figure 6.2: Algorithms application
1. X1 ← e, X2 ← c, X3 ← f . Each time we map a single flow, we update the

remaining capacity of the VNF instances, and we still follow the rule ’bigger

flow goes to the VNF with higher capacity’, where the definition of bigger

and higher depend on the VNF category.

2. X1 ← ∅, X2 ← a, X3 ← b.

3. X1← ∅, X2← d, X3← ∅. When moving to the second VNF in the network

chain, we need to apply the gain/drop factor of the last VNF (X in this case)

to get the new flows attributes.

4. Y 1 ← d, Y 2 ← c, Y 3 ← a.

5. Y 1 ← ∅, Y 2 ← e, Y 3 ← f .

6. Y 1 ← ∅, Y 2 ← ∅, Y 3 ← b.

6.2.3 Traffic prediction

Flow rates and throughput (see explanation in 6.2.1) are dynamic and mainly

depend on the communicating applications. By leveraging the SDN capabilities,

we can use the traffic statistics recorded at the forwarding devices to find out the

flows attributes or for other purposes, e.g., infer the communicating VM groups

like we achieved in [83]. We aim to use the past traffic data to train a prediction

algorithm to help in characterising the future flows. For this purpose, we adopt the

prediction model ARIMA [84] to determine the flows attributes for our algorithms.

Without the output of the prediction, any new flow entering the network chain

will be mapped to the set of the VNF instances in respect to the associated policy

and based on its current attributes.

66

Our controller makes decisions after each cycle of the traffic prediction run. The

quality and reliability of working data, as well as their rate of change, determine

the period of the cycle.

6.3 Conclusions

In the chapter, we illustrated the mathematical modelling of the problem as well

as the proposed solution. We have shown the cornerstones that Natif relies on,

namely, network function instantiation, traffic distribution scheme, and traffic

prediction. The next chapter will be dedicated to describe the experimental eval-

uation. We will measure the impact of the combined application of the three

techniques above to demonstrate how the proposed solution can reduce the end to

end delay of the traffic traversing network chains without sacrificing the network

bandwidth.

67

Chapter 7

Experimental Evaluation

After formulating the VNF instantiation and traffic distribution problem, we pro-

pose our heuristic called Natif for a services chain composition aiming at reducing

the end-to-end delay. We describe in this chapter the implementation of Natif

in OpenStack based environment running on four nodes. We also illustrate the

performance evaluation of our solution compared to greedy and network-aware

service composition schemes.

7.1 System design and implementation

7.1.1 System architecture

We have implemented Natif in an OpenStack1 cloud environment. We have de-

ployed our modules alongside the OpenStack controller. Our source code, around

1,500 lines, is written in Python using OpenStack API. The implementation has

three main blocks: Interactor, Engine, and Orchestrator. The first one provides

tools to instantiate NFs, create network chains and perform traffic steering. The

second block implements the logic of the three algorithms presented section 6.2.

The last block plays the role of Orchestrator as it synchronises between the dif-

ferent modules as shown in Fig. 7.2.

7.1.2 Controller modules

Chain reading and creation

It allows reading a configuration file describing the network chain details and then

calls the OpenStack subroutines to instantiate the VNF VMs.

1https://www.openstack.org/software/newton/

68

 Co-openstack-srv1 Co-openstack-srv2

Compute Node 2

7 cores 20 GB RAM

500 GB S 1 NIC br1

eno2 (br0) eno2 (br1)

Storage

1 core 1 GB RAM

300 GB S 1 NIC br1

Compute Node 1

5 cores 16 GB RAM

500 GB S 1 NIC br0

Controller + Network

2 cores 4 GB RAM

50 GB S 1 NIC br0

Figure 7.1: OpenStack setup

NF instantiation

Each VNF has deployment steps which are defined in configuration files, and the

module uses this latter to instantiate the corresponding VMs.

Flow mapping

It determines the path of each flow and calls the SFC subroutines to implement

the forwarding rules.

NF instantiation update

After the NF instantiation, the module updates the number of instances of each

NF.

Chains update

With introducing or removing the VNF instances after NF instantiation, the mod-

ule updates the flow mapping by implementing/deleting the corresponding routes.

Flow attributes prediction

For each cycle, the module invokes Ceilometer to retrieve data regarding the

communicating VMs. It trains the ARIMA prediction model to the flow attributes

to the NF instantiation and flow mapping algorithms.

69

Nova
API

Neutron
API

Ceilometer
API

Nova Neutron Ceilometer

OpenStack Controller

Compute agent 2

Interactor
Tools to act on the cloud environment via OpenStack API (subroutines

to create/delete server/port, stitch/update chain, etc.)

Orchestrator
• Call the Interactor

subroutines
• Retrieve and

forward the traffic
stats

• Launch the Engine
modules

• Read and forward
the topology info

Engine
• Determine the

needed NF
Instances

• Map flows onto
the chain branches

• Predict flow
attributes for the

next cycle.

...

Compute agent 1 Compute agent n...

SFC

Neutron

La
u

nc
h

su
br

ou
ti

ne
s

Start Engine modules
and receive feedback

Feed Engine with topology
and traffic data

Traffic
stats

Figure 7.2: System design

7.2 Experimental evaluation

7.2.1 Testbed experiment

Fig. 7.1 shows the testbed setup. We use two servers with 8 cores and 32 GB

RAM each. On the first one, we deploy one instance of OpenStack as a controller,

and the second instance as a compute node 1. On the second server, we deploy

two OpenStack instances, the first as another compute node and the second for

the storage. The SFC extension is installed on the controller node as it controls

and manages the network chains while the flow monitor is on the other nodes

(compute and storage) to collect network stats of the NFs.

We set up two communicating networks (internal and external) with 2:1 over-

subscription rate. Six source VMs are on the external network and three destina-

tions VMs on the internal one. All of them are located on the same physical server

and are separated from the VNF server where the network chains are deployed.

We define three network traffic profiles. Profile 1 (P1): all flows have a high

packet rate but low throughput. Profile 2 (P2): all flows have high throughput

but random packet rate. Profile 3 (P3): mixed flows from P1 and P2.

We also used two reference scenarios for the performance assessment. Greedy:

70

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

 1100
 1200

 1300
 1400

 1500
 1600

 1700

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(a) Profile 1: high packet rate flows

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

 1100
 1200

 1300
 1400

 1500
 1600

 1700
 1800

 1900

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(b) Profile 2: high throughput flows

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

 1100
 1200

 1300

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(c) Profile 3: Mix of profiles 1 and 2

Figure 7.3: RTT (ms)

it relies on the resources allocation overprovision. We scale up all the VNFs in

the chain, and we equally distribute the available cores and memory on them.

Stratos-based (StratosB)[17]: it splits the flows between the existing instances

based on their throughput. It also considers the total throughput of egress traffic to

determine the number of instances of each NF. Thus, StratosB performs a network-

aware traffic distribution to reduce the likelihood of the network congestion and

link saturation.

For each scenario, we apply the three profiles, and then we measure the chain

throughput and end-to-end delay of all flows.

7.2.2 Network performance evaluation

Fig. 7.3 shows how Natif has considerably reduced the RTT in the three pro-

files. For instance, Fig. 7.3a illustrates how, at the 90th percentile, Natif achieves

around 70ms RTT comparing to 590ms and 750ms RTT, i.e., 850% and 1070% im-

provement compared with Greedy and StratosB, respectively. The next Fig. 7.3b

shows the RTT for P2, StratosB outperforms Greedy, but it is still less efficient

than Natif. For example, at the 90th percentile, the RTT is at 200ms, 400ms,

and 700ms for Natif, StratosB and Greedy, respectively. When we simultaneously

apply mixed profiles (P3), Natif remains better than StratosB as it reduces the

RTT from 140ms to 70ms at the 90th percentile and from 290ms to 145ms at 99th

percentile (i.e., an improvement of 100%). It also achieves better results compar-

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

C
D

F

Throughput (Mbps)

Greedy

StratosB
Natif

(a) Profile 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5
 1 1.5

 2 2.5
 3 3.5

 4

C
D

F

Throughput (Mbps)

Greedy

StratosB
Natif

(b) Profile 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5
 1 1.5

 2 2.5
 3 3.5

 4 4.5
 5

C
D

F

Throughput (Mbps)

Greedy

StratosB
Natif

(c) Profile 3

Figure 7.4: Throughput (Mbps)

ing to Greedy as it reduces the latency from 700ms to 70ms at 90th, which means

ten times better.

Fig. 7.4a and 7.4b pick out an identical behaviour of the throughput in the

three approaches. However, Fig. 7.4c shows how Natif achieves throughput 8%

better compared to Greedy and StratosB.

In Fig. 7.3a, StratosB and Greedy do not capture the fact that the high packet

rate (even if it is incurring low throughput) can degrade the I/O bound VNFs

performance, like the FW and the NAT in the studied network chain. With

neglecting this characteristic in the VNF and having more expanded network chain

comprising more I/O bound NFs, the performance degradation would be more

drastic than the current scenario. In Fig. 7.3b, we apply high throughput traffic, so

StratosB correctly recognises the needed VNF instances but partially succeeds in

making a correct traffic distribution since it does not consider the packet rate when

dealing with flows traversing an I/O bound NF. For P3, StratosB still performs

well with high throughput flows but not better than Natif since there is still high

packet flows that need to be suitably distributed, thus, the results in Fig. 7.3b.

Greedy focuses on the horizontal scaling of the NFs, which does not help when

the VNF has a single-threaded implementation so it will not be able to use all the

allocated cores.

To conclude, Natif has reduced the end-to-end delay without scarifying the

network throughput, and in some cases, it improves both metrics simultaneously,

e.g., in P3 (Profile 3 as described above).

