
Technische Universität Dresden

Ultra-reliable Low-latency, Energy-efficient
and Computing-centric Software Data Plane

for Network Softwarization

Dipl.-Ing.
Zuo Xiang

der Fakultät Elektrotechnik und Informationstechnik der Technischen
Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Leon Urbas Tag der Einreichung: 21.03.2022
Gutachter: Prof. Dr.-Ing. Dr. h. c. Frank Fitzek Tag der Verteidigung: 19.08.2022
Gutachter: Prof. Dr. Thorsten Strufe
Gutachter: Prof. Dr.-Ing. Hans D. Schotten

Abstract

Network softwarization plays a significantly important role in the development anddeployment of the latest communication system for 5G and beyond. A more flexibleand intelligent network architecture can be enabled to provide support for agile net-work management, rapid launch of innovative network services with much reductionin Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits,5G system also raises unprecedented challenges as emerging machine-to-machineand human-to-machine communication use cases require Ultra-Reliable Low La-tency Communication (URLLC). According to empirical measurements performed bythe author of this dissertation on a practical testbed, State of the Art (STOA) tech-nologies and systems are not able to achieve the onemillisecond end-to-end latencyrequirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. Thisdissertation performs a comprehensive introduction to three innovative approachesthat can be used to improve different aspects of the current software-driven networkdata plane. All three approaches are carefully designed, professionally implementedand rigorously evaluated. According to the measurement results, these novel ap-proaches put forward the research in the design and implementation of ultra-reliablelow-latency, energy-efficient and computing-first software data plane for 5G commu-nication system and beyond.

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Prof. Dr.-Ing. Dr. h.c.Frank H. P. Fitzek in providingme the best supervision, financial support and workingenvironments in order to support me completing my Ph.D. research. Without hisenlightenment, I would never have been able to finish my Ph.D. research.I would like to thank Prof. Martin Reisslein for his invaluable help in the discussing,editing and revising of all my journal papers. Every successful publication of my jour-nal paper is due to his careful and meticulous help.Two of the supervisors that I would like to express my appreciation is Dipl.-Inf.Frank Gabriel and Dr. Giang T. Nguyen. While Dipl.-Inf. Frank Gabriel spends a lot oftime helping me to solve the problems in the system implementation, Dr. Giang T.Nguyen provides me many insightful comments on the writing of my publications. Iwould not get these publications without their selfless and patient help.I would like to thank all my colleagues at the Deutsche Telekom Chair of Communi-cation Networks, especially Dipl.-Ing. Justus Rischke, Dipl.-Ing. Malte Höweler, M.Eng.Vu Nguyen and M.Sc. Alexander Kropp, for their help in my research work as well asthe study life at TU Dresden, Germany.I would like to expressmy deep gratitude tomy family and friends for their encour-agement and support. I would especially like to thank my father Jinyuan Xiang andmother Yanmei Zheng for the emotional and financial support they have provided.Finally, I would like to thank my wife, Xuefan Wang, for her greatest and meticulouscare for my life. Without her encouragement and concern, I would have given uppursuing this Ph.D. research in the second year. This dissertation could not havebeen completed without her love.

5

Statement of authorship
I hereby certify that I have authored this document entitled Ultra-reliable Low-latency,
Energy-efficient and Computing-centric Software Data Plane for Network Softwarizationindependently and without undue assistance from third parties. No other than theresources and references indicated in this document have been used. I havemarkedboth literal and accordingly adopted quotations as such. There were no additionalpersons involved in the intellectual preparation of the present document. I am awarethat violations of this declarationmay lead to subsequent withdrawal of the academicdegree.

7

Contents

List of Figures 13

List of Tables 15

1 Introduction 191.1 Research Motivation . 191.2 Main Contributions . 241.3 Dissertation Organization . 26
2 Latency Measurement of Service Function Chaining on OpenStack Plat-

form 272.1 Introduction . 272.2 Background and Related Work . 282.3 Service Function Chaining on OpenStack (SFC-OStack) Framework . . . 282.4 Latency-aware Network Function Placement and Chaining 302.5 Measurement Campaign and Results Evaluation 322.6 Summary . 36
3 Reducing Latency in VirtualMachines: Enabling Tactile Internet forHuman-

Machine Co-Working 373.1 Introduction . 373.2 Background and Related Work . 393.3 Proposed Approach: Chain bAsed Low latency VNF ImplemeNtation(CALVIN) . 453.3.1 Overview of CALVIN . 453.3.2 Classification of Virtualized Network Functions (VNFs) 453.3.3 VNF Implementations Selection for VNF Classes 463.3.4 CALVIN Architecture Design and Workflow 473.4 Performance Evaluation of Elementary and Basic Network Functions . 503.4.1 Measurement Setup for Elementary andBasic Network Functions 503.4.2 Measurement Results and Evaluation for Elementary and BasicNetwork Functions . 54

9

Contents

3.5 Performance Evaluation of Advanced Network Functions 593.5.1 Random Linear Network Coding (RLNC) Network Function . . . 603.5.2 Advanced Encryption Standard (AES) Encryption 613.5.3 Measurement Setup of Advanced Network Functions 613.5.4 Measurement Results and Evaluation for Advanced NetworkFunctions . 623.6 Summary . 64
4 X-MAN: ANon-intrusive PowerManager for Energy-adaptive Cloud-native

Network Functions 654.1 Introduction . 654.2 Background and Related Work . 684.2.1 Power Management in Linux Kernel 684.2.2 CPU Core Load Estimation with Hardware Counters (HCs) . . . 694.2.3 In-band Power Management with Code Instruction (CI) 704.3 Proposed Approach: XDP-Monitoring energy-Adaptive Network func-tions (X-MAN) . 714.3.1 X-MANDesign Imperative: Per-core PowerManagement Basedon Per-Cloud-native Network Function (CNF) Traffic Monitoring 714.3.2 X-MAN System Architecture: User Space Power ManagementBased on Kernel Space Traffic Monitors 734.3.3 Native X-MAN Adaptive Power Management 764.3.4 X-MAN Extensions . 804.4 Performance Evaluation Setup for X-MAN 814.4.1 Testbed for X-MAN Evaluation . 814.4.2 Workload Traffic Profiles . 824.4.3 CNF Deployment . 834.4.4 Monitoring Latency for Central Processing Unit (CPU) Utiliza-tion Estimation . 844.4.5 Power Management Mechanisms 854.4.6 X-MAN Performance Metrics . 854.5 X-MAN Measurement Results and Evaluation 864.5.1 X-MAN CPU Measurements . 864.5.2 Monitoring Latency for CPU Utilization Estimation 884.5.3 Single CNF with Deterministic Traffic 904.5.4 Two CNFs with Deterministic Traffic 914.5.5 Single CNF with Random Traffic 954.5.6 Energy Consumption of X-MAN 974.6 Summary . 98
5 Communication Networks Emulator (ComNetsEmu): An Open Source

Testbed for Virtualized Communication Networks 995.1 Introduction of ComNetsEmu . 995.2 The Architecture of ComNetsEmu . 1015.2.1 Software-Defined Networking (SDN) Environment with Mininet 1015.2.2 ComNetsEmu Enhancements and Architecture 101

10

Contents

5.3 ComNetsEmu Hands-on Examples . 1035.3.1 ComNetsEmu Echo Server Example 1035.3.2 ComNetsEmu Mobile Edge Cloud Example 1055.4 Summary . 106
6 You Only Look Once, but Compute Twice (YOLO-CT): COmputing In Net-

work (COIN) for Low-latency Object Detection in Softwarized Networks 1096.1 Introduction . 1096.1.1 Overview and Motivation . 1096.1.2 Related Work . 1136.2 Proposed Approach: YOLO-CT . 1156.2.1 YOLO-CT Design and Architecture 1166.2.2 Modelling of Service Latency . 1196.2.3 YOLO-CT Implementation . 1226.3 Comparison with Clean-slate Message Transport Protocol (MTP) 1246.4 YOLO-CT Evaluation and Measurement Results 1256.4.1 Feature Extraction Network Function 1256.4.2 End-to-end Response Latency . 1266.5 Summary . 128
7 Summary 131

Acronyms 133

Bibliography 139

11

List of Figures

1.1 The evolution of communication architecture. Reprinted and adaptedfrom the book [1]. 201.2 The 5G Atom. From the inside out, the first tier presents performancerequirements. The second tier presents the novel concepts. The thirdtier collects emerging and enabling softwarization technologies. Thelast tier lists the unique innovations. Reprinted from the book [1]. . . 221.3 Typical latency budget for the sensor-to-actuator remote control loopwhichmeets the 1ms end-to-end latency requirement of 5G. Reprintedfrommy journal paper [4]. 231.4 Main contributions of this dissertation. 24
2.1 SFC-OStack architecture and its main components in control and dataplane. 292.2 An example of three implemented heuristic algorithms for Service Func-tion Chaining (SFC) placement: Four Service Functions (SFs) are placedon two physical compute nodes. Reprinted and adapted frommy con-

ference paper [11]. 312.3 SFC startup and service processes. Reprinted from my conference
paper [11]. 322.4 Measurement results of rendering and gap latencies w.r.t. differentSFC chain lengths. Reprinted frommy conference paper [11]. 342.5 Measurement results ofOne-WayDelay (OWD)w.r.t. different SFC chainlengths. Reprinted frommy conference paper [11]. 35

3.1 Angle of an inverted pendulum. The pendulum tries to reach stabil-ity for different sensor-to-actuator latencies and different inter-packetdelays. Reprinted frommy journal paper [4]. 383.2 The service loop in a Multi-access Edge Computing (MEC) cloud en-vironment. Network traffic packets from clients are processed by aSFC consisting of an ordered sequence of VNFs to reach the serverrunning the required application service. Reprinted from my journal
paper [4]. 40

13

List of Figures

3.3 A typical cloud computing infrastructure scenario where multiple Vir-tual Machines (VMs) are connected to a virtualized network overlay.Reprinted frommy journal paper [4]. 413.4 Graphical presentation of the centralized combined kernel and userspace approach described in [33]. Reprinted from my journal pa-
per [4]. 443.5 The architecture design of CALVIN. Fundamental elements in both con-trol and data plane are illustrated. Reprinted from my journal pa-
per [4]. 483.6 CALVIN workflows for basic and advanced network functions runningin different spaces. Reprinted frommy journal paper [4]. 493.7 Round-trip Time (RTT)measurement setup for CALVIN. Reprinted from
my journal paper [4]. 503.8 Illustration of measurement setup for the RTT comparison betweencentralized approach andCALVIN. Reprinted frommy journal paper [4].. 543.9 Means and 95% confidence intervals for RTT of different VNF technolo-gies in kernel space and user space. The 95% confidence intervals forthe 256 byte payload size are very tight and barely visible in this plot.Reprinted frommy journal paper [4]. 553.10 The RTT performance comparison of FWD VNF between centralizedapproach and CALVIN. Reprinted frommy journal paper [4]. 563.11 The bandwidth performance comparison of FWD VNF between cen-tralized approach and CALVIN. Reprinted from my journal paper [4].. 573.12 Means and 95% confidence intervals for processing times inmicrosec-onds for computationally intensive advanced VNFs. Reprinted from
my journal paper [4]. 63

4.1 Conceptual comparison of existing approaches and the proposed X-MAN approach. Reprinted frommy journal paper [7]. 664.2 Example of the design of X-MAN for a physical server with two CPUpackages. Reprinted frommy journal paper [7]. 714.3 System architecture of the X-MAN powermanagement for a given CPUcore. Reprinted frommy journal paper [7]. 744.4 Deterministic probing traffic profiles for X-MAN benchmark. Reprintedfrommy journal paper [7]. 834.5 CPU frequency increase and decrease test. Reprinted from my jour-
nal paper [7]. 874.6 Tic-Toc test for CPU frequency and power. Reprinted frommy journal
paper [7]. 884.7 Comparison of monitoring latency between HC approach and X-MAN.Reprinted frommy journal paper [7]. 894.8 Monitoring latency of X-MAN for different number of Virtual EthernetDevice (veth) pairs. Reprinted frommy journal paper [7]. 89

14

List of Figures

4.9 Average CPU frequency and power values of a single CNF as a func-tion of the link utilization for deterministic traffic. Reprinted from my
journal paper [7]. 914.10 Average CPU frequency and power values of two CNFs for determinis-tic traffic as a function of packet traffic (illustrated in Figure 4.4b) trainindex ranging from 1 to 10. Reprinted from my journal paper [7]. . . 934.11 Box plots of CPU frequency and power values for a single CNF withrandom traffic. Reprinted frommy journal paper [7]. 954.12 Box plots of percentage deviation of RTT latency characteristics andnumber of dropped packets with respect to the baseline No PowerManagement (NPM). Reprinted frommy journal paper [7]. 96

5.1 The architecture view of the ComNetsEmu. Reprinted frommy journal
paper [118]. 1035.2 The topology of the echo server as a Network Function (NF). Reprintedfrommy journal paper [118]. 1045.3 The topology of the MEC migration example. Reprinted frommy jour-
nal paper [118]. 105

6.1 Object detection use cases including pedestrian and vehicles detection.1106.2 A basic dumbbell topology for remote cloud based objection detectionapplication. 1126.3 The proposed approach YOLO-CT. A detailed illustration of the systemcomponents and traffic flows. 1166.4 Output size of each layer of the You Only Look Once (YOLO)-v2 model.Reprinted frommy journal paper [10]. 1176.5 Basic image-based compressionmethods for featuremaps. Reprintedfrommy journal paper [10]. 1176.6 YOLO-CT: Response latency without background workload. 1276.7 YOLO-CT: Response latency under background workload. 128

15

List of Tables
3.1 CPU usage of the physical compute node. Reprinted frommy journal

paper [4]. 59
4.1 A summary ofmain notations used by X-MAN relatedmodeling. Reprintedfrommy journal paper [7]. 754.2 CPU package temperature for different CPU states. Reprinted from

my journal paper [7]. 874.3 Single CNF latency results for the deterministic traffic. Latency increasesare listed as percentage with respect to the performance of the base-line NPM approach. Reprinted frommy journal paper [7]. 924.4 TwoCNFs latency results for the deterministic traffic. Latency increasesare listed as percentage with respect to the performance of the base-line NPM approach. Reprinted frommy journal paper [7]. 944.5 Powermeasurements of NPMand X-MAN: Additional energy consump-tion (Power ∆) with the Traffic Monitor (TM) in the Linux kernel spacerelative to the operation without TM. Energy consumption for the CPUwithout power management (NPM) and with X-MAN Power Manager(PM) enabled, and percentage of C1 residency time for CPU core run-ning PM for different CPU operational states. Reprinted frommy jour-
nal paper [7]. 97

6.1 YOLO-CT: Summary of main notations. 1206.2 Resource usage comparison between the feature extraction modeland the full YOLOv2 model. 126

17

1 Introduction

1.1 Research Motivation

In order to understand the 5G, namely the fifth-generation of cellular communicationnetworks and motivations of this dissertation, it is significantly important to reviewand understand how communication networks have evolved over time [1]. At thetime of this work, communication systems have already evolved to its fourth gener-ation and the emerging 5G system is still open for research and exploring even withsome early real-world implementations and deployments. For the very first commer-cial and widely deployed communication network, namely the telephone network, tothe largest global Internet network system, the communication network has evolvedfrom conventional paradigm of circuit switching to the novel, simple, robust and lowcost paradigmof packet switching, which is currentlymainly based on two fundamen-tal protocols: Internet Protocol (IP) and Transmission Control Protocol (TCP) and onesimple policy of store and forward. The packet-switched approach used by Internethas already thrived over the years, while the cellular communication systems beganas a wireless extension to the Public Switched Telephone Network (PSTN), which fo-cuses only on voice services. The cellular networks can be connected to Internetthrough the IP protocol.In last 40 years, the cellular communication system has already evolved from 1Gto 4G. While the 1st Generation (1G) of cellular communication network system wasbased on analog technologies, the 4th Generation (4G) cellular network system al-ready provides full support of IP-based mobile Internet.Compared to conventional hardware-based implementations, software firstly be-gan to play a significantly important role in the 4G cellular system. In contrast tothe conventional hardware-driven network architecture of 1G to 3G, network soft-warization is able to realize a much more flexible network architecture which pro-vides support for agile network management, rapid launch of novel and innovativeservices with much reduction in Capital Expense (CAPEX) as well as Operating Ex-pense (OPEX).This work comes at a time when the latest 5G cellular network systems are beingimplemented and also deployed in some countries. According to the analysis per-

19

1 Introduction

formed by Fitzek et.al. in [1], compared to previous evolutions, namely 1G to 4G,5G seems to be a real revolution: (i) Besides humans, 5G also aims at providing ser-vices to billions of end devices, namely the so-called Internet of Things (IoT) concept.Some 5G targeted use cases require the support of ultra-reliable low-latency andreal-time communication for both data and control messages [1]. (ii) Instead of fo-cusing only in the wireless domain, the 5G cellular system should be a holistic designwith joint efforts in both wireless andwired domains. Standardization entities in bothdomains should be involved for 5G systems, including 3rd Generation PartnershipProject (3GPP) and Internet Engineering Task Force (IETF) [1]. The overview of cellularnetwork evolution and the holistic design of 5G is graphically illustrated in Figure 1.1.

2G 3G 4G1G 5G

10 years 1 day

Wireless World Wired World

5G

1 day

Holistic 5G

Hardware Software

Communication =

Transport

Communication =

Transport + Computing + Storage

Hardware

Figure 1.1: The evolution of communication architecture. Reprinted and adaptedfrom the book [1].
As demonstrated in the Figure 1.1, generations before 5Gare dominantly hardware-driven, which have relative long innovation and update cycle (i.e. it takes severalyears) mainly due to the high cost of hardware modification. On the other hand,5G cellular system are starting to adopt some best practices of IETF approach inthe wired domain, which are solely driven by software solutions. Therefore, networksoftwarization is one of the most important concepts in 5G system which enablesinnovations and improvements from Radio Access Network (RAN) to mobile corenetwork in a cellular communication system. With this trend of network softwariza-tion for 5G, the conventional network based on the fundamental store and forwardparadigm (i.e. treat network as a “dumb pipe”) is transformed into a new and novelnetwork based on compute and forward paradigm, where the data is also stored andprocessed directly in the network. This innovative and computing-centric compute

and forward paradigm provided by 5G network system is explored in this work to

20

1.1 Research Motivation

improve the latency performance and energy efficiency.To further understand the latency performance and energy efficiency challengesfor the 5G network softwarization, which is the motivation and focus of this disserta-tion, a more detailed introduction of the holistic 5G communication system shouldbe performed here with the exquisite 5G Atom concept proposed by Fitzek et.al in [1].The 5G atom is graphically illustrated in Figure 1.2. At the heart of the 5G atom areimportant use cases that drive the development of 5G. In order to support theseuse cases, multiple technical and performance requirements built the first tier ofthe atom, where the latency and energy are given high attention in this dissertation.In order to address these requirements, several novel concepts for 5G are listedin the second tier of atom, including network slicing, Multi-access Edge Computing(MEC) and Information-centric Networking (ICN) etc. Then the third tier consists ofpromising network softwarization technologies which can enable the realization ofthe concepts presented in the second tier. This tier is themost significant tier for thisdissertation, because the core motivation and contribution of this dissertation is toimprove these technologies in three different perspectives, especially those used inthe network data plane to improve the latency performance, energy efficiency andintelligence of the State of the Art (STOA) 5G system. The last tier of the atom consistsof some representative sample innovative mechanisms or approaches that can bebetter utilized on 5G system due to the flexibility and programmability provided bythe concept of network softwarization. With respect to the emerging network soft-warization technologies, two of them are significantly important and highly exploredand utilized in this dissertation:
• Network Function Virtualization (NFV): NFV is a novel network architecture con-cept and technology that utilizes the virtualization technologies provided by In-formation Technology (IT) domain to virtualize conventional hardware-drivenNetwork Functions (NFs) into software-driven Virtualized Network Functions(VNFs) or Cloud-native Network Function (CNF) that can be deployed and or-chestrated on Commercial Off-The-Shelf (COTS) hardware to deliver communi-cation services [2].
• Software-Defined Networking (SDN): SDN technology is a novel mechanism fornetwork management that enables flexible, dynamic and highly programmablenetwork configuration [3]. In SDN, the control plane of network nodes are de-coupled from their data plane, which enables control and orchestration of thenetwork from a centralized entity, namely the SDN controller [3].
After the introduction of the most important network softwarization techniques,the stringent real-time latency requirements of 5G need to be further discussed hereto better understand why low latency is an unprecedented challenge for current 5Gand future communication systems, and why several of the research works includedin this dissertation prioritize latency performance.Communication networks have long been designed, implemented and evaluatedonly for high bandwidth or throughput performance. This is mainly due to the well-known fact that most typical network-based applications require mainly sufficient

21

1 Introduction

LatencyLatencyLatency

Through
‐put

Through
‐put

Through
‐put

SecuritySecuritySecurity

MassiveMassiveMassive

ResilienceResilienceResilience
Hetero‐
geneity
Hetero‐
geneity
Hetero‐
geneity

Network
Coding
Network
Coding
Network
Coding

Network
Slicing
Network
Slicing
Network
Slicing

Multi‐
Path
Multi‐
Path
Multi‐
Path

Mobile
Edge
Cloud

Mobile
Edge
Cloud

Mobile
Edge
Cloud

Air
Interface

Air
Interface

Air
Interface

Machine
Learning
Machine
Learning
Machine
Learning

SDNSDNSDN

CDNCDNCDN

NFVNFVNFVSDRSDRSDR

EnergyEnergyEnergy

ICNICNICN

concepts

technologies

innovation

requirements

MeshMeshMesh

5G
UC

UC

UC

Deep
Learning
Deep

Learning
Deep

Learning

Block
Chain
Block
Chain
Block
Chain

Com‐
pressed
Sensing

Com‐
pressed
Sensing

Com‐
pressed
Sensing

UC

UC

UC

UC

Figure 1.2: The 5G Atom. From the inside out, the first tier presents performancerequirements. The second tier presents the novel concepts. The thirdtier collects emerging and enabling softwarization technologies. The lasttier lists the unique innovations. Reprinted from the book [1].
bandwidth, such as web browsing, file transmission or on-demand video streaming.Compared to bandwidth improvements, latency and jitter performance optimizationhas been mainly ignored in main network research for a long time, as described byCheshire et.al. in already in 1996 [5]. However, in contrast to previous four gener-ations, the latency and jitter performance plays a dominantly important role in 5Gsystem and is listed on the top of the all essential requirements [1]. The main reasonof this change is based on the design that 5G and future communication networksystem targets at the emerging use cases with integrated control loop, includingMachine to Machine (M2M) and human-to-machine communication [1]. Therefore,end-to-end latency and jitter performance has to be guaranteed for these use cases.According to the 5G standard [6] published by 3GPP, the allowed end-to-end com-munication latency for ultra-reliable low-latency use cases is limited to only one mil-lisecond (1 ms). Based on this requirement, a typical latency budget for major 5Gcomponents involved in a sensor/actuator control loop is illustrated in the Figure 1.3 [4].In this latency budget, a total of 0.4 ms is consumed by the embedded systems(sensors and actuators) and the wireless network systems. With the 1 ms end-to-

22

1.1 Research Motivation

MEC

Network Function
Virtualization

(NFV)

Transmitter

Receiver

1ms

0.1ms 0.1ms

0.4ms 0.6ms

Sensor
Embedded
Computing

Embedded
ComputingActuator

Receiver

Transmitter

0.1ms 0.1ms 0.35ms

0.125ms

25km

0.125ms

25km

Figure 1.3: Typical latency budget for the sensor-to-actuator remote control loopwhich meets the 1 ms end-to-end latency requirement of 5G. Reprintedfrommy journal paper [4].

end latency requirement, the wired domain is left only with 0.6 ms. The wire do-main consists of two main components. While one latency component is the wiredcommunication over the fiber where the latency is limited by the speed of the light(namely, about 3.34 µs per kilometer), the second component is based on the net-work and computing nodes in the wired domain. As introduced above, 5G networksystem utilizes network softwarization technologies to support the compute and for-
ward paradigm. These novel softwarization technologies enable the concept ofMulti-access Edge Computing (MEC), which enables local network data processing. Assum-ing themaximum length of the fiber used in the system is 25 km and the speed of thefiber used is 2000000 km/s, 0.25 ms latency is required for this component. Finally,only 0.35 ms, namely 35% of the millisecond, remains for the MEC system.
However, according to my rigorous measurements on State of the Art (STOA) MECtestbed based on OpenStack, which is described in detail in Chapter 2, VNFs imple-mented with traditional socket Application Programming Interfaces (APIs) provide bythe Linux kernel are only able to provide an end-to-end latency performance of sev-eral milliseconds even with the simplest elementary forwarding network function.Therefore, in summary, this dissertation aims to address the question: How to sig-

nificantly reduce the latency of State of the Art (STOA) softwarization network data plane
to meet the 5G stringent end-to-end latency requirement of one millisecond with minimal
negative impact or even improvement on other important performance metrics, especially
bandwidth and energy consumption?

23

1 Introduction

1.2 Main Contributions

In order to address the research question introduced in Section 1.1, three innova-tive approaches published as journals (all as the first author) are concluded in thisdissertation to improve the high-performance software data plane in three differ-ent directions. These three directions or perspectives are illustrated as a Triforce inFigure 1.4.

Ultra

Low-Latency

Software

Data Plane

Energy-

Efficient

Computing-

Centric

Figure 1.4: Main contributions of this dissertation.

1. Ultra-reliable low-latency: A novel and practical framework called ChainbAsed Low latency VNF ImplemeNtation (CALVIN) was designed, implementedand evaluated inmy journal [4] to achieve an end-to-end RTT performance onthe order of only 0.32 ms on the Commercial Off-The-Shelf (COTS) Multi-accessEdge Computing (MEC) platform.
2. Energy-efficient: Inmy journal [7], the novel XDP-Monitoring energy-AdaptiveNetwork functions (X-MAN) framework was designed and implemented to en-able non-intrusive and fine-grained traffic workload monitoring and per-CPUcore frequencymanagement for energy saving of high-performance softwariza-tion data plane systems. According to extensive measurements and evalua-tions of the proposed X-MAN system on a physical testbed with support for10 Gbps Ethernet, X-MAN is able to support two important performance met-rics: (i) X-MAN can consistently monitor the workload traffic for four data planenetwork interfaceswith a latency of only 10 µs, while the STOAHardware Counter(HC) approach [8] requires a latency ranging from 20 to even 80 µs (ii) For therandom traffic model described in Section 4.4, X-MAN is able to reduce the en-ergy consumption to less than half of the STOA Code Instruction with Heuristicpower management (CIH) approach [9], while has negligible impact on latencyperformance.
3. Computing-centric: A novel approach named as You Only Look Once, butCompute Twice (YOLO-CT) is proposed in my journal [10] which utilizes the

24

1.2 Main Contributions

COmputing In Network (COIN) paradigm supported by the softwarized networkto significantly reduce the amount of data required to be sent through the net-work by offloading part of the Convolutional Neural Network (CNN) model di-rectly into the network nodes with computing power and functionalities.

List of Publications
Journals

• Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T. Nguyen, Martin Reisslein, andFrank HP Fitzek. "Reducing latency in virtual machines: Enabling tactile Internetfor human-machine co-working." IEEE Journal on Selected Areas in Communi-cations 37, no. 5 (2019): 1098-1116.
• Zuo Xiang, Patrick Seeling, and Frank HP Fitzek. "You only look once, but com-pute twice: Service function chaining for low-latency object detection in soft-warized networks." Applied Sciences 11, no. 5 (2021): 2177.
• Zuo Xiang, Sreekrishna Pandi, Juan Cabrera, Fabrizio Granelli, Patrick Seeling,and Frank HP Fitzek. "An open source testbed for virtualized communicationnetworks." IEEE Communications Magazine 59, no. 2 (2021): 77-83.
• Huanzhuo Wu, Zuo Xiang, Giang T. Nguyen, Yunbin Shen, and Frank HP Fitzek."Computing Meets Network: COIN-Aware Offloading for Data-Intensive BlindSource Separation." IEEE Network 35, no. 5 (2021): 21-27.
• Zuo Xiang, Malte Höweler, Dongho You, Martin Reisslein, and Frank HP Fitzek."X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Net-work Functions." IEEE Transactions onNetwork and ServiceManagement (2021).

Conferences

• Zuo Xiang, Frank Gabriel, Giang T. Nguyen, and Frank HP Fitzek. "Latency mea-surement of service function chaining on OpenStack platform." In 2018 IEEE43rd Conference on Local Computer Networks (LCN), pp. 473-476. IEEE, 2018.
• Huanzhuo Wu, Jia He, Máté Tömösközi, Zuo Xiang, and Frank HP Fitzek. "In-Network Processing for Low-Latency Industrial Anomaly Detection in SoftwarizedNetworks." In 2021 IEEEGlobal Communications Conference (GLOBECOM), (hasbeen accepted, not official published yet), IEEE, 2021.

Book Chapters

• Zuo Xiang, Sreekrishna Pandi, Patrick Seeling, and Frank HP Fitzek. "ComNet-sEmu: a lightweight emulator." In Computing in Communication Networks, pp.245-256. Academic Press, 2020.

25

1 Introduction

• Zuo Xiang, Renbing Zhang, and Patrick Seeling. "Machine learning for objectdetection." In Computing in Communication Networks, pp. 325-338. AcademicPress, 2020.
• Zuo Xiang, and Patrick Seeling. "Mininet: an instant virtual network on yourcomputer." In Computing in Communication Networks, pp. 219-230. AcademicPress, 2020.
• Zuo Xiang, Carl Collmann, and Patrick Seeling. "Realizing mobile edge clouds."In Computing in Communication Networks, pp. 277-287. Academic Press,2020.
• Justus Rischke, and Zuo Xiang. "Network coding for transport." In Computingin Communication Networks, pp. 339-349. Academic Press, 2020.

1.3 Dissertation Organization

This dissertation is organized into seven chapters:
Chapter 1: This chapter presents the researchmotivation, innovative contributionsand the outline of this dissertation.
Chapter 2: This chapter describes my research work on the topic "Latency Mea-surement of Service Function Chaining on OpenStack Platform" published in [11].The analysis and measurement evaluations performed in this work highly motivateother works included in this dissertation.
Chapter 3: This chapter presentsmy researchwork on the ultra-reliable low-latencyperspective of the STOA high-performance software network data plane. The design,implementation and rigorous evaluation of the proposed CALVIN system is compre-hensively described in this chapter.
Chapter 4: This chapter describes my research work on the energy-efficient per-spective of the STOA high-performance software network data plane. The design,implementation and rigorous evaluation of the proposed X-MAN system is compre-hensively described in this chapter.
Chapter 5: This chapter presents my research work on the design and implemen-tation of the novel Communication Networks Emulator (ComNetsEmu), which canbe used to simply prototype and evaluate research ideas for network softwarizationsystems.
Chapter 6: This chapter describes my research work on the computing-centric per-spective of the STOA high-performance software network data plane. The design,implementation and rigorous evaluation of the proposed YOLO-CT system is com-prehensively described in this chapter.
Chapter 7: This chapter concludes this dissertation by summarizing the researchworks done with the scope of the introduced research topic. Main contributions ofthis dissertation is also summarized.

26

2 Latency Measurement of Service
Function Chaining on OpenStack
Platform

All contents in this chapter have already beenpublished inmyconference paper [11]:"Latency measurement of service function chaining on OpenStack platform." In 2018IEEE 43rd Conference on Local Computer Networks (LCN), pp. 473-476. IEEE, 2018.

2.1 Introduction

In recent years, with the rapid growth of users and network traffic, how to effectivelyuse limited resources to provide services that can meet certain requirements hasbecome an important issue for network operators. The capabilities of modern com-munication networks are extended by NFV and SDN to address this challenge. Thelimitation in legacy systems is resolved with NFV by removing the tight integration ofmiddleboxes running NFs from their proprietary hardware platform. NFs are virtu-alized and implemented with advanced software technologies into flexible VNFs.Since the actual use case usually requires a complete and complex NF composedof several smaller components called SFs, NFV systemsmust be able to force packetsto traverse them in a specific order. The mechanism for automatically and efficientlyinstantiating an ordered chain of VNFs and subsequently redirecting traffic throughthe chain is known as SFC [12]. One of the most critical challenges is to decide onwhich worker node to launch SFs to satisfy multiple performance objectives, i.e. theproblem of the placement of SFs. A large body of research work in the literature hasinvestigated the optimization issue of efficiently placing SFs physical hosts [13, 14].However, at the time I was researching this topic, to the best of my knowledge, onlya few of them were implemented on real-world cloud platforms. In addition, the lackof latency measurements on practical cloud platforms is an open issue.In order to understand latencies of SFCs on the OpenStack cloud platform andtheir causes, a measurement campaign is performed in this work. Instead of the de-

27

2 Latency Measurement of Service Function Chaining on OpenStack Platform

fault round-robing placement algorithm, several heuristic algorithms are designedand implemented to minimize SFC latency. Implementations are evaluated with rig-orous measurements on the OpenStack platform. Based on the measurement re-sults, the SFC latency performance of STOA technologies on the OpenStack platformis analyzed.This work elucidates several potential directions for improving latency performanceon real-world cloud platforms based on actual measurements. These analyses pro-vide measurement and practical support for further work in this dissertation.

2.2 Background and Related Work

Medhat et al. [15] perform a comprehensive survey of STOA SFC frameworks andpractical implementations. A service-oriented SDN controller is proposed in [16] toimplement dynamic SFCs within the framework of a service overlay network. How-ever, the impact of packet processing is not considered in this work. Zhang et al. [17]presents the StEERING SFC framework for flexible traffic management using SDNtechnologies. A heuristic algorithm is also designed to reduce the service latency ofdeployed SFCs. The latency performance is performed to compare the proposedalgorithm with a random placement. Cloud4NFV framework is introduced in [18] toorchestrate SFs in a distributed telco cloud environment. Although the proposedframework supports the flexible management of SFs through SFC, detailed latencyperformance measurements are not performed in this work.In summary, the placement problem of SFC related research needs to be furthersimplified on practical cloud platform. Furthermore, it is important to understanddifferent types of latencies at each step of the SFC deployment process to validateassumptions of theoretical modelling and shed light on ares for further improvingthe latency of SFC on the practical OpenStack platform.

2.3 SFC-OStack Framework

At the time this work researched on this topic, OpenStack still had very limited sup-port for SFC. The official SFC extension for OpenStack networking only provide basicAPIs to build SFC in Neutron without support for APIs to implement different place-ment algorithms. In order to simplify the development, management and evaluationof SFC placement algorithms, research oriented framework called Service FunctionChaining on OpenStack (SFC-OStack) [19] is developed on the OpenStack platform.It is built on top of the official SFC extension (called networking-sfc) of OpenStack.The architecture andmain components of the SFC-OStack framework is illustratedin Figure 2.1. The SFC-OStack orchestrator makes use of services provided by Open-Stack to render SFCs into an ordered set of virtual compute instances and corre-sponding port chains in the network data plane. The SFC-OStack orchestrator con-tains SFC manager, scheduler and monitor modules.

28

2.3 SFC-OStack Framework

Cloud Infrastructure

SRC
Server Chaining

Rendering Services

SFC-Ostack Orchestrator

SFC

Description SFC Manager

Resources

Port Chain

Server Chain

Scheduler

Placement

Algorithms

Monitor

Latency

Workload

Bandwidth

HEAT networking_sfc

driver

OVS-Driver

Nova

Nova-Scheduler

Neutron

neutron network

SF1 SF2 SF3FC DST

Control Plane

Data Plane

Figure 2.1: SFC-OStack architecture and its main components in control and dataplane.
The SFC manager is responsible for Create, Read, Update and Delete (CRUD) op-erations and life-cycle management of SFCs. It models the SFC description into re-sources that are available on OpenStack and its SFC extension. Available OpenStackresources include: (i) Server chain: A set of ordered virtual compute instances onwhich NF programs are dispatched and executed. Virtual compute instances aregrouped into server groups. These groups can be used for the load balancing fea-ture provided by port pair groups of networking-sfc extension. Besides computeinstances, associated Neutron ports are also created and bounded. These server in-stances can be launched by all virtualization technologies supported by OpenStack,including bare metal servers, VMs and system containers. In this work, VMs are used

29

2 Latency Measurement of Service Function Chaining on OpenStack Platform

with the default Kernel-based Virtual Machine (KVM) hypervisor. (ii) Port chain (PC):Port chain is a wrapper resource required for traffic steering in a SFC. Each portchain consists of a Flow Classifier (FC) and a list of port pair groups. Port chainscan be backed by different networking service providers for service path rendering.In OpenStack version Pike, Open vSwitch (OVS) driver is used as the default serviceprovider. The server chain and port chain are implemented as separate resourcesin this framework to provide efficient resource allocation and flexible updating ofdeployed SFCs.After the orchestrator converts the specification into native OpenStack resources,rendering services are used to build the actual SFCs on the cloud infrastructure.Because the official OpenStack Heat service does not manage networking-sfc re-sources in OpenStack Pike version, SFC-OStack provides its own module to convertcustomized SFC description files into Heat template files.In order to deploy and render SFCs on OpenStack Neutron network architecture,the network configuration of compute instances needs to be carefully designed. InSFC-OStack, while the orchestrator is deployed on the Neutron networking node andconnected to the external network, SFCs are rendered on multiple compute nodesthat are connected to the management and data networks via separate physical in-terfaces. Each VM in the chain is allocated with three separate virtual interfaces. Astwo interfaces are used as ingress and egress ports for user plane data traffic, thelast interface is formanagement traffic of the SF. From the view of each VM, all its net-work interface are attached to a private virtual tenant network. They get internal IPaddresses from Neutron’s Dynamic Host Configuration Protocol (DHCP) agents andare allocated with a floating IP address for remote access and management frompublic network.

