Technische Universitat Dresden

Ultra-reliable Low-latency, Energy-efficient
and Computing-centric Software Data Plane
for Network Softwarization

Dipl.-Ing.
Zuo Xiang

der Fakultat Elektrotechnik und Informationstechnik der Technischen
Universitat Dresden

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Leon Urbas Tag der Einreichung: 21.03.2022

Gutachter: Prof. Dr.-Ing. Dr. h. c. Frank Fitzek Tag der Verteidigung: 19.08.2022
Gutachter: Prof. Dr. Thorsten Strufe

Gutachter: Prof. Dr.-Ing. Hans D. Schotten

Abstract

Network softwarization plays a significantly important role in the development and
deployment of the latest communication system for 5G and beyond. A more flexible
and intelligent network architecture can be enabled to provide support for agile net-
work management, rapid launch of innovative network services with much reduction
in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits,
5G system also raises unprecedented challenges as emerging machine-to-machine
and human-to-machine communication use cases require Ultra-Reliable Low La-
tency Communication (URLLC). According to empirical measurements performed by
the author of this dissertation on a practical testbed, State of the Art (STOA) tech-
nologies and systems are not able to achieve the one millisecond end-to-end latency
requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This
dissertation performs a comprehensive introduction to three innovative approaches
that can be used to improve different aspects of the current software-driven network
data plane. All three approaches are carefully designed, professionally implemented
and rigorously evaluated. According to the measurement results, these novel ap-
proaches put forward the research in the design and implementation of ultra-reliable
low-latency, energy-efficient and computing-first software data plane for 5G commu-
nication system and beyond.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Dr.-Ing. Dr. h.c.
Frank H. P. Fitzek in providing me the best supervision, financial support and working
environments in order to support me completing my Ph.D. research. Without his
enlightenment, | would never have been able to finish my Ph.D. research.

| would like to thank Prof. Martin Reisslein for his invaluable help in the discussing,
editing and revising of all my journal papers. Every successful publication of my jour-
nal paper is due to his careful and meticulous help.

Two of the supervisors that | would like to express my appreciation is Dipl.-Inf.
Frank Gabriel and Dr. Giang T. Nguyen. While Dipl.-Inf. Frank Gabriel spends a lot of
time helping me to solve the problems in the system implementation, Dr. Giang T.
Nguyen provides me many insightful comments on the writing of my publications. |
would not get these publications without their selfless and patient help.

I would like to thank all my colleagues at the Deutsche Telekom Chair of Communi-
cation Networks, especially Dipl.-Ing. Justus Rischke, Dipl.-Ing. Malte Howeler, M.Eng.
Vu Nguyen and M.Sc. Alexander Kropp, for their help in my research work as well as
the study life at TU Dresden, Germany.

I would like to express my deep gratitude to my family and friends for their encour-
agement and support. | would especially like to thank my father Jinyuan Xiang and
mother Yanmei Zheng for the emotional and financial support they have provided.
Finally, I would like to thank my wife, Xuefan Wang, for her greatest and meticulous
care for my life. Without her encouragement and concern, | would have given up
pursuing this Ph.D. research in the second year. This dissertation could not have
been completed without her love.

Statement of authorship

| hereby certify that | have authored this document entitled Ultra-reliable Low-latency,
Energy-efficient and Computing-centric Software Data Plane for Network Softwarization
independently and without undue assistance from third parties. No other than the
resources and references indicated in this document have been used. | have marked
both literal and accordingly adopted quotations as such. There were no additional
persons involved in the intellectual preparation of the present document. | am aware
that violations of this declaration may lead to subsequent withdrawal of the academic
degree.

Contents

List of Figures 13
List of Tables 15
1 Introduction 19
1.1 Research Motivation 19
1.2 Main Contributions 24
1.3 Dissertation Organization 26

2 Latency Measurement of Service Function Chaining on OpenStack Plat-

form 27
2.7 Introduction 27
2.2 Background and Related Work oL 28
2.3 Service Function Chaining on OpenStack (SFC-OStack) Framework . . . 28
2.4 Latency-aware Network Function Placement and Chaining 30
2.5 Measurement Campaign and Results Evaluation 32
2.6 SUMMANY . . . o oo 36
3 Reducing Latencyin Virtual Machines: Enabling Tactile Internet for Human-
Machine Co-Working 37
3.1 Introduction 37
3.2 Background and Related Work 39
3.3 Proposed Approach: Chain bAsed Low latency VNF ImplemeNtation
(CALVIN) . oo 45
331 Overview of CALVIN 45
3.3.2 C(lassification of Virtualized Network Functions (VNFs) 45
3.3.3 VNFImplementations Selection for VNF Classes 46
3.3.4 CALVIN Architecture Design and Workflow 47

3.4 Performance Evaluation of Elementary and Basic Network Functions . 50
3.4.1 Measurement Setup for Elementary and Basic Network Functions 50
3.4.2 Measurement Results and Evaluation for Elementary and Basic

Network Functions 54

Contents

10

3.5 Performance Evaluation of Advanced Network Functions 59
3.5.1 Random Linear Network Coding (RLNC) Network Function . . . 60
3.5.2 Advanced Encryption Standard (AES) Encryption 61
3.53 Measurement Setup of Advanced Network Functions 61
3.54 Measurement Results and Evaluation for Advanced Network

Functions 62

3.6 SUMMANY . . . o 64

X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native

Network Functions 65

47 Introduction 65

4.2 Background and Related Work 68
4.2.1 Power Managementin Linux Kernel 68
4.2.2 CPU Core Load Estimation with Hardware Counters (HCs) . . . 69
4.2.3 In-band Power Management with Code Instruction (Cl) 70

4.3 Proposed Approach: XDP-Monitoring energy-Adaptive Network func-
tions (X-MAN) 71

4.3.1 X-MAN Design Imperative: Per-core Power Management Based
on Per-Cloud-native Network Function (CNF) Traffic Monitoring 71
4.3.2 X-MAN System Architecture: User Space Power Management

Based on Kernel Space Traffic Monitors 73
4.3.3 Native X-MAN Adaptive Power Management 76
434 X-MAN Extensions 80
4.4 Performance Evaluation Setup for XMAN 81
441 Testbed for X-MAN Evaluation 81
4472 Workload Traffic Profiles 82
443 CNFDeployment 83
4.4.4 Monitoring Latency for Central Processing Unit (CPU) Utiliza-
tion Estimation 84
445 Power Management Mechanisms 85
446 X-MAN Performance Metrics 85
45 X-MAN Measurement Results and Evaluation 86
4517 X-MAN CPU Measurements 86
4.5.2 Monitoring Latency for CPU Utilization Estimation 88
4.5.3 Single CNF with Deterministic Traffic 90
454 Two CNFs with Deterministic Traffic 91
455 Single CNF with Random Traffic 95
456 Energy Consumption of X-MAN 97
A6 SUMMAIY . . . 98
Communication Networks Emulator (ComNetsEmu): An Open Source
Testbed for Virtualized Communication Networks 99
5.1 Introduction of ComNetsEmu 99
5.2 The Architecture of ComNetsEmu 101
5.2.1 Software-Defined Networking (SDN) Environment with Mininet 101
5.2.2 ComNetsEmu Enhancements and Architecture 101

Contents

53 ComNetsEmu Hands-on Examples L. 103
53.1 ComNetsEmu Echo Server Example 103
5.3.2 ComNetsEmu Mobile Edge Cloud Example 105

54 SUMMAry 106

6 You Only Look Once, but Compute Twice (YOLO-CT): COmputing In Net-
work (COIN) for Low-latency Object Detection in Softwarized Networks 109

6.1 Introduction 109
6.1.1 Overview and Motivation 109

6.1.2 RelatedWork 113

6.2 Proposed Approach: YOLO-CT 115
6.2.1 YOLO-CT Design and Architecture 116

6.2.2 Modelling of Service Latency 119

6.2.3 YOLO-CT Implementation. 122

6.3 Comparison with Clean-slate Message Transport Protocol (MTP) 124
6.4 YOLO-CT Evaluation and Measurement Results 125
6.4.1 Feature Extraction Network Function 125

6.4.2 End-to-end Response Latency 126

6.5 Summary 128

7 Summary 131
Acronyms 133
Bibliography 139

11

List of Figures

1.1

1.2

1.3

1.4
2.1

2.2

2.3

2.4

2.5

3.1

3.2

The evolution of communication architecture. Reprinted and adapted
fromthe book [1]. 20
The 5G Atom. From the inside out, the first tier presents performance
requirements. The second tier presents the novel concepts. The third
tier collects emerging and enabling softwarization technologies. The
last tier lists the unique innovations. Reprinted from the book [1]. . . 22
Typical latency budget for the sensor-to-actuator remote control loop
which meetsthe 1 ms end-to-end latency requirement of 5G. Reprinted
from my journal paper [4]. 23
Main contributions of this dissertation. 24

An example of three implemented heuristic algorithms for Service Func-
tion Chaining (SFC) placement: Four Service Functions (SFs) are placed
on two physical compute nodes. Reprinted and adapted from my con-

ference paper [11]. 31
SFC startup and service processes. Reprinted from my conference
paper [11]. . . . 32
Measurement results of rendering and gap latencies w.r.t. different
SFC chain lengths. Reprinted from my conference paper [11]. 34
Measurement results of One-Way Delay (OWD) w.r.t. different SFC chain
lengths. Reprinted from my conference paper [11]. 35

Angle of an inverted pendulum. The pendulum tries to reach stabil-
ity for different sensor-to-actuator latencies and different inter-packet
delays. Reprinted from my journal paper [4]. 38
The service loop in a Multi-access Edge Computing (MEC) cloud en-
vironment. Network traffic packets from clients are processed by a
SFC consisting of an ordered sequence of VNFs to reach the server
running the required application service. Reprinted from my journal
paper [4]. . . . 40

13

List of Figures

3.3 Atypical cloud computing infrastructure scenario where multiple Vir-
tual Machines (VMs) are connected to a virtualized network overlay.
Reprinted from my journal paper [4]. 41
3.4 Graphical presentation of the centralized combined kernel and user
space approach described in [33]. Reprinted from my journal pa-
per[4]. .. 44
3.5 Thearchitecture design of CALVIN. Fundamental elements in both con-
trol and data plane are illustrated. Reprinted from my journal pa-

per[4]. .. 48
3.6 CALVIN workflows for basic and advanced network functions running

in different spaces. Reprinted from my journal paper [4]. 49
3.7 Round-trip Time (RTT) measurement setup for CALVIN. Reprinted from

my journal paper [4]. 50

3.8 lustration of measurement setup for the RTT comparison between
centralized approach and CALVIN. Reprinted from my journal paper [4].

.. 54

3.9 Meansand 95% confidence intervals for RTT of different VNF technolo-

gies in kernel space and user space. The 95% confidence intervals for

the 256 byte payload size are very tight and barely visible in this plot.
Reprinted from my journal paper [4]. 55

3.10 The RTT performance comparison of FWD VNF between centralized
approach and CALVIN. Reprinted from my journal paper [4]. 56

3.11 The bandwidth performance comparison of FWD VNF between cen-

tralized approach and CALVIN. Reprinted from my journal paper [4].
.. 57

3.12 Means and 95% confidence intervals for processing times in microsec-

onds for computationally intensive advanced VNFs. Reprinted from
my journal paper [4]. 63

4.1 Conceptual comparison of existing approaches and the proposed X-
MAN approach. Reprinted from my journal paper [7]. 66

4.2 Example of the design of X-MAN for a physical server with two CPU
packages. Reprinted from my journal paper [7]. 71

4.3 System architecture of the X-MAN power management for a given CPU
core. Reprinted from my journal paper [7]. 74

4.4 Deterministic probing traffic profiles for X-MAN benchmark. Reprinted
from my journal paper [7]. 83

4.5 CPU frequency increase and decrease test. Reprinted from my jour-
nal paper [7]. 87

4.6 Tic-Toc test for CPU frequency and power. Reprinted from my journal
paper [71. . . 38

4.7 Comparison of monitoring latency between HC approach and X-MAN.
Reprinted from my journal paper [7]. 89

4.8 Monitoring latency of X-MAN for different number of Virtual Ethernet
Device (veth) pairs. Reprinted from my journal paper [7]. 89

14

List of Figures

4.9 Average CPU frequency and power values of a single CNF as a func-
tion of the link utilization for deterministic traffic. Reprinted from my
journal paper [7].

4.10 Average CPU frequency and power values of two CNFs for determinis-
tic traffic as a function of packet traffic (illustrated in Figure 4.4b) train
index ranging from 1 to 10. Reprinted from my journal paper [7].

4.11 Box plots of CPU frequency and power values for a single CNF with
random traffic. Reprinted from my journal paper [7].

4.12 Box plots of percentage deviation of RTT latency characteristics and
number of dropped packets with respect to the baseline No Power
Management (NPM). Reprinted from my journal paper [7].

5.1 The architecture view of the ComNetsEmu. Reprinted from my journal
paper [118].

5.2 Thetopology of the echo server as a Network Function (NF). Reprinted
from my journal paper [118].

5.3 The topology of the MEC migration example. Reprinted from my jour-
nal paper [118].

93

95

6.1 Object detection use cases including pedestrian and vehicles detection.110

6.2 Abasicdumbbell topology for remote cloud based objection detection
application.
6.3 The proposed approach YOLO-CT. A detailed illustration of the system
components and trafficflows. oL
6.4 Output size of each layer of the You Only Look Once (YOLO)-v2 model.
Reprinted from my journal paper [10].
6.5 Basicimage-based compression methods for feature maps. Reprinted
from my journal paper [10].,
6.6 YOLO-CT: Response latency without background workload.
6.7 YOLO-CT: Response latency under background workload.

117

15

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

6.1
6.2

CPU usage of the physical compute node. Reprinted from my journal

paper [4]. . . . 59
A summary of main notations used by X-MAN related modeling. Reprinted
from my journal paper [7]. 75
CPU package temperature for different CPU states. Reprinted from

my journal paper [7]. 87

Single CNF latency results for the deterministic traffic. Latency increases

are listed as percentage with respect to the performance of the base-

line NPM approach. Reprinted from my journal paper [7]. 92
Two CNFs latency results for the deterministic traffic. Latency increases

are listed as percentage with respect to the performance of the base-

line NPM approach. Reprinted from my journal paper [7]. 94
Power measurements of NPM and X-MAN: Additional energy consump-

tion (Power A) with the Traffic Monitor (TM) in the Linux kernel space
relative to the operation without TM. Energy consumption for the CPU
without power management (NPM) and with X-MAN Power Manager

(PM) enabled, and percentage of C; residency time for CPU core run-

ning PM for different CPU operational states. Reprinted from my jour-

nal paper [7]. 97
YOLO-CT: Summary of main notations. 120
Resource usage comparison between the feature extraction model

and the full YOLOv2 model. 126

17

1 Introduction

1.1 Research Motivation

In order to understand the 5G, namely the fifth-generation of cellular communication
networks and motivations of this dissertation, it is significantly important to review
and understand how communication networks have evolved over time [1]. At the
time of this work, communication systems have already evolved to its fourth gener-
ation and the emerging 5G system is still open for research and exploring even with
some early real-world implementations and deployments. For the very first commer-
cial and widely deployed communication network, namely the telephone network, to
the largest global Internet network system, the communication network has evolved
from conventional paradigm of circuit switching to the novel, simple, robust and low
cost paradigm of packet switching, which is currently mainly based on two fundamen-
tal protocols: Internet Protocol (IP) and Transmission Control Protocol (TCP) and one
simple policy of store and forward. The packet-switched approach used by Internet
has already thrived over the years, while the cellular communication systems began
as a wireless extension to the Public Switched Telephone Network (PSTN), which fo-
cuses only on voice services. The cellular networks can be connected to Internet
through the IP protocol.

In last 40 years, the cellular communication system has already evolved from 1G
to 4G. While the 1st Generation (1G) of cellular communication network system was
based on analog technologies, the 4th Generation (4G) cellular network system al-
ready provides full support of IP-based mobile Internet.

Compared to conventional hardware-based implementations, software firstly be-
gan to play a significantly important role in the 4G cellular system. In contrast to
the conventional hardware-driven network architecture of 1G to 3G, network soft-
warization is able to realize a much more flexible network architecture which pro-
vides support for agile network management, rapid launch of novel and innovative
services with much reduction in Capital Expense (CAPEX) as well as Operating Ex-
pense (OPEX).

This work comes at a time when the latest 5G cellular network systems are being
implemented and also deployed in some countries. According to the analysis per-

19

1 Introduction

formed by Fitzek et.al. in [1], compared to previous evolutions, namely 1G to 4G,
5G seems to be a real revolution: (i) Besides humans, 5G also aims at providing ser-
vices to billions of end devices, namely the so-called Internet of Things (IoT) concept.
Some 5G targeted use cases require the support of ultra-reliable low-latency and
real-time communication for both data and control messages [1]. (ii) Instead of fo-
cusing only in the wireless domain, the 5G cellular system should be a holistic design
with joint efforts in both wireless and wired domains. Standardization entities in both
domains should be involved for 5G systems, including 3rd Generation Partnership
Project (3GPP) and Internet Engineering Task Force (IETF) [1]. The overview of cellular
network evolution and the holistic design of 5G is graphically illustrated in Figure 1.1.

Wireless World Wired World

® ®

o= > [zer> | [im >

Communication = Communication =
Transport Transport + Computing + Storage
Hardware Software

Hardware

Figure 1.1: The evolution of communication architecture. Reprinted and adapted
from the book [1].

As demonstrated in the Figure 1.1, generations before 5G are dominantly hardware-
driven, which have relative long innovation and update cycle (i.e. it takes several
years) mainly due to the high cost of hardware maodification. On the other hand,
5G cellular system are starting to adopt some best practices of IETF approach in
the wired domain, which are solely driven by software solutions. Therefore, network
softwarization is one of the most important concepts in 5G system which enables
innovations and improvements from Radio Access Network (RAN) to mobile core
network in a cellular communication system. With this trend of network softwariza-
tion for 5G, the conventional network based on the fundamental store and forward
paradigm (i.e. treat network as a “dumb pipe”) is transformed into a new and novel
network based on compute and forward paradigm, where the data is also stored and
processed directly in the network. This innovative and computing-centric compute
and forward paradigm provided by 5G network system is explored in this work to

20

1.1 Research Motivation

improve the latency performance and energy efficiency.

To further understand the latency performance and energy efficiency challenges
for the 5G network softwarization, which is the motivation and focus of this disserta-
tion, a more detailed introduction of the holistic 5G communication system should
be performed here with the exquisite 5G Atom concept proposed by Fitzek et.alin [1].
The 5G atom is graphically illustrated in Figure 1.2. At the heart of the 5G atom are
important use cases that drive the development of 5G. In order to support these
use cases, multiple technical and performance requirements built the first tier of
the atom, where the latency and energy are given high attention in this dissertation.
In order to address these requirements, several novel concepts for 5G are listed
in the second tier of atom, including network slicing, Multi-access Edge Computing
(MEQ) and Information-centric Networking (ICN) etc. Then the third tier consists of
promising network softwarization technologies which can enable the realization of
the concepts presented in the second tier. This tier is the most significant tier for this
dissertation, because the core motivation and contribution of this dissertation is to
improve these technologies in three different perspectives, especially those used in
the network data plane to improve the latency performance, energy efficiency and
intelligence of the State of the Art (STOA) 5G system. The last tier of the atom consists
of some representative sample innovative mechanisms or approaches that can be
better utilized on 5G system due to the flexibility and programmability provided by
the concept of network softwarization. With respect to the emerging network soft-
warization technologies, two of them are significantly important and highly explored
and utilized in this dissertation:

- Network Function Virtualization (NFV): NFV is a novel network architecture con-
cept and technology that utilizes the virtualization technologies provided by In-
formation Technology (IT) domain to virtualize conventional hardware-driven
Network Functions (NFs) into software-driven Virtualized Network Functions
(VNFs) or Cloud-native Network Function (CNF) that can be deployed and or-
chestrated on Commercial Off-The-Shelf (COTS) hardware to deliver communi-
cation services [2].

+ Software-Defined Networking (SDN): SDN technology is a novel mechanism for
network management that enables flexible, dynamic and highly programmable
network configuration [3]. In SDN, the control plane of network nodes are de-
coupled from their data plane, which enables control and orchestration of the
network from a centralized entity, namely the SDN controller [3].

After the introduction of the most important network softwarization techniques,
the stringent real-time latency requirements of 5G need to be further discussed here
to better understand why low latency is an unprecedented challenge for current 5G
and future communication systems, and why several of the research works included
in this dissertation prioritize latency performance.

Communication networks have long been designed, implemented and evaluated
only for high bandwidth or throughput performance. This is mainly due to the well-
known fact that most typical network-based applications require mainly sufficient

27

1 Introduction

Machine Network
Learning Coding

Deep
Learning Com-
pressed

Sensing

Network
@ Through
-pUt
Hetero-
geneity Mobile
‘ o @
Interface l e Cloud

concepts e
requirements @ @

Block
Chain

innovation

Figure 1.2: The 5G Atom. From the inside out, the first tier presents performance
requirements. The second tier presents the novel concepts. The third
tier collects emerging and enabling softwarization technologies. The last
tier lists the unique innovations. Reprinted from the book [1].

bandwidth, such as web browsing, file transmission or on-demand video streaming.
Compared to bandwidth improvements, latency and jitter performance optimization
has been mainly ignored in main network research for a long time, as described by
Cheshire et.al. in already in 1996 [5]. However, in contrast to previous four gener-
ations, the latency and jitter performance plays a dominantly important role in 5G
system and is listed on the top of the all essential requirements [1]. The main reason
of this change is based on the design that 5G and future communication network
system targets at the emerging use cases with integrated control loop, including
Machine to Machine (M2M) and human-to-machine communication [1]. Therefore,
end-to-end latency and jitter performance has to be guaranteed for these use cases.
According to the 5G standard [6] published by 3GPP, the allowed end-to-end com-
munication latency for ultra-reliable low-latency use cases is limited to only one mil-
lisecond (1 ms). Based on this requirement, a typical latency budget for major 5G
components involved in a sensor/actuator controlloop isillustrated in the Figure 1.3 [4].
In this latency budget, a total of 0.4 ms is consumed by the embedded systems
(sensors and actuators) and the wireless network systems. With the 1 ms end-to-

22

1.1 Research Motivation

: e — — 0.125ms
| w L N n !

[% }{Embedded}- SGA }-{ ASGW ZCS?n
Sensor Computing l} {\ r J

Transmitte Receiver)|

MEC

Network Function \

Virtualization
(NFV)

Ims

’//‘ -------------------------------------- ’/,
§ Embedded 3
Actuator Computing

Figure 1.3: Typical latency budget for the sensor-to-actuator remote control loop
which meets the 1 ms end-to-end latency requirement of 5G. Reprinted
from my journal paper [4].

- B

Receiver Transmitter)

end latency requirement, the wired domain is left only with 0.6 ms. The wire do-
main consists of two main components. While one latency component is the wired
communication over the fiber where the latency is limited by the speed of the light
(namely, about 3.34 us per kilometer), the second component is based on the net-
work and computing nodes in the wired domain. As introduced above, 5G network
system utilizes network softwarization technologies to support the compute and for-
ward paradigm. These novel softwarization technologies enable the concept of Multi-
access Edge Computing (MEC), which enables local network data processing. Assum-
ing the maximum length of the fiber used in the system is 25 km and the speed of the
fiber used is 2000000 km/s, 0.25 ms latency is required for this component. Finally,
only 0.35 ms, namely 35% of the millisecond, remains for the MEC system.

However, according to my rigorous measurements on State of the Art (STOA) MEC
testbed based on OpenStack, which is described in detail in Chapter 2, VNFs imple-
mented with traditional socket Application Programming Interfaces (APIs) provide by
the Linux kernel are only able to provide an end-to-end latency performance of sev-
eral milliseconds even with the simplest elementary forwarding network function.
Therefore, in summary, this dissertation aims to address the question: How to sig-
nificantly reduce the latency of State of the Art (STOA) softwarization network data plane
to meet the 5G stringent end-to-end latency requirement of one millisecond with minimal
negative impact or even improvement on other important performance metrics, especially
bandwidth and energy consumption?

23

1 Introduction

1.2 Main Contributions

In order to address the research question introduced in Section 1.1, three innova-
tive approaches published as journals (all as the first author) are concluded in this
dissertation to improve the high-performance software data plane in three differ-
ent directions. These three directions or perspectives are illustrated as a Triforce in
Figure 1.4.

Ultra
Low-Latency

Software
Data Plane

Energy-
Efficient

Computing-
Centric

Figure 1.4: Main contributions of this dissertation.

1. Ultra-reliable low-latency: A novel and practical framework called Chain
bAsed Low latency VNF ImplemeNtation (CALVIN) was designed, implemented
and evaluated in my journal [4] to achieve an end-to-end RTT performance on
the order of only 0.32 ms on the Commercial Off-The-Shelf (COTS) Multi-access
Edge Computing (MEC) platform.

2. Energy-efficient: Inmy journal[7], the novel XDP-Monitoring energy-Adaptive
Network functions (X-MAN) framework was designed and implemented to en-
able non-intrusive and fine-grained traffic workload monitoring and per-CPU
core frequency management for energy saving of high-performance softwariza-
tion data plane systems. According to extensive measurements and evalua-
tions of the proposed X-MAN system on a physical testbed with support for
10 Gbps Ethernet, X-MAN is able to support two important performance met-
rics: (i) X-MAN can consistently monitor the workload traffic for four data plane
networkinterfaces with a latency of only 10 us, while the STOA Hardware Counter
(HC) approach [8] requires a latency ranging from 20 to even 80 us (ii) For the
random traffic model described in Section 4.4, X-MAN is able to reduce the en-
ergy consumption to less than half of the STOA Code Instruction with Heuristic
power management (CIH) approach [9], while has negligible impact on latency
performance.

3. Computing-centric. A novel approach named as You Only Look Once, but
Compute Twice (YOLO-CT) is proposed in my journal [10] which utilizes the

24

1.2 Main Contributions

COmputing In Network (COIN) paradigm supported by the softwarized network
to significantly reduce the amount of data required to be sent through the net-
work by offloading part of the Convolutional Neural Network (CNN) model di-
rectly into the network nodes with computing power and functionalities.

List of Publications
Journals

+ Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T. Nguyen, Martin Reisslein, and
Frank HP Fitzek. "Reducing latency in virtual machines: Enabling tactile Internet
for human-machine co-working." IEEE Journal on Selected Areas in Communi-
cations 37, no. 5(2019): 1098-1116.

* Zuo Xiang, Patrick Seeling, and Frank HP Fitzek. "You only look once, but com-
pute twice: Service function chaining for low-latency object detection in soft-
warized networks." Applied Sciences 11, no. 5(2021): 2177.

* Zuo Xiang, Sreekrishna Pandi, Juan Cabrera, Fabrizio Granelli, Patrick Seeling,
and Frank HP Fitzek. "An open source testbed for virtualized communication
networks." [IEEE Communications Magazine 59, no. 2 (2021): 77-83.

* Huanzhuo Wu, Zuo Xiang, Giang T. Nguyen, Yunbin Shen, and Frank HP Fitzek.
"Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind
Source Separation." IEEE Network 35, no. 5 (2021): 21-27.

* Zuo Xiang, Malte Howeler, Dongho You, Martin Reisslein, and Frank HP Fitzek.
"X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Net-
work Functions." [EEE Transactions on Network and Service Management (2021).

Conferences

+ Zuo Xiang, Frank Gabriel, Giang T. Nguyen, and Frank HP Fitzek. "Latency mea-
surement of service function chaining on OpenStack platform." In 2018 IEEE
43rd Conference on Local Computer Networks (LCN), pp. 473-476. IEEE, 2018.

* Huanzhuo Wu, Jia He, Maté Tomoskozi, Zuo Xiang, and Frank HP Fitzek. "In-
Network Processing for Low-Latency Industrial Anomaly Detection in Softwarized
Networks."In 2021 IEEE Global Communications Conference (GLOBECOM), (has
been accepted, not official published yet), IEEE, 2021.

Book Chapters

* Zuo Xiang, Sreekrishna Pandi, Patrick Seeling, and Frank HP Fitzek. "ComNet-
sEmu: a lightweight emulator." In Computing in Communication Networks, pp.
245-256. Academic Press, 2020.

25

1 Introduction

+ Zuo Xiang, Renbing Zhang, and Patrick Seeling. "Machine learning for object
detection." In Computing in Communication Networks, pp. 325-338. Academic
Press, 2020.

*+ Zuo Xiang, and Patrick Seeling. "Mininet: an instant virtual network on your
computer." In Computing in Communication Networks, pp. 219-230. Academic
Press, 2020.

+ Zuo Xiang, Carl Collmann, and Patrick Seeling. "Realizing mobile edge clouds."
In Computing in Communication Networks, pp. 277-287. Academic Press,
2020.

+ Justus Rischke, and Zuo Xiang. "Network coding for transport." In Computing
in Communication Networks, pp. 339-349. Academic Press, 2020.

1.3 Dissertation Organization

This dissertation is organized into seven chapters:

Chapter 1: This chapter presents the research motivation, innovative contributions
and the outline of this dissertation.

Chapter 2. This chapter describes my research work on the topic "Latency Mea-
surement of Service Function Chaining on OpenStack Platform" published in [11].
The analysis and measurement evaluations performed in this work highly motivate
other works included in this dissertation.

Chapter 3: This chapter presents my research work on the ultra-reliable low-latency
perspective of the STOA high-performance software network data plane. The design,
implementation and rigorous evaluation of the proposed CALVIN system is compre-
hensively described in this chapter.

Chapter 4. This chapter describes my research work on the energy-efficient per-
spective of the STOA high-performance software network data plane. The design,
implementation and rigorous evaluation of the proposed X-MAN system is compre-
hensively described in this chapter.

Chapter 5: This chapter presents my research work on the design and implemen-
tation of the novel Communication Networks Emulator (ComNetsEmu), which can
be used to simply prototype and evaluate research ideas for network softwarization
systems.

Chapter 6: This chapter describes my research work on the computing-centric per-
spective of the STOA high-performance software network data plane. The design,
implementation and rigorous evaluation of the proposed YOLO-CT system is com-
prehensively described in this chapter.

Chapter 7: This chapter concludes this dissertation by summarizing the research
works done with the scope of the introduced research topic. Main contributions of
this dissertation is also summarized.

26

2 Latency Measurement of Service
Function Chaining on OpenStack
Platform

All contentsin this chapter have already been published in my conference paper [11]:
"Latency measurement of service function chaining on OpenStack platform." In 2018
IEEE 43rd Conference on Local Computer Networks (LCN), pp. 473-476. IEEE, 2018.

2.1 Introduction

In recent years, with the rapid growth of users and network traffic, how to effectively
use limited resources to provide services that can meet certain requirements has
become an important issue for network operators. The capabilities of modern com-
munication networks are extended by NFV and SDN to address this challenge. The
limitation in legacy systems is resolved with NFV by removing the tight integration of
middleboxes running NFs from their proprietary hardware platform. NFs are virtu-
alized and implemented with advanced software technologies into flexible VNFs.

Since the actual use case usually requires a complete and complex NF composed
of several smaller components called SFs, NFV systems must be able to force packets
to traverse them in a specific order. The mechanism for automatically and efficiently
instantiating an ordered chain of VNFs and subsequently redirecting traffic through
the chain is known as SFC [12]. One of the most critical challenges is to decide on
which worker node to launch SFs to satisfy multiple performance objectives, i.e. the
problem of the placement of SFs. A large body of research work in the literature has
investigated the optimization issue of efficiently placing SFs physical hosts [13, 14].
However, at the time | was researching this topic, to the best of my knowledge, only
a few of them were implemented on real-world cloud platforms. In addition, the lack
of latency measurements on practical cloud platforms is an open issue.

In order to understand latencies of SFCs on the OpenStack cloud platform and
their causes, a measurement campaign is performed in this work. Instead of the de-

27

2 Latency Measurement of Service Function Chaining on OpenStack Platform

fault round-robing placement algorithm, several heuristic algorithms are designed
and implemented to minimize SFC latency. Implementations are evaluated with rig-
orous measurements on the OpenStack platform. Based on the measurement re-
sults, the SFC latency performance of STOA technologies on the OpenStack platform
is analyzed.

This work elucidates several potential directions for improving latency performance
on real-world cloud platforms based on actual measurements. These analyses pro-
vide measurement and practical support for further work in this dissertation.