72

 0

 20

 40

 60

 80

 100

Greedy StratosB Natif
 0

 2

 4

 6

 8

 10

C
P

U
 U

sa
ge

 (
%

)

M
em

or
y

U
sa

ge
 (

G
B

)

Quartiles, CPU
Quartiles, memory

(a) Profile 1

 0

 20

 40

 60

 80

 100

Greedy StratosB Natif
 0

 2

 4

 6

 8

 10

C
P

U
 U

sa
ge

 (
%

)

M
em

or
y

U
sa

ge
 (

G
B

)

Quartiles, CPU
Quartiles, memory

(b) Profile 2

 0

 20

 40

 60

 80

 100

Greedy StratosB Natif
 0

 2

 4

 6

 8

 10
C

P
U

 U
sa

ge
 (

%
)

M
em

or
y

U
sa

ge
 (

G
B

)

Quartiles, CPU
Quartiles, memory

(c) Profile 3

Figure 7.5: CPU and memory usage captured at the compute node where all the
VNFs are running

7.2.3 Computational utilisation

We aim to understand how the different approaches can affect the NFs’ utilisation

of the computation resources. In Fig. 7.5, the compute node, where the VNFs

are running, has almost the same CPU usage for StratosB and Natif. However,

the usage is different when looking at Greedy. The latter leads to underuse of the

available resources since it does not consider the VNF implementation. In P3,

Natif consumes slightly less CPU resources than StratosB. In Fig. 7.5, we show

also the memory consumption of the compute node. We observe the same pattern

through the three profiles. Greedy has the most critical memory usage, then

comes Natif and lastly StratosB. For Greedy, it always allocates more resources to

the VNFs than the other methods. Natif maximises the usage of the underlying

resources which explains the relative increase in the memory usage comparing to

StratosB. For example, while StratosB fails to distribute the high packet rate flows

having different throughput, Natif distributes traffic based on both packet rate

and throughput.

7.2.4 Algorithm evaluation

Each approach applies the NF instantiation and the flow mapping algorithms.

In this section, we measure the runtime of each algorithm using different data-

sets and the corresponding computational usage. We define three datasets. DS1 :

73

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

DS1 DS2 DS3

R
un

tim
e

(s
)

Greedy
StratosB

Natif

(a) NF instantiation module

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

DS1 DS2 DS3

R
un

tim
e

(s
)

Greedy
StratosB

Natif

(b) Flow mapping module

 0

 20

 40

 60

 80

 100

 120

G-DS1

SB-DS1

N-DS1

G-DS2

SB-DS2

N-DS2

G-DS3

SB-DS3

N-DS3

C
P

U
 u

sa
ge

 (
%

)
Quartiles, CPU

(c) CPU usage

Figure 7.6: Runtime and CPU usage of the three algorithms while performing
VNF instantation and flow mapping. G, SB, and N refer to Greedy, StratosB, and
Natif, respectively

consisting of 100 NFs, 30 chains, and 1k flows. DS2 : 200 NFs, 60 chains, and 2k

flows. DS3 : 300 NFs, 90 chains, and 3k flows.

Fig. 7.6a shows the runtime of the NF instantiation algorithm. We remark

that Greedy noticeably takes less time than the case for its counterpart algorithms.

Also, its processing time slightly grows with the increasing data-set sizes (from

0.04s for DS1 to nearly 0.025s for DS2 and DS3). Furthermore, Natif outperforms

StratosB.

For example, for DS1, Natif takes 0.06s whereas StratosB takes more than

0.08s. The same trends can be observed with larger data-sets.

In Fig. 7.6b, for the flow mapping, Natif still outperforms StratosB, and Greedy

has the shortest runtime. Also, the runtime evolves linearly with larger data-sets,

e.g., in Natif, it increases from 1s to 2.3s to 3.3s and in StratosB from 1.3s to 2.8s

to 3.8s, for DS1, DS2, and DS3, respectively.

In the first algorithm, the three approaches aim to determine the number of

VNF instances to accommodate the ingress traffic. In Greedy, the chain has

a fixed number of instances, and the resources are statically allocated. So the

time is mostly spent on stitching the chain, i.e., implementing the links between

the NFs, which explains the short runtime. StratosB determines the number of

instances solely based on the ingress traffic throughput. However, Natif considers

two criteria, the packet rate and the throughput, which results in a different

74

number of VNF instances. When dealing with CPU-bound NF, Natif and StratosB

have a similar behaviour with minor differences (Section 6.2.2). Whereas, when it

comes to dealing with traffic traversing an I/O bound NF, StratosB still considers

the throughput criterion while Natif primarily looks at the packet rates. As a

result, for the case of I/O bound NF, when considering the throughput rather than

the packet rate, we can have more VNF instances since an I/O bound VNF has

less sensitivity to the throughput than a CPU-bound NF. Hence, more instances

mean more time for the NF instantiation.

The same reasoning can still explain why Natif flow mapping algorithm out-

performs its counterpart in StratosB. In case of dealing with I/O bound NF, Natif

will output fewer instances than StratosB, and therefore, the flow mapping will be

taking less time.

Fig. 7.6c shows the effect of the different algorithms on the CPU usage of the

controller node. In DS1 and DS2, StratosB have the most significant CPU usage,

then comes Natif, and lastly Greedy. As highlighted above, this reflects the logic

behind each approach. However, in DS3, Natif slightly needs more computational

resources than StratosB. Natif runs more iterations than the other approaches,

and this may have a clearer repercussion especially with larger data-sets

7.2.5 Prediction model evaluation

To evaluate Arima prediction model accuracy, we have used it to predict the future

network traffic characteristics (packet rate and bandwidth in Mbps) traversing a

firewall in the chain. This is needed to calculate the traffic rate and throughput of

the incoming flows in the next cycle of Natif processing, i.e., VNF instantiation

and traffic steering.

The parameters of the Arima model are defined as follows:

• p: The number of lag observations included in the model, also called the lag

order.

• d: The number of times that the raw observations are differenced also called

the degree of differencing.

• q: The size of the moving average window, also called the order of moving

average.

In our experiment, we set p,d, and q to 5, 1, and 0, respectively. First, we

have trained the Arima model with 900 seconds of real traffic packet rate and

bandwidth. Then, we have compared between the expected and predicted traffic

as illustrated in Fig. 7.7.

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 110 120 130 140 150 160 170 180 190 200 210 220

C
D

F

Packet rate (packets/s)

Predicted
Expected

(a) Predicting packet rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 7 8 9 10 11 12 13 14 15 16

C
D

F

Throughput (Mbps)

Predicted
Expected

(b) Predicting throughput (Mbps)

Figure 7.7: Arima prediction mode accuracy

Fig. 7.7a show very close behaviour of expected and predicted packet rate with

a maximum error of 35 packets per second. Otherwise, the accuracy is quite high.

We also use Arima with the same parameters to predict the traffic bandwidth. As

shown in Fig. 7.7b, the maximum error is around 1.9 Mbps, except that, Arima

has succeeded in predicting the bandwidth accurately.

7.3 Conclusion

NFV has facilitated the deployment and management of VNFs, but it has deepened

the virtualisation overhead which particularly hurts the performance of latency-

sensitive applications. To compensate this overhead, we have proposed a simple

but efficient solution that leverages the knowledge on VNFs to propose a VNF

qualitative categorisation and chain composition proven useful in reducing the

end-to-end delay. An experimental evaluation conducted in OpenStack testbed

has shown how Natif has reduced the latency by 188% on average in realistic and

production network chains.

We aim in future work to answer to following questions. How to find out the

gain/drop factor of certain VNFs such as Redundancy Eliminator since, in this

case, the factor primarily depends on the packet payload (unlike NAT or proxy

where the factor is known and static). Also, how we can tweak our approach to

be applicable for bursty traffic where the Arima prediction algorithm would have

insufficient time to be trained.

76

Chapter 8

Conclusions and Future Work

This chapter summarises the research findings of this thesis and illustrates how the

achieved work has contributed to achieving the research objectives set from the

outset. It also outlines the applicability and possible extension of our approach in

other areas such as edge computing.

8.1 Summary

The thesis has illustrated the main background key concepts we have been relying

on to address critical challenges in data centre networks. We have shown how

SDN has significantly improved the network programmability and flexibility by

decoupling the data plane from the control plane. On the other hand, NFV

and SFC have presented opportunities to ease the management of the service

chains and investigate further research directions, which significantly enables the

application of our proposed approach. Natif, the main contribution of our research,

leverages the knowledge of network functions regarding performance sensitivity

and resource utilisation to propose a network function instantiation and traffic

distribution scheme within the service chains. Both proof-of-concept and testbed

experiments have proven the efficiency of Natif in reducing the network latency

without disturbing the network throughput compared to a network-aware service

chain composition solution.

8.2 Conclusions

The following describes the main findings of this thesis:

• Virtualisation has caused a significant performance degradation to virtual

network functions compared to their hardware-based counterparts.

77

• In the context of NFV, NFs are bounded either by CPU or I/O resources,

as the case of software applications. CPU-bound NFs are sensitive to the

amount of traffic handling it, while I/O-bound NFs are mainly affected by

the traffic rate in terms of packets per second. A selective approach consid-

ering both categories is essential to reflect the performance bottlenecks of

diverse types of NFs making the service chains.

• Identifying the NFs underpinning implementation can largely enhance their

resource utilisation.

• We have modelled the NF instantiation and traffic distribution scheme, and

we have proven its NF-harness.

• We have designed and set up an OpenStack based environment to assess

Natif ’s performance. Natif has been able to reduce on average 188% of

network latency compared to other approaches.

8.3 Future work

Our method presented in this thesis focuses on understanding and identifying the

research challenges (virtualisation and NF performance sensitivity) and afterwards

exploit the eventual knowledge to advance the state-of-the-art and design more

efficient approaches in chain composition. We aim to move our expertise and

acquired experience to the edge of the network, the edge computing, where the

environment is still being explored. For this purpose, we are investigating two

main ideas:

8.3.1 Application performance benchmarking on

Raspberry Pi

We evaluate the following deployment approaches to determine which one is the

most appropriate (in terms of reliability and flexibility) in edge environments.

We intend to benchmark applications performance handling different workloads

(applications can be for network functions, big data, machine learning).

• Docker facilitates the application deployment and running using containers.

Containers allow developers to wrap their applications with all the libraries

and dependencies they need.

• Xen is a hypervisor using a µ-kernel design, which is the near-minimum

amount of software that can provide the mechanisms needed to implement

an operating system (OS).

78

• Unikernel is a single address space machine image constructed by using

library operating systems and can run directly on a hypervisor or hardware

with OS interposition.

Figure 8.1: Differences between Container, Unikernel, and Virtual Machine [6]

8.3.2 Service Chains Cloning and Placement in the

Context of Edge Computing

The study aims to overcome the inadequacy of the high resource requirements

of network chains and the limited capacity of Raspberry Pi as representative of

edge devices. We introduce a new definition of network chains horizontal scaling.

Practically it means cloning the same network chain to allow optimised workload

distribution on the set of edge devices. This is particularly interesting because of

two properties characterising the edge environment.

• Abundant number of edge devices with limited capacity. So, “fragmenting”

VNFs into smaller entities (with less capacities) could fit with the available

resources on these devices.