2.4 Latency-aware Network Function Placement and
Chaining

The problem researched by this work is the latency-aware placement and chainingof SFs. All SFs of a logical SFC need to be deployed and then interconnected on thephysical cloud infrastructure with multiple resource constraints such as compute,network and storage. The goal of the proposed algorithms is to find a placementthat minimizes both rendering and service latency of SFC at the same time. Threesimple heuristic algorithms are proposed in this chapter as low-complexity solutionsto the SFC placement problem.In practical deployment, both computational and network aspects need to be con-sidered in order to design heuristic placement algorithms. Therefore, following as-sumptions are made in this work: (i) Inter-node physical network connections aremore costly and time-consuming than intra-node virtual network connections. Incontrast to intra-node traffic that can be forwarded directly by local software vir-tual switch, inter-node traffic requires additional tunnel encapsulation and trans-mission over the underlying physical network. (ii) Virtual instances and port chainsallocated on the same physical compute node share computing and networking re-

30

2.5 Measurement Campaign and Results Evaluation

sources. When toomany SFs are allocated on the same compute node, this computenode can become overwhelmed, which significantly increases computation and net-work latency. Therefore, two types of latency are considered in following placementstrategies: (i) Processing latency: Computational latency required by SFs for packetprocessing. (ii) Transmission latency: Network latency required to transmit packetsbetween SFs and underlying physical compute nodes if needed.

Node 1

1

Node 2

2

3 4

(a) LB

Node 1

1

Node 2

2

3

4

(b) LC

Node 1

1

Node 2

3

2 4

(c) LBLC
Figure 2.2: An example of three implemented heuristic algorithms for SFC place-ment: Four SFs are placed on two physical compute nodes. Reprintedand adapted frommy conference paper [11].

Following heuristic approaches are designed and also implemented: (i) Load Bal-ancing (LB) strategy: This is simply a greedy algorithm that tries to minimize the pro-cessing latency without considering the transmission latency. Compute node withminimal computational workload is always selected in each iteration of the SF place-ment. (ii) Least Connection (LC) strategy: In this approach, the transmission latency isminimized without considering processing latency. Connections between differentnodes are minimized. The physical compute node running the service applicationis firstly used to place new SFs. Then as many SFs as possible are placed on thisselected node. When the resources of the node are exhausted, the next node isselected randomly for further placements. (iii) Load Balancing plus Least Connec-tion (LBLC) strategy: This is an optimized version of LB that also takes transmissionlatency into consideration. LBLC uses the same mechanism of LB to launch SFs.However, a reordering of SFs is performed before chaining them. Reordering heremeans rearranging the mapping between the virtual SFs in the logical SFC and theVMs spawned on compute nodes. The overhead of this remapping process of vir-tual SFs is much cheaper than firstly deploy the NF programs and then migrate VMs.The reordering algorithmminimizes connections between different nodes to reducetransmission latency as much as possible. An example using aforementioned threestrategies to place four SFs on two compute nodes is presented in Figure 2.2.

31

2 Latency Measurement of Service Function Chaining on OpenStack Platform

Client

Server

10 11 12 13 14

10

Time

11 12 13 14

Gap Time

15 16 17

15 16 17

Rendering Time

Start Load SFC
Specification Launch SFIs Wait SFPG Reorder SFIs Build PC SFC is active

7

7

8 9

8 9

4

4

5 6

5 6

1

1

2 3

2 3

Figure 2.3: SFC startup and service processes. Reprinted from my conference pa-
per [11].

2.5 Measurement Campaign and Results Evaluation

Based on analyses of the system, the overall SFC latency contains mainly three dif-ferent types i.e. rendering latency, gap latency and One-Way Delay (OWD). Thesedelays are graphically illustrated in Figure 2.3. These delays can be used to com-pletely estimate the SFC setup process, from instantiation of a SF chain until the SFCis completely ready for service. These delays are explained as follows: (i) Renderinglatency: The duration it takes to instantiate a SF chain with both compute and net-work resources. (ii) Gap latency: It describes the delay of the first redirected packetto reach its destination through the allocated chain. This gap duration exists becausethe applied traffic policies and security rules only take effect when the first payloadpacket arrives at the first payload packet arrival. This delay only happens once foreach newly allocated SFC. (iii) OWD: This delay refers to the average delay of packetspassing through the allocated SFCs after they are ready for service, i.e. after the ren-dering process in fully completed and the first packet successfully pass through thechain.In order to perform the measurement campaign of aforementioned latencies, acombination of both passive and active measurement strategies is applied in thiswork. The passive strategy is used tomeasure the rendering delay of the SFC-OStackorchestrator, while the active strategy is used to measure the gap delay and OWD.User Datagram Protocol (UDP) traffic with a fixed packet size is used to send probingtraffic in order to have complete control over the probing process without interfer-ence from flow and congestion control mechanisms of TCP. In order to measureOWD with high accuracy, clocks of all physical machines in the testbed used in thiswork are synchronized with Network Time Protocol (NTP).The UDP probing client marks packet IDs and timestamps for all packets in theprobing traffic to measure OWD. In order to measure the gap latency, the probingserver has to be able to distinguish between packets with and without SFC process-ing. Therefore, SFs in the chain modify the original UDP payload.In order to measure the OWD, sample VNFs need to be launched for packet pro-cessing. The processing performance of VNFs is not the focus of this work, so thecorresponding overhead should be minimized in all measurements. Only minimalfunctionalities of VNFs are deployed to make the latency measurements indepen-dent of the complex packet processing of the NF itself. The minimal packet pro-

32

2.5 Measurement Campaign and Results Evaluation

cessing programs launched on VMs are implemented both in Linux kernel and userspaces. At the time of this work, Linux Kernel IP Forwarding (LKF) is launched since it’sone of the fastest packet processing provide by Linux kernel. It is chosen in this workas the baseline to evaluate the performance of other NF implementations. BesidesLKF, a forwarding function in user space is implemented using Python (PyF) and theLinux packet socket (AF_Packet) API. For all active probing, UDP traffic with a probinginterval of four milliseconds and a UDP payload size of 512 bytes is used.Evaluation measurements are performed on a practical and physical testbed withfour COTS servers. Each compute node has four CPU cores (Intel 4th Generation Corei5), 16 GB DDR3 RAM and 128 GB SSD disk. The OpenStack version Pike is deployedand configured on Ubuntu 16.04 Operating System (OS). SFCs with different chainlength are created between the probing client and server for latency measurements.For each specific measurement setup, measurements are repeated for 30 times formean values and 99.9% confidence intervals. All measurement results and figureshave been already published in my conference paper [11]. Figures are re-used inthis dissertation and the descriptions and analyses are revised. In these figures, eachVM running a SF is marked as a Service Function Instance (SFI) [11].Measurement results of SFC rendering duration are presented in Figure 2.4a. Eachbar consists of three parts, namely the latency to launch the VM, to boot the SFand to build the port chain (PC). Although the percentage of the building durationof PC is relatively small, the launching and booting delays of SFs are relative high.As illustrated in the Figure, as the chain length increases, both SFs launching andPC building delays show a linear trend. The booting delays remain unchanged andconstitutes for roughly 100 seconds. It can be concluded that distributing SFs overmultiple compute nodes with e.g. LB algorithm does not significantly speed up theSFC rendering latency.Measurement results of the gap delays are illustrated in Figure 2.4b. Confidenceintervals are not plotted here for readability since variances in results are very small.Although the SFC-OStack orchestrator redirects traffic only after all SFs in the chainreport a fully active status, the gap latencies are still in the order of seconds, whichis inconsistent with expectations. This is mainly due to the fact that the latency per-formance of creating and applying network policies into Neutron network is limitedfor OpenStack Pike version. Compared to the rendering latency, the gap delays ofdifferent algorithms show obvious differences. In contrast to the fluctuating trend ofthe LC algorithm, both LB and LBLC show a linear increase in general. Compared toother approaches, LBLC has the best overall performance. For a SFC with 10 SFs, thegap delay of LBLC is less than 0.8 second compared to the delay about 1.1 secondwith LB. So the gap delay is reduced by about 29% with LBLC compared to LB.The OWD measurements results are illustrated in Figure 2.5. The delays of LKFare presented in Figure 2.5a. With the chain length ranging from 1 to 10, OWDs ofall three algorithms with LKF show an upward trend. While the LB shows the highestOWD, the LC algorithm shows the best overall OWD performance. OWD results ofLBLC are located between the LB and LC approaches. For a chain of 10 SFs, the LCalgorithm can reduce the OWD by about 20% compared to the LB. This result is asexpected, since LC significantly reduces the transmission delays. And the additionaloverhead of LKF is small compared to the transmission delays of the testbed used

33

2 Latency Measurement of Service Function Chaining on OpenStack Platform

1 2 3 4 5 6 7 8 9 10

Chain length

0

50

100

150

200

250

300

R
en

d
er

in
g

d
u

ra
ti

o
n

(s
)

L
B

L
B

L
B

L
B

L
B

L
B

L
B

L
B

L
B

L
B

L
C

L
C

L
C

L
C

L
C

L
C

L
C

L
C

L
C

L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

L
B
L
C

SFI launching duration

SFI booting duration

PC building duration

(a) Rendering latency.

1 2 3 4 5 6 7 8 9 10

Chain length

0.0

0.2

0.4

0.6

0.8

1.0

G
a
p

d
u
ra

ti
o
n

(s
)

LB

LC

LBLC

(b) Gap latency.
Figure 2.4: Measurement results of rendering and gap latencies w.r.t. different SFCchain lengths. Reprinted frommy conference paper [11].

in this work. In contrast to LKF, the user space forwarding with packet socket is ex-pected to require much more packet processing latency because of e.g. additionaldata copying and context switching. Therefore, the LBLC approach should presentthe lowest OWD since it consider both transmission and processing latencies. Themeasurement results shown in Figure 2.5b are clearly in line with the expectations.

34

2.5 Measurement Campaign and Results Evaluation

1 2 3 4 5 6 7 8 9 10

Chain length

0

2

4

6

8

10

O
W

D
(m

s)

LKF LB

LKF LC

LKF LBLC

(a) Linux kernel forwarding.

1 2 3 4 5 6 7 8 9 10

Chain length

0

2

4

6

8

10

O
W

D
(m

s)

PyF LB

PyF LC

PyF LBLC

(b) Forwarding with Python AF_Packet.
Figure 2.5: Measurement results of OWDw.r.t. different SFC chain lengths. Reprintedfrommy conference paper [11].

When the chain hasmore than two SFs, LBLC has the best delay performance. Whenthe length of the chain is nine, LBLC presents the minimal delay of 8.3 ms. In com-parison, LB shows 9.4 ms and LC shows 8.7 ms. For the SFC with 10 SFs, the LBLCstrategy is able to reduce the OWD by about 10% compared to the default LB al-gorithm. It can be concluded that the proposed LBLC algorithm can provide overallbetter latency performancewhen both transmission and processing delays are takeninto account.

35

2 Latency Measurement of Service Function Chaining on OpenStack Platform

2.6 Summary

Different types of latencies introduced by SFC on OpenStack cloud platform are re-searched in this study. Three heuristic algorithms are designed and implementedwith the SFC-OStack framework for latency-aware SF placement problem. A rigorousmeasurement campaign is performed on the OpenStack cloud platform with follow-ing important observations: (i) The OWD of probing packets through SFC can alreadyreach several milliseconds, even for the minimal chain length and minimal packetprocessing operation in Linux kernel. A user space implementation with AF_Packetcan double the delay with the same processing operation. This latency performanceis not sufficient for URLLC use cases target by 5G network systems. This issue isfurther researched and addressed in the work described in Chapter 3. (ii) The pro-posed LBLC heuristic can reduce the OWD by about 10% compared to the defaultLB strategy. (iii) There is a gap delay of hundreds of milliseconds. These conclusionsreveal practical challenges in deployment and management of SFC on OpenStackcloud platform with existing technologies.Due to limited working time and experience in development on OpenStack cloudplatform, many components of the SFC-OStack framework can be further improved.For future work, it is also interesting to investigate the root causes of gap latencyintroduced by SFC-OStack and the underlying OpenStack platform. Furthermore,heuristic algorithms proposed in this work can be extended to take more networkperformance parameters into consideration besides latencies, such as the availablemaximal bandwidth of the compute node, the maximal number of network connec-tions and so on.

36

3 Reducing Latency in Virtual
Machines: Enabling Tactile
Internet for Human-Machine
Co-Working

All contents in this Chapter has been published in my journal paper [4]: "Reducinglatency in virtualmachines: Enabling tactile Internet for human-machine co-working."IEEE Journal on Selected Areas in Communications 37, no. 5 (2019): 1098-1116.

3.1 Introduction

The core requirement for a tactile Internet that enables human-machine co-workingis the low-latency communication [20–24]. Both machines and humans need laten-cies of less than one millisecond for a wide range of co-working scenarios. For ex-ample, for humans working in virtual worlds and interacting with robots or othertypes of machines, latencies for visual, audio and tactile feedback have to be lowerthan 15 ms, 3 ms and 1 ms, respectively [25]. To operate in a stable manner, ma-chines based on remote control loops also requires ultra low latencies [26]. As aconcrete example, consider a classical inverted pendulum whose remote controlleris deployed in the cloud platform. Closing the control loop through the communica-tion network has to introduce additional latencies and packet losses.The influence of delays between angle sensor and actuator (motor) on the stabilityof a pendulum is illustrated in Figure 3.1. All results are generated by simulation. Thegraph on the left shows the angle of the pendulum with different sensor-to-actuatordelays, i.e. 50 ms, 40 ms and 1 ms. For these three sensor-to-actuator delays, theinter-packet delay is fixed to 1 ms. For the graph on the right, the sensor-to-actuatordelay is fixed to 1 ms while the inter-packet delay is configured to 10 ms, 5 ms and1 ms.As presented in Figure 3.1, the pendulumbecomes very unstablewhen the sensor-

37

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Figure 3.1: Angle of an inverted pendulum. The pendulum tries to reach stability fordifferent sensor-to-actuator latencies and different inter-packet delays.Reprinted frommy journal paper [4].
to-actuator delay reaches 50 ms. So the pendulum will never reach its stability in thecorrect position. When sensor-to-actuator delay is reduced to 40 ms, the pendulumcan reach the stability after about 3 seconds. Therefore, the sensor-to-actuator delayhas a significant impact on the performance of the pendulum and Quality of Service(QoS) of pendulum based applications and systems.The allowed end-to-end communication latency requirement of one millisecond isdefined in the 5G communication standard for automation in vertical domains [6].As already described in the first chapter of this dissertation, the typical allocation ofindividual 5G communication network latency budget components is illustrated inFigure 1.3. As showed in the Figure, only 0.6 ms is allocated for the wired domain.There are two main latency components in the wired domain: (i) Basic communi-cation delay over fiber where the delay is bounded to the speed of light (3.34 µs perkilometer) and fiber characteristics. (ii) Delay introduced by communication nodes.These communication nodes are traditional switches and routers in the conventional
store and forward network paradigm. However, in the upcoming future communica-tion networks, there is a paradigm shift from store and forward to compute and for-
ward. All communication nodes can now process and manipulate received networkpackets, instead of simply forwarding them without any complex computational op-erations. The new paradigm compute and forward can be realized with emergingnetwork softwarization technologies, such as SDN [27] and NFV [2]. These promisingtechnologies also enable the trending concept of MEC. MEC enables local processingof data, which in turn is able to reduce latencies on communication paths. When themaximum distance between sensor/actuator and theMEC platform is 25 km and thespeed of fiber used is 2000000 km/s, 0.25 ms is required on the fiber communica-tion. Therefore, only 0.35 ms is left for NFV and SDN processing in the MEC platform.The summary section 2.6 of measurement results in the previous Chapter 2 and

38

3.2 Background and Related Work

related works [5, 28] show that achieving low latencies is a well-known challenge incommunication networks. While latency types that are proportional to the availabletransmission bandwidth and data volume can be reduced by increasing transmis-sion capacity and applying better data compression methods, dealing with packetprocessing delays and its various constant latency contribution poses a significantchallenge [29]. Furthermore, recent studies [11, 30] have shown that NFV, for whichhigh flexibility is highly designed, imposes significant packet transmission and pro-cessing demands. These demands can introduce relative large latencies that cannotbe ignored.At the time (2018-2019) of this research work on this topic, most virtual switchesare already relative fast [31, 32]. However, the STOA VNFs based on conventionalLinux kernel networking technologies running on VMs are relative slow, especiallythe packet Input/Output (IO) and processing operations. Zhang et.al. [33] proposeda minimal packet forwarding NF with the centralized approach, which presents anend-to-end delay of more than 2 ms with only one VM running SF. This latency per-formance is obviously far too bad with regard to the above-mentioned delay budgetof 0.35 ms.Ultra-reliable low-latency NFV and practical general MEC platform built with COTShardware and open source software are explored in this work. An ultra-reliablelow-latency SFC management named Chain bAsed Low latency VNF ImplemeNta-tion (CALVIN) is designed, implemented and rigorously evaluated in this work. InCALVIN, VNFs are implemented either in the Linux kernel space or in user space andare deployed on each own VM. While the fastest eXpress Data Path (XDP) technol-ogy is used for kernel space NFs, high-performance user space packet processingframework Data Plane Development Kit (DPDK) is employed by CALVIN to imple-ment user space NFs. Both of them can achieve the best software packet process-ing latency currently available. The measurement results of evaluations on practicalreal-world testbed demonstrate that the proposed CALVIN framework can achievean end-to-end latency on the order of 0.32 ms for the basic packet forwarding NFs.With CALVIN, it is possible to implement advanced NFs on a MEC platform with COTShardware and open source software, such asNetwork Coding (NC) and traffic encryp-tion/decryption with Advanced Encryption Standard (AES).The proposed CALVIN approach makes it possible to handle more advanced net-work functions such as NC and traffic encryption with AES in a generic virtualizedMEC setup, while meeting the end-to-end 1 ms latency requirement of the tactileInternet.

3.2 Background and Related Work

The main components of a typical NFV based service loop inside the MEC platformis illustrated in Figure 3.2. All packets of a network flow are received by the MECplatform through the ingress network port of a service proxy. Then they are pro-cessed by a chain of VNFs and forwarded to the target server running the requestedservice. After the processing on server, response data is generated by the server

39

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

and transmitted back to the client via the egress port of the server proxy. Ingressand egress network ports are endpoints that are exposed to the public network. OnOpenStack platform, this network is normally also called the external network. Thisnetwork is separate from the internal data network mainly for performance and se-curity considerations. So these public endpoints are required for remote clients outof the cloud to access the services provided by the MEC system.
Cloud Environment

Service Proxy Service Function Chain

VNF 1 VNF 2 VNF 3

Server

Ingress
Point

Egress
Point VNF 6 VNF 5 VNF 4

Figure 3.2: The service loop in a MEC cloud environment. Network traffic packetsfrom clients are processed by a SFC consisting of an ordered sequenceof VNFs to reach the server running the required application service.Reprinted frommy journal paper [4].
As presented in Figure 3.2, all ordered VNFs of a SFC work typically as a pipeline.This pipeline is normally implemented on a cloud computing platform, e.g. Open-Stack. The cloud computing platform can provide flexible and controllable manage-ment over the underlying physical computing, networking and storage resources. Inthis work, all VNFs and application servers are implemented as software programsrunning on VMs that are managed by the OpenStack cloud platform.A typical networking infrastructure setup of the OpenStack cloud platform is pre-sented in Figure 3.3. As plotted in the Figure, multiple VMs are interconnected ina virtualized overlay network. This virtual networking overlay is built on top on thephysical networking between compute nodes to enable configurable multi-tenantnetworking for VMs. For example, two VMs deployed on different compute nodesthat are connected to different physical networks (different routing entities) can belocated in the same Local AreaNetwork (LAN), namely in the samebroadcast domain.To provide a virtual overlay network on top of the underlying heterogeneous phys-ical network, two software bridges (or switches) on each compute node are used toconnect the Virtual Network Interface Controllers (vNICs) to the Physical Network In-terface Controllers (pNICs). While the integration bridge is used to connect all VMsrunning on the same compute node, the tunnel bridge supports encapsulation andtransmission of network virtualization tunneling protocols, such as Virtual ExtensibleLAN (VXLAN) and Generic Routing Encapsulation (GRE).As illustrated in Figure 3.3, different types of latencies are introduced by compu-

40

3.2 Background and Related Work

Compute Node 1

Software Bridges

pNICpNIC

Compute Node 2

Software Bridges

(2)

Tunnel Bridge

Integration Bridge

Tunnel Bridge

(3)

Integration Bridge

(4)

VM 1

vNIC

(1)

VM 2
vNIC

VM 3
vNIC

VM 4
vNIC

Physical Network

(5)(5)

Figure 3.3: A typical cloud computing infrastructure scenario wheremultiple VMs areconnected to a virtualized network overlay. Reprinted from my journal
paper [4].

tational and network components (main components are marked with numbers 1-5in the Figure):
• Latency between VM and the integration bridge (1, 2): Minimizing this delaycomponent is the main focus on this work. This delay part mainly consists oftwo parts:

– The time required to transmit packets between the VM and integrationbridge through the vNIC (2). This part of latency mainly depends on thevNIC implementation and has two main subparts:
* Time required to transfer packets between virtual switch and the ringbuffer of vNIC. This delay can be reduced to the order of only somemicroseconds [31] with accelerated software switch data planes, suchas using Open vSwitch with DPDK Datapath (OVS-DPDK).
* Time required to transfer packets between vNIC and the VNF runningon the VM. If the VNF is implemented with the conventional stan-dard Linux kernel networking API, namely Berkeley sockets, this la-tency subpart can become a bottleneck in the low latency virtual net-work overlay.

– Processing delay inside each VM (1): All packets in a network flow need tobe processed by the VNF running inside the VM. The processing latencydepends heavily on both algorithms and technologies used to implementthe VNF. For ultra-reliable low-latency use cases, such as tactile Internet,

41

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

processing operation of each packet should be optimized asmuch as pos-sible.
• Delay between the integration switch and the pNIC (3, 4): This part dependson the deployed virtual switches, orchestration cloud platform, and underlyingphysical resources of compute node [34].
• Time required to transmit packets between pNICs (5): This latency part fullydepends on the underlying physical networking infrastructure. This part is notthe research focus of this work, we try to use the STOA physical networkingdevices to achieve the best performance obtainable.
Reducing latencies marked as (1) and (2) in the Figure 3.3 is, to the best of myknowledge, still an open research question when I worked on this topic. The CALVINframework proposed in this work is able to significantly reduce these latency compo-nents and provide an end-to-end service latency within the 0.35 ms budget requiredby 5G URLLC use cases.Some recent studies [35–38] mainly based on mathematical modelling, analysisand modelling have considered the latencies involved in SFC. Compared to purelymathematical modelling, an experimental research is conducted in this work withempirical and rigorous latency measurements on OpenStack platform. The target ofthis work is to rigorously investigate the baseline latency of STOA SFC implementa-tion on practical cloud platform. This empirical measurement study complementsabovementioned mathematical analysis and simulation studies and provides refer-ence latency values on real cloud platform, which can be used as reference data forfuture analysis and simulation studies for ultra-reliable low-latency VNFs. The CALVINframework proposed in this work is able to achieve significantly better end-to-endlatencies compared to STOA conventional frameworks.Several recent works [39–41] have explored the placement problemof VNFs. How-ever, these works mainly works on pure mathematical modelling and optimization.The CALVIN framework proposed in this chapter empirically and complementarilyexamines all aspects of the VNF placement issue on real cloud system.Because the proposed CALVIN exploits the possibility to utilize complementarystrengths of both in-kernel and kernel bypass technologies for latency reduction, asummary of related works for both in-kernel and kernel bypass packet processingframeworks is presented in this section.

Kernel Space Packet Processing
The XDP high performance data path for packet IO is available in Linux kernel sincethe version 4.8 [42]. With XDP, a network programmer can attach an extendedBerke-ley Packet Filter (eBPF) program to the very early hook in the RX path of the Linuxkernel to decide the fast processing of the received packet. At the time of this work,XDP is still relative new, few related research studies have been conducted on itslatency performance and implementation complexity [22].eBPF and its features are quantitatively explored in [43]. Several relative strict lim-itations of eBPF are listed when building complex NFs that require complex packet

42

3.2 Background and Related Work

and flow processing. For example, eBPF programs have a limited number of instruc-tions and do not allow unbounded loops. Therefore, in CALVIN, not all NFs are imple-mented with kernel space technologies. According to my preliminary performanceevaluation of an XDP based elementary packet forwarding function, XDP can achievea very low latency when deployed in the VM running the NF. Besides the latencyperformance, XDP has also multiple advantages over full kernel bypass technolo-gies. For instance, compared to DPDK, XDP does not require dedicated isolated CPUcores and pre-allocated huge pages. XDP is also able to utilize the TCP/IP networkstack and other functions already available in Linux kernel and apply the securitymodel already used in Linux kernel.The InKeV approach published in [44] studies the XDP based network functionsfor NFV uses cases. In InKeV, only simple NFs are implemented due to limitations ofeBPF. However, the performance evaluation of InKeV is only performed on a singlephysical machine. Compared to it, my evaluation is more rigorous and performedon a multi-node physical cloud testbed.

User Space (Kernel Bypass) Packet Processing

In recent research works related to network softwarization, user space packet pro-cessing is much more popular than in-kernel mechanisms [45]. However, most re-latedworks putmost effort on evaluating throughput instead of latency performancefor STOA kernel bypass technologies. According to the survey and evaluation per-formed in [46], there are threemost widely used kernel-bypassing high performancepacket IO and processing framework, namely netmap, PF_RING ZC and Intel DPDK.It can be concluded from the work [46] that DPDK has the best hardware and soft-ware driver support, documentation, built-in samples and overall performance. Be-cause of abovementioned advantages, DPDK also becomes now the de facto stan-dard high-performance packet processing framework based on kernel bypassing. Sothis work also chooses the DPDK framework for user space NF implementation.

Combined Kernel and User Space Packet Processing

Compared to pure in-kernel or user space solutions, more closely related to my ap-proach is the recent works that combine both in-kernel and user space technolo-gies. In [47], the general architecture principles for building a hybrid kernel-userspace VNF has been explored. With the combined approaches that are designed toprovide the conventional socket API, most legacy VNFs can be ported and deployedwith minimal modification. So this combined approach can significantly reduce theimplementation complexity for new VNFs.Recently, the VNF for Network Coding (NC) was implemented in [33] by employingthe Kernel Network Interface (KNI) mechanism provided by DPDK library. This ap-proach is referred as the “centralized approach” in this chapter because it aims topack all VNFs into a single VM to avoid the additional latency introduced by inter-VMpacket transmissions. The illustration of this centralized approach is presented in

43

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Virtual Machine

User Space

Kernel Space

vEth0 vEth1

DPDK KNI Application

KNI Kernel Module Network
Stack

vCPU

VNF 2

VNF 1

VNF 3

read write

vNIC vNIC

Figure 3.4: Graphical presentation of the centralized combined kernel and userspace approach described in [33]. Reprinted frommy journal paper [4].

Figure 3.4. Both in-kernel and user space mechanisms are applied by the central-ized approach to make multiple small VNFs cooperate in a centralized manner.
As illustrated in Figure 3.4, for the centralized approach, each packet in a net-work flow needs to be exchanged between kernel and user space at least four times,which can be the bottleneck for latency performance. If zero-copy technologies arenot available, additional packet data copies must be performed and this can intro-duce non-negligible latencies for tactile network applications. Furthermore, availablephysical computation and network resources of underlying compute node have tobe shared by all VNFs both in kernel and user space. The scheduling between inkernel and user space VNFs requires context switches. These context switches canintroduce unstable latencies and perform negative impact on the cache behavior ofCPU. Moreover, latency also cannot be easily reduced by vertical scaling of computa-tion resource. For instance, utilizing two virtual CPUs (vCPUs) does not simply halvethe latency. This statement was verified with my measurements of the centralizedapproach on my testbed. All in all, these negative impacts of centralized approachcan result in relative large and unstable latency.
In order to overcome the limitations and drawbacks of the centralized approachdescribed in [33], the CALVIN proposed in this Chapter distributes VNFs over a chainof VMs (namely, to build a SFC) on which Network Functions (NFs) run either com-pletely in the kernel space or completely in the user space.

44

3.3 Proposed Approach: CALVIN

3.3 Proposed Approach: Chain bAsed Low latency
VNF ImplemeNtation (CALVIN)

3.3.1 Overview of CALVIN
The core idea of CALVIN is to access and evaluate the nature of a VNF in complexitywhen processing packets. CALVIN is designed to take advantage of both in-kerneland user space (i.e. kernel bypass) high performance packet processing frameworksavailable on Linux. Each VNF is deployed within a separate VMs to build a high-performance SFC. These two practical design choices of CALVIN completely eliminatethe context switching and data transmission overhead of packet processing in dif-ferent spaces, thereby significantly reducing the overall end-to-end service latency.The design and implementation of CALVIN framework can provide following mainadvantages: (i) Avoid the non-negligible latency required for context-switching in-side VM: Context switching between kernel and user space can introduce high la-tency [48]. Deploying and running the VNF in a single space can mitigate this neg-ative impact. (ii) Avoid data copying or metadata copying between different spaces:The latency cost of data copying at any location in the data path has to be consideredfor low latency VNF implementation. Performing packet processing only in a singlespace can avoid data copying. (iii) The flexibility and scalability is improved. For thecentralized approach presented in [33], due to the resource contention on the sameVM, the latency performance can not be easily scaled with horizontal scaling. Com-pared to the centralized approach, CALVIN provides more flexible and horizontalscalability.
3.3.2 Classification of Virtualized Network Functions (VNFs)
The first step in developing high-performance VNFs for CALVIN is to classify them.Depending on the classification of VNFs, a given VNF is either deployed in kernelspace or in user space. In CALVIN, VNFs are classified into three main groups:

• Elementary or Skeleton Functions: This is the minimal and fundamental func-tionalities required for all VNFs: (i) Receive packets from the ingress physicalor virtual network interface. (ii) Create data structures and other required re-sources to store received packets for further processing. (iii) Send processedpackets through the physical and virtual egress network interface. Both kerneland user space technologies must support these functions.
• Basic Functions: The main features of the basic functions are listed as follows:(i) Processing are performed only on the packet headers, not on the packetpayload. So these NFs are typically stateless. Packet headers also have rela-tive small sizes. Therefore, most basic NFs can be implemented without un-bounded loops, which are currently not supported by the XDP technology.(ii) The computational complexity of basic NFs is relative low so that an accept-able latency performance can be achieved without applying some acceleration

45

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

technologies that currently only available in user space, such as Single Instruc-tion Multiple Data (SIMD) and CPU cache prefetching. (iii) The VNF implemen-tation has no strict requirements on specific hardware or software runtime(software environments), which are not available or accessible in the Linux ker-nel. With these characteristics, basic functions are suitable to be implementedand deployed directly inside the Linux kernel space, such as IP router, IP loadbalancer, stateless firewall and Network Address Translator (NAT).
• Advanced Functions: Advanced functions involve relative complex and com-putationally intensive operations compared to the basic functions. This groupof VNFs has serveral features: (i) Besides packet headers, the payload dataalso needs to be processed. (ii) Because of the complexity involved, accel-eration mechanisms that are only available in user space have to be appliedfor low latency performance. (iii) The implementation normally requires spe-cific hardware or software runtime. For instance, the most widely used opensource Random Linear Network Coding (RLNC) library Kodo currently requiresthe C++ runtime [49]. The C++ runtime is not available in the Linux kernel yet,so NC network functions using Kodo library can not be directly implementedin Linux kernel. Therefore, based on abovementioned features, advanced net-work functions, such as NC, data encryption, data compression, should be im-plemented in user space.

3.3.3 VNF Implementations Selection for VNF Classes
Compared to many available kernel bypass technologies, such as Netmap, PF_RING,and DPDK, relatively few in-kernel VNF frameworks are developed and available.Based on my literature review, eXpress Data Path (XDP) is the fastest in-kernel pro-grammable network data plane framework available, providing fast packet process-ing at the lowest available software hook in the Linux kernel software stack [42].Therefore, XDP is selected by CALVIN to implement VNFs running in the Linux kernelspace.Based on my literature review covered [45, 46, 50, 51], and preliminary measure-ments, DPDK is selected in CALVIN to implement kernel bypass VNFs in user space.Main reasons are listed as follows: (i) High throughput and low latency packet pro-cessing with COTS hardware: According to the performance comparison performin [46], DPDK demonstrate the overall best bandwidth and latency performanceamong most widely used kernel bypass frameworks. (ii) Open source with compre-hensive documentation: DPDK provides full control of nearly all aspects involved inthe packet IO and processing. It also has very detailed documentation and exten-sive built-in examples that describe the best available practices to implement high-performance and efficient VNFs. (iii) DPDK becomes the de facto standard with widesupport and related references: A wide range of both physical and software Net-work Interface Cards (NICs) are supported by DPDK with highly optimized drivers.Furthermore, most high performance software switches, such as OVS and VectorPacket Processing (VPP), have support for DPDK based fast path [51, 52]. OpenStackpike version supports OVS with DPDK data path out-of-the-box.

46

3.3 Proposed Approach: CALVIN

Although DPDK has the overall best performance, it (the version 18.02) also hassome disadvantages: (i) Most drivers of DPDK only support the polling mode. Pollingmode can be inefficient for energy consumption. (ii) DPDK currently only providesnetwork protocol stack only up to the IP layer. The support of transport and upperlayer network protocols requires third-party libraries or frameworks. (iii) User spaceframeworks bypass the relative mature security models provided by Linux kernel.User space frameworks currently lack of standard and verified security model, whichis a hot research area.
3.3.4 CALVIN Architecture Design and Workflow
The architectural design of CALVIN is presented in Figure 3.5. CALVIN is built on topof the research-oriented SFC framework SFC-OStack introduced in the Chapter 2 and
my conference paper [11]. The SFC-OStack framework is extended and improvedboth in control and data plane for ultra-reliable low-latency SFC system:

• CALVIN Control Plane: A classifier for different VNF groups is added that clas-sify VNFs based on their description and specification into basic and advancednetwork functions. The processing pipeline of the VNFs is then converted intoa functional chain of VMs with their computational and network configuration.Lifecyle management of all instances in the SFC description is handled by theSFC manager which renders and orchestrate SFC with underlying OpenStackservices.
• CALVIN Data Plane: Multiple VMs are launched to run VNFs on several physicalcompute nodes in the data plane. In each VM, the VNF is located in either Linuxkernel or user space. Traffic packets are received from the vNIC, processed bythe VNF, and then transmitted through the egress vNIC. All VMs running on thesame compute node are interconnected with OVS-DPDK.
CALVIN related operations that handle basic and advanced network functions dif-ferently require various configurations for both hardware and software used by theOpenStack cloud platform.

Accelerated Configuration of Virtual Network Infrastructure

• Each compute node must be equipped with pNICs that supports DPDK [53].This is required to deploy OVS-DPDK as the integration and tunneling bridgeson OpenStack.
• Dedicated physical CPU cores have to be assigned on each compute nodefor OVS-DPDK. In order to avoid any interruptions from other processes forlow latency, polling mode and CPU core pinning are required by OVS-DPDK toachieve the lowest accessible latency. Dedicated CPU cores are isolated fromthe Linux kernel scheduler with the isolcpus configuration provided by theLinux kernel.