2.2 Background and Related Work

Medhat et al. [15] perform a comprehensive survey of STOA SFC frameworks and
practical implementations. A service-oriented SDN controller is proposed in [16] to
implement dynamic SFCs within the framework of a service overlay network. How-
ever, the impact of packet processing is not considered in this work. Zhang et al. [17]
presents the StEERING SFC framework for flexible traffic management using SDN
technologies. A heuristic algorithm is also designed to reduce the service latency of
deployed SFCs. The latency performance is performed to compare the proposed
algorithm with a random placement. Cloud4NFV framework is introduced in [18] to
orchestrate SFs in a distributed telco cloud environment. Although the proposed
framework supports the flexible management of SFs through SFC, detailed latency
performance measurements are not performed in this work.

In summary, the placement problem of SFC related research needs to be further
simplified on practical cloud platform. Furthermore, it is important to understand
different types of latencies at each step of the SFC deployment process to validate
assumptions of theoretical modelling and shed light on ares for further improving
the latency of SFC on the practical OpenStack platform.

2.3 SFC-OStack Framework

At the time this work researched on this topic, OpenStack still had very limited sup-
port for SFC. The official SFC extension for OpenStack networking only provide basic
APIs to build SFC in Neutron without support for APIs to implement different place-
ment algorithms. In order to simplify the development, management and evaluation
of SFC placement algorithms, research oriented framework called Service Function
Chaining on OpenStack (SFC-OStack) [19] is developed on the OpenStack platform.
It is built on top of the official SFC extension (called networking-sfc) of OpenStack.

The architecture and main components of the SFC-OStack framework is illustrated
in Figure 2.1. The SFC-OStack orchestrator makes use of services provided by Open-
Stack to render SFCs into an ordered set of virtual compute instances and corre-
sponding port chains in the network data plane. The SFC-OStack orchestrator con-
tains SFC manager, scheduler and monitor modules.

28

2.3 SFC-OStack Framework

SFC-Ostack Orchestrator

SFC
Description [» SFC Manager

y

Resources\ Scheduler Monitor

Server Chain Placement
Algorithms
Port Chain

J

Bandwidth

I

i

Latency

Workload

Rendering Services

HEAT networking_sfc
driver
A

hon] [ewor)

t v
[Nova—ScheduIer] OVS-Driver

Control Plane

Cloud Infrastructure Data Plane
SRC | . .
7 : Server Chaining !
[FC}E [SFl] [SFZ} [SF3} +| DST
1 A A :
\ 4 l-----V ----- --‘;-------V--- l
[neutron network]

Figure 2.1: SFC-OStack architecture and its main components in control and data
plane.

The SFC manager is responsible for Create, Read, Update and Delete (CRUD) op-
erations and life-cycle management of SFCs. It models the SFC description into re-
sources that are available on OpenStack and its SFC extension. Available OpenStack
resources include: (i) Server chain: A set of ordered virtual compute instances on
which NF programs are dispatched and executed. Virtual compute instances are
grouped into server groups. These groups can be used for the load balancing fea-
ture provided by port pair groups of networking-sfc extension. Besides compute
instances, associated Neutron ports are also created and bounded. These server in-
stances can be launched by all virtualization technologies supported by OpenStack,
including bare metal servers, VMs and system containers. In this work, VMs are used

29

2 Latency Measurement of Service Function Chaining on OpenStack Platform

with the default Kernel-based Virtual Machine (KVM) hypervisor. (i) Port chain (PC):
Port chain is a wrapper resource required for traffic steering in a SFC. Each port
chain consists of a Flow Classifier (FC) and a list of port pair groups. Port chains
can be backed by different networking service providers for service path rendering.
In OpenStack version Pike, Open vSwitch (OVS) driver is used as the default service
provider. The server chain and port chain are implemented as separate resources
in this framework to provide efficient resource allocation and flexible updating of
deployed SFCs.

After the orchestrator converts the specification into native OpenStack resources,
rendering services are used to build the actual SFCs on the cloud infrastructure.
Because the official OpenStack Heat service does not manage networking-sfc re-
sources in OpenStack Pike version, SFC-OStack provides its own module to convert
customized SFC description files into Heat template files.

In order to deploy and render SFCs on OpenStack Neutron network architecture,
the network configuration of compute instances needs to be carefully designed. In
SFC-OStack, while the orchestrator is deployed on the Neutron networking node and
connected to the external network, SFCs are rendered on multiple compute nodes
that are connected to the management and data networks via separate physical in-
terfaces. Each VM in the chain is allocated with three separate virtual interfaces. As
two interfaces are used as ingress and egress ports for user plane data traffic, the
last interface is for management traffic of the SF. From the view of each VM, all its net-
work interface are attached to a private virtual tenant network. They get internal IP
addresses from Neutron's Dynamic Host Configuration Protocol (DHCP) agents and
are allocated with a floating IP address for remote access and management from
public network.

2.4 Latency-aware Network Function Placement and
Chaining

The problem researched by this work is the latency-aware placement and chaining
of SFs. All SFs of a logical SFC need to be deployed and then interconnected on the
physical cloud infrastructure with multiple resource constraints such as compute,
network and storage. The goal of the proposed algorithms is to find a placement
that minimizes both rendering and service latency of SFC at the same time. Three
simple heuristic algorithms are proposed in this chapter as low-complexity solutions
to the SFC placement problem.

In practical deployment, both computational and network aspects need to be con-
sidered in order to design heuristic placement algorithms. Therefore, following as-
sumptions are made in this work: (i) Inter-node physical network connections are
more costly and time-consuming than intra-node virtual network connections. In
contrast to intra-node traffic that can be forwarded directly by local software vir-
tual switch, inter-node traffic requires additional tunnel encapsulation and trans-
mission over the underlying physical network. (ii) Virtual instances and port chains
allocated on the same physical compute node share computing and networking re-

30

2.5 Measurement Campaign and Results Evaluation

sources. When too many SFs are allocated on the same compute node, this compute
node can become overwhelmed, which significantly increases computation and net-
work latency. Therefore, two types of latency are considered in following placement
strategies: (i) Processing latency: Computational latency required by SFs for packet
processing. (i) Transmission latency: Network latency required to transmit packets
between SFs and underlying physical compute nodes if needed.

(Node 1) (Node 2 A (Node 1) (Node 2 A (Node 1 A Node 2
1 / » 2 1 > 4 1 // 3
3 }‘ > 4 2 2 /| 4
3
_ Y, _ J _ Y, _ J _ J \ J
(a) LB (b) LC (c) LBLC

Figure 2.2: An example of three implemented heuristic algorithms for SFC place-
ment: Four SFs are placed on two physical compute nodes. Reprinted
and adapted from my conference paper [11].

Following heuristic approaches are designed and also implemented: (i) Load Bal-
ancing (LB) strategy: This is simply a greedy algorithm that tries to minimize the pro-
cessing latency without considering the transmission latency. Compute node with
minimal computational workload is always selected in each iteration of the SF place-
ment. (i) Least Connection (LC) strategy: In this approach, the transmission latency is
minimized without considering processing latency. Connections between different
nodes are minimized. The physical compute node running the service application
is firstly used to place new SFs. Then as many SFs as possible are placed on this
selected node. When the resources of the node are exhausted, the next node is
selected randomly for further placements. (iii) Load Balancing plus Least Connec-
tion (LBLC) strategy: This is an optimized version of LB that also takes transmission
latency into consideration. LBLC uses the same mechanism of LB to launch SFs.
However, a reordering of SFs is performed before chaining them. Reordering here
means rearranging the mapping between the virtual SFs in the logical SFC and the
VMs spawned on compute nodes. The overhead of this remapping process of vir-
tual SFs is much cheaper than firstly deploy the NF programs and then migrate VMs.
The reordering algorithm minimizes connections between different nodes to reduce
transmission latency as much as possible. An example using aforementioned three
strategies to place four SFs on two compute nodes is presented in Figure 2.2.

31

2 Latency Measurement of Service Function Chaining on OpenStack Platform

IEOEE AR DEER @B @ @

Server

Gap Time

Rendering Time

Time

GE:C;:ZCS:SH |—>|Launchsm|—o| Wait SFPG I—PER-L‘:)r-d;r-S;I_s-:‘—0| Build PC
Figure 2.3: SFC startup and service processes. Reprinted from my conference pa-
per [11].

2.5 Measurement Campaign and Results Evaluation

Based on analyses of the system, the overall SFC latency contains mainly three dif-
ferent types i.e. rendering latency, gap latency and One-Way Delay (OWD). These
delays are graphically illustrated in Figure 2.3. These delays can be used to com-
pletely estimate the SFC setup process, from instantiation of a SF chain until the SFC
is completely ready for service. These delays are explained as follows: (i) Rendering
latency: The duration it takes to instantiate a SF chain with both compute and net-
work resources. (ii) Gap latency: It describes the delay of the first redirected packet
to reach its destination through the allocated chain. This gap duration exists because
the applied traffic policies and security rules only take effect when the first payload
packet arrives at the first payload packet arrival. This delay only happens once for
each newly allocated SFC. (iii) OWD: This delay refers to the average delay of packets
passing through the allocated SFCs after they are ready for service, i.e. after the ren-
dering process in fully completed and the first packet successfully pass through the
chain.

In order to perform the measurement campaign of aforementioned latencies, a
combination of both passive and active measurement strategies is applied in this
work. The passive strategy is used to measure the rendering delay of the SFC-OStack
orchestrator, while the active strategy is used to measure the gap delay and OWD.
User Datagram Protocol (UDP) traffic with a fixed packet size is used to send probing
traffic in order to have complete control over the probing process without interfer-
ence from flow and congestion control mechanisms of TCP. In order to measure
OWD with high accuracy, clocks of all physical machines in the testbed used in this
work are synchronized with Network Time Protocol (NTP).

The UDP probing client marks packet IDs and timestamps for all packets in the
probing traffic to measure OWD. In order to measure the gap latency, the probing
server has to be able to distinguish between packets with and without SFC process-
ing. Therefore, SFs in the chain modify the original UDP payload.

In order to measure the OWD, sample VNFs need to be launched for packet pro-
cessing. The processing performance of VNFs is not the focus of this work, so the
corresponding overhead should be minimized in all measurements. Only minimal
functionalities of VNFs are deployed to make the latency measurements indepen-
dent of the complex packet processing of the NF itself. The minimal packet pro-

32

2.5 Measurement Campaign and Results Evaluation

cessing programs launched on VMs are implemented both in Linux kernel and user
spaces. At the time of this work, Linux Kernel IP Forwarding (LKF) is launched since it's
one of the fastest packet processing provide by Linux kernel. It is chosen in this work
as the baseline to evaluate the performance of other NF implementations. Besides
LKF, a forwarding function in user space is implemented using Python (PyF) and the
Linux packet socket (AF_Packet) API. For all active probing, UDP traffic with a probing
interval of four milliseconds and a UDP payload size of 512 bytes is used.

Evaluation measurements are performed on a practical and physical testbed with
four COTS servers. Each compute node has four CPU cores (Intel 4* Generation Core
i5), 16 GB DDR3 RAM and 128 GB SSD disk. The OpenStack version Pike is deployed
and configured on Ubuntu 16.04 Operating System (OS). SFCs with different chain
length are created between the probing client and server for latency measurements.
For each specific measurement setup, measurements are repeated for 30 times for
mean values and 99.9% confidence intervals. All measurement results and figures
have been already published in my conference paper [11]. Figures are re-used in
this dissertation and the descriptions and analyses are revised. In these figures, each
VM running a SF is marked as a Service Function Instance (SFI) [11].

Measurement results of SFC rendering duration are presented in Figure 2.4a. Each
bar consists of three parts, namely the latency to launch the VM, to boot the SF
and to build the port chain (PC). Although the percentage of the building duration
of PC is relatively small, the launching and booting delays of SFs are relative high.
As illustrated in the Figure, as the chain length increases, both SFs launching and
PC building delays show a linear trend. The booting delays remain unchanged and
constitutes for roughly 100 seconds. It can be concluded that distributing SFs over
multiple compute nodes with e.g. LB algorithm does not significantly speed up the
SFC rendering latency.

Measurement results of the gap delays are illustrated in Figure 2.4b. Confidence
intervals are not plotted here for readability since variances in results are very small.
Although the SFC-OStack orchestrator redirects traffic only after all SFs in the chain
report a fully active status, the gap latencies are still in the order of seconds, which
is inconsistent with expectations. This is mainly due to the fact that the latency per-
formance of creating and applying network policies into Neutron network is limited
for OpenStack Pike version. Compared to the rendering latency, the gap delays of
different algorithms show obvious differences. In contrast to the fluctuating trend of
the LC algorithm, both LB and LBLC show a linear increase in general. Compared to
other approaches, LBLC has the best overall performance. For a SFC with 10 SFs, the
gap delay of LBLC is less than 0.8 second compared to the delay about 1.1 second
with LB. So the gap delay is reduced by about 29% with LBLC compared to LB.

The OWD measurements results are illustrated in Figure 2.5. The delays of LKF
are presented in Figure 2.5a. With the chain length ranging from 1 to 10, OWDs of
all three algorithms with LKF show an upward trend. While the LB shows the highest
OWD, the LC algorithm shows the best overall OWD performance. OWD results of
LBLC are located between the LB and LC approaches. For a chain of 10 SFs, the LC
algorithm can reduce the OWD by about 20% compared to the LB. This result is as
expected, since LC significantly reduces the transmission delays. And the additional
overhead of LKF is small compared to the transmission delays of the testbed used

33

2 Latency Measurement of Service Function Chaining on OpenStack Platform

300 4 B SFI launching duration
— EZZA SFI booting duration
wn
‘; 250 4 BEE#E PC building duration
;%
£ 200 1
=i
o
2150 17 Pl v
o)
Q
oo

50 - A A Y VI

Chain length
(a) Rendering latency.

Gap duration (s)

1 2 3 4 5 6 7 8 9 10
Chain length
(b) Gap latency.

Figure 2.4: Measurement results of rendering and gap latencies w.r.t. different SFC
chain lengths. Reprinted from my conference paper [11].

in this work. In contrast to LKF, the user space forwarding with packet socket is ex-
pected to require much more packet processing latency because of e.g. additional
data copying and context switching. Therefore, the LBLC approach should present
the lowest OWD since it consider both transmission and processing latencies. The
measurement results shown in Figure 2.5b are clearly in line with the expectations.

34

2.5 Measurement Campaign and Results Evaluation

104 B8 LKFLB
EZZ LKF LC
] - B LKF LBLC

L
A
%4' ** ’’’’ ***
=17 H H K
1wk B H R / / ? /
o | RUH R B RCH ROH B R R B
1 2 3 4 5 6 7 8 9 10

Chain length
(a) Linux kernel forwarding.

104 &8 PyFLB
B4 PyF LC
g 4 EEl PyFLBLC . Kia B
2
Z 64 Kl B PO KRN AT
a
=
O a4 i Ret] BE EE B MO S B
2_ ___
0_

1 2 3 4 5 6 7 8 9 10
Chain length
(b) Forwarding with Python AF_Packet.

Figure 2.5: Measurement results of OWD w.r.t. different SFC chain lengths. Reprinted
from my conference paper [11].

When the chain has more than two SFs, LBLC has the best delay performance. When
the length of the chain is nine, LBLC presents the minimal delay of 8.3 ms. In com-
parison, LB shows 9.4 ms and LC shows 8.7 ms. For the SFC with 10 SFs, the LBLC
strategy is able to reduce the OWD by about 10% compared to the default LB al-
gorithm. It can be concluded that the proposed LBLC algorithm can provide overall
better latency performance when both transmission and processing delays are taken
into account.

35

2 Latency Measurement of Service Function Chaining on OpenStack Platform

2.6 Summary

Different types of latencies introduced by SFC on OpenStack cloud platform are re-
searched in this study. Three heuristic algorithms are designed and implemented
with the SFC-OStack framework for latency-aware SF placement problem. A rigorous
measurement campaign is performed on the OpenStack cloud platform with follow-
ing important observations: (i) The OWD of probing packets through SFC can already
reach several milliseconds, even for the minimal chain length and minimal packet
processing operation in Linux kernel. A user space implementation with AF_Packet
can double the delay with the same processing operation. This latency performance
is not sufficient for URLLC use cases target by 5G network systems. This issue is
further researched and addressed in the work described in Chapter 3. (ii) The pro-
posed LBLC heuristic can reduce the OWD by about 10% compared to the default
LB strategy. (iii) There is a gap delay of hundreds of milliseconds. These conclusions
reveal practical challenges in deployment and management of SFC on OpenStack
cloud platform with existing technologies.

Due to limited working time and experience in development on OpenStack cloud
platform, many components of the SFC-OStack framework can be further improved.
For future work, it is also interesting to investigate the root causes of gap latency
introduced by SFC-OStack and the underlying OpenStack platform. Furthermore,
heuristic algorithms proposed in this work can be extended to take more network
performance parameters into consideration besides latencies, such as the available
maximal bandwidth of the compute node, the maximal number of network connec-
tions and so on.

36

3 Reducing Latency in Virtual
Machines: Enabling Tactile
Internet for Human-Machine
Co-Working

All contents in this Chapter has been published in my journal paper [4]: "Reducing
latency in virtual machines: Enabling tactile Internet for human-machine co-working."
IEEE Journal on Selected Areas in Communications 37, no. 5 (2019): 1098-1116.

3.1 Introduction

The core requirement for a tactile Internet that enables human-machine co-working
is the low-latency communication [20-24]. Both machines and humans need laten-
cies of less than one millisecond for a wide range of co-working scenarios. For ex-
ample, for humans working in virtual worlds and interacting with robots or other
types of machines, latencies for visual, audio and tactile feedback have to be lower
than 15 ms, 3 ms and 1 ms, respectively [25]. To operate in a stable manner, ma-
chines based on remote control loops also requires ultra low latencies [26]. As a
concrete example, consider a classical inverted pendulum whose remote controller
is deployed in the cloud platform. Closing the control loop through the communica-
tion network has to introduce additional latencies and packet losses.

The influence of delays between angle sensor and actuator (motor) on the stability
of a pendulum isillustrated in Figure 3.1. All results are generated by simulation. The
graph on the left shows the angle of the pendulum with different sensor-to-actuator
delays, i.e. 50 ms, 40 ms and 1 ms. For these three sensor-to-actuator delays, the
inter-packet delay is fixed to 1 ms. For the graph on the right, the sensor-to-actuator
delay is fixed to T ms while the inter-packet delay is configured to 10 ms, 5 ms and
T ms.

As presented in Figure 3.1, the pendulum becomes very unstable when the sensor-

37

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

—Sens.-to-Act. Del. = 50 ms 0.025 —Inter-Packet Del. = 10 ms
02 —Sens.-to-Act. Del. =40 ms ’ —Inter-Packet Del. = 5 ms
“ —Sens.-to-Act. Del. = 1 ms 0.02 —Inter-Packet Del. = 1 ms
= 0.1 H ” < 0.015
g £
Q ()
= f o 0.01
Zo :
0.005
-0.1 u u u o —
-0.005
-0.2
0 2 4 6 0 0.5 1 1.5 2
Time (s) Time (s)

Figure 3.1: Angle of an inverted pendulum. The pendulum tries to reach stability for
different sensor-to-actuator latencies and different inter-packet delays.
Reprinted from my journal paper [4].

to-actuator delay reaches 50 ms. So the pendulum will never reach its stability in the
correct position. When sensor-to-actuator delay is reduced to 40 ms, the pendulum
can reach the stability after about 3 seconds. Therefore, the sensor-to-actuator delay
has a significant impact on the performance of the pendulum and Quality of Service
(QoS) of pendulum based applications and systems.

The allowed end-to-end communication latency requirement of one millisecond is
defined in the 5G communication standard for automation in vertical domains [6].
As already described in the first chapter of this dissertation, the typical allocation of
individual 5G communication network latency budget components is illustrated in
Figure 1.3. As showed in the Figure, only 0.6 ms is allocated for the wired domain.

There are two main latency components in the wired domain: (i) Basic communi-
cation delay over fiber where the delay is bounded to the speed of light (3.34 us per
kilometer) and fiber characteristics. (i) Delay introduced by communication nodes.
These communication nodes are traditional switches and routers in the conventional
store and forward network paradigm. However, in the upcoming future communica-
tion networks, there is a paradigm shift from store and forward to compute and for-
ward. All communication nodes can now process and manipulate received network
packets, instead of simply forwarding them without any complex computational op-
erations. The new paradigm compute and forward can be realized with emerging
network softwarization technologies, such as SDN [27] and NFV [2]. These promising
technologies also enable the trending concept of MEC. MEC enables local processing
of data, which in turn is able to reduce latencies on communication paths. When the
maximum distance between sensor/actuator and the MEC platform is 25 km and the
speed of fiber used is 2000000 km/s, 0.25 ms is required on the fiber communica-
tion. Therefore, only 0.35 ms is left for NFV and SDN processing in the MEC platform.

The summary section 2.6 of measurement results in the previous Chapter 2 and

38

3.2 Background and Related Work

related works [5, 28] show that achieving low latencies is a well-known challenge in
communication networks. While latency types that are proportional to the available
transmission bandwidth and data volume can be reduced by increasing transmis-
sion capacity and applying better data compression methods, dealing with packet
processing delays and its various constant latency contribution poses a significant
challenge [29]. Furthermore, recent studies [11, 30] have shown that NFV, for which
high flexibility is highly designed, imposes significant packet transmission and pro-
cessing demands. These demands can introduce relative large latencies that cannot
be ignored.

At the time (2018-2019) of this research work on this topic, most virtual switches
are already relative fast [31, 32]. However, the STOA VNFs based on conventional
Linux kernel networking technologies running on VMs are relative slow, especially
the packet Input/Output (I0) and processing operations. Zhang et.al. [33] proposed
a minimal packet forwarding NF with the centralized approach, which presents an
end-to-end delay of more than 2 ms with only one VM running SF. This latency per-
formance is obviously far too bad with regard to the above-mentioned delay budget
of 0.35 ms.

Ultra-reliable low-latency NFV and practical general MEC platform built with COTS
hardware and open source software are explored in this work. An ultra-reliable
low-latency SFC management named Chain bAsed Low latency VNF ImplemeNta-
tion (CALVIN) is designed, implemented and rigorously evaluated in this work. In
CALVIN, VNFs are implemented either in the Linux kernel space or in user space and
are deployed on each own VM. While the fastest eXpress Data Path (XDP) technol-
ogy is used for kernel space NFs, high-performance user space packet processing
framework Data Plane Development Kit (DPDK) is employed by CALVIN to imple-
ment user space NFs. Both of them can achieve the best software packet process-
ing latency currently available. The measurement results of evaluations on practical
real-world testbed demonstrate that the proposed CALVIN framework can achieve
an end-to-end latency on the order of 0.32 ms for the basic packet forwarding NFs.
With CALVIN, it is possible to implement advanced NFs on a MEC platform with COTS
hardware and open source software, such as Network Coding (NC) and traffic encryp-
tion/decryption with Advanced Encryption Standard (AES).

The proposed CALVIN approach makes it possible to handle more advanced net-
work functions such as NC and traffic encryption with AES in a generic virtualized
MEC setup, while meeting the end-to-end 1 ms latency requirement of the tactile
Internet.

3.2 Background and Related Work

The main components of a typical NFV based service loop inside the MEC platform
is illustrated in Figure 3.2. All packets of a network flow are received by the MEC
platform through the ingress network port of a service proxy. Then they are pro-
cessed by a chain of VNFs and forwarded to the target server running the requested
service. After the processing on server, response data is generated by the server

39

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

and transmitted back to the client via the egress port of the server proxy. Ingress
and egress network ports are endpoints that are exposed to the public network. On
OpenStack platform, this network is normally also called the external network. This
network is separate from the internal data network mainly for performance and se-
curity considerations. So these public endpoints are required for remote clients out
of the cloud to access the services provided by the MEC system.

/ Cloud Environment \

Service Proxy :- ----- S -er-vi-ce-F-ur-lczi(;n-C-h;ir; ----- :
I E E
> T’%?ﬁ:s : > VNF 1 — VNF 2 — VNF 3 —
| -
T T TTTTTTT --' | server
) Eggﬁ]sts S VNF 6 [«— VNF 5 [«—| VNF 4 |« |

e /

Figure 3.2: The service loop in a MEC cloud environment. Network traffic packets
from clients are processed by a SFC consisting of an ordered sequence
of VNFs to reach the server running the required application service.
Reprinted from my journal paper [4].

As presented in Figure 3.2, all ordered VNFs of a SFC work typically as a pipeline.
This pipeline is normally implemented on a cloud computing platform, e.g. Open-
Stack. The cloud computing platform can provide flexible and controllable manage-
ment over the underlying physical computing, networking and storage resources. In
this work, all VNFs and application servers are implemented as software programs
running on VMs that are managed by the OpenStack cloud platform.

A typical networking infrastructure setup of the OpenStack cloud platform is pre-
sented in Figure 3.3. As plotted in the Figure, multiple VMs are interconnected in
a virtualized overlay network. This virtual networking overlay is built on top on the
physical networking between compute nodes to enable configurable multi-tenant
networking for VMs. For example, two VMs deployed on different compute nodes
that are connected to different physical networks (different routing entities) can be
located in the same Local Area Network (LAN), namely in the same broadcast domain.

To provide a virtual overlay network on top of the underlying heterogeneous phys-
ical network, two software bridges (or switches) on each compute node are used to
connect the Virtual Network Interface Controllers (vNICs) to the Physical Network In-
terface Controllers (pNICs). While the integration bridge is used to connect all VMs
running on the same compute node, the tunnel bridge supports encapsulation and
transmission of network virtualization tunneling protocols, such as Virtual Extensible
LAN (VXLAN) and Generic Routing Encapsulation (GRE).

As illustrated in Figure 3.3, different types of latencies are introduced by compu-

40

3.2 Background and Related Work

Compute Node 1 Compute Node 2
Gl G
VI\fC vNIC

Integration Bridge
I Software Bridges

}\

Integration Bridge
(3)1 Software Bridges

1
1
1
1
1
1

Tunnel Bridge Tunnel Bridge

(
Physical Network

Figure 3.3: Atypical cloud computing infrastructure scenario where multiple VMs are
connected to a virtualized network overlay. Reprinted from my journal

paper [4].

tational and network components (main components are marked with numbers 1-5
in the Figure):

+ Latency between VM and the integration bridge (1, 2): Minimizing this delay
component is the main focus on this work. This delay part mainly consists of
two parts:

- The time required to transmit packets between the VM and integration
bridge through the vNIC (2). This part of latency mainly depends on the
vNIC implementation and has two main subparts:

* Time required to transfer packets between virtual switch and the ring
buffer of vNIC. This delay can be reduced to the order of only some
microseconds [31] with accelerated software switch data planes, such
as using Open vSwitch with DPDK Datapath (OVS-DPDK).

* Time required to transfer packets between vNIC and the VNF running
on the VM. If the VNF is implemented with the conventional stan-
dard Linux kernel networking API, namely Berkeley sockets, this la-
tency subpart can become a bottleneck in the low latency virtual net-
work overlay.

- Processing delay inside each VM (1): All packets in a network flow need to
be processed by the VNF running inside the VM. The processing latency
depends heavily on both algorithms and technologies used to implement
the VNF. For ultra-reliable low-latency use cases, such as tactile Internet,

41

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

processing operation of each packet should be optimized as much as pos-
sible.

+ Delay between the integration switch and the pNIC (3, 4): This part depends
on the deployed virtual switches, orchestration cloud platform, and underlying
physical resources of compute node [34].

+ Time required to transmit packets between pNICs (5): This latency part fully
depends on the underlying physical networking infrastructure. This part is not
the research focus of this work, we try to use the STOA physical networking
devices to achieve the best performance obtainable.

Reducing latencies marked as (1) and (2) in the Figure 3.3 is, to the best of my
knowledge, still an open research question when | worked on this topic. The CALVIN
framework proposed in this work is able to significantly reduce these latency compo-
nents and provide an end-to-end service latency within the 0.35 ms budget required
by 5G URLLC use cases.

Some recent studies [35-38] mainly based on mathematical modelling, analysis
and modelling have considered the latencies involved in SFC. Compared to purely
mathematical modelling, an experimental research is conducted in this work with
empirical and rigorous latency measurements on OpenStack platform. The target of
this work is to rigorously investigate the baseline latency of STOA SFC implementa-
tion on practical cloud platform. This empirical measurement study complements
abovementioned mathematical analysis and simulation studies and provides refer-
ence latency values on real cloud platform, which can be used as reference data for
future analysis and simulation studies for ultra-reliable low-latency VNFs. The CALVIN
framework proposed in this work is able to achieve significantly better end-to-end
latencies compared to STOA conventional frameworks.

Several recent works [39-41] have explored the placement problem of VNFs. How-
ever, these works mainly works on pure mathematical modelling and optimization.
The CALVIN framework proposed in this chapter empirically and complementarily
examines all aspects of the VNF placement issue on real cloud system.

Because the proposed CALVIN exploits the possibility to utilize complementary
strengths of both in-kernel and kernel bypass technologies for latency reduction, a
summary of related works for both in-kernel and kernel bypass packet processing
frameworks is presented in this section.

Kernel Space Packet Processing

The XDP high performance data path for packet 1O is available in Linux kernel since
the version 4.8 [42]. With XDP, a network programmer can attach an extended Berke-
ley Packet Filter (eBPF) program to the very early hook in the RX path of the Linux
kernel to decide the fast processing of the received packet. At the time of this work,
XDP is still relative new, few related research studies have been conducted on its
latency performance and implementation complexity [22].

eBPF and its features are quantitatively explored in [43]. Several relative strict lim-
itations of eBPF are listed when building complex NFs that require complex packet

42

3.2 Background and Related Work

and flow processing. For example, eBPF programs have a limited number of instruc-
tions and do not allow unbounded loops. Therefore, in CALVIN, not all NFs are imple-
mented with kernel space technologies. According to my preliminary performance
evaluation of an XDP based elementary packet forwarding function, XDP can achieve
a very low latency when deployed in the VM running the NF. Besides the latency
performance, XDP has also multiple advantages over full kernel bypass technolo-
gies. For instance, compared to DPDK, XDP does not require dedicated isolated CPU
cores and pre-allocated huge pages. XDP is also able to utilize the TCP/IP network
stack and other functions already available in Linux kernel and apply the security
model already used in Linux kernel.

The InKeV approach published in [44] studies the XDP based network functions
for NFV uses cases. In InKeV, only simple NFs are implemented due to limitations of
eBPF. However, the performance evaluation of InKeV is only performed on a single
physical machine. Compared to it, my evaluation is more rigorous and performed
on a multi-node physical cloud testbed.

User Space (Kernel Bypass) Packet Processing

In recent research works related to network softwarization, user space packet pro-
cessing is much more popular than in-kernel mechanisms [45]. However, most re-
lated works put most effort on evaluating throughput instead of latency performance
for STOA kernel bypass technologies. According to the survey and evaluation per-
formed in [46], there are three most widely used kernel-bypassing high performance
packet 10 and processing framework, namely netmap, PF_RING ZC and Intel DPDK.
It can be concluded from the work [46] that DPDK has the best hardware and soft-
ware driver support, documentation, built-in samples and overall performance. Be-
cause of abovementioned advantages, DPDK also becomes now the de facto stan-
dard high-performance packet processing framework based on kernel bypassing. So
this work also chooses the DPDK framework for user space NF implementation.

Combined Kernel and User Space Packet Processing

Compared to pure in-kernel or user space solutions, more closely related to my ap-
proach is the recent works that combine both in-kernel and user space technolo-
gies. In [47], the general architecture principles for building a hybrid kernel-user
space VNF has been explored. With the combined approaches that are designed to
provide the conventional socket API, most legacy VNFs can be ported and deployed
with minimal modification. So this combined approach can significantly reduce the
implementation complexity for new VNFs.

Recently, the VNF for Network Coding (NC) was implemented in [33] by employing
the Kernel Network Interface (KNI) mechanism provided by DPDK library. This ap-
proach is referred as the “centralized approach” in this chapter because it aims to
pack all VNFs into a single VM to avoid the additional latency introduced by inter-VM
packet transmissions. The illustration of this centralized approach is presented in

43

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine

Co-Working
/ Virtual Machine \

Kernel Space

[KNI Kernel Module ISR
Stack
A
vCPU \ 4 v

T |VEthO | |vEth1 | | read | | write |
a

A

v

|||||\ User Space [E

\ 4

z

2

DPDK KNI Application 2

z

F3

U [wic] [wic] /
T

Figure 3.4: Graphical presentation of the centralized combined kernel and user
space approach described in [33]. Reprinted from my journal paper [4].