• Polling is scheduled at the Things (e.g., sensors) so that the traffic pro-

cessing at the edge. Therefore, it can be considered in the chain cloning and

placement decisions.

79

Figure 8.2: Simple scenario of chain cloning and placement

80

References

[1] Service function chaining use cases in data centers 04. URL: https://tools.

ietf.org/html/draft-ietf-sfc-dc-use-cases-04.

[2] Wenrui Ma, Jonathan Beltran, Zhenglin Pan, Deng Pan, and Niki Pissinou.

Sdn-based traffic aware placement of nfv middleboxes. IEEE Transactions

on Network and Service Management, 14(3):528–542, 2017.

[3] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip

De Turck, and Raouf Boutaba. Network function virtualization: State-of-

the-art and research challenges. IEEE Communications Surveys & Tutorials,

18(1):236–262, 2016.

[4] What is network service chaining? definition. URL: https://www.

sdxcentral.com/sdn/network-virtualization/definitions/what-is-

network-service-chaining/.

[5] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey

on service function chaining. Journal of Network and Computer Applications,

75:138–155, 2016.

[6] Unikernels meet nfv. URL: https://www.ericsson.com/research-blog/

unikernels-meet-nfv/. Accessed: 2018-01-29.

[7] Middleboxes: Taxonomy and issues status. URL: https://www.ietf.org/

rfc/rfc3234.txt.

[8] Ramana Rao Kompella, Kirill Levchenko, Alex C Snoeren, and George Var-

ghese. Every microsecond counts: tracking fine-grain latencies with a lossy

difference aggregator. In ACM SIGCOMM Computer Communication Re-

view, volume 39, pages 255–266. ACM, 2009.

[9] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout, and

Mendel Rosenblum. Fast crash recovery in ramcloud. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles, pages 29–

41. ACM, 2011.

81

https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-04
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-04
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-network-service-chaining/
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-network-service-chaining/
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-network-service-chaining/
https://www.ericsson.com/research-blog/unikernels-meet-nfv/
https://www.ericsson.com/research-blog/unikernels-meet-nfv/
https://www.ietf.org/rfc/rfc3234.txt
https://www.ietf.org/rfc/rfc3234.txt

[10] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob

Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Diego

Ongaro, Guru Parulkar, et al. The case for ramcloud. Communications

of the ACM, 54(7):121–130, 2011.

[11] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin

Vahdat, and Masato Yasuda. Less is more: trading a little bandwidth for

ultra-low latency in the data center. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, pages 19–19.

USENIX Association, 2012.

[12] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo: pre-

dictable message latency in the cloud. ACM SIGCOMM Computer Commu-

nication Review, 45(4):435–448, 2015.

[13] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM Watson,

Andrew W Moore, Steven Hand, and Jon Crowcroft. Queues don’t mat-

ter when you can jump them! In 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 15), pages 1–14, 2015.

[14] Jiao Zhang, Fengyuan Ren, and Chuang Lin. Survey on transport control in

data center networks. IEEE Network, 27(4):22–26, 2013.

[15] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ramakrishnan, and

Timothy Wood. Performance management challenges for virtual network

functions. In NetSoft Conference and Workshops (NetSoft), 2016 IEEE, pages

20–23. IEEE, 2016.

[16] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. A survey of enter-

prise middlebox deployments. 2012.

[17] Aaron Gember, Robert Grandl, Ashok Anand, Theophilus Benson, and

Aditya Akella. Stratos: Virtual middleboxes as first-class entities. UW-

Madison TR1771, page 15, 2012.

[18] S Kumar, M Tufail, S Majee, C Captari, and S Homma. Service function

chaining use cases in data centers. IETF SFC WG, 2015.

[19] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of the first

annual ACM SIGMM conference on Multimedia systems, pages 35–46. ACM,

2010.

82

[20] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail:

Avoiding long tails in the cloud. In NSDI, volume 13, pages 329–342, 2013.

[21] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. Small is

better: Avoiding latency traps in virtualized data centers. In Proceedings of

the 4th annual Symposium on Cloud Computing, page 7. ACM, 2013.

[22] Anish Hirwe and Kotaro Kataoka. Lightchain: A lightweight optimisation of

vnf placement for service chaining in nfv. In 2016 IEEE NetSoft Conference

and Workshops (NetSoft), pages 33–37. IEEE, 2016.

[23] Sahel Sahhaf, Wouter Tavernier, Didier Colle, and Mario Pickavet. Network

service chaining with efficient network function mapping based on service

decompositions. In Network Softwarization (NetSoft), 2015 1st IEEE Con-

ference on, pages 1–5. IEEE, 2015.

[24] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint policy- and

network-aware vm management for cloud data centers. IEEE Transactions

on Parallel and Distributed Systems, 28(4):1163–1175, April 2017.

[25] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,

Aman Shaikh, and Zhi-Li Zhang. Parabox: Exploiting parallelism for virtual

network functions in service chaining. In Proceedings of the Symposium on

SDN Research, pages 143–149. ACM, 2017.

[26] Susanta Nanda Tzi-cker Chiueh and Stony Brook. A survey on virtualization

technologies. RPE Report, pages 1–42, 2005.

[27] Raj Jain and Subharthi Paul. Network virtualization and software defined

networking for cloud computing: a survey. IEEE Communications Magazine,

51(11):24–31, 2013.

[28] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center

networks. In NSDI, volume 10, pages 19–19, 2010.

[29] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network

function virtualization: Challenges and opportunities for innovations. IEEE

Communications Magazine, 53(2):90–97, 2015.

[30] Paul Quinn and Thomas Nadeau. Problem Statement for Service Function

Chaining. RFC 7498, April 2015.

83

[31] Service function chaining use cases in data centers 06. URL: https://tools.

ietf.org/html/draft-ietf-sfc-dc-use-cases-06.

[32] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul

Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-

level telemetry in large datacenter networks. In ACM SIGCOMM Computer

Communication Review, volume 45, pages 479–491. ACM, 2015.

[33] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis.

Echo: Recreating network traffic maps for datacenters with tens of thousands

of servers. In Workload Characterization (IISWC), 2012 IEEE International

Symposium on, pages 14–24. IEEE, 2012.

[34] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang,

Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A

large-scale system for data center network latency measurement and analysis.

ACM SIGCOMM Computer Communication Review, 45(4):139–152, 2015.

[35] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer Rexford, Lihua

Yuan, Srikanth Kandula, and Changhoon Kim. Profiling network perform-

ance for multi-tier data center applications. In NSDI, 2011.

[36] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-

teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined

networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76,

2015.

[37] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi

Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,

William Snow, et al. Onos: towards an open, distributed sdn os. In Pro-

ceedings of the third workshop on Hot topics in software defined networking,

pages 1–6. ACM, 2014.

[38] David Erickson. Using network knowledge to improve workload performance

in virtualized data centers. PhD thesis, Citeseer, 2013.

[39] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya

Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying

Zhang. Pga: Using graphs to express and automatically reconcile network

policies. ACM SIGCOMM Computer Communication Review, 45(4):29–42,

2015.

84

https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06

[40] Dennis M Volpano, Xin Sun, and Geoffrey G Xie. Towards systematic detec-

tion and resolution of network control conflicts. In Proceedings of the third

workshop on Hot topics in software defined networking, pages 67–72. ACM,

2014.

[41] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rex-

ford. Central control over distributed routing. ACM SIGCOMM Computer

Communication Review, 45(4):43–56, 2015.

[42] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Ma-

hajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM Computer Communica-

tion Review, volume 44, pages 539–550. ACM, 2014.

[43] Liting Hu, Karsten Schwan, Ajay Gulati, Junjie Zhang, and Chengwei Wang.

Net-cohort: Detecting and managing vm ensembles in virtualized data cen-

ters. In Proceedings of the 9th international conference on Autonomic com-

puting, pages 3–12. ACM, 2012.

[44] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Baner-

jee, Joon-Myung Kang, and Puneet Sharma. Application-driven bandwidth

guarantees in datacenters. In ACM SIGCOMM Computer Communication

Review, volume 44, pages 467–478. ACM, 2014.

[45] Vivek Shrivastava, Petros Zerfos, Kang-Won Lee, Hani Jamjoom, Yew-Huey

Liu, and Suman Banerjee. Application-aware virtual machine migration in

data centers. In INFOCOM, 2011 Proceedings IEEE, pages 66–70. IEEE,

2011.

[46] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and TV Laksh-

man. Application-aware data plane processing in sdn. In Proceedings of the

third workshop on Hot topics in software defined networking, pages 13–18.

ACM, 2014.

[47] Zafar Ayyub Qazi, Jeongkeun Lee, Tao Jin, Gowtham Bellala, Manfred

Arndt, and Guevara Noubir. Application-awareness in sdn. ACM SIGCOMM

computer communication review, 43(4):487–488, 2013.

[48] Michael Jarschel, Florian Wamser, Thomas Hohn, Thomas Zinner, and Phuoc

Tran-Gia. Sdn-based application-aware networking on the example of youtube

video streaming. In 2013 Second European Workshop on Software Defined

Networks, pages 87–92. IEEE, 2013.

85

[49] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and

Hans Fugal. Fastpass: A centralized zero-queue datacenter network. In ACM

SIGCOMM Computer Communication Review, volume 44, pages 307–318.

ACM, 2014.

[50] Keqiang He, Weite Qin, Qiwei Zhang, Wenfei Wu, Junjie Yang, Tian Pan,

Chengchen Hu, Jiao Zhang, Brent Stephens, Aditya Akella, et al. Low latency

software rate limiters for cloud networks. In Proceedings of the First Asia-

Pacific Workshop on Networking, pages 78–84. ACM, 2017.

[51] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidy-

anathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra

Yadav, George Varghese, et al. Conga: Distributed congestion-aware load

balancing for datacenters. In ACM SIGCOMM Computer Communication

Review, volume 44, pages 503–514. ACM, 2014.

[52] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and

Aditya Akella. Presto: Edge-based load balancing for fast datacenter net-

works. ACM SIGCOMM Computer Communication Review, 45(4):465–478,

2015.

[53] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl, Xiaoy-

ang Gao, Ashok Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar.

Stratos: A network-aware orchestration layer for middleboxes in the cloud.

Technical report, Technical Report, 2013.

[54] Lin Cui, Richard Cziva, Fung Po Tso, and Dimitrios P Pezaros. Synergistic

policy and virtual machine consolidation in cloud data centers. In Computer

Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Interna-

tional Conference on, pages 1–9. IEEE, 2016.