47

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Control Plane

vNF Description

1 2 3

Data Plane

Software Bridges
(Open vSwitch with DPDK­accelerated Fast Datapath)

Virtual Machine A

Virtual Machine B

User Space

vNIC vNIC

Advanced Function 2

Virtual Machine C

User Space

vNIC vNIC

Advanced Function 3

SFC
Ingress Interface

SFC
Egress Interface

vNF Type
Classifier

SFC Description

Basic Function 1

Advanced Function 2

 Advanced Function 3

SFC Manager

Placement
Algorithm

OpenStack Services
Compute

Networking
Storage

Identity
Image

Dashboard

Kernel Space
Network Stack

Basic Function 1

vNIC vNIC

Figure 3.5: The architecture design of CALVIN. Fundamental elements in both controland data plane are illustrated. Reprinted frommy journal paper [4].
• The Input-Output Memory management Unit (IOMMU) support should be en-abled to allow guest VMs to access the pNIC through Direct Memory Access(DMA).
• Enough memory should be reserved to allocate hugepages for OVS-DPDK andother DPDK-based VNFs running in VMs on each compute node.

Configuration for VNF Processing

The Figure 3.6 illustrates the workflows of running basic and advanced network func-tions in Linux kernel and user space. Because the KVM is the default VM hypervisoron OpenStack (Version: Rocky), following configuration are optimized for the KVMhypervisor.
Kernel Space Because of the current requirements of XDP, The vNIC of each VMshould support the assignment of a dedicated transport queue (TX queue). This fea-ture can be enabled by applying the virtio_net patch to OpenStack (with versionRocky) Nova component. In order to run XDP programs with sufficient feature sup-port, the linux kernel of the guest OS running within the VM should be updated toat least version 4.8. To compile, attach/detach and manage XDP programs, the BPF

48

3.3 Proposed Approach: CALVIN

Kernel Space

User Space

Enter
Processing
Loop

Compile Func
source code

Generate eBPF
bytecodeAttach to XDP

VM is active

Get exit signal?
Receive a packet
from ingress
interface

Run packet
processing

Run XDP action:
DROP, PASS or

Redirect
Exit

Initiate ingress
and egress
interfaces

(a) Kernel space.

Kernel Space

User Space

Initiate DPDK
running environment

Allocate and mount
hugepages Enable IOMMU Insert igb_uio

kernel module

Bind ingress and
egress interface to
igb_uio driver

VM is active
Enter

Processing
Loop

Get exit signal?
Receive a packet
from ingress
interface

Run packet
processing

Send the packet to
the egress
interface

Exit

(b) User space.
Figure 3.6: CALVIN workflows for basic and advanced network functions running indifferent spaces. Reprinted frommy journal paper [4].
Compiler Collection (BCC) framework [54] or the libxdp library [55] can be installedto simplify the development process.

User Space The IOMMU should be available for vNICs for minimal latency cost.Sufficient memory spaces should be allocated for hugepages. Sufficient hugepagesare required for both OVS-DPDK and all DPDK based advanced network functions.The DPDK kernel module igb_uio needs to be loaded for Poll Mode Driver (PMD)driver.When all VNFs are running in user space, the latency overhead and complexityof the mechanism to exchange packets is non-negligible. Inter-Process Communi-cation (IPC) mechanisms such as Unix Domain Socket (UDS) or shared memory arenormally used for data exchange among running VNFs. IPC mechanisms are nor-mally provided theOS kernel, which introduce additional non-negligible latency over-head due to context switching and data exchange. To avoid this overhead, CALVIN

49

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

maps one VNF per VM for SFC deployment. Compared to CALVIN, the centralizedapproach [33] injects packets from user space to kernel space, which can becomea critical latency bottleneck according to my preliminary measurements. In order toachieve the best available performance, all advanced VNFs are implemented fromscratch to utilize the high-performance facilities provided by DPDK.

3.4 Performance Evaluation of Elementary and Basic
Network Functions

3.4.1 Measurement Setup for Elementary and Basic Network
Functions

Main components of the measurement setup for end-to-end RTT are presented inFigure 3.7. Two compute nodes of a OpenStack cluster are used to deploy VMs andperform latency measurements with active probing UDP traffic. The UDP traffic isused for active probing since UDP and UDP-based protocols are normally used forlatency sensitive applications. Probing with UDP can also avoid the non-negligiblecomplexity of flow and congestion control of TCP for latency measurements.

Compute Node 2

Centralized Approach Mapping

(One VM for Multiple VNFs)

Compute Node 1

Server VM

Service Proxy VM

ts tsts

IPD
ts ts ts

UDP
Client

ts

ts

ts

Direct Forwarding SFC Path

Probing UDP segments with timestamp and ID.

CALVIN Mapping
(One VM for One VNF)

......VNF 1 VNF NVNF 2

UDP
Server

Figure 3.7: RTT measurement setup for CALVIN. Reprinted from my journal pa-
per [4].

Architecture Themeasurement setup is aligned to the basic service looppresentedin Figure 3.2. The UDP probing client is deployed on the service proxy. Probing clientsends UDP packets to the server located on the same compute node, namely node 1.The deployed server simply bounces all received UDP packets back to the client as

50

3.4 Performance Evaluation of Elementary and Basic Network Functions

quickly as possible, namely without any payload processing. In addition, as plottedin the Figure, probing UDP packets are forwarded directly to the server without leav-ing compute node to measure the direct forwarding latency of the underlying virtualNeutron network infrastructure (without any processing in the SFC).To reflect realistic practical real-world network scenarios, both VMs running theprobing client and server do not apply high-performance packet IO technologiessuch as DPDK or XDP. Both probing client and server work at the network layer, whileall VNFs deployed in this evaluation run at the data link layer. Therefore, both probingclient and server are implemented based on the conventional socket API providedby the Linux kernel. In contrast to the centralized approach proposed in [33], thecomponents of the above introduced measurement architecture are distributed ontwo different physical compute nodes.For each packet in the probing traffic, a Timestamp (ts) and an identification Num-ber (ID) are added before the payload. While the ts is used to measure the RTT, theID is used to identify lost or out-of-order packets. In measurements of this work,the workload of the probing traffic is tuned to avoid any losses and out-of-order ofpackets.
Testbed All performance measurements are performed on my practical NFVtestbed, which consists of COTS servers connected via two independent Gigabit Eth-ernet connections. Compute and network node of the OpenStack cloud platformare equipped with 4 CPU cores (Intel 4th Core i5), 16 GB RAM, 128 GB SSD and twoGigabit NICs (Intel 9301CT Gigabit CT). The OpenStack cloud platform (Version Pike)is deployed on multiple physical nodes running the Ubuntu Server (16.04 LTS). Foreach compute node, while one NIC is used for management and external traffic, an-other separate NIC is used for the internal data network for all compute nodes. Thisseparation avoid the impact of management traffic on the latency measurements inthe data plane. In addition to the OpenStack’s standard (minimal) compute, network-ing, identification, and storage services, the official Neutron SFC plugin, SFC-OStackframework and Neutron OVS-DPDK plugin are also installed. The Virtio technologyis used for the vNIC and OVS-DPDK for high-performance packet IO. KVM is used asthe hypervisor for the management of VMs and the Ubuntu cloud images are usedto implement and deploy different VNFs.
Elementary and Basic VNFs The elementary network function and two differentbasic network functions are implemented and measured in this work.

• FWD - Elementary Forwarding: Packets are received from virtual ingress vNICand directly forwarded to the virtual egress vNIC without any processing.
• ATS - Appending Time Stamp: The timestamp of the current VNF receiving andsending a particular packet is appended at the end of the UDP payload, justbefore the packet is transmitted. Because the ATS function changes the size ofthe UDP payload, the checksums of both IP and UDP headers must be recalcu-lated and updated. To ensure the relative fair latency comparison, the check-

51

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

sum calculations are implemented purely in software (instead of using hard-ware checksum offloading). For IPv4, UDP checksum can be disabled whenuse all-zeros and the IPv4 checksum can be calculated only with the headerdata. Thus, the ATS function can be used to estimate the latency caused by arelative trivial processing on packet header.
• XOR - XORing UDP Payload: This network function performs an XOR operationwith the same static key on all bytes of the UDP payload. Compared to theabove introduced ATS function, the XOR function can be used to estimate theadditional latency caused by relative non-trivial computation operations on thepacket payload.

Metrics

• Latency: The RTT of each single UDP packet is used to estimate the end-to-endlatency performance. This RTT is selected because of following reasons: (i) Bothforward and backward paths are included in the RTT measurements. (ii) Mea-surements of RTT do not require time synchronization between VMs runningVNFs. According to the experiments performed in [56], performing time syn-chronization at the VM level is highly prone to errors due to the interferencesof clocks among VMs running on the same compute node.
• Bandwidth: Themaximumachievable throughput ismeasured in this work withthe Iperf tool [57]. The UDP mode of Iperf is used for bandwidth measure-ments. Iperf is not used for RTTmeasurements because Iperf currently doesnot provide per-packet RTTmeasurements for both TCP and UDP traffic. In thiswork, a home-made tool is developed for RTT measurements of each packetin the probing traffic. By manually adjusting the Iperf target bandwidth ex-perimentally in steps of 10 kbit/s for 5 minutes each, the maximum bandwidthis determined such that no lost or out-of-order packets are detected by the
Iperf client.

Active Probing Parameters Twomain parameters need to be configured for activeprobing traffic, namely the Interpacket Gap (IPG) and the UDP payload size. Basedon preliminarymeasurements onmy testbed, consistent RTT values can be obtainedfor relative small IPGs on the order of a few milliseconds. Relative small IPGs can re-sult in additional queuing inside VNFs and other network components in the testbed,which is theoretically analyzed in [58]. My latency measurements focus on the end-to-end latency with relative light workload without additional packet queuing. In-creasing the IPG can also lead to increased RTT values. According to my analysis, thisbehavior should be mainly due to the batching mechanisms of both in-kernel anduser space packet processing frameworks which are activated for better through-put performance when the network traffic has low workload. In order to avoid bothsignificant queuing and batching latencies, the IPG is configured to 5 ms in all mea-surements in this work based on preliminary measurements and calibration.

52

3.4 Performance Evaluation of Elementary and Basic Network Functions

For UDP payload size, 256 and 1400 bytes are selected as the lower and upperbounds. Based onmy preliminary evaluations, UDP packets with payload size smallerthan 256 bytes cannot be handled correctly by the current version of XDP. Mean-while, the official SFC plugin of OpenStack Neutron of version Pike does not currentlysupport jumbo frames. The maximum available UDP payload size depends on theMaximum Transmission Unit (MTU) of the underlying physical and virtual Ethernet.Assume the MTU of the Ethernet is 1500 bytes, the maximum UDP payload size islimited to 1472 bytes. The upper bound of 1400 bytes is selected to reserve enoughfree spaces for optional IP header options or other tunneling protocols.For both latency and bandwidth measurements, for each scenario, the measure-ments are repeated for 50 times. For each probing scenario in the latency measure-ments, the probing client sends 500 UDP packets.
Measurement Scenarios

Performance Comparison of different VNF technologies As introduced in theprevious section, in CALVIN, XDP is chosen to implement basic network functionsand DPDK is used to implement advanced network functions. In order to bench-mark the performance of selected technologies, both of them are benchmarked.Besides them, the LKF approach introduced in 2.5 is also considered as a referencefor traditional packet processing technologies.
• XDP: Because of following listed limitations of XDP, only FWD and XOR functionsare implemented: (i) At the time of this work, the maximum number of instruc-tions per XDP programs is limited to 4096 eBPF instructions. This significantlylimit the complexity of the computational operations and amount of data thatcan be processed by a single XDP program. (ii) The available memory space forXDP processing per packet is limited by the size of the original received packet.Operations outside of this memory range are currently prohibited. So the ATSfunction cannot be implemented with a single XDP program.
• DPDK: Thanks to the high flexibility and programmability provided by DPDK, allthree network functions can be implemented as DPDK applications. By default,all DPDK applications run in polling mode and always consume 100% of theavailable CPU resources. To minimize IO and processing latency as much aspossible, the number of packets in a processing batch (burst) is configured toone.
• LKF: It is a built-in Linux kernel feature for packet forwarding at the networklayer. Due to its trivial operation, the LKF is one of the fastest running features inkernel space. Because LKF does not provide any programmability, LKF cannotbe used to implement different VNFs in kernel space.
Comparison of Centralized Approach [33] and CALVIN The proposed CALVINapproach with the STOA centralized approach [33], which was one of the first ap-proaches studied to implement advanced network functions such as RLNC as a VNF.

53

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

The centralized approach has to be re-implemented and evaluated on the testbedused in this work because its source code is not publicly available [33]. To examinethe distributed VNF aspect of CALVIN, two FWD VNFs on two separate VMs are im-plemented for CALVIN approach, while for a clear comparison, only one FWD VNFis implemented for the centralized approach. The centralized approach is allocatedwith a VM with twice the computational resources (both vCPU and memory) com-pared to each individual VM used by CALVIN. Therefore, the comparison is actuallybetween two FWD VNFs in CALVIN and one FWD VNF in the centralized approach,which have the same available computational resources. More specifically, for thecentralized approach (presented on the left side of Figure 3.8), the packet enters theVM through the left ingress vNIC, traverses the FWD VNF and exits through the rightvNIC. For CALVIN, as illustrated on the right side of Figure 3.8, packets enter the leftvNIC of VM 1, traverse the XDP FWD, exit through the right vNIC of VM 1, enter theleft vNIC of VM 2, traverse the DPDK FWD, and exit through the right vNIC of VM 2.
Centralized Approach CALVIN

VM 1 (1 vCPU)

Kernel Space

VM (2 vCPUs)

User Space

Kernel Space

vEth0 vEth1

DPDK KNI Application

KNI Kernel Module Network Stack

Socket FWD

read write

vNIC vNIC

VM 2 (1 vCPU)

User Space

vNIC vNIC

DPDK FWDXDP FWD

vNIC vNIC

Figure 3.8: Illustration of measurement setup for the RTT comparison between cen-tralized approach and CALVIN. Reprinted frommy journal paper [4].

3.4.2 Measurement Results and Evaluation for Elementary and
Basic Network Functions

RTT Measurements of Elementary and Basic VNFs for Different Technologies

Figure 3.9 illustrates the mean values and 95% confidence intervals of the RTTs ofelementary and basic network (FWD, ATS and XOR) functions implemented with dif-ferent candidate technologies. It can be observed from Figure 3.9 that the RTTs ofthe two basic VNFs (i.e. ATS and XOR) are comparable to the respective RTTs of thebasic FWD VNFs of all selected packet processing technologies. It can be concludedfrom this result that the additional delay in payload processing for the basic ATS andXOR VNFs is relatively negligible compared to the elementary FWD latency.Examining the in-kernel technologies closely, it can be observed from Figure 3.9that although the XDP and LKF have the similar RTT performance for small packets,the XDP FWD is about 10% faster than the LKF FWD for large packets of 1400 bytes.Furthermore, it can be observed fromFigure 3.9 that for small packets of 256 bytes,the RTTs for in-kernel processing (LKF and XDP) and user-space processing (DPDK)

54

3.4 Performance Evaluation of Elementary and Basic Network Functions

FWD XOR FWD FWD ATS XOR FWD ATS XOR

0.0

0.1

0.2

0.3

0.4

0.5

R
o
u

n
d

T
ri

p
T

im
e

(m
s)

0.12 0.12 0.12
0.14 0.14 0.14

0.15 0.15 0.15

XDP

LKF

Click

DPDK

(a) Payload size: 256 bytes.

FWD FWD FWD ATS XOR FWD ATS XOR

0.0

0.1

0.2

0.3

0.4

0.5

R
o
u

n
d

T
ri

p
T

im
e

(m
s)

0.18
0.20

0.27
0.28 0.28

0.29 0.29 0.29

XDP

LKF

Click

DPDK

(b) Payload size: 1400 bytes.
Figure 3.9: Means and 95% confidence intervals for RTT of different VNF technologiesin kernel space and user space. The 95% confidence intervals for the 256byte payload size are very tight and barely visible in this plot. Reprintedfrommy journal paper [4].
are very similar. Additionally, for large packets of 1400 bytes, the RTTs for user-spaceprocessing are much longer (about 50%) than for in-kernel processing.
Observed latency performance differences seem to bemainly caused by two types

55

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

of non-negligible overhead introduced by evaluated basic network functions: (i) Theoverhead of copying packet frames from the virtual ring buffer of vNIC to the VMmemory [59]. (ii) The overhead of additional metadata processing of packet frames.In the LKF, likemost conventional in-kernel technologies, the standard data structure
sk_buff containing a lot of metadata must be allocated for each received packet.The latency overhead of extracting metadata and allocating sk_buff can be veryhigh [42] for ultra-reliable low-latency scenarios. In contrast, XDP processes packetsat the lowest point of the Linux software network stack, without allocating sk_buffdata structures and without any parsing and pre-processing of packets [42]. Fortraditional LKF, metadata structures must be created and the Linux kernel needs tocheck the routing table to update the appropriateMedia Access Control (MAC) and IPaddresses. As a result, LKF is only slightly slower than XDP for large packets, becauseLKF needs more time for metadata processing.
Comparison between Centralized Approach and CALVIN

10−1 100 101

Round Trip Time (ms)

0

0.2

0.4

0.6

0.8

1.0

L
ik
el
ih
oo
d
of

O
cc
ur
re
nc
e

Direct Forwarding
CALVIN 256B
CALVIN 1400B

Centralized 256B
Centralized 1400B
Threshold 0.35ms

Figure 3.10: The RTT performance comparison of FWD VNF between centralized ap-proach and CALVIN. Reprinted frommy journal paper [4].
RTT Results Figure 3.10 shows the RTT measurements for the basic FWD VNF. Asdescribed in Subsection 3.4.2, direct forwarding is the baseline for transmission la-tencies introduced by the underlying virtual network infrastructure of OpenStackplatform. It can be observed from Figure 3.10 that the centralized approach exceedsthe delay threshold of 0.35ms in the best case, while the RTT of the proposed CALVINis below the 0.35 ms threshold with a probability of about 70% for 1400 bytes pack-

56

3.4 Performance Evaluation of Elementary and Basic Network Functions

ets and close to 100% for 256 bytes packets. The measured average of 256 bytesand 1400 bytes packets RTT are listed as follows: CALVIN: 0.19 ms and 0.32 ms, re-spectively; centralized approach: 2.30 ms and 2.39 ms, respectively. Therefore, itcan be concluded from these results that CALVIN can meet the strict ultra-reliablelow-latency requirements described in Section 3.1. In CALVIN, when assuming a la-tency budget of 0.35 ms, there is also extra time available for more complex dataprocessing.According to the measurements perform in [60] without using STOA acceleratedpacket processing frameworks, the compact mapping, which is used by the cen-tralized approach, has lower latency than the distributed mapping of VNFs, whichis used by CALVIN. However, for compute-intensive VNFs, distribute mapping canprovide better latency performance. The RTT measurements above demonstratethat the distributed mapping selected by the CALVIN can achieve ultra-reliable low-latency requirement of tactile Internet for elementary and basic network functions.Distributedmapping used by CALVIN allows each VNF to focus on its processing tasksin a single space (kernel or user space) and leaves the packet transmission to the un-derlying software integration bridge, which already has proven very good low-latencyperformance. Allocating a dedicated VM to each VNF with distributed mapping maybe considered a waste of resources. However, each VM can be highly optimized forits special purpose, and distributed mapping is more consistent with the emergingconcept of unikernel [61].

200 400 600 800 1000 1200 1400
UDP Payload Size (Bytes)

5

10

15

20

25

30

B
an

dw
id

th
(M

bi
ts

/s
ec

)

CALVIN
Centralized

Figure 3.11: The bandwidth performance comparison of FWD VNF between central-ized approach and CALVIN. Reprinted frommy journal paper [4].

57

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Bandwidth Results The bandwidth measurements for UDP payload sizes rangingfrom 256 to 1400 bytes are illustrated in Figure 3.11. It can be observed from Fig-ure 3.11 that the bandwidth supported by the centralized approach is substantiallyhigher than that of CALVIN, especially for large packets (larger than 512 bytes). ForUDP packets with the payload of 1400 bytes, the available bandwidth of the central-ized approach is more than 15 times higher than that of the CALVIN. Compared tothe minimum bandwidth of about 6 Mbits/s supported by the centralized approach(withUDPpackets with the payload of 256 bytes), themaximumbandwidth of CALVINis only between 1.4 and 1.7 Mbits/s.

Latency Bandwidth Trade-off All in all, the RTT results in Figure 3.10 and the band-width results in Figure 3.11 show the trade-off between per-packet latency and band-width in a real and practical VNF implementation. The centralized approach uses theconventional Linux socket API, which is primarily designed for high-throughput best-effort service applications, such as file transfers, which typically have bursty traffic.Therefore, the kernel network stack includes a number of mechanisms (normallyenabled by default) to improve bandwidth performance, such as batch processing.Batch processing collects multiple packets and then processes the batch once withacceleratedmethods, for example, with SIMD instructions or enhanced CPU caching.Batch processing can increase the latency of each packet because the first packetsin a batch must wait for subsequent packets to fill a batch before they can be furtherprocessed.Even if the batch processing is not used in DPDK user space applications, batchprocessing in the Linux network stack can significantly slow down the centralizedapproach. This is because the KNI mechanism injects all packets into the normalLinux kernel network stack, where batch processing is employed and cannot be easilyavoided. To the best of my knowledge, the default batch processing in the kernelstack cannot be avoided without modifying the Linux kernel source code. In thedesign of CALVIN, the modifying of source codes of the underlying infrastructuresoftware should be avoided.In proposed CALVIN, this batch processing is avoided in Linux kernel space by im-plementing in-kernel VNFs using the latest fast packet IO techniques such as XDP.Because CALVIN prioritize per-packet latency performance over overall bandwidth,CALVIN tries to avoid batch processing in all VNF implementations. All VNF imple-mentations in CALVIN run in the Run-To-Completion (RTC) mode, i.e. they receive asingle packet, then directly process it, and transmit it out as fast as possible. Thus,as clearly shown in Figure 3.10 and 3.11, CALVIN reduces the per-packet delay at thecost of supporting relative lower available bandwidth.As introduced in Section 3.1, for most use cases of tactile Internet for human-machine co-working, low per-packet latency is typically much more important thansupport for high bandwidth. The human-machine co-working packet traffic, e.g. thecontrol messages of a robot arm are typically very small so that support for lowbandwidths is already sufficient. As illustrated in Figure 3.1, the 5 ms IPG used inmy measurements is sufficient for a typical pendulum application. At the same time,controlmessages delayed by batch processing can profoundly disrupt tactile human-

58

3.5 Performance Evaluation of Advanced Network Functions

machine collaboration. Therefore, CALVIN only supports low bandwidth in exchangefor significantly reduced per-packet latency. The bandwidth supported by CALVINcan be improved in future work by bandwidth management mechanisms, such asa load balancer that distributes packet flows to a set of duplicate VNFs to enableparallel packet flow processing.

Table 3.1: CPU usage of the physical compute node. Reprinted frommy journal pa-
per [4].

Approach User (%) Sys (%) Guest (%) IDLE (%)
Centralized Approach 25.2 47.2 2.9 24.7CALVIN 25.2 23.0 2.2 49.6

CPU Resource Usage The usage of the 4 cores of the physical CPUs of computenode 2 plotted in Figure 3.7 is measured using the common tool mpstat. Since CPUresource scheduling for all running VMs is managed by the OpenStack compute ser-vice (namelyNova), instead of individual CPU, the global average utilization of all coresare measured in this evaluation. For each scenario, a period of 10minutes measure-ment is performed with a sampling period of 1 second. The CPU usage levels of thecentralized approach and CALVIN at user level (User), kernel level (Sys), and for aniced guest (Guest) are all listed in Table 3.1. It can be observed from Table 3.1 thatthe centralized approach consumes twice as much CPU resources at the kernel (Sys)level compared to CALVIN. KVM uses the Linux kernel of the host OS as the hyper-visor and uses Portable Operating System Interface (POSIX) threads for the vCPU ofthe guest OS. Therefore, the Sys CPU usage in the table reflects the vCPU of the VMrunning VNF usage. By avoiding the overhead of context switching and metadataprocessing for each vCPU, CALVIN greatly reduces the use of the host OS’s kernelCPU time. As a result, CALVIN allows a much larger percentage of time for physicalCPUs to be idle.

3.5 Performance Evaluation of Advanced Network
Functions

The evaluation in Section 3.4 shows that CALVIN is able to complete the basic VNFwith an end-to-end RTT of 0.32 ms. Therefore, considering the MEC latency bud-get of 0.35 ms as plotted in Figure 1.3, there is still a residual latency budget ofabout 0.02 ms for advanced packet processing functions. This section evaluates NCand data encryption as two practical examples of advanced VNFs with relatively highcomputational requirements. The practical applications and relevance of these twoadvanced VNFs are firstly described. Then the evaluation of the processing latencyincurred by these advanced VNFs is performed using the same setup used for ele-mentary and basic network functions. The purpose of this evaluation is to evaluate

59

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

whether the RTT reduction of the CALVIN implementation of the basic VNFs is suf-ficient to allow for practical advanced VNFs within the latency requirements of thetactile Internet.

3.5.1 Random Linear Network Coding (RLNC) Network Function

Network Coding (NC) linearly combines several original packets with coding coeffi-cients to form coded packets that are transmitted through the network [62]. In RLNC,which is a simple but powerful NC scheme, the coding coefficients are generatedrandomly [63]. The main advantages of RLNC include: (i) The ability to recode re-ceived packets at all middle nodes in the network without the need for coordination,thus suitable for distributed environments [63]. (ii) A generic coding matrix that al-lows sparsity (judicious addition of zero values) to significantly reduce computationalcomplexity [64]. (iii) Sufficient support for low-latency communication because ofon-the-fly coding mechanisms [65]. (iv) Heterogeneous field sizes that support het-erogeneous communicating entities, increasing flexibility in practical heterogeneousenvironments [66]. (v) Relative small overhead between storage and transport layers,since the same code scheme can also be used for distributed storage [67].Because of above listed advantages, several variants of RLNC schemes have beenalready proposed in NC research. Two main types of RLNC are focused by this work,namely, systematic block coding and convolutional sliding window coding. Block-based RLNCs were introduced to significantly reduce the computational require-ments and control of NC. To further improve performance, instead of coding eachpacket in a flow, systematic coding firstly sends the original packets [68]. Packetsbuilt from linear combinations are then sent between the original packets or at theend of the coding block [69].Sliding window NC has been introduced to reduce the in-order latency of codednetwork communication [70]. For systematic coding with a constraint coding win-dow, sliding window RLNC has a shorter transmission latency compared to blockcoding, which usually requires comparable computational resources [71].Despite extensive research on NC in recent years, practical deployment of high-performance RLNC in real-world networks is still rare. One of the most challengingdifficulties to deploying RLNC is the limited programmable computing resources onheterogeneous network nodes, which are currently mostly used only for switchingand routing decisions. NFV and SDN provide new flexibility for deploying advancedand innovative features in the network [72]. With the help of NFV technologies, RLNCcan be implemented as software programs running in VMs or containers that can beinstantiated on any NFV-capable network node. In addition, SDN technologies canre-direct the packets flow to VNFs running RLNC network functions and orchestratethem in the SFC. However, to the best of my knowledge, the latency of RLNC as ahigh-performance VNF in a practical MEC system has not been studied, measuredand evaluated in detail.Per-packet RTT latency measurements in this work considers NC encoding (com-putationally equivalent to recoding in middle network nodes) with a Galois Field (GF)size of GF p28q and a redundancy of 25%. For block coding, the block size of 32 pack-

60

3.5 Performance Evaluation of Advanced Network Functions

ets is used. The window size of 8 packets is considered in this evaluation.

3.5.2 Advanced Encryption Standard (AES) Encryption
Data encryption and decryption are key security components of modern communi-cation to ensure the confidentiality and integrity of the data. At the time of this work,more than 40% of theWorldWideWeb (WEB) traffic is transmitted in encrypted formover Hypertext Transfer Protocol Secure (HTTPS), and this trend is increasing [73].Therefore, numerous network functions require encryption and decryption function-alities, such as caching and Deep Packet Inspection (DPI). As with RLNC network func-tions, data encryption requires processing of the entire packet payload, which is anon-negligible computational workload. AES is focused by this work, a widely usedencryption standard commonly used for data transmission and storage. Accordingto my preliminary measurements, CALVIN approach enables the AES encryption ofsmall packets within a 20 µs latency budget on a general-purpose MEC platform.

3.5.3 Measurement Setup of Advanced Network Functions
The following additional factors need to be considered when evaluating advancedfunctions compared to measurement setup for elementary and basic functions de-scribe in Subsection 3.4.1.
VNF Implementation

Because of in-kernel technology limitations described in Subsection 3.3.3, DPDK ischosen by CALVIN for the implementation of all advanced VNFs. RLNC and AES en-cryption VNFs are implemented on top of the elementary DPDK L2 FWD application.The RLNC network functions is implemented with the Network Coding Kernel Library(NCKernel), which is built on top of the widely used Kodo library [49] to support differ-ent common network coding communication variants including the sliding window.The lightweight and portable Tiny-AES-C library is used to build AES applications.Multiple VNFs in parallel is implemented to evaluate the scalability of the proposedCALVIN framework. Scalability is a key performance metric for practical MEC plat-form, as a key aspect of virtualization is enabling running multiple virtual instanceson shared and limited hardware resources.
Metric

Because the RTT performance for basic forwarding network function has alreadybeen evaluated in Section 3.4, the measurements for the advanced VNFs in this Sec-tion focus only on the packet processing latency. The processing latency is definedas the delay it takes for a VNF to fully process a received packet. For VNFs capable ofgenerating redundant packets, such as RLNC encoders or recoders, this processinglatency also includes the time required to create all redundant packets.

61

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Methodology

To evaluate the impact of VNF workload requirements on processing latency, com-putational operations of deployed VNFs should be performed in parallel. This re-quirement can be very difficult to meet if the probing traffic is generated by a clientrunning on a remote VM. Precise synchronization mechanisms have to be deployedon the virtualized network infrastructure to ensure that all probe packets arrive ateach VNF at the same time. Therefore, to evaluate advanced VNFs, instead of usingadditional probing clients to generate UDP traffic, probing UDP packets are gener-ated locally by each VM running the VNF. Locally generated traffic ensures that VMsare continuously backlogged so that the worst-case processing latency can be mea-sured. Each VM is always busy processing the probing traffic and the OpenStackscheduler needs to handle resource scheduling between all running VMs. Latencyvalues for warm-up and tail probing packets are not included in the measurementresults. For each number of deployed VNFs, 50000 UDP probing packets are gener-ated.

3.5.4 Measurement Results and Evaluation for Advanced
Network Functions

The evaluation of elementary functions in this work presents a mean RTT latencyof 0.32 ms for the elementary FWD VNF for large packets with CALVIN framework.Based on the latency budget of 0.35 ms assumed in this work, a latency budget of20 µs is considered with a safety margin of 10 µs.The measurement results of processing time is illustrated in Figure 3.12. For small256 bytes size packets, the processing time for all evaluated advanced network func-tions are within the 20 µs constraint. As the number of deployed VNFs increases, sodoes the CPU load, and as soon as the number of VNFs exceeds the number ofCPU cores dedicated to VM processing, the processing time increases linearly. Inmy measurement setup, one of the four available CPU cores is heavily used by theOVS-DPDK software bridge, which runs in polling mode with the default DPDK be-havior. The increase in latency is mainly caused by contention for shared and limitedphysical CPU resources. For a specified maximum allowed latency budget, e.g. 5 µs,the maximal number of VNFs allowed to run in parallel can be observed, e.g. 3 VNFs.As the load balancer redirects a given workload traffic to multiple VNFs, the higherthe number of parallel VNFs supported, the higher the supported overall availablebandwidth.For large packets of 1400 bytes size, a significant increase in processing time canbe observed in Figure 3.12 compared to small packets of 256 bytes. Although theprocessing time for RLNC is still relatively low and well within the budget of 20 µs,AES encryption is not feasible anymore even when the VNF is exclusive to one ded-icate CPU core, i.e. for three or fewer parallel deployed VNFs. For RLNC networkfunctions, the processing time for sliding window encoding scheme is significantlyshorter than for block codes. Even with large packets and high contention for lim-ited CPU resources, the latency of sliding window RLNC remains below 7 µs for 9

62

3.5 Performance Evaluation of Advanced Network Functions

1 2 3 4 5 6 7 8 9

Number of VNF(s)

0

5

10

15

20

25

30

P
er

-p
a
ck

et
P

ro
ce

ss
in

g
D

el
a
y

(u
s) NC Sliding Window

NC Block Code

AES256 ENC

AES256 DEC

(a) UDP payload size: 256 bytes.

1 2 3 4 5 6 7 8 9

Number of VNF(s)

20

40

60

80

100

P
er

-p
a
ck

et
P

ro
ce

ss
in

g
D

el
a
y

(u
s) NC Sliding Window

NC Block Code

AES256 ENC

AES256 DEC

(b) UDP payload size: 1400 bytes.
Figure 3.12: Means and 95% confidence intervals for processing times in microsec-onds for computationally intensive advanced VNFs. Reprinted from my

journal paper [4].

parallel running VNFs.

63

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

3.6 Summary

In this chapter, the design, implementation and evaluation of the proposed ChainbAsed Low latency VNF ImplemeNtation (CALVIN) framework is described, which isan approach for the orchestration of distributed SFC for ultra-reliable low-latencytactile Internet applications. In CALVIN, high-performance VNFs are implementedand deployed either purely in the Linux kernel space (for basic network functions)or in the user space (for advanced network functions) to avoid all latency overheadsrequired for context switching and data exchange between these two spaces. Fur-thermore, in CALVIN, all VNFs are implemented in a fully distributedmanner with onededicated VM for one VNF mapping. All VNFs in CALVIN are implemented with thebest STOA fast packet IO and processing technologies to avoid complex and heavymetadata processing and large batch processing of conventional Linux network stackand APIs.In the rigorous evaluation of this work, the performance of elementary forward-ing network function implemented with various STOA high-performance packet pro-cessing technologies is firstly measured. According to the measurement results, thepromising XDP technology can achieve a RTT performance of 120 µs for 256 bytespackets and 180 µs for large packets with 1400 bytes. The conventional Linux ker-nel forwarding function can incur about 10% higher latency. The user space DPDKtechnology further increase the latency performance provided by XDP by up to 50%.Based on these observations, in CALVIN, while the XDP is used to implement all in-kernel VNFs for basic network functions, DPDK is adopted to implement user spacecomputationally complex VNFs.In this work, the proposed CALVIN approach is rigorously benchmarked againstthe STOA centralized approach proposed in [33]. According to my measurementson practical OpenStack cloud platform, CALVIN is able to achieve significantly betterlatency performance (0.32 ms for 1400 bytes UDP packets) compared to the cen-tralized approach (2.39 ms for 1400 byte UDP packets). In terms of disadvantages,CALVIN can only supports much lower packet bandwidth, about 1.5 Mbit/s, ratherthan centralized methods (depending on the UDP packet size, between 6 to near30 Mbit/s). As a result, CALVIN is able to achieve much shorter per-packet latencyat the cost of reduced packet throughput, which is a strict requirement for typicaltactile Internet applications with a 1 ms end-to-end RTT latency budget.

64

4 X-MAN: A Non-intrusive Power
Manager for Energy-adaptive
Cloud-native Network Functions

All contents in this Chapter has been published in my journal paper [7]: "X-MAN: ANon-intrusive Power Manager for Energy-adaptive Cloud-native Network Functions."IEEE Transactions on Network and Service Management (2021).

4.1 Introduction

The need for flexible and ultra-reliable low-latency network service provisioning inemerging network paradigms such as the fifth-generation communication systems (5G) [74]and the tactile Internet [4] has given rise to the emerging paradigm of microservicesthat are connected together to form network services. In response to this promis-ing trend toward microservices, conventional VNFs deployed in VMs (described andused in Chapter 3) are shifting to the new Cloud-native Network Functions (CNFs).More specifically, the CNF operates in the application container, that is, in the so-called cloud-nativemanner, is therefore referred to as cloud-native network functionor containerized network function [75]. The strict QoS requirements of advancednetwork paradigms, such as 5G and Tactile Internet, require CNFs to provide ultra-reliable low-latency packet processing performance [76]. Meanwhile, growing con-cerns about the energy consumption of the network and IT infrastructure requiresmart power management of the CPU cores that are used by CNFs for packet pro-cessing. For example, all advanced network functions in the CALVIN framework in-troduced in Chapter 3 are implemented with DPDK technology, which works in thepolling mode by default and consumes 100% of the available CPU time all the timeeven without any workload traffic. This design can significantly improve the packetprocessing performance, but also introduce hard challenges of the energy efficiencyof CALVIN. When VNFs are updated to the latest CNFs, this issue become more chal-lenging since more services need to be deployed on the same physical node.