Figure 3.4. Both in-kernel and user space mechanisms are applied by the central-
ized approach to make multiple small VNFs cooperate in a centralized manner.

As illustrated in Figure 3.4, for the centralized approach, each packet in a net-
work flow needs to be exchanged between kernel and user space at least four times,
which can be the bottleneck for latency performance. If zero-copy technologies are
not available, additional packet data copies must be performed and this can intro-
duce non-negligible latencies for tactile network applications. Furthermore, available
physical computation and network resources of underlying compute node have to
be shared by all VNFs both in kernel and user space. The scheduling between in
kernel and user space VNFs requires context switches. These context switches can
introduce unstable latencies and perform negative impact on the cache behavior of
CPU. Moreover, latency also cannot be easily reduced by vertical scaling of computa-
tion resource. For instance, utilizing two virtual CPUs (vCPUs) does not simply halve
the latency. This statement was verified with my measurements of the centralized
approach on my testbed. All in all, these negative impacts of centralized approach
can result in relative large and unstable latency.

In order to overcome the limitations and drawbacks of the centralized approach
described in [33], the CALVIN proposed in this Chapter distributes VNFs over a chain
of VMs (namely, to build a SFC) on which Network Functions (NFs) run either com-
pletely in the kernel space or completely in the user space.

44

3.3 Proposed Approach: CALVIN

3.3 Proposed Approach: Chain bAsed Low latency
VNF ImplemeNtation (CALVIN)

3.3.1 Overview of CALVIN

The core idea of CALVIN is to access and evaluate the nature of a VNF in complexity
when processing packets. CALVIN is designed to take advantage of both in-kernel
and user space (i.e. kernel bypass) high performance packet processing frameworks
available on Linux. Each VNF is deployed within a separate VMs to build a high-
performance SFC. These two practical design choices of CALVIN completely eliminate
the context switching and data transmission overhead of packet processing in dif-
ferent spaces, thereby significantly reducing the overall end-to-end service latency.

The design and implementation of CALVIN framework can provide following main
advantages: (i) Avoid the non-negligible latency required for context-switching in-
side VM: Context switching between kernel and user space can introduce high la-
tency [48]. Deploying and running the VNF in a single space can mitigate this neg-
ative impact. (i) Avoid data copying or metadata copying between different spaces:
The latency cost of data copying at any location in the data path has to be considered
for low latency VNF implementation. Performing packet processing only in a single
space can avoid data copying. (iii) The flexibility and scalability is improved. For the
centralized approach presented in [33], due to the resource contention on the same
VM, the latency performance can not be easily scaled with horizontal scaling. Com-
pared to the centralized approach, CALVIN provides more flexible and horizontal
scalability.

3.3.2 Classification of Virtualized Network Functions (VNFs)

The first step in developing high-performance VNFs for CALVIN is to classify them.
Depending on the classification of VNFs, a given VNF is either deployed in kernel
space or in user space. In CALVIN, VNFs are classified into three main groups:

+ Elementary or Skeleton Functions: This is the minimal and fundamental func-
tionalities required for all VNFs: (i) Receive packets from the ingress physical
or virtual network interface. (ii) Create data structures and other required re-
sources to store received packets for further processing. (iii) Send processed
packets through the physical and virtual egress network interface. Both kernel
and user space technologies must support these functions.

+ Basic Functions: The main features of the basic functions are listed as follows:
(i) Processing are performed only on the packet headers, not on the packet
payload. So these NFs are typically stateless. Packet headers also have rela-
tive small sizes. Therefore, most basic NFs can be implemented without un-
bounded loops, which are currently not supported by the XDP technology.
(i) The computational complexity of basic NFs is relative low so that an accept-
able latency performance can be achieved without applying some acceleration

45

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

technologies that currently only available in user space, such as Single Instruc-
tion Multiple Data (SIMD) and CPU cache prefetching. (iii) The VNF implemen-
tation has no strict requirements on specific hardware or software runtime
(software environments), which are not available or accessible in the Linux ker-
nel. With these characteristics, basic functions are suitable to be implemented
and deployed directly inside the Linux kernel space, such as IP router, IP load
balancer, stateless firewall and Network Address Translator (NAT).

+ Advanced Functions: Advanced functions involve relative complex and com-
putationally intensive operations compared to the basic functions. This group
of VNFs has serveral features: (i) Besides packet headers, the payload data
also needs to be processed. (ii) Because of the complexity involved, accel-
eration mechanisms that are only available in user space have to be applied
for low latency performance. (iii) The implementation normally requires spe-
cific hardware or software runtime. For instance, the most widely used open
source Random Linear Network Coding (RLNC) library Kodo currently requires
the C++ runtime [49]. The C++ runtime is not available in the Linux kernel yet,
so NC network functions using Kodo library can not be directly implemented
in Linux kernel. Therefore, based on abovementioned features, advanced net-
work functions, such as NC, data encryption, data compression, should be im-
plemented in user space.

3.3.3 VNF Implementations Selection for VNF Classes

Compared to many available kernel bypass technologies, such as Netmap, PF_RING,
and DPDK, relatively few in-kernel VNF frameworks are developed and available.
Based on my literature review, eXpress Data Path (XDP) is the fastest in-kernel pro-
grammable network data plane framework available, providing fast packet process-
ing at the lowest available software hook in the Linux kernel software stack [42].
Therefore, XDP is selected by CALVIN to implement VNFs running in the Linux kernel
space.

Based on my literature review covered [45, 46, 50, 51], and preliminary measure-
ments, DPDK is selected in CALVIN to implement kernel bypass VNFs in user space.
Main reasons are listed as follows: (i) High throughput and low latency packet pro-
cessing with COTS hardware: According to the performance comparison perform
in [46], DPDK demonstrate the overall best bandwidth and latency performance
among most widely used kernel bypass frameworks. (ii) Open source with compre-
hensive documentation: DPDK provides full control of nearly all aspects involved in
the packet 10 and processing. It also has very detailed documentation and exten-
sive built-in examples that describe the best available practices to implement high-
performance and efficient VNFs. (iii) DPDK becomes the de facto standard with wide
support and related references: A wide range of both physical and software Net-
work Interface Cards (NICs) are supported by DPDK with highly optimized drivers.
Furthermore, most high performance software switches, such as OVS and Vector
Packet Processing (VPP), have support for DPDK based fast path [51, 52]. OpenStack
pike version supports OVS with DPDK data path out-of-the-box.

46

3.3 Proposed Approach: CALVIN

Although DPDK has the overall best performance, it (the version 18.02) also has
some disadvantages: (i) Most drivers of DPDK only support the polling mode. Polling
mode can be inefficient for energy consumption. (ii) DPDK currently only provides
network protocol stack only up to the IP layer. The support of transport and upper
layer network protocols requires third-party libraries or frameworks. (i) User space
frameworks bypass the relative mature security models provided by Linux kernel.
User space frameworks currently lack of standard and verified security model, which
is a hot research area.

3.3.4 CALVIN Architecture Design and Workflow

The architectural design of CALVIN is presented in Figure 3.5. CALVIN is built on top
of the research-oriented SFC framework SFC-OStack introduced in the Chapter 2 and
my conference paper [11]. The SFC-OStack framework is extended and improved
both in control and data plane for ultra-reliable low-latency SFC system:

+ CALVIN Control Plane: A classifier for different VNF groups is added that clas-
sify VNFs based on their description and specification into basic and advanced
network functions. The processing pipeline of the VNFs is then converted into
a functional chain of VMs with their computational and network configuration.
Lifecyle management of all instances in the SFC description is handled by the
SFC manager which renders and orchestrate SFC with underlying OpenStack
services.

+ CALVIN Data Plane: Multiple VMs are launched to run VNFs on several physical
compute nodes in the data plane. In each VM, the VNF is located in either Linux
kernel or user space. Traffic packets are received from the vNIC, processed by
the VNF, and then transmitted through the egress vNIC. All VMs running on the
same compute node are interconnected with OVS-DPDK.

CALVIN related operations that handle basic and advanced network functions dif-
ferently require various configurations for both hardware and software used by the
OpenStack cloud platform.

Accelerated Configuration of Virtual Network Infrastructure

+ Each compute node must be equipped with pNICs that supports DPDK [53].
This is required to deploy OVS-DPDK as the integration and tunneling bridges
on OpenStack.

+ Dedicated physical CPU cores have to be assigned on each compute node
for OVS-DPDK. In order to avoid any interruptions from other processes for
low latency, polling mode and CPU core pinning are required by OVS-DPDK to
achieve the lowest accessible latency. Dedicated CPU cores are isolated from
the Linux kernel scheduler with the isolcpus configuration provided by the
Linux kernel.

47

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Control Plane
SFC Description
VNF Type
Classifier Advanced Function 2
Advanced Function 3
OpenStack Services SFC Manager

(Compute] [Identity)

((Networking] [Image]) Placement)

(_Storage] [Dashboard) Algorithm

ﬁ
e Virtual Machine A N Data Plane
Kernel Space Virtual Machine B Virtual Machine C \
Network Stack
User Space User Space
Advanced Function 2 Advanced Function 3
\ VNIC VNIC / VNIC VNIC VNIC VNIC /
A | [| A |
— 1 1] 1 I ————
SFC) SFC
Ingress Interface Software Bridges Egress Interface
(Open vSwitch with DPDK-accelerated Fast Datapath)

Figure 3.5: The architecture design of CALVIN. Fundamental elements in both control
and data plane are illustrated. Reprinted from my journal paper [4].

* The Input-Output Memory management Unit (IOMMU) support should be en-
abled to allow guest VMs to access the pNIC through Direct Memory Access
(DMA).

+ Enough memory should be reserved to allocate hugepages for OVS-DPDK and
other DPDK-based VNFs running in VMs on each compute node.

Configuration for VNF Processing

The Figure 3.6 illustrates the workflows of running basic and advanced network func-
tions in Linux kernel and user space. Because the KVM is the default VM hypervisor
on OpenStack (Version: Rocky), following configuration are optimized for the KVM
hypervisor.

Kernel Space Because of the current requirements of XDP, The vNIC of each VM
should support the assignment of a dedicated transport queue (TX queue). This fea-
ture can be enabled by applying the virtio_net patch to OpenStack (with version
Rocky) Nova component. In order to run XDP programs with sufficient feature sup-
port, the linux kernel of the guest OS running within the VM should be updated to
at least version 4.8. To compile, attach/detach and manage XDP programs, the BPF

48

3.3 Proposed Approach: CALVIN

User Space

Initiate ingress -
Compile Func
and egress
. source code
interfaces

ﬁmel Space \
—
Attach to XDP Generate eBPF
bytecode

) e
Receive a packet
Get exit signal? from ingress }—’ F;l;gcggsciﬁegt }
interface L

Enter
Processing v
Loop

Run XDP action:
DROP, PASS or
Redirect

-

(a) Kernel space.

User Space

Send the packet to

the egress
interface

Refcewe_a packet Run packet
rom ingress ;
interface processing

- Enter
G s | ﬁ o |
Loop
Kernel Space
Allocate and mount Insert igh_uio Bind ingreffs and
Enable IOMMU = egress interface to
hugepages kernel module igb_uio driver

(b) User space.

Figure 3.6: CALVIN workflows for basic and advanced network functions running in
different spaces. Reprinted from my journal paper [4].

Compiler Collection (BCC) framework [54] or the libxdp library [55] can be installed
to simplify the development process.

User Space The IOMMU should be available for vNICs for minimal latency cost.
Sufficient memory spaces should be allocated for hugepages. Sufficient hugepages
are required for both OVS-DPDK and all DPDK based advanced network functions.
The DPDK kernel module igb_uio needs to be loaded for Poll Mode Driver (PMD)
driver.

When all VNFs are running in user space, the latency overhead and complexity
of the mechanism to exchange packets is non-negligible. Inter-Process Communi-
cation (IPC) mechanisms such as Unix Domain Socket (UDS) or shared memory are
normally used for data exchange among running VNFs. IPC mechanisms are nor-
mally provided the OS kernel, which introduce additional non-negligible latency over-
head due to context switching and data exchange. To avoid this overhead, CALVIN

49

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

maps one VNF per VM for SFC deployment. Compared to CALVIN, the centralized
approach [33] injects packets from user space to kernel space, which can become
a critical latency bottleneck according to my preliminary measurements. In order to
achieve the best available performance, all advanced VNFs are implemented from
scratch to utilize the high-performance facilities provided by DPDK.

3.4 Performance Evaluation of Elementary and Basic
Network Functions

3.4.1 Measurement Setup for Elementary and Basic Network
Functions

Main components of the measurement setup for end-to-end RTT are presented in
Figure 3.7. Two compute nodes of a OpenStack cluster are used to deploy VMs and
perform latency measurements with active probing UDP traffic. The UDP traffic is
used for active probing since UDP and UDP-based protocols are normally used for
latency sensitive applications. Probing with UDP can also avoid the non-negligible
complexity of flow and congestion control of TCP for latency measurements.

Direct Forwarding SFC Path

Probing UDP segments with timestamp and ID.

B YA)\
Y e | Centralized Approach Mapping =
UDP =1 CALVIN Mapping)
* 1 (One VM for One VNF)I (One VM for Multiple VNFs) :
Client : :
:! L e I R 1
1 VNF 1 [VNF 2 I 1 VNF N 1
E I I I I I I :
LI S | I TR N R | [WY W e |
IPD
UDP
ts ts ts ts
server | | L= [t5] [t5] [t5]
Server VM
k Compute Node 1 / Compute Node 2

Figure 3.7: RTT measurement setup for CALVIN. Reprinted from my journal pa-
per [4].

Architecture The measurementsetup is aligned to the basic service loop presented
in Figure 3.2. The UDP probing client is deployed on the service proxy. Probing client
sends UDP packets to the server located on the same compute node, namely node 1.
The deployed server simply bounces all received UDP packets back to the client as

50

3.4 Performance Evaluation of Elementary and Basic Network Functions

quickly as possible, namely without any payload processing. In addition, as plotted
in the Figure, probing UDP packets are forwarded directly to the server without leav-
ing compute node to measure the direct forwarding latency of the underlying virtual
Neutron network infrastructure (without any processing in the SFC).

To reflect realistic practical real-world network scenarios, both VMs running the
probing client and server do not apply high-performance packet 10 technologies
such as DPDK or XDP. Both probing client and server work at the network layer, while
all VNFs deployed in this evaluation run at the data link layer. Therefore, both probing
client and server are implemented based on the conventional socket API provided
by the Linux kernel. In contrast to the centralized approach proposed in [33], the
components of the above introduced measurement architecture are distributed on
two different physical compute nodes.

For each packet in the probing traffic, a Timestamp (ts) and an identification Num-
ber (ID) are added before the payload. While the ts is used to measure the RTT, the
ID is used to identify lost or out-of-order packets. In measurements of this work,
the workload of the probing traffic is tuned to avoid any losses and out-of-order of
packets.

Testbed All performance measurements are performed on my practical NFV
testbed, which consists of COTS servers connected via two independent Gigabit Eth-
ernet connections. Compute and network node of the OpenStack cloud platform
are equipped with 4 CPU cores (Intel 4 Core i5), 16 GB RAM, 128 GB SSD and two
Gigabit NICs (Intel 9301CT Gigabit CT). The OpenStack cloud platform (Version Pike)
is deployed on multiple physical nodes running the Ubuntu Server (16.04 LTS). For
each compute node, while one NIC is used for management and external traffic, an-
other separate NIC is used for the internal data network for all compute nodes. This
separation avoid the impact of management traffic on the latency measurements in
the data plane. In addition to the OpenStack’s standard (minimal) compute, network-
ing, identification, and storage services, the official Neutron SFC plugin, SFC-OStack
framework and Neutron OVS-DPDK plugin are also installed. The Virtio technology
is used for the vNIC and OVS-DPDK for high-performance packet 10. KVM is used as
the hypervisor for the management of VMs and the Ubuntu cloud images are used
to implement and deploy different VNFs.

Elementary and Basic VNFs The elementary network function and two different
basic network functions are implemented and measured in this work.

+ FWD - Elementary Forwarding: Packets are received from virtual ingress vNIC
and directly forwarded to the virtual egress vNIC without any processing.

+ ATS - Appending Time Stamp: The timestamp of the current VNF receiving and
sending a particular packet is appended at the end of the UDP payload, just
before the packet is transmitted. Because the ATS function changes the size of
the UDP payload, the checksums of both IP and UDP headers must be recalcu-
lated and updated. To ensure the relative fair latency comparison, the check-

57

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

sum calculations are implemented purely in software (instead of using hard-
ware checksum offloading). For IPv4, UDP checksum can be disabled when
use all-zeros and the IPv4 checksum can be calculated only with the header
data. Thus, the ATS function can be used to estimate the latency caused by a
relative trivial processing on packet header.

+ XOR - XORing UDP Payload: This network function performs an XOR operation
with the same static key on all bytes of the UDP payload. Compared to the
above introduced ATS function, the XOR function can be used to estimate the
additional latency caused by relative non-trivial computation operations on the
packet payload.

Metrics

+ Latency: The RTT of each single UDP packet is used to estimate the end-to-end
latency performance. This RTT is selected because of following reasons: (i) Both
forward and backward paths are included in the RTT measurements. (ii) Mea-
surements of RTT do not require time synchronization between VMs running
VNFs. According to the experiments performed in [56], performing time syn-
chronization at the VM level is highly prone to errors due to the interferences
of clocks among VMs running on the same compute node.

+ Bandwidth: The maximum achievable throughput is measured in this work with
the Iperf tool [57]. The UDP mode of Iperf is used for bandwidth measure-
ments. Iperfisnotusedfor RTT measurements because Iperf currently does
not provide per-packet RTT measurements for both TCP and UDP traffic. In this
work, a home-made tool is developed for RTT measurements of each packet
in the probing traffic. By manually adjusting the Iperf target bandwidth ex-
perimentally in steps of 10 kbit/s for 5 minutes each, the maximum bandwidth
is determined such that no lost or out-of-order packets are detected by the
Iperf client.

Active Probing Parameters Two main parameters need to be configured for active
probing traffic, namely the Interpacket Gap (IPG) and the UDP payload size. Based
on preliminary measurements on my testbed, consistent RTT values can be obtained
for relative small IPGs on the order of a few milliseconds. Relative small IPGs can re-
sultin additional queuing inside VNFs and other network components in the testbed,
which is theoretically analyzed in [58]. My latency measurements focus on the end-
to-end latency with relative light workload without additional packet queuing. In-
creasing the IPG can also lead to increased RTT values. According to my analysis, this
behavior should be mainly due to the batching mechanisms of both in-kernel and
user space packet processing frameworks which are activated for better through-
put performance when the network traffic has low workload. In order to avoid both
significant queuing and batching latencies, the IPG is configured to 5 ms in all mea-
surements in this work based on preliminary measurements and calibration.

52

3.4 Performance Evaluation of Elementary and Basic Network Functions

For UDP payload size, 256 and 1400 bytes are selected as the lower and upper
bounds. Based on my preliminary evaluations, UDP packets with payload size smaller
than 256 bytes cannot be handled correctly by the current version of XDP. Mean-
while, the official SFC plugin of OpenStack Neutron of version Pike does not currently
support jumbo frames. The maximum available UDP payload size depends on the
Maximum Transmission Unit (MTU) of the underlying physical and virtual Ethernet.
Assume the MTU of the Ethernet is 1500 bytes, the maximum UDP payload size is
limited to 1472 bytes. The upper bound of 1400 bytes is selected to reserve enough
free spaces for optional IP header options or other tunneling protocols.

For both latency and bandwidth measurements, for each scenario, the measure-
ments are repeated for 50 times. For each probing scenario in the latency measure-
ments, the probing client sends 500 UDP packets.

Measurement Scenarios

Performance Comparison of different VNF technologies As introduced in the
previous section, in CALVIN, XDP is chosen to implement basic network functions
and DPDK is used to implement advanced network functions. In order to bench-
mark the performance of selected technologies, both of them are benchmarked.
Besides them, the LKF approach introduced in 2.5 is also considered as a reference
for traditional packet processing technologies.

+ XDP: Because of following listed limitations of XDP, only FWD and XOR functions
are implemented: (i) At the time of this work, the maximum number of instruc-
tions per XDP programs is limited to 4096 eBPF instructions. This significantly
limit the complexity of the computational operations and amount of data that
can be processed by a single XDP program. (i) The available memory space for
XDP processing per packet is limited by the size of the original received packet.
Operations outside of this memory range are currently prohibited. So the ATS
function cannot be implemented with a single XDP program.

+ DPDK: Thanks to the high flexibility and programmability provided by DPDK, all
three network functions can be implemented as DPDK applications. By default,
all DPDK applications run in polling mode and always consume 100% of the
available CPU resources. To minimize 10 and processing latency as much as
possible, the number of packets in a processing batch (burst) is configured to
one.

+ LKF: It is a built-in Linux kernel feature for packet forwarding at the network
layer. Due toits trivial operation, the LKF is one of the fastest running features in
kernel space. Because LKF does not provide any programmability, LKF cannot
be used to implement different VNFs in kernel space.

Comparison of Centralized Approach [33] and CALVIN The proposed CALVIN
approach with the STOA centralized approach [33], which was one of the first ap-
proaches studied to implement advanced network functions such as RLNC as a VNF.

53

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

The centralized approach has to be re-implemented and evaluated on the testbed
used in this work because its source code is not publicly available [33]. To examine
the distributed VNF aspect of CALVIN, two FWD VNFs on two separate VMs are im-
plemented for CALVIN approach, while for a clear comparison, only one FWD VNF
is implemented for the centralized approach. The centralized approach is allocated
with a VM with twice the computational resources (both vCPU and memory) com-
pared to each individual VM used by CALVIN. Therefore, the comparison is actually
between two FWD VNFs in CALVIN and one FWD VNF in the centralized approach,
which have the same available computational resources. More specifically, for the
centralized approach (presented on the left side of Figure 3.8), the packet enters the
VM through the left ingress vNIC, traverses the FWD VNF and exits through the right
VNIC. For CALVIN, as illustrated on the right side of Figure 3.8, packets enter the left
VvNIC of VM 1, traverse the XDP FWD, exit through the right vNIC of VM 1, enter the
left vNIC of VM 2, traverse the DPDK FWD, and exit through the right vNIC of VM 2.

"""""""" Centralized Approach L T AT T
1 1
VM (2 vCPUs) -
Vo VM 1 (1 vCPU) VM 2 (1 vCPU)
Kernel Space ' !
' 1
[KNI Kernel Module]4—»{ Network Stack] ! H Kernel Space User Space
1) ‘ f o graverenas :
3 '
[vEmo | [vEm | [read | [write | vt — DPDK FWD
P
User Space 1 1
'
DPDK KNI Application Socket FWD :
[wic | | wic | wic | [wic
1
' y y
VNIC VNIC / ,
\
\

Figure 3.8: Illustration of measurement setup for the RTT comparison between cen-
tralized approach and CALVIN. Reprinted from my journal paper [4].

3.4.2 Measurement Results and Evaluation for Elementary and
Basic Network Functions

RTT Measurements of Elementary and Basic VNFs for Different Technologies

Figure 3.9 illustrates the mean values and 95% confidence intervals of the RTTs of
elementary and basic network (FWD, ATS and XOR) functions implemented with dif-
ferent candidate technologies. It can be observed from Figure 3.9 that the RTTs of
the two basic VNFs (i.e. ATS and XOR) are comparable to the respective RTTs of the
basic FWD VNFs of all selected packet processing technologies. It can be concluded
from this result that the additional delay in payload processing for the basic ATS and
XOR VNFs is relatively negligible compared to the elementary FWD latency.
Examining the in-kernel technologies closely, it can be observed from Figure 3.9
that although the XDP and LKF have the similar RTT performance for small packets,
the XDP FWD is about 10% faster than the LKF FWD for large packets of 1400 bytes.
Furthermore, it can be observed from Figure 3.9 that for small packets of 256 bytes,
the RTTs for in-kernel processing (LKF and XDP) and user-space processing (DPDK)

54

3.4 Performance Evaluation of Elementary and Basic Network Functions

0.5 — T
EA XDP | | | | | | |
— E=m LKF | : : : | |
w 0.4+ T Am———— =t ———— ————- F=———t———-
£ BN Click ...
© B DPDK | | | : : :
Eoogd S S S S SR S
& | | | | | | | | |
= l l | | | | | | |
E oo
o : : | ' ' ' 015 0.15 0.5
= | , 0.14 0.14 0.14
5 1 1 A
Q
0.1 -
0.0 -
FWD XOR FWD FWD ATS XOR FWD ATS XOR
(a) Payload size: 256 bytes.
0.5 ' ' : : : : : :
A XDP ! ! ! ! ! !
— E=H LKF l : : | : :
w 0.4 1 -——t-——— +————- t————- t=————- F————-]
£ B Click | 000
© B DPDK | i i 20 0bo 0D
£ 0.3 Fommmmmmmrea et o ey SNy SRS
-
i
5 0.2 -
o
=
]
Q
0.1 -
0.0 -

FWD FWD FWD ATS XOR FWD ATS XOR

(b) Payload size: 1400 bytes.

Figure 3.9: Means and 95% confidence intervals for RTT of different VNF technologies
in kernel space and user space. The 95% confidence intervals for the 256
byte payload size are very tight and barely visible in this plot. Reprinted
from my journal paper [4].

are very similar. Additionally, for large packets of 1400 bytes, the RTTs for user-space
processing are much longer (about 50%) than for in-kernel processing.

Observed latency performance differences seem to be mainly caused by two types

55

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

of non-negligible overhead introduced by evaluated basic network functions: (i) The
overhead of copying packet frames from the virtual ring buffer of vNIC to the VM
memory [59]. (ii) The overhead of additional metadata processing of packet frames.
In the LKF, like most conventional in-kernel technologies, the standard data structure
sk_buff containing a lot of metadata must be allocated for each received packet.
The latency overhead of extracting metadata and allocating sk_buff can be very
high [42] for ultra-reliable low-latency scenarios. In contrast, XDP processes packets
at the lowest point of the Linux software network stack, without allocating sk_buff
data structures and without any parsing and pre-processing of packets [42]. For
traditional LKF, metadata structures must be created and the Linux kernel needs to
check the routing table to update the appropriate Media Access Control (MAC) and IP
addresses. As a result, LKF is only slightly slower than XDP for large packets, because
LKF needs more time for metadata processing.

Comparison between Centralized Approach and CALVIN

T L L T T
== Direct Forwarding ===Centralized 256B]
I CALVIN 256B ——==Centralized 1400B
é’ — CALVIN 1400B ——=Threshold 0.35ms]
() - 4
E 10 e S E—
: /
© o08F i]
S i §
- I §
8 06 o | / =
= I ! §]
'B L I /4 -
2 0.4 : ¢ .
— [: éé
r 4
02 F) I 47 -
E /./ : ,¢$$$9
0 st *) E=", 1) M |
10-! 10° 10!
Round Trip Time (ms)

Figure 3.10: The RTT performance comparison of FWD VNF between centralized ap-
proach and CALVIN. Reprinted from my journal paper [4].

RTT Results Figure 3.10 shows the RTT measurements for the basic FWD VNF. As
described in Subsection 3.4.2, direct forwarding is the baseline for transmission la-
tencies introduced by the underlying virtual network infrastructure of OpenStack
platform. It can be observed from Figure 3.10 that the centralized approach exceeds
the delay threshold of 0.35 ms in the best case, while the RTT of the proposed CALVIN
is below the 0.35 ms threshold with a probability of about 70% for 1400 bytes pack-

56

3.4 Performance Evaluation of Elementary and Basic Network Functions

ets and close to 100% for 256 bytes packets. The measured average of 256 bytes
and 1400 bytes packets RTT are listed as follows: CALVIN: 0.19 ms and 0.32 ms, re-
spectively; centralized approach: 2.30 ms and 2.39 ms, respectively. Therefore, it
can be concluded from these results that CALVIN can meet the strict ultra-reliable
low-latency requirements described in Section 3.1. In CALVIN, when assuming a la-
tency budget of 0.35 ms, there is also extra time available for more complex data
processing.

According to the measurements perform in [60] without using STOA accelerated
packet processing frameworks, the compact mapping, which is used by the cen-
tralized approach, has lower latency than the distributed mapping of VNFs, which
is used by CALVIN. However, for compute-intensive VNFs, distribute mapping can
provide better latency performance. The RTT measurements above demonstrate
that the distributed mapping selected by the CALVIN can achieve ultra-reliable low-
latency requirement of tactile Internet for elementary and basic network functions.
Distributed mapping used by CALVIN allows each VNF to focus on its processing tasks
in a single space (kernel or user space) and leaves the packet transmission to the un-
derlying software integration bridge, which already has proven very good low-latency
performance. Allocating a dedicated VM to each VNF with distributed mapping may
be considered a waste of resources. However, each VM can be highly optimized for
its special purpose, and distributed mapping is more consistent with the emerging
concept of unikernel [61].

T T

O e CALVIN]

[Centralized 1

25 .

Z 20]

Q0 i i

s | ;

< IS]

_5 []

= 10 | g
M i

5F]

L eI —3—— —X]

N N N | N N N | N N | N N | N N | N N |

200 400 600 800 1000 1200 1400

UDP Payload Size (Bytes)

Figure 3.11: The bandwidth performance comparison of FWD VNF between central-
ized approach and CALVIN. Reprinted from my journal paper [4].

57

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Bandwidth Results The bandwidth measurements for UDP payload sizes ranging
from 256 to 1400 bytes are illustrated in Figure 3.11. It can be observed from Fig-
ure 3.11 that the bandwidth supported by the centralized approach is substantially
higher than that of CALVIN, especially for large packets (larger than 512 bytes). For
UDP packets with the payload of 1400 bytes, the available bandwidth of the central-
ized approach is more than 15 times higher than that of the CALVIN. Compared to
the minimum bandwidth of about 6 Mbits/s supported by the centralized approach
(with UDP packets with the payload of 256 bytes), the maximum bandwidth of CALVIN
is only between 1.4 and 1.7 Mbits/s.

Latency Bandwidth Trade-off Allin all, the RTT results in Figure 3.10 and the band-
width resultsin Figure 3.11 show the trade-off between per-packet latency and band-
width in a real and practical VNF implementation. The centralized approach uses the
conventional Linux socket API, which is primarily designed for high-throughput best-
effort service applications, such as file transfers, which typically have bursty traffic.
Therefore, the kernel network stack includes a number of mechanisms (normally
enabled by default) to improve bandwidth performance, such as batch processing.
Batch processing collects multiple packets and then processes the batch once with
accelerated methods, for example, with SIMD instructions or enhanced CPU caching.
Batch processing can increase the latency of each packet because the first packets
in a batch must wait for subsequent packets to fill a batch before they can be further
processed.

Even if the batch processing is not used in DPDK user space applications, batch
processing in the Linux network stack can significantly slow down the centralized
approach. This is because the KNI mechanism injects all packets into the normal
Linux kernel network stack, where batch processing is employed and cannot be easily
avoided. To the best of my knowledge, the default batch processing in the kernel
stack cannot be avoided without modifying the Linux kernel source code. In the
design of CALVIN, the modifying of source codes of the underlying infrastructure
software should be avoided.

In proposed CALVIN, this batch processing is avoided in Linux kernel space by im-
plementing in-kernel VNFs using the latest fast packet |0 techniques such as XDP.
Because CALVIN prioritize per-packet latency performance over overall bandwidth,
CALVIN tries to avoid batch processing in all VNF implementations. All VNF imple-
mentations in CALVIN run in the Run-To-Completion (RTC) mode, i.e. they receive a
single packet, then directly process it, and transmit it out as fast as possible. Thus,
as clearly shown in Figure 3.10 and 3.11, CALVIN reduces the per-packet delay at the
cost of supporting relative lower available bandwidth.

As introduced in Section 3.1, for most use cases of tactile Internet for human-
machine co-working, low per-packet latency is typically much more important than
support for high bandwidth. The human-machine co-working packet traffic, e.g. the
control messages of a robot arm are typically very small so that support for low
bandwidths is already sufficient. As illustrated in Figure 3.1, the 5 ms IPG used in
my measurements is sufficient for a typical pendulum application. At the same time,
control messages delayed by batch processing can profoundly disrupt tactile human-

58

3.5 Performance Evaluation of Advanced Network Functions

machine collaboration. Therefore, CALVIN only supports low bandwidth in exchange
for significantly reduced per-packet latency. The bandwidth supported by CALVIN
can be improved in future work by bandwidth management mechanisms, such as
a load balancer that distributes packet flows to a set of duplicate VNFs to enable
parallel packet flow processing.