[55] Hendrik Moens and Filip De Turck. Vnf-p: A model for efficient placement

of virtualized network functions. In 10th International Conference on Net-

work and Service Management (CNSM) and Workshop, pages 418–423. IEEE,

2014.

[56] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing

chains of virtual network functions. In Cloud Networking (CloudNet), 2014

IEEE 3rd International Conference on, pages 7–13. IEEE, 2014.

[57] Stuart Clayman, Elisa Maini, Alex Galis, Antonio Manzalini, and Nicola

Mazzocca. The dynamic placement of virtual network functions. In 2014

86

IEEE network operations and management symposium (NOMS), pages 1–9.

IEEE, 2014.

[58] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric Keller.

Stateless network functions. In Proceedings of the 2015 ACM SIGCOMM

Workshop on Hot Topics in Middleboxes and Network Function Virtualiza-

tion, pages 49–54. ACM, 2015.

[59] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.

Toward software-defined middlebox networking. In Proceedings of the 11th

ACM Workshop on Hot Topics in Networks, pages 7–12. ACM, 2012.

[60] Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang, KK Ra-

makrishnan, and Timothy Wood. Virtual function placement and traffic

steering in flexible and dynamic software defined networks. In Local and

Metropolitan Area Networks (LANMAN), 2015 IEEE International Work-

shop on, pages 1–6. IEEE, 2015.

[61] Pengfei Duan, Qing Li, Yong Jiang, and Shu-Tao Xia. Toward latency-aware

dynamic middlebox scheduling. In 2015 24th International Conference on

Computer Communication and Networks (ICCCN), pages 1–8. IEEE, 2015.

[62] Fangxin Wang, Ruilin Ling, Jing Zhu, and Dan Li. Bandwidth guaranteed

virtual network function placement and scaling in datacenter networks. In

2015 IEEE 34th International Performance Computing and Communications

Conference (IPCCC), pages 1–8. IEEE, 2015.

[63] Jiaqiang Liu, Yong Li, Ying Zhang, Li Su, and Depeng Jin. Improve service

chaining performance with optimized middlebox placement.

[64] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol,

Marinho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together

the nfv provisioning puzzle: Efficient placement and chaining of virtual net-

work functions. In 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM), pages 98–106. IEEE, 2015.

[65] Xin Li and Chen Qian. The virtual network function placement problem.

In 2015 IEEE Conference on Computer Communications Workshops (IN-

FOCOM WKSHPS), pages 69–70. IEEE, 2015.

[66] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and

Minlan Yu. Simple-fying middlebox policy enforcement using sdn. In ACM

SIGCOMM computer communication review, volume 43, pages 27–38. ACM,

2013.

87

[67] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: a software-

defined framework for developing, deploying, and managing network func-

tions. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 511–

524. ACM, 2016.

[68] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio

Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network

function virtualization. In Proceedings of the 11th USENIX Conference on

Networked Systems Design and Implementation, pages 459–473. USENIX As-

sociation, 2014.

[69] Michael Till Beck and Juan Felipe Botero. Coordinated allocation of service

function chains. In Global Communications Conference (GLOBECOM), 2015

IEEE, pages 1–6. IEEE, 2015.

[70] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. Nfv-vital: A

framework for characterizing the performance of virtual network functions. In

Network Function Virtualization and Software Defined Network (NFV-SDN),

2015 IEEE Conference on, pages 93–99. IEEE, 2015.

[71] Rashid Mijumbi, Sidhant Hasija, Steven Davy, Alan Davy, Brendan Jennings,

and Raouf Boutaba. Topology-aware prediction of virtual network function

resource requirements. IEEE Transactions on Network and Service Manage-

ment, 14(1):106–120, 2017.

[72] Ping. URL: https://linux.die.net/man/8/ping. Accessed: 2018-09-29.

[73] Hping3. URL: https://tools.kali.org/information-gathering/hping3.

Accessed: 2018-09-29.

[74] pfsense. URL: https://www.pfsense.org/about-pfsense/. Accessed:

2018-09-29.

[75] ovs. URL: https://www.openvswitch.org/. Accessed: 2018-09-29.

[76] Snort. URL: https://www.snort.org/faq/what-is-snort. Accessed:

2018-09-29.

[77] Suricata. URL: https://suricata-ids.org/. Accessed: 2018-09-29.

[78] Major components of openstack. URL: https://waqarafridi.wordpress.

com/2014/10/13/major-components-of-openstack/.

[79] Introduction to openstack. URL: https://docs.openstack.org/security-

guide/introduction/introduction-to-openstack.html.

88

https://linux.die.net/man/8/ping
https://tools.kali.org/information-gathering/hping3
https://www.pfsense.org/about-pfsense/
https://www.openvswitch.org/
https://www.snort.org/faq/what-is-snort
https://suricata-ids.org/
https://waqarafridi.wordpress.com/2014/10/13/major-components-of-openstack/
https://waqarafridi.wordpress.com/2014/10/13/major-components-of-openstack/
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

[80] Poisson process. URL: https://www.randomservices.org/random/

poisson/index.html.

[81] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Other knapsack problems.

In Knapsack Problems, pages 389–424. Springer, 2004.

[82] dstat. URL: https://linux.die.net/man/1/dstat.

[83] Wajdi Hajji, Fung Po Tso, Lin Cui, and Dimitrios P Pezaros. Experimental

evaluation of sdn-controlled, joint consolidation of policies and virtual ma-

chines. In Computers and Communications (ISCC), 2017 IEEE Symposium

on, pages 1338–1343. IEEE, 2017.

[84] H Zare Moayedi and MA Masnadi-Shirazi. Arima model for network traffic

prediction and anomaly detection. In Information Technology, 2008. ITSim

2008. International Symposium on, volume 4, pages 1–6. IEEE, 2008.

[85] Fung Po Tso, David R White, Simon Jouet, Jeremy Singer, and Dimitrios P

Pezaros. The glasgow raspberry pi cloud: A scale model for cloud computing

infrastructures. In Distributed Computing Systems Workshops (ICDCSW),

2013 IEEE 33rd International Conference on, pages 108–112. IEEE, 2013.

[86] David Mosberger and Tai Jin. httperfa tool for measuring web server per-

formance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37,

1998.

[87] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and

Sudipta Sengupta. Vl2: a scalable and flexible data center network. In

ACM SIGCOMM computer communication review, volume 39, pages 51–62.

ACM, 2009.

89

https://www.randomservices.org/random/poisson/index.html
https://www.randomservices.org/random/poisson/index.html
https://linux.die.net/man/1/dstat

Appendix A

Understanding the Performance

of Low Power Raspberry Pi

Cloud for Big Data

We have extended our original project in [85] and constructed a cloud of 200

networked Raspberry Pi 2 boards for US$ 9,000. Such systems are highly portable,

running from a single AC mains socket, and capable of being carried in a luggage.

We have carried out an extensive set of experiments with representative real-

life workloads in order to understand the performance of such system in big data

analytics. In summary, the contribution of this work is as follows:

• We designed and conducted a set of experiments to test the performance of a

single node and a cluster of 12 Raspberry Pi 2 boards with realistic network

and CPU bound workload in both native and virtualised environments.

• We have found that overhead for CPU-bound workload in virtualised envir-

onment is significant, giving up to 67.2% performance impairment.

• We have found that the performance of running big data analytic in virtu-

alised environment comparable to native counterpart, albeit noticeable but

trivial overhead for CPU, memory and energy.

A.1 Experiment Setup

We describe in detail our testbed, methodology and performance metrics used to

evaluate different combinations of tests in this section.

In an edge cloud we anticipate two distinctive environments—either a native

environment for high performance or a virtualised environment for high elasticity.

Therefore, we have tested the performance of single nodes and clusters in both

90

environments. In all experiments we either use a single node Raspberry Pi 2

Model B, which has a 900 MHz quad-core ARM Cortex-A7 CPU, 1 G RAM, and

a 100 Mbps Ethernet connection, or a cluster of 12 nodes. For their virtualised

counterparts, we have configured the node(s) with Docker, a lightweight Linux

Container virtualisation, on each Raspberry Pi with Spark and HDFS running

atop. We have chosen Spark because it has become one of the most popular big

data analytics tools. We selected Docker not only because it is low-overhead OS

level virtualisation but also the full virtualisation has not been fully supported by

Raspberry Pi 2’s hardware. The operating system (OS) installed on the Raspberry

Pis is Raspbian (https://www.raspbian.org/).

A.1.1 Single Node Experiments

In this set of experiments, we attempt to find the baseline performance with and

without virtualisation for a single Raspberry Pi 2 Model B board. The experiments

include using a client, which has an Intel i7-3770 3.4 GHz quad-core CPU, 16 GB

RAM and 1 Gbp/s Ethernet, sending various workload to server, a Raspberry Pi

node, using httperf [86]. The client used is remarkably more powerful than the

server for ensuring that performance will only be limited by server’s bottleneck.

The server runs Apache web server to process web requests from client. The client

is instructed to generate a large number of Web (HTTP) requests for pulling web

documents of size 1 KB, 4 KB, 10 KB, 50 KB, 70 KB and 100 KB respectively

from servers using httperf. These workload sizes are chosen because traffic in

cloud data centre is comprised of 99% small mice flows and 1% large flows [87].

For each specific workload size, the client starts from sending a very small number

of requests per second to the server initially, and gradually increases the number

of requests per second by 100 until the server cannot accommodate any additional

requests. This means that the server has reached its full capacity.

A.1.2 Cluster Experiments

We have conducted all experiments on a low-power compute cluster consist of 12

Raspberry Pi 2 Model B. All Raspberry Pis are interconnected with a 16-Port

Gbp/s switch. Alongside with system performance metrics, we are equally inter-

ested in energy consumption of the whole cluster when experiment is underway.

We used MAGEEC (http://mageec.org/wiki/Workshop) ARM Cortex M4-based

STM32F4DISCOVERY board to measure energy consumption of individual Rasp-

berry Pi throughout experiments. This board was designed by the University of

Bristol for high frequency measurement of energy usage.

Also on each node, we installed Spark 1.4.0 and Hadoop 2.6.4 for its HDFS.

91

We configured node 1, i.e., Pi 1, as a master for Hadoop and Spark, and others,

i.e., Pi 2–12, as workers.

For Spark, each worker was allocating 768 MB RAM and all 4 CPU cores.