65

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

Core 0 Core 1

Virtual Switch or Router

TM

CNF 0 CNF 1 CNF 2 CNF 3

ingress
interface

egress
interface

(a) Hardware Counter (HC) approach.

Virtual Switch or Router

Core 1Core 0

CNF 0

TM and PM

CNF 1

TM and PM

CNF 2

TM and PM

CNF 3

TM and PM

(b) Code Instruction (CI) approach.

Core 0 Core 1

Virtual Switch or Router

PM

CNF 0 CNF 1 CNF 2 CNF 3

TM TM TM TMTM TM TM TM

(c) X-MAN approach.
Figure 4.1: Conceptual comparison of existing approaches and the proposed X-MANapproach. Reprinted frommy journal paper [7].

To address the above introduced issue, two main power management mecha-nisms have been published at the time of this research: (i) A CPU Hardware Counter(HC) based strategy [8]. (ii) A Code Instruction (CI) strategy [9]. So far, the HC strat-egy has focused on estimating the workload of CPU cores from the counter activityof CPU cores using a pre-trained regression model. According to the evaluation per-formed in [8], performing a relatively high accurate workload estimation of CPU corespurely from counter actives is significantly challenging for a complex CNF deploy-ment. Improving the estimation accuracy with relatively complex Machine Learning(ML) models could increase the estimation latency and make HC-based approachesunsuitable for highly responsive powermanagement required for e.g. tactile Internet.In addition, as illustrated in Figure 4.1a, the HC approach can only estimate the totalaggregated workload of all CNFs running on a CPU core. Therefore, HC based powermanagement cannot accurately optimize the current operating frequency of CPUcores based on the workload intensity of each individual CNF. However, the work-load intensity of each individual CNF can effectively reduce the required frequencyof a CPU core, for example, when several low-intensity CNFs can run in parallel atlow latency on a CPU core with a relatively low frequency.
Compared to HC approach, the CI approach, which is illustrated in Figure 4.1b,requires modifying or patching the source code of the CNF program. Therefore, thisapproach is intrusive because all CNFs that involved in the power management haveto be modified or patched. Furthermore, until the time of this work, the CI approachfocuses on the power management of only a single CNF. For global power manage-ment, an additional orchestration layer is required to manage multiple independent

66

4.1 Introduction

CNFs running simultaneously, which is very common for the scenario of microser-vices.This Chapter presents a system integration research study that performs the de-sign, implementation and evaluation of the novel XDP-Monitoring energy-AdaptiveNetwork functions (X-MAN) framework to enable a non-intrusive traffic workloadmonitoring of each individual CNF and frequency scaling of each individual CPU corethrough a power management module with a global view of all running CNFs de-ployed on a CPU core.The XDP-Monitoring energy-AdaptiveNetwork functions (X-MAN) framework, whichis graphically presented in Figure 4.1c, performs an integration of the following twomain system components:
• Linux Kernel Traffic Monitors: As conceptually presented in Figure 4.1c, X-MANis able tomonitor workload traffic through the in-kernel trafficmonitoringmod-ules, thus avoid the conventional intrusive traffic monitoring of CNF code in-struction. These in-kernel monitoring modules analyze the characteristics ofthe workload traffic at the virtual interfaces of each CNF with minimal overheadusing the functionalities provided by XDP technology.
• User Space Power Management: Based on the monitored characteristics ofworkload traffic, a global PM in the user space adjusts the operating state (P-state) of the available CPU cores to guarantee ultra-reliable low-latency packetprocessing while striving to be energy efficient as much as possible. The powermanagement algorithm used by X-MAN employs low-complexity workload pre-diction and step-wise P-state adjustments.
In conclusion, the X-MAN architecture novelly integrates lightweight in-band kernelspace traffic monitoring and out-of-band user space power management. Kernel-space traffic monitoring and user-space power management of X-MAN build a prac-tical and complete system for reducing energy consumption while supporting ultra-reliable low-latency cloud-native networking functions. Based on an extensive liter-ature review, to the best of my knowledge, the proposed X-MAN framework intro-duced in this Chapter is the first research work to pursue this system integrationapproach across Linux kernel space and user space to address effective energy sav-ings for CNFs.In order to perform the performance evaluation, comprehensive and rigorousmeasurements of the X-MAN system are performed on a practical physical testbedsupporting CNF deployment and 10 Gbps Ethernet. These measurements includecomparisons to STOA CI approach and HC approach. According to my measure-ments and evaluations:
• Traffic Monitoring Latency: The measurement results present that X-MAN canconsistently monitor workload traffic of 4 virtual interfaces with a monitoringlatency of only 10 µs, while the HC approach proposed in [8] produces moni-toring latency in excess of 20 µs and even ranges up to 80 µs.

67

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

• Energy Consumption Reduction: The X-MAN framework can reduce the CPUenergy consumption of the random workload traffic profile described in Sub-section 4.4.2 to less than half of the energy consumption of the STOA CI ap-proach [9].
• Energy Consumption of the X-MAN system itself: Only 2.5% energy overhead isrequired by themechanisms used by X-MAN framework. As a result, the energyoverhead introduced by X-MAN is negligible and X-MAN is able to achieve asignificant net reduction in overall energy consumption.
Comprehensive and rigorous measurements of practical physical testbed config-urations demonstrate that the performance of the unique and novel X-MAN systemintegration approach greatly exceeds existing STOA solutions.

4.2 Background and Related Work

A large body of cloud computing research literatures [77, 78] examines load-adaptiveenergy-aware management of large-scale systems consisting of multiple CPUs, eachwith multiple dedicated cores. Several recent research works have focused on theuse of ML technologies [79, 80]. For example, the so called Elastic resource flexingfor Network function VIrtualization (ENVI) [81]. In [82], non-machine learning basedadaptivemanagementmethods for large-scale systems are investigated. Abovemen-tioned approaches are mainly targeted at scaling the total aggregated workload ofmany simultaneously running CNFs for CPU operations on long time scales or onthe scale of large computing infrastructures that contain numerous CPUs. In com-parison, the goal of the proposed X-MAN is to rapidly monitor the traffic workloadof each CNF and adaptively adjust the core frequency of each CPU to take advan-tage of power saving opportunities that arise due to fluctuations in the workload ofindividual CNFs.
4.2.1 Power Management in Linux Kernel
In Linux kernel, both working-state power management and system-wide powermanagement mechanisms are available [7]. Because the target of this work is toreduce the overall energy consumption under workload traffic, the working-statepower management is focused by this work, like two recent most related works [8,83]. This type of power management dynamically adjusts the power state of CPUsbased on the current workload. Two different groups of performance states are gen-erally available for the power management of x86-type CPUs, which are currentlywidely deployed on cloud-native computing platforms and are mainly offered by In-tel Corp. and Advanced Micro Device (AMD) Inc: (i) Sleep state (C-states): They cansignificantly reduce the CPU energy consumption by entering sleep mode. However,relative long transition latency is required to sleep or wake-up the CPU. Accordingto the measurements performed in [83], tens or even hundreds of microsecondsare required. C-states are fully managed by the CPUIdle subsystem of Linux kernel

68

4.2 Background and Related Work

and can not be managed in user space (at least until the completion of this work).(ii) Operating Performance Points (P-states): P-states provide different Dynamic Volt-age and Frequency Scaling (DVFS) configurations [84]. Adjusting P-states is currentlythe de facto standard approach to perform power management when CPU is busyrunning processing tasks. In comparison to C-states, which can only be managed bythe Linux kernel, P-states can be managed in user space via the APIs provide by the
CPUFreq subsystem in Linux kernel. Typically, by default, the Linux kernel adjust theP-states based on the current CPU utilization, which is sufficient for most commonapplications. However, for high-performance CNFs using PMD, the CPU utilization isalways 100%, even if there are no any workload packets to process. Therefore, in-stead of relying on the current default mechanism provided by Linux kernel out-of-box, newmechanisms are needed to manage P-states based on the actual workloadtraffic to reduce overall energy consumption.
It should be noted here that Advanced RISC Machines (ARM) processors, whichare also used in lightweight edge cloud systems, provide a similar DVFS power man-agement mechanism available in user space. Therefore, X-MAN can be used on ARMprocessors. Due to limited time and hardware resources, the work in this Chapterfocuses only on x86 CPUs.

4.2.2 CPU Core Load Estimation with Hardware Counters (HCs)

An estimation approach for CPU workload without any source code modification isproposed in [8]. This approach is so called out-of-band approach since it does notdirectly measure the workload traffic and use an indirect metric, namely the hard-ware counters of a CPU. The approach is also referred to as a black-box approachbecause it does not specifically systematically analyse the details of each individualrunning CNF and treat all CNFs as black boxes. In [8], Gupta et.al. argues that the non-empty polls of packets can change the CPU events. For example, these events can becache misses and branch prediction errors due to the processing received packets.The relationship between CPU events, which can be measured with hardware per-formance counters (HCs) with small overhead [85], and the actual CNF utilization ofthe physical CPU core is researched. Based onmeasurements of hardware counters,an estimation method based on training with regression models is designed, whichtakes the frequencies of a chosen small set of CPU events (1 to 3 from over about700 available CPU events) as algorithm input and estimate the corresponding actualCPU utilization. According to the evaluation performed in [8], this HC approach canachieve an estimation error below 5%. But this error can increase for complex CNFsand workload traffic profiles. Smarter estimation methods based on ML may reducethe estimation error at the cost of non-negligible increase of estimation delay. In [8],the authors only focus on the CPU utilization estimation and do not propose anyenergy saving mechanisms based on this estimation.
In comparison with HC approach, the X-MAN approach proposed in this Chaptercan monitor the actual workload traffic on a much finer-grained basis of each indi-vidual CNF.

69

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.2.3 In-band Power Management with Code Instruction (CI)
Compared to out-of-band HC approach, CI approaches integrate software modulesdirectly into the source code of CNFs programs tomonitor the actual workload, whichis used to further enable efficient power management. In contrast to the HC ap-proach, the intrusive monitoring modules only require elementary counter incre-ments when workload packets arrive. At contemporary Gigahertz processing fre-quencies, these counter are updated with some nanosecond latency. Therefore, themonitoring latencies introduced by CI approaches are relatively negligible.The de facto high-performance user space packet processing library DPDK pro-vides well-defined APIs for power management through adjusting P-states of theCPU core [9]. However, leveraging these APIs requires source code modification orpatching of CNFs programs, so to the best of my knowledge, this approach has notbeen widely adopted by most popular NFV data plane frameworks. Partly becauseof this strict intrusiveness of the code instrumentation, several popular NFV dataplane frameworks from both academia, e.g. Berkeley Extensible Software Switch(BESS) [86], FastClick [87], Libmoon [88], and Netbricks [89], as well as industry, e.g.VPP [90] and SampleVNF (from OPNFV) [91], do currently not employ these APIs forenergy saving. Furthermore, the vanilla CI approach provided by DPDK performsonly local power management by each CNF individually, which can easily lead toconflicts and instabilities when multiple CNFs are running on one CPU core simul-taneously. This problem become much more challenging for cloud-native systems,because with the design of microservices, many CNFs are usually deployed to run si-multaneously on a single physical CPU core. Running the power management mod-ule tightly inside each CNF requires an additional orchestration layer for the globaloptimization across all CNFs.For the CI approach, an Adaptive Polling Mechanism (APM) is proposed in [92] toadjust the polling frequency based on the workload of incoming traffic. In this ap-proach, the special pause instruction provided by Intel Streaming SIMD Extension2 (SSE2) is used by APM modules to pause the polling of the default PMD of DPDKwhen a gap time between packets is detected. This mechanism can reduce the over-all energy consumption.At the time of this work, to the best of my knowledge, the most recent publishedresearch work on reducing energy consumption of high-performance packet frame-works such as DPDK is described in [83]. Li et.al. investigate the relationship betweenthe average waiting time of an incoming packet in the buffer and the actual utilizationof CPU. According to measurements perform in [83], the average waiting time of apacket reaches a cliff point and increases dramatically when the utilization of CPUexceeds 80%. Furthermore, the average idle periods for typical workload traffic areeven shorter than the required transition time of C-states. Therefore, using C-statesfor power management with high responsiveness is impractical.In contrast to the above introduced CI approach, the proposed X-MAN approachtreat CNFs as black boxes and does not require any modification of the source codeof the CNF programs. In comparison, X-MAN monitors the workload traffic directlywith a lightweight in-band traffic monitor implemented with XDP which can be dy-namically attached to the virtual interfaces of each CNF. Furthermore, in CALVIN, the

70

4.3 Proposed Approach: X-MAN

power management mechanism is performed through a separate user space mod-ule, which has a global view of all attached XDP traffic monitors for running CNFsdeployed on a given CPU core. This provides a centralized power management andoptimization for a CPU core without the need of an additional orchestration layer.

4.3 Proposed Approach: XDP-Monitoring
energy-Adaptive Network functions (X-MAN)

4.3.1 X-MAN Design Imperative: Per-core Power Management
Based on Per-CNF Traffic Monitoring

The design requirements of X-MAN are to adjust the frequency of each individualCPU core based on the packet traffic workload imposed on the CPU core by the indi-vidual CNFs deployed on the CPU core. The design of CALVIN considers the commonCOTS multi-CPU servers with multiple CPU cores in each CPU. For STOA CPU hard-ware, a CPU with multiple CPU cores is normally referred as one “CPU package”. Forsimplicity, in this dissertation, the terminology “CPU” is used to refer to “CPU pack-age” and “CPU core” is used to refer a single core on a CPU package. In general,for servers with many CPUs (Multi-core processors), CALVIN runs independently foreach individual CPU core. This work focuses on the common scenario with severalCNFs deployed on a single CPU core, which is illustrated in Figure 4.2.
Physical Server Node 0

Physical CPU 0

Core 0 Core 1

CNF 2 CNF 3

Physical CPU 1

Core 2

CNF 4

Core 3

CNF 5 CNF 6

CNF 1CNF 0

Figure 4.2: Example of the design of X-MAN for a physical server with two CPU pack-ages. Reprinted frommy journal paper [7].
To illustrate the important need for the X-MAN design, three different frequencylevels for each CPU core are assumed as plotted in Figure 4.2: fmin, fmid and fmax.Suppose that the fmin is the optimal frequency for low workload CNFs, fmid is theoptimum frequency for middle workload CNFs, and fmax is the optimal frequency for

71

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

high workload CNFs. For the scenario illustrated in Figure 4.2, in order to supportrunning high-performance CNFs, the optimal frequency of both core 0 and core 1should be scaled to fmid. At the same time, the optimal frequency of core 2 and 3should be scaled to fmax. It needs to be noted here all CNFs running on the same coreshare the current frequency of the underlying physical CPU. Therefore, the optimalrequired frequency of a given CPU core depends on the maximum value of requiredfrequencies of all deployed CNFs on this CPU core.Heterogeneous CNF workload intensity levels and CPU core frequencies exist inreal-world cloud platforms. To align to this fact, A key design of the proposed X-MAN is to monitor the traffic workload of each individual CNF separately on a givenshared CPU core. Based on this finer-grained traffic workload monitoring, whichis achieved by the utilization of XDP technology in X-MAN, The frequency of eachindividual CPU core can be optimally managed by X-MAN. So in X-MAN the optimalworking frequency of each individual CPU core is designed to be scaled separatelyand individually. For the scenariowhennumerous CNFs are assigned to a single givenCPU core, as is very common with cloud-native networking deployments based onthe microservice paradigm [93, 94], X-MAN is able to scale the CPU core frequencyto the optimal frequency required to support all high-performance CNFs running onthis core.Compared to the proposed X-MAN, the HC approach described in [8] can onlymonitor the aggregated total workload of a single CPU core, which is generated by alldeployed CNFs running on this given core. Therefore, compared to the finer-grainedmonitoring of X-MAN, amuch coarser trafficmonitoring granularity is provided by HCapproach. For the scenario illustrated in Figure 4.2, the HC approach is not able todistinguish the actual workload of each CNF on core 0 and on core 2, when the lowworkload CNF (fmin) and the middle workload CNF (fmid) add up directly to the highworkload CNF workload (fmax). So when HC approach is used, the power managerwould scale the frequency of core 0 to fmax even the fmid is already sufficient herefor more efficient energy consumption. All in all, X-MAN is able to avoid the unnec-essary energy waste because of the over-scaling problem (exists in HC approach) bytaking the actual workload of each individually CNF into consideration. Furthermore,compared to HC approach, which estimate the traffic workload indirectly throughhardware counters [8], X-MAN is able to directly monitor the actual packet workloadat all data plane network interfaces of each individual CNF.At the time of this work, it is acknowledged here that some STOA CPU designs arelimited in that the frequencies of the individual CPU cores on a given CPU packageare automatically synchronized by default in the hardware or very low software level,thus allowing only packet frequency adaptation of a whole CPU package. However,new generation of server-oriented CPU designs increasingly allow independent per-CPU-core frequency management [95], and therefore can fully take advantage of theper-CPU frequency adaptation capabilities provided by X-MAN.It should also be noted here that X-MAN approach considers a practical cloud-native cloud system operation where the system orchestrator deploy CNFs to avail-able CPU cores (and migrates CNFs between CPU cores when needed) based onconfigured orchestration mechanisms, e.g. usually based on minimum CPU coreworkload or based on the basic round-robin CNF assignment to CPU cores in STOA

72

4.3 Proposed Approach: X-MAN

systems [96–98]. X-MAN treats the orchestration of CNFs to CPU cores as a givenand strives to reduce the energy consumption of CPU cores by judiciously and dy-namically adjusting the working frequency (P-state) of CPU cores. Future researchdirection can further explore the effective operating frequency and energy consump-tion characteristics of CNFs considered in the coordination mechanism to facilitatebetter energy consumption reduction.

4.3.2 X-MAN System Architecture: User Space Power
Management Based on Kernel Space Traffic Monitors

Two main components of the X-MAN system architecture is illustrated in Figure 4.3:(i) Flexible and lightweight TMs implemented with XDP technology, which run in theLinux kernel space. (ii) An adaptive PM implemented as a separate program runningin user space for power management with a global view. As shown in Figure 4.3, for asingle given CPU core, the lightweight XDP trafficmonitoring programs (namely, TM Aand TMB) are attached to the physical Receive (RX) interface of compute node server.These TM programs perform lightweight traffic monitoring, collecting only the mostimportant data required by the power management algorithm used by X-MAN. Atthe time of this work, implemented TMs count only the number of packets receivedand store this information on a per-CNF basis along with the accurate timestamp ofthe last packet received in the generic eBPF map data structure, which is shared bydefault with the PM running in user space. Thus, each interface in Figure 4.3 can bemonitored by a dedicated XDP TM module with an associated eBPF map; Therefore,a typical CNF with ingress and egress interfaces has two eBPF maps to implementX-MAN with FeedBack (X-MAN-FB), which is a variant/extension of the vanilla X-MAN.TM performs no additional operations and (after counting) redirects/forwards all re-ceived packets (with the XDP_REDIRECT action provided by XDP) to the virtual inter-face of the corresponding CNF. The packets are then fetched into user space by thehigh-performance CNF via the efficient AF_XDP-based software PMD provided by theDPDK library.In contrast to this lightweight X-MAN traffic monitoring, existing STOA traffic moni-toring tools are mainly targeted at orthogonal use cases of that focused in this work,e.g. traffic monitoring for specific end-host or server applications, such as Packet-beat [99], or comprehensive packet and traffic monitoring, such as [100, 101]. Typi-cally, to the best of my knowledge, these existing packet traffic monitoring tools usenon-XDP packet sniffing mechanisms, such as memory-mapped packet sniffing inPacketbeat [102], which tend to struggle with practical real-world high packet trafficbit rates. Packet sniffing based on XDP can usually significantly improve the supportfor high packet traffic bit rates [103]. In addition, XDP-based packet traffic monitor-ing can be offloaded from the CPU to a physical NIC with the native XDP support,freeing up limited CPU resources. Therefore, XDP-based packet traffic monitoring isadopted in X-MAN.For ultra-reliable low-latency advanced network functions, packets are processedin user spacewithDPDK. Accordingly, both themain andworkingDPDK logical cores (lcores)of a given CNF execute on a single CNF core (since it is common for containerized

73

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

eBPF maps

PM

Physical Interface (Smart NIC)

RXTX

XDP
TM A

XDP
TM B

veth peer

veth

Namespace A

CNF A

RXTX

TXRX
veth peer

veth

Namespace B

CNF B

RXTX

TXRX

User Space

Kernel Space

XDP
TM_F B

XDP
TM_F A

Figure 4.3: System architecture of the X-MAN power management for a given CPUcore. Reprinted frommy journal paper [7].
virtualization platforms to have a given container utilize only one CPU core, whichavoids non-negligible communication delays between CPU cores). The processedpackets are then forwarded to the virtual transmission (TX) interface of the CNF. TheXDP program attached to the egress path forwards all packets to the TX ring of thephysical NIC. In addition to the basic forwarding, an additional feedback mechanismcan be implemented on the egress path to measure the actual processing overheadintroduced by the CNF. This mechanism is used for the X-MAN-FB extension. The PMprogram running in user space has access to all the monitoring data stored in theeBPF map by default, as shown in Figure 4.2, for one CPU core. In general, X-MANuses a user-space PM module to collect traffic information from multiple CNFs viaeBPF maps so that the PM has a global view of all CNF running simultaneously onthe CPU core. In X-MAN, only the user space PM needs the required privilege to ad-just P- and C-states of the physical CPU cores. Based on the traffic monitoring data,and possibly additional feedback data, the PM is able to perform globally optimizedpower management.The X-MAN architecture is designed to enable flexiblemanagement of TMmoduleswithin the Linux kernel while seamlessly supporting a high-performance user-spacepacket processing framework. In contrast to common architectures in industrial NFVdata plane systems that use dedicated virtual switch components running in userspace, such as VPP [90] and OVS-DPDK [104], the XDP-based in-kernel data plane ispreferentially used to provide connectivity between CNFs. In the experimental Mizarproject [105], a similar XDP-based in-kernel data plane architecture is used. TheMizar project concluded that the XDP-based fast in-kernel data plane architecture

74

4.3 Proposed Approach: X-MAN

Table 4.1: A summary of main notations used by X-MAN relatedmodeling. Reprintedfrommy journal paper [7].
Symbol Description
j Number of received packets
Sj Service time of a batch of j packets
cIO Number of CPU core cycles for I/O of a single packet
ctask Number of CPU core cycles for CNF proc. of a single packet.
ccall Number of CPU core cycles to invoke one batch handling function
cbatch Total number of CPU core cycles to handle a batch of j packets
cv CPU core cycles for the empty polls in a batch
fCPU Frequency of the CPU core
V Vocation time of the CPU core (for empty polls)
Nt Number of received packets during time duration t
ρ CPU core utilization of a CNF

significantly simplifies the programming of the data plane and reduces the manage-ment overhead of the switching and routing mechanism in a cloud-native environ-ment.

X-MAN’s unique and novel hybrid kernel-space and user-space architecture lever-ages the OS level virtualization provided by the Linux application container tech-nology, where all containers running on the same OS share the same OS kernel bydefault. Since X-MAN TMs are running in kernel space, the packet traffic counters arekernel space data structures (implemented with the standard eBPF map data struc-ture provided by the Linux kernel) and the workload traffic information of the coun-ters can be read directly with ultra low overhead by the global X-MAN PM runningin user space without any additional communication of control messages betweenthe PM and the CNF. Since both the X-MAN TM and PM are completely transparentto the running CNF, the X-MAN does not need a dedicated user space orchestrationlayer with specified APIs to communicate with the CNF, for example, to poll moni-toring statistics or perform power management (whereas such an orchestration isrequired for full user space packet processing approaches). Therefore, X-MAN is ableto perform per-CNF traffic monitoring without interfering or interacting with the CNFin any way. It is acknowledged that the global in-kernel approach in X-MAN has sev-eral drawbacks, for example, it may cause significant security issues (which can bemitigated with introduction of a new secure eBPF map manipulation mechanism).All in all, the joint design of in-kernel and user space mechanisms is advocated toachieve a simple and very effective CNF management plane design.

75

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.3.3 Native X-MAN Adaptive Power Management

Service Time and Workload Model

Sj “
jpcIO ` ctaskq ` ccall

fCPU

(4.1)
V “

cv
fCPU

. (4.2)
For effective power management without compromising CNF performance, espe-cially the latency performance, X-MAN has to monitor a specific metric to accuratelyevaluate the actual CPU core workload imposed by the CNF. Based on the mod-elling work performed by Li et.al. [83], the service time Sj of a batch consisting of

j packets and the vocation time V (The CPU time or cycles wasted on empty polls,namely a polling of zero packets) can be calculated with Equations 4.1 and 4.2. Tosimply themodelling, the numerator of the Equation 4.1 can be further concluded as
cbatch “ jpcIO ` ctaskq ` ccall. For a specialized given CNF implementation, the cIO and
ccall can be assumed as constants. The component cIO generally depends only onthe employed IO framework. This cIO is as a first-order approximation independentof the specific CNF and the actual packet size when modern packet processing tech-niques such as zero-copying and data buffer pre-allocation are employed [9, 106,107]. This component cIO can be determined from the CNF data sheet or throughpractical benchmarking. The component ccall is relative small. The last item ctaskdepends on the configuration and function of the specific CNF. For instance, the ad-vanced RLNC network functionmay have different ctask depending on the configuredgeneration size and field size. In this work, the ctask is assumed to be determinedfrom the data sheet provided by the CNF vendor or via direct benchmarking. TheX-MAN-FB extension can estimate the ctask using its feedback mechanism. There-fore, for a given specific CNF, the service time of the CNF depends mainly only on thecurrent CPU core fCPU , namely the current P-state. For the proposed X-MAN powermanagement mechanism, this means that the P-state of the CPU must be adjustedaccording to the incoming workload traffic.In the work [83] performed by Li et.al., the workload IP traffic is modelled as aBatch Markovian Arrival Process (BMAP). With this, each CNF in the system can bemodelled as an MB{D{1{C queue. Based on this theoretical modelling, the inter-packet arrival time of workload traffic for each individual CNF can be modeled asan exponential distribution. Packets are served by a single queue (currently, mostvirtual interfaces do not support multiple queues by default) with a constant servicetime of Sj , see Equation 4.1. Therefore, the utilization of each CNF can be modeledas in Equation 4.3.

ρ “
Nt ¨ cbatch
t ¨ fCPU

. (4.3)
The utilization metric ρ indicates the relative workload intensity (namely, the busy-ness) imposed by the CNF on the CPU cores (running simultaneously at the current

76

4.3 Proposed Approach: X-MAN

CPU core frequency) and serves as the basis for developing the X-MAN employedalgorithms.According to the conclusions drawn from Li et.al. [83], when the ρ exceeds the 80%threshold, the performance of the CNF begins to degrade dramatically. Therefore,the target of the powermanagement algorithmdesigned for CALVIN should keep theutilization ρ close to, but below, the threshold 80%. As described in Equation 4.3, ρdepends on theNt, which is the total number of packets during a given time period t.In CALVIN, the powermanagement algorithms prioritize the ultra-reliable low-latencyperformance over the net reduction of the energy consumption. Therefore, X-MANis designed for real-time traffic, which does not tolerate any significant increase inlatency due to energy saving mechanisms. The impact of X-MAN on packet latencyshould be negligible, which is verified in the following section.
Real-time Workload Prediction: Simple Moving Average (SMA) and Weighted
Moving Average (WMA) Principle

To avoid accidentally exceeding the 80% threshold and to prioritize latency perfor-mance, the X-MAN power management algorithm needs to actively scale the CPUcore frequency. This requires real-time prediction of workload traffic preferably with-out prior training and simple fast computation. Iqbal et.al. [108] performed a sur-vey of statistical traffic prediction mechanisms for real-time applications, rankingthese methods based on the evaluated accuracy and complexity. Unfortunately,the top-ranked method in [108] is a double exponential smoothing algorithm thatrequires parameter training for very similar traffic before practical deployment, asthe smoothing algorithm will face similar traffic in real deployments. However, in theedge cloud, which is the focus of X-MAN, theworkload traffic is highly dynamic. There-fore, it is significantly difficult to guarantee the quality and accuracy of the trainingdata. The approach in the second position in [108] involves very complex computa-tions. Therefore, we chose the third ranked method in [108], a moving average pre-dictor. The moving average predictor has a negligible low complexity and achievessimilar accuracy to its more sophisticated competitors in most test scenarios. Lowcomplexity is highly prioritized in CALVIN algorithm design because low algorithmcomplexity allows for much more frequent updates.The mean value over the last ns sample values is calculated as a SMA for a one-step-ahead point forecast. For SMA, the accuracy of the prediction mainly dependson the number of considered samples ns in each iteration. In order to make this pre-diction more accurate and robust, the SMA predictor is enhanced with an additionalWMA predictor. Compared to simple SMA, the WMA assigns the more recent sam-ples with a larger weight in the calculation. The combination of both SMA and WMAis able to predict the trend of the workload traffic [109]. Therefore, one-step predic-tion from the WMA, combined with a traffic trend (The trend can be an increase ordecrease in the upcoming workload) learned from the comparison of the WMA andSMA, is able to provide reliable and punctual frequency adjustment decisions to bemade.In general, the number of samples used to calculate SMA and WMA in each it-eration determines both the accuracy and responsiveness of the predictor. In the

77

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

algorithm used by CALVIN, ns number of samples are used to calculate the SMA,while only half of the most recent samples, namely the ns{2, are used to computethe WMA to improve the responsiveness of the predictor. The ns is configurable pa-rameter and is set to 50 in this work based on preliminary empirical measurementson my testbed.
Real-time Workload Prediction: Detailed Implementation

Algorithm 1: Main management loop of the native X-MAN. Reprinted from my journal paper [7].
1 ctask = Number of CPU core cycles to process a packet;
2 Tm = Time interval for one iteration of the power management loop;
3 i = Index of the power management interval;
4 pi = Total number of received packets through the beginning of interval i (from kernel eBPF);
5 ts,i = Timestamp for received packets;
6 nz = Counter of polling rounds with zero received packets in current management interval;
7 nu = Counter of scaling up hints;
8 nd = Counter of scaling down hints;
9 fcpu,min, fcpu,max = Minimum and maximum supported CPU core frequency;
10 ns = Number of samples to calculate ρ;
11 ρ̄SMA, ρ̄WMA = SMA and WMA of ns samples of ρ;
12
13 p0, ts,0, nz , nu, nd = 0;
14 i “ 1;
15 ns “ 50;
16 fcpu,0, fcpu,1 “ fcpu,max;
17 need_scale “ false;

/* The power manager makes a decision every Tm seconds. */
18 while true do
19 power_management_timer.startpTmq;
20 pi, ts,i Ð read_ebpf_mappq;
21 ρi Ð pppi ´ pi´1q ˚ ctaskq{ppts,i ´ ts,i´1q ˚ fcpu,iq;
22 if pi ““ 0 then
23 nz Ð nz ` 1;
24 if nz ě nz,max then
25 fcpu,i`1 Ð fcpu,min;
26 scale_to_freqpfcpu,i`1q;
27 freq_is_min “ true

28 end
29 else
30 nz Ð 0;
31 if freq_is_min “ true then

/* Fast scaling to max. freq. to avoid pkt. loss */
32 fcpu,i`1 Ð fcpu,max;
33 scale_to_freqpfcpu,i`1q;
34 end
35 nu, nd Ð update_traffic_trendpρ̄SMA, ρ̄WMA, ρi, nsq;

/* Check if frequency scaling is necessary */
36 need_scale Ð get_scale_decisionpnu, ndq;
37 if need_scale ““ true then
38 fcpu,i`1 Ð get_target_freqpq;
39 scale_to_freqpfcpu,i`1q;
40 end
41 end
42 i Ð i ` 1;
43 power_management_timer.resetpTmq;
44 end

78

4.3 Proposed Approach: X-MAN

As explained above, the combined SMA-WMA predictor is implemented in X-MANsystem as a user space program using my home-grown packet high-performancepacket processing library:Fast Forward Packet Processing (FFPP). The pseudocodeof the core power management loop, which runs inside the user space power man-ager program for all CNFs on one given CPU core, is described in the Algorithm 1.As presented in the Algorithm 1, the X-MAN periodically (with a configurable dura-tion) reads workload traffic information, in particular the number pi (read from thecumulative counter provided by the Linux kernel eBPF mechanism) of all receivedpackets up to the beginning of the current management interval i and the times-tamp ts,i of the latest received packet in the previous management interval, from theeBPF map. (This traffic information (pi, ts,i) is updated by the attached XDP programfor each incoming individual packet). Each management interval consists of severalsteps, including: (i) Read the monitoring data from the eBPF map. (ii) Calculate theCPU utilization and check if a frequency adjustment (namely, an adjustment of cur-rent P-state) is required. (iii) If an adjustment is needed, perform the correspondedfrequency adjustment.The traffic information (pi, ts,i) is read only at the beginning of each powermanage-ment iteration. In particular, at the beginning of the i-th management interval, thetraffic information (pi, ts,i) is read from the eBPF map. This eBPF map information isthen used to make a power management decision along with the information for theprevious interval i ´ 1, namely (pi´1, ts,i´1). The power manager process then sleepsuntil the start of the subsequent power management interval i ` 1 and this periodicmanagement process is repeated.The timestamp ts,i (together with the timestamp ts,i´1 of the previous interval) isused to calculate the exact length of time between two read moments in two con-secutive management intervals (time period t in Equation 4.3). In theory, for a strictlyreal-time system and negligible overhead of the management function, the read in-terval should be Tm. However, the implementation on the COTS server requires thistimestamp mechanism to accurately calculate the exact time period t. Based on thecount pi of the total number of packets received during time period t and up to thebeginning of the current management interval i (used to calculate the number ofpackets received during time period t: Nt), the CNF utilization ρ of the given CPUcore is calculated according to Equation 4.3.Based on empirical tests with the practical testbed used in this study, the powermanagement interval to Tm = 1 ms. In general, the power management interval Tmshould be configured according to the characteristics of the underlying cloud infras-tructure.

X-MAN Power Management: CPU Core Frequency Scaling

In the next step, the time series values of CPU utilization ρ̄SMA and ρ̄WMA are com-puted by the update_traffic_trend function on line 35 of Algorithm 1 and com-pared to each other to see if the traffic is currently following a trend. This functionthen checks whether ρ̄WMA is above ρup or below ρdown. If so, an up counter nu ora down counter nd is increased, respectively, while the other counter is set to zero.