Table 3.1: CPU usage of the physical compute node. Reprinted from my journal pa-

per [4].
| Approach | User (%) | Sys (%) | Guest (%) | IDLE (%) |
Centralized Approach || 25.2 472 29 24.7
CALVIN 25.2 23.0 2.2 49.6

CPU Resource Usage The usage of the 4 cores of the physical CPUs of compute
node 2 plotted in Figure 3.7 is measured using the common tool mpstat. Since CPU
resource scheduling for all running VMs is managed by the OpenStack compute ser-
vice (namely Nova), instead of individual CPU, the global average utilization of all cores
are measured in this evaluation. For each scenario, a period of 10 minutes measure-
ment is performed with a sampling period of 1 second. The CPU usage levels of the
centralized approach and CALVIN at user level (User), kernel level (Sys), and for a
niced guest (Guest) are all listed in Table 3.1. It can be observed from Table 3.1 that
the centralized approach consumes twice as much CPU resources at the kernel (Sys)
level compared to CALVIN. KVM uses the Linux kernel of the host OS as the hyper-
visor and uses Portable Operating System Interface (POSIX) threads for the vCPU of
the guest OS. Therefore, the Sys CPU usage in the table reflects the vCPU of the VM
running VNF usage. By avoiding the overhead of context switching and metadata
processing for each vCPU, CALVIN greatly reduces the use of the host OS's kernel
CPU time. As a result, CALVIN allows a much larger percentage of time for physical
CPUs to be idle.

3.5 Performance Evaluation of Advanced Network
Functions

The evaluation in Section 3.4 shows that CALVIN is able to complete the basic VNF
with an end-to-end RTT of 0.32 ms. Therefore, considering the MEC latency bud-
get of 0.35 ms as plotted in Figure 1.3, there is still a residual latency budget of
about 0.02 ms for advanced packet processing functions. This section evaluates NC
and data encryption as two practical examples of advanced VNFs with relatively high
computational requirements. The practical applications and relevance of these two
advanced VNFs are firstly described. Then the evaluation of the processing latency
incurred by these advanced VNFs is performed using the same setup used for ele-
mentary and basic network functions. The purpose of this evaluation is to evaluate

59

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

whether the RTT reduction of the CALVIN implementation of the basic VNFs is suf-
ficient to allow for practical advanced VNFs within the latency requirements of the
tactile Internet.

3.5.1 Random Linear Network Coding (RLNC) Network Function

Network Coding (NC) linearly combines several original packets with coding coeffi-
cients to form coded packets that are transmitted through the network [62]. In RLNC,
which is a simple but powerful NC scheme, the coding coefficients are generated
randomly [63]. The main advantages of RLNC include: (i) The ability to recode re-
ceived packets at all middle nodes in the network without the need for coordination,
thus suitable for distributed environments [63]. (i) A generic coding matrix that al-
lows sparsity (judicious addition of zero values) to significantly reduce computational
complexity [64]. (iii) Sufficient support for low-latency communication because of
on-the-fly coding mechanisms [65]. (iv) Heterogeneous field sizes that support het-
erogeneous communicating entities, increasing flexibility in practical heterogeneous
environments [66]. (v) Relative small overhead between storage and transport layers,
since the same code scheme can also be used for distributed storage [67].

Because of above listed advantages, several variants of RLNC schemes have been
already proposed in NC research. Two main types of RLNC are focused by this work,
namely, systematic block coding and convolutional sliding window coding. Block-
based RLNCs were introduced to significantly reduce the computational require-
ments and control of NC. To further improve performance, instead of coding each
packet in a flow, systematic coding firstly sends the original packets [68]. Packets
built from linear combinations are then sent between the original packets or at the
end of the coding block [69].

Sliding window NC has been introduced to reduce the in-order latency of coded
network communication [70]. For systematic coding with a constraint coding win-
dow, sliding window RLNC has a shorter transmission latency compared to block
coding, which usually requires comparable computational resources [71].

Despite extensive research on NC in recent years, practical deployment of high-
performance RLNC in real-world networks is still rare. One of the most challenging
difficulties to deploying RLNC is the limited programmable computing resources on
heterogeneous network nodes, which are currently mostly used only for switching
and routing decisions. NFV and SDN provide new flexibility for deploying advanced
and innovative features in the network [72]. With the help of NFV technologies, RLNC
can be implemented as software programs running in VMs or containers that can be
instantiated on any NFV-capable network node. In addition, SDN technologies can
re-direct the packets flow to VNFs running RLNC network functions and orchestrate
them in the SFC. However, to the best of my knowledge, the latency of RLNC as a
high-performance VNF in a practical MEC system has not been studied, measured
and evaluated in detail.

Per-packet RTT latency measurements in this work considers NC encoding (com-
putationally equivalent to recoding in middle network nodes) with a Galois Field (GF)
size of GF(2%) and a redundancy of 25%. For block coding, the block size of 32 pack-

60

3.5 Performance Evaluation of Advanced Network Functions

ets is used. The window size of 8 packets is considered in this evaluation.

3.5.2 Advanced Encryption Standard (AES) Encryption

Data encryption and decryption are key security components of modern communi-
cation to ensure the confidentiality and integrity of the data. At the time of this work,
more than 40% of the World Wide Web (WEB) traffic is transmitted in encrypted form
over Hypertext Transfer Protocol Secure (HTTPS), and this trend is increasing [73].
Therefore, numerous network functions require encryption and decryption function-
alities, such as caching and Deep Packet Inspection (DPI). As with RLNC network func-
tions, data encryption requires processing of the entire packet payload, which is a
non-negligible computational workload. AES is focused by this work, a widely used
encryption standard commonly used for data transmission and storage. According
to my preliminary measurements, CALVIN approach enables the AES encryption of
small packets within a 20 us latency budget on a general-purpose MEC platform.

3.5.3 Measurement Setup of Advanced Network Functions

The following additional factors need to be considered when evaluating advanced
functions compared to measurement setup for elementary and basic functions de-
scribe in Subsection 3.4.1.

VNF Implementation

Because of in-kernel technology limitations described in Subsection 3.3.3, DPDK is
chosen by CALVIN for the implementation of all advanced VNFs. RLNC and AES en-
cryption VNFs are implemented on top of the elementary DPDK L2 FWD application.
The RLNC network functions is implemented with the Network Coding Kernel Library
(NCKernel), which is built on top of the widely used Kodo library [49] to support differ-
ent common network coding communication variants including the sliding window.
The lightweight and portable Tiny-AES-C library is used to build AES applications.

Multiple VNFs in parallelis implemented to evaluate the scalability of the proposed
CALVIN framework. Scalability is a key performance metric for practical MEC plat-
form, as a key aspect of virtualization is enabling running multiple virtual instances
on shared and limited hardware resources.

Metric

Because the RTT performance for basic forwarding network function has already
been evaluated in Section 3.4, the measurements for the advanced VNFs in this Sec-
tion focus only on the packet processing latency. The processing latency is defined
as the delay it takes for a VNF to fully process a received packet. For VNFs capable of
generating redundant packets, such as RLNC encoders or recoders, this processing
latency also includes the time required to create all redundant packets.

61

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

Methodology

To evaluate the impact of VNF workload requirements on processing latency, com-
putational operations of deployed VNFs should be performed in parallel. This re-
quirement can be very difficult to meet if the probing traffic is generated by a client
running on a remote VM. Precise synchronization mechanisms have to be deployed
on the virtualized network infrastructure to ensure that all probe packets arrive at
each VNF at the same time. Therefore, to evaluate advanced VNFs, instead of using
additional probing clients to generate UDP traffic, probing UDP packets are gener-
ated locally by each VM running the VNF. Locally generated traffic ensures that VMs
are continuously backlogged so that the worst-case processing latency can be mea-
sured. Each VM is always busy processing the probing traffic and the OpenStack
scheduler needs to handle resource scheduling between all running VMs. Latency
values for warm-up and tail probing packets are not included in the measurement
results. For each number of deployed VNFs, 50000 UDP probing packets are gener-
ated.

3.5.4 Measurement Results and Evaluation for Advanced
Network Functions

The evaluation of elementary functions in this work presents a mean RTT latency
of 0.32 ms for the elementary FWD VNF for large packets with CALVIN framework.
Based on the latency budget of 0.35 ms assumed in this work, a latency budget of
20 s is considered with a safety margin of 10 us.

The measurement results of processing time is illustrated in Figure 3.12. For small
256 bytes size packets, the processing time for all evaluated advanced network func-
tions are within the 20 us constraint. As the number of deployed VNFs increases, so
does the CPU load, and as soon as the number of VNFs exceeds the number of
CPU cores dedicated to VM processing, the processing time increases linearly. In
my measurement setup, one of the four available CPU cores is heavily used by the
OVS-DPDK software bridge, which runs in polling mode with the default DPDK be-
havior. The increase in latency is mainly caused by contention for shared and limited
physical CPU resources. For a specified maximum allowed latency budget, e.g. 5 us,
the maximal number of VNFs allowed to run in parallel can be observed, e.g. 3 VNFs.
As the load balancer redirects a given workload traffic to multiple VNFs, the higher
the number of parallel VNFs supported, the higher the supported overall available
bandwidth.

For large packets of 1400 bytes size, a significant increase in processing time can
be observed in Figure 3.12 compared to small packets of 256 bytes. Although the
processing time for RLNC is still relatively low and well within the budget of 20 us,
AES encryption is not feasible anymore even when the VNF is exclusive to one ded-
icate CPU core, i.e. for three or fewer parallel deployed VNFs. For RLNC network
functions, the processing time for sliding window encoding scheme is significantly
shorter than for block codes. Even with large packets and high contention for lim-
ited CPU resources, the latency of sliding window RLNC remains below 7 us for 9

62

Per-packet Processing Delay (us)

3.5 Performance Evaluation of Advanced Network Functions

30

0 B NC Sliding Window NN AES256 ENC

= 25 4+ B8 NC Block Code BEE AES256 DEC

3

S 20 e e e e

A

2

¢ 15 -

(@)

S~

~ 10

+~ 1 l >_ i_

3 oL

%) S e

r0 A g_ E_

5 ’ 4 b (] :

= L B B Y R Wl BN R E
1 2 3 4 5 6 7 8 9

100

80

Number of VNF(s)

(a) UDP payload size: 256 bytes.

EE8 NC Sliding Window BNl AES256 ENC
BE&EZA NC Block Code EEE AES256 DEC

1 2 3 4 5 6 7 8 9
Number of VNF(s)

(b) UDP payload size: 1400 bytes.

Figure 3.12: Means and 95% confidence intervals for processing times in microsec-
onds for computationally intensive advanced VNFs. Reprinted from my
journal paper [4].

parallel running VNFs.

63

3 Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine
Co-Working

3.6 Summary

In this chapter, the design, implementation and evaluation of the proposed Chain
bAsed Low latency VNF ImplemeNtation (CALVIN) framework is described, which is
an approach for the orchestration of distributed SFC for ultra-reliable low-latency
tactile Internet applications. In CALVIN, high-performance VNFs are implemented
and deployed either purely in the Linux kernel space (for basic network functions)
or in the user space (for advanced network functions) to avoid all latency overheads
required for context switching and data exchange between these two spaces. Fur-
thermore, in CALVIN, all VNFs are implemented in a fully distributed manner with one
dedicated VM for one VNF mapping. All VNFs in CALVIN are implemented with the
best STOA fast packet 10 and processing technologies to avoid complex and heavy
metadata processing and large batch processing of conventional Linux network stack
and APIs.

In the rigorous evaluation of this work, the performance of elementary forward-
ing network function implemented with various STOA high-performance packet pro-
cessing technologies is firstly measured. According to the measurement results, the
promising XDP technology can achieve a RTT performance of 120 us for 256 bytes
packets and 180 us for large packets with 1400 bytes. The conventional Linux ker-
nel forwarding function can incur about 10% higher latency. The user space DPDK
technology further increase the latency performance provided by XDP by up to 50%.
Based on these observations, in CALVIN, while the XDP is used to implement all in-
kernel VNFs for basic network functions, DPDK is adopted to implement user space
computationally complex VNFs.

In this work, the proposed CALVIN approach is rigorously benchmarked against
the STOA centralized approach proposed in [33]. According to my measurements
on practical OpenStack cloud platform, CALVIN is able to achieve significantly better
latency performance (0.32 ms for 1400 bytes UDP packets) compared to the cen-
tralized approach (2.39 ms for 1400 byte UDP packets). In terms of disadvantages,
CALVIN can only supports much lower packet bandwidth, about 1.5 Mbit/s, rather
than centralized methods (depending on the UDP packet size, between 6 to near
30 Mbit/s). As a result, CALVIN is able to achieve much shorter per-packet latency
at the cost of reduced packet throughput, which is a strict requirement for typical
tactile Internet applications with a 1 ms end-to-end RTT latency budget.

64

4 X-MAN: A Non-intrusive Power
Manager for Energy-adaptive
Cloud-native Network Functions

All contents in this Chapter has been published in my journal paper [7]: "X-MAN: A
Non-intrusive Power Manager for Energy-adaptive Cloud-native Network Functions."
IEEE Transactions on Network and Service Management (2021).

4.1 Introduction

The need for flexible and ultra-reliable low-latency network service provisioning in
emerging network paradigms such as the fifth-generation communication systems (5G) [74]
and the tactile Internet [4] has given rise to the emerging paradigm of microservices
that are connected together to form network services. In response to this promis-
ing trend toward microservices, conventional VNFs deployed in VMs (described and
used in Chapter 3) are shifting to the new Cloud-native Network Functions (CNFs).
More specifically, the CNF operates in the application container, that is, in the so-
called cloud-native manner, is therefore referred to as cloud-native network function
or containerized network function [75]. The strict QoS requirements of advanced
network paradigms, such as 5G and Tactile Internet, require CNFs to provide ultra-
reliable low-latency packet processing performance [76]. Meanwhile, growing con-
cerns about the energy consumption of the network and IT infrastructure require
smart power management of the CPU cores that are used by CNFs for packet pro-
cessing. For example, all advanced network functions in the CALVIN framework in-
troduced in Chapter 3 are implemented with DPDK technology, which works in the
polling mode by default and consumes 100% of the available CPU time all the time
even without any workload traffic. This design can significantly improve the packet
processing performance, but also introduce hard challenges of the energy efficiency
of CALVIN. When VNFs are updated to the latest CNFs, this issue become more chal-
lenging since more services need to be deployed on the same physical node.

65

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

™ Core 0 Core 1
[CNF 0 CNF 1] [CNF 2 CNF 3 l
Core 0 Core 1 M and PM| M and PM TMand PM | TM and PM
[] [] [] [] A /'y 4 /'y
CNF 0 CNF 1 CNF 2 CNF 3
A A] A A 4 v v v
ot po (Virtual Switch or Router]
interface interface
A 4
[Virtual Switch or Router]
(a) Hardware Counter (HC) approach. (b) Code Instruction (Cl) approach.
PM
Core 0 Core 1
(CNFO] {CNF1] [CNFzJ [CNFS]
A A A A
v v v v
™) T™ ™ T™ ™ T™ ™) T™

t t 4 + il

[Virtual Switch or Router]

() X-MAN approach.

Figure 4.1: Conceptual comparison of existing approaches and the proposed X-MAN
approach. Reprinted from my journal paper [7].

To address the above introduced issue, two main power management mecha-
nisms have been published at the time of this research: (i) A CPU Hardware Counter
(HC) based strategy [8]. (ii) A Code Instruction (Cl) strategy [9]. So far, the HC strat-
egy has focused on estimating the workload of CPU cores from the counter activity
of CPU cores using a pre-trained regression model. According to the evaluation per-
formed in [8], performing a relatively high accurate workload estimation of CPU cores
purely from counter actives is significantly challenging for a complex CNF deploy-
ment. Improving the estimation accuracy with relatively complex Machine Learning
(ML) models could increase the estimation latency and make HC-based approaches
unsuitable for highly responsive power management required for e.g. tactile Internet.
In addition, as illustrated in Figure 4.1a, the HC approach can only estimate the total
aggregated workload of all CNFs running on a CPU core. Therefore, HC based power
management cannot accurately optimize the current operating frequency of CPU
cores based on the workload intensity of each individual CNF. However, the work-
load intensity of each individual CNF can effectively reduce the required frequency
of a CPU core, for example, when several low-intensity CNFs can run in parallel at
low latency on a CPU core with a relatively low frequency.

Compared to HC approach, the Cl approach, which is illustrated in Figure 4.1b,
requires modifying or patching the source code of the CNF program. Therefore, this
approach is intrusive because all CNFs that involved in the power management have
to be modified or patched. Furthermore, until the time of this work, the Cl approach
focuses on the power management of only a single CNF. For global power manage-
ment, an additional orchestration layer is required to manage multiple independent

66

4.1 Introduction

CNFs running simultaneously, which is very common for the scenario of microser-
vices.

This Chapter presents a system integration research study that performs the de-
sign, implementation and evaluation of the novel XDP-Monitoring energy-Adaptive
Network functions (X-MAN) framework to enable a non-intrusive traffic workload
monitoring of each individual CNF and frequency scaling of each individual CPU core
through a power management module with a global view of all running CNFs de-
ployed on a CPU core.

The XDP-Monitoring energy-Adaptive Network functions (X-MAN) framework, which
is graphically presented in Figure 4.1¢, performs an integration of the following two
main system components:

+ Linux Kernel Traffic Monitors: As conceptually presented in Figure 4.1¢, X-MAN
is able to monitor workload traffic through the in-kernel traffic monitoring mod-
ules, thus avoid the conventional intrusive traffic monitoring of CNF code in-
struction. These in-kernel monitoring modules analyze the characteristics of
the workload traffic at the virtual interfaces of each CNF with minimal overhead
using the functionalities provided by XDP technology.

+ User Space Power Management: Based on the monitored characteristics of
workload traffic, a global PM in the user space adjusts the operating state (P-
state) of the available CPU cores to guarantee ultra-reliable low-latency packet
processing while striving to be energy efficient as much as possible. The power
management algorithm used by X-MAN employs low-complexity workload pre-
diction and step-wise P-state adjustments.

In conclusion, the X-MAN architecture novelly integrates lightweight in-band kernel
space traffic monitoring and out-of-band user space power management. Kernel-
space traffic monitoring and user-space power management of X-MAN build a prac-
tical and complete system for reducing energy consumption while supporting ultra-
reliable low-latency cloud-native networking functions. Based on an extensive liter-
ature review, to the best of my knowledge, the proposed X-MAN framework intro-
duced in this Chapter is the first research work to pursue this system integration
approach across Linux kernel space and user space to address effective energy sav-
ings for CNFs.

In order to perform the performance evaluation, comprehensive and rigorous
measurements of the X-MAN system are performed on a practical physical testbed
supporting CNF deployment and 10 Gbps Ethernet. These measurements include
comparisons to STOA Cl approach and HC approach. According to my measure-
ments and evaluations:

+ Traffic Monitoring Latency: The measurement results present that X-MAN can
consistently monitor workload traffic of 4 virtual interfaces with a monitoring
latency of only 10 us, while the HC approach proposed in [8] produces moni-
toring latency in excess of 20 us and even ranges up to 80 us.

6/

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

+ Energy Consumption Reduction: The X-MAN framework can reduce the CPU
energy consumption of the random workload traffic profile described in Sub-
section 4.4.2 to less than half of the energy consumption of the STOA Cl ap-
proach [9].

+ Energy Consumption of the X-MAN system itself: Only 2.5% energy overhead is
required by the mechanisms used by X-MAN framework. As a result, the energy
overhead introduced by X-MAN is negligible and X-MAN is able to achieve a
significant net reduction in overall energy consumption.

Comprehensive and rigorous measurements of practical physical testbed config-
urations demonstrate that the performance of the unigue and novel X-MAN system
integration approach greatly exceeds existing STOA solutions.

4.2 Background and Related Work

Alarge body of cloud computing research literatures [77, 78] examines load-adaptive
energy-aware management of large-scale systems consisting of multiple CPUs, each
with multiple dedicated cores. Several recent research works have focused on the
use of ML technologies [79, 80]. For example, the so called Elastic resource flexing
for Network function Virtualization (ENVI) [81]. In [82], non-machine learning based
adaptive management methods for large-scale systems are investigated. Abovemen-
tioned approaches are mainly targeted at scaling the total aggregated workload of
many simultaneously running CNFs for CPU operations on long time scales or on
the scale of large computing infrastructures that contain numerous CPUs. In com-
parison, the goal of the proposed X-MAN is to rapidly monitor the traffic workload
of each CNF and adaptively adjust the core frequency of each CPU to take advan-
tage of power saving opportunities that arise due to fluctuations in the workload of
individual CNFs.

4.2.1 Power Management in Linux Kernel

In Linux kernel, both working-state power management and system-wide power
management mechanisms are available [7]. Because the target of this work is to
reduce the overall energy consumption under workload traffic, the working-state
power management is focused by this work, like two recent most related works [8,
83]. This type of power management dynamically adjusts the power state of CPUs
based on the current workload. Two different groups of performance states are gen-
erally available for the power management of x86-type CPUs, which are currently
widely deployed on cloud-native computing platforms and are mainly offered by In-
tel Corp. and Advanced Micro Device (AMD) Inc: (i) Sleep state (C-states): They can
significantly reduce the CPU energy consumption by entering sleep mode. However,
relative long transition latency is required to sleep or wake-up the CPU. According
to the measurements performed in [83], tens or even hundreds of microseconds
are required. C-states are fully managed by the CPUId1e subsystem of Linux kernel

68

4.2 Background and Related Work

and can not be managed in user space (at least until the completion of this work).
(i) Operating Performance Points (P-states): P-states provide different Dynamic Volt-
age and Frequency Scaling (DVFS) configurations [84]. Adjusting P-states is currently
the de facto standard approach to perform power management when CPU is busy
running processing tasks. In comparison to C-states, which can only be managed by
the Linux kernel, P-states can be managed in user space via the APIs provide by the
CPUFreq subsystem in Linux kernel. Typically, by default, the Linux kernel adjust the
P-states based on the current CPU utilization, which is sufficient for most common
applications. However, for high-performance CNFs using PMD, the CPU utilization is
always 100%, even if there are no any workload packets to process. Therefore, in-
stead of relying on the current default mechanism provided by Linux kernel out-of-
box, new mechanisms are needed to manage P-states based on the actual workload
traffic to reduce overall energy consumption.

It should be noted here that Advanced RISC Machines (ARM) processors, which
are also used in lightweight edge cloud systems, provide a similar DVFS power man-
agement mechanism available in user space. Therefore, X-MAN can be used on ARM
processors. Due to limited time and hardware resources, the work in this Chapter
focuses only on x86 CPUs.

4.2.2 CPU Core Load Estimation with Hardware Counters (HCs)

An estimation approach for CPU workload without any source code modification is
proposed in [8]. This approach is so called out-of-band approach since it does not
directly measure the workload traffic and use an indirect metric, namely the hard-
ware counters of a CPU. The approach is also referred to as a black-box approach
because it does not specifically systematically analyse the details of each individual
running CNF and treat all CNFs as black boxes. In [8], Gupta et.al. argues that the non-
empty polls of packets can change the CPU events. For example, these events can be
cache misses and branch prediction errors due to the processing received packets.
The relationship between CPU events, which can be measured with hardware per-
formance counters (HCs) with small overhead [85], and the actual CNF utilization of
the physical CPU core is researched. Based on measurements of hardware counters,
an estimation method based on training with regression models is designed, which
takes the frequencies of a chosen small set of CPU events (1 to 3 from over about
700 available CPU events) as algorithm input and estimate the corresponding actual
CPU utilization. According to the evaluation performed in [8], this HC approach can
achieve an estimation error below 5%. But this error can increase for complex CNFs
and workload traffic profiles. Smarter estimation methods based on ML may reduce
the estimation error at the cost of non-negligible increase of estimation delay. In [8],
the authors only focus on the CPU utilization estimation and do not propose any
energy saving mechanisms based on this estimation.

In comparison with HC approach, the X-MAN approach proposed in this Chapter
can monitor the actual workload traffic on a much finer-grained basis of each indi-
vidual CNF.

69

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.2.3 In-band Power Management with Code Instruction (Cl)

Compared to out-of-band HC approach, Cl approaches integrate software modules
directly into the source code of CNFs programs to monitor the actual workload, which
is used to further enable efficient power management. In contrast to the HC ap-
proach, the intrusive monitoring modules only require elementary counter incre-
ments when workload packets arrive. At contemporary Gigahertz processing fre-
quencies, these counter are updated with some nanosecond latency. Therefore, the
monitoring latencies introduced by Cl approaches are relatively negligible.

The de facto high-performance user space packet processing library DPDK pro-
vides well-defined APIs for power management through adjusting P-states of the
CPU core [9]. However, leveraging these APIs requires source code modification or
patching of CNFs programs, so to the best of my knowledge, this approach has not
been widely adopted by most popular NFV data plane frameworks. Partly because
of this strict intrusiveness of the code instrumentation, several popular NFV data
plane frameworks from both academia, e.g. Berkeley Extensible Software Switch
(BESS) [86], FastClick [87], Libmoon [88], and Netbricks [89], as well as industry, e.g.
VPP [90] and SampleVNF (from OPNFV) [91], do currently not employ these APIs for
energy saving. Furthermore, the vanilla Cl approach provided by DPDK performs
only local power management by each CNF individually, which can easily lead to
conflicts and instabilities when multiple CNFs are running on one CPU core simul-
taneously. This problem become much more challenging for cloud-native systems,
because with the design of microservices, many CNFs are usually deployed to run si-
multaneously on a single physical CPU core. Running the power management mod-
ule tightly inside each CNF requires an additional orchestration layer for the global
optimization across all CNFs.

For the Cl approach, an Adaptive Polling Mechanism (APM) is proposed in [92] to
adjust the polling frequency based on the workload of incoming traffic. In this ap-
proach, the special pause instruction provided by Intel Streaming SIMD Extension
2 (SSE2) is used by APM modules to pause the polling of the default PMD of DPDK
when a gap time between packets is detected. This mechanism can reduce the over-
all energy consumption.

At the time of this work, to the best of my knowledge, the most recent published
research work on reducing energy consumption of high-performance packet frame-
works such as DPDK is described in [83]. Li et.al. investigate the relationship between
the average waiting time of an incoming packet in the buffer and the actual utilization
of CPU. According to measurements perform in [83], the average waiting time of a
packet reaches a cliff point and increases dramatically when the utilization of CPU
exceeds 80%. Furthermore, the average idle periods for typical workload traffic are
even shorter than the required transition time of C-states. Therefore, using C-states
for power management with high responsiveness is impractical.

In contrast to the above introduced Cl approach, the proposed X-MAN approach
treat CNFs as black boxes and does not require any modification of the source code
of the CNF programs. In comparison, X-MAN monitors the workload traffic directly
with a lightweight in-band traffic monitor implemented with XDP which can be dy-
namically attached to the virtual interfaces of each CNF. Furthermore, in CALVIN, the

70

4.3 Proposed Approach: X-MAN

power management mechanism is performed through a separate user space mod-
ule, which has a global view of all attached XDP traffic monitors for running CNFs
deployed on a given CPU core. This provides a centralized power management and
optimization for a CPU core without the need of an additional orchestration layer.

4.3 Proposed Approach: XDP-Monitoring
energy-Adaptive Network functions (X-MAN)

4.3.1 X-MAN Design Imperative: Per-core Power Management
Based on Per-CNF Traffic Monitoring

The design requirements of X-MAN are to adjust the frequency of each individual
CPU core based on the packet traffic workload imposed on the CPU core by the indi-
vidual CNFs deployed on the CPU core. The design of CALVIN considers the common
COTS multi-CPU servers with multiple CPU cores in each CPU. For STOA CPU hard-
ware, a CPU with multiple CPU cores is normally referred as one “CPU package”. For
simplicity, in this dissertation, the terminology “CPU" is used to refer to “CPU pack-
age” and “CPU core” is used to refer a single core on a CPU package. In general,
for servers with many CPUs (Multi-core processors), CALVIN runs independently for
each individual CPU core. This work focuses on the common scenario with several
CNFs deployed on a single CPU core, which is illustrated in Figure 4.2.

Physical Server Node 0

Physical CPU 0

Core 0 Core 1
CNF 0 |/ CNF 1 CNF 2 | [CNF 3
f min f mid f min f mid
Physical CPU 1
Core 2 Core 3
CNF 5
fmin

Figure 4.2: Example of the design of X-MAN for a physical server with two CPU pack-
ages. Reprinted from my journal paper [7].

To illustrate the important need for the X-MAN design, three different frequency
levels for each CPU core are assumed as plotted in Figure 4.2: foin, fmia @04 fiae-
Suppose that the f,.;, is the optimal frequency for low workload CNFs, f,..q4 is the
optimum frequency for middle workload CNFs, and f,,... is the optimal frequency for

71

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

high workload CNFs. For the scenario illustrated in Figure 4.2, in order to support
running high-performance CNFs, the optimal frequency of both core 0 and core 1
should be scaled to f,.q. At the same time, the optimal frequency of core 2 and 3
should be scaled to f.q.. It needsto be noted here all CNFs running on the same core
share the current frequency of the underlying physical CPU. Therefore, the optimal
required frequency of a given CPU core depends on the maximum value of required
frequencies of all deployed CNFs on this CPU core.

Heterogeneous CNF workload intensity levels and CPU core frequencies exist in
real-world cloud platforms. To align to this fact, A key design of the proposed X-
MAN is to monitor the traffic workload of each individual CNF separately on a given
shared CPU core. Based on this finer-grained traffic workload monitoring, which
is achieved by the utilization of XDP technology in X-MAN, The frequency of each
individual CPU core can be optimally managed by X-MAN. So in X-MAN the optimal
working frequency of each individual CPU core is designed to be scaled separately
and individually. For the scenario when numerous CNFs are assigned to a single given
CPU core, as is very common with cloud-native networking deployments based on
the microservice paradigm [93, 94], X-MAN is able to scale the CPU core frequency
to the optimal frequency required to support all high-performance CNFs running on
this core.

Compared to the proposed X-MAN, the HC approach described in [8] can only
monitor the aggregated total workload of a single CPU core, which is generated by all
deployed CNFs running on this given core. Therefore, compared to the finer-grained
monitoring of X-MAN, a much coarser traffic monitoring granularity is provided by HC
approach. For the scenario illustrated in Figure 4.2, the HC approach is not able to
distinguish the actual workload of each CNF on core 0 and on core 2, when the low
workload CNF (f,.:n) and the middle workload CNF (f,.:.¢) add up directly to the high
workload CNF workload (fa.). SO when HC approach is used, the power manager
would scale the frequency of core 0 t0 f..: €ven the f,.q is already sufficient here
for more efficient energy consumption. All in all, X-MAN is able to avoid the unnec-
essary energy waste because of the over-scaling problem (exists in HC approach) by
taking the actual workload of each individually CNF into consideration. Furthermore,
compared to HC approach, which estimate the traffic workload indirectly through
hardware counters [8], X-MAN is able to directly monitor the actual packet workload
at all data plane network interfaces of each individual CNF.

At the time of this work, it is acknowledged here that some STOA CPU designs are
limited in that the frequencies of the individual CPU cores on a given CPU package
are automatically synchronized by default in the hardware or very low software level,
thus allowing only packet frequency adaptation of a whole CPU package. However,
new generation of server-oriented CPU designs increasingly allow independent per-
CPU-core frequency management [95], and therefore can fully take advantage of the
per-CPU frequency adaptation capabilities provided by X-MAN.

It should also be noted here that X-MAN approach considers a practical cloud-
native cloud system operation where the system orchestrator deploy CNFs to avail-
able CPU cores (and migrates CNFs between CPU cores when needed) based on
configured orchestration mechanisms, e.g. usually based on minimum CPU core
workload or based on the basic round-robin CNF assignment to CPU cores in STOA

72

4.3 Proposed Approach: X-MAN

systems [96-98]. X-MAN treats the orchestration of CNFs to CPU cores as a given
and strives to reduce the energy consumption of CPU cores by judiciously and dy-
namically adjusting the working frequency (P-state) of CPU cores. Future research
direction can further explore the effective operating frequency and energy consump-
tion characteristics of CNFs considered in the coordination mechanism to facilitate
better energy consumption reduction.