For HDFS, we set the number of replica to 11 so that data are replicated on each

worker node. This set-up was not only considered for high availability but also to

avoid high network traffic between nodes as we predict that Raspberry Pi has a

hardware limitation on the network interface speed. Figure A.1a shows the cluster

design.

Switch

Pi1 - Master Pi7 - Worker

Pi2 - Worker Pi8 - Worker

Pi3 - Worker

Pi4 - Worker

Pi9 - Worker

Pi10 - Worker

Pi5 - Worker Pi11 - Worker

Pi6 - Worker Pi12 - Worker

(a)

Switch

Worker 1

container

Worker 2

container

Worker 3

container

Worker 4

container

Master

container

Worker 5

container

Worker 7

container

Worker 8

container

Worker 9

container

Worker 10

container

Worker 6

container

Worker 11

container

(b)

Figure A.1: Cluster Layout. (a) Native set-up; (b) Virtualised set-up.

In the second phase of the experiment, we installed Docker and created a

Docker container on each node of the cluster. Docker container hosts both Spark

1.4.0 and Hadoop 2.6.4 with the same setup as in the native environment. So the

container is considered as a Virtual Machine running on the Raspberry Pi. We

have established a network connection between the 12 containers and have made

them able to communicate between each other. Figure A.1b illustrates this set-up.

In both native and virtualised environments, we have run both Wordcount and

Sort jobs on our low-power cluster with job sizes varying from 1 GB to 4 GB and

to 6 GB, representing small, medium and large job sizes respectively. The large

job size was set to 6 GB because we have found that job size greater than this will

cause Docker daemon forcibly killed by the OS because the CPU is significantly

overloaded with the process. Also in all experiments we left the system idle for 20

s and the experiments started at the 21-st s.

92

In all experiments, we have measured and collected the following metrics to

examine the performance:

• Execution time: the time taken by each job running different workloads.

• Network throughput: the transmission and reception rates in each node of

the cluster.

• CPU utilisation: the CPU usage in each cluster node.

• Energy consumption: energy consumed by a Raspberry Pi worker node

(chosen randomly).

A.2 Experiment Results

A.2.1 Single Node Performance

Our test results for single node performance are shown in Figure A.2. We first

examine the results for native environment. Obviously, Figure A.2a shows that the

average number of network requests served by the server decreases from 2809 req/s

to 98 req/s for 1 KB and 100 KB workloads respectively. In the meantime, their

corresponding network throughput, as shown in Figure A.2b and CPU utilisation,

as shown in Figure A.2c exhibit monotonically increasing and decreasing patterns

respectively, but with flatter tails. The average network throughput for 1 KB and

100 KB workloads are 22.5 Mbp/s and 78.4 Mbp/s respectively, whereas CPU

utilisation for 1 KB and 100 KB workloads are 67.2% and 22.3% respectively.

These observations demonstrate that small-sized workloads such as 1 KB and

large-sized workloads such as 100 KB are CPU and network bounded respectively.

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

S
er

ve
r

T
hr

ou
gh

pu
t (

re

q/
se

c)

0
50

0
15

00
25

00

Native
Virtualised

(a)

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
p/

s)

0
20

40
60

Native
Virtualised

(b)

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

C
P

U
 U

til
is

at
io

n
(%

)

0
10

30
50

Native
Virtualised

(c)

Figure A.2: Single server performance. (a) Server throughput; (b) Network
throughput; (c) CPU utilisation.

Next we examine the results for virtualised environment. At first glance we

can clearly observe that all results for virtualised environment exhibit identical

patterns as native environment. However, our performance has pinpointed signi-

ficant virtualisation overhead, particularly for small workloads. Figure A.2a shows

93

that server throughput for 1 KB workload is profoundly impaired by 65.9%, drop-

ping from 2, 809 req/s to 957.5 req/s, leading to significant degradation in network

throughput (Figure A.2b) while the CPU utilisation remains equally high as nat-

ive counterpart. Similarly the impairment for 4 KB and 10 KB workloads are

59.6% and 36.4% respectively. Nevertheless, the performance for large workloads

including 30 KB, 50 KB, 70 KB and 100 KB, in terms of server and network

throughput, are on par with their native counterparts. In comparison the CPU

utilisation for these workloads are only 12%–23%, representing fractional but sig-

nificant overhead.

The remarkable overhead observed for the small-sized workloads has inspired

us to investigate this issue further. When Docker is installed, a software-based

bridged network, by which the Docker daemon connects containers to this network

by default, is automatically created. Therefore, when workload is small not only

the hardware network interface frequently interrupts CPU for packet delivery but

also the software bridge triggers similar amount of interrupts for container un-

der test. On the contrary, when workload is large, fewer hardware and software

interruptions arise from both physical and virtual network interface.

A.2.2 Spark and HDFS in the Native Environment

We first present Spark’s performance in the native environment. Table A.1 shows

the total execution time for 1 GB, 4 GB and 6 GB jobs. We observed that

job completion time varies with actual job sizes. For instance, for WordCount,

it increases slightly from 60.2 s for 1 GB job by 9.3% to 65.8 s for 4 GB job

but increases substantially by 82.4% to 109.8 s for 6 GB job. Similar trend is

observed in Sort, it takes 122.4 s to complete 1 GB job, then 129.7 s and 224.8 s,

or 5.96% and 83.7% longer, for 4 GB and 6 GB files respectively. Comparing job

completion time between WordCount and Sort, it is apparent that Sort is more

CPU demanding because time taken by Sort job is almost usually double of what

is consumed by WordCount. This is because in Sort, words need to be counted

and then sorted, whereas in WordCount words need only to be counted.

Table A.1: Execution times for WordCount and Sort jobs in the Native Environ-
ment.

File Size “Native” WordCount “Native” Sort

1 GB 60.2 s 122.4 s

4 GB 65.8 s 129.7 s

6 GB 109.8 s 224.8 s

94

To explain this non-linear increase in completion time between 4 GB and 6

GB jobs, we have investigated further and found that Sort for 4 GB job requires

32 tasks whilst 6 GB file needs 46. Given that there are 44 cores available in

the cluster, there is sufficient computation capacity for accommodating 32 task

concurrently. However, in the case when 45 or more tasks are spawn, all available

cores are used, as demonstrated in Figure A.3c, and the remaining tasks will have

to wait for CPU time. Worse still, if they depend on some specific tasks, they will

have to wait until their completion although free CPU time will arise when some

non-dependent tasks finish early. On the other hand, Spark is memory hungry

whilst Raspberry Pi’s RAM is sparse. As evidenced by Figure A.3c, memory

has been fully utilised at most of the time throughout experiments. This implies

that there may be constant memory swapping that could further lengthen the

completion time. In WordCount, there are 15 tasks for 4 GB file versus 44 for 6

GB file, in the former case there are enough CPU resources to run all tasks whereas

in the latter all CPU cores are dedicated to run the job, this can be observed in

Figure A.3c where CPU usage is at 100% over data processing time whilst it is at

nearly 80% for 4 GB file in Figure A.3b.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(c)

Figure A.3: CPU and memory usage. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

Next, we describe the CPU, memory and network usage performance results.

In WordCount of 1 GB job, in Figure A.3a memory consumption increases to

about 75% and remains steady till the end of the operation. For CPU utilisation,

we can see that it rises from nearly 1% (idle) to nearly 20% (busy) and remains

unchanged all over the computation process. For network throughput, Figure A.4a

shows that there is no significant traffic activity, at the beginning of the job, data

are received by workers at the rate of 40 kb/s, and this is the client (namenode)

request message for workers to start computing. For files of 4 GB and 6 GB, we

noted the same behaviour but the increase in CPU and memory usage is more

prominent. For instance, in Figure A.3b for 4 GB file, memory usage increases

gradually from 50% to 100% in about 70 s and CPU goes up from nearly 1% to

95

30% in the tasks submission stage and then sharply reaches 80% at the second 40

for the count stage as indicated in the log files.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

 0 20 40 60 80 100 120 140

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(a)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

 0 20 40 60 80 100 120 140 160

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 50 100 150 200 250 300

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(c)

Figure A.4: Network transmission (TX) and reception (RX) rates. (a) 1 GB file;
(b) 4 GB file; (c) 6 GB file.

As reflected by Figure A.3c the increase is sharper for the 6 GB file where

both memory and CPU reach 100%. In the 6 GB file, as explained above, since

there are more tasks (46 tasks) than available CPU cores (44 cores), the CPU

and memory are exhaustively used for an extended period of time. Moreover, we

observe the same two stages as in the 4 GB file.

In Sort, CPU and network usage patterns are different from those observed

in WordCount job. For example, in Figure A.3a for the 1 GB job, CPU usage

increases to the same level as WordCount job for the same file size, and it remains

steady throughout the experiment, but at the end of the job CPU decreases dra-

matically to a very low level and then suddenly reaches a peak. When analysing

log files, we have found an explanation for these changes. In the beginning, tasks

submission stage takes a few seconds to complete, this is happening also in Word-

Count, it explains both CPU and memory increase to 30% and 60% respectively.

Afterwards, map stage starts and consumes most of the time taken by the job,

lastly the shuffling process causes the peak witnessed by CPU usage.

In addition, Sort is accompanied with a peak in the network transmission

and reception rates where they reach nearly 3.2 Mbps as shown in Figure A.4a.

Same changes have been witnessed for 4 GB and 6 GB files but with quantitative

differences. For instance, as illustrated in Figure A.4b,c network transmission

and reception rates reach at the end of the Sort job 9.6 Mbps and nearly 11.2

Mbps for 4 GB and 6 GB files respectively. CPU and memory usages increase as

well to nearly 80% and 100% for 4 GB file and to 100% and 100% for 6 GB file

respectively as reflected in Figure A.3b,c. These changes are explained above by

the fact that Sort job witnesses three phases; task submission, map, and shuffling.

In the shuffling stage, a high network activity is noticed at the end of Sort job

(e.g., Figure A.3a at 130 s, Figure A.3b at 140 s, and Figure A.3c at 235 s).

Furthermore, outputs coming from workers need to be consolidated to have the

96

final result, this is achieved in the reduce stage (combining results of workers) and

it causes the high CPU and memory usage.

Regarding the energy consumption, through Figures A.5a and A.6a we can

obviously observe that actual energy consumption depends on the job sizes. It is

slightly higher for 6 GB files than for 1 GB and 4 GB files in both WordCount and

Sort jobs. To confirm this observation, we run WordCount and Sort on file of 8

GB, even with some task failures on some Raspberry Pis, we noticed the behaviour

more clearly as shown in Figures A.5b and A.6b. Therefore, workload affects the

energy consumption, the more intensive the workload is, the more important is

the energy consumption by the Raspberry Pi device.