79

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

Inspired by the process that led to the initial parameter setting of the TCP [110], fol-lowing algorithm parameters are configured based on an intuitive understanding offrequency scaling and pilot experiments.Two thresholds ρup and ρdown are configured to 75% and 65%. The upper threshold
ρup to a value below 80% to ensure that the CPU utilization of the CNF stay below the80% threshold. The ρdown is needed to determine the situation when scaling down isrequired. There is a 10% gap between these the two thresholds, leaving some roomfor fluctuating values and preventing too rapid down-scaling. In an up-trend, the upcounter is increased by 3 and in a down-trend, the down counter is increased by 2.Finally, both up and down counters are checked against the counter threshold andif the counter threshold is exceeded, a scaling of the CPU core frequency is induced(in lines 37-39), which is determined by the get_scale_decision() function in line36. The counter threshold depends on the P-state transition time and the eBPF mapread interval Tm. It should not be possible for the counter to exceed the thresholdearlier than the transition time has elapsed. If the calculated frequency is betweentwo available P-states, the P-state with the higher frequency is selected. Themanage-ment of the P-states is performed using the APIs provided in the rte_power libraryprovided by DPDK. The previous P-state determination is performed for each CNFrunning on a given CPU core during each power management interval of duration
Tm. Then, the P-state of the CPU core is set to the highest frequency of an available P-state determined for the CNF on the CPU core. Thus, the computational complexityof the X-MAN power management is linearly related to the number of CNFs runningsimultaneously on the CPU core.In addition to the utilization prediction algorithm presented, the native X-MANpower management algorithm has some additional features: (i) Immediately aftersome consecutive empty readings, it scales down to the minimum available fre-quency (lines 24-27 in the Algorithm 1). (ii) After this scaling down, the map readinterval is automatically shortened to Tm = 100 µs (from the default 1 ms). This al-lows the PM to quickly detect a new packet burst for timely packet processing. Assoon as a new packet is detected, the CPU frequency is immediately increased to themaximum fcpu,max (lines 31-33) to avoid any loss of packets or increase in latency.
4.3.4 X-MAN Extensions
Beside the native X-MAN power management algorithm introduced above, two ex-tensions are also implemented and evaluated in this work:
X-MAN with C1 State Management (X-MAN-C1) In addition to P-state manage-ment, the X-MAN-C1 extension also includes the use of C-state to further significantlysave energy during idle time. While the native X-MAN scales down to fcpu,min when along idle time is detected, X-MAN-C1 is able to suspend CNF execution by manuallyguiding the CPU into the C1 sleep state. Since it is currently not possible to directlymanage the C state of the CPU in user space, X-MAN-C1 is implementedwith a simpleclient-server model. The native X-MAN is implemented as a client, while the suspendrequest is sent to the server via a ZeroMQ socket. The server-side implementation

80

4.4 Performance Evaluation Setup for X-MAN

functions by changing the cpu_quota parameter of the container running the CNF.This change in the cpu_quota parameter effectively signals the kernel to enter C1state.
X-MAN with FeedBack (X-MAN-FB) The native X-MAN requires detailed specifica-tion and benchmark data of the deployed CNF, such as the number of CPU corecycles, namely ctask, used for CNF packet processing. X-MAN-FB aims to address thislimitation and is designed to enable fully self-regulating powermanagement. The na-tive X-MAN is extended by X-MAN-FB to have feedback about its scaling decisions. Asuitable feedback is the packet count from the CNF egress interface, as illustrated inFigure 4.3. If the CNF is not overloaded, the packet counts of the ingress and egressinterfaces should be the same, and if the CNF is overloaded, they will be off. Thesetwo counters are constantly compared. An algorithm based on Additive-IncreaseMultiplicative-Decrease (AIMD) is performed on the comparison results. X-MAN-FBiteratively detects the minimum possible frequency until there is a loss in the CNF,namely, until the ingress and egress interface counters are different. The scalingmechanism of X-MAN-FB follows the basic principles of TCP congestion avoidancealgorithms [111]. If no packet loss is detected, the P-state index is increased by 1 ateach iteration to scale down the CPU core frequency. As soon as any loss occurs, thecurrent P-state index is immediately halved, which leads to an immediate increasein frequency.

4.4 Performance Evaluation Setup for X-MAN

4.4.1 Testbed for X-MAN Evaluation
Similar to the testbed used to evaluate CALVIN introduce in Chapter 3, the evaluationtestbed for X-MAN consisted of two physical COTS servers connected back-to-back.One server is used as the Packet Generator (PacketGen) and the other server is usedas the Device under Test (DuT) on which the CNF is deployed. PacketGen runs on anIntel Core i7-6700 CPU@3.4 GHz, while DuT is equipped with two Intel XEON CPUsE5-2643@3.30 GHz, i.e. DuT has two CPUs with four cores each. Both PacketGenand DuT are equipped with a Mellanox ConnectX-5 EN 25 GbE dual-port SmartNICand 32 GB of memory. PacketGen and DuT are connected with 25 GbE Small Form-factor Pluggable (SFP) cables.Cisco TRex (v2.81) [112] is used in this work, which is an industrial-grade high-performance packet traffic generator andmonitor, to generate packet traffic in state-less mode for different workload traffic profiles and measure latency performanceresults. Ubuntu Server 20.04 LTS (With Linux kernel version 5.4) is used as the hostOS for all servers. Docker 19.03-CE is used for application container management.For the data plane, DPDK (v20.02) and XDP-Tools (v0.0.3) [55] are used to developCNF and Power Manager (PM) of X-MAN. The software tool turbostat [113] is usedto measure CPU power and energy consumption. Based on the measurements per-formed in [114], Turbostat provided results comparable to those obtained using

81

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

additional physical measurement equipment, which is less portable and much moreexpensive. Hyperthreading and Basic Input/Output System (BIOS) power manage-ment features on DuT are fully disabled in order to obtain both consistent and re-peatable measurements.To prevent background processes from interfering with the actual energy mea-surements, the physical CPU cores that are used to run CNFs and the X-MAN PM areisolated from the Linux OS by using the isolcpus kernel parameter to remove thesecores from the Linux kernel scheduler.

4.4.2 Workload Traffic Profiles
Two types of probing workload traffic is generated by TRex to evaluate the perfor-mance of X-MAN and compare it with the STOA existing approaches.
Deterministic Traffic A deterministic ON/OFF traffic profile is used mainly for de-terministic and reproducible measurements. As shown in Figure 4.4, the determin-istic traffic profile produces packet traffic that alternates between packet flows (orcalled packet trains or packet bursts) with a fixed packet arrival time (5 seconds ON-period) and an Inter-Stream Gap (ISG) (1 second OFF-period). During the ON-period(i.e., during a given burst of packet traffic), the Packet-per Second (PPS) rate corre-sponds to a specified link utilization from 10% to 100% of the underlying 10 Gbpsphysical network for a single CNF evaluation. This stepped traffic pattern (as plot-ted as solid lines in Figure 4.4a) is suitable for examining how the applied powermanagement mechanism adapts to different PPS and uses ISG to reduce the overallenergy consumption. In order to evaluate the designed global power managementprovided by X-MAN, the step-up pattern above is supplemented with a correspond-ing step-down traffic pattern (as plotted as dashed lines in Figure 4.4b) to evaluatethe scenario with two running CNFs. For the step-down traffic pattern, the ON cy-cle is reduced to 4 seconds and the ISG is extended to 2 seconds. The step-up andstep-down traffic profiles simulate a scenario where two separate flowswith differenttraffic trends are sent to two separate CNFs deployed on DuT. Since the maximumbit rate is configured to 10 Gbps, each traffic pattern in the two CNFs evaluations islimited to a maximum bit rate of 5 Gbps. The multi-burst flow profile of the statelessmode provided by TRex is used to generate these deterministic flow profile packets.Each burst or packet train contains several UDP packets with a fixed IP datagramlength of 1400 B (namely, 1400 bytes).
Random Traffic This profile is mainly used to test the robustness and resilienceof X-MAN to relatively more realistic workload traffic. In the random traffic profile,packet streams have a random exponential distribution of arrival times (i.e. randomISGs). Instead of a fixed packet size used for deterministic traffic, the packet sizedistribution in each packet traffic burst follows the Internet Mix (IMIX) genome [115](53.84% 64 B, 38.46% 570 B and 7.49% 1400 B). The PPS rate is fixed to maintain a30% link utilization. Compared to the deterministic traffic profile, more than 90% of

82

4.4 Performance Evaluation Setup for X-MAN

ISG = 1s

L
in

k
 U

ti
liz

a
ti
o
n
 [
%

]

Time [s]6 12 18 24 30 36 42 48 54 60

10

20

30

40

50

60

70

80

90

100

(a) For a single CNF.

ISG = 1s

L
in

k
 U

ti
liz

a
ti
o
n
 [
%

]

Time [s]6 12 18 24 30 36 42 48 54 60

5

10

15

20

25

30

35

40

45

50
ISG = 2s

(b) For two CNFs.
Figure 4.4: Deterministic probing traffic profiles for X-MAN benchmark. Reprintedfrommy journal paper [7].
ISGs are less than 0.5 second. So this traffic profile requires relatively more granulartraffic monitoring.
Both model-based deterministic and random active probing traffic profiles areused in this work because they could cover a wide range of traffic dynamics andare reproducible. Therefore, these profiles enable a rigorous evaluation.

4.4.3 CNF Deployment

Two scenarios are deployed for the measurements:

83

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

One single CNF A single CNF is deployed on one dedicated isolated CPU core. TheCNF program runs inside a Docker container with two data plane virtual networkinterfaces. The AF_XDP PMD acts as the packet IO mechanism for the CNF and thein-kernel XDP forwarder to redirect workload traffic from the physical NIC to the cor-responding virtual Ethernet pair (veth-pair). This basic deployment is used to eval-uate the baseline performance of the X-MAN.
Two independent CNFs In this scenario, two independent CNFs are deployed si-multaneously on two CPU cores. The in-kernel XDP forwarder forwards the workloadtraffic to corresponding CNF based on the pre-configured metadata of the trafficflow.In both cases, the built-in L2 forwarding (L2FWD) example application provided byDPDK library is extended and then used as the basic function of each CNF. Othermore complex CNFs can be built on top of this elementary forwarding application.Since the focus of this work is to evaluate the performance of different power man-agement mechanisms, the elementary forwarding CNF is considered without loss ofgenerality.
4.4.4 Monitoring Latency for CPU Utilization Estimation
CPU utilization estimation is required for all common power management mecha-nisms. Due to some limitations, the power measurement and corresponding algo-rithms are not researched in the paper [8]. However, it provides a black-box utiliza-tion estimation method based on hardware counters.The monitoring latency is defined in this work as the time period required for thepower management system to obtain a new sample of the current workload status.Specifically, in X-MAN, the monitoring latency is equal to the time to execute line 20of Algorithm 1, which is the read time of the eBPF map. The comparison for thismonitoring latency is performed between the HC approach described in [8] and theX-MAN.
Hardware Counter (HC) utilization estimation HC utilization estimation uses CPUhardware counters to estimate the workload of deployed NFs [8]. This HC-basedapproach has a strict limitation that it only works when each CNF is assigned to anisolated physical CPU core. If not, other NF processes or background processes canaffect the hardware counters, resulting in inaccurate or even incorrect estimations.This assignment of a NF to an isolated physical CPU core is very expensive and gener-ally unacceptable for cloud-native network function systems. For the HCmechanism,up to four CPU cores can be monitored on the testbed to deploy up to four CNFs.
X-MAN Utilization estimation Compared to HC approach, X-MAN does not haveabove described limitations. Traffic monitors of X-MAN are very lightweight andcan be directly attached to the network interfaces of deployed CNFs, regardless ofwhether they are assigned to the same or different CPU cores. Assuming two data

84

4.4 Performance Evaluation Setup for X-MAN

plane network interfaces per NF, X-MAN has to monitor eight network interfaces tomeet the same scenario for four CNFs of the HC approach. Therefore, in fact, in theevaluation of the monitoring latency, the monitoring of four physical CPU cores (forthe HC approach) and four network interface pairs (namely, eight data plane networkinterfaces for the X-MAN approach), is compared. In addition, because the numberof network interfaces monitored by X-MAN is theoretically not limited by the numberof available physical CPU cores, the scalability of X-MAN monitoring is evaluated fordifferent numbers of virtual network interfaces. Specifically, the monitoring latenciesfor 10, 100 and 1000 Linux veth pairs [116] are measured.
4.4.5 Power Management Mechanisms
Following power management mechanisms are used to compare the proposed X-MAN with the most recent and advanced CI mechanisms available from the DPDKcommunity, as well as between X-MAN extensions.

• NPM: This scenario does not perform any power management mechanisms.Thus, this NPM scenario is used as the baseline for the best latency perfor-mance and the worst energy consumption results on the deployed testbed.
• X-MAN: The native X-MAN power management without using C1 state or anyfeedback mechanisms.
• X-MAN-C1: Native X-MANapproach plus the additionalmanagement ofC1 state.
• X-MAN-FB: Native X-MAN approach with the additional feedback mechanism.
• Code Instruction with Heuristic power management (CIH) [9]: This approachis used in the official sample application for power management provided bythe DPDK library. This CIH approach is used as one representative design andimplementation of the CI based approaches.
It is clearly noted that HC approach is not in this list of powermanagement mecha-nisms, because HC approach described in [8] is only a utilization estimation method.In contrast to HC approach, both X-MAN and CIH are complete solutions for bothCPU utilization estimation and power management.

4.4.6 X-MAN Performance Metrics
• Monitoring latency required for CPU utilization estimation: For this metric, onlyX-MAN and HC approaches are compared. For all other metrics, the X-MAN iscompared against NPM, CIH and also two variants of X-MAN.
• Optimal CPU frequency and power for deterministic traffic profiles: Since thetiming information of the ON/OFF periods used is fully determined, accordingto [83], the optimal value of both CPU frequency and the corresponding powervalue can be calculated based on the preliminary empiricalmeasurements. The

85

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

optimal power value is used as a lower bound (the best accessible lowest en-ergy consumption) for all power management mechanisms.
• Average CPU frequency and power (namely, energy consumption): The averageCPU frequency and power values of all physical CPUs on the DuT aremeasuredwith the widely used Turbostat tool with its highest available measurementresolutions. The measurement values include per-CPU package power value,per-CPU core frequency, and also per-CPU core C1 state residency time.
• Bandwidth accessed indirectly with number of lost packets: Because TRex [112](v2.81) does not provide throughput values directly, the throughput values aremeasured indirectly. Bandwidth or throughput is equal to the maximum send-ing rate without any dropped and out-of-order packets. Therefore, the numberof packets dropped in each packet stream is measured to indirectly evaluatethe throughput performance.
• End-to-end latency: For this work, the average, maximum and jitter of the end-to-end RTT of each packet stream are used as key latency metrics. The max-imum latency value and jitter allow evaluating both the worst-case delay per-formance and the delay inconsistency between packets.
For eachmeasurement setup and scenario, 100 independent replications are per-formed for statistical results. At least 10 packet streams (namely, packet burstsor trains. The documentation of Trex uses the term “streams”) are used in eachmeasurement replication. Each metric introduced above is sampled for each TRexstream in each replication.

4.5 X-MAN Measurement Results and Evaluation

4.5.1 X-MAN CPU Measurements
To get the detailed characteristics of the used physical CPU of the DuT server, somepreliminary measurements are needed.The actual power required by the CPU package in different P-states is illustrated inFigure 4.5. The matrix product workload provided by the tool stress-ng [117] is ex-ecuted on the CPU for 1 second before switching to the next P-state. This switchingcan be performed in both increasing and decreasing directions with two commonwidely used scaling drivers: intel_pstate for Intel x86 CPUs and acpi-cpufreqfor both AMD and Intel x86 CPUs. The intel_pstate driver is highly optimized forthe latest Intel CPUs. It can be observed from Figure 4.5 that the power valuesin each P-state is independent of the scaling driver and the previous P-state. The
intel_pstate driver is used on my testbed in the following evaluation because it isthe default driver used by most Linux distributions today.The temperature in ˝C of the CPU package in different CPU states are listed inTable 4.2. The results show that increasing the CPU frequency leads to a significantincrease in CPU temperature, almost 30 ˝C between the C1 and P0 states. High CPU

86

4.5 X-MAN Measurement Results and Evaluation

Processor P-state

5

P
ow

er
 [W

]

20

35

30

25

15

21

Intel Increase ACPI Increase Intel Decrease ACPI Decrease

10

1920 18 17 16 15 0114 13 12 11 10 9 8 7 6 5 46 3 2

Figure 4.5: CPU frequency increase and decrease test. Reprinted from my journal
paper [7].

Table 4.2: CPU package temperature for different CPU states. Reprinted from my
journal paper [7].State C1 P21 P1 P0Temperature [˝C] 42.2 44.6 68.5 71.1

temperatures have a significantly negative impact on the energy efficiency of thesystem (since the required cooling process incurs non-negligible energy costs) andcan significantly shorten the CPU lifetime.
Another important CPUmeasurement performed is to evaluate theminimum timeduration (namely, the sojourn time) that the CPU should stay in a P-state beforechanging to another P-state. A so-called Tic-Toc-test is performed in this work toperiodically switch between the highest and lowest available CPU frequency with dif-ferent periods, where this period contains two P-state sojourn times. The averageCPU frequency and power values as a function of the period duration are illustratedin Figure 4.6. For this measurement, each scenario is replicated for 50 times. Aspresent in Figure 4.6, when the switching period of P-states is shorter than about30 ms, the effective CPU frequency starts to drop dramatically while the CPU startsto consume significantly more energy. So the period for frequency scaling is config-ured to be higher than 30 ms on my testbed to avoid issue of over-scaling illustratedin the Figure 4.6.

87

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

30
0

40
02140

2160

2180

2200

2220

2240

2260

F
re
qu

en
cy
 [
M
H
z]

Mean Frequency
Optimum Mean Frequency

26

P
ow

er
 [W

]

Mean Power Consumption
Optimum Mean Power Consumption

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

Period / 2 [µs]
50

00
60

00
70

00
80

00
90

00
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00

25

24

23

22

21

20

Figure 4.6: Tic-Toc test for CPU frequency and power. Reprinted from my journal
paper [7].

4.5.2 Monitoring Latency for CPU Utilization Estimation

The comparison of the Cumulative Distribution Function (CDF) of monitoring latencybetween HC approach and the proposed X-MAN is illustrated in Figure 4.7. Monitor-ing latencies aremeasuredwhenDuT is in IDLE state or stressedwith 100%workloadvia the stress-ng tool. For each scenario, the measurements are replicated inde-pendently for 100 times. These two scenarios are evaluated here for the best andworst cases regarding the monitoring latency. According to the measurement re-sults, X-MAN can achieve a significantly shorter and much more stable monitoringlatency compared with the HC approach. It can be observed that the monitoring la-tency of the HC approach is affected by the workload of the DuT and shows a largevariance when CPU is idle. The HC approach takes nearly 5 times more time thanX-MAN for latency monitoring for the likelihood of 80%. For the scenario of 100%CPU workload, the HC approach normally needs about 5 times longer monitoringlatency than the X-MAN with nearly 100% likelihood. Due to the lightweight and ef-ficient XDP-based traffic monitoring mechanism, the monitoring latency of X-MAN isalways less than about 10 µs for arbitrary workload.The scalability and stability of the X-MAN monitoring latency are evaluated andillustrated in Figure 4.8. As presented in the Figure, the monitoring latency of X-MANshows a linear relationship with the deployed number of parallel veth pairs, namelydata plane virtual network interfaces. And this behavior is not affected by the CPU

88

4.5 X-MAN Measurement Results and Evaluation

workload. All in all, X-MAN is able to provide low-latency, efficient, scalable and robustCPU utilization estimation.

0 20 40 60 80 100
Monitoring Latency (Microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

Li
ke

lih
oo

d
of

 O
cc

ur
re

nc
e

HC IDLE
HC 100%
X-MAN IDLE
X-MAN 100%

Figure 4.7: Comparison of monitoring latency between HC approach and X-MAN.Reprinted frommy journal paper [7].

101 102 103 104

Monitoring Latency (Microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

Li
ke

lih
oo

d
of

 O
cc

ur
re

nc
e

X-MAN IDLE 10
X-MAN IDLE 100
X-MAN IDLE 1000

X-MAN 100% 10
X-MAN 100% 100
X-MAN 100% 1000

Figure 4.8: Monitoring latency of X-MAN for different number of veth pairs. Reprintedfrommy journal paper [7].

89

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.5.3 Single CNF with Deterministic Traffic

Figure 4.9 shows the average frequency and power values of the CPU on DuT for asingle CNF deterministic traffic scenario. It can be observed from Figure 4.9 that theCNF achieves full utilization of the CPU cores at link utilization levels of 40% and 50%(as shown for optimal frequencies up to 3.3 GHz). Therefore, there is an opportu-nity for an adaptive intra-stream (namely, inside each packet stream) energy savingwhen the link utilization is 40% or lower. By examining the Figure 4.9 more closely,it can be concluded that for the 20% link utilization, the X-MAN power overlaps withthe X-MAN-C1 and optimal power values; In addition, the X-MAN-FB exhibits rela-tively high energy consumption at 20%, which is consistent across 100 independentmeasurement replications. It can be observed from the Figure 4.9 that the CPU corefrequencies of X-MAN and X-MAN-C1 are always close to the theoretical optimum (infact, they usually overlap with each other and mask the optimum symbols in the Fig-ure 4.9) duringONperiods when the link utilization is 40%or lower. At the same time,the CIH performs very similarly to the NPM, namely mostly being at the maximumfrequency during ON time. In comparison, for ON periods where the link utilizationis 30%, native X-MAN almost is able to halve the energy consumption. While for ONtimes when the link utilization is 40%, X-MAN-FB can reduce the power consumptionby about a quarter compared to CIH and NPM approaches. In addition, it can beobserved from the Figure that during the OFF periods, the CIH cannot reduce thefrequency in time, leaving the average CPU frequency only slightly below 3 GHz. Atthe same time, both X-MAN and X-MAN-FB reduce the average CPU frequency towell below 2 GHz (usually about 1.3 GHz). Furthermore, X-MAN and X-MAN-FB re-duce the CPU frequency to a minimum of 1.2 GHz, and the deviation of the averageCPU frequency from 1.2 GHz originates from the first sample when the ISG is aboutto be detected but the CPU is still at the ON period frequency. X-MAN-C1 reducesthe average CPU frequency below 1 GHz during most OFF periods and is able to ap-proach the optimal CPU frequency of zero. In general, the native X-MAN approachand its extensions reduce the energy consumption to one-quarter (1{4) of the NPMenergy consumption during the shutdown period, while CIH only reduces the powerconsumption to three-quarters (3{4) of the NPM energy consumption.The end-to-end RTT latency results are listed in the Table 4.3. The results listed inthe Table presents the increases in the RTT latency due to additional monitoring andpower management mechanisms introduced by X-MAN based and CIH approachescompared to the baseline NPM. It can be observed from the Table that X-MAN, X-MAN-FB and CIH approaches cause only negligible and slight increases in the latencyperformance. In comparison, the X-MAN-C1 can even double the latencies in somescenarios. The low latency overhead provided by X-MAN is mainly due to the ju-dicious use of the native Linux kernel NIC driver (Linux kernel version 5.4 providesnative support for veth network interfaces), which is the fastestmode offered by XDP.Therefore, it can be concluded that the traffic monitoring and adaptive power man-agement (CPU core frequency scaling) algorithms of X-MAN and X-MAN-FB introduceonly negligible additional latency overhead. At the same time, the large increase inlatency of X-MAN-C1 in Table 4.3 and the minimal additional energy savings of X-MAN-C1 compared to X-MAN and X-MAN-FB lead to the conclusion that exploiting

90

4.5 X-MAN Measurement Results and Evaluation

10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 100
Link Utilization [%]

0

1000

2000

3000

F
re
qu
en
cy

[M
H
z]

10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 100
Link Utilization [%]

0

10

20

30

40

P
ow

er
[W

]

Optimum

NPM

X-MAN

X-MAN-C1

X-MAN-FB

CIH

Figure 4.9: Average CPU frequency and power values of a single CNF as a functionof the link utilization for deterministic traffic. Reprinted from my journal
paper [7].

the C-state does not usually pay off, which confirms the conclusions summarizedalready by Li et.al. [83].With above listed results and evaluations, it can be concluded that native X-MANand X-MAN-FB are able to significantly reduce the energy consumption at both ONand OFF times with negligible latency performance overhead compared to the NPMand CIH approaches.
4.5.4 Two CNFs with Deterministic Traffic
The evaluation of the two simultaneously deployed CNFs in this Subsection is in-tended to examine the performance of X-MAN in the scenario with multiple inde-

91

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

Table 4.3: Single CNF latency results for the deterministic traffic. Latency increasesare listed as percentage with respect to the performance of the baselineNPM approach. Reprinted frommy journal paper [7].
Link Utilization (%) 10 20 30 40 50 60 70 80 90 100Average Latency (%)X-MAN 0.00 0.01 0.00 0.13 0.01 0.02 0.09 0.10 0.09 2.33X-MAN-C1 0.02 0.68 1.01 1.17 1.02 1.01 1.02 0.12 1.01 137.27X-MAN-FB 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 1.13CIH 0.00 0.00 0.01 0.02 0.03 0.03 0.03 0.03 0.03 4.05Maximal Latency (%)X-MAN 0.00 0.00 0.00 0.24 0.00 0.00 0.21 0.21 0.20 13.51X-MAN-C1 0.01 0.02 0.20 0.29 0.33 0.33 0.34 0.34 0.34 142.79X-MAN-FB 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 11.43CIH 0.03 0.26 0.26 0.02 0.01 0.01 0.01 0.01 0.01 5.99Jitter (%)X-MAN 0.76 5.98 0.02 0.01 0.02 0.01 5.91 6.92 6.00 6.45X-MAN-C1 0.00 6.81 129.47 102.30 6.47 40.33 12.34 12.41 22.30 9.68X-MAN-FB 0.76 0.03 0.00 0.01 0.02 6.60 6.20 6.63 6.22 3.23CIH 0.76 0.11 0.01 0.01 6.26 0.01 0.03 0.01 6.24 6.45

pendently running CNFs. This scenario with two CNFs require the monitoring of twoindependent CNFs with different workload levels and power management appropri-ate to the needs of the higher load (higher intensity) CNF without conflict and withoutover-scaling the frequency of the CPU core.
Due to the limitations of the testbed used for this work, two CNFs are deployedon two different CPU cores on the same CPU package, whereby the frequencies ofthem are automatically forced to be synchronized, i.e. all cores on a given CPU runat the same frequency (and the X-MAN power manager controls the operating fre-quency of the entire CPU package). For the testbed used in this work, the frequencysynchronization between CPU cores on a particular CPU ensures that the evaluationis equivalent to the evaluation scenario of running two CNFs on the same CPU core,in terms of frequency scaling.
The average CPU frequencies and the power values of NPM, X-MAN and CIH arecompared against the theoretical optimum as illustrated in Figure 4.10. Becauseof the frequency synchronization issue introduced above, the theoretical optimalpower values are the ones corresponds to the optimal power values running in allthe cores of a CPU package. In this evaluation, X-MAN extensions are not used toavoid clutter.
It can be observed from Figure 4.10 that the average CPU working frequency ofX-MAN is usually closer to the optimal average CPU frequency than that of CIH ap-proach. Particularly, for ON time slots, X-MAN is able to scale to amuch lower optimalCPU frequency when the workload traffic allows for a lower CPU frequency. It canbe observed that for streams (packet bursts) 2 through 7, the X-MAN CPU frequen-cies are fairly close to the optimal CPU frequency when the optimal CPU frequency isbelow 3 GHz. In comparison, for these ON periods, average CPU frequencies of CIHapproach reach only slightly below the NPM CPU frequency of 3.3 GHz. According tomy analysis, this is mainly due to the difficulty of CIH approach in managing the CPU

92

4.5 X-MAN Measurement Results and Evaluation

1 ISG 2 ISG 3 ISG 4 ISG 5 ISG 6 ISG 7 ISG 8 ISG 9 ISG10
Stream

20

40

60

P
ow

er
[W

]

Optimum NPM X-MAN CIH

1 ISG 2 ISG 3 ISG 4 ISG 5 ISG 6 ISG 7 ISG 8 ISG 9 ISG10
Stream

0

1000

2000

3000
C

P
U

F
re

qu
en

cy
[M

H
z]

Figure 4.10: Average CPU frequency and power values of two CNFs for deterministictraffic as a function of packet traffic (illustrated in Figure 4.4b) train indexranging from 1 to 10. Reprinted frommy journal paper [7].

frequencies of CNFs with heterogeneous CPU frequency requirements. CIH ismainlydesigned for CPU frequency control of each individual CNF separately, namely, CIHapproach optimizes the CPU frequencies of two CNFs individually to find an optimalCPU frequency for each CNF. In the case of multiple heterogeneous CNFs runningsimultaneously on the same CPU, CIH approach thus gives different (i.e. could bevery conflicting) optimal CPU frequencies, which are resolved in CIH by scaling thefrequencies to a high level. In comparison, due to the separate and independenttraffic monitoring of each CNF, the PM of X-MAN can wisely set the CPU frequencyfor each ON period to the higher required CPU frequency of the two CNFs.
Under heterogeneous workload traffic loads, a conflict arises where the end of alow link utilization traffic burst prompts the CNF of the stepping-down traffic pattern

93

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

to request a lower CPU frequency, while the other CNF handling the persistent highlink utilization traffic bursts request a much higher CPU frequency. The CIH designthen reduces the frequency only a bit, resulting in only a slightly lower average CIHCPU frequency with an average value of 3.25 GHz. In comparison, the native X-MANperforms a global CPU frequency scaling and keeps the CPU frequency around theNPM value to guarantee low-latency processing of persistent high link utilization traf-fic bursts.For the OFF periods, it can be observed from Figure 4.10 that X-MAN is able toreduce the average CPU frequency to close to 1.2 GHz, while CIH only keeps the av-erage CPU frequency above 2 GHz. This is mainly due to the limited responsivenessof CIH approach, and the default parameters provided by the official DPDK sampleare used. At the same time, when the PM detects the ISGs based on the data pro-vided by the responsive XDP-based TM, the X-MAN is able to immediately scales theCPU core frequency to minimum available frequency.Echoing the CPU frequency results, it can be observed from the power results inFigure 4.10 that X-MAN takes advantage of the energy savings due to the lower re-quired CPU frequency to handle the relatively low link utilization trafficbursts (streamsranging from 3 to 7), as indicated by the significant energy reduction achieved by X-MAN for streams 4-7. In addition, X-MAN is able to utilize existing ISGs to reducepower values to about 10 W, while CIH approach keeps power values during OFFperiods at about 27.9 W.
Table 4.4: Two CNFs latency results for the deterministic traffic. Latency increasesare listed as percentage with respect to the performance of the baselineNPM approach. Reprinted frommy journal paper [7].

Link Utilization (%) 5 10 15 20 25 30 35 40 45 50Average Latency (%)Step-up X-MAN 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.40CIH 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.30 15.28Step-down X-MAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02CIH 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.19 0.21Maximal Latency (%)Step-up X-MAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36CIH 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.08 35.60Step-down X-MAN 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00CIH 0.32 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.07Jitter (%)Step-up X-MAN 1.46 1.06 0.57 3.12 0.00 0.01 0.01 0.01 0.00 0.45CIH 4.39 0.35 0.82 6.02 0.05 0.05 0.11 0.01 6.35 5.55Step-down X-MAN 5.17 0.21 0.29 0.00 0.15 0.00 0.01 0.00 0.14 0.03CIH 6.45 0.65 6.32 6.54 0.02 0.03 6.61 0.01 0.08 6.20
It can be observed from Table 4.4 that X-MAN presents very similar latency per-formance as the baseline NPM approach. In contrast, it can be observed that CIHcan cause significant increases of both average andmaximal packet latencies for thepacket traffic burst with the highest (namely, 50%) link utilization of the traffic patternfor step-up. This increase in latency is mainly due to the fact that the corresponding

94

4.5 X-MAN Measurement Results and Evaluation

low link utilization traffic burst in degraded traffic patterns ends exactly one secondbefore the end of the high link utilization traffic burst. The slight down scaling of theCPU frequency directly after the ending of the low link utilization traffic burst canlead to substantial increase of packet latency. All in all, it can be concluded fromthe results in Figure 4.10 and Table 4.4 that X-MAN can perform globally optimizedpower management for numerous independently deployed CNFs with negligible la-tency overhead for each packet.

4.5.5 Single CNF with Random Traffic
For the Poisson random traffic profile, while Figure 4.11 illustrates the box plots ofCPU frequency and power values, Figure 4.12 presents the box plots of percentagedeviation of packet RTT latency and packet loss results with respect to NPM. It canbe observed from Figure 4.11 that NPM and CIH are always at the highest CPU fre-quency. At the same time, X-MAN can repeatedly reduce the CPU frequency in ISGs.Furthermore, X-MAN is also able to boost the frequency to the highest frequencydirectly in case a new packet arrives. Therefore, X-MAN is able to significantly reducethe energy consumption to only half of the NPM and CIH energy consumption forabout three quarters (namely, 3{4) of the workload traffic streams.

NPM X-MAN X-MAN-FB CIH

2000

3000

F
re

qu
en

cy
[M

H
z]

NPM X-MAN X-MAN-FB CIH

10

20

30

40

P
ow

er
[W

]

Figure 4.11: Box plots of CPU frequency and power values for a single CNF with ran-dom traffic. Reprinted frommy journal paper [7].
It can be also observed from Figure 4.11 that X-MAN-FB tends to have a higherCPU frequency and energy consumption than native X-MAN. This is mainly because

95

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

NPM X-MAN X-MAN-FB CIH
0

2500

A
vg

.
L

at
en

cy
[%

]

NPM X-MAN X-MAN-FB CIH
0

500

M
ax

.
L

at
en

cy
[%

]

NPM X-MAN X-MAN-FB CIH
0

500

Ji
tt

er
[%

]

NPM X-MAN X-MAN-FB CIH
0

500

D
ro

p
p

ed
P

ac
ke

ts

Figure 4.12: Box plots of percentage deviation of RTT latency characteristics andnumber of dropped packets with respect to the baseline NPM.Reprinted frommy journal paper [7].
X-MAN-FB strives to iteratively reach the optimal CPU frequency, and in the processof approaching the optimal frequency, if any packet losses occur, for example due tointerference from the OS background processes, there will be an immediate rise infrequency. While the native X-MAN scales frequency only with respect to the work-load traffic, X-MAN-FB also takes the number of packet losses into consideration. Theamount of packet loss depends not only on the PPS of the input traffic, but also onthe processing delay of the CNF. In theory, the processing latency of the deployedCNF can be a fixed number. However, deployments of CNFs on actual physical ma-chines exhibit some variation in actual CNF processing latency, which may result insome non-negligible packet losses within the management interval. X-MAN-FB canmonitor the number of dropped packets and tries to scale up when this numberof dropped packets increases. Therefore, X-MAN-FB tends to use a higher CPU fre-quency and power value.

96

4.5 X-MAN Measurement Results and Evaluation

As shown in Figure 4.12, the overall RTT latency performance of X-MAN is not de-graded. Particularly, all latency related metrics are in the same range of NPM andCIH.
4.5.6 Energy Consumption of X-MAN
In this Subsection, the energy consumption required by X-MAN TM (runs in Linuxkernel space) and PM (runs in user space) modules are evaluated for probing trafficwith a constant bit rate. As introduced above, the DuT server used in this work hastwo CPU packages, and each package has four CPU cores (0-3) where the workingfrequencies are synchronized automatically. While the in-kernel TM modules runon the CPU package 0, the CNF run on core 0 of the CPU package 1. Then the PMprocess of X-MAN is deployed on the core 1 of the CPU package 1.The additional energy overhead required by the TMmodule is indirectly measuredin this Subsection by comparing the energy consumption of the CPU package 0 with-out and with TM modules are enabled and running. This indirect measurement isperformed because, to the best of my knowledge, there is no available softwaretool to accurately measure the power of each individual process running in kerneland user space on the Linux OS. So these tools normally only provide a per-CPU-package granularity, which is able to measure the energy consumption of the TMmodules directly. It can be observed from the results in Table 4.5 (see the secondcolumn labeled as X-MAN TM) that the additional energy required by the TMmodulesis relatively negligible (less than 0.21 W). Furthermore, it should be noted that XDPprograms can be offloaded to dedicate hardware that has native support for XDPhardware offloading, for example, SmartNICs [95]. Therefore, this energy overheadon CPU can be fully avoided by offloading TM modules to dedicated hardware.
Table 4.5: Power measurements of NPM and X-MAN: Additional energy consump-tion (Power ∆) with the TM in the Linux kernel space relative to the oper-ation without TM. Energy consumption for the CPU without power man-agement (NPM) and with X-MAN PM enabled, and percentage of C1 resi-dency time for CPU core running PM for different CPU operational states.Reprinted frommy journal paper [7].X-MAN TM NPM X-MAN PMCPU state Power ∆ [W] Power [W] C res. [%] Power [W] C res. [%]1.2 GHz 0.03 7.13 100 7.21 97.83idle @ 1.2 GHz 0.00 7.01 100 7.19 89.03.3 GHz 0.21 38.36 100 38.41 99.17idle @ 3.3 GHz N/A 37.66 100 N/A N/A
In order to evaluate the PM module of X-MAN, it needs to be noted that the usedCPU of the DuT synchronizes the working frequencies of all CPU cores on a givenpackage, namely all 4 cores on CPU package 1 increase their frequencies when theCNF requires a higher frequency, even if core package 1 has only minimal processingtasks from the PM itself and the other two CPU cores are nearly idle (these two cores

97

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

should sleep in the C1 C-state for the most time. Deeper sleep states are disabledin this work). Furthermore, the used tool turbostat cannot directly measure thepower values of each individual CPU core, namely it only has per-package granularity.However, turbostat can provide C1 residency time of each individual CPU core ofa CPU package. Therefore, the C1 residency times are measured in this work toindirectly measure the energy consumption of the PM module of the X-MAN. Thepower values of the CPU package 1 is also listed in the Table 4.5. The difference ofenergy consumption between the baseline NPM and X-MAN indicates the additionalenergy consumption required by the PM module of X-MAN.The power values for two representative frequency values, namely 1.2 GHz forlower bound and 3.3 GHz for upper bound, for a single deployed CNF without anyworkload and with high workload (100% link utilization) are listed in the Table 4.5.As showed in the Table 4.5, The additional energy overhead introduced by PMof CALVIN is only about 0.05 W, namely negligible, when the frequency of the CPU is3.3 GHz. Furthermore, for the same 3.3 GHz frequency, about 99.2% of the time, theCPU works in the C1 state. Thus, the PM of the X-MAN only introduces a minusculeoverhead for the CPU. For low workload, namely a CPU frequency of 1.2 GHz, it canbe observed that the X-MAN PM consumes only slightly more energy, i.e. only 0.18 Wwhen no workload traffic arrives (about only 2.5% more than the NPM approach).