4.3.2 X-MAN System Architecture: User Space Power
Management Based on Kernel Space Traffic Monitors

Two main components of the X-MAN system architecture is illustrated in Figure 4.3:
(i) Flexible and lightweight TMs implemented with XDP technology, which run in the
Linux kernel space. (ii) An adaptive PM implemented as a separate program running
in user space for power management with a global view. As shown in Figure 4.3, for a
single given CPU core, the lightweight XDP traffic monitoring programs (namely, TM A
and TM B) are attached to the physical Receive (RX) interface of compute node server.
These TM programs perform lightweight traffic monitoring, collecting only the most
important data required by the power management algorithm used by X-MAN. At
the time of this work, implemented TMs count only the number of packets received
and store this information on a per-CNF basis along with the accurate timestamp of
the last packet received in the generic eBPF map data structure, which is shared by
default with the PM running in user space. Thus, each interface in Figure 4.3 can be
monitored by a dedicated XDP TM module with an associated eBPF map; Therefore,
a typical CNF with ingress and egress interfaces has two eBPF maps to implement
X-MAN with FeedBack (X-MAN-FB), which is a variant/extension of the vanilla X-MAN.
TM performs no additional operations and (after counting) redirects/forwards all re-
ceived packets (with the XDP_REDIRECT action provided by XDP) to the virtual inter-
face of the corresponding CNF. The packets are then fetched into user space by the
high-performance CNF via the efficient AF_XDP-based software PMD provided by the
DPDK library.

In contrast to this lightweight X-MAN traffic monitoring, existing STOA traffic moni-
toring tools are mainly targeted at orthogonal use cases of that focused in this work,
e.g. traffic monitoring for specific end-host or server applications, such as Packet-
beat [99], or comprehensive packet and traffic monitoring, such as [100, 101]. Typi-
cally, to the best of my knowledge, these existing packet traffic monitoring tools use
non-XDP packet sniffing mechanisms, such as memory-mapped packet sniffing in
Packetbeat [102], which tend to struggle with practical real-world high packet traffic
bit rates. Packet sniffing based on XDP can usually significantly improve the support
for high packet traffic bit rates [103]. In addition, XDP-based packet traffic monitor-
ing can be offloaded from the CPU to a physical NIC with the native XDP support,
freeing up limited CPU resources. Therefore, XDP-based packet traffic monitoring is
adopted in X-MAN.

For ultra-reliable low-latency advanced network functions, packets are processed
inuser space with DPDK. Accordingly, both the main and working DPDK logical cores (Icores)
of a given CNF execute on a single CNF core (since it is common for containerized

/3

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network

Functions

Namespace A

PM

Namespace B

User Space

Kernel Space

‘ veth \ ‘ veth \
x | | Rx x | | Rx
Wy veth peer v Wy veth peer

RX eBPF maps RX] [X

' XDP |

1
QLS

TX] (RX

Physical Interface (Smart NIC)

Figure 4.3: System architecture of the X-MAN power management for a given CPU
core. Reprinted from my journal paper [7].

virtualization platforms to have a given container utilize only one CPU core, which
avoids non-negligible communication delays between CPU cores). The processed
packets are then forwarded to the virtual transmission (TX) interface of the CNF. The
XDP program attached to the egress path forwards all packets to the TX ring of the
physical NIC. In addition to the basic forwarding, an additional feedback mechanism
can be implemented on the egress path to measure the actual processing overhead
introduced by the CNF. This mechanism is used for the X-MAN-FB extension. The PM
program running in user space has access to all the monitoring data stored in the
eBPF map by default, as shown in Figure 4.2, for one CPU core. In general, X-MAN
uses a user-space PM module to collect traffic information from multiple CNFs via
eBPF maps so that the PM has a global view of all CNF running simultaneously on
the CPU core. In X-MAN, only the user space PM needs the required privilege to ad-
just P- and C-states of the physical CPU cores. Based on the traffic monitoring data,
and possibly additional feedback data, the PM is able to perform globally optimized
power management.

The X-MAN architecture is designed to enable flexible management of TM modules
within the Linux kernel while seamlessly supporting a high-performance user-space
packet processing framework. In contrast to common architectures in industrial NFV
data plane systems that use dedicated virtual switch components running in user
space, such as VPP [90] and OVS-DPDK [104], the XDP-based in-kernel data plane is
preferentially used to provide connectivity between CNFs. In the experimental Mizar
project [105], a similar XDP-based in-kernel data plane architecture is used. The
Mizar project concluded that the XDP-based fast in-kernel data plane architecture

74

4.3 Proposed Approach: X-MAN

Table 4.1: Asummary of main notations used by X-MAN related modeling. Reprinted
from my journal paper [7].
Symbol Description

j Number of received packets

S; Service time of a batch of j packets

cro Number of CPU core cycles for I/O of a single packet

Ctask Number of CPU core cycles for CNF proc. of a single packet.
Ceall Number of CPU core cycles to invoke one batch handling function
Chatch Total number of CPU core cycles to handle a batch of j packets
Co CPU core cycles for the empty polls in a batch

fepu Frequency of the CPU core

Vv Vocation time of the CPU core (for empty polls)

N, Number of received packets during time duration ¢

p CPU core utilization of a CNF

significantly simplifies the programming of the data plane and reduces the manage-
ment overhead of the switching and routing mechanism in a cloud-native environ-
ment.

X-MAN'’s unique and novel hybrid kernel-space and user-space architecture lever-
ages the OS level virtualization provided by the Linux application container tech-
nology, where all containers running on the same OS share the same OS kernel by
default. Since X-MAN TMs are running in kernel space, the packet traffic counters are
kernel space data structures (implemented with the standard eBPF map data struc-
ture provided by the Linux kernel) and the workload traffic information of the coun-
ters can be read directly with ultra low overhead by the global X-MAN PM running
in user space without any additional communication of control messages between
the PM and the CNF. Since both the X-MAN TM and PM are completely transparent
to the running CNF, the X-MAN does not need a dedicated user space orchestration
layer with specified APIs to communicate with the CNF, for example, to poll moni-
toring statistics or perform power management (whereas such an orchestration is
required for full user space packet processing approaches). Therefore, X-MAN is able
to perform per-CNF traffic monitoring without interfering or interacting with the CNF
in any way. It is acknowledged that the global in-kernel approach in X-MAN has sev-
eral drawbacks, for example, it may cause significant security issues (which can be
mitigated with introduction of a new secure eBPF map manipulation mechanism).
All'in all, the joint design of in-kernel and user space mechanisms is advocated to
achieve a simple and very effective CNF management plane design.

75

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.3.3 Native X-MAN Adaptive Power Management

Service Time and Workload Model

S, = J(c1o + Crask) + Ceatt 4.1)

fCPU
Cy

-) 4.2
v fepu 4-2)

For effective power management without compromising CNF performance, espe-
cially the latency performance, X-MAN has to monitor a specific metric to accurately
evaluate the actual CPU core workload imposed by the CNF. Based on the mod-
elling work performed by Li et.al. [83], the service time S; of a batch consisting of
j packets and the vocation time V (The CPU time or cycles wasted on empty polls,
namely a polling of zero packets) can be calculated with Equations 4.1 and 4.2. To
simply the modelling, the numerator of the Equation 4.1 can be further concluded as
Chateh = J(C10 + Crask) + Ceau- FOI @ specialized given CNF implementation, the ¢;o and
Cean CAN be assumed as constants. The component ¢;o generally depends only on
the employed IO framework. This ¢;o is as a first-order approximation independent
of the specific CNF and the actual packet size when modern packet processing tech-
niques such as zero-copying and data buffer pre-allocation are employed [9, 106,
107]. This component ¢;o can be determined from the CNF data sheet or through
practical benchmarking. The component ¢, is relative small. The last item cyask
depends on the configuration and function of the specific CNF. For instance, the ad-
vanced RLNC network function may have different ¢, depending on the configured
generation size and field size. In this work, the ¢ IS assumed to be determined
from the data sheet provided by the CNF vendor or via direct benchmarking. The
X-MAN-FB extension can estimate the ¢, USINg its feedback mechanism. There-
fore, for a given specific CNF, the service time of the CNF depends mainly only on the
current CPU core fepy, Namely the current P-state. For the proposed X-MAN power
management mechanism, this means that the P-state of the CPU must be adjusted
according to the incoming workload traffic.

In the work [83] performed by Li et.al., the workload IP traffic is modelled as a
Batch Markovian Arrival Process (BMAP). With this, each CNF in the system can be
modelled as an M®/D/1/C queue. Based on this theoretical modelling, the inter-
packet arrival time of workload traffic for each individual CNF can be modeled as
an exponential distribution. Packets are served by a single queue (currently, most
virtual interfaces do not support multiple queues by default) with a constant service
time of S;, see Equation 4.1. Therefore, the utilization of each CNF can be modeled
as in Equation 4.3.

. Nt * Chatch

p= (4.3)

t- fopu

The utilization metric p indicates the relative workload intensity (namely, the busy-
ness) imposed by the CNF on the CPU cores (running simultaneously at the current

76

4.3 Proposed Approach: X-MAN

CPU core frequency) and serves as the basis for developing the X-MAN employed
algorithms.

According to the conclusions drawn from Li et.al. [83], when the p exceeds the 80%
threshold, the performance of the CNF begins to degrade dramatically. Therefore,
the target of the power management algorithm designed for CALVIN should keep the
utilization p close to, but below, the threshold 80%. As described in Equation 4.3, p
depends on the N;, which is the total number of packets during a given time period t.
In CALVIN, the power management algorithms prioritize the ultra-reliable low-latency
performance over the net reduction of the energy consumption. Therefore, X-MAN
is designed for real-time traffic, which does not tolerate any significant increase in
latency due to energy saving mechanisms. The impact of X-MAN on packet latency
should be negligible, which is verified in the following section.

Real-time Workload Prediction: Simple Moving Average (SMA) and Weighted
Moving Average (WMA) Principle

To avoid accidentally exceeding the 80% threshold and to prioritize latency perfor-
mance, the X-MAN power management algorithm needs to actively scale the CPU
core frequency. This requires real-time prediction of workload traffic preferably with-
out prior training and simple fast computation. Igbal et.al. [108] performed a sur-
vey of statistical traffic prediction mechanisms for real-time applications, ranking
these methods based on the evaluated accuracy and complexity. Unfortunately,
the top-ranked method in [108] is a double exponential smoothing algorithm that
requires parameter training for very similar traffic before practical deployment, as
the smoothing algorithm will face similar traffic in real deployments. However, in the
edge cloud, which is the focus of X-MAN, the workload traffic is highly dynamic. There-
fore, it is significantly difficult to guarantee the quality and accuracy of the training
data. The approach in the second position in [108] involves very complex computa-
tions. Therefore, we chose the third ranked method in [108], a moving average pre-
dictor. The moving average predictor has a negligible low complexity and achieves
similar accuracy to its more sophisticated competitors in most test scenarios. Low
complexity is highly prioritized in CALVIN algorithm design because low algorithm
complexity allows for much more frequent updates.

The mean value over the last ny sample values is calculated as a SMA for a one-
step-ahead point forecast. For SMA, the accuracy of the prediction mainly depends
on the number of considered samples n, in each iteration. In order to make this pre-
diction more accurate and robust, the SMA predictor is enhanced with an additional
WMA predictor. Compared to simple SMA, the WMA assigns the more recent sam-
ples with a larger weight in the calculation. The combination of both SMA and WMA
is able to predict the trend of the workload traffic [109]. Therefore, one-step predic-
tion from the WMA, combined with a traffic trend (The trend can be an increase or
decrease in the upcoming workload) learned from the comparison of the WMA and
SMA, is able to provide reliable and punctual frequency adjustment decisions to be
made.

In general, the number of samples used to calculate SMA and WMA in each it-
eration determines both the accuracy and responsiveness of the predictor. In the

77

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

algorithm used by CALVIN, n, number of samples are used to calculate the SMA,
while only half of the most recent samples, namely the n,/2, are used to compute
the WMA to improve the responsiveness of the predictor. The n, is configurable pa-
rameter and is set to 50 in this work based on preliminary empirical measurements
on my testbed.

Real-time Workload Prediction: Detailed Implementation

Algorithm 1: Main management loop of the native X-MAN. Reprinted from my journal paper [7].

0 N WN =

N o ubh wWwN = OV

18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43
44

ctask = Number of CPU core cycles to process a packet;
Ty, = Time interval for one iteration of the power management loop;
i = Index of the power management interval;

p; = Total number of received packets through the beginning of interval 4 (from kernel eBPF);

ts ; = Timestamp for received packets;

n = Counter of polling rounds with zero received packets in current management interval;

n, = Counter of scaling up hints;
ng = Counter of scaling down hints;

fepu,min, fepu,maz = Minimum and maximum supported CPU core frequency;

ns = Number of samples to calculate p;
PsMA, Pwara = SMA and WMA of ng samples of p;

D0, ts,00 Nz, M, g = 0;

1 =1;

ns = 50,

fcpu,Oy fcpu,l = fcpu,maz;

need_scale = false;

/* The power manager makes a decision every 7T,, seconds.
while true do

power_management_timer.start(Tm);

Di,ts,i < read_ebpf_map();

pi «— ((pi —pi-1) * Ctask)/((tS,i - ts,i—l) * fcpu,i)?
if p; == 0then

Ny «<—ny +1;

if nz = 1z mae then

Jepu,it1 < fepu,mini
scale_to_freq(fopu,i+1);

freq_is_min = true

end

else

n, < 0;

if freq is_min = true then

/* Fast scaling to max. freq. to avoid pkt. loss
fcpu,i+1 <« fcpu,maz;

scale_to_freq(fepu,i+1);

end

Ny, ng < update_traf fic_trend(psara, Pwn A, Pi,ns);
/* Check if frequency scaling is necessary
need_scale «— get_scale_decision(ny,ng);

if need_scale == true then

fepu,i+1 < get_target_freq();
scale_to_freq(fepu,i+1);

end

end

T—1i+1;
power_management_timer.reset(Tm);

end

*/

*/

*/

/8

4.3 Proposed Approach: X-MAN

As explained above, the combined SMA-WMA predictor is implemented in X-MAN
system as a user space program using my home-grown packet high-performance
packet processing library:Fast Forward Packet Processing (FFPP). The pseudocode
of the core power management loop, which runs inside the user space power man-
ager program for all CNFs on one given CPU core, is described in the Algorithm 1.
As presented in the Algorithm 1, the X-MAN periodically (with a configurable dura-
tion) reads workload traffic information, in particular the number p; (read from the
cumulative counter provided by the Linux kernel eBPF mechanism) of all received
packets up to the beginning of the current management interval i and the times-
tamp ts,; of the latest received packet in the previous management interval, from the
eBPF map. (This traffic information (p;, ts,) is updated by the attached XDP program
for each incoming individual packet). Each management interval consists of several
steps, including: (i) Read the monitoring data from the eBPF map. (ii) Calculate the
CPU utilization and check if a frequency adjustment (namely, an adjustment of cur-
rent P-state) is required. (ii) If an adjustment is needed, perform the corresponded
frequency adjustment.

The trafficinformation (p;, ¢, ;) is read only at the beginning of each power manage-
ment iteration. In particular, at the beginning of the i-th management interval, the
traffic information (p;, ts) is read from the eBPF map. This eBPF map information is
then used to make a power management decision along with the information for the
previous interval i — 1, namely (p;_1, ts;—1). The power manager process then sleeps
until the start of the subsequent power management interval i + 1 and this periodic
management process is repeated.

The timestamp ¢, (together with the timestamp ¢,,_; of the previous interval) is
used to calculate the exact length of time between two read moments in two con-
secutive management intervals (time period ¢ in Equation 4.3). In theory, for a strictly
real-time system and negligible overhead of the management function, the read in-
terval should be T,,. However, the implementation on the COTS server requires this
timestamp mechanism to accurately calculate the exact time period t. Based on the
count p; of the total number of packets received during time period ¢ and up to the
beginning of the current management interval ¢ (used to calculate the number of
packets received during time period ¢: V), the CNF utilization p of the given CPU
core is calculated according to Equation 4.3.

Based on empirical tests with the practical testbed used in this study, the power
management interval to T,, = 1 ms. In general, the power management interval T,,
should be configured according to the characteristics of the underlying cloud infras-
tructure.

X-MAN Power Management: CPU Core Frequency Scaling

In the next step, the time series values of CPU utilization psya and pw a4 are com-
puted by the update_traffic_trend function on line 35 of Algorithm 1 and com-
pared to each other to see if the traffic is currently following a trend. This function
then checks whether py 4 is above py, or below pgow,. If SO, an up counter n, or
a down counter ny is increased, respectively, while the other counter is set to zero.

79

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

Inspired by the process that led to the initial parameter setting of the TCP [110], fol-
lowing algorithm parameters are configured based on an intuitive understanding of
frequency scaling and pilot experiments.

Two thresholds py, and paews are configured to 75% and 65%. The upper threshold
pup tO @ value below 80% to ensure that the CPU utilization of the CNF stay below the
80% threshold. The pauwn iS Needed to determine the situation when scaling down is
required. There is a 10% gap between these the two thresholds, leaving some room
for fluctuating values and preventing too rapid down-scaling. In an up-trend, the up
counter is increased by 3 and in a down-trend, the down counter is increased by 2.
Finally, both up and down counters are checked against the counter threshold and
if the counter threshold is exceeded, a scaling of the CPU core frequency is induced
(in lines 37-39), which is determined by the get_scale_decision() function in line
36. The counter threshold depends on the P-state transition time and the eBPF map
read interval T,,. It should not be possible for the counter to exceed the threshold
earlier than the transition time has elapsed. If the calculated frequency is between
two available P-states, the P-state with the higher frequency is selected. The manage-
ment of the P-states is performed using the APIs provided in the rte_power library
provided by DPDK. The previous P-state determination is performed for each CNF
running on a given CPU core during each power management interval of duration
T,.. Then, the P-state of the CPU core is set to the highest frequency of an available P-
state determined for the CNF on the CPU core. Thus, the computational complexity
of the X-MAN power management is linearly related to the number of CNFs running
simultaneously on the CPU core.

In addition to the utilization prediction algorithm presented, the native X-MAN
power management algorithm has some additional features: (i) Immediately after
some consecutive empty readings, it scales down to the minimum available fre-
quency (lines 24-27 in the Algorithm 1). (ii) After this scaling down, the map read
interval is automatically shortened to T, = 100 us (from the default 1 ms). This al-
lows the PM to quickly detect a new packet burst for timely packet processing. As
soon as a new packet is detected, the CPU frequency is immediately increased to the
Maximum fepumae (lIN€s 31-33) to avoid any loss of packets or increase in latency.

4.3.4 X-MAN Extensions

Beside the native X-MAN power management algorithm introduced above, two ex-
tensions are also implemented and evaluated in this work:

X-MAN with C1 State Management (X-MAN-C1) In addition to P-state manage-
ment, the X-MAN-C1 extension also includes the use of C-state to further significantly
save energy during idle time. While the native X-MAN scales down tO fepy.min When a
long idle time is detected, X-MAN-CT1 is able to suspend CNF execution by manually
guiding the CPU into the) sleep state. Since it is currently not possible to directly
manage the Cstate of the CPU in user space, X-MAN-C1 is implemented with a simple
client-server model. The native X-MAN is implemented as a client, while the suspend
request is sent to the server via a ZeroMQ socket. The server-side implementation

30

4.4 Performance Evaluation Setup for X-MAN

functions by changing the cpu_quota parameter of the container running the CNF.
This change in the cpu_quota parameter effectively signals the kernel to enter
state.

X-MAN with FeedBack (X-MAN-FB) The native X-MAN requires detailed specifica-
tion and benchmark data of the deployed CNF, such as the number of CPU core
cycles, namely c¢.q, Used for CNF packet processing. X-MAN-FB aims to address this
limitation and is designed to enable fully self-regulating power management. The na-
tive X-MAN is extended by X-MAN-FB to have feedback about its scaling decisions. A
suitable feedback is the packet count from the CNF egress interface, as illustrated in
Figure 4.3. If the CNF is not overloaded, the packet counts of the ingress and egress
interfaces should be the same, and if the CNF is overloaded, they will be off. These
two counters are constantly compared. An algorithm based on Additive-Increase
Multiplicative-Decrease (AIMD) is performed on the comparison results. X-MAN-FB
iteratively detects the minimum possible frequency until there is a loss in the CNF,
namely, until the ingress and egress interface counters are different. The scaling
mechanism of X-MAN-FB follows the basic principles of TCP congestion avoidance
algorithms [111]. If no packet loss is detected, the P-state index is increased by 1 at
each iteration to scale down the CPU core frequency. As soon as any loss occurs, the
current P-state index is immediately halved, which leads to an immediate increase
in frequency.

4.4 Performance Evaluation Setup for X-MAN

4.4.1 Testbed for X-MAN Evaluation

Similar to the testbed used to evaluate CALVIN introduce in Chapter 3, the evaluation
testbed for X-MAN consisted of two physical COTS servers connected back-to-back.
One server is used as the Packet Generator (PacketGen) and the other server is used
as the Device under Test (DuT) on which the CNF is deployed. PacketGen runs on an
Intel Core i7-6700 CPU@3.4 GHz, while DuT is equipped with two Intel XEON CPUs
E5-2643@3.30 GHz, i.e. DuT has two CPUs with four cores each. Both PacketGen
and DuT are equipped with a Mellanox ConnectX-5 EN 25 GbE dual-port SmartNIC
and 32 GB of memory. PacketGen and DuT are connected with 25 GbE Small Form-
factor Pluggable (SFP) cables.

Cisco TRex (v2.81) [112] is used in this work, which is an industrial-grade high-
performance packet traffic generator and monitor, to generate packet traffic in state-
less mode for different workload traffic profiles and measure latency performance
results. Ubuntu Server 20.04 LTS (With Linux kernel version 5.4) is used as the host
OS for all servers. Docker 19.03-CE is used for application container management.
For the data plane, DPDK (v20.02) and XDP-Tools (v0.0.3) [55] are used to develop
CNF and Power Manager (PM) of X-MAN. The software tool turbostat [113] is used
to measure CPU power and energy consumption. Based on the measurements per-
formed in [114], Turbostat provided results comparable to those obtained using

31

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

additional physical measurement equipment, which is less portable and much more
expensive. Hyperthreading and Basic Input/Output System (BIOS) power manage-
ment features on DuT are fully disabled in order to obtain both consistent and re-
peatable measurements.

To prevent background processes from interfering with the actual energy mea-
surements, the physical CPU cores that are used to run CNFs and the X-MAN PM are
isolated from the Linux OS by using the isolcpus kernel parameter to remove these
cores from the Linux kernel scheduler.

4.4.2 Workload Traffic Profiles

Two types of probing workload traffic is generated by TRex to evaluate the perfor-
mance of X-MAN and compare it with the STOA existing approaches.

Deterministic Traffic A deterministic ON/OFF traffic profile is used mainly for de-
terministic and reproducible measurements. As shown in Figure 4.4, the determin-
istic traffic profile produces packet traffic that alternates between packet flows (or
called packet trains or packet bursts) with a fixed packet arrival time (5 seconds ON-
period) and an Inter-Stream Gap (ISG) (1 second OFF-period). During the ON-period
(i.e., during a given burst of packet traffic), the Packet-per Second (PPS) rate corre-
sponds to a specified link utilization from 10% to 100% of the underlying 10 Gbps
physical network for a single CNF evaluation. This stepped traffic pattern (as plot-
ted as solid lines in Figure 4.4a) is suitable for examining how the applied power
management mechanism adapts to different PPS and uses ISG to reduce the overall
energy consumption. In order to evaluate the designed global power management
provided by X-MAN, the step-up pattern above is supplemented with a correspond-
ing step-down traffic pattern (as plotted as dashed lines in Figure 4.4b) to evaluate
the scenario with two running CNFs. For the step-down traffic pattern, the ON cy-
cle is reduced to 4 seconds and the ISG is extended to 2 seconds. The step-up and
step-down traffic profiles simulate a scenario where two separate flows with different
traffic trends are sent to two separate CNFs deployed on DuT. Since the maximum
bit rate is configured to 10 Gbps, each traffic pattern in the two CNFs evaluations is
limited to a maximum bit rate of 5 Gbps. The multi-burst flow profile of the stateless
mode provided by TRex is used to generate these deterministic flow profile packets.
Each burst or packet train contains several UDP packets with a fixed IP datagram
length of 1400 B (namely, 1400 bytes).

Random Traffic This profile is mainly used to test the robustness and resilience
of X-MAN to relatively more realistic workload traffic. In the random traffic profile,
packet streams have a random exponential distribution of arrival times (i.e. random
ISGS). Instead of a fixed packet size used for deterministic traffic, the packet size
distribution in each packet traffic burst follows the Internet Mix (IMIX) genome [115]
(53.84% 64 B, 38.46% 570 B and 7.49% 1400 B). The PPS rate is fixed to maintain a
30% link utilization. Compared to the deterministic traffic profile, more than 90% of

32

100

Link Utilization [%]

50

Link Utilization [%]

5

4.4 Performance Evaluation Setup for X-MAN

45 |
40| !
35 |
30|
25/ !
20 |
15]
10/ !

ISG=1s 6 12 18 24 30 36 42 48 54 60 Time[s|
(a) For a single CNF.
ISG = 2s
ISG=1s 6 12 18 24 30 36 42 48 54 60 Time[s|

(b) For two CNFs.

Figure 4.4: Deterministic probing traffic profiles for X-MAN benchmark. Reprinted
from my journal paper [7].

ISGs are less than 0.5 second. So this traffic profile requires relatively more granular
traffic monitoring.

Both model-based deterministic and random active probing traffic profiles are
used in this work because they could cover a wide range of traffic dynamics and
are reproducible. Therefore, these profiles enable a rigorous evaluation.

4.4.3 CNF Deployment

Two scenarios are deployed for the measurements:

33

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

One single CNF A single CNF is deployed on one dedicated isolated CPU core. The
CNF program runs inside a Docker container with two data plane virtual network
interfaces. The AF_XDP PMD acts as the packet IO mechanism for the CNF and the
in-kernel XDP forwarder to redirect workload traffic from the physical NIC to the cor-
responding virtual Ethernet pair (veth-pair). This basic deployment is used to eval-
uate the baseline performance of the X-MAN.

Two independent CNFs In this scenario, two independent CNFs are deployed si-
multaneously on two CPU cores. The in-kernel XDP forwarder forwards the workload
traffic to corresponding CNF based on the pre-configured metadata of the traffic
flow.

In both cases, the built-in L2 forwarding (L2FWD) example application provided by
DPDK library is extended and then used as the basic function of each CNF. Other
more complex CNFs can be built on top of this elementary forwarding application.
Since the focus of this work is to evaluate the performance of different power man-
agement mechanisms, the elementary forwarding CNF is considered without loss of
generality.

4.4.4 Monitoring Latency for CPU Utilization Estimation

CPU utilization estimation is required for all common power management mecha-
nisms. Due to some limitations, the power measurement and corresponding algo-
rithms are not researched in the paper [8]. However, it provides a black-box utiliza-
tion estimation method based on hardware counters.

The monitoring latency is defined in this work as the time period required for the
power management system to obtain a new sample of the current workload status.
Specifically, in X-MAN, the monitoring latency is equal to the time to execute line 20
of Algorithm 1, which is the read time of the eBPF map. The comparison for this
monitoring latency is performed between the HC approach described in [8] and the
X-MAN.

Hardware Counter (HC) utilization estimation HC utilization estimation uses CPU
hardware counters to estimate the workload of deployed NFs [8]. This HC-based
approach has a strict limitation that it only works when each CNF is assigned to an
isolated physical CPU core. If not, other NF processes or background processes can
affect the hardware counters, resulting in inaccurate or even incorrect estimations.
This assignment of a NF to an isolated physical CPU core is very expensive and gener-
ally unacceptable for cloud-native network function systems. For the HC mechanism,
up to four CPU cores can be monitored on the testbed to deploy up to four CNFs.

X-MAN Utilization estimation Compared to HC approach, X-MAN does not have
above described limitations. Traffic monitors of X-MAN are very lightweight and
can be directly attached to the network interfaces of deployed CNFs, regardless of
whether they are assigned to the same or different CPU cores. Assuming two data

84

4.4 Performance Evaluation Setup for X-MAN

plane network interfaces per NF, X-MAN has to monitor eight network interfaces to
meet the same scenario for four CNFs of the HC approach. Therefore, in fact, in the
evaluation of the monitoring latency, the monitoring of four physical CPU cores (for
the HC approach) and four network interface pairs (namely, eight data plane network
interfaces for the X-MAN approach), is compared. In addition, because the number
of network interfaces monitored by X-MAN is theoretically not limited by the number
of available physical CPU cores, the scalability of X-MAN monitoring is evaluated for
different numbers of virtual network interfaces. Specifically, the monitoring latencies
for 10, 100 and 1000 Linux veth pairs [116] are measured.

4.4.5 Power Management Mechanisms

Following power management mechanisms are used to compare the proposed X-
MAN with the most recent and advanced Cl mechanisms available from the DPDK
community, as well as between X-MAN extensions.

+ NPM: This scenario does not perform any power management mechanisms.
Thus, this NPM scenario is used as the baseline for the best latency perfor-
mance and the worst energy consumption results on the deployed testbed.

+ X-MAN: The native X-MAN power management without using C state or any
feedback mechanisms.

+ X-MAN-C1: Native X-MAN approach plus the additional management of C state.
+ X-MAN-FB: Native X-MAN approach with the additional feedback mechanism.

+ Code Instruction with Heuristic power management (CIH) [9]: This approach
is used in the official sample application for power management provided by
the DPDK library. This CIH approach is used as one representative design and
implementation of the Cl based approaches.

Itis clearly noted that HC approach is not in this list of power management mecha-
nisms, because HC approach described in [8] is only a utilization estimation method.
In contrast to HC approach, both X-MAN and CIH are complete solutions for both
CPU utilization estimation and power management.

4.4.6 X-MAN Performance Metrics

+ Monitoring latency required for CPU utilization estimation: For this metric, only
X-MAN and HC approaches are compared. For all other metrics, the X-MAN is
compared against NPM, CIH and also two variants of X-MAN.

+ Optimal CPU frequency and power for deterministic traffic profiles: Since the
timing information of the ON/OFF periods used is fully determined, according
to [83], the optimal value of both CPU frequency and the corresponding power
value can be calculated based on the preliminary empirical measurements. The

85

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

optimal power value is used as a lower bound (the best accessible lowest en-
ergy consumption) for all power management mechanisms.

* Average CPU frequency and power (namely, energy consumption): The average
CPU frequency and power values of all physical CPUs on the DuT are measured
with the widely used Turbostat tool with its highest available measurement
resolutions. The measurement values include per-CPU package power value,
per-CPU core frequency, and also per-CPU core C state residency time.

+ Bandwidth accessed indirectly with number of lost packets: Because TRex [112]
(v2.81) does not provide throughput values directly, the throughput values are
measured indirectly. Bandwidth or throughput is equal to the maximum send-
ing rate without any dropped and out-of-order packets. Therefore, the number
of packets dropped in each packet stream is measured to indirectly evaluate
the throughput performance.

+ End-to-end latency: For this work, the average, maximum and jitter of the end-
to-end RTT of each packet stream are used as key latency metrics. The max-
imum latency value and jitter allow evaluating both the worst-case delay per-
formance and the delay inconsistency between packets.

For each measurement setup and scenario, 100 independent replications are per-
formed for statistical results. At least 10 packet streams (namely, packet bursts
or trains. The documentation of Trex uses the term “streams”) are used in each
measurement replication. Each metric introduced above is sampled for each TRex
stream in each replication.

4.5 X-MAN Measurement Results and Evaluation

4.5.1 X-MAN CPU Measurements

To get the detailed characteristics of the used physical CPU of the DuT server, some
preliminary measurements are needed.

The actual power required by the CPU package in different P-states is illustrated in
Figure 4.5. The matrix product workload provided by the tool stress-ng [117]is ex-
ecuted on the CPU for 1 second before switching to the next P-state. This switching
can be performed in both increasing and decreasing directions with two common
widely used scaling drivers: intel_pstate for Intel x86 CPUs and acpi-cpufreq
for both AMD and Intel x86 CPUs. The intel_pstate driver is highly optimized for
the latest Intel CPUs. It can be observed from Figure 4.5 that the power values
in each P-state is independent of the scaling driver and the previous P-state. The
intel_pstate driver is used on my testbed in the following evaluation because it is
the default driver used by most Linux distributions today.

The temperature in °C of the CPU package in different CPU states are listed in
Table 4.2. The results show that increasing the CPU frequency leads to a significant
increase in CPU temperature, almost 30 °C between the € and B, states. High CPU

36

4.5 X-MAN Measurement Results and Evaluation

35+ ¥

Power [W]
n N W
Q a <Q
-
-
-
-

&
]

S
*
:

212019181716 151413121110 9 8 7 6 5 4 3 2 1 0
Processor P-state
4 Intel Increase ACPI Increase ® Intel Decrease ® ACPI Decrease

Figure 4.5: CPU frequency increase and decrease test. Reprinted from my journal
paper [/].