36*10-6

36*10-6

37*10-6

37*10-6

37*10-6

37*10-6

 0 20 40 60 80 100 120

Jo
ul

e

Time (s)

WordCount 6GB
WordCount 4GB
WordCount 1GB

(a)

37*10-6

37*10-6

37*10-6

37*10-6

38*10-6

38*10-6

38*10-6

38*10-6

 0 20 40 60 80 100 120

Jo
ul

e

Time (s)

WordCount 8GB
WordCount 4GB
WordCount 1GB

(b)

Figure A.5: Energy measurement in a Raspberry Pi Worker node in WordCount
job. (a) WordCount Job (1-4-6 GB files); (b) WordCount Job (1-4-8 GB files).

36*10-6

36*10-6

37*10-6

37*10-6

37*10-6

37*10-6

 0 20 40 60 80 100 120 140 160 180

Jo
ul

e

Time (s)

Sort 6GB
Sort 4GB
Sort 1GB

(a)

37*10-6

37*10-6

37*10-6

37*10-6

38*10-6

38*10-6

38*10-6

38*10-6

 0 20 40 60 80 100 120 140 160

Jo
ul

e

Time (s)

Sort 8GB
Sort 4GB
Sort 1GB

(b)

Figure A.6: Energy measurement in a Raspberry Pi Worker node in Sort job. (a)
Sort job (1-4-6 GB files); (b) Sort job (1-4-8 GB files).

97

A.2.3 Spark and HDFS in Docker-Based Virtualised

Environment

In the second phase of our experiments, we present results from virtualised en-

vironment, followed by comparing and contrasting the results with that of native

ones.

We first have a look at the job completion time as shown in Table A.2. At

the first glance, we can clearly see that job completion times for 1 GB and 4

GB exhibit fractional difference, smaller than 3%, between native and virtualised

platforms for both WordCount and Sort.

Table A.2: Execution times for WordCount and Sort jobs in Virtualised Environ-
ment.

File Size WordCount in Docker Sort in Docker

1 GB 58.2 s 121.1 s

4 GB 64.7 s 132.2 s

6 GB 116.5 s 236.5 s

However, in WordCount of 6 GB file, execution with Docker clearly takes more

time than the case without it, at 109.8 s and 116.5 s respectively, an increase of

nearly 6.1%. Similarly, Sort on the 6 GB file takes more time in Docker than in

the native environment, an increase from 224.8 s to 236.5 s, representing 5.2%

longer completion time.

Virtualisation Impact on CPU and Memory Usage

Figure A.7a shows that CPU usage, in 1 GB file WordCount job, has same be-

haviour in both native and virtualised environments but with a few irregularities

where Docker is running (at 20-th and 50-th s). Memory consumption is higher

in virtualised platform as Docker daemon requires already memory resources to

run its processes. In WordCount of 4 GB file, CPU and memory usages have the

same patterns in both environments (Figure A.7b). Whereas, in WordCount of

6 GB file, we have noticed remarkable difference in the CPU usage, Figure A.7c

shows that it is more important and extended in the virtualised set-up.

98

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(c)

Figure A.7: CPU and memory usage in WordCount job. (a) 1 GB file; (b) 4 GB
file; (c) 6 GB file.

In Sort job of 1 GB file, the difference only resides in the memory usage. With

Docker, memory consumption is higher than is the case in the native environment

as unveiled in Figure A.8a. We have also noticed a few irregularities in CPU

usage in virtualised environment. As for the 4 GB Sort job, Figure A.8b demon-

strates nearly identical patterns in both environments. Figure A.8c demonstrates

a more obvious difference in CPU utilisation between two environments in which

virtualised platform exhausts CPU resource earlier and for longer periods of time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

 14
0

 16
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

 14
0

 16
0

 18
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 10
0

 15
0

 20
0

 25
0

 30
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(c)

Figure A.8: CPU and memory usage in Sort job. (a) 1 GB file; (b) 4 GB file; (c)
6 GB file.

These set of experiments have demonstrated that virtualisation incurs a more

prominent overhead when the jobs are more demanding.

Virtualisation Impact on Network Usage

Figure A.9a shows that WordCount does not produce significant network traffic

with two spikes at the rate of 140 kb/s. Similarly, Figure A.9b shows very small

difference in network throughput for 4 GB job in WordCount. However, the net-

work behaviour becomes different for 6 GB job. Network reception rate becomes

99

more intensive in the native environment than it is in the virtualised counterpart

as shown in Figure A.9b. For example, at 28-th s reception rate in virtualised

environment reaches nearly 600 kb/s while in the native environment it is nearly

at 900 kb/s.

0

20

40

60

80

100

120

140

 0 10 20 30 40 50 60 70 80

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(a)

0

100

200

300

400

500

600

 0 10 20 30 40 50 60 70 80
kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(c)

Figure A.9: Transmission (TX) and reception (RX) rates in WordCount job. (a)
1 GB file; (b) 4 GB file; (c) 6 GB file.

In Sort job, we have noticed a different network behaviour from the case in

WordCount. In Figure A.10a there is a high network traffic at the end of the

experiment, this is a consequence of the shuffling process where workers are sharing

results for consolidation. Reception and transmission rates are more intensive in

the native environment than where Docker is running. In Figure A.10b we have

found identical behaviour in network usage in both environments, however the

rate is higher than it is in 1 GB file for the same job; transmission and reception

rates reach nearly 9.600 Mbps.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

 0 20 40 60 80 100 120 140

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(a)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

 0 20 40 60 80 100 120 140 160

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 50 100 150 200 250 300

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(c)

Figure A.10: Transmission (TX) and reception (RX) rates in Sort job. (a) 1 GB
file; (b) 4 GB file; (c) 6 GB file.

Lastly, we can see from Figure A.10c that network usage is remarkably more

intensive in the native environment. For instance reception and transmission rates

reach 11.2 Mbps in the native environment while they are at nearly only 8 Mbps

in virtualised one. The difference is about 3.2 Mbps or 28.6%.

100

Virtualisation Impact on Energy Consumption

In this section, we will investigate how much overhead, if any, virtualisation has

in terms of energy consumption.

Figure A.11a depicts the energy consumed by a Raspberry Pi cluster worker

member when it is involved in WordCount job on 1 GB file, energy levels are very

similar. However for WordCount on 4 GB file, energy is more important in the

native environment than in virtualised one as shown in Figure A.11b. However, in

WordCount for 6 GB job, as revealed in Figure A.11c energy level becomes clearly

higher when jobs are running inside Docker containers. It arises from 3.66×10−5

Joule to 3.71×10−5 Joule, so an increase of 1.3%. For Sort job, same patterns

have been observed for the case of 4 GB and 6 GB jobs as shown in Fig. A.12b,c.

36*10-6

36*10-6

36*10-6

36*10-6

37*10-6

37*10-6

37*10-6

37*10-6

37*10-6

37*10-6

 0 10 20 30 40 50 60

Jo
ul

e

Time (s)

Virtualised
Native

(a)

36*10-6

36*10-6

36*10-6

37*10-6

38*10-6

 0 10 20 30 40 50 60

Jo
ul

e

Time (s)

Virtualised
Native

(b)

36*10-6

37*10-6

38*10-6

38*10-6

39*10-6

 0 20 40 60 80 100 120
Jo

ul
e

Time (s)

Virtualised
Native

(c)

Figure A.11: Energy measurement in WordCount job. (a) 1 GB file; (b) 4 GB
file; (c) 6 GB file.

36*10-6

36*10-6

36*10-6

37*10-6

38*10-6

 0 20 40 60 80 100 120

Jo
ul

e

Time (s)

Virtualised
Native

(a)

36*10-6

36*10-6

36*10-6

37*10-6

38*10-6

 0 20 40 60 80 100 120 140

Jo
ul

e

Time (s)

Virtualised
Native

(b)

36*10-6

37*10-6

38*10-6

38*10-6

39*10-6

 0 20 40 60 80 100 120 140

Jo
ul

e

Time (s)

Virtualised
Native

(c)

Figure A.12: Energy measurement in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6
GB file.

A.3 Summary

In this work, we have designed and presented a set of extensive experiments on

a Raspberry Pi cloud using Apache Spark and HDFS. We have evaluated their

performance through CPU and memory usage, Network I/O, and energy con-

sumption. In addition, we have investigated the virtualisation impact introduced

by Docker, a container-based solution that relies on resources isolation features

101

available on Linux kernel. Unfortunately, it has not been possible to use Virtual

Machines as a virtualisation layer because this technology is not yet supported in

the current releases on Raspberry Pi.

Our results have shown that the virtualisation effect becomes more clear and

distinguishable with high workloads, e.g., when operating on a big amount of data.

In a virtualised environment, the running tasks require more CPU and memory

consumption while the network throughput decreases, and burstiness occurs less

often and less intensively. Furthermore, it has been proven that energy level

consumed by the Raspberry Pi arises with the high workload and it is additionally

affected by the virtualisation layer where it becomes more important.

102

Appendix B

Experimental Evaluation of

SDN-Controlled, Joint

Consolidation of Policies and

Virtual Machines

We aim, through a Mininet-based test-bed implementation1, to evaluate Sync and

understand which factors determine its performance in terms of execution time and

resource consumption. Unlike ns-3 based Sync simulation in [54], Mininet based

implementation gives realistic results and is readily deployable on real hardware2.

This Appendix chapter is organised as follows. In Sec. B.1, we introduce the

principal algorithms that comprise its processing mechanism. Then, we present our

system design in Sec. B.2. Particularly, we discuss the controller implementation

and how SDN capabilities have been extended to reflect VMs, flows and policies

characteristics. In Sec. B.3, we describe our experiment set-up and evaluate Sync

based on several criteria. Finally Sec. B.4 concludes the chapter.

B.1 Sync Algorithm

Sync is a synergistic scheme for dynamic VM and policy consolidation runnable

on top of an SDN-based environment. The problem formulation and the proposed

model primarily deal with hardware-based MBs due to their popularity, better

performance compared with their virtualised counterpart, and their flexibility and

support for in-network policy and service deployment. In modelling the problem,

we consider a multi-tier DC network, which is structured under a multi-root tree

1Source code available on GitHub https://github.com/wajdihajji/sync.git
2https://mininet.org/

103

topology. Our experiments are running atop of k-ary fat-tree.