4.6 Summary

In this work, a novel and unique approach of power management named as XDP-Monitoring energy-Adaptive Network functions (X-MAN) for Cloud-native NetworkFunctions (CNFs) is designed, implemented and rigorously evaluated on the Stateof the Art (STOA) practical high speed 10 Gbps testbed. Compared to the STOACode Instruction with Heuristic power management (CIH) and Hardware Counter(HC) approaches, X-MAN is able to monitor the workload of each individual CNF in-dependently through lightweight and accurate in-kernel Traffic Monitors (TMs) thatare dynamically attached to the data plane virtual NICs. Thus, X-MAN is able to pro-vide fully non-intrusive in-band traffic monitoring. Furthermore, a user space PowerManager (PM) with a global view of all deployed CNFs is used by X-MAN to performglobally optimized power management to significantly reduce energy consumption.All source code of X-MAN and corresponding evaluation is publicly available to fa-cilitate the deployment of X-MAN and future research and development of highlyresponsive and energy efficient power management systems for CNFs.Rigorous measurements and evaluations are performed in this work on a high-performance hardware testbed to fully evaluate the performance of X-MAN. Accord-ing to the measurement results, X-MAN is able to provide much more responsivetraffic monitoring than the STOA HC approach [8]. Furthermore, significantly muchmore energy can be saved with the adaptive power management algorithm usedby X-MAN. At the same time, the X-MAN is able to achieve this energy saving withrelatively negligible impact on the latency and bandwidth performance.

98

5 ComNetsEmu: An Open Source
Testbed for Virtualized
Communication Networks

All contents in this Chapter has been published inmy journal paper [118]: "An opensource testbed for virtualized communication networks." IEEE CommunicationsMag-azine 59, no. 2 (2021): 77-83.

5.1 Introduction of ComNetsEmu

In previous chapters, themeasurements and evaluations are performed on practicalphysical testbeds consisting of multiple physical COTS servers. Although the phys-ical testbed is mostly close to the real-world cloud platform and is able to providerealistic measurement results, the cost, maintenance overhead and portability of asuch complex physical testbed limit the adoption, deployment and reproducibility ofthe testbed [119].In order to address this challenge with my best efforts, a novel emulator for com-munication networks named as Communication Networks Emulator (ComNetsEmu)is designed, implemented in this work to simply the prototyping and evaluation ofresearch ideas for STOA and future softwarized communication networks.The complexity of the future communication networks can significantly increasebecause the COmputing In Network (COIN) or In-Network Computing (INC) paradigmneeds to be enabled by the network for a broad variety of the latest trending usecases. It needs to be noted here that COIN and INC are different/similar terms forthis emerging paradigm. Until the time of this work, to the best of my knowledge,this paradigm is not yet formally named and standardized. Common scenarios rangefrom MEC to large cloud platforms. A typical and timely example is the current re-liance of the fifth generation (5G) mobile communication networks and beyond onthis paradigm shift from the current network forwarding of data to network process-ing of information. In fact, several of these scenarios are being addressed in the

99

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

upcoming 5G standards, where the architecture of 5G-based services will play anessential role [120]. The virtualization and softwarization of network resources andfunctionalities have the dominant impact in these scenarios, because the functionof the communication network starts to migrate from traditional dumb bit pipes toinformation-oriented provisioning of flexible services. This revolutionary paradigmmigration can include resource-intensive Machine Learning (ML) based applicationsthat need to be dynamically and flexibly deployed and configured across the network.Two trending emerging paradigms, namely SDN and NFV, can enable and acceleratethis paradigm migration. In short, while the SDN gives programmability of the net-working, NFV enables dynamic and flexible deployment and orchestration of NFs inthe softwarized network.However, for normal network researchers, educators and especially students, learn-ing, prototyping and teaching this novel field of study can be difficult due to the re-quirement for an appropriate softwarization virtualization environment. In addition,a number of different approaches to implementing custom virtualization configura-tions exist for some network testbeds based on pure simulation, such as the GENI,which is described in [121]. These are often too difficult to set up and combine inthe general target of hands-on, active learning in the general education environmentthat is focused by this work. These solutions typically add unnecessary barriers andcomplexity to achieve a realistic environment in which it is convenient to study howsuch a network will operate in practice, how to deploy real services on its infrastruc-ture, and how to perform performance evaluation of the novel approach.In response to these challenges, this work describes the design, implementation,and operation of a new software framework or testbed called Communication Net-works Emulator (ComNetsEmu). ComNetsEmu enables any student, researcher, ornetworking expert to build a fully virtualized network on a single COTS device (e.g.a normal laptop or COTS desktop servers). Due to the complexity of a complete(standard-aligned) NFV system implementation and the focus of ComNetsEmu as aresearch-oriented prototyping and teaching tool, at the time of this work, ComNet-sEmu focuses solely on providing NFV Infrastructure (NFVI). This allows the study andapplication of basic and advanced principles of SDN and NFV to be performed at anytime, on any COTS device, while allowing the implementation of other essential NFVcomponents in the future. The main contribution of this work is therefore to en-able research prototyping as well as teaching and training through problem-basedlearning of modern networks driven by SDN and NFV.This softwarization testbed framework is developed to run inside a single stan-dalone VM that combines the widely used SDN network emulator Mininet [122] andthe de facto standard application container framework Docker [123] for NFVI into anintegrated framework. The freely accessible collection that makes up ComNetsEmualso provides numerous representative off-the-shelf examples of SDN and NFVI ba-sics, as well as more advanced practical applications and APIs to further extend themas needed. All source code and comprehensive documentation are publicly availablein the Gitlab repository [119] of the The Deutsche Telekom Chair of CommunicationNetworks (ComNets) at Technische Universität Dresden (TUD). Furthermore, an in-depth introduction of the ComNetsEmu and review of representative examples andtheir corresponding applications can be found in the book written by Fitzek et.al. [1].

100

5.2 The Architecture of ComNetsEmu

5.2 The Architecture of ComNetsEmu

As introduced in Section 5.1, the SDN functionalities of ComNetsEmu are providedby the widely used famous Mininet framework. Therefore, a brief introduction ofMininet is performed before describing the novel enhancements provided by Com-NetsEmu.
5.2.1 SDN Environment with Mininet
Mininet is a lightweight and most widely used STOA network emulation environmentthat enables rapid prototyping and evaluation of a complete and practical networksystem based on the functionality of the Linux OS [122]. In special, Mininet uti-lizes the built-in virtualization capabilities in the modern Linux kernel to create avirtualized network of network applications, hosts, switches, routers and other com-mon types of network nodes on a single underlying physical machine. BecauseMininet supports OpenFlow [124] protocol and other SDN components, it is ableto support rapid prototyping for SDN development in a very straightforward, rapidand reproducible manner. While like many Mininet-based projects, Ryu SDN con-troller [125] is chosen by ComNetsEmu to demonstrate most SDN related examples,any OpenFlow-enabled SDN controller can be adopted, including ONOS [126] orOpenDayLight [127]. However, industrial-grade and production-oriented SDN con-trollers are not the focus of this research-oriented platform, namely ComNetsEmu.Since Mininet makes use of the application container related mechanisms of theLinux kernel, Mininet hosts all share the same Linux OS kernel as well as process IDs,usernames and file systems, since they execute as regular processes with configurednamespace and control groups. Each host in Mininet also has a separate networkstack (by using the network namespace), including common resources such as Ad-dress Resolution Protocol (ARP) caches or routing tables. In addition, each host canbe allocated withmultiple virtual network interfaces. By default, the veth devices pro-vided by Linux kernel are used. veth device can be connected to a virtual softwareswitch. Similarly, the connected virtual links can be individually configuredwith differ-ent representative characteristic parameters, such as (propagation) latency, band-width and loss rate. Therefore, the Mininet emulator provides an ideal lightweightand high-fidelity environment for reproducible SDN-powered network research.
5.2.2 ComNetsEmu Enhancements and Architecture
ComNetsEmu extends the vanilla Mininet to support better support emulation ofversatile COIN related applications. It extends and puts forward the concepts andwork in the Mininet-fork Containernet project [128]. It uses a slightly different ap-proach to extend the Mininet compared to Containernet [128]. One main focusof ComNetsEmu is to use “sibling containers” to emulate softwarized network sys-tems with computing in the loop. Compared to vanilla Mininet and Containernet,ComNetsEmu is able to manage Docker containers inside Docker hosts. Docker-IN-Docker (DIND) (or, more precisely, the “sibling container”) mechanism is used as a

101

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

lightweight emulation of nested virtualization scenarios. A Docker host with multipleinternal Docker containers deployed is used to mimic an actual physical host run-ning Docker containers (application containers). While the default Mininet modulefor hosts is extended to provide functionality for managing DockerHost instances,ComNetsEmu provides an additional APPContainerManager component to coordi-nate internal application Docker containers (“sibling containers”). Emulating physicalhosts with Docker containers also enables the Mininet manager to execute long-running processes in these internal containers.One main motivation for extending the Containernet project [128] to a nested vir-tualization strategy comes from the important requirement to control the emulatedcommon hardware on which the VNFs or CNFs are expected to run in the emulation.As introduced above, Docker hosts deployed with multiple internal Docker contain-ers are used to emulate the actual physical hosts running the application Dockercontainers. In an environment purely using Containernet, CNFs are deployed asDocker containers, replacing vanilla Mininet hosts. However, this approach is lim-iting if the user wants to emulate and investigate the effect of multiple CNFs runningsimultaneously in a single physical host. Moreover, this approach is very inflexiblebecause it does not allow to easily limit and dynamically adjust the available computeresources allocated to each CNF by the physical hosts running multiple CNFs. In myapproach with ComNetsEmu, these limitations are addressed by emulating physicalhosts as Docker hosts (just like in Containernet). This allows to firstly emulate hetero-geneous physical hosts by limiting the number of CPUs and the available CPU timeper host. CNFs are then deployed on top of these simulated physical hosts. Thisrepresents a scenario where multiple CNFs have to share the limited computationalresources of a single physical host (with the described CPU limits). Therefore, thisallows for the evaluation of more complex and practical scenarios (and algorithms)where CNFs must be migrated to other hosts in the network because they cannotmeet latency requirements (not due to propagation latency), but due to the lengthof time required to access host CPU cycles. This enables users of ComNetsEmu todeploy and test algorithms that optimize the placement of CNFs to minimize total la-tency while experimenting with propagation latency and computation latency. Thus,the ComNetsEmu framework can be used to test algorithms and technologies to findthe optimal placement of CNFs with not only the practical networking constrains ofbandwidth, latency, loss rates but also the computational constraints of availableCPU time and number of CPUs. It should also be noted here that another importantbenefit of this mechanism (“sibling containers”) is the significantly reduced overheadcompared to approaches that employ full VMs for host or network function emula-tion, while maintaining ease of use and flexibility.ComNetsEmu provides a collection of numerous built-in examples for its main fea-tures and the use of Python APIs. For instance, dockerindocker.py and
dockerhostmanageappcontainer.pydemonstrate how to deploy andmanage aDockercontainer within each virtual Docker host. The dpdk directory in the example showsthe basic setup for running a DPDK-accelerated layer 2 forwarding application onComNetsEmu, without specific hardware support. The overall ComNetsEmu archi-tecture and its main components are illustrated in Figure 5.1. Virtual hosts are con-nected to a configurable data plane managed by ComNetsEmu, which provides an

102

5.3 ComNetsEmu Hands-on Examples

Data plane

Container 3: Server B

Container 3a

App 2b

...

App 3

Server vSwitch

Client vSwitch

Container 1: Client

App vCPU

vStorage

vEthernet

Control plane

Container 2: Server A

Container 2a

App 1

Container 2b

App 2a

...

Shared network namespace

Application
configuration

manager

SDN controller

Figure 5.1: The architecture view of the ComNetsEmu. Reprinted from my journal
paper [118].

interactive shell to execute commands. Each networked host is implemented as aDocker container within Mininet networking, allowing for finer-grained and flexibleresource isolation.

5.3 ComNetsEmu Hands-on Examples

The practical usage of ComNetsEmu is highlighted in this Section with two represen-tative hands-on examples. Information and information about additional examplesand practical applications can be found in the book [1].

5.3.1 ComNetsEmu Echo Server Example
The purpose of this first basic and elementary example is to show the general in-teraction with APIs provided by ComNetsEmu by creating a generic example thatdemonstrates the basic usage of the emulator. Users can consider this exampleas a general template or canvas on which to further design and emulate their owndesired system. In this basic example, a system consisting of two interconnected em-ulated computing hosts will be created. These hosts represent the computing infras-tructure of user devices and service providers where different network applications

103

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

can be deployed. All files for this example are located in the examples/echo_serverfolder.

10.0.0.1 10.0.0.2

S1 S2mgr

bash echo svr

h1 h2

link = 10 MBps ; 10ms

net12 4 4

3 3

6 6

5

Figure 5.2: The topology of the echo server as a NF. Reprinted from my journal pa-
per [118].

Topology for Emulation In this example, a TCP echo server is deployed on onehost, while a TCP client is deployed on the other host sending data to the echo server.The to be emulated topology is illustrated in Figure 5.2. Each host is connected to asoftware switch, and the switches are then interconnected to each other via an ana-log communication link. Each link is configured with customized bandwidth, latencyand random loss rate. This topology is created using the Python script topology.py.Corresponding Containernet and Manager objects are firstly created, called (1) and(2) in Figure 5.2. Subsequently, h1 and h2 are created and assigned IP addresses.These hosts were initialized with a base Docker image called dev_test provided byComNetsEmu. After the hosts were created, switches S1 and S2 are created, as wellas links for bandwidth and latency limits. Once the topology was set up, the echoserver is created by running the Docker container. For the client, it is executed withthe BASH shell provided by h1.
The Client and Server The TCP server can be implemented using any program-ming language or any software the user prefers. As long as it can be integrated intoa Docker container, ComNetsEmu can deploy and run it as a NF. In this basic ex-ample, the TCP server is implemented in Python, the file is called server.py. Tocontainerize it, a Dockerfile is provided that simply uses a Python base image andcopies the Python script to the container’s image. The deployed server simply waitsfor TCP connections, accepts them, listens for a TCP segment, and echos it back tothe sender’s IP address. The netcat tool is used as the TCP client.

104

5.3 ComNetsEmu Hands-on Examples

5.3.2 ComNetsEmu Mobile Edge Cloud Example
This Subsection targets to demonstrate the holistic approach provided by ComNet-sEmu to emulate a practical 5G network by using its SDN and NFVI capabilities toemulate a MEC system. Source code of this example can be found in the directory ofthe abovementioned Gitlab repository: app/realizing_mobile_edge_clouds. Thewhite paper [129] from European Telecommunications Institute (ETSI) defines MECas a system that provides IT service environments and cloud computing capabilitiesat the edge of the mobile network, within the RAN, in closely proximity to mobileusers to meet latency constraints for time-critical applications. Implementing MECfor trending latency-sensitive applications such as self-driving cars also requires mi-grating cloud services from one edge computing node to another in time, all seam-lessly and transparently to the end application user. In this example, an MEC systemis prototyped that hosts the previously discussed echo servers in an emulated geo-graphically distributed network.

MEC 2MEC 1

User Mobility

Probing
Agent.py

Client.py

SDN Controller

Switch 1
@BS1

Service Migration
Server.py

Server 11 Server 12 Server 21 Server 22

Switch 2
@BS2

Server.py

Server 13

Probing
Agent.py

Probing
Server.py

Probing
Server.py

Probing
Server.py

Probing
Server.py

Server 23
(Data Plane)(Ctrl

Plane) (Ctrl Plane)

Figure 5.3: The topology of the MEC migration example. Reprinted from my journal
paper [118].

Topology for Emulation The topology designed for this example is illustrated graph-ically in Figure 5.3. It is assumed that there are twoMECs, each with one Base Station(BS) (BS1 and BS2, respectively), that are geographically separated. Each BS is rep-resented by its respective SDN switch, namely Switch 1 and Switch 2. Both switchesare connected to the same Ryu SDN controller. Each MEC also includes a cluster ofheterogeneous physical servers connected to their representative switches. Clients,which can be assumed to be standard User Equipments (UEs), can be connected toup to one BS at a time. Therefore, UE mobility can be easily emulated by disconnect-ing one switch and connecting to another. In this example, the basic echo service is

105

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

hosted on one of the servers as a targeted service provided by MEC system. Whena UE, namely a client, moves from one BS to another, the echo service is migrated toa different emulated physical server, and the migration is completely transparent tothe client.
Selection of the Server to Host the MEC Service Choosing the optimal server tohost the MEC service is critical to ensure low latency services. The server selectiondecision depends not only on network traffic and congestion-related latency, butalso on latency due to performance capacities per host, which can vary dynamicallydepending on the current workload of servers running other parallel services. Astraightforward and intuitive way to measure the end-to-end latency from the BSto each host is to simply obtain the latency from the probe request microservicerunning closest to the switch to the probe response microservice running on eachpotential MEC host. A dedicated probing service is used in this work to measurelatency instead of using standard Internet Control Message Protocol (ICMP) basedpings, because the probing service process running in user space can also take intoaccount any processing latency incurred on the host due to dynamic server load.The probing server behaves similarly to a standard echo response server in that theprobe agent periodically sends a probe packet to the probe server with a timestampin the payload. This timestamp is used by the probe agent to estimate the latency ofeach host from the BS to the MEC system.
Implementation on ComNetsEmu Similar to the Echo Server example describedabove, a Containernet object with a corresponding manager and a Ryu SDN con-troller are firstly created. After that, two virtual switches are created, representingthe endpoints of two geographically distributed BSs. Two Docker hosts are spawnedto emulate MEC servers. By using manager object, a Docker container implementingthe probe server is added to each of the 4 hosts. In addition, another host imple-menting a probing agent is generated and connected to each of the 2 switches. Theprobing agents periodically report their respective latency to each MEC host to theSDN controller. Based on probing results, the controller determines the ideal hostfor NF placement and spawns or migrates the application service to the correspond-ing host. For the sake of simplicity, the challenges involving stateful service migrationare not considered in this example. Therefore, the migration process is as simple asspawning the application server container in the new MEC host, updating the trafficin the switch to reroute packets to the new host, and remove the application serverfrom the old host (in that order). The client implementation is similar to the exampledescribed earlier, where the migration of clients is achieved by simply disconnectingfrom one switch to another.

5.4 Summary

This Chapter describes a lightweight andpractical software network emulator, namelythe Communication Networks Emulator (ComNetsEmu), capable of running on any

106

5.4 Summary

laptop or COTS server, which is tailored to teach the basic and advanced conceptsrelated to the introduction of SDN and NFV in modern networks, namely networksoftwarization. While currently focused on NFVI, future implementations of otherimportant NFV components are able to greatly expand the scope and use cases ofComNetsEmu. The ComNetsEmu framework, which is freely available to the com-munity [119], significantly simplifies the learning of such concepts by providing com-prehensive built-in examples and offers the possibility to prototype new networkingsystems and experiments with softwarization solutions.

107

6 You Only Look Once, but Compute
Twice (YOLO-CT): COIN for
Low-latency Object Detection in
Softwarized Networks

Part of contents in this Chapter has been published in my journal paper [10]: "Youonly look once, but compute twice: Service function chaining for low-latency objectdetection in softwarized networks." Applied Sciences 11, no. 5 (2021): 2177. How-ever, some transport protocol issues are not addressed in [10]. This open topic isfurther researched and described in this Chapter. The proposed Real-time TransportProtocol (RTP) based transport solution is designed, implemented and also evaluated(with ComNetsEmu) in this work.

6.1 Introduction

6.1.1 Overview and Motivation
As summarized in Section 3.6, the CALVIN approach is able to achieve ultra-reliablelow-latency RTT performance at the cost of significantly reduced bandwidth perfor-mance. For STOA softwarization data plane technologies, to the best of my knowl-edge, there is a fundamental trade-off betweenmaximal available bandwidth and theper-packet latency performance. However, a lot of real-world applications have strictrequirement for both relative high bandwidth and ultra-reliable low-latency perfor-mance. For example, an emerging use case for 5G and beyond is low-latency andreliable real-time video streaming analysis.According to the prediction performed by Cisco [130], by 2022, 82% of the IP trafficwill consist of video traffic. Within the domain of video data traffic analysis, specifi-cally, the object detection subcategory presents an additional significant latency re-quirement, especially when applied in some certain scenarios [131]. The object de-

109

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

tection and analysis in live video streams is mainly based on real-time video analy-sis in the field of Computer Vision (CV). Typical examples for real-time object detectand analysis contain Google Lens, smart city applications based on video surveil-lance [132] or autonomous driving cars. Two sample results of object detection ap-plications are illustrated in Figure 6.1.

(a) Pedestrians (image from [133]). (b) Vehicles (image from [134]).
Figure 6.1: Object detection use cases including pedestrian and vehicles detection.
Due to the fundamental computational complexity involved, there are significantchallenges to responsively and reliably perform real-time video analytics on relativelyresource-constraint devices, such as mobile phones (namely normal UEs) or ad-hocIP cameras for video surveillance. These requirements become even more challeng-ing when taking STOA relative high frame rates of live video streaming into consid-eration. The computational and energy overheads are often very high when datais processed locally, as the captured image analysis and CV tasks constitute the vi-sual understanding, often incorporating theML-based algorithms involved. In recentyears, ML based approaches have undergone steady improvementswith significantlyincreasing responsiveness, precision and recall, especially for the approaches basedon the promising Deep Learning (DL) technologies [135].Because these DL-based approaches can significantly outperform conventionalapproaches, DL-based approaches are becoming increasingly popular and widelydeployed. These approaches are often based on the CNNmodel. Although the train-ing process of these CNN models are highly resource intensive, pre-trained modelscan be used to perform the inference on real-time video streams with a reasonableaccuracy. Therefore, the focus of this work is only on the inference step. Represen-tative STOA approaches of this type include Regions with CNN (R-CNN) [136], FasterR-CNN [137] and especially YOLO [138], which novelly combines the high precisionwith significantly improved inference speed.In the environment with highmobility, the focus on latency optimizationmust com-bine several requirements, such as resource usage and low latency object detection.Common computational resources considered include memory, CPU and other ac-celeration hardware including e.g. Graphics processing unit (GPU). However, overallsystem cost often needs to be factored into the full solution. For example, future

110

6.1 Introduction

smart transportation systems and object detection applications connected to self-driving cars are highly latency sensitive and mission critical at the same time. Cur-rent conventional approaches are usually limited in realizing the full potential offeredby the upcoming and trending softwarization-enhanced networking system. Severalquestions and challenges exist for the conventional store and forward network archi-tecture:
• Object detection based applications introduced above are very resource in-tensive. Therefore, they are not suitable for locally and prolonged executionon resource-constraint and battery-limited devices.
• In comparison, high computational power and flexible resource managementprovided by the STOA trending cloud platforms can be used to accelerate thesecomputationally intensive tasks through networking enabled computational of-floading [139].
• One interesting promising approach to overcome challenges of fully local pro-cessing while ensure low latency performance is to combine local in-networkprocessing (or COIN) and remote cloud computing service. Although conven-tional networking infrastructure and related protocols can not provide nativesupport for COIN functionalities, new softwarization based networking systemprovides support to deploy and orchestrate COIN applications.
• The cloud-based offloading requires all video data to be transmitted throughthe network. The task of real-time streaming of high resolution video, whichhas normally very high bandwidth requirement, is challenging for the QoS ofthe underlying networking system, especially the latency performance.
• Bufferbloat [140] or buffer overflow of network nodes can be one of the maincause of delayed or even losses of packets in a network even within a limitedgeographical area, e.g. a campus network. Bufferbloat describes the behav-ior of network nodes when their buffers to store and queue packets almostreach the maximal capacity and have to queue packets for a significantly longtime or even drop the incoming packets until buffers are freed by processingand transmission processes. According to the initial measurements performbyRischke et.al. [141] on a practical 5G campus network testbed, there are nearlyzero network link losses in the campus network, especially the core network,and packets can be dropped mainly due to the bufferbloat issue. Comparedto full hardware solutions, the software based packet processing proposed byNFV paradigm makes this problem more challenging due to the limited rawperformance provided by software.
• Convolutional STOA transport layer protocols including TCP and UDP are de-signed and implemented based on the end-to-end principle without consider-ing the COIN paradigm. Therefore, these conventional protocols in transportlayer and beyond are not able to be directly used by COIN applications. Sev-eral challenges, open questions and relatedworks are listed by one draft of IETF

111

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

COIN Research Group (COINRG). Thus, transport protocol issues for network-ing system with COIN enabled is an interesting research area when conductingthis work.
One novel and promising direction to address above described challenges is to re-duce the total amount of data required to be transmitted by the network from enddevices to MEC cloud platform. One can argue that moving everything to hardware,e.g. with P4 [142] programmable switches and other special hardware network for-warding chips can solve the performance problem. But it’s argued in this work thateven if it’s faster, there’s still a limited queue size that can not be ignored. The amountof data generated by end devices would keep increasing with the increased num-ber of connected devices and their requirement of high-quality multimedia services.Moving everything to hardware may not be the silver bullet to solve all latency prob-lems, especially the price must be paid to lose the easy programmability and flexibil-ity of software solutions. Therefore, the programmability and support for intelligentdata processing of the software based solutions are researched in this Chapter toensure and even improve the latency performance of the network.

link 4

SDN Controller

Server

link 5
link6

link 3

Middlebox 1 Middlebox 2

link 2

link 1Client 1

Client 2

Figure 6.2: A basic dumbbell topology for remote cloud based objection detectionapplication.
A minimal dumbbell topology of a typical minimal MEC cloud system enhancedobject detection service is graphically illustrated in Figure 6.2. Because not alwaysboth clients send traffic at the highest available bandwidth, the network node andlinks (namely, the links ranging from 3 to 6 in Figure 6.2) are shared between clientsin order to save the deployment and maintenance cost for Internet Service Provider(ISP). In real-world deployment, the maximum available bandwidth for link 4 can beas little as a quarter of the maximum bandwidth for link 1, or even less. However,the client 1 can request the object detection service provided by the server runningin the cloud while client 2 may also send high speed traffic to the cloud server forother services. Then the shared link 4 becomes the bottleneck and the middleboxes1 and 2, on which the CNFs are deployed, are overwhelmed and start queueing or

112

6.1 Introduction

even dropping received packets. This is so called the dumbbell problem. The com-mon STOA solution for this issue is performed only on the end hosts, namely theclient is able to detect this bottleneck and use a pre-configured congestion controlalgorithm to reduce the sending rate. However, these congestion based approachesusually require multiple RTT to reach the stability and have negative impact on band-width and latency performance. Furthermore, approaches only rely on end hosts canwaste the computing power and programmability provided by the softwarized mod-ern network devices. If the middlebox 1 in the Figure 6.2 is able to perform somesmart computation on the incoming video stream to significantly remove redundantor unnecessary data and thus reduce the raw amount of data needed to be transmit-ted through the networks, the bandwidth pressure on other network nodes and linkscan be significantly reduced. Therefore, in this Chapter, a novel approach named asYou Only Look Once, but Compute Twice (YOLO-CT) is designed, implemented andevaluatedwith the ComNetsEmu testbed introduced in previous Chapter 5which uti-lizes the computational power provided by emerging COIN paradigm to deploy partof the CNN model into the network for image pre-processing and data reduction.

6.1.2 Related Work

With the development emerging network softwarization technologies such as SDNandNFV, the programmability and flexibility of the communication network are signif-icantly improved. This trend leads to a new and novel paradigm for the next genera-tion communication network, namely COmputing In Network (COIN). COIN is accom-panied by the prospect of deploying data processing functions on network devicessuch as switches, routers, middleboxes and NICs [143]. The Internet was designedas a best-effort packet network which offers very limited guarantees for timely andsuccessful deliver of packets and corresponding data. Complex data manipulation,content-aware data computation, and advanced protocol features of transport layerand beyond are generally only deployed by the end hosts which makes the networknodes and links as a “dumb pipe” focusing only on a simple data transmission in a
store and forward manner [143]. This design has been shown to be suitable for awide variety of applications and has contributed to the rapid and wide adoption andgrowth of the Internet.However, as already introduced in the previous Subsection, emerging fields anduse cases require more than best-effort forwarding for higher and stabler perfor-mance, especially the latency performance. The vision of COIN or INC and corre-sponding paradigm of joint optimization of both computation and networking re-source of the underlying communication network draws a lot of research interestsfrom both academia and industry.Sapio et.al. explores the programmability provided by the modern network dataplane to offload data aggregation tasks into the network. This work sheds the lighton the direction to utilize COIN capabilities to reduce the bandwidth pressure onthe transmission network. However, the initial prototype in this work uses UDP andhas the strict limitation that the size of the used Application Data Unit (ADU) mustbe smaller than the MTU of the underlying network. The ADU is the Protocol Data

113

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

Unit (PDU) for the application layer. For instance with video streaming over network,the ADU can be a single decodable video frame. Normally, the size of a video ADUis much larger than the MTU provided by the underlying network. Therefore, eachADU has to be fragmented and reassembled for network transmission. Convention-ally, these operations are only performed on the end hosts. However, when COINparadigm is considered, these two essential operations related to ADU processingmust be considered for all COIN-enabled network nodes. The idea to offload theexecution of part Artificial Neural Network (ANN) layers to in-network devices to re-duce the workload of CPUs is explored in [144]. However, this work focuses mainlyon how to efficiently split the ANN. The proposed distributed system is not evaluatedneither on a network emulator nor on a distributed physical testbed. The transportissues introduced above are also not covered in this work.In [145], an edge detection filter is prototyped for programmable network devices.It explores the challenges involved in offloading CV applications to the in-networkdevices. However, the transport issues of network communication are also not re-searched in this work.Wu et.al. [146] designed, implemented and evaluated the novel Network Joint Inde-pendent Component Analysis (NJICA) approach based onCOIN paradigm. Comparedto the conventional centralized Independent Component Analysis (ICA) approaches,NJICA can significantly reduce the computation latency on remote servers. However,this work proposed a clean-slate (namely, notmature and robust) message transportprotocol, which has the critical challenge to be deployed in real-world networking andcoexist flawlessly with other standardized network protocols.COINRG Besides the academia works, COIN also drawsmany interests from indus-try. Firstly, IETF now has a COINRG [147] exploring this topic. Its goal is to investigatehow to benefit from this emerging disruption to the Internet architecture to improvenetwork as well as application performance [147]. Several drafts are published al-ready by COINRG to discuss promising use cases and open questions of COIN.COINRG published a draft about targeted use cases for COIN [143]. In this draft,accelerating large volume applications inmodern industrial networks can be promis-ing use case of COIN. As described in the draft [143], end devices (e.g. industry sen-sors or cameras) in modern industry networks can generate a large volume of datathat can not be efficiently processed by end devices themselves. Off-premise cloudplatforms offer promising and cost-effective solutions with better flexibility and scal-ability. However, there’s no free lunch, transmitting large volume data to remotecloud platform poses new challenges, especially for the latency performance. Pre-processing or filtering data with in-network computing can be a very promising solu-tion to address the latency challenge. So this work exactly looks into this scenario andproposed a prototypical system covers the core questions: (i) How to pre-processinglarge volume video data with reasonable complexity and reduce the volume asmuchas possible ? (ii) What network protocols should be implemented and deployed toenable this application?COINRG also published a special draft [148] discussing the open challenges re-lated to the transport layer for COIN applications. COIN breaks one fundamentalconsideration for conventional Internet, namely the end-to-end principle. The net-work should only perform transparent and reasonable operations without modify-

114

6.2 Proposed Approach: YOLO-CT

ing data packets. Therefore, typical transport protocols like TCP are not designedtaking COIN into consideration. Several open challenges including addressing, flowgranularity, collective communication and transport features are listed in the draftwithout concrete solutions. So this work explores the opportunity to address theseopen challenges and propose solutions as much as possible. The proposed designis implemented and evaluated on network emulator to show its practicality.

6.2 Proposed Approach: You Only Look Once, but
Compute Twice (YOLO-CT)

The design of the proposed system, called You Only Look Once, but Compute Twice(YOLO-CT), is based on the targeting use case: Interactive and real-time ComputerVision (CV) application based on cloud computing and Deep Learning (DL). Examplesof this application type include real-time and low-latency video streaming for surveil-lance or robot control. It should be highly noted here that this type of applicationshas the following characteristics that have significant impact on the system design:
1. These applications favor timeliness over reliability. Delivering video frames isvery sensitive to latency. If the frames are not delivered to the cloud in time,the object detection results may be meaningless. Therefore, retransmittingpackets or reducing the sending rate has a non-negligible impact on the func-tionality of the application. In order to guarantee the QoS and responsiveness,the sender needs to generate Constant Bit Rate (CBR) traffic. These two re-quirements make it challenging to trade-off latency and bandwidth using someconventional approaches based on queue management or batch processing.
2. Unlike the transmission of controlmessages, video streaming applications haverelative high bandwidth requirements. Even though the video frames can becompressed at the source, the compressed frame still needs to be fragmentedinto multiple network packets. If the network functions want to perform smartcomputing on the ADU, it can not just assume all needed data in an ADU canbe packed into a single network packet. However, most papers related to COINuse this assumption and mention that this is a strict limitation that should beaddressed in their future work or other research works. As described in [148],conventional devices are built to process incoming traffic on a per-packet ba-sis with very limited support for stateful traffic processing. For payload-awareprocessing, flow granularity must be determined to enable network nodes toreassemble the ADU and re-fragment processed payload into new packets. Forpayload-aware smart computations, the granularity of the flow must be deter-mined so that the network nodes can reassemble the ADUs and re-fragmentthe processed ADU into new packets.
3. High performance Deep Learning (DL) based applications have high require-ment for computational resource. For example, some gigabits (GBs) of RAMare needed to fully load the neural network model. It is challenging to do low

115

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

latency and energy efficient DL model inference on end devices or networkdevices with limited computational resources and features.
6.2.1 YOLO-CT Design and Architecture
These essential requirements listed above really limit the choices with STOA acces-sible technologies. The proposed the YOLO-CT system, which is illustrated in Fig-ure 6.3, has the following characteristics to address the aforementioned challenges:

Middlebox 2

Open vSwitch

Ryu SDN Controller

Server

Open vSwitch

YOLO Model Part 2

(conv_9 -> output)

Full YOLO Model

Client

Middlebox 1

Containerized Network Function

Packet Engine (DPDK)

IPC

Deep Learning Engine

IPC

YOLO Model Part 1

(input -> max_8) Conv + Pool Layers

Packet Engine
(DPDK)

RTP

Reassembler

RTP

FragmenterForwarder Forwarder

Compute and Forward

Store and Forward

Figure 6.3: The proposed approach You Only Look Once, but Compute Twice (YOLO-CT). A detailed illustration of the system components and traffic flows.
1. The proposed systemprioritizes latency performance over throughput and reli-ability. It utilizes the computing resources in the network to reduce end-to-endlatency. Based on this consideration, mechanisms based on retransmissionor aggressive reduction of sender speed are not considered in this work. Theidea of COIN is explored here and perform compute and forward (in detail, fea-ture extraction using ANN) to reduce the amount of data that must be trans-mitted through the network. Instead of tuning batching or scheduling mech-anisms, the proposed containerized network function explore the counter-intuitive idea if reducing end-to-end response latency by deliberately bufferingand processing packets before forwarding them, when the network nodes areunder heavy load. The response latency is the time between the client finishsending the frame until it receives the response from the server, so namelyit is the end-to-end latency including all network and compute latencies. The

116

6.2 Proposed Approach: YOLO-CT

co
n
v

1

m
a
x

2

co
n
v

3

m
a
x

4

co
n
v

5

co
n
v

6

co
n
v

7

m
a
x

8

co
n
v

9

co
n
v

10

co
n
v

11

m
ax

12

co
n
v

13

co
n
v

14

co
n
v

15

co
n
v

16

co
n
v

17

m
ax

18

co
n
v

19

co
n
v

20

co
n
v

21

co
n
v

22

co
n
v

23

co
n
v

24

co
n
v

25

co
n
v

27

re
o
rg

2
8

co
n
v

30

co
n
v

31

0

2500000

5000000

7500000

10000000

input

%
1
0
6
6

%
2
66

%
53

3

%
1
3
3 %
2
66

%
1
3
3 %
2
66

%
6
6

%
1
3
3

%
6
6

%
1
3
3

%
3
3

%
6
6

%
3
3

%
6
6

%
3
3

%
6
6

%
1
6

%
3
3

%
1
6

%
3
3

%
1
6

%
3
3

%
3
3

%
3
3

%
8

%
8

%
3
3

%
13

Figure 6.4: Output size of each layer of the YOLO-v2 model. Reprinted frommy jour-
nal paper [10].