Table 4.2: CPU package temperature for different CPU states. Reprinted from my
journal paper [7].

State @ Py, P, P,
Temperature [°C] | 42.2 446 68.5 71.1

temperatures have a significantly negative impact on the energy efficiency of the
system (since the required cooling process incurs non-negligible energy costs) and
can significantly shorten the CPU lifetime.

Another important CPU measurement performed is to evaluate the minimum time
duration (namely, the sojourn time) that the CPU should stay in a P-state before
changing to another P-state. A so-called Tic-Toc-test is performed in this work to
periodically switch between the highest and lowest available CPU frequency with dif-
ferent periods, where this period contains two P-state sojourn times. The average
CPU frequency and power values as a function of the period duration are illustrated
in Figure 4.6. For this measurement, each scenario is replicated for 50 times. As
present in Figure 4.6, when the switching period of P-states is shorter than about
30 ms, the effective CPU frequency starts to drop dramatically while the CPU starts
to consume significantly more energy. So the period for frequency scaling is config-
ured to be higher than 30 ms on my testbed to avoid issue of over-scaling illustrated
in the Figure 4.6.

37

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

2260
22407
22207
N
an
222007
B
O
=
<]
22180
[«D]
=
=
2160+
R Y- Y- - - - EEEEEE
$8882888885888s88s85888¢8888
MITOOND® O TIOR3 333338a
. —TAO TOHLONO®O
Period / 2 [ps] -
—— Mean Frequency Mean Power Consumption
————— Optimum Mean Frequency = ----- Optimum Mean Power Consumption

Figure 4.6: Tic-Toc test for CPU frequency and power. Reprinted from my journal
paper [/].

4.5.2 Monitoring Latency for CPU Utilization Estimation

The comparison of the Cumulative Distribution Function (CDF) of monitoring latency
between HC approach and the proposed X-MAN is illustrated in Figure 4.7. Monitor-
ing latencies are measured when DuT is in IDLE state or stressed with 100% workload
via the stress-ng tool. For each scenario, the measurements are replicated inde-
pendently for 100 times. These two scenarios are evaluated here for the best and
worst cases regarding the monitoring latency. According to the measurement re-
sults, X-MAN can achieve a significantly shorter and much more stable monitoring
latency compared with the HC approach. It can be observed that the monitoring la-
tency of the HC approach is affected by the workload of the DuT and shows a large
variance when CPU is idle. The HC approach takes nearly 5 times more time than
X-MAN for latency monitoring for the likelihood of 80%. For the scenario of 100%
CPU workload, the HC approach normally needs about 5 times longer monitoring
latency than the X-MAN with nearly 100% likelihood. Due to the lightweight and ef-
ficient XDP-based traffic monitoring mechanism, the monitoring latency of X-MAN is
always less than about 10 us for arbitrary workload.

The scalability and stability of the X-MAN monitoring latency are evaluated and
illustrated in Figure 4.8. As presented in the Figure, the monitoring latency of X-MAN
shows a linear relationship with the deployed number of parallel veth pairs, namely
data plane virtual network interfaces. And this behavior is not affected by the CPU

38

4.5 X-MAN Measurement Results and Evaluation

workload. Allin all, X-MAN is able to provide low-latency, efficient, scalable and robust
CPU utilization estimation.

Likelihood of Occurrence

1.0+

0.8 1

0.6 1

0.4 1

0.2

0.0

L__1 HCIDLE
- HC 100%
[1 X-MAN IDLE

X-MAN 100%

0 20 40

60 80

Monitoring Latency (Microseconds)

100

Figure 4.7: Comparison of monitoring latency between HC approach and X-MAN.

Likelihood of Occurrence

1.0

0.81

0.6 1

0.4 1

0.21

0.0

Reprinted from my journal paper [7].

[X-MAN IDLE 10
X-MAN IDLE 100
[1 X-MAN IDLE 1000

C-223 X-MAN 100% 10
X-MAN 100% 100
C--3 X-MAN 100% 1000

e e e

101 102

103 104

Monitoring Latency (Microseconds)

Figure 4.8: Monitoring latency of X-MAN for different number of veth pairs. Reprinted

from my journal paper [7].

39

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

4.5.3 Single CNF with Deterministic Traffic

Figure 4.9 shows the average frequency and power values of the CPU on DuT for a
single CNF deterministic traffic scenario. It can be observed from Figure 4.9 that the
CNF achieves full utilization of the CPU cores at link utilization levels of 40% and 50%
(as shown for optimal frequencies up to 3.3 GHz). Therefore, there is an opportu-
nity for an adaptive intra-stream (namely, inside each packet stream) energy saving
when the link utilization is 40% or lower. By examining the Figure 4.9 more closely,
it can be concluded that for the 20% link utilization, the X-MAN power overlaps with
the X-MAN-C1 and optimal power values; In addition, the X-MAN-FB exhibits rela-
tively high energy consumption at 20%, which is consistent across 100 independent
measurement replications. It can be observed from the Figure 4.9 that the CPU core
frequencies of X-MAN and X-MAN-C1 are always close to the theoretical optimum (in
fact, they usually overlap with each other and mask the optimum symbols in the Fig-
ure 4.9) during ON periods when the link utilization is 40% or lower. At the same time,
the CIH performs very similarly to the NPM, namely mostly being at the maximum
frequency during ON time. In comparison, for ON periods where the link utilization
is 30%, native X-MAN almost is able to halve the energy consumption. While for ON
times when the link utilization is 40%, X-MAN-FB can reduce the power consumption
by about a quarter compared to CIH and NPM approaches. In addition, it can be
observed from the Figure that during the OFF periods, the CIH cannot reduce the
frequency in time, leaving the average CPU frequency only slightly below 3 GHz. At
the same time, both X-MAN and X-MAN-FB reduce the average CPU frequency to
well below 2 GHz (usually about 1.3 GHz). Furthermore, X-MAN and X-MAN-FB re-
duce the CPU frequency to a minimum of 1.2 GHz, and the deviation of the average
CPU frequency from 1.2 GHz originates from the first sample when the ISG is about
to be detected but the CPU is still at the ON period frequency. X-MAN-C1 reduces
the average CPU frequency below 1 GHz during most OFF periods and is able to ap-
proach the optimal CPU frequency of zero. In general, the native X-MAN approach
and its extensions reduce the energy consumption to one-quarter (1/4) of the NPM
energy consumption during the shutdown period, while CIH only reduces the power
consumption to three-quarters (3/4) of the NPM energy consumption.

The end-to-end RTT latency results are listed in the Table 4.3. The results listed in
the Table presents the increases in the RTT latency due to additional monitoring and
power management mechanisms introduced by X-MAN based and CIH approaches
compared to the baseline NPM. It can be observed from the Table that X-MAN, X-
MAN-FB and CIH approaches cause only negligible and slight increases in the latency
performance. In comparison, the X-MAN-C1 can even double the latencies in some
scenarios. The low latency overhead provided by X-MAN is mainly due to the ju-
dicious use of the native Linux kernel NIC driver (Linux kernel version 5.4 provides
native support for veth network interfaces), which is the fastest mode offered by XDP.
Therefore, it can be concluded that the traffic monitoring and adaptive power man-
agement (CPU core frequency scaling) algorithms of X-MAN and X-MAN-FB introduce
only negligible additional latency overhead. At the same time, the large increase in
latency of X-MAN-C1 in Table 4.3 and the minimal additional energy savings of X-
MAN-C1 compared to X-MAN and X-MAN-FB lead to the conclusion that exploiting

90

4.5 X-MAN Measurement Results and Evaluation

R T FLE A A AN
%2000]

%1000" P4

AR

10 020 030040 050 0 60 070 0 80 0 90 0 100
Link Utilization [%)]

4()-*0,03000!0!0!0!0!0!
T
D?10:i=l£ i

100 20 030 0 40 050 0 60 0 70 0 80 0 90 0 100
Link Utilization [%)]

e Optimum ¥ X-MAN ¢ X-MAN-FB
4+ NPM 2 X-MAN-C1 $ cmH

Figure 4.9: Average CPU frequency and power values of a single CNF as a function
of the link utilization for deterministic traffic. Reprinted from my journal

paper [/].

the C-state does not usually pay off, which confirms the conclusions summarized
already by Li et.al. [83].

With above listed results and evaluations, it can be concluded that native X-MAN
and X-MAN-FB are able to significantly reduce the energy consumption at both ON
and OFF times with negligible latency performance overhead compared to the NPM
and CIH approaches.

4.5.4 Two CNFs with Deterministic Traffic

The evaluation of the two simultaneously deployed CNFs in this Subsection is in-
tended to examine the performance of X-MAN in the scenario with multiple inde-

97

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

Table 4.3: Single CNF latency results for the deterministic traffic. Latency increases
are listed as percentage with respect to the performance of the baseline
NPM approach. Reprinted from my journal paper [7].

Link Utilization (%)\ 10 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ 100
Average Latency (%)

X-MAN 0.00 | 0.01 0.00 0.13 10.01] 002 | 0.09 | 0.10 | 0.09 2.33
X-MAN-C1 0.02 1068 | 1.01 117 11.02 | 1.01 1.02 | 012 | 1.01 | 137.27
X-MAN-FB 0.00 | 0.00 | 0.00 0.00 |[0.01 | 0.01 0.01 0.01 0.01 113

CIH 0.00 | 0.00 | 0.01 0.02 10.03| 003 | 0.03 | 0.03 | 0.03 4.05
Maximal Latency (%)

X-MAN 0.00 | 0.00 | 0.00 0.24 |0.00| 0.00 | 0.21 0.21 0.20 | 13.51
X-MAN-C1 0.0110.02| 0.20 029 033|033 | 034 | 034 | 034 | 142.79
X-MAN-FB 0.00 | 0.00 | 0.00 0.00 | 0.00| 0.00 | 0.01 0.01 0.01 11.43

CIH 0.03]10.26 | 0.26 0.02 10.01| 0.01 0.01 0.01 0.01 5.99
Jitter (%)

X-MAN 0.76 | 598 | 0.02 0.01 0.02 | 0.01 5.91 6.92 | 6.00 6.45
X-MAN-C1 0.00 | 6.81 | 129.47 | 10230 | 6.47 | 4033 | 1234 | 1241 | 2230 | 9.68
X-MAN-FB 0.76 | 0.03 | 0.00 0.01 0.02 | 660 | 6.20 | 6.63 | 6.22 3.23

CIH 0.76 | 0.11 0.01 0.01 6.26 | 0.01 0.03 | 0.01 6.24 6.45

pendently running CNFs. This scenario with two CNFs require the monitoring of two
independent CNFs with different workload levels and power management appropri-
ate to the needs of the higher load (higher intensity) CNF without conflict and without
over-scaling the frequency of the CPU core.

Due to the limitations of the testbed used for this work, two CNFs are deployed
on two different CPU cores on the same CPU package, whereby the frequencies of
them are automatically forced to be synchronized, i.e. all cores on a given CPU run
at the same frequency (and the X-MAN power manager controls the operating fre-
quency of the entire CPU package). For the testbed used in this work, the frequency
synchronization between CPU cores on a particular CPU ensures that the evaluation
is equivalent to the evaluation scenario of running two CNFs on the same CPU core,
in terms of frequency scaling.

The average CPU frequencies and the power values of NPM, X-MAN and CIH are
compared against the theoretical optimum as illustrated in Figure 4.10. Because
of the frequency synchronization issue introduced above, the theoretical optimal
power values are the ones corresponds to the optimal power values running in all
the cores of a CPU package. In this evaluation, X-MAN extensions are not used to
avoid clutter.

It can be observed from Figure 4.10 that the average CPU working frequency of
X-MAN is usually closer to the optimal average CPU frequency than that of CIH ap-
proach. Particularly, for ON time slots, X-MAN is able to scale to a much lower optimal
CPU frequency when the workload traffic allows for a lower CPU frequency. It can
be observed that for streams (packet bursts) 2 through 7, the X-MAN CPU frequen-
cies are fairly close to the optimal CPU frequency when the optimal CPU frequency is
below 3 GHz. In comparison, for these ON periods, average CPU frequencies of CIH
approach reach only slightly below the NPM CPU frequency of 3.3 GHz. According to
my analysis, this is mainly due to the difficulty of CIH approach in managing the CPU

92

4.5 X-MAN Measurement Results and Evaluation

~ 2 2 L 2 2 L 2 2 L 2 2 L 2
= 000 A RERE A S
=,
RERIRARS % SEAREREE
£ 2000
)}
3 aRaR } +
LE \ 4 4 4 A 4
— 1000
[a W
O
0 1 ® ® ® ® ® ® ® ® ®
1ISG 2 1SG 3 1SG 4 1SG 5 ISG 6 ISG 7 ISG 8 ISG 9 ISG 10
Stream
60 1
¢ 2 L 2 L ¢ L ¢ L
Ny AERSRRRRRERE:
E | []
= + $
o
B 90
\ 4 { \ 4 4 f * i
® [] ® [] ® []
11SG 2 ISG 3 ISG 4 ISG 5 ISG 6 ISG 7 ISG 8 ISG 9 ISCG10
Stream
e Optimum ¢ NPM ¥ X-MAN * (CIH

Figure 4.10: Average CPU frequency and power values of two CNFs for deterministic
traffic as a function of packet traffic (illustrated in Figure 4.4b) train index
ranging from 1 to 10. Reprinted from my journal paper [7].

frequencies of CNFs with heterogeneous CPU frequency requirements. CIH is mainly
designed for CPU frequency control of each individual CNF separately, namely, CIH
approach optimizes the CPU frequencies of two CNFs individually to find an optimal
CPU frequency for each CNF. In the case of multiple heterogeneous CNFs running
simultaneously on the same CPU, CIH approach thus gives different (i.e. could be
very conflicting) optimal CPU frequencies, which are resolved in CIH by scaling the
frequencies to a high level. In comparison, due to the separate and independent
traffic monitoring of each CNF, the PM of X-MAN can wisely set the CPU frequency
for each ON period to the higher required CPU frequency of the two CNFs.

Under heterogeneous workload traffic loads, a conflict arises where the end of a
low link utilization traffic burst prompts the CNF of the stepping-down traffic pattern

93

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

to request a lower CPU frequency, while the other CNF handling the persistent high
link utilization traffic bursts request a much higher CPU frequency. The CIH design
then reduces the frequency only a bit, resulting in only a slightly lower average CIH
CPU frequency with an average value of 3.25 GHz. In comparison, the native X-MAN
performs a global CPU frequency scaling and keeps the CPU frequency around the
NPM value to guarantee low-latency processing of persistent high link utilization traf-
fic bursts.

For the OFF periods, it can be observed from Figure 4.10 that X-MAN is able to
reduce the average CPU frequency to close to 1.2 GHz, while CIH only keeps the av-
erage CPU frequency above 2 GHz. This is mainly due to the limited responsiveness
of CIH approach, and the default parameters provided by the official DPDK sample
are used. At the same time, when the PM detects the ISGs based on the data pro-
vided by the responsive XDP-based TM, the X-MAN is able to immediately scales the
CPU core frequency to minimum available frequency.

Echoing the CPU frequency results, it can be observed from the power results in
Figure 4.10 that X-MAN takes advantage of the energy savings due to the lower re-
quired CPU frequency to handle the relatively low link utilization traffic bursts (streams
ranging from 3 to 7), as indicated by the significant energy reduction achieved by X-
MAN for streams 4-7. In addition, X-MAN is able to utilize existing I1SGs to reduce
power values to about 10 W, while CIH approach keeps power values during OFF
periods at about 27.9 W.

Table 4.4: Two CNFs latency results for the deterministic traffic. Latency increases
are listed as percentage with respect to the performance of the baseline
NPM approach. Reprinted from my journal paper [7].
Link Utilization (%) | 5 | 10 | 15 | 20 | 25 [30 | 35 | 40 | 45 | 50
Average Latency (%)
Step-up | X-MAN | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40
CIH 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.11 | 0.30 | 15.28
Step-down | X-MAN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02
CIH 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.03 | 0.04 | 0.19 | 0.21
Maximal Latency (%)
Step-up | X-MAN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36
ClH | 0.00|0.00|0.00|0.00|0.00|0.00]|0.01]0.02|0.08]| 3560
Step-down | X-MAN | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
CIH 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.06 | 0.07
Jitter (%)
Step-up | X-MAN | 1.46 | 1.06 | 0.57 | 3.12 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.45
CiH |439|1035]0.82|602|005|005|0.11]0.01]|635| 555
Step-down | X-MAN | 5.17 { 0.21 | 0.29 | 0.00 | 0.15 | 0.00 | 0.01 | 0.00 | 0.14 | 0.03
CIH 6.45 | 0.65|6.32 | 654 |002|0.03|6.61|0.01]|008]| 6.20

It can be observed from Table 4.4 that X-MAN presents very similar latency per-
formance as the baseline NPM approach. In contrast, it can be observed that CIH
can cause significant increases of both average and maximal packet latencies for the
packet traffic burst with the highest (namely, 50%) link utilization of the traffic pattern
for step-up. This increase in latency is mainly due to the fact that the corresponding

94

4.5 X-MAN Measurement Results and Evaluation

low link utilization traffic burst in degraded traffic patterns ends exactly one second
before the end of the high link utilization traffic burst. The slight down scaling of the
CPU frequency directly after the ending of the low link utilization traffic burst can
lead to substantial increase of packet latency. All in all, it can be concluded from
the results in Figure 4.10 and Table 4.4 that X-MAN can perform globally optimized
power management for numerous independently deployed CNFs with negligible la-
tency overhead for each packet.

4.5.5 Single CNF with Random Traffic

For the Poisson random traffic profile, while Figure 4.11 illustrates the box plots of
CPU frequency and power values, Figure 4.12 presents the box plots of percentage
deviation of packet RTT latency and packet loss results with respect to NPM. It can
be observed from Figure 4.11 that NPM and CIH are always at the highest CPU fre-
quency. At the same time, X-MAN can repeatedly reduce the CPU frequency in ISGs.
Furthermore, X-MAN is also able to boost the frequency to the highest frequency
directly in case a new packet arrives. Therefore, X-MAN is able to significantly reduce
the energy consumption to only half of the NPM and CIH energy consumption for
about three quarters (namely, 3/4) of the workload traffic streams.

. -1 1 1 -1
3000
‘2—1
o]
< 2000 —
g
=
NPM X-MAN X-MAN-FB CIH
0T = T ——
=301
ng p— —
=0
5 —
10
NPM X-MAN X-MAN-FB CIH

Figure 4.11: Box plots of CPU frequency and power values for a single CNF with ran-
dom traffic. Reprinted from my journal paper [7].

It can be also observed from Figure 4.11 that X-MAN-FB tends to have a higher
CPU frequency and energy consumption than native X-MAN. This is mainly because

95

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

X,
&
2 2500
=
.
)
> 0 | | . |
<< NPM X-MAN X-MAN-FB CIH
X
&
= 95001
=
—
E | | | |
= NPM X-MAN X-MAN-FB CIH
8
— o
500 1 o s o
3 0 o
0
NPM X-MAN X-MAN-FB CIH
k2
=
A, 5001 o
e} o
a [o) @ 8 g
= 8 i 8 8
5 O_ : — |
NPM X-MAN X-MAN-FB CIH

Figure 4.12: Box plots of percentage deviation of RTT latency characteristics and
number of dropped packets with respect to the baseline NPM.
Reprinted from my journal paper [7].

X-MAN-FB strives to iteratively reach the optimal CPU frequency, and in the process
of approaching the optimal frequency, if any packet losses occur, for example due to
interference from the OS background processes, there will be an immediate rise in
frequency. While the native X-MAN scales frequency only with respect to the work-
load traffic, X-MAN-FB also takes the number of packet losses into consideration. The
amount of packet loss depends not only on the PPS of the input traffic, but also on
the processing delay of the CNF. In theory, the processing latency of the deployed
CNF can be a fixed number. However, deployments of CNFs on actual physical ma-
chines exhibit some variation in actual CNF processing latency, which may result in
some non-negligible packet losses within the management interval. X-MAN-FB can
monitor the number of dropped packets and tries to scale up when this number
of dropped packets increases. Therefore, X-MAN-FB tends to use a higher CPU fre-
quency and power value.

96

4.5 X-MAN Measurement Results and Evaluation

As shown in Figure 4.12, the overall RTT latency performance of X-MAN is not de-
graded. Particularly, all latency related metrics are in the same range of NPM and
CIH.

4.5.6 Energy Consumption of X-MAN

In this Subsection, the energy consumption required by X-MAN TM (runs in Linux
kernel space) and PM (runs in user space) modules are evaluated for probing traffic
with a constant bit rate. As introduced above, the DuT server used in this work has
two CPU packages, and each package has four CPU cores (0-3) where the working
frequencies are synchronized automatically. While the in-kernel TM modules run
on the CPU package 0, the CNF run on core 0 of the CPU package 1. Then the PM
process of X-MAN is deployed on the core 1 of the CPU package 1.

The additional energy overhead required by the TM module is indirectly measured
in this Subsection by comparing the energy consumption of the CPU package 0 with-
out and with TM modules are enabled and running. This indirect measurement is
performed because, to the best of my knowledge, there is no available software
tool to accurately measure the power of each individual process running in kernel
and user space on the Linux OS. So these tools normally only provide a per-CPU-
package granularity, which is able to measure the energy consumption of the TM
modules directly. It can be observed from the results in Table 4.5 (see the second
column labeled as X-MAN TM) that the additional energy required by the TM modules
is relatively negligible (less than 0.21 W). Furthermore, it should be noted that XDP
programs can be offloaded to dedicate hardware that has native support for XDP
hardware offloading, for example, SmartNICs [95]. Therefore, this energy overhead
on CPU can be fully avoided by offloading TM modules to dedicated hardware.

Table 4.5: Power measurements of NPM and X-MAN: Additional energy consump-
tion (Power A) with the TM in the Linux kernel space relative to the oper-
ation without TM. Energy consumption for the CPU without power man-
agement (NPM) and with X-MAN PM enabled, and percentage of C; resi-
dency time for CPU core running PM for different CPU operational states.
Reprinted from my journal paper [7].

X-MAN TM NPM X-MAN PM
CPU state Power A [W] | Power [W] | Cres. [%] | Power [W] | Cres. [%]
1.2 GHz 0.03 713 100 7.21 97.83
idle@ 1.2 GHz 0.00 7.01 100 7.19 89.0
3.3 GHz 0.21 38.36 100 38.41 99.17
idle @ 3.3 GHz N/A 37.66 100 N/A N/A

In order to evaluate the PM module of X-MAN, it needs to be noted that the used
CPU of the DuT synchronizes the working frequencies of all CPU cores on a given
package, namely all 4 cores on CPU package 1 increase their frequencies when the
CNF requires a higher frequency, even if core package 1 has only minimal processing
tasks from the PM itself and the other two CPU cores are nearly idle (these two cores

97

4 X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network
Functions

should sleep in the C; C-state for the most time. Deeper sleep states are disabled
in this work). Furthermore, the used tool turbostat cannot directly measure the
power values of each individual CPU core, namely it only has per-package granularity.
However, turbostat can provide C; residency time of each individual CPU core of
a CPU package. Therefore, the C; residency times are measured in this work to
indirectly measure the energy consumption of the PM module of the X-MAN. The
power values of the CPU package 1 is also listed in the Table 4.5. The difference of
energy consumption between the baseline NPM and X-MAN indicates the additional
energy consumption required by the PM module of X-MAN.

The power values for two representative frequency values, namely 1.2 GHz for
lower bound and 3.3 GHz for upper bound, for a single deployed CNF without any
workload and with high workload (100% link utilization) are listed in the Table 4.5.

As showed in the Table 4.5, The additional energy overhead introduced by PM
of CALVIN is only about 0.05 W, namely negligible, when the frequency of the CPU is
3.3 GHz. Furthermore, for the same 3.3 GHz frequency, about 99.2% of the time, the
CPU works in the €} state. Thus, the PM of the X-MAN only introduces a minuscule
overhead for the CPU. For low workload, namely a CPU frequency of 1.2 GHz, it can
be observed that the X-MAN PM consumes only slightly more energy, i.e. only 0.18 W
when no workload traffic arrives (about only 2.5% more than the NPM approach).

4.6 Summary

In this work, a novel and unique approach of power management named as XDP-
Monitoring energy-Adaptive Network functions (X-MAN) for Cloud-native Network
Functions (CNFs) is designed, implemented and rigorously evaluated on the State
of the Art (STOA) practical high speed 10 Gbps testbed. Compared to the STOA
Code Instruction with Heuristic power management (CIH) and Hardware Counter
(HC) approaches, X-MAN is able to monitor the workload of each individual CNF in-
dependently through lightweight and accurate in-kernel Traffic Monitors (TMs) that
are dynamically attached to the data plane virtual NICs. Thus, X-MAN is able to pro-
vide fully non-intrusive in-band traffic monitoring. Furthermore, a user space Power
Manager (PM) with a global view of all deployed CNFs is used by X-MAN to perform
globally optimized power management to significantly reduce energy consumption.
All source code of X-MAN and corresponding evaluation is publicly available to fa-
cilitate the deployment of X-MAN and future research and development of highly
responsive and energy efficient power management systems for CNFs.

Rigorous measurements and evaluations are performed in this work on a high-
performance hardware testbed to fully evaluate the performance of X-MAN. Accord-
ing to the measurement results, X-MAN is able to provide much more responsive
traffic monitoring than the STOA HC approach [8]. Furthermore, significantly much
more energy can be saved with the adaptive power management algorithm used
by X-MAN. At the same time, the X-MAN is able to achieve this energy saving with
relatively negligible impact on the latency and bandwidth performance.

98

5 ComNetsEmu: An Open Source
Testbed for Virtualized
Communication Networks

All contents in this Chapter has been published in my journal paper [118]: "An open
source testbed for virtualized communication networks." [EEE Communications Mag-
azine 59, no. 2 (2021): 77-83.

5.1 Introduction of ComNetsEmu

In previous chapters, the measurements and evaluations are performed on practical
physical testbeds consisting of multiple physical COTS servers. Although the phys-
ical testbed is mostly close to the real-world cloud platform and is able to provide
realistic measurement results, the cost, maintenance overhead and portability of a
such complex physical testbed limit the adoption, deployment and reproducibility of
the testbed [119].

In order to address this challenge with my best efforts, a novel emulator for com-
munication networks named as Communication Networks Emulator (ComNetsEmu)
is designed, implemented in this work to simply the prototyping and evaluation of
research ideas for STOA and future softwarized communication networks.

The complexity of the future communication networks can significantly increase
because the COmputing In Network (COIN) or In-Network Computing (INC) paradigm
needs to be enabled by the network for a broad variety of the latest trending use
cases. It needs to be noted here that COIN and INC are different/similar terms for
this emerging paradigm. Until the time of this work, to the best of my knowledge,
this paradigm is not yet formally named and standardized. Common scenarios range
from MEC to large cloud platforms. A typical and timely example is the current re-
liance of the fifth generation (5G) mobile communication networks and beyond on
this paradigm shift from the current network forwarding of data to network process-
ing of information. In fact, several of these scenarios are being addressed in the

99

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

upcoming 5G standards, where the architecture of 5G-based services will play an
essential role [120]. The virtualization and softwarization of network resources and
functionalities have the dominant impact in these scenarios, because the function
of the communication network starts to migrate from traditional dumb bit pipes to
information-oriented provisioning of flexible services. This revolutionary paradigm
migration can include resource-intensive Machine Learning (ML) based applications
that need to be dynamically and flexibly deployed and configured across the network.
Two trending emerging paradigms, namely SDN and NFV, can enable and accelerate
this paradigm migration. In short, while the SDN gives programmability of the net-
working, NFV enables dynamic and flexible deployment and orchestration of NFs in
the softwarized network.

However, for normal network researchers, educators and especially students, learn-
ing, prototyping and teaching this novel field of study can be difficult due to the re-
quirement for an appropriate softwarization virtualization environment. In addition,
a number of different approaches to implementing custom virtualization configura-
tions exist for some network testbeds based on pure simulation, such as the GENI,
which is described in [121]. These are often too difficult to set up and combine in
the general target of hands-on, active learning in the general education environment
that is focused by this work. These solutions typically add unnecessary barriers and
complexity to achieve a realistic environment in which it is convenient to study how
such a network will operate in practice, how to deploy real services on its infrastruc-
ture, and how to perform performance evaluation of the novel approach.

In response to these challenges, this work describes the design, implementation,
and operation of a new software framework or testbed called Communication Net-
works Emulator (ComNetsEmu). ComNetsEmu enables any student, researcher, or
networking expert to build a fully virtualized network on a single COTS device (e.g.
a normal laptop or COTS desktop servers). Due to the complexity of a complete
(standard-aligned) NFV system implementation and the focus of ComNetsEmu as a
research-oriented prototyping and teaching tool, at the time of this work, ComNet-
sEmu focuses solely on providing NFV Infrastructure (NFVI). This allows the study and
application of basic and advanced principles of SDN and NFV to be performed at any
time, on any COTS device, while allowing the implementation of other essential NFV
components in the future. The main contribution of this work is therefore to en-
able research prototyping as well as teaching and training through problem-based
learning of modern networks driven by SDN and NFV.

This softwarization testbed framework is developed to run inside a single stan-
dalone VM that combines the widely used SDN network emulator Mininet [122] and
the de facto standard application container framework Docker [123] for NFVI into an
integrated framework. The freely accessible collection that makes up ComNetsEmu
also provides numerous representative off-the-shelf examples of SDN and NFVI ba-
sics, as well as more advanced practical applications and APIs to further extend them
as needed. All source code and comprehensive documentation are publicly available
in the Gitlab repository [119] of the The Deutsche Telekom Chair of Communication
Networks (ComNets) at Technische Universitat Dresden (TUD). Furthermore, an in-
depth introduction of the ComNetsEmu and review of representative examples and
their corresponding applications can be found in the book written by Fitzek et.al. [1].

100

5.2 The Architecture of ComNetsEmu

5.2 The Architecture of ComNetsEmu

As introduced in Section 5.1, the SDN functionalities of ComNetsEmu are provided
by the widely used famous Mininet framework. Therefore, a brief introduction of
Mininet is performed before describing the novel enhancements provided by Com-
NetsEmu.

5.2.1 SDN Environment with Mininet

Mininet is a lightweight and most widely used STOA network emulation environment
that enables rapid prototyping and evaluation of a complete and practical network
system based on the functionality of the Linux OS [122]. In special, Mininet uti-
lizes the built-in virtualization capabilities in the modern Linux kernel to create a
virtualized network of network applications, hosts, switches, routers and other com-
mon types of network nodes on a single underlying physical machine. Because
Mininet supports OpenFlow [124] protocol and other SDN components, it is able
to support rapid prototyping for SDN development in a very straightforward, rapid
and reproducible manner. While like many Mininet-based projects, Ryu SDN con-
troller [125] is chosen by ComNetsEmu to demonstrate most SDN related examples,
any OpenFlow-enabled SDN controller can be adopted, including ONOS [126] or
OpenDaylight [127]. However, industrial-grade and production-oriented SDN con-
trollers are not the focus of this research-oriented platform, namely ComNetsEmu.
Since Mininet makes use of the application container related mechanisms of the
Linux kernel, Mininet hosts all share the same Linux OS kernel as well as process IDs,
usernames and file systems, since they execute as regular processes with configured
namespace and control groups. Each host in Mininet also has a separate network
stack (by using the network namespace), including common resources such as Ad-
dress Resolution Protocol (ARP) caches or routing tables. In addition, each host can
be allocated with multiple virtual network interfaces. By default, the veth devices pro-
vided by Linux kernel are used. veth device can be connected to a virtual software
switch. Similarly, the connected virtual links can be individually configured with differ-
ent representative characteristic parameters, such as (propagation) latency, band-
width and loss rate. Therefore, the Mininet emulator provides an ideal lightweight
and high-fidelity environment for reproducible SDN-powered network research.