B.1.1 Get Communicating VM Groups

Handling all VM instances at the same time could incur an intolerable running

time for Sync algorithms and it would hinder the scalability characteristics for the

whole solution. In real data centres, several tenants share or own a set of VMs

or resources, and there are groups of VMs that communicate between each other

performing a logically similar operation. The algorithm partitions all VMs into

isolated groups in which VMs do not communicate with a VM outside their group.

These VM groups will be the input of other algorithms.

A group G is defined as the VMs that communicate between each other, and

none has a connection/relationship with other VMs outside the group.

B.1.2 Policy Migration

This algorithm focuses on migrating the policies, in other words defining again

the MBs; replace them with the same type of MBs as the deployed ones. In the

meantime, it prepares for the VM migration by updating the preference matrix

responsible for rating best candidate source and destination servers for VM pairs.

Prior to policy migration, the algorithm should have a complete view on the Cost

Network trees related to each flow and each policy. The Cost Network graphs will

be the search space of the shortest paths related to policies.

The function responsible for getting the shortest path aims at reducing the

Communication Cost through the migration of policies.

We define the Communication Cost of all traffic from VM vi to vj as

C(vi, vj) =
∑

pk∈P (vi,vj)

fk.rate
∑

Ls∈Rk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

{Ck(vi, pk.in)

+

pk.len−1∑
j=1

Ck(pk.list[j], pk.list[j + 1])

+ Ck(pk.out, vj)}

(B.1)

where Ck(vi, pk.in) = fk.rate
∑

Ls∈R(vi,pk.in)
cs is the communication cost between

vi and pk.in for flows which matched pk. Similarly, Ck(pk.out, vj) is the commu-

nication cost between pk.out and vj for pk, and Ck(pk.list[j], pk.list[j + 1]) is the

communication cost between pk.list[j] and its successor MB in pk.list. Note also

that R(ni, nj) is the routing path between nodes (i.e., servers, MBs or switches).

104

B.1.3 VM Migration

Each server has a preferred VM list (which is constructed in Policy migration

algorithm) to host according to the corresponding preference matrix and list. In

addition, VM migration incurs a utility cost depending on the server destination

location. Besides, each server has a limited capacity, which determines whether

it can host more VMs. These parameters are considered in the VM migration

decision. Since VM and server preferences might be in some cases contradicting,

a modified version of a Gale-Shapley algorithm has been adopted to address this

challenge and guarantee a stable matching all the time.

The utility of migration A(vi)→ ŝ is defined to be the expected benefit through

migration:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (B.2)

where Cm(vi) is an estimated migration cost related to the VM, and Ci(sj) is

defined, in turn, as:

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, pk.in) +
∑

pk∈P (∗,vi)

Ck(vi, pk.out) (B.3)

The VM migration algorithm, for a given VM group, initialises and obtains

the preference list (where no policy violation or overused server capacity) of all

servers. It sets all VMs as unmatched (no server yet chosen to migrate to). First,

it starts with getting the most preferred server through calculating the migration

utility and it subsequently checks that the selected server has enough capacity

to host the VM. If that’s the case then it moves to the next VM in the group,

otherwise, it rejects less preferable VMs that were located to the server in question.

Following that, it updates the best rejected variable with the most preferred that

has been rejected by the server. Lastly, it adds the server to the blacklists of all

lower ranked VMs than best rejected.

B.2 System Design and Implementation

B.2.1 System Architecture

In Fig. B.1, topology and the controller are running on separated environments,

they communicate through OpenFlow to add rules to switches and via out-of-

band control channel (network sockets) to exchange or update information related

to flows, MB and VM placement, in case a migration decision is made. The

controller is composed of mainly 8 modules that work collaboratively to identify

VM groups, migrate VMs and policies. In Mininet, OpenFlow switches ensure the

105

Network resources

Server resources

Mininet

SDN Controller

Core

Aggregation

Edge

VM VM VM VM VM VM

Host 1 Host 2 Host n

Topology
Discovery

Cost
Network

Migration
Utility

SPF
Flow

Recognition

Communicating
VMs Groups

Policy
Migration

VMs
Migration

OpenFlow switches

V
M

 a
n

d
Po

lic
y

m
an

ag
em

en
t

d
ec

is
io

n
s

O
p

en
Fl

o
w

 1
.3

 p
ro

to
co

l

So
ck

et
s

co
m

m
u

n
ic

at
io

n

...

Figure B.1: Architecture design

communication between VMs and servers in a Fat-tree topology.

We consider an MB as Mininet host attached to an aggregation switch. In the

experiment, any type of MB only receives and forwards packets with no modifica-

tion. So when a packet travels from source A to destination B through three MBs

(e.g. mb1, mb2, and mb3), it only goes through and the forwarding rules are set,

in advance, in the OpenFlow switches. We assume MBs are hardware-based and

hence their positions are fixed. In addition, we have modelled the VM as a user

process running on a Mininet host (a server in the topology), each process has an

ID which is also considered as the ID of the VM. Upon creation or migration, the

user process will be created or killed and instantiated accordingly. The policy is

defined as a set of 3 MBs, each one governing one or many flows, which are in

turn modelled as Netperf 3 traffic between VM pairs.

B.2.2 Controller Modules

In this section, we describe the main components of the controller, their roles, and

the interactions between them.

3http://www.netperf.org/netperf/

106

Topology Discovery

It is a built-in feature in Ryu4 controller. It keeps track of switches registration/de-

registration and added/removed links.

We construct the topology as a graph using Ryu topology api app module where

vertices emulate switches and edges/links are the connections. A major limitation

of this function is that it does not have a view of the instantiated VMs, flows,

or policies. For this reason we have designed and created, in parallel, a commu-

nication channel to make the controller aware of the above information useful for

Sync’s usage.

Cost Network Construction

In order to make a decision of policy migration for a given flow, Sync needs to

construct a Cost Network tree in which hosts and MBs are represented with links

and corresponding weights.

For sake of improved performance, we build in advance all the Cost Network

trees. This preliminary task is justified as the positions of MBs are meant to be

fixed (hardware-based) and over a limited period of time, the flows characteristics

are still unchanged. In addition, the weight of each edge can updated when used

(in case flow rates are changed), and we can also prune the cost network (removing

some nodes and edges) if some MBs are not available.

Shortest Path First (SPF)

This module deals with the Cost Network tree of flows related to a given VM

group. It gets the shortest path for a flow traversing a chain of MBs according

to a specific policy. It returns the optimum positions of server source and server

destination and the set of MBs in between.

Flow Recognition

In the controller, a flow database is built following the reception of information

from the network regarding communicating VMs, therefore their IPs and the used

protocol and ports are stored to match against entries in the policy database.

Flow information can be obtained by querying the network in which presumably

we know in advance what traffic are initiated in a period of time, as the set of

flows have been generated randomly in the experiment. In addition, Ryu can get

real-time statistics by using the function “ofp event.EventOFPFlowStatsReply”.

4https://osrg.github.io/ryu/

107

Utility Of Migration

This module is essential to help with VM Migration decision, it aims to evaluate

what is the impact on the Communication Cost when migrating a VM from source

server to destination server. This module is used to get the maximum utility of

migration, which helps in identifying the candidate servers for the VM to migrate

to.

Get Communicating VM Groups

This module operates on a Python list of VMs and flows to output n VM groups,

which are the input of Policy Migration and VM Migration modules.

Policy Migration

For a given VM group, this module works on a Python list of flows. Using output

from SPF module, it migrates policies by updating the corresponding Python

dictionary. Finally, it updates the Preference Matrix by incrementing the value

that corresponds to the key (server, VM) in a Python dictionary as well.

VM Migration

It takes as input a VM group and outputs the new allocations for the VMs. It

calls other sub-functions such as “Get Maximum Utility”, “Initialise Black List”,

“Check Server Capacity”, “Get Unprocessed VMs”, and “Obtain Preference List”.

For each VM in the group, it looks for an optimum location based on the Utility

Cost and server capacity metrics. In the end, it constructs a Python dictionary

that contains the new allocations of VMs and sends it to the topology environment

via a Network Socket.

B.2.3 Communication

The communication between the topology and the controller is ensured by two

channels, one via OpenFlow used by Ryu to get acknowledged of the switches

and links introduced, updated, or removed, and the second one through Network

Sockets used by Sync to get information on instantiated VMs, flows, MBs, and

service chains (corresponding to policies).

108

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Gr
ou

p
ra

tio

Av
er

ag
e

tim
e

to
 id

en
tif

y
th

e
gr

ou
p

(s
)

Group size

group ratio

avg time

Figure B.2: Group distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(a) Get Communicating VMs
algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(c) VM Migration

Figure B.3: Sync performance evaluated with growing number of flows, group
sizes in the three levels are 36, 31, 19, respectively.

B.3 Experimental Evaluation

B.3.1 Experiment Set-up

We ran our experiments on two identical servers (8 Cores/1.2Ghz and 8GB Memory).

Ubuntu 14.04 is running atop of them and they belong to the same network and

have directly a physical connection through a 1Gbps switch.

In server A, there are Mininet version 2.3.0d1, OpenFlow 1.35 and Python

2.7.6. Initially, we create and set OpenFlow switches and hosts, we also construct

topology tree, VMs and flows database, which will be shared with the controller

modules later on. In server B, we have installed and configured Ryu controller

4.10.

We run Sync with different combinations of VMs, flows, policies and MBs. We

have fixed our topology size in every run with fat-tree’s k=14. That means the

number of edge switches equals to 98, the number of aggregation switches is 98,

the number of core switches is 49, so the number of switches in total is 245, and

the number of hosts is 686.

We have run all experiments 10 times to get average results so that we mitigate

measurement irregularity and noisy statistical data. Variations in results can be

caused by OS tasks running in background or logging processes executed to collect

the results.

5https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf

109

B.3.2 Group Formation

Sync is designed to operate on VM groups. In order to better understand the

performance of Sync, it is important for us to show how groups are distributed in

the topology. We will then show the efficiency of Sync’s Getting Communicating

VM Groups algorithm for forming these groups. We particularly show results of

100k flows, 10k VMs, and 80 MBs, which is the most representative set-up in our

experiment as it involves many VMs and consequently many groups.