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

Average Precision(%)

0

20

40

60

80

100

120

S
iz

e
o
f

co
m

p
re

ss
ed

im
a
g
e/

S
iz

e
o
f

o
ri

g
in

a
l

im
a
g
e(

%
)

JPEG

WEBP

H264 slower

H264 medium

H264 faster

H264 ultrafast

80.0 82.5 85.0 87.5 90.0

20

30

40

50

Figure 6.5: Basic image-based compression methods for feature maps. Reprintedfrommy journal paper [10].
innovative method used to reduce the data is to split the convolutional neuralnetworkmodel of YOLO and offload relative lightweight layers (namely convolu-

117

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

tional and pooling layers) to extract featuremaps from the source coded imageframe. Then instead of forwarding all packets of the original image frame, thenetwork function only send the compressed feature maps extracted from theimage to the next hop. Compared to the source coded image frame, thesefeature maps can be further compressed. According to Figure 6.4 and corre-sponding detailed description in my published journal paper [10], at least 50%of the data can be compressed with negligible impact on the performance ofthe object detection application. The reason for negligible impact on the objectdetection application is because the DL model running on the server node ac-tually just wants feature maps instead of the original image to further processand perform object detection and classification. Therefore, the performance(precision and recall) of this application is not impacted when offloading thisfeature extraction process to the network nodes. The performance of the ap-plication suffers only when the featuremaps are further compressed with lossymethods. However, according to Figure 6.5 and corresponding detailed evalu-ation in my journal paper [10], the impact of the performance is very small (lessthan 2%) when feature maps are simply flatted and compressed with Joint Pho-tographic Experts Group (JPEG). The proposed network function is fully imple-mented with high performance software technologies and containerized withDocker. Therefore, it can be deployed on any NFV network nodes. The designis to deploy this feature extraction NF to the nearest NFV node to client node.Then, all subsequent nodes in the network have much less traffic to queue andhandle. The end-to-end latency performance can be improved.
2. In order to enable the proposed in-network computing NF for video traffic, ex-isting and newly proposed network protocols are surveyed and analyzed. Asfully described in a recent draft [148] published by the COINRG in the IETF,conventional end-to-end design (dumb network) principle and transport layerprotocols brings big challenges to COIN applications. Several open questionsare raised in the draft without solutions, including addressing, flow granularityand transport features. This draft draws some research interests and thereare publications [146, 149] that work on completely new clean-slate transportlayer protocols to address those open questions. It is argued in this work thatinstead of introducing yet another new transport layer protocol, essential partsof the already standardized application protocols for real-time streaming pro-tocols can be implemented in the network function to provideminimal and suf-ficient features for COIN applications. The reason for avoiding new transportprotocols is clear: All nodes in the network including clients and serves need tosupport this new transport protocol. This means that a solid implementation ofthis transport stack must be available for all types of network nodes. Accordingto the adoption of the Stream Control Transmission Protocol (SCTP) protocol,introducing a new transport protocol just to provide some limited support forCOIN applications may be worth the significant effort. Then the same directionof the relative successful protocol Quick UDP Internet Connections (QUIC) isfollowed to select a protocol built on top of UDP for this real-time communi-cation task. After some comprehensive survey and analyse, RTP is chosen as a

118

6.2 Proposed Approach: YOLO-CT

promising protocol to explore for COIN applications that smartly process pack-ets and drop unnecessary data directly and early in the network. According tomy point of view, RTP is the most suitable standardized protocol (or one of themost suitable standard protocols) for the aforementioned applications and itcan be utilized and extended for COIN applications:
a) RTP protocol uses application-layer framing [150]. This allows applicationsand also network nodes to handle ADUs. Its standardizedmechanisms forADU fragmentation and reassembling solves the flow granularity problemdescribed in [148].
b) RTP has a IETF working group for congestion control mechanisms for real-time media. So the proposed network function can adopt these mecha-nisms instead of re-inventing congestion control mechanisms that do notwork well with e.g. TCP.
c) Like QUIC, RTP is built on top of UDP and normally implemented fully inuser space. This enables quick and simple iteration of the protocol itselfand its implementation. This makes it easier to utilize the mature userspace acceleration technologies and be deployed and maintained on thenetwork edge.

3. Instead of using programmable hardware switches or routers. Middlebox withcontainerized network functions.
Before the introduction of the implementation of the proposed YOLO-CT system,a theoretical modelling of the response latency, which is the key latency metric forthis work, of the topology illustrated in Figure 6.3 is described in the next Subsec-tion 6.2.2. This modelling targets at the demonstration of why this counter-intuitivedesign of YOLO-CT approach is able to reduce the service latency, when underlyingnetwork is overwhelmed with high traffic workload.

6.2.2 Modelling of Service Latency

A typical remote cloud based application has different types of latencies. These la-tencies contain two parts: latencies in the packet-switched network and latencies onend hosts. Network latencies typically contain four parts: propagation delay, trans-mission delay, queuing delay and processing delay. Latencies on end hosts containpacket IO latency to get all packets and then processing latency for ADU. For theend-to-end response latency modelling, following simplifications are applied in thiswork: (i) The packet IO latency on the server side can be ignored because it’s relativesmall. (ii) The response message by the server, e.g. the object detection result, isrelative small compared to the video frame message uploaded by the client. So itcan be packed into a single packet. (iii) For simplification, it’s assumed the networklatency performance is symmetric. Namely, all types of latencies for a single packetare the same for both client to server and server to client directions.

119

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

Table 6.1: YOLO-CT: Summary of main notations.
Symbol Description
M Number of hops in the multi-hop topology
i Index of the current hop
N Number of packets contained in an ADU
P Number of packets contained in a processed ADU
j Index of the current packet
T resp
stor Response latency for store and forward

T resp
comp Response latency for compute and forward

T tran
i,j Transmission latency of j-th packet on i-th hop

T queu
i,j Queuing latency of j-th packet on i-th hop

T proc
i,j Processing latency of j-th packet on i-th hop

T prop
i Propagation latency of i-th hop

T comp
serv Computation latency of ADU on the server

T reas
N Latency to reassemble N received packets

T comp
nf Computation latency of ADU on the network function

T frag Latency to re-fragment processed ADU
α Ratio between computing power between NF and server

T resp
stor “

N
ÿ

j“1

˜

M
ÿ

i“1

`

T prop
i,j ` T queu

i,j ` T proc
i,j

˘

¸

` T comp
serv

`

M
ÿ

i“1

`

T prop
i,j ` T queu

i,j ` T proc
i,j

˘

(6.1)

For a multi-hop topology withM network nodes, the end-to-end response latencyof a single flow T resp
stor is formulated in Equation 6.1, when all network nodes only per-form store and forward for all N packets. The N is the number of individual packetsfor one video frame (ADU). Due to limitation of theMTU size of the network, one largevideo frame typically has to be fragmented into multiple RTP packets. Each packetneeds to be transmitted, queued and processed by allM network nodes in the path,so these latencies for j-th packet on the i-th hop are denoted as T tran

i,j , T queu
i,j and T proc

i,j .The first line in Equation 6.1 presents the network latency from client to server. Thesecond line expresses the computation latency on the server for ADU processing.The third line expresses the network latency for the response from server to client.

120

6.2 Proposed Approach: YOLO-CT

T resp
comp “

N
ÿ

j“1

`

T prop
1,j ` T queu

1,j ` T proc
1,j

˘

` T reas
N ` T comp

nf ` T frag

`

P
ÿ

j“1

˜

M
ÿ

i“2

`

T prop
i,j ` T queu

i,j ` T proc
i,j

˘

¸

` pT comp
serv ´ α ¨ T comp

nf q

`

M
ÿ

i“1

`

T prop
i,j ` T queu

i,j ` T proc
i,j

˘

(6.2)

Assuming that the proposed feature extraction network function is deployed onthe first and nearest network node, the corresponded response latency T resp
comp is for-mulated with Equation 6.2. By the way, it is also my recommendation to deploythis network function to the nearest network node as much as possible. Mainly fortwo reasons: (i) All following hops have to process less packets, so it’s beneficial forlatency. Also, the latency tax paid to collect N packets on the first hop is relativesmaller. (ii) In reality, N packets can be distributed over multi-path in the transmis-sion. Normally there’s no multi-path routing between the client and the first networknode, namely the gateway, so it’s doable for the network to collect N packets forADU processing. Compared to the store and forward, there are multiple differences:(i) Additional latencies are introduced on the first network node to enable the com-puting on the ADU which is split into N packets, as expressed by the first two lines.Additional latencies include four parts: (1) Additional time to collect N packets in anADU. Because the network function needs to collect N packets before it can startthe processing. So it can not just store and forward each individual packet sepa-rately. So we need to sum up the latencies on the first hop for all N packets (thefirst line in the Equation). (2) Additional time to reassemble the collected fragments

T reas
N . (3) Additional time to process the reassembled ADU T comp

nf . (4) Additional timeto re-fragment the processed ADU into new RTP fragments T frag. (ii) The numberof packets is reduced from N to P for all following network nodes. If the featureextraction function has a very good compression performance, then P ! N . Thenetwork latencies for P packets along the path can be significantly reduced com-pare to the original N packets. (iii) Because part of the application function, namelythe feature extraction, is already performed on the network node, the computinglatency on server can be reduced to pT comp
serv ´ α ¨ T comp

nf q. The reason to have a factor
α (with 0 ă α ď 1) is because the computational power of cloud server and edgenetwork node is normally not equal. Cloud server is normally more powerful thannetwork node. So alpha “ 1

2
means that the server has twice the computing powerof the network nodes for the same task. So when the network node needs T comp

nf toperform the feature extraction function, same operation needs normally less com-putational time when it’s deployed on the server. So the computational time it saves

121

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

for the server is actually α ¨ T comp
nf .

Tdiff “ T resp
stor ´ T resp

comp

ą ´p1 ´ αq ¨ T comp
nf ´ T reas

N ´ T frag

´

N
ÿ

j“1

pT prop
1,j ` T queu

1,j ` T proc
1,j q

`

˜

N
ÿ

j“P

˜

M
ÿ

i“2

`

T prop
i,j ` T queu

i,j ` T proc
i,j

˘

¸¸

(6.3)

The latency difference, namely the gain of the proposed compute and forward ap-proach, can be expressed with the Equation 6.3. By analyse the Equation 6.3, it canbe seen that for compute and forward, the availability and size of the latency per-formance gain mainly depends on two parts: (i) Negative earnings: The additionallatencies introduced on the first node to enable ADU processing and payload com-pression. These latencies are like latency tax we need to pay and are expressed infirst two lines in the Equation. (ii) Positive earnings: Reduced network latencies atsubsequent network nodes in the multi-hop path. This part is expressed as the lastline in the Equation. So there is a trade-off here to determine whether there is reallya latency gain, namely Tdiff ą 0. Given a network topology with fixed parameters anda practical implementation of the feature extraction network function, the first partof latency is almost fixed. The second part, namely the networking latency, dependsheavily on the status of the network. For example, this part can be increased whenone of the subsequent network nodes do not have enough resource to handle theflow (noisy neighbor or scheduling issue or overwhelmed).So the proposed approach YOLO-CT suggests switching between store and forwardand compute and forward dynamically. The network status can bemonitored with e.g.SDN controller or other SDN mechanisms. The expression 6.3 shows that there’sa trade-off between positive and negative earnings in the end-to-end response la-tency. This is also reflected in the evaluation result, the store and forward is not alwaysworse than the proposed compute and forward. When network status is good, thereis no latency gain.

6.2.3 YOLO-CT Implementation
A demonstration of the proposed end-to-end system is illustrated in Figure 6.3. Ac-cording to the design, network nodes and server are aware of the offloaded com-puting in the network while this is totally transparent to the clients. There are dis-cussions [148] about whether and how clients can address and control in-networkcomputing nodes. The proposed approach suggests that this type of compression
and forward offloading should be transparent to clients. This avoids adding addi-tional complexity of the networking system on edge clients, which are typically notvery powerful. Clients send captured video frames in RTP packets and wait for theobject detection results in the response. All traffic flows are managed by the SDN

122

6.2 Proposed Approach: YOLO-CT

controller. The controller can add additional OpenFlow rules to redirect RTP flowsfrom the clients to the middlebox for packet processing. So SDN controller is re-sponsible to monitor the network and trigger computing and forward on demand.The components to enable feature extraction network function are implemented inthe containerized network function.

These components are plotted in the middlebox 1 in Figure 6.3. The networkfunction contains two main components: packet engine and deep learning engine.(i) The packet engine based on DPDK acceleration is used for packet IO, RTP ADUreassembling and re-fragmenting. This component needs to perform high perfor-mance packet processing. It uses DPDK to capture each packet with low latency andbuffer packets (RTP fragments) belonging to the same frame. When the networkfunction receives the last fragment of the frame, it uses the RTP reassemble moduleto reassemble the ADU and extract the frame payload for further feature extraction.Since DPDK does not provide functionalities for this type of stateful processing andADU related operations, RTP reassembler and fragmenter are implemented by uson top of DPDK. Since this is just a prototype, but the implementation is adaptedto the principles of DPDK and tries to achieve low latency performance as much aspossible. This prototype also shows that it’s doable to implement part of RTP stackon top of high performance software framework designed for NFV forwarding plane.This prototype also shows that it is feasible to implement a partial RTP stack on top ofa high-performance software framework designed for the NFV forwarding plane. It ismuch less complex than implementing a generic TCP or SCTP protocol stack. The re-assembled frame is then pushed to the deep learning process via IPC and the packetengine waits and pulls the extracted and compressed feature maps from the deeplearning component. Then the packet engine re-fragments the compressed featuremaps into new RTP fragments and update the content of corresponded receivedRTP fragments with new fragments. Because this feature extraction processing canremove about 50% of the redundant data, the packet engine only needs to sendabout half the number of RTP fragments. (ii) The deep learning component is imple-mented using Tensorflow. The pre-trained YOLO-v2 model is split into two parts.The feature extraction layers deployed on the network function contain the first eightlayers of the full model, namely from input to max_8 pooling layer. When the deeplearning component starts, it loads the pre-trained and split model file and waits forthe packet engine pushing frames for processing. When it receives one frame, itperforms the partial model inference and compress the output feature maps withJPEG. Then it pushes compressed feature maps as one message back to the packetengine.

All source code of the You Only Look Once, but Compute Twice (YOLO-CT) proto-type is publicly available in the GitHub repository [151].

123

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

6.3 Comparison with Clean-slate Message Transport
Protocol (MTP)

Firstly, it is analysed here whether the MTP protocol proposed in [149] is revolution-ary or is really necessary for most COIN applications, especially applications that re-quire low latency. In [149], several important requirements are identified to supportin-network computing. As the comparison performed in [149] shows, UDP proto-col already satisfies the requirements for data mutation, low buffering requirementsand inter-message independence.The open main challenges are: (i) How to apply application layer framing whenADU has to be fragmented into multiple packets due to MTU limitation. (ii) How toenable multi-entity isolation. (iii) How to perform congestion control with COIN intoconsideration.For the issue (i), both RTP and MTP apply almost the same mechanism. In RTP,each packet contains a fragment offset field which stores the offset in bytes of cur-rent packet in one ADU. One ADU can be packed into a group of RTP packets, namelyone RTP message, with the same timestamp. The RTP common header also has amarker bit to indicate the last packet in a ADU. These fields enable efficient frag-mentation and reassembly of ADUs in the presence of misordered or lost packets.Fragmentation and reassembly processes are simple and described in RTP relatedRFCs. Compared to RTP, MTP protocol header also has a unique message ID foreach message. The header also has fields that describe the offset of the currentpacket and the current packet number [149]. So the reassembly and fragmenta-tion mechanisms should be the same as ones used by RTP, even though the detailsare not clearly described in [149]. Because of this similarity, the reassembly and re-fragmentation latencies of MTP can not be better than what RTP already provides.Regarding this latency performance, MTP has no clear gain except for the clean-slatedesign. Regarding the issue (ii), both RTP and MTP provides a special field to identifysource entity for isolation. So there’s no hard requirement to useMTP just to achieveentity isolation.Regarding the issue (iii), this is a new feature proposed by MTP. Common trans-port layer protocols like TCP and UDP do not have this feature. MTP proposes to usea so-called pathlet congestion control. So instead of taking the multi-hop path be-tween source and destination as a whole unit, this path is fragmented into multiplesmaller pathlets. So conventional congestion control only track the congestion statusof end hosts. Pathlet based congestion control track congestion state of each path-lets using its own type of congestion feedback. It is described in MTP that becauseof the heterogeneous computational power of COIN elements in the network path,the congestion state of each pathlet can be much different from each other. So MTPproposes to use pathlet based congestion control to apply different congestion con-trol algorithms to coexist, instead of applying only one algorithm based only on endhosts. Congestion state of each pathlet needs to be stored by an Type-Length-Value(TLV) in the MTP header. So, although pathlet based congestion control providesmore flexibility and granularity for network with COIN applications, additional non-negligible packet header overheads and management complexity are introduced.

124

6.4 YOLO-CT Evaluation and Measurement Results

In [149] the performance of the proposed pathlet congestion control algorithm isnot evaluated. So whether this complexity is worth it is still an open question.As discussed in [148], whether in-network COIN elements should be covered bycongestion algorithm and participate in end-to-end flow control is an open researchquestion. I think this change can introduce a lot of complexity and complicate the de-sign and implementation of network functions. So in this work, the congestion con-trol is performed only on end hosts. Computational network functions are designedand implemented to finish the ADU processing in time to not impact the end-to-endflow and congestion control.

6.4 YOLO-CT Evaluation and Measurement Results

To evaluate the end-to-end response latency performance and resource usage ofthe proposed system, the proposed system in Figure 6.3 is fully implemented andevaluated on the ComNetsEmu [118] network emulator introduced in Chapter 5.ComNetsEmu is deployed inside a KVM virtual machine managed by libvirt. Theproposed network function is packaged as a Docker container and managed by theComNetsEmu in the evaluation. The host machine has an Intel Core i7-7820HKCPU @ 2.90GHz and 32 GB DDR4 RAM. All source code needed for the evaluation ispublicly available in the GitHub repository [151]. The evaluation contains two parts:(i) The evaluation of the proposed feature extraction network function. (ii) The eval-uation of the end-to-end response latency of the topology presented in Figure 6.3.

6.4.1 Feature Extraction Network Function
The evaluation of the proposed feature extraction network function focuses on thedata compression ratio and the resource usage.The design goal of this offloaded network function is to have nearly zero impacton the original end-to-end object detection application. However, because the rawfeature maps normally have much bigger size than the compressed image framefrom sourcewith e.g. JPEG, the raw featuremaps are lossy compressed in this work toachieve a reasonable compression ratio. A trade-off need to be played between thecompression ratio and the performance of the object detection application. The JPEGcompression is used in this work for feature maps and the performance is evaluatedwith the COCO dataset [152] 2017 version. As analysed in my previous work [10] andillustrated in Figure 6.5, a compression ratio of 2 can be achieved with less than2% reduction in detection accuracy. Therefore, this compression method with anaverage compression ratio of 2 is chosen in this work.The resource usage comparison between the proposed feature extraction net-work model and the full YOLO-v2 model is listed in the Table 6.2. The CPU time isthe average inference time of the neural network model of 20 iterations. The mem-ory usage is the measured Resident Set Size (RSS) during runtime. The model filesize is the size of the protobuf file used by Tensorflow to store the model on disk.As showed in the Table 6.2, the proposed model splitting and feature extraction can

125

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

significantly reduce the memory and disk space required by the network function.Compared to the full model, only 450 MB memory is needed, namely about 21% ofthe full model. The RSS memory usage is important because the high performancememory is a relative limited resource on network nodes and are shared by all de-ployed network functions. Also, the size of the serialized model file is very small. Itonly takes 696 KB to store or transport the model file, which is about 0.35% of thefile size of the full model. The reducedmemory, disk and network transport sizes canbenefit the deployment of the proposed network function on the edges of the net-work. The CPU processing time of the feature extraction function takes about 64%of the full model inference time. Therefore, the processing workload of the serverin the cloud in reduced by about 64% for each input RTP flow. The saved CPU pro-cessing time on the server can be used to handle more RTP flows or can be used byother services. So all in all, the proposed feature extraction network function can sig-nificantly reduce the output bandwidth and the workload of the server in the cloudwith reasonable memory and disk usage.
Component CPU Time Memory Usage Model File Size
Feature Extraction Model 292 ms 450 MB 696 KBFull YOLOv2 Model 459 ms 2116 MB 199184 KB

Table 6.2: Resource usage comparison between the feature extraction model andthe full YOLOv2 model.

6.4.2 End-to-end Response Latency
The end-to-end response latency is the delay between the client sends out the frameuntil it receives the response with object detection result from the server. So it isthe RTT measured on the client side which contains all networking and computinglatencies of the network and cloud server. In the latency tests, the same JPEG image(pedestrian.jpg in the repository [151]) with a size of 48 KB is sent by the clientrepeatedly tomeasure the response latency. For all response latencymeasurementsare measured with the minimal dumbbell topology illustrated in Figure 6.2 with twoswitches and middleboxes in the network. All nodes and network links are emulatedwith ComNetsEmu with following parameters: (i) Client, server and middleboxes arepinned on different CPU cores to avoid contention of computing resource. (ii) Thelink parameters are emulated with Linux Traffic Control (TCP). To build the dumbbellbottleneck, the bandwidth and propagation latency of the link 4 is set to 100 Mbit/sand 100 ms. Links between switches and edge nodes, i.e. the client and the server,are configured with a bandwidth of 1000Mbit/s and a latency of 10ms. Because NFVmiddleboxes are usually deployed close to the switch, links between middleboxesand switches are configured with a bandwidth of 1000 Mbit/s and a latency of 1 ms.Two tests are performed on this network topology: (i) Without background work-load: In this scenario, only client 1 sends frames to server for object detection. Thereis no any other traffic in the network. In this scenario, a batch forwarding delay is

126

6.4 YOLO-CT Evaluation and Measurement Results

500 1000 1500 2000 2500 3000 3500
Batch Forwarding Delay (Microsecond)

1.4

1.6

1.8

2.0

2.2

2.4
R

es
po

ns
e

L
at

en
cy

(S
ec

on
d)

Store and Forward
Compute and Forward

Figure 6.6: YOLO-CT: Response latency without background workload.

manually added to the forwarding CNF running on the middlebox 2 to evaluate theimpact of busy level of the middlebox 2 on the end-to-end response latency. Be-cause compared to the edge switch 1, the switch 2 is deployed closer to the cloudand needs to handle much more input links compared to switch 1. Due to dynamicworkload changing or system scheduling challenge, a forwarding delay of a batch ofpackets can be introduced for the CNF running on middlebox 2. The detailed dis-tribution of this latency is not clear, so this latency is manually added from 500 uswith a step of 500 us. (ii) With background workload: In this scenario, client 2 uses
sockperf tool from Mellanox to generate UDP background workload with payloadsize of 1400 B and different PPS. In this scenario, the batch forwarding latency of theCNF running on middlebox 2 is fixed to 2000 us. These two tests are used to evalu-ate the latency of the proposed approach in both good and bad network congestionconditions. In all tests, the client 1 sends RTP fragments of the pedestrian.jpg im-age to the server in a ping-pong test mode. Each test is repeated for 100 times toget the average and 99% confidence intervals.
The response latencies without background workload are plotted in Figure 6.6. Asshowed in the results, the compute and forward approach has a higher latency com-pared to store and forward when the batch forwarding delay is lower than 2000 us.So the additional reassemble, fragmentation and processing latencies introduced bythe feature extraction network function are higher than the transmission, queuingand processing latencies it saved. So in this scenario, there’s no gain in the latencyperspective. But when the batch forward latency is higher than 2000 us, the com-

127

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

4000 4500 5000 5500 6000 6500 7000
Background Workload (Message Per Second)

2.0

2.1

2.2

2.3

2.4

2.5

R
es

po
ns

e
L

at
en

cy
(S

ec
on

d)

Store and Forward
Compute and Forward

Figure 6.7: YOLO-CT: Response latency under background workload.
pute and forward approach starts to show lower latency than the conventional store
and forward. So the CNF running on middlebox 1 can switch between two modesdynamically based on the busy level of the following network nodes.The response latencies with background workload are illustrated in Figure 6.7. Theresults show that the compute and forward approach can provide lower and also sta-bler response latency performance when there is a noisy neighbor in the network ag-gressively generating traffic. Latency results from this test shows the important ben-efit that can be achieved with my approach when network resources are shared bymultiple clients. So it improves the scalability of the network system with in-networkcomputing.

6.5 Summary

In this work, for the real-time video streaming object detection application illustratedin Figure 6.2 a novel approach called YouOnly LookOnce, but Compute Twice (YOLO-CT) is proposed to reduce the amount of traffic required to be sent through the net-work. All requirements are analyzed and components to build the proposed systemwith STOA software technologies and network protocols. The proposed approach iscompatible with the standard real-time video streaming system. The initial prototypeuses the RTP, which is the IETF standard used for real-time and low latency multime-dia applications. A prototype of the proposed system is designed and implemented

128

6.5 Summary

with STOA software packet processing technologies. Source code of all componentsused in this work is fully open source [151]. Experiments can be easily reproducedon a single computer.Proposed system is evaluated using network emulationwith ComNetsEmu. Dumb-bell topology showed in Figure 6.2 is built and emulated on ComNetsEmu testbed.According to the initial measurement results illustrated in Figure 6.6 and Figure 6.7,the described YOLO-CT approach can improve the latency performance when net-work nodes are busy or congested.

129

7 Summary
As described in the Section 1.2, this dissertation describes and summarizes fourresearch works I have conducted to address the unprecedented and challengingopen question for softwarization network of 5G and beyond:
How to significantly reduce the latency of State of the Art (STOA) softwarization network

data plane to meet the 5G stringent end-to-end latency requirement of 1 ms with minimal
negative impact or even improvement on other important performance metrics, especially
bandwidth and energy consumption?As graphically illustrated as a Triforce in Figure 1.4, the works and achievementsincluded in this dissertation contribute to the improvement of the STOA softwarenetwork data plane systems in three different directions:
1. Ultra-reliable low-latency: As described in Chapter 3 and in my journal pa-

per [4], the Chain bAsed Low latency VNF ImplemeNtation (CALVIN) system isdesigned, implemented and evaluated for ultra-reliable low-latency tactile In-ternet applications. In contrast to conventional solutions, CALVIN implementsclassified Virtualized Network Functions (VNFs) either fully in Linux kernel spaceor in user space in order to fully avoid the context-switching and data transmis-sion between these two spaces. According to rigorous measurements, for theelementary forwarding function, the eXpress Data Path (XDP) based VNF im-plementation is able to achieve a packet forwarding performance ranging from120 µs to 180 µs. CALVIN is able to achieve an end-to-end RTT of only 0.32 msfor large packets with the size of 1400 bytes on an OpenStack-based practicalcloud testbed. Therefore, the proposed CALVIN approach can achieve the 1mslatency budget required by tactile Internet applications at the cost of reducedbandwidth support.
2. Energy-efficient: As described in Chapter 4 and inmy journal paper [7], thenovel XDP-Monitoring energy-Adaptive Network functions (X-MAN) frameworkis designed, implemented and evaluated for power management of Cloud-native Network Functions (CNFs). X-MAN combines the non-intrusive in-bandin-kernel traffic monitoring for each individual CNF with the responsive andadaptive core frequency management in user space with a global view of all

131

7 Summary

running CNFs. According to rigorous measurements on practical testbed, theproposed X-MAN is much more responsive than the STOA Hardware Counter(HC) approach. Measurement results also indicate that X-MAN is able to savemuch more energy compared to the Code Instruction with Heuristic powermanagement (CIH) approach, while has negligible impact on the latency per-formance.
3. Computing-centric: As described in Chapter 6 and partly in my journal pa-

per [10], a novel approach named as You Only Look Once, but Compute Twice(YOLO-CT) is designed and implemented which utilizes the COmputing In Net-work (COIN) paradigm supported by the softwarized network to significantly re-duce the amount of data required to be sent through the network by offloadingpart of the Convolutional Neural Network (CNN)model directly into the networknodes with computing power and functionalities. According to the evaluationusing the ComNetsEmu network emulator, the proposed YOLO-CT is able toimprove the end-to-end response latency performance when network nodesare overwhelmed or congested.

132

Acronyms

3GPP 3rd Generation Partnership Project.
ADU Application Data Unit.AES Advanced Encryption Standard.AIMD Additive-Increase Multiplicative-Decrease.AMD Advanced Micro Device.ANN Artificial Neural Network.API Application Programming Interface.APM Adaptive Polling Mechanism.ARM Advanced RISC Machines.ARP Address Resolution Protocol.
BCC BPF Compiler Collection.BESS Berkeley Extensible Software Switch.BIOS Basic Input/Output System.BMAP Batch Markovian Arrival Process.BS Base Station.
CALVIN Chain bAsed Low latency VNF ImplemeNtation.CAPEX Capital Expense.CBR Constant Bit Rate.CDF Cumulative Distribution Function.CI Code Instruction.CIH Code Instruction with Heuristic power management.CNF Cloud-native Network Function.CNN Convolutional Neural Network.COIN COmputing In Network.COINRG COIN Research Group.ComNets The Deutsche Telekom Chair of Communication Networks.

133

Acronyms

ComNetsEmu Communication Networks Emulator.COTS Commercial Off-The-Shelf.CPU Central Processing Unit.CRUD Create, Read, Update and Delete.CV Computer Vision.
DHCP Dynamic Host Configuration Protocol.DIND Docker-IN-Docker.DL Deep Learning.DMA Direct Memory Access.DPDK Data Plane Development Kit.DPI Deep Packet Inspection.DuT Device under Test.DVFS Dynamic Voltage and Frequency Scaling.
eBPF extended Berkeley Packet Filter.ENVI Elastic resource flexing for Network function VIrtualization.ETSI European Telecommunications Institute.
FC Flow Classifier.FFPP Fast Forward Packet Processing.
GF Galois Field.GPU Graphics processing unit.GRE Generic Routing Encapsulation.
HC Hardware Counter.HTTPS Hypertext Transfer Protocol Secure.
ICA Independent Component Analysis.ICMP Internet Control Message Protocol.ICN Information-centric Networking.ID identification Number.IETF Internet Engineering Task Force.IMIX Internet Mix.INC In-Network Computing.IO Input/Output.IOMMU Input-Output Memory management Unit.IoT Internet of Things.IP Internet Protocol.IPC Inter-Process Communication.IPG Interpacket Gap.ISG Inter-Stream Gap.ISP Internet Service Provider.

134

Acronyms

IT Information Technology.
JPEG Joint Photographic Experts Group.
KNI Kernel Network Interface.KVM Kernel-based Virtual Machine.
LAN Local Area Network.LKF Linux Kernel IP Forwarding.
M2M Machine to Machine.MAC Media Access Control.MEC Multi-access Edge Computing.ML Machine Learning.MTP Message Transport Protocol.MTU Maximum Transmission Unit.
NAT Network Address Translator.NC Network Coding.NCKernel Network Coding Kernel Library.NF Network Function.NFV Network Function Virtualization.NFVI NFV Infrastructure.NIC Network Interface Card.NJICA Network Joint Independent Component Analysis.NPM No Power Management.NTP Network Time Protocol.
OPEX Operating Expense.OS Operating System.OVS Open vSwitch.OVS-DPDK Open vSwitch with DPDK Datapath.OWD One-Way Delay.
PacketGen Packet Generator.PDU Protocol Data Unit.PM Power Manager.PMD Poll Mode Driver.pNIC Physical Network Interface Controller.POSIX Portable Operating System Interface.PPS Packet-per Second.PSTN Public Switched Telephone Network.
QoS Quality of Service.

135

Acronyms

QUIC Quick UDP Internet Connections.
R-CNN Regions with CNN.RAN Radio Access Network.RLNC Random Linear Network Coding.RSS Resident Set Size.RTC Run-To-Completion.RTP Real-time Transport Protocol.RTT Round-trip Time.RX Receive.
SCTP Stream Control Transmission Protocol.SDN Software-Defined Networking.SF Service Function.SFC Service Function Chaining.SFC-OStack Service Function Chaining on OpenStack.SFI Service Function Instance.SFP Small Form-factor Pluggable.SIMD Single Instruction Multiple Data.SMA Simple Moving Average.SSE2 Streaming SIMD Extension 2.STOA State of the Art.
TCP Transmission Control Protocol.TCP Traffic Control.TLV Type-Length-Value.TM Traffic Monitor.ts Timestamp.TUD Technische Universität Dresden.
UDP User Datagram Protocol.UDS Unix Domain Socket.UE User Equipment.URLLC Ultra-Reliable Low Latency Communication.
vCPU virtual CPU.veth Virtual Ethernet Device.VM Virtual Machine.VNF Virtualized Network Function.vNIC Virtual Network Interface Controller.VPP Vector Packet Processing.VXLAN Virtual Extensible LAN.
WEB World Wide Web.

136

Acronyms

WMA Weighted Moving Average.
X-MAN XDP-Monitoring energy-Adaptive Network functions.X-MAN-C1 X-MAN with C1 State Management.X-MAN-FB X-MAN with FeedBack.XDP eXpress Data Path.
YOLO You Only Look Once.YOLO-CT You Only Look Once, but Compute Twice.

137

Bibliography
[1] Frank Fitzek, Fabrizio Granelli, and Patrick Seeling. Computing in Communica-

tion Networks: From Theory to Practice. Academic Press, 2020.
[2] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,and Raouf Boutaba. “Network function virtualization: State-of-the-art and re-search challenges”. In: IEEE Communications surveys & tutorials 18.1 (2015),pp. 236–262.
[3] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.“Software-defined networking (SDN): a survey”. In: Security and communica-

tion networks 9.18 (2016), pp. 5803–5833.
[4] Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T Nguyen, Martin Reisslein,and Frank HP Fitzek. “Reducing latency in virtual machines: Enabling tactileInternet for human-machine co-working”. In: IEEE Journal on Selected Areas in

Communications 37.5 (2019), pp. 1098–1116.
[5] Stuart Cheshire. “Latency and the Quest for Interactivity”. In:White paper com-

missioned by Volpe Welty Asset Management, LLC, for the Synchronous Person-
to-Person Interactive Computing Environments Meeting. 1996.

[6] Technical Specification Group Services and System Aspects; Study on Communi-
cation for Automation in Vertical Domains (Release 16). 3GPP TR 22.804. 22.804TR, V2.0.0. 3GPP. May 2018.

[7] Zuo Xiang, Malte Höweler, Dongho You, Martin Reisslein, and Frank HP Fitzek.“X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-nativeNetwork Functions”. In: IEEE Transactions on Network and Service Management(2021).
[8] Harshit Gupta, Abhigyan Sharma, Alex Zelezniak, Minsung Jang, and Umak-ishore Ramachandran. “A tBlack-Boxu Approach for Estimating Utilization ofPolled tIOu Network Functions”. In: 11th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud 19). 2019.

139

Bibliography

[9] DPDK Official Documentation,Sample Applications User Guides, L3 Forwarding
with PowerManagement Sample Application. https://doc.dpdk.org/guides-
20.11/sample_app_ug/l3_forward_power_man.html. [Online; accessed2022-02-18]. 2020.

[10] Zuo Xiang, Patrick Seeling, and Frank HP Fitzek. “You only look once, but com-pute twice: Service function chaining for low-latency object detection in soft-warized networks”. In: Applied Sciences 11.5 (2021), p. 2177.
[11] Zuo Xiang, Frank Gabriel, Giang T Nguyen, and Frank HP Fitzek. “Latencymea-surement of service function chaining on OpenStack platform”. In: 2018 IEEE

43rd Conference on Local Computer Networks (LCN). IEEE. 2018, pp. 473–476.
[12] Joel M. Halpern and Carlos Pignataro. Service Function Chaining (SFC) Architec-

ture. RFC 7665. Oct. 2015. DOI: 10.17487/RFC7665. URL: https://www.rfc-
editor.org/info/rfc7665.