5.2.2 ComNetsEmu Enhancements and Architecture

ComNetsEmu extends the vanilla Mininet to support better support emulation of
versatile COIN related applications. It extends and puts forward the concepts and
work in the Mininet-fork Containernet project [128]. It uses a slightly different ap-
proach to extend the Mininet compared to Containernet [128]. One main focus
of ComNetsEmu is to use “sibling containers” to emulate softwarized network sys-
tems with computing in the loop. Compared to vanilla Mininet and Containernet,
ComNetsEmu is able to manage Docker containers inside Docker hosts. Docker-IN-
Docker (DIND) (or, more precisely, the “sibling container”) mechanism is used as a

101

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

lightweight emulation of nested virtualization scenarios. A Docker host with multiple
internal Docker containers deployed is used to mimic an actual physical host run-
ning Docker containers (application containers). While the default Mininet module
for hosts is extended to provide functionality for managing DockerHost instances,
ComNetsEmu provides an additional APPContainerManager component to coordi-
nate internal application Docker containers (“sibling containers”). Emulating physical
hosts with Docker containers also enables the Mininet manager to execute long-
running processes in these internal containers.

One main motivation for extending the Containernet project [128] to a nested vir-
tualization strategy comes from the important requirement to control the emulated
common hardware on which the VNFs or CNFs are expected to run in the emulation.
As introduced above, Docker hosts deployed with multiple internal Docker contain-
ers are used to emulate the actual physical hosts running the application Docker
containers. In an environment purely using Containernet, CNFs are deployed as
Docker containers, replacing vanilla Mininet hosts. However, this approach is lim-
iting if the user wants to emulate and investigate the effect of multiple CNFs running
simultaneously in a single physical host. Moreover, this approach is very inflexible
because it does not allow to easily limit and dynamically adjust the available compute
resources allocated to each CNF by the physical hosts running multiple CNFs. In my
approach with ComNetsEmu, these limitations are addressed by emulating physical
hosts as Docker hosts (just like in Containernet). This allows to firstly emulate hetero-
geneous physical hosts by limiting the number of CPUs and the available CPU time
per host. CNFs are then deployed on top of these simulated physical hosts. This
represents a scenario where multiple CNFs have to share the limited computational
resources of a single physical host (with the described CPU limits). Therefore, this
allows for the evaluation of more complex and practical scenarios (and algorithms)
where CNFs must be migrated to other hosts in the network because they cannot
meet latency requirements (not due to propagation latency), but due to the length
of time required to access host CPU cycles. This enables users of ComNetsEmu to
deploy and test algorithms that optimize the placement of CNFs to minimize total la-
tency while experimenting with propagation latency and computation latency. Thus,
the ComNetsEmu framework can be used to test algorithms and technologies to find
the optimal placement of CNFs with not only the practical networking constrains of
bandwidth, latency, loss rates but also the computational constraints of available
CPU time and number of CPUs. It should also be noted here that another important
benefit of this mechanism (“sibling containers”) is the significantly reduced overhead
compared to approaches that employ full VMs for host or network function emula-
tion, while maintaining ease of use and flexibility.

ComNetsEmu provides a collection of numerous built-in examples for its main fea-
tures and the use of Python APIs. For instance, dockerindocker .py and
dockerhostmanageappcontainer.py demonstrate how to deploy and manage a Docker
container within each virtual Docker host. The dpdk directory in the example shows
the basic setup for running a DPDK-accelerated layer 2 forwarding application on
ComNetsEmu, without specific hardware support. The overall ComNetsEmu archi-
tecture and its main components are illustrated in Figure 5.1. Virtual hosts are con-
nected to a configurable data plane managed by ComNetsEmu, which provides an

102

5.3 ComNetsEmu Hands-on Examples

Container 2: Server A B Container 3: Server B
;“.‘ i Container 2b Container 3a

AR AR 5 RN
\-{*31» . &*31» w0
o RN v " - 4"

- | W
: A
App 1 App 2a pp3

Server vSwitch Application
1 configuration

manager
___ i ‘\
A

4

1
.) Y
Container 1: Client
------------------------------------ SDN controller
vEthernel

A “ . .
. 4 1!1‘ Client vSwitch
e, vStorage

Data plane Control plane

Figure 5.1: The architecture view of the ComNetsEmu. Reprinted from my journal
paper [118].

interactive shell to execute commands. Each networked host is implemented as a
Docker container within Mininet networking, allowing for finer-grained and flexible
resource isolation.

5.3 ComNetsEmu Hands-on Examples

The practical usage of ComNetsEmu is highlighted in this Section with two represen-
tative hands-on examples. Information and information about additional examples
and practical applications can be found in the book [1].

5.3.1 ComNetsEmu Echo Server Example

The purpose of this first basic and elementary example is to show the general in-
teraction with APIs provided by ComNetsEmu by creating a generic example that
demonstrates the basic usage of the emulator. Users can consider this example
as a general template or canvas on which to further design and emulate their own
desired system. In this basic example, a system consisting of two interconnected em-
ulated computing hosts will be created. These hosts represent the computing infras-
tructure of user devices and service providers where different network applications

103

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

can be deployed. All files for this example are located in the examples/echo_server
folder.

@ @) ret

link = 10 MBps ; 10ms

©)

Figure 5.2: The topology of the echo server as a NF. Reprinted from my journal pa-
per [118].

Topology for Emulation In this example, a TCP echo server is deployed on one
host, while a TCP clientis deployed on the other host sending data to the echo server.
The to be emulated topology is illustrated in Figure 5.2. Each host is connected to a
software switch, and the switches are then interconnected to each other via an ana-
log communication link. Each link is configured with customized bandwidth, latency
and random loss rate. This topology is created using the Python script topology . py.
Corresponding Containernet and Manager objects are firstly created, called (1) and
(2) in Figure 5.2. Subsequently, h; and hy are created and assigned IP addresses.
These hosts were initialized with a base Docker image called dev_test provided by
ComNetsEmu. After the hosts were created, switches S; and S, are created, as well
as links for bandwidth and latency limits. Once the topology was set up, the echo
server is created by running the Docker container. For the client, it is executed with
the BASH shell provided by h;.

The Client and Server The TCP server can be implemented using any program-
ming language or any software the user prefers. As long as it can be integrated into
a Docker container, ComNetsEmu can deploy and run it as a NF. In this basic ex-
ample, the TCP server is implemented in Python, the file is called server.py. To
containerize it, a Dockerfile is provided that simply uses a Python base image and
copies the Python script to the container’'s image. The deployed server simply waits
for TCP connections, accepts them, listens for a TCP segment, and echos it back to
the sender’s IP address. The netcat tool is used as the TCP client.

104

5.3 ComNetsEmu Hands-on Examples

5.3.2 ComNetsEmu Mobile Edge Cloud Example

This Subsection targets to demonstrate the holistic approach provided by ComNet-
sEmu to emulate a practical 5G network by using its SDN and NFVI capabilities to
emulate a MEC system. Source code of this example can be found in the directory of
the abovementioned Gitlab repository: app/realizing_mobile_edge_clouds. The
white paper [129] from European Telecommunications Institute (ETSI) defines MEC
as a system that provides IT service environments and cloud computing capabilities
at the edge of the mobile network, within the RAN, in closely proximity to mobile
users to meet latency constraints for time-critical applications. Implementing MEC
for trending latency-sensitive applications such as self-driving cars also requires mi-
grating cloud services from one edge computing node to another in time, all seam-
lessly and transparently to the end application user. In this example, an MEC system
is prototyped that hosts the previously discussed echo servers in an emulated geo-
graphically distributed network.

MEC 1 ' MEC 2
1
i Service Migration | o m T '
-------- et bomne s S s
L
1
1
Probing Probing | 1 : Probing Probing .
Server.py Server.py| | ' Server.py Server.py !
Server 11 Server 12 | Server 21 Server 22

(777777 o N / /1111 o]
(777777 o RN / /1111 o]
(777777 o AN / /1111 o]
erere— I evvre —

SDN Controller

Probing Probing
Agent.py Agent.py

Server 13 Server 23
— (Data Plane) [z}
=1

User Mobility
-------------------- -

Figure 5.3: The topology of the MEC migration example. Reprinted from my journal
paper [118].

Topology for Emulation The topology designed for this exampleis illustrated graph-
ically in Figure 5.3. Itis assumed that there are two MECs, each with one Base Station
(BS) (BST1 and BS2, respectively), that are geographically separated. Each BS is rep-
resented by its respective SDN switch, namely Switch 1 and Switch 2. Both switches
are connected to the same Ryu SDN controller. Each MEC also includes a cluster of
heterogeneous physical servers connected to their representative switches. Clients,
which can be assumed to be standard User Equipments (UEs), can be connected to
up to one BS at a time. Therefore, UE mobility can be easily emulated by disconnect-
ing one switch and connecting to another. In this example, the basic echo service is

105

5 ComNetsEmu: An Open Source Testbed for Virtualized Communication Networks

hosted on one of the servers as a targeted service provided by MEC system. When
a UE, namely a client, moves from one BS to another, the echo service is migrated to
a different emulated physical server, and the migration is completely transparent to
the client.

Selection of the Server to Host the MEC Service Choosing the optimal server to
host the MEC service is critical to ensure low latency services. The server selection
decision depends not only on network traffic and congestion-related latency, but
also on latency due to performance capacities per host, which can vary dynamically
depending on the current workload of servers running other parallel services. A
straightforward and intuitive way to measure the end-to-end latency from the BS
to each host is to simply obtain the latency from the probe request microservice
running closest to the switch to the probe response microservice running on each
potential MEC host. A dedicated probing service is used in this work to measure
latency instead of using standard Internet Control Message Protocol (ICMP) based
pings, because the probing service process running in user space can also take into
account any processing latency incurred on the host due to dynamic server load.
The probing server behaves similarly to a standard echo response server in that the
probe agent periodically sends a probe packet to the probe server with a timestamp
in the payload. This timestamp is used by the probe agent to estimate the latency of
each host from the BS to the MEC system.

Implementation on ComNetsEmu Similar to the Echo Server example described
above, a Containernet object with a corresponding manager and a Ryu SDN con-
troller are firstly created. After that, two virtual switches are created, representing
the endpoints of two geographically distributed BSs. Two Docker hosts are spawned
to emulate MEC servers. By using manager object, a Docker container implementing
the probe server is added to each of the 4 hosts. In addition, another host imple-
menting a probing agent is generated and connected to each of the 2 switches. The
probing agents periodically report their respective latency to each MEC host to the
SDN controller. Based on probing results, the controller determines the ideal host
for NF placement and spawns or migrates the application service to the correspond-
ing host. For the sake of simplicity, the challenges involving stateful service migration
are not considered in this example. Therefore, the migration process is as simple as
spawning the application server container in the new MEC host, updating the traffic
in the switch to reroute packets to the new host, and remove the application server
from the old host (in that order). The client implementation is similar to the example
described earlier, where the migration of clients is achieved by simply disconnecting
from one switch to another.

5.4 Summary

This Chapter describes a lightweight and practical software network emulator, namely
the Communication Networks Emulator (ComNetsEmu), capable of running on any

106

54 Summary

laptop or COTS server, which is tailored to teach the basic and advanced concepts
related to the introduction of SDN and NFV in modern networks, namely network
softwarization. While currently focused on NFVI, future implementations of other
important NFV components are able to greatly expand the scope and use cases of
ComNetsEmu. The ComNetsEmu framework, which is freely available to the com-
munity [119], significantly simplifies the learning of such concepts by providing com-
prehensive built-in examples and offers the possibility to prototype new networking
systems and experiments with softwarization solutions.

107

6 You Only Look Once, but Compute
Twice (YOLO-CT): COIN for
Low-latency Object Detection in
Softwarized Networks

Part of contents in this Chapter has been published in my journal paper [10]: "You
only look once, but compute twice: Service function chaining for low-latency object
detection in softwarized networks." Applied Sciences 11, no. 5 (2021): 2177. How-
ever, some transport protocol issues are not addressed in [10]. This open topic is
further researched and described in this Chapter. The proposed Real-time Transport
Protocol (RTP) based transport solution is designed, implemented and also evaluated
(with ComNetsEmu) in this work.

6.1 Introduction

6.1.1 Overview and Motivation

As summarized in Section 3.6, the CALVIN approach is able to achieve ultra-reliable
low-latency RTT performance at the cost of significantly reduced bandwidth perfor-
mance. For STOA softwarization data plane technologies, to the best of my knowl-
edge, thereis a fundamental trade-off between maximal available bandwidth and the
per-packet latency performance. However, a lot of real-world applications have strict
requirement for both relative high bandwidth and ultra-reliable low-latency perfor-
mance. For example, an emerging use case for 5G and beyond is low-latency and
reliable real-time video streaming analysis.

According to the prediction performed by Cisco [130], by 2022, 82% of the IP traffic
will consist of video traffic. Within the domain of video data traffic analysis, specifi-
cally, the object detection subcategory presents an additional significant latency re-
quirement, especially when applied in some certain scenarios [131]. The object de-

109

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

tection and analysis in live video streams is mainly based on real-time video analy-
sis in the field of Computer Vision (CV). Typical examples for real-time object detect
and analysis contain Google Lens, smart city applications based on video surveil-
lance [132] or autonomous driving cars. Two sample results of object detection ap-
plications are illustrated in Figure 6.1.

77777111 | Ha 3

AT R
N A

(a) Pedestrians (image from [133]). (b) Vehicles (image from [134]).

Figure 6.1: Object detection use cases including pedestrian and vehicles detection.

Due to the fundamental computational complexity involved, there are significant
challenges to responsively and reliably perform real-time video analytics on relatively
resource-constraint devices, such as mobile phones (namely normal UEs) or ad-hoc
IP cameras for video surveillance. These requirements become even more challeng-
ing when taking STOA relative high frame rates of live video streaming into consid-
eration. The computational and energy overheads are often very high when data
is processed locally, as the captured image analysis and CV tasks constitute the vi-
sual understanding, often incorporating the ML-based algorithms involved. In recent
years, ML based approaches have undergone steady improvements with significantly
increasing responsiveness, precision and recall, especially for the approaches based
on the promising Deep Learning (DL) technologies [135].

Because these DL-based approaches can significantly outperform conventional
approaches, DL-based approaches are becoming increasingly popular and widely
deployed. These approaches are often based on the CNN model. Although the train-
ing process of these CNN models are highly resource intensive, pre-trained models
can be used to perform the inference on real-time video streams with a reasonable
accuracy. Therefore, the focus of this work is only on the inference step. Represen-
tative STOA approaches of this type include Regions with CNN (R-CNN) [136], Faster
R-CNN [137] and especially YOLO [138], which novelly combines the high precision
with significantly improved inference speed.

In the environment with high mobility, the focus on latency optimization must com-
bine several requirements, such as resource usage and low latency object detection.
Common computational resources considered include memory, CPU and other ac-
celeration hardware including e.g. Graphics processing unit (GPU). However, overall
system cost often needs to be factored into the full solution. For example, future

110

6.1 Introduction

smart transportation systems and object detection applications connected to self-
driving cars are highly latency sensitive and mission critical at the same time. Cur-
rent conventional approaches are usually limited in realizing the full potential offered
by the upcoming and trending softwarization-enhanced networking system. Several
questions and challenges exist for the conventional store and forward network archi-
tecture:

+ Object detection based applications introduced above are very resource in-
tensive. Therefore, they are not suitable for locally and prolonged execution
on resource-constraint and battery-limited devices.

+ In comparison, high computational power and flexible resource management
provided by the STOA trending cloud platforms can be used to accelerate these
computationally intensive tasks through networking enabled computational of-
floading [139].

+ One interesting promising approach to overcome challenges of fully local pro-
cessing while ensure low latency performance is to combine local in-network
processing (or COIN) and remote cloud computing service. Although conven-
tional networking infrastructure and related protocols can not provide native
support for COIN functionalities, new softwarization based networking system
provides support to deploy and orchestrate COIN applications.

* The cloud-based offloading requires all video data to be transmitted through
the network. The task of real-time streaming of high resolution video, which
has normally very high bandwidth requirement, is challenging for the QoS of
the underlying networking system, especially the latency performance.

- Bufferbloat [140] or buffer overflow of network nodes can be one of the main
cause of delayed or even losses of packets in a network even within a limited
geographical area, e.g. a campus network. Bufferbloat describes the behav-
ior of network nodes when their buffers to store and queue packets almost
reach the maximal capacity and have to queue packets for a significantly long
time or even drop the incoming packets until buffers are freed by processing
and transmission processes. According to the initial measurements perform by
Rischke et.al. [141] on a practical 5G campus network testbed, there are nearly
zero network link losses in the campus network, especially the core network,
and packets can be dropped mainly due to the bufferbloat issue. Compared
to full hardware solutions, the software based packet processing proposed by
NFV paradigm makes this problem more challenging due to the limited raw
performance provided by software.

+ Convolutional STOA transport layer protocols including TCP and UDP are de-
signed and implemented based on the end-to-end principle without consider-
ing the COIN paradigm. Therefore, these conventional protocols in transport
layer and beyond are not able to be directly used by COIN applications. Sev-
eral challenges, open questions and related works are listed by one draft of IETF

111

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

COIN Research Group (COINRG). Thus, transport protocol issues for network-
ing system with COIN enabled is an interesting research area when conducting
this work.

One novel and promising direction to address above described challenges is to re-
duce the total amount of data required to be transmitted by the network from end
devices to MEC cloud platform. One can argue that moving everything to hardware,
e.g. with P4 [142] programmable switches and other special hardware network for-
warding chips can solve the performance problem. But it's argued in this work that
even if it's faster, there’s still a limited queue size that can not be ignored. The amount
of data generated by end devices would keep increasing with the increased num-
ber of connected devices and their requirement of high-quality multimedia services.
Moving everything to hardware may not be the silver bullet to solve all latency prob-
lems, especially the price must be paid to lose the easy programmability and flexibil-
ity of software solutions. Therefore, the programmability and support for intelligent
data processing of the software based solutions are researched in this Chapter to
ensure and even improve the latency performance of the network.

Middlebox 1 Middlebox 2

Client 1 link 1
link6 -
z link 2
A\ [] Server
Client 2

SDN Controller

Figure 6.2: A basic dumbbell topology for remote cloud based objection detection
application.

A minimal dumbbell topology of a typical minimal MEC cloud system enhanced
object detection service is graphically illustrated in Figure 6.2. Because not always
both clients send traffic at the highest available bandwidth, the network node and
links (namely, the links ranging from 3 to 6 in Figure 6.2) are shared between clients
in order to save the deployment and maintenance cost for Internet Service Provider
(ISP). In real-world deployment, the maximum available bandwidth for link 4 can be
as little as a quarter of the maximum bandwidth for link 1, or even less. However,
the client 1 can request the object detection service provided by the server running
in the cloud while client 2 may also send high speed traffic to the cloud server for
other services. Then the shared link 4 becomes the bottleneck and the middleboxes
1 and 2, on which the CNFs are deployed, are overwhelmed and start queueing or

112

6.1 Introduction

even dropping received packets. This is so called the dumbbell problem. The com-
mon STOA solution for this issue is performed only on the end hosts, namely the
client is able to detect this bottleneck and use a pre-configured congestion control
algorithm to reduce the sending rate. However, these congestion based approaches
usually require multiple RTT to reach the stability and have negative impact on band-
width and latency performance. Furthermore, approaches only rely on end hosts can
waste the computing power and programmability provided by the softwarized mod-
ern network devices. If the middlebox 1 in the Figure 6.2 is able to perform some
smart computation on the incoming video stream to significantly remove redundant
or unnecessary data and thus reduce the raw amount of data needed to be transmit-
ted through the networks, the bandwidth pressure on other network nodes and links
can be significantly reduced. Therefore, in this Chapter, a novel approach named as
You Only Look Once, but Compute Twice (YOLO-CT) is designed, implemented and
evaluated with the ComNetsEmu testbed introduced in previous Chapter 5 which uti-
lizes the computational power provided by emerging COIN paradigm to deploy part
of the CNN model into the network for image pre-processing and data reduction.

6.1.2 Related Work

With the development emerging network softwarization technologies such as SDN
and NFV, the programmability and flexibility of the communication network are signif-
icantly improved. This trend leads to a new and novel paradigm for the next genera-
tion communication network, namely COmputing In Network (COIN). COIN is accom-
panied by the prospect of deploying data processing functions on network devices
such as switches, routers, middleboxes and NICs [143]. The Internet was designed
as a best-effort packet network which offers very limited guarantees for timely and
successful deliver of packets and corresponding data. Complex data manipulation,
content-aware data computation, and advanced protocol features of transport layer
and beyond are generally only deployed by the end hosts which makes the network
nodes and links as a “dumb pipe"” focusing only on a simple data transmission in a
store and forward manner [143]. This design has been shown to be suitable for a
wide variety of applications and has contributed to the rapid and wide adoption and
growth of the Internet.

However, as already introduced in the previous Subsection, emerging fields and
use cases require more than best-effort forwarding for higher and stabler perfor-
mance, especially the latency performance. The vision of COIN or INC and corre-
sponding paradigm of joint optimization of both computation and networking re-
source of the underlying communication network draws a lot of research interests
from both academia and industry.

Sapio et.al. explores the programmability provided by the modern network data
plane to offload data aggregation tasks into the network. This work sheds the light
on the direction to utilize COIN capabilities to reduce the bandwidth pressure on
the transmission network. However, the initial prototype in this work uses UDP and
has the strict limitation that the size of the used Application Data Unit (ADU) must
be smaller than the MTU of the underlying network. The ADU is the Protocol Data

113

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

Unit (PDU) for the application layer. For instance with video streaming over network,
the ADU can be a single decodable video frame. Normally, the size of a video ADU
is much larger than the MTU provided by the underlying network. Therefore, each
ADU has to be fragmented and reassembled for network transmission. Convention-
ally, these operations are only performed on the end hosts. However, when COIN
paradigm is considered, these two essential operations related to ADU processing
must be considered for all COIN-enabled network nodes. The idea to offload the
execution of part Artificial Neural Network (ANN) layers to in-network devices to re-
duce the workload of CPUs is explored in [144]. However, this work focuses mainly
on how to efficiently split the ANN. The proposed distributed system is not evaluated
neither on a network emulator nor on a distributed physical testbed. The transport
issues introduced above are also not covered in this work.

In [145], an edge detection filter is prototyped for programmable network devices.
It explores the challenges involved in offloading CV applications to the in-network
devices. However, the transport issues of network communication are also not re-
searched in this work.

Wu et.al. [146] designed, implemented and evaluated the novel Network Joint Inde-
pendent Component Analysis (NJICA) approach based on COIN paradigm. Compared
to the conventional centralized Independent Component Analysis (ICA) approaches,
NJICA can significantly reduce the computation latency on remote servers. However,
this work proposed a clean-slate (namely, not mature and robust) message transport
protocol, which has the critical challenge to be deployed in real-world networking and
coexist flawlessly with other standardized network protocols.

COINRG Besides the academia works, COIN also draws many interests from indus-
try. Firstly, IETF now has a COINRG [147] exploring this topic. Its goal is to investigate
how to benefit from this emerging disruption to the Internet architecture to improve
network as well as application performance [147]. Several drafts are published al-
ready by COINRG to discuss promising use cases and open questions of COIN.

COINRG published a draft about targeted use cases for COIN [143]. In this draft,
accelerating large volume applications in modern industrial networks can be promis-
ing use case of COIN. As described in the draft [143], end devices (e.g. industry sen-
sors or cameras) in modern industry networks can generate a large volume of data
that can not be efficiently processed by end devices themselves. Off-premise cloud
platforms offer promising and cost-effective solutions with better flexibility and scal-
ability. However, there's no free lunch, transmitting large volume data to remote
cloud platform poses new challenges, especially for the latency performance. Pre-
processing or filtering data with in-network computing can be a very promising solu-
tion to address the latency challenge. So this work exactly looks into this scenario and
proposed a prototypical system covers the core questions: (i) How to pre-processing
large volume video data with reasonable complexity and reduce the volume as much
as possible ? (ii) What network protocols should be implemented and deployed to
enable this application?

COINRG also published a special draft [148] discussing the open challenges re-
lated to the transport layer for COIN applications. COIN breaks one fundamental
consideration for conventional Internet, namely the end-to-end principle. The net-
work should only perform transparent and reasonable operations without modify-

114

6.2 Proposed Approach: YOLO-CT

ing data packets. Therefore, typical transport protocols like TCP are not designed
taking COIN into consideration. Several open challenges including addressing, flow
granularity, collective communication and transport features are listed in the draft
without concrete solutions. So this work explores the opportunity to address these
open challenges and propose solutions as much as possible. The proposed design
is implemented and evaluated on network emulator to show its practicality.

6.2 Proposed Approach: You Only Look Once, but
Compute Twice (YOLO-CT)

The design of the proposed system, called You Only Look Once, but Compute Twice
(YOLO-CT), is based on the targeting use case: Interactive and real-time Computer
Vision (CV) application based on cloud computing and Deep Learning (DL). Examples
of this application type include real-time and low-latency video streaming for surveil-
lance or robot control. It should be highly noted here that this type of applications
has the following characteristics that have significant impact on the system design:

1. These applications favor timeliness over reliability. Delivering video frames is
very sensitive to latency. If the frames are not delivered to the cloud in time,
the object detection results may be meaningless. Therefore, retransmitting
packets or reducing the sending rate has a non-negligible impact on the func-
tionality of the application. In order to guarantee the QoS and responsiveness,
the sender needs to generate Constant Bit Rate (CBR) traffic. These two re-
quirements make it challenging to trade-off latency and bandwidth using some
conventional approaches based on queue management or batch processing.

2. Unlike the transmission of control messages, video streaming applications have
relative high bandwidth requirements. Even though the video frames can be
compressed at the source, the compressed frame still needs to be fragmented
into multiple network packets. If the network functions want to perform smart
computing on the ADU, it can not just assume all needed data in an ADU can
be packed into a single network packet. However, most papers related to COIN
use this assumption and mention that this is a strict limitation that should be
addressed in their future work or other research works. As described in [148],
conventional devices are built to process incoming traffic on a per-packet ba-
sis with very limited support for stateful traffic processing. For payload-aware
processing, flow granularity must be determined to enable network nodes to
reassemble the ADU and re-fragment processed payload into new packets. For
payload-aware smart computations, the granularity of the flow must be deter-
mined so that the network nodes can reassemble the ADUs and re-fragment
the processed ADU into new packets.

3. High performance Deep Learning (DL) based applications have high require-
ment for computational resource. For example, some gigabits (GBs) of RAM
are needed to fully load the neural network model. It is challenging to do low

115

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

latency and energy efficient DL model inference on end devices or network
devices with limited computational resources and features.

6.2.1 YOLO-CT Design and Architecture

These essential requirements listed above really limit the choices with STOA acces-
sible technologies. The proposed the YOLO-CT system, which is illustrated in Fig-
ure 6.3, has the following characteristics to address the aforementioned challenges:

Middlebox 1

K Deep Learning Engine ‘\

@ (o

YOLO Model Part 1
_ (input -> max_8) Conv + Pool Layers

T Tw

Middlebox 2

[N ——

RTP RTP
[Reassembler][ReR2Ele Fragmenter]
\\ J
\ . ! K {é}
N Packet Engine (DPDK) L Packet Engine
D (DPDK)
Containerized Network Function / \ "~--c-ccocoaaaao- YOLO Model Part 2
vy (conv_9 -> output)
<?>DDDDDD ooo ! ooo
W é | % %

Client JO OO orenvswitch JOCCOLO oredvswitch OO OO

Server

[0 compute and Forward @ 0%
o @
[J store and Forward .

Ryu SDN Controller Full YOLO Model

Figure 6.3: The proposed approach You Only Look Once, but Compute Twice (YOLO-

1.

116

CT). A detailed illustration of the system components and traffic flows.

The proposed system prioritizes latency performance over throughput and reli-
ability. It utilizes the computing resources in the network to reduce end-to-end
latency. Based on this consideration, mechanisms based on retransmission
or aggressive reduction of sender speed are not considered in this work. The
idea of COIN is explored here and perform compute and forward (in detail, fea-
ture extraction using ANN) to reduce the amount of data that must be trans-
mitted through the network. Instead of tuning batching or scheduling mech-
anisms, the proposed containerized network function explore the counter-
intuitive idea if reducing end-to-end response latency by deliberately buffering
and processing packets before forwarding them, when the network nodes are
under heavy load. The response latency is the time between the client finish
sending the frame until it receives the response from the server, so namely
it is the end-to-end latency including all network and compute latencies. The

6.2 Proposed Approach: YOLO-CT

%1066

10000000 A

7500000 A

5000000 -

2500000 A
input

0 -
— AN M D © -0 O =AM T 0 O~ 0 NN -0 O o
L R N L I e B B B B B B B B e B o B o BN o\ e\ B aN IS R
EEZEREEZEREREY sz 0y
ogocoSogo:n:@nqnqa:@chqzn:nhzq
© © = o O © UOOEOOOOOEOOOOOOOO%OO
o o o O O O O © 0 0O v VU VU o O 5 O O

Figure 6.4: Output size of each layer of the YOLO-v2 model. Reprinted from my jour-
nal paper [10].

- JPEG

120 13— wEBP

—F— H264 slower 50
—f— H264 medium
100 - —F— H264 faster

H264 ultrafast

Size of compressed image/Size of original image(%)

04

T
80 81 82 8 84 8 8 87 8 8 90 91 92 93 94 95 96 97 98 99 100 101

Average Precision(%)

Figure 6.5: Basic image-based compression methods for feature maps. Reprinted
from my journal paper [10].

innovative method used to reduce the data is to split the convolutional neural
network model of YOLO and offload relative lightweight layers (namely convolu-

117

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

118

tional and pooling layers) to extract feature maps from the source coded image
frame. Then instead of forwarding all packets of the original image frame, the
network function only send the compressed feature maps extracted from the
image to the next hop. Compared to the source coded image frame, these
feature maps can be further compressed. According to Figure 6.4 and corre-
sponding detailed description in my published journal paper [10], at least 50%
of the data can be compressed with negligible impact on the performance of
the object detection application. The reason for negligible impact on the object
detection application is because the DL model running on the server node ac-
tually just wants feature maps instead of the original image to further process
and perform object detection and classification. Therefore, the performance
(precision and recall) of this application is not impacted when offloading this
feature extraction process to the network nodes. The performance of the ap-
plication suffers only when the feature maps are further compressed with lossy
methods. However, according to Figure 6.5 and corresponding detailed evalu-
ation in my journal paper [10], the impact of the performance is very small (less
than 2%) when feature maps are simply flatted and compressed with Joint Pho-
tographic Experts Group (JPEG). The proposed network function is fully imple-
mented with high performance software technologies and containerized with
Docker. Therefore, it can be deployed on any NFV network nodes. The design
is to deploy this feature extraction NF to the nearest NFV node to client node.
Then, all subsequent nodes in the network have much less traffic to queue and
handle. The end-to-end latency performance can be improved.

In order to enable the proposed in-network computing NF for video traffic, ex-
isting and newly proposed network protocols are surveyed and analyzed. As
fully described in a recent draft [148] published by the COINRG in the IETF,
conventional end-to-end design (dumb network) principle and transport layer
protocols brings big challenges to COIN applications. Several open questions
are raised in the draft without solutions, including addressing, flow granularity
and transport features. This draft draws some research interests and there
are publications [146, 149] that work on completely new clean-slate transport
layer protocols to address those open questions. It is argued in this work that
instead of introducing yet another new transport layer protocol, essential parts
of the already standardized application protocols for real-time streaming pro-
tocols can be implemented in the network function to provide minimal and suf-
ficient features for COIN applications. The reason for avoiding new transport
protocols is clear: All nodes in the network including clients and serves need to
support this new transport protocol. This means that a solid implementation of
this transport stack must be available for all types of network nodes. According
to the adoption of the Stream Control Transmission Protocol (SCTP) protocol,
introducing a new transport protocol just to provide some limited support for
COIN applications may be worth the significant effort. Then the same direction
of the relative successful protocol Quick UDP Internet Connections (QUIC) is
followed to select a protocol built on top of UDP for this real-time communi-
cation task. After some comprehensive survey and analyse, RTP is chosen as a

6.2 Proposed Approach: YOLO-CT

promising protocol to explore for COIN applications that smartly process pack-
ets and drop unnecessary data directly and early in the network. According to
my point of view, RTP is the most suitable standardized protocol (or one of the
most suitable standard protocols) for the aforementioned applications and it
can be utilized and extended for COIN applications:

a) RTP protocol uses application-layer framing [150]. This allows applications
and also network nodes to handle ADUs. Its standardized mechanisms for
ADU fragmentation and reassembling solves the flow granularity problem
described in [148].

b) RTP has a IETF working group for congestion control mechanisms for real-
time media. So the proposed network function can adopt these mecha-
nisms instead of re-inventing congestion control mechanisms that do not
work well with e.g. TCP.