In Fig. B.2, almost every group represents 5% of the set of groups. The curve

of average time to form the group evolves linearly with growing number of group

sizes, that is expected since, as explained in Section B.1.1, the run time is affected

by the group size. However, a slight dip appears for group size 915 which takes

about 0.7534s to get identified. This change is due to the difference in order of

appearance of groups. To explain this, we look at the group in question and

its two neighbours in Fig. B.2, whose sizes are 912, 915, 921 VMs, they take

0.805s, 0.7534s, 0.8017s, and their order of appearance are first, twelfth, and ninth,

respectively. So group of 915 VMs appears lastly in the three groups, that means

Get Communicating VMs operates on less number of VMs and flows at the order

twelfth than at the first and ninth iterations. The aforementioned information are

read from logs related to the experiment. Same explanation are still applicable on

the two groups of sizes 912 and 921 VMs.

B.3.3 Overall Performance Results

In this section, we study the impact of topology characteristics on Sync perform-

ance. However, we do not present the consumed network resources as Sync is

mainly a workload intensive task, and the only network activity induced by it can

be seen when sending VM and policy migration decisions to the Mininet topology.

Firstly, we fix the number of VMs and MBs (we set them at the maximum

values of the experiment; 10k VMs and 80 MBs in a Fat-tree topology with k=14),

at the same time, we change the number of flows starting from 20k to 100k flows.

In each case, we measure the time taken for each group to run Sync algorithms,

Get communicating VM Groups, Policy migration, and VM migration.

In Fig. B.3, we observe how the growing number of flows causes longer runtime

for Sync algorithms. For instance, where the number of flows is set at 20k, all

groups finish in 0.08s, 0.01s, and 38s in the three algorithms respectively, at 60k

flows, all of them finish in 0.28s, 0.035s, and 90s, and with 100k flows, the run-

times of all groups reach nearly 0.75s, 0.12s, and 80s respectively. In Sync design,

flows have always been involved in all algorithms. For example, in getting the

communicating VMs, Sync looks for associated flows to each VM to conclude the

110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(a) Get Communicating VMs
algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(c) VM Migration

Figure B.4: Sync performance evaluated with growing number of VMs, group sizes
in the three levels are 4, 14, 19, respectively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
50 MBs
80 MBs

(a) Get Communicating VMs
algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
60 MBs
80 MBs

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
50 MBs
80 MBs

(c) VM Migration

Figure B.5: Sync performance evaluated with growing number of MBs, group sizes
in the three levels are 25, 21, 19, respectively.

relations between VMs and therefore recognise and define groups. This means

that when the number of flows grows, the search space becomes larger and more

importantly, the VM could have more associated flows. This also leads to an in-

crease in the runtime of other algorithms. The discrepancy seen for VM migration

when runtime is 80s for 100k flows, and 90s for 60k flows is due to the fact that the

algorithm in question considers, besides the number of flows, the policy violation

constraints. The latter depends on the MB positions which are initially set in a

random way.

Secondly, we set the number of flows to 100k and vary the number of VMs.

Fig. B.4 demonstrates the results for this set of experiments. Surprisingly, we can

observe that all three algorithms finish in less time for 10k VMs than for 2k VMs

and 6k VMs. With 10k VMs, groups finish in 0.6s, 0.11s, and 135s for the three

algorithms, respectively. In comparison, they take 3.8s, 0.51s, and 690s in 2k VMs

settings. This is because when there is a large number of VMs, each VM will be

source or destination for less flows than where there is a big number of flows and a

small number of VMs. In the beginning of the experiment, we randomly allocate

flows to VMs. This means, for example, for Get communicating VM Groups in

the case of 2k VMs and 100k flows, Sync checks the flows related to a single VM,

and then constructing one group will subsequently be more time-consuming.

This set of experiments has shown that the number of VMs has a measurable

111

effect on Get communicating VM Groups and Policy migration on one hand, and

VM migration on the other hand. In Get Communication VM Groups and Policy

migration, for 6k and 10k VMs, the difference is not apparent, however, it becomes

considerable in VM Migration algorithm.

Thirdly, we fix the number of flows and VMs. In Fig. B.5a and B.5b, we

observe how run time for Get communicating VM Groups and Policy migration

evolves linearly with the number of MBs, albeit not too significantly. For example,

Get communicating VM Groups finishes in 0.61s, 0.65s, and 0.81s for 20, 50,

and 80 MBs, respectively. The same behaviour is recorded in Policy Migration

algorithm. However, we do not see the same linear evolution of execution time in

VM migration. In Fig. B.5c, with 80MBs, it takes less time than for other number

of MBs, and the difference is quite noticeable; 80s, 135s and 158s for 80, 20 and

50 MBs, respectively. Thus, the number of MBs have a considerable impact on

all the three algorithms unlike the VMs and Flows factors. In VM Migration and

Policy Migration, the number of MBs is involved directly in the processing, as in

the former, it is needed to check the feasibility of the migration process, and in the

latter, Sync will migrate MBs according to the output of SPF module described

in section B.2.2.

In addition, we have recorded the group average runtime, i.e., how much time

on average groups take in each algorithm to finish processing under various set-

tings. In Fig. B.6, there are three histograms, each describes the evolution on run

time based on one factor. As an example, in Fig. B.6a, there are 9 boxes, the first

three ones present the average runtime of a group in Get Communicating VMs

when the number of flows evolves from 20k to 60k, to 80k flows (that correspond

to the three levels level 0, level 1, and level 2). The second three boxes are for

VM levels (2k, 6k, and 10k VMs), and the last three ones for MB levels (20, 50,

and 80 MBs).

In Get communicating VM Groups, as shown in Fig. B.6a, Sync is more sens-

itive to the number of flows that other factors, but in case the number of VMs is

relatively small, the run time increases dramatically to reach 2.6s when the num-

ber of VMs, flows, and MBs are set to 2k, 100k, and 80, respectively. Otherwise,

the execution time is at most at 0.5s in all other cases and it is, remarkably, at

0.00434s when the number of flows is at 20k.

In VM Migration, the number of VMs has a major effect on the runtime of a

group, for instance, when the number of VMs as 20k, the algorithm takes nearly

600s, whereas, in case there are 10k VMs, the execution time falls dramatically to

reach about 50s.

To conclude, the three factors have a different impact on the Sync algorithms,

flows impacts more Get Communicating VMs and Policy Migration algorithms,

112

 0

 0.5

 1

 1.5

 2

 2.5

 3

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(a) Get Communicating VMs
algorithm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(b) Policy Migration

 0

 100

 200

 300

 400

 500

 600

 700

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(c) VM Migration

Figure B.6: Group average runtime measured with growing number of VMs, Flows,
and MBs

while the number of VMs can alter significantly the time needed by VM migration

algorithm. Lastly, the number of MBs has a known effect on Get communicating

VM Groups and Policy migration, whereas, in VM migration, its impact becomes

unpredictable because VM migration decision depends more on policy violation

prevention strategy.

B.3.4 Resources Utilisation

In all experiments, CPU usage has been nearly at 13%, however, the memory

consumption depends on the three input of Sync algorithms (number of flows,

VMs, and MBs). The active memory increases linearly with the growing number

of the aforementioned factors, for example, it reaches 3700 Mbytes in “extreme”

set-ups (all values set at the maximum of the experiment). We also remark that

memory usage grows significantly with increasing number of VMs, and this is

explained by the fact that each VM possesses much information that comes with

(e.g. associated flows). For other factors, the increase in memory is relatively

limited (nearly 100 MBs). Active memory consumption raises with larger topology,

but the CPU usage stands at the same level i.e. nearly 13%.

This means that Sync is very resource efficient and has room to scale to much

bigger topologies. We also note that our implementation is a reference imple-

mentation that does not consider optimisation techniques such as parallelism with

multi-controller paradigm, in which multiple controllers can process individual

groups concurrently.

B.4 Summary

Sync has provided a novel approach to improving DC network performance by

considering both VM and MB placement synergistic-ally. We have designed, im-

plemented and extensively evaluated Sync through a Mininet framework. We have

found that Sync, which is composed of three key algorithms – Get Communicating

113

VM Groups, Policy Migration, and VM Migration – is not only efficient but also

has fractional system resource footprint. In the future work, we plan to improve

Sync’s efficiency and performance by adopting multiple controllers in which mas-

ter node will be responsible for forming VM groups and slave nodes will get fair

share to continue on policy and VM migration concurrently.

114

	Abstract
	Acknowledgements
	Publications
	Introduction
	Motivation
	Research hypothesis and objectives
	Original contributions
	Thesis overview

	Background and Key Concepts
	Virtualisation
	Software Defined Networks
	Network Function Virtualisation
	NFV considerations
	NFV architecture

	Service Function Chaining
	SFC definitions
	SFC architecture
	A catalogue of middleboxes

	Summary

	Literature Review
	Data centre networks
	Network latency
	Service chains
	Summary

	Research Methodology
	Finding system characteristics from testbed experiments
	Studying the virtualisation impact
	Characterising the NF performance
	Running big data applications on a cluster of IoT devices

	Mathematical modelling
	Tesbted evaluation
	Limitations of the method
	Other methods
	Simulation
	Emulation

	Summary

	Virtualisation and NF Characterisation
	Virtual Network Function (VNF)
	Experiment Setup
	Experiment Results

	Network Function performance bottlenecks
	Network Function Software implementation
	Network Function reordering in the network chain
	Proof-of-concept experiments
	Idea
	Method
	Experiment set-up
	Results and conclusion

	Summary

	Dynamic Network Function Composition
	Problem formulation and modelling
	Problem notations
	Problem definition

	Natif's mechanisms
	Network Function instantiation
	Traffic distribution
	Traffic prediction

	Conclusions

	Experimental Evaluation
	System design and implementation
	System architecture
	Controller modules

	Experimental evaluation
	Testbed experiment
	Network performance evaluation
	Computational utilisation
	Algorithm evaluation
	Prediction model evaluation

	Conclusion

	Conclusions and Future Work
	Summary
	Conclusions
	Future work
	Application performance benchmarking on Raspberry Pi
	Service Chains Cloning and Placement in the Context of Edge Computing

	References
	Understanding the Performance of Low Power Raspberry Pi Cloud for Big Data
	Experiment Setup
	Single Node Experiments
	Cluster Experiments

	Experiment Results
	Single Node Performance
	Spark and HDFS in the Native Environment
	Spark and HDFS in Docker-Based Virtualised Environment

	Summary

	Experimental Evaluation of SDN-Controlled, Joint Consolidation of Policies and Virtual Machines
	Sync Algorithm
	Get Communicating VM Groups
	Policy Migration
	VM Migration

	System Design and Implementation
	System Architecture
	Controller Modules
	Communication

	Experimental Evaluation
	Experiment Set-up
	Group Formation
	Overall Performance Results
	Resources Utilisation

	Summary