[13] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. “A survey onservice function chaining”. In: Journal of Network and Computer Applications 75(2016), pp. 138–155.
[14] Juliver Gil Herrera and Juan Felipe Botero. “Resource allocation in NFV: A com-prehensive survey”. In: IEEE Transactions on Network and Service Management13.3 (2016), pp. 518–532.
[15] AhmedMMedhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella, StefanCovaci, and Thomas Magedanz. “Service function chaining in next generationnetworks: State of the art and research challenges”. In: IEEE Communications

Magazine 55.2 (2016), pp. 216–223.
[16] Barbara Martini, Federica Paganelli, AA Mohammed, Molka Gharbaoui, An-drea Sgambelluri, and Piero Castoldi. “SDN controller for context-aware datadelivery in dynamic service chaining”. In: Proceedings of the 2015 1st IEEE Con-

ference on Network Softwarization (NetSoft). IEEE. 2015, pp. 1–5.
[17] Ying Zhang, NedaBeheshti, Ludovic Beliveau, Geoffrey Lefebvre, RaviManghir-malani, Ramesh Mishra, Ritun Patneyt, Meral Shirazipour, Ramesh Subrah-maniam, Catherine Truchan, et al. “Steering: A software-defined networkingfor inline service chaining”. In: 2013 21st IEEE international conference on net-

work protocols (ICNP). IEEE. 2013, pp. 1–10.
[18] João Soares, Carlos Gonçalves, Bruno Parreira, Paulo Tavares, Jorge Carap-inha, Joao Paulo Barraca, Rui L Aguiar, and Susana Sargento. “Toward a telcocloud environment for service functions”. In: IEEE Communications Magazine53.2 (2015), pp. 98–106.
[19] Zuo Xiang. SFC-Ostack: A Simple Research Framework for SFC on OpenStack.

https://github.com/stevelorenz/sfc-ostack. [Online; accessed 2022-02-18]. 2018.
[20] Konstantinos Antonakoglou, Xiao Xu, Eckehard Steinbach, ToktamMahmoodi,andMischa Dohler. “Toward haptic communications over the 5G tactile Inter-net”. In: IEEE Communications Surveys & Tutorials 20.4 (2018), pp. 3034–3059.

140

 https://doc.dpdk.org/guides-20.11/sample_app_ug/l3 _forward_power_man.html
 https://doc.dpdk.org/guides-20.11/sample_app_ug/l3 _forward_power_man.html
https://doi.org/10.17487/RFC7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://github.com/stevelorenz/sfc-ostack

Bibliography

[21] Kwang-ChengChen, Tao Zhang, RichardDGitlin, andGerhard Fettweis. “Ultra-low latency mobile networking”. In: IEEE Network 33.2 (2018), pp. 181–187.
[22] Oliver Holland, Eckehard Steinbach, R Venkatesha Prasad, Qian Liu, ZaherDawy, Adnan Aijaz, Nikolaos Pappas, Kishor Chandra, Vijay S Rao, ShariefOteafy, et al. “The IEEE 1918.1 “tactile internet” standards working group andits standards”. In: Proceedings of the IEEE 107.2 (2019), pp. 256–279.
[23] Zhanwei Hou, Changyang She, Yonghui Li, Tony QSQuek, and Branka Vucetic.“Burstiness-aware bandwidth reservation for ultra-reliable and low-latencycommunications in tactile Internet”. In: IEEE Journal on Selected Areas in Com-

munications 36.11 (2018), pp. 2401–2410.
[24] Ahmed Nasrallah, Akhilesh S Thyagaturu, Ziyad Alharbi, Cuixiang Wang, XingShao, Martin Reisslein, and Hesham ElBakoury. “Ultra-low latency (ULL) net-works: The IEEE TSNand IETFDetNet standards and related 5GULL research”.In: IEEE Communications Surveys & Tutorials 21.1 (2018), pp. 88–145.
[25] Yang Yang and Anthony M Zador. “Differences in sensitivity to neural timingamong cortical areas”. In: Journal of Neuroscience 32.43 (2012), pp. 15142–15147.
[26] Xian-Ming Zhang, Qing-LongHan, and Xinghuo Yu. “Survey on recent advancesin networked control systems”. In: IEEE Transactions on industrial informatics12.5 (2015), pp. 1740–1752.
[27] Wenfeng Xia, YonggangWen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.“A survey on software-defined networking”. In: IEEE Communications Surveys

& Tutorials 17.1 (2014), pp. 27–51.
[28] Frank Fitzek, Gerrit Schulte, and Martin Reisslein. “System architecture forbilling of multi-player games in a wireless environment using GSM/UMTS andWLAN services”. In: Proceedings of the 1st workshop on Network and system

support for games. 2002, pp. 58–64.
[29] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, NeelakandanManihatty-Bojan, Gianni Antichi, MarcinWójcik, and AndrewWMoore. “Wherehas my time gone?” In: International Conference on Passive and Active network

measurement. Springer. 2017, pp. 201–214.
[30] Nathan Hanford, Vishal Ahuja, Matthew K Farrens, Brian Tierney, and DipakGhosal. “A survey of end-system optimizations for high-speed networks”. In:

ACM Computing Surveys (CSUR) 51.3 (2018), pp. 1–36.
[31] Paul Emmerich, Daniel Raumer, Sebastian Gallenmüller, FlorianWohlfart, andGeorg Carle. “Throughput and latency of virtual switching with open vswitch:A quantitative analysis”. In: Journal of Network and Systems Management 26.2(2018), pp. 314–338.
[32] Giuseppe Lettieri, Vincenzo Maffione, and Luigi Rizzo. “A survey of fast packetI/O technologies for network function virtualization”. In: International Confer-

ence on High Performance Computing. Springer. 2017, pp. 579–590.

141

Bibliography

[33] Linquan Zhang, Shangqi Lai, Chuan Wu, Zongpeng Li, and Chuanxiong Guo.“Virtualized network coding functions on the Internet”. In: 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS). IEEE. 2017,pp. 129–139.

[34] Michail-Alexandros Kourtis, Michael J McGrath, Georgios Gardikis, GeorgiosXilouris, Vincenzo Riccobene, Panagiotis Papadimitriou, Eleni Trouva, FrancescoLiberati, Marco Trubian, Josep Batallé, et al. “T-nova: An open-source manostack for nfv infrastructures”. In: IEEE Transactions on Network and Service Man-
agement 14.3 (2017), pp. 586–602.

[35] Hyame Assem Alameddine, Sanaa Sharafeddine, Samir Sebbah, Sara Ayoubi,and Chadi Assi. “Dynamic task offloading and scheduling for low-latency IoTservices in multi-access edge computing”. In: IEEE Journal on Selected Areas in
Communications 37.3 (2019), pp. 668–682.

[36] Hassan Halabian. “Distributed resource allocation optimization in 5G virtu-alized networks”. In: IEEE Journal on Selected Areas in Communications 37.3(2019), pp. 627–642.
[37] HassanHawilo,Manar Jammal, and Abdallah Shami. “Network function virtualization-aware orchestrator for service function chaining placement in the cloud”. In:

IEEE Journal on Selected Areas in Communications 37.3 (2019), pp. 643–655.
[38] Long Qu, Chadi Assi, Khaled Shaban, and Maurice J Khabbaz. “A reliability-aware network service chain provisioningwith delay guarantees inNFV-enabledenterprise datacenter networks”. In: IEEE Transactions on Network and Service

Management 14.3 (2017), pp. 554–568.
[39] SatyamAgarwal, FrancescoMalandrino, Carla Fabiana Chiasserini, and SwadesDe. “VNF placement and resource allocation for the support of vertical ser-vices in 5G networks”. In: IEEE/ACM Transactions on Networking 27.1 (2019),pp. 433–446.
[40] Ilias Benkacem, Tarik Taleb, Miloud Bagaa, and Hannu Flinck. “Optimal VNFsplacement in CDN slicing over multi-cloud environment”. In: IEEE Journal on

Selected Areas in Communications 36.3 (2018), pp. 616–627.
[41] Abdelquoddouss Laghrissi, Tarik Taleb, and Miloud Bagaa. “Conformal map-ping for optimal network slice planning based on canonical domains”. In: IEEE

Journal on Selected Areas in Communications 36.3 (2018), pp. 519–528.
[42] TokeHøiland-Jørgensen, JesperDangaardBrouer, Daniel Borkmann, John Fastabend,TomHerbert, David Ahern, andDavidMiller. “The express data path: Fast pro-grammable packet processing in the operating system kernel”. In: Proceedings

of the 14th international conference on emerging networking experiments and
technologies. 2018, pp. 54–66.

[43] SebastianoMiano,MatteoBertrone, Fulvio Risso,Massimo Tumolo, andMauri-cio Vásquez Bernal. “Creating complex network services with ebpf: Experi-ence and lessons learned”. In: 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR). IEEE. 2018, pp. 1–8.

142

Bibliography

[44] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A Syed. “Inkev: In-kerneldistributed network virtualization for dcn”. In: ACM SIGCOMM Computer Com-
munication Review 46.3 (2018), pp. 1–6.

[45] SebastianGallenmüller, Dominik Scholz, FlorianWohlfart, Quirin Scheitle, PaulEmmerich, and Georg Carle. “High-performance packet processing andmea-surements”. In: 2018 10th International Conference on Communication Systems
& Networks (COMSNETS). IEEE. 2018, pp. 1–8.

[46] Sebastian Gallenmüller, Paul Emmerich, FlorianWohlfart, Daniel Raumer, andGeorg Carle. “Comparison of frameworks for high-performance packet IO”.In: 2015 ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS). IEEE. 2015, pp. 29–38.

[47] Nguyen Van Tu, Kyungchan Ko, and James Won-Ki Hong. “Architecture forbuilding hybrid kernel-user space virtual network functions”. In: 2017 13th In-
ternational Conference on Network and Service Management (CNSM). IEEE. 2017,pp. 1–6.

[48] Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the cost of contextswitch”. In: Proceedings of the 2007 workshop on Experimental computer science.2007, 2–es.
[49] Morten V Pedersen, Janus Heide, and Frank HP Fitzek. “Kodo: An open andresearch oriented network coding library”. In: International Conference on Re-

search in Networking. Springer. 2011, pp. 145–152.
[50] Danilo Cerović, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, andGuy Pujolle. “Fast packet processing: A survey”. In: IEEE Communications Sur-

veys & Tutorials 20.4 (2018), pp. 3645–3676.
[51] David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister, Salva-tore Pontarelli, and Dario Rossi. “High-speed software data plane via vec-torized packet processing”. In: IEEE Communications Magazine 56.12 (2018),pp. 97–103.
[52] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. “The Designand Implementation of Open tvSwitchu”. In: 12th USENIX symposium on net-

worked systems design and implementation (NSDI 15). 2015, pp. 117–130.
[53] Michail-Alexandros Kourtis, Georgios Xilouris, Vincenzo Riccobene, Michael JMcGrath, Giuseppe Petralia, Harilaos Koumaras, Georgios Gardikis, and FidelLiberal. “Enhancing VNF performance by exploiting SR-IOV and DPDK packetprocessing acceleration”. In: 2015 IEEE Conference on Network Function Virtu-

alization and Software Defined Network (NFV-SDN). IEEE. 2015, pp. 74–78.
[54] BPF Compiler Collection (BCC) - Tools for BPF-based Linux IO analysis, network-

ing, monitoring, and more. https://github.com/iovisor/bcc. [Online;accessed 2022-02-18].

143

https://github.com/iovisor/bcc

Bibliography

[55] Libxdp - Library for attaching XDP programs and using AF_XDP sockets. https:
//github.com/xdp- project/xdp- tools/tree/master/lib/libxdp.[Online; accessed 2022-02-18].

[56] Jagmohan Chauhan, DwightMakaroff, and Anthony Arkles. “Is doing clock syn-chronization in a VM a good idea?” In: Proc. IEEE Int. Perform. Comput. Com-
mun. Conf. 2010, pp. 1–2.

[57] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.[Online; accessed 2022-02-18].
[58] Long Qu, Chadi Assi, and Khaled Shaban. “Delay-aware scheduling and re-source optimization with network function virtualization”. In: IEEE Transactions

on communications 64.9 (2016), pp. 3746–3758.
[59] Christian Sieber, Raphael Durner, Maximilian Ehm, Wolfgang Kellerer, andPuneet Sharma. “Towards optimal adaptation of nfv packet processing tomodern cpu memory architectures”. In: Proceedings of the 2nd Workshop on

Cloud-Assisted Networking. 2017, pp. 7–12.
[60] Wolfgang Hahn, Borislava Gajic, Florian Wohlfart, Daniel Raumer, Paul Em-merich, Sebastian Gallenmüller, and Georg Carle. “Feasibility of compoundchained network functions for flexible packet processing”. In: European Wire-

less 2017; 23th European Wireless Conference. VDE. 2017, pp. 1–6.
[61] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad, andKyrre Begnum. “IncludeOS: A minimal, resource efficient unikernel for cloudservices”. In: 2015 IEEE 7th international conference on cloud computing tech-

nology and science (cloudcom). IEEE. 2015, pp. 250–257.
[62] Rudolf Ahlswede, Ning Cai, S-YR Li, and RaymondWYeung. “Network informa-tion flow”. In: IEEE Transactions on information theory 46.4 (2000), pp. 1204–1216.
[63] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, JunShi, and Ben Leong. “A random linear network coding approach to multicast”.In: IEEE Transactions on information theory 52.10 (2006), pp. 4413–4430.
[64] Vu Nguyen, Giang T Nguyen, Frank Gabriel, Daniel E Lucani, and Frank HPFitzek. “Integrating sparsity into Fulcrumcodes: Investigating throughput, com-plexity and overhead”. In: 2018 IEEE International Conference on Communica-

tions Workshops (ICC Workshops). IEEE. 2018, pp. 1–6.
[65] Frank Gabriel, Simon Wunderlich, Sreekrishna Pandi, Frank HP Fitzek, andMartin Reisslein. “Caterpillar RLNC with feedback (CRLNC-FB): Reducing delayin selective repeat ARQ through coding”. In: IEEE Access 6 (2018), pp. 44787–44802.
[66] Daniel E Lucani, Morten Videbæk Pedersen, Diego Ruano, ChresW Sørensen,Frank HP Fitzek, Janus Heide, Olav Geil, Vu Nguyen, and Martin Reisslein. “Ful-crum: Flexible network coding for heterogeneous devices”. In: Ieee Access 6(2018), pp. 77890–77910.

144

 https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp
 https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp
https://iperf.fr/

Bibliography

[67] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright,and Kannan Ramchandran. “Network coding for distributed storage systems”.In: IEEE transactions on information theory 56.9 (2010), pp. 4539–4551.
[68] Joao Barros, Rui A Costa, Daniele Munaretto, and Joerg Widmer. “Effectivedelay control in online network coding”. In: IEEE INFOCOM 2009. IEEE. 2009,pp. 208–216.
[69] Sreekrishna Pandi, Frank Gabriel, Juan A Cabrera, Simon Wunderlich, MartinReisslein, and Frank HP Fitzek. “PACE: Redundancy engineering in RLNC forlow-latency communication”. In: IEEE Access 5 (2017), pp. 20477–20493.
[70] Mohammad Karzand and Douglas J Leith. “Low delay random linear codingover a stream”. In: 2014 52nd Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE. 2014, pp. 521–528.
[71] Simon Wunderlich, Frank Gabriel, Sreekrishna Pandi, Frank HP Fitzek, andMartin Reisslein. “Caterpillar RLNC (CRLNC): A practical finite sliding windowRLNC approach”. In: IEEE Access 5 (2017), pp. 20183–20197.
[72] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, MartinReisslein, and Stefan Schmid. “Adaptable and data-driven softwarized net-works: Review, opportunities, and challenges”. In: Proceedings of the IEEE 107.4(2019), pp. 711–731.
[73] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,and Parisa Tabriz. “Measuring tHTTPSu adoption on the web”. In: 26th USENIX

security symposium (USENIX security 17). 2017, pp. 1323–1338.
[74] Thomas Hoeschele, Christoph Dietzel, Daniel Kopp, Frank HP Fitzek, andMar-tin Reisslein. “Importance of Internet Exchange Point (IXP) infrastructure for5G: Estimating the impact of 5G use cases”. In: Telecommunications Policy 45.3(2021), p. 102091.
[75] Cisco. Cloud-Native Network Functions (CNFs)White Paper. https://www.cisco.

com/c/en/us/products/collateral/routers/cloud-native-broadband-
router/white-paper-c11-740841.html. [Online; accessed 2022-02-18].2018.

[76] Cornelius Diekmann, Johannes Naab, Andreas Korsten, and Georg Carle. “Ag-ile network access control in the container age”. In: IEEE Transactions on Net-
work and Service Management 16.1 (2018), pp. 41–55.

[77] Motassem Al-Tarazi and J Morris Chang. “Performance-aware energy savingfor data center networks”. In: IEEE Transactions on Network and Service Man-
agement 16.1 (2019), pp. 206–219.

[78] Ruben Milocco, Pascale Minet, Eric Renault, and Selma Boumerdassi. “Evalu-ating the upper bound of energy cost saving by proactive data center man-agement”. In: IEEE Transactions onNetwork and ServiceManagement 17.3 (2020),pp. 1527–1541.

145

 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html
 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html
 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html

Bibliography

[79] Thang Le Duc, Rafael Garcia Leiva, Paolo Casari, and Per-Olov Ö stberg. “Ma-chine learningmethods for reliable resource provisioning in edge-cloud com-puting: A survey”. In: ACM Computing Surveys (CSUR) 52.5 (2019), pp. 1–39.
[80] Amit Sheoran, Sonia Fahmy, Lianjie Cao, and Puneet Sharma. “AI-Driven Pro-visioning in the 5G Core”. In: IEEE Internet Computing 25.2 (2021), pp. 18–25.
[81] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. “ENVI: Elasticresource flexing for Network function Virtualization”. In: 9th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 17). 2017.
[82] Hui Yu, Jiahai Yang, and Carol Fung. “Fine-grained cloud resource provision-ing for virtual network function”. In: IEEE Transactions on Network and Service

Management 17.3 (2020), pp. 1363–1376.
[83] Xuesong Li, Wenxue Cheng, Tong Zhang, Fengyuan Ren, and Bailong Yang.“Towards power efficient high performance packet I/O”. In: IEEE Transactions

on Parallel and Distributed Systems 31.4 (2019), pp. 981–996.
[84] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier,Pascal Felber, and Dave Dice. “The TURBO diaries: Application-controlled fre-quency scaling explained”. In: 2014USENIX Annual Technical Conference (USENIX

ATC 14). 2014, pp. 193–204.
[85] Yan Liu. “Optimizing PAPI for Low-Overhead Counter Measurement”. PhDthesis. University of Maine, 2017.
[86] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, andSylvia Ratnasamy. “SoftNIC: A software NIC to augment hardware”. In: EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155(2015).
[87] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast userspace packet pro-cessing”. In: 2015 ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS). IEEE. 2015, pp. 5–16.
[88] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, FlorianWohlfart, andGeorg Carle. “Moongen: A scriptable high-speed packet generator”. In: Pro-

ceedings of the 2015 Internet Measurement Conference. 2015, pp. 275–287.
[89] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, andScott Shenker. “NetBricks: Taking the V out of NFV”. In: 12th USENIX Symposium

onOperating Systems Design and Implementation (OSDI 16). 2016, pp. 203–216.
[90] Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach, Dam-jan Marjon, and Pierre Pfister. “High-speed data plane and network functionsvirtualization by vectorizing packet processing”. In: Computer Networks 149(2019), pp. 187–199.
[91] Vinicius Fulber Garcia, Leonardo da C Marcuzzo, Alexandre Huff, Lucas Bon-dan, Jeferson C Nobre, Alberto Schaeffer-Filho, Carlos RP dos Santos, Lisan-dro ZGranville, and Elias P Duarte. “On the design of a flexible architecture forvirtualized network function platforms”. In: 2019 IEEE Global Communications

Conference (GLOBECOM). IEEE. 2019, pp. 1–6.

146

Bibliography

[92] Hristo Georgiev Trifonov. “Traffic-aware adaptive polling mechanism for highperformance packet processing”. In: (2017).
[93] Shihabur Rahman Chowdhury, Mohammad A Salahuddin, Noura Limam, andRaouf Boutaba. “Re-architecting NFV ecosystem with microservices: State ofthe art and research challenges”. In: IEEE Network 33.3 (2019), pp. 168–176.
[94] Shihabur Rahman Chowdhury, Haibo Bian, Tim Bai, Raouf Boutaba, et al.“A disaggregated packet processing architecture for network function virtu-alization”. In: IEEE Journal on Selected Areas in Communications 38.6 (2020),pp. 1075–1088.
[95] Prateek Shantharama, Akhilesh S Thyagaturu, andMartin Reisslein. “Hardware-accelerated platforms and infrastructures for network functions: A survey ofenabling technologies and research studies”. In: IEEE Access 8 (2020), pp. 132021–132085.
[96] Adel Bouridah, Ilhem Fajjari, Nadiib Aitsaadi, and Hacene Belhadef. “Opti-mized Scalable SFC Traffic Steering Scheme for Cloud Native based Appli-cations”. In: 2021 IEEE 18th Annual Consumer Communications & Networking

Conference (CCNC). IEEE. 2021, pp. 1–6.
[97] Maciej Gawel and Krzysztof Zielinski. “Analysis and Evaluation of Kubernetesbased NFV management and orchestration”. In: 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD). IEEE. 2019, pp. 511–513.
[98] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and FerhatKhendek. “Deploying microservice based applications with kubernetes: Ex-periments and lessons learned”. In: 2018 IEEE 11th international conference

on cloud computing (CLOUD). IEEE. 2018, pp. 970–973.
[99] Ahmad Faisal Sani and Mukhammad Andri Setiawan. “DNS tunneling Detec-tion Using Elasticsearch”. In: IOP Conference Series: Materials Science and Engi-

neering. Vol. 722. 1. IOP Publishing. 2020, p. 012064.
[100] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, andDario Rossi. “FlowMon-DPDK: Parsimonious per-flow software monitoring atline rate”. In: 2018 Network Traffic Measurement and Analysis Conference (TMA).IEEE. 2018, pp. 1–8.
[101] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, andDario Rossi. “FloWatcher-DPDK: Lightweight line-rate flow-level monitoringin software”. In: IEEE Transactions on Network and Service Management 16.3(2019), pp. 1143–1156.
[102] Packetbeat documentation: Configure traffic capturing options. https://www.

elastic.co/guide/en/beats/packetbeat/current/configuration-
interfaces.html. [Online; accessed 2022-02-18]. 2020.

[103] Jesper Dangaard Brouer and Toke Høiland-Jørgensen. “XDP: challenges andfuture work”. In: Proc. Linux Plumbers Conference. 2018.

147

 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html
 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html
 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html

Bibliography

[104] Nikolai Pitaev,Matthias Falkner, Aris Leivadeas, and Ioannis Lambadaris. “Char-acterizing the performance of concurrent virtualized network functions withOVS-DPDK, FD. IO VPP and SR-IOV”. In: Proceedings of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering. 2018, pp. 285–292.

[105] Mizar project documentation. https://mizar.readthedocs.io/en/latest/.[Online; accessed 2022-02-18]. 2020.
[106] Daniel Raumer, Florian Wohlfart, Dominik Scholz, Paul Emmerich, and GeorgCarle. “Performance exploration of software-based packet processing sys-tems”. In: Leistungs-, Zuverlässigkeits-und Verlä sslichkeitsbewertung von Kom-

munikationsnetzen und verteilten Systemen 8 (2015).
[107] Danish Sattar and Ashraf Matrawy. “An empirical model of packet process-ing delay of the Open vSwitch”. In: 2017 IEEE 25th International Conference on

Network Protocols (ICNP). IEEE. 2017, pp. 1–6.
[108] Muhammad Faisal Iqbal, Muhammad Zahid, Durdana Habib, and Lizy KurianJohn. “Efficient prediction of network traffic for real-time applications”. In: Jour-

nal of Computer Networks and Communications 2019 (2019).
[109] SO Abdulsalam, Kayode S Adewole, and RG Jimoh. “Stock trend predictionusing regression analysis–a data mining approach”. In: (2011).
[110] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control.RFC 5681. Sept. 2009. DOI: 10.17487/RFC5681. URL: https://www.rfc-

editor.org/info/rfc5681.
[111] MatthewMathis, Jeffrey Semke, JamshidMahdavi, and TeunisOtt. “Themacro-scopic behavior of the TCP congestion avoidance algorithm”. In: ACM SIG-

COMM Computer Communication Review 27.3 (1997), pp. 67–82.
[112] TRex: Realistic Traffic Generator. https://trex-tgn.cisco.com/. [Online;accessed 2022-02-18]. 2022.
[113] Len Brown. turbostat-Report processor frequency and idle statistics. 2019.
[114] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, PiotrLuszczek, Dan Terpstra, and Shirley Moore. “Measuring energy and powerwith PAPI”. In: 2012 41st international conference on parallel processing work-

shops. IEEE. 2012, pp. 262–268.
[115] A Morton. “Imix genome: Specification of variable packet sizes for additionaltesting”. In: AT&T Labs, July (2013).
[116] veth - Virtual Ethernet Device. https://man7.org/linux/man-pages/man4/

veth.4.html. [Online; accessed 2022-02-18]. 2022.
[117] Colin Ian King. “Stress-ng”. In: URL: http://kernel. ubuntu. com/git/cking/stressng.

git/(visited on 28/03/2018) (2017).
[118] Zuo Xiang, Sreekrishna Pandi, Juan Cabrera, Fabrizio Granelli, Patrick Seeling,and Frank HP Fitzek. “An open source testbed for virtualized communicationnetworks”. In: IEEE Communications Magazine 59.2 (2021), pp. 77–83.

148

 https://mizar.readthedocs.io/en/latest/
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://trex-tgn.cisco.com/
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html

Bibliography

[119] ComNetsEmu: A virtual emulator/testbed designed for the book: Computing in
Communication Networks: From Theory to Practice. https://git.comnets.
net/public-repo/comnetsemu. [Online; accessed 2022-02-18].

[120] Albert Banchs, David M Gutierrez-Estevez, Manuel Fuentes, Mauro Boldi, andSilvia Provvedi. “A 5G mobile network architecture to support vertical indus-tries”. In: IEEE Communications Magazine 57.12 (2019), pp. 38–44.
[121] Pang-Wei Tsai, Francesco Piccialli, Chun-Wei Tsai, Mon-Yen Luo, and Chu-SingYang. “Control frameworks in network emulation testbeds: A survey”. In: Jour-

nal of computational science 22 (2017), pp. 148–161.
[122] Bob Lantz andBrianO’Connor. “Amininet-based virtual testbed for distributedSDN development”. In: ACM SIGCOMM Computer Communication Review 45.4(2015), pp. 365–366.
[123] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zum-beri, and Harald C Gall. “An empirical analysis of the docker container ecosys-tem on github”. In: 2017 IEEE/ACM 14th International Conference onMining Soft-

ware Repositories (MSR). IEEE. 2017, pp. 323–333.
[124] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: en-abling innovation in campus networks”. In: ACM SIGCOMM computer commu-

nication review 38.2 (2008), pp. 69–74.
[125] FUJITA Tomonori. “Introduction to ryu sdn framework”. In: Open Networking

Summit (2013), pp. 1–14.
[126] Pankaj Berde,MatteoGerola, JonathanHart, YutaHiguchi,Masayoshi Kobayashi,Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, etal. “ONOS: towards an open, distributed SDN OS”. In: Proceedings of the third

workshop on Hot topics in software defined networking. 2014, pp. 1–6.
[127] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. “Opendaylight: To-wards a model-driven sdn controller architecture”. In: Proceeding of IEEE In-

ternational Symposium on a World of Wireless, Mobile and Multimedia Networks
2014. IEEE. 2014, pp. 1–6.

[128] Manuel Peuster, Johannes Kampmeyer, and Holger Karl. “Containernet 2.0:A rapid prototyping platform for hybrid service function chains”. In: 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE. 2018,pp. 335–337.

[129] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.“Mobile edge computing—A key technology towards 5G”. In: ETSI white paper11.11 (2015), pp. 1–16.
[130] Robert Pepper. Cisco visual networking index (VNI) global mobile data traffic

forecast update. Tech. rep. Cisco, Tech. Rep., Feb. 2013. Accessed: Jul. 10,2019.[Online]. Available . . ., 2013.

149

https://git.comnets.net/public-repo/comnetsemu
https://git.comnets.net/public-repo/comnetsemu

Bibliography

[131] Jinsoo Kimand JeonghoCho. “Exploring amultimodalmixture-of-YOLOs frame-work for advanced real-time object detection”. In: Applied Sciences 10.2 (2020),p. 612.
[132] Peter Wei, Haocong Shi, Jiaying Yang, Jingyi Qian, Yinan Ji, and Xiaofan Jiang.“City-scale vehicle tracking and traffic flow estimation using low frame-ratetraffic cameras”. In: Adjunct Proceedings of the 2019 ACM International Joint Con-

ference on Pervasive andUbiquitous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers. 2019, pp. 602–610.

[133] Alex Dominguez-Sanchez, Miguel Cazorla, and Sergio Orts-Escolano. “Pedes-trian movement direction recognition using convolutional neural networks”.In: IEEE transactions on intelligent transportation systems 18.12 (2017), pp. 3540–3548.
[134] Jonathan Hui. “Real-time object detection with yolo, yolov2 and now yolov3”.In: Available online: medium. com/@ jonathan_hui /real-time-object-detection-

with-YOLO-YOLOv2-28b1b93e2088 (accessed on 24 February 2019) (2018).
[135] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. “Efficient process-ing of deep neural networks: A tutorial and survey”. In: Proceedings of the IEEE105.12 (2017), pp. 2295–2329.
[136] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich featurehierarchies for accurate object detection and semantic segmentation”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.2014, pp. 580–587.
[137] Shaoqing Ren, KaimingHe, Ross Girshick, and Jian Sun. “Faster r-cnn: Towardsreal-time object detectionwith region proposal networks”. In: Advances in neu-

ral information processing systems 28 (2015).
[138] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You onlylook once: Unified, real-time object detection”. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition. 2016, pp. 779–788.
[139] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. “Computation offloading toward edgecomputing”. In: Proceedings of the IEEE 107.8 (2019), pp. 1584–1607.
[140] Jim Gettys. “Bufferbloat: Dark buffers in the internet”. In: IEEE Internet Comput-

ing 15.3 (2011), pp. 96–96.
[141] Justus Rischke, Peter Sossalla, Sebastian Itting, Frank HP Fitzek, and MartinReisslein. “5G Campus Networks: A First Measurement Study”. In: IEEE Access9 (2021), pp. 121786–121803.
[142] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, NickMcKeown, Jennifer Rex-ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. “P4:Programming protocol-independent packet processors”. In: ACM SIGCOMM

Computer Communication Review 44.3 (2014), pp. 87–95.

150

Bibliography

[143] Ike Kunze, Klaus Wehrle, Dirk Trossen, Marie-Jose Montpetit, Xavier de Foy,David Griffin, and Miguel Rio. Use Cases for In-Network Computing. Internet-Draft draft-irtf-coinrg-use-cases-02. Work in Progress. Internet EngineeringTask Force, Mar. 2022. 54 pp. URL: https://datatracker.ietf.org/doc/
html/draft-irtf-coinrg-use-cases-02.

[144] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. “Can the networkbe the AI accelerator?” In: Proceedings of the 2018 Morning Workshop on In-
Network Computing. 2018, pp. 20–25.

[145] René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, and KlausWehrle. “Towards executing computer vision functionality on programmablenetwork devices”. In: Proceedings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms. 2019, pp. 15–20.

[146] HuanzhuoWu, Zuo Xiang, Giang T Nguyen, Yunbin Shen, and Frank HP Fitzek.“Computing Meets Network: COIN-Aware Offloading for Data-Intensive BlindSource Separation”. In: IEEE Network 35.5 (2021), pp. 21–27.
[147] Computing in the Network Research Group (coinrg). https://datatracker.

ietf.org/rg/coinrg/about/. Accessed: 2022-02-16.
[148] Ike Kunze, Klaus Wehrle, and Dirk Trossen. Transport Protocol Issues of In-

Network Computing Systems. Internet-Draft draft-kunze-coinrg-transport-issues-05. Work in Progress. Internet Engineering Task Force, Oct. 2021. 22 pp. URL:
https://datatracker.ietf.org/doc/html/draft- kunze- coinrg-
transport-issues-05.

[149] Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee Vamanan,and Aditya Akella. “TCP is Harmful to In-Network Computing: Designing aMes-sage Transport Protocol (MTP)”. In: Proc. Twentieth ACM Workshop on Hot Top-
ics in Networks. 2021, pp. 61–68.

[150] David D Clark and David L Tennenhouse. “Architectural considerations fora new generation of protocols”. In: ACM SIGCOMM Computer Communication
Review 20.4 (1990), pp. 200–208.

[151] Zuo Xiang andRenbing Zhang. COIN-DL. https://github.com/stevelorenz/
build-vnf/tree/master/coin_dl. 2022.

[152] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, DevaRamanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft COCO: Commonobjects in context”. In: Proc. European Conference on Computer Vision. Springer,Cham, Switzerland. 2014, pp. 740–755.

151

https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-02
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-02
https://datatracker.ietf.org/rg/coinrg/about/
https://datatracker.ietf.org/rg/coinrg/about/
https://datatracker.ietf.org/doc/html/draft-kunze-coinrg-transport-issues-05
https://datatracker.ietf.org/doc/html/draft-kunze-coinrg-transport-issues-05
 https://github.com/stevelorenz/build-vnf/tree/master/coin_dl
 https://github.com/stevelorenz/build-vnf/tree/master/coin_dl

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Main Contributions
	Dissertation Organization

	Latency Measurement of Service Function Chaining on OpenStack Platform
	Introduction
	Background and Related Work
	sfc-ostack Framework
	Latency-aware Network Function Placement and Chaining
	Measurement Campaign and Results Evaluation
	Summary

	Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working
	Introduction
	Background and Related Work
	Proposed Approach: calvin
	Overview of calvin
	Classification of vnf
	vnf Implementations Selection for vnf Classes
	calvin Architecture Design and Workflow

	Performance Evaluation of Elementary and Basic Network Functions
	Measurement Setup for Elementary and Basic Network Functions
	Measurement Results and Evaluation for Elementary and Basic Network Functions

	Performance Evaluation of Advanced Network Functions
	rlnc Network Function
	aes Encryption
	Measurement Setup of Advanced Network Functions
	Measurement Results and Evaluation for Advanced Network Functions

	Summary

	X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network Functions
	Introduction
	Background and Related Work
	Power Management in Linux Kernel
	CPU Core Load Estimation with hc
	In-band Power Management with ci

	Proposed Approach: x-man
	x-man Design Imperative: Per-core Power Management Based on Per-cnf Traffic Monitoring
	x-man System Architecture: User Space Power Management Based on Kernel Space Traffic Monitors
	Native x-man Adaptive Power Management
	x-man Extensions

	Performance Evaluation Setup for x-man
	Testbed for x-man Evaluation
	Workload Traffic Profiles
	cnf Deployment
	Monitoring Latency for cpu Utilization Estimation
	Power Management Mechanisms
	x-man Performance Metrics

	x-man Measurement Results and Evaluation
	x-man cpu Measurements
	Monitoring Latency for cpu Utilization Estimation
	Single cnf with Deterministic Traffic
	Two cnf with Deterministic Traffic
	Single cnf with Random Traffic
	Energy Consumption of x-man

	Summary

	comnetsemu: An Open Source Testbed for Virtualized Communication Networks
	Introduction of comnetsemu
	The Architecture of comnetsemu
	sdn Environment with Mininet
	comnetsemu Enhancements and Architecture

	comnetsemu Hands-on Examples
	comnetsemu Echo Server Example
	comnetsemu Mobile Edge Cloud Example

	Summary

	yolo-ct: coin for Low-latency Object Detection in Softwarized Networks
	Introduction
	Overview and Motivation
	Related Work

	Proposed Approach: yolo-ct
	yolo-ct Design and Architecture
	Modelling of Service Latency
	yolo-ct Implementation

	Comparison with Clean-slate mtp
	yolo-ct Evaluation and Measurement Results
	Feature Extraction Network Function
	End-to-end Response Latency

	Summary

	Summary
	Acronyms
	Bibliography