) Like QUIC, RTP is built on top of UDP and normally implemented fully in
user space. This enables quick and simple iteration of the protocol itself
and its implementation. This makes it easier to utilize the mature user
space acceleration technologies and be deployed and maintained on the
network edge.

3. Instead of using programmable hardware switches or routers. Middlebox with
containerized network functions.

Before the introduction of the implementation of the proposed YOLO-CT system,
a theoretical modelling of the response latency, which is the key latency metric for
this work, of the topology illustrated in Figure 6.3 is described in the next Subsec-
tion 6.2.2. This modelling targets at the demonstration of why this counter-intuitive
design of YOLO-CT approach is able to reduce the service latency, when underlying
network is overwhelmed with high traffic workload.

6.2.2 Modelling of Service Latency

A typical remote cloud based application has different types of latencies. These la-
tencies contain two parts: latencies in the packet-switched network and latencies on
end hosts. Network latencies typically contain four parts: propagation delay, trans-
mission delay, queuing delay and processing delay. Latencies on end hosts contain
packet 10 latency to get all packets and then processing latency for ADU. For the
end-to-end response latency modelling, following simplifications are applied in this
work: (i) The packet IO latency on the server side can be ignored because it's relative
small. (ii) The response message by the server, e.g. the object detection result, is
relative small compared to the video frame message uploaded by the client. So it
can be packed into a single packet. (iii) For simplification, it's assumed the network
latency performance is symmetric. Namely, all types of latencies for a single packet
are the same for both client to server and server to client directions,

119

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

Table 6.1: YOLO-CT: Summary of main notations.
Symbol Description

M Number of hops in the multi-hop topology

i Index of the current hop

N Number of packets contained in an ADU

P Number of packets contained in a processed ADU
J Index of the current packet

T.oP Response latency for store and forward

Trsep Response latency for compute and forward

e Transmission latency of j-th packet on i-th hop

pl
queu

2,J
Troc

Queuing latency of j-th packet on i-th hop
Processing latency of j-th packet on i-th hop
TP Propagation latency of i-th hop

Teomp Computation latency of ADU on the server

Serv

Thees Latency to reassemble N received packets

T Computation latency of ADU on the network function
T/rag Latency to re-fragment processed ADU

a Ratio between computing power between NF and server

N M
UEEDY (Z (T + T Tf;"“))

j=1 \i=1
4 eomp (6.1)

Serv

M
prop queu proc
+Z(Tm + T + TE)

=1

For a multi-hop topology with M network nodes, the end-to-end response latency
of a single flow T, is formulated in Equation 6.1, when all network nodes only per-
form store and forward for all N packets. The N is the number of individual packets
for one video frame (ADU). Due to limitation of the MTU size of the network, one large
video frame typically has to be fragmented into multiple RTP packets. Each packet
needs to be transmitted, queued and processed by all M network nodes in the path,
sothese latencies for j-th packet on the i-th hop are denoted as T};*", T///* and T};*".
The first line in Equation 6.1 presents the network latency from client to server. The
second line expresses the computation latency on the server for ADU processing.

The third line expresses the network latency for the response from server to client.

120

6.2 Proposed Approach: YOLO-CT

Tresp —

comp

M=

(7 + T)
j=1

comp
+ T]?\“feas + Tnf + Tfrag

PofM 6.2
+(XWMmeﬂ ©2
J

j=1 \1=2
+ (Tcomp —a- Ti;mp)

Serv

M
+ 0, (T7 + TG + T5)
i=1

Assuming that the proposed feature extraction network function is deployed on
the first and nearest network node, the corresponded response latency 175" is for-
mulated with Equation 6.2. By the way, it is also my recommendation to deploy
this network function to the nearest network node as much as possible. Mainly for
two reasons: (i) All following hops have to process less packets, so it's beneficial for
latency. Also, the latency tax paid to collect N packets on the first hop is relative
smaller. (i) In reality, N packets can be distributed over multi-path in the transmis-
sion. Normally there’s no multi-path routing between the client and the first network
node, namely the gateway, so it's doable for the network to collect N packets for
ADU processing. Compared to the store and forward, there are multiple differences:
(i) Additional latencies are introduced on the first network node to enable the com-
puting on the ADU which is split into N packets, as expressed by the first two lines.
Additional latencies include four parts: (1) Additional time to collect N packets in an
ADU. Because the network function needs to collect N packets before it can start
the processing. So it can not just store and forward each individual packet sepa-
rately. So we need to sum up the latencies on the first hop for all N packets (the
first line in the Equation). (2) Additional time to reassemble the collected fragments
Thees. (3) Additional time to process the reassembled ADU T,f;mp. (4) Additional time
to re-fragment the processed ADU into new RTP fragments T/, (ii) The number
of packets is reduced from N to P for all following network nodes. If the feature
extraction function has a very good compression performance, then P « N. The
network latencies for P packets along the path can be significantly reduced com-
pare to the original N packets. (iii) Because part of the application function, namely
the feature extraction, is already performed on the network node, the computing
latency on server can be reduced to (TP — a - T,7""). The reason to have a factor
a (with 0 < a < 1) is because the computational power of cloud server and edge
network node is normally not equal. Cloud server is normally more powerful than
network node. So alpha = 1 means that the server has twice the computing power
of the network nodes for the same task. So when the network node needs 7,7" to
perform the feature extraction function, same operation needs normally less com-
putational time when it's deployed on the server. So the computational time it saves

121

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks
for the server is actually a - 7,5

Tusr = Thiod — Teamn

stor comp

> *(1 _ OZ) . Ti;mp o T]T\’feas o Tfrag

N
= 2T+ T+ T (6.3)
j=1

N M
; (Z (Z (7w 4 T T)))
=P

=2

The latency difference, namely the gain of the proposed compute and forward ap-
proach, can be expressed with the Equation 6.3. By analyse the Equation 6.3, it can
be seen that for compute and forward, the availability and size of the latency per-
formance gain mainly depends on two parts: (i) Negative earnings: The additional
latencies introduced on the first node to enable ADU processing and payload com-
pression. These latencies are like latency tax we need to pay and are expressed in
first two lines in the Equation. (ii) Positive earnings: Reduced network latencies at
subsequent network nodes in the multi-hop path. This part is expressed as the last
line in the Equation. So there is a trade-off here to determine whether there is really
alatency gain, namely Ty; s > 0. Given a network topology with fixed parameters and
a practical implementation of the feature extraction network function, the first part
of latency is almost fixed. The second part, namely the networking latency, depends
heavily on the status of the network. For example, this part can be increased when
one of the subsequent network nodes do not have enough resource to handle the
flow (noisy neighbor or scheduling issue or overwhelmed).

So the proposed approach YOLO-CT suggests switching between store and forward
and compute and forward dynamically. The network status can be monitored with e.g.
SDN controller or other SDN mechanisms. The expression 6.3 shows that there's
a trade-off between positive and negative earnings in the end-to-end response la-
tency. Thisis also reflected in the evaluation result, the store and forward is not always
worse than the proposed compute and forward. When network status is good, there
is no latency gain.

6.2.3 YOLO-CT Implementation

A demonstration of the proposed end-to-end system is illustrated in Figure 6.3. Ac-
cording to the design, network nodes and server are aware of the offloaded com-
puting in the network while this is totally transparent to the clients. There are dis-
cussions [148] about whether and how clients can address and control in-network
computing nodes. The proposed approach suggests that this type of compression
and forward offloading should be transparent to clients. This avoids adding addi-
tional complexity of the networking system on edge clients, which are typically not
very powerful. Clients send captured video frames in RTP packets and wait for the
object detection results in the response. All traffic flows are managed by the SDN

122

6.2 Proposed Approach: YOLO-CT

controller. The controller can add additional OpenFlow rules to redirect RTP flows
from the clients to the middlebox for packet processing. So SDN controller is re-
sponsible to monitor the network and trigger computing and forward on demand.
The components to enable feature extraction network function are implemented in
the containerized network function.

These components are plotted in the middlebox 1 in Figure 6.3. The network
function contains two main components: packet engine and deep learning engine.
(i) The packet engine based on DPDK acceleration is used for packet 10, RTP ADU
reassembling and re-fragmenting. This component needs to perform high perfor-
mance packet processing. It uses DPDK to capture each packet with low latency and
buffer packets (RTP fragments) belonging to the same frame. When the network
function receives the last fragment of the frame, it uses the RTP reassemble module
to reassemble the ADU and extract the frame payload for further feature extraction.
Since DPDK does not provide functionalities for this type of stateful processing and
ADU related operations, RTP reassembler and fragmenter are implemented by us
on top of DPDK. Since this is just a prototype, but the implementation is adapted
to the principles of DPDK and tries to achieve low latency performance as much as
possible. This prototype also shows that it's doable to implement part of RTP stack
on top of high performance software framework designed for NFV forwarding plane.
This prototype also shows that it is feasible to implement a partial RTP stack on top of
a high-performance software framework designed for the NFV forwarding plane. Itis
much less complex than implementing a generic TCP or SCTP protocol stack. The re-
assembled frame is then pushed to the deep learning process via IPC and the packet
engine waits and pulls the extracted and compressed feature maps from the deep
learning component. Then the packet engine re-fragments the compressed feature
maps into new RTP fragments and update the content of corresponded received
RTP fragments with new fragments. Because this feature extraction processing can
remove about 50% of the redundant data, the packet engine only needs to send
about half the number of RTP fragments. (ii) The deep learning component is imple-
mented using Tensorflow. The pre-trained YOLO-v2 model is split into two parts.
The feature extraction layers deployed on the network function contain the first eight
layers of the full model, namely from input to max_8 pooling layer. When the deep
learning component starts, it loads the pre-trained and split model file and waits for
the packet engine pushing frames for processing. When it receives one frame, it
performs the partial model inference and compress the output feature maps with
JPEG. Then it pushes compressed feature maps as one message back to the packet
engine.

All source code of the You Only Look Once, but Compute Twice (YOLO-CT) proto-
type is publicly available in the GitHub repository [151].

123

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

6.3 Comparison with Clean-slate Message Transport
Protocol (MTP)

Firstly, it is analysed here whether the MTP protocol proposed in [149] is revolution-
ary or is really necessary for most COIN applications, especially applications that re-
quire low latency. In [149], several important requirements are identified to support
in-network computing. As the comparison performed in [149] shows, UDP proto-
col already satisfies the requirements for data mutation, low buffering requirements
and inter-message independence.

The open main challenges are: (i) How to apply application layer framing when
ADU has to be fragmented into multiple packets due to MTU limitation. (ii) How to
enable multi-entity isolation. (iii) How to perform congestion control with COIN into
consideration.

For the issue (i), both RTP and MTP apply almost the same mechanism. In RTP,
each packet contains a fragment offset field which stores the offset in bytes of cur-
rent packet in one ADU. One ADU can be packed into a group of RTP packets, namely
one RTP message, with the same timestamp. The RTP commmon header also has a
marker bit to indicate the last packet in a ADU. These fields enable efficient frag-
mentation and reassembly of ADUs in the presence of misordered or lost packets.
Fragmentation and reassembly processes are simple and described in RTP related
RFCs. Compared to RTP, MTP protocol header also has a unique message ID for
each message. The header also has fields that describe the offset of the current
packet and the current packet number [149]. So the reassembly and fragmenta-
tion mechanisms should be the same as ones used by RTP, even though the details
are not clearly described in [149]. Because of this similarity, the reassembly and re-
fragmentation latencies of MTP can not be better than what RTP already provides.
Regarding this latency performance, MTP has no clear gain except for the clean-slate
design. Regarding the issue (i), both RTP and MTP provides a special field to identify
source entity for isolation. So there’s no hard requirement to use MTP just to achieve
entity isolation.

Regarding the issue (iii), this is a new feature proposed by MTP. Common trans-
port layer protocols like TCP and UDP do not have this feature. MTP proposes to use
a so-called pathlet congestion control. So instead of taking the multi-hop path be-
tween source and destination as a whole unit, this path is fragmented into multiple
smaller pathlets. So conventional congestion control only track the congestion status
of end hosts. Pathlet based congestion control track congestion state of each path-
lets using its own type of congestion feedback. It is described in MTP that because
of the heterogeneous computational power of COIN elements in the network path,
the congestion state of each pathlet can be much different from each other. So MTP
proposes to use pathlet based congestion control to apply different congestion con-
trol algorithms to coexist, instead of applying only one algorithm based only on end
hosts. Congestion state of each pathlet needs to be stored by an Type-Length-Value
(TLV) in the MTP header. So, although pathlet based congestion control provides
more flexibility and granularity for network with COIN applications, additional non-
negligible packet header overheads and management complexity are introduced.

124

6.4 YOLO-CT Evaluation and Measurement Results

In [149] the performance of the proposed pathlet congestion control algorithm is
not evaluated. So whether this complexity is worth it is still an open question.

As discussed in [148], whether in-network COIN elements should be covered by
congestion algorithm and participate in end-to-end flow control is an open research
question. I think this change can introduce a lot of complexity and complicate the de-
sign and implementation of network functions. So in this work, the congestion con-
trol is performed only on end hosts. Computational network functions are designed
and implemented to finish the ADU processing in time to not impact the end-to-end
flow and congestion control.

6.4 YOLO-CT Evaluation and Measurement Results

To evaluate the end-to-end response latency performance and resource usage of
the proposed system, the proposed system in Figure 6.3 is fully implemented and
evaluated on the ComNetsEmu [118] network emulator introduced in Chapter 5.
ComNetsEmu is deployed inside a KVM virtual machine managed by 1ibvirt. The
proposed network function is packaged as a Docker container and managed by the
ComNetsEmu in the evaluation. The host machine has an Intel Core i7-7820HK
CPU @ 2.90GHz and 32 GB DDR4 RAM. All source code needed for the evaluation is
publicly available in the GitHub repository [151]. The evaluation contains two parts:
(i) The evaluation of the proposed feature extraction network function. (ii) The eval-
uation of the end-to-end response latency of the topology presented in Figure 6.3.

6.4.1 Feature Extraction Network Function

The evaluation of the proposed feature extraction network function focuses on the
data compression ratio and the resource usage.

The design goal of this offloaded network function is to have nearly zero impact
on the original end-to-end object detection application. However, because the raw
feature maps normally have much bigger size than the compressed image frame
from source with e.g. JPEG, the raw feature maps are lossy compressed in this work to
achieve a reasonable compression ratio. A trade-off need to be played between the
compression ratio and the performance of the object detection application. The JPEG
compression is used in this work for feature maps and the performance is evaluated
with the COCO dataset [152] 2017 version. As analysed in my previous work [10] and
illustrated in Figure 6.5, a compression ratio of 2 can be achieved with less than
2% reduction in detection accuracy. Therefore, this compression method with an
average compression ratio of 2 is chosen in this work.

The resource usage comparison between the proposed feature extraction net-
work model and the full YOLO-v2 model is listed in the Table 6.2. The CPU time is
the average inference time of the neural network model of 20 iterations. The mem-
ory usage is the measured Resident Set Size (RSS) during runtime. The model file
size is the size of the protobuf file used by Tensorflow to store the model on disk.
As showed in the Table 6.2, the proposed model splitting and feature extraction can

125

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

significantly reduce the memory and disk space required by the network function.
Compared to the full model, only 450 MB memory is needed, namely about 21% of
the full model. The RSS memory usage is important because the high performance
memory is a relative limited resource on network nodes and are shared by all de-
ployed network functions. Also, the size of the serialized model file is very small. It
only takes 696 KB to store or transport the model file, which is about 0.35% of the
file size of the full model. The reduced memory, disk and network transport sizes can
benefit the deployment of the proposed network function on the edges of the net-
work. The CPU processing time of the feature extraction function takes about 64%
of the full model inference time. Therefore, the processing workload of the server
in the cloud in reduced by about 64% for each input RTP flow. The saved CPU pro-
cessing time on the server can be used to handle more RTP flows or can be used by
other services. So allin all, the proposed feature extraction network function can sig-
nificantly reduce the output bandwidth and the workload of the server in the cloud
with reasonable memory and disk usage.

| Component | CPU Time | Memory Usage | Model File Size ||
Feature Extraction Model | 292 ms 450 MB 696 KB
Full YOLOv2 Model 459 ms 2116 MB 199184 KB

Table 6.2: Resource usage comparison between the feature extraction model and
the full YOLOv2 model.

6.4.2 End-to-end Response Latency

The end-to-end response latency is the delay between the client sends out the frame
until it receives the response with object detection result from the server. So it is
the RTT measured on the client side which contains all networking and computing
latencies of the network and cloud server. In the latency tests, the same JPEG image
(pedestrian.jpg in the repository [151]) with a size of 48 KB is sent by the client
repeatedly to measure the response latency. For all response latency measurements
are measured with the minimal dumbbell topology illustrated in Figure 6.2 with two
switches and middleboxes in the network. All nodes and network links are emulated
with ComNetsEmu with following parameters: (i) Client, server and middleboxes are
pinned on different CPU cores to avoid contention of computing resource. (i) The
link parameters are emulated with Linux Traffic Control (TCP). To build the dumbbell
bottleneck, the bandwidth and propagation latency of the link 4 is set to 100 Mbit/s
and 100 ms. Links between switches and edge nodes, i.e. the client and the server,
are configured with a bandwidth of 1000 Mbit/s and a latency of 10 ms. Because NFV
middleboxes are usually deployed close to the switch, links between middleboxes
and switches are configured with a bandwidth of 1000 Mbit/s and a latency of 1 ms.

Two tests are performed on this network topology: (i) Without background work-
load: In this scenario, only client 1 sends frames to server for object detection. There
is no any other traffic in the network. In this scenario, a batch forwarding delay is

126

6.4 YOLO-CT Evaluation and Measurement Results

> 4 | MM Store and Forward]
| B@W Compute and Forward I]

22}
ol LB
| 1T1111
mIil1111

Response Latency (Second)

500 1000 1500 2000 2500 3000 3500
Batch Forwarding Delay (Microsecond)

Figure 6.6: YOLO-CT: Response latency without background workload.

manually added to the forwarding CNF running on the middlebox 2 to evaluate the
impact of busy level of the middlebox 2 on the end-to-end response latency. Be-
cause compared to the edge switch 1, the switch 2 is deployed closer to the cloud
and needs to handle much more input links compared to switch 1. Due to dynamic
workload changing or system scheduling challenge, a forwarding delay of a batch of
packets can be introduced for the CNF running on middlebox 2. The detailed dis-
tribution of this latency is not clear, so this latency is manually added from 500 us
with a step of 500 us. (i) With background workload: In this scenario, client 2 uses
sockperf tool from Mellanox to generate UDP background workload with payload
size of 1400 B and different PPS. In this scenario, the batch forwarding latency of the
CNF running on middlebox 2 is fixed to 2000 us. These two tests are used to evalu-
ate the latency of the proposed approach in both good and bad network congestion
conditions. In all tests, the client 1 sends RTP fragments of the pedestrian.jpgim-
age to the server in a ping-pong test mode. Each test is repeated for 100 times to
get the average and 99% confidence intervals.

The response latencies without background workload are plotted in Figure 6.6. As
showed in the results, the compute and forward approach has a higher latency com-
pared to store and forward when the batch forwarding delay is lower than 2000 us.
So the additional reassemble, fragmentation and processing latencies introduced by
the feature extraction network function are higher than the transmission, queuing
and processing latencies it saved. So in this scenario, there's no gain in the latency
perspective. But when the batch forward latency is higher than 2000 us, the com-

127

6 YOLO-CT: COIN for Low-latency Object Detection in Softwarized Networks

2.5_"'I'"'I""I""I""I""I""I"'
B Store and Forward

ool B Compute and Forward :

22?_ T .- i.

Response Latency (Second)

4000 4500 5000 5500 6000 6500 7000
Background Workload (Message Per Second)

Figure 6.7: YOLO-CT: Response latency under background workload.

pute and forward approach starts to show lower latency than the conventional store
and forward. So the CNF running on middlebox 1 can switch between two modes
dynamically based on the busy level of the following network nodes.

The response latencies with background workload are illustrated in Figure 6.7. The
results show that the compute and forward approach can provide lower and also sta-
bler response latency performance when there is a noisy neighbor in the network ag-
gressively generating traffic. Latency results from this test shows the important ben-
efit that can be achieved with my approach when network resources are shared by
multiple clients. So it improves the scalability of the network system with in-network
computing.

6.5 Summary

In this work, for the real-time video streaming object detection application illustrated
in Figure 6.2 a novel approach called You Only Look Once, but Compute Twice (YOLO-
CT) is proposed to reduce the amount of traffic required to be sent through the net-
work. All requirements are analyzed and components to build the proposed system
with STOA software technologies and network protocols. The proposed approach is
compatible with the standard real-time video streaming system. The initial prototype
uses the RTP, which is the IETF standard used for real-time and low latency multime-
dia applications. A prototype of the proposed system is designed and implemented

128

6.5 Summary

with STOA software packet processing technologies. Source code of all components
used in this work is fully open source [151]. Experiments can be easily reproduced

on a single computer.
Proposed system is evaluated using network emulation with ComNetsEmu. Dumb-

bell topology showed in Figure 6.2 is built and emulated on ComNetsEmu testbed.
According to the initial measurement results illustrated in Figure 6.6 and Figure 6.7,
the described YOLO-CT approach can improve the latency performance when net-

work nodes are busy or congested.

129

7 Summary

As described in the Section 1.2, this dissertation describes and summarizes four
research works | have conducted to address the unprecedented and challenging
open question for softwarization network of 5G and beyond:

How to significantly reduce the latency of State of the Art (STOA) softwarization network
data plane to meet the 5G stringent end-to-end latency requirement of T ms with minimal
negative impact or even improvement on other important performance metrics, especially
bandwidth and energy consumption?

As graphically illustrated as a Triforce in Figure 1.4, the works and achievements
included in this dissertation contribute to the improvement of the STOA software
network data plane systems in three different directions:

1. Ultra-reliable low-latency: As described in Chapter 3 and in my journal pa-
per [4], the Chain bAsed Low latency VNF ImplemeNtation (CALVIN) system is
designed, implemented and evaluated for ultra-reliable low-latency tactile In-
ternet applications. In contrast to conventional solutions, CALVIN implements
classified Virtualized Network Functions (VNFs) either fully in Linux kernel space
or in user space in order to fully avoid the context-switching and data transmis-
sion between these two spaces. According to rigorous measurements, for the
elementary forwarding function, the eXpress Data Path (XDP) based VNF im-
plementation is able to achieve a packet forwarding performance ranging from
120 ps to 180 us. CALVIN is able to achieve an end-to-end RTT of only 0.32 ms
for large packets with the size of 1400 bytes on an OpenStack-based practical
cloud testbed. Therefore, the proposed CALVIN approach can achieve the 1 ms
latency budget required by tactile Internet applications at the cost of reduced
bandwidth support.

2. Energy-efficient: As described in Chapter 4 and in my journal paper [7], the
novel XDP-Monitoring energy-Adaptive Network functions (X-MAN) framework
is designed, implemented and evaluated for power management of Cloud-
native Network Functions (CNFs). X-MAN combines the non-intrusive in-band
in-kernel traffic monitoring for each individual CNF with the responsive and
adaptive core frequency management in user space with a global view of all

131

/ Summary

132

running CNFs. According to rigorous measurements on practical testbed, the
proposed X-MAN is much more responsive than the STOA Hardware Counter
(HC) approach. Measurement results also indicate that X-MAN is able to save
much more energy compared to the Code Instruction with Heuristic power
management (CIH) approach, while has negligible impact on the latency per-
formance.

Computing-centric: ~ As described in Chapter 6 and partly in my journal pa-
per [10], a novel approach named as You Only Look Once, but Compute Twice
(YOLO-CT) is designed and implemented which utilizes the COmputing In Net-
work (COIN) paradigm supported by the softwarized network to significantly re-
duce the amount of data required to be sent through the network by offloading
part of the Convolutional Neural Network (CNN) model directly into the network
nodes with computing power and functionalities. According to the evaluation
using the ComNetsEmu network emulator, the proposed YOLO-CT is able to
improve the end-to-end response latency performance when network nodes
are overwhelmed or congested.

Acronyms

3GPP

ADU
AES
AIMD
AMD
ANN
AP
APM
ARM
ARP

BCC
BESS
BIOS
BMAP
BS

CALVIN
CAPEX
CBR
CDF

Cl

CIH
CNF
CNN
COIN
COINRG
ComNets

3rd Generation Partnership Project.

Application Data Unit.

Advanced Encryption Standard.
Additive-Increase Multiplicative-Decrease.
Advanced Micro Device.

Artificial Neural Network.

Application Programming Interface.
Adaptive Polling Mechanism.

Advanced RISC Machines.

Address Resolution Protocol.

BPF Compiler Collection.

Berkeley Extensible Software Switch.
Basic Input/Output System.

Batch Markovian Arrival Process.
Base Station.

Chain bAsed Low latency VNF ImplemeNtation.
Capital Expense.

Constant Bit Rate.

Cumulative Distribution Function.

Code Instruction.

Code Instruction with Heuristic power management.
Cloud-native Network Function.

Convolutional Neural Network.

COmputing In Network.

COIN Research Group.

The Deutsche Telekom Chair of Communication Networks.

133

Acronyms

ComNetsEmu Communication Networks Emulator.

COTS
CPU
CRUD
cVv

DHCP
DIND
DL
DMA
DPDK
DP]
DuT
DVFS

eBPF
ENVI
ETSI

FC
FFPP

GF
GPU
GRE

HC
HTTPS

ICA
ICMP
ICN
D
IETF
IMIX
INC
1O
IOMMU
loT
IP
IPC
IPG
1ISG
ISP

134

Commercial Off-The-Shelf.
Central Processing Unit.

Create, Read, Update and Delete.
Computer Vision.

Dynamic Host Configuration Protocol.
Docker-IN-Docker.

Deep Learning.

Direct Memory Access.

Data Plane Development Kit.

Deep Packet Inspection.

Device under Test.

Dynamic Voltage and Frequency Scaling.

extended Berkeley Packet Filter.
Elastic resource flexing for Network function Virtualization.
European Telecommunications Institute.

Flow Classifier.
Fast Forward Packet Processing.

Galois Field.
Graphics processing unit.
Generic Routing Encapsulation.

Hardware Counter.
Hypertext Transfer Protocol Secure.

Independent Component Analysis.
Internet Control Message Protocol.
Information-centric Networking.
identification Number.

Internet Engineering Task Force.
Internet Mix.

In-Network Computing.
Input/Output.

Input-Output Memory management Unit.
Internet of Things.

Internet Protocol.

Inter-Process Communication.
Interpacket Gap.

Inter-Stream Gap.

Internet Service Provider.

T
JPEG

KNI
KVM

LAN
LKF

M2M
MAC
MEC
ML
MTP
MTU

NAT

NC
NCKernel
NF

NFV
NFVI

NIC
NJICA
NPM
NTP

OPEX
0S
OVS

OVS-DPDK

OWD

PacketGen

PDU
PM
PMD
pNIC
POSIX
PPS
PSTN

QoS

Information Technology.
Joint Photographic Experts Group.

Kernel Network Interface.
Kernel-based Virtual Machine.

Local Area Network.
Linux Kernel IP Forwarding.

Machine to Machine.

Media Access Control.
Multi-access Edge Computing.
Machine Learning.

Message Transport Protocol.
Maximum Transmission Unit.

Network Address Translator.
Network Coding.

Network Coding Kernel Library.
Network Function.

Network Function Virtualization.
NFV Infrastructure.

Network Interface Card.

Network Joint Independent Component Analysis.

No Power Management.
Network Time Protocol.

Operating Expense.

Operating System.

Open vSwitch.

Open vSwitch with DPDK Datapath.
One-Way Delay.

Packet Generator.

Protocol Data Unit.

Power Manager.

Poll Mode Driver.

Physical Network Interface Controller.
Portable Operating System Interface.
Packet-per Second.

Public Switched Telephone Network.

Quality of Service.

Acronyms

135

Acronyms

QUIC Quick UDP Internet Connections.
R-CNN Regions with CNN.

RAN Radio Access Network.

RLNC Random Linear Network Coding.
RSS Resident Set Size.

RTC Run-To-Completion.

RTP Real-time Transport Protocol.

RTT Round-trip Time.

RX Receive.

SCTP Stream Control Transmission Protocol.
SDN Software-Defined Networking.

SF Service Function.

SFC Service Function Chaining.
SFC-OStack Service Function Chaining on OpenStack.
SFI Service Function Instance.

SFP Small Form-factor Pluggable.

SIMD Single Instruction Multiple Data.
SMA Simple Moving Average.

SSE2 Streaming SIMD Extension 2.

STOA State of the Art.

TCP Transmission Control Protocol.

TCP Traffic Control.

TLV Type-Length-Value.

™ Traffic Monitor.

ts Timestamp.

TUD Technische Universitat Dresden.
ubP User Datagram Protocol.

ubDS Unix Domain Socket.

UE User Equipment.

URLLC Ultra-Reliable Low Latency Communication.
vCPU virtual CPU.

veth Virtual Ethernet Device.

VM Virtual Machine.

VNF Virtualized Network Function.

vNIC Virtual Network Interface Controller.
VPP Vector Packet Processing.

VXLAN Virtual Extensible LAN.

WEB World Wide Web.

136

WMA

X-MAN
X-MAN-C1
X-MAN-FB
XDP

YOLO
YOLO-CT

Weighted Moving Average.

XDP-Monitoring energy-Adaptive Network functions.

X-MAN with C1 State Management.
X-MAN with FeedBack.
eXpress Data Path.

You Only Look Once.
You Only Look Once, but Compute Twice.

Acronyms

137

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[/]

[8]

Frank Fitzek, Fabrizio Granelli, and Patrick Seeling. Computing in Communica-
tion Networks: From Theory to Practice. Academic Press, 2020.

Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. “Network function virtualization: State-of-the-art and re-
search challenges”. In: [EEE Communications surveys & tutorials 18.1 (2015),
pp. 236-262.

Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.
"Software-defined networking (SDN): a survey”. In: Security and communica-
tion networks 9.18 (2016), pp. 5803-5833.

Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T Nguyen, Martin Reisslein,
and Frank HP Fitzek. “Reducing latency in virtual machines: Enabling tactile
Internet for human-machine co-working”. In: IEEE Journal on Selected Areas in
Communications 37.5 (2019), pp. 1098-1116.

Stuart Cheshire. “Latency and the Quest for Interactivity”. In: White paper com-
missioned by Volpe Welty Asset Management, LLC, for the Synchronous Person-
to-Person Interactive Computing Environments Meeting. 1996.

Technical Specification Group Services and System Aspects, Study on Communi-
cation for Automation in Vertical Domains (Release 16). 3GPP TR 22.804. 22.804
TR, V2.0.0. 3GPP. May 2018.

Zuo Xiang, Malte Howeler, Dongho You, Martin Reisslein, and Frank HP Fitzek.
“X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native
Network Functions”. In: I[EEE Transactions on Network and Service Management
(2021).

Harshit Gupta, Abhigyan Sharma, Alex Zelezniak, Minsung Jang, and Umak-
ishore Ramachandran. “A {Black-Box} Approach for Estimating Utilization of
Polled {IO} Network Functions”. In: 71th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19). 2019.

139

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

140

DPDK Official Documentation,Sample Applications User Guides, L3 Forwarding
with Power Management Sample Application. https://doc.dpdk.org/guides-
20 .11 /sample_app_ug/13_forward_power_man.html. [Online; accessed
2022-02-18]. 2020.

Zuo Xiang, Patrick Seeling, and Frank HP Fitzek. “You only look once, but com-
pute twice: Service function chaining for low-latency object detection in soft-
warized networks”. In: Applied Sciences 11.5 (2021), p. 2177.

Zuo Xiang, Frank Gabriel, Giang T Nguyen, and Frank HP Fitzek. “Latency mea-
surement of service function chaining on OpenStack platform”. In: 20718 IEEE
43rd Conference on Local Computer Networks (LCN). IEEE. 2018, pp. 473-476.

Joel M. Halpern and Carlos Pignataro. Service Function Chaining (SFC) Architec-
ture. RFC 7665. Oct. 2015. DOI: 10.17487 /RFC7665. URL: https://www.rfc-
editor.org/info/rfc7665.

Deval Bhamare, RajJain, Mohammed Samaka, and Aiman Erbad. “A survey on
service function chaining”. In: Journal of Network and Computer Applications 75
(2016), pp. 138-155.

Juliver Gil Herrera and Juan Felipe Botero. “Resource allocation in NFV: A com-
prehensive survey”. In: [EEE Transactions on Network and Service Management
13.3(2016), pp. 518-532.

Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella, Stefan
Covaci, and Thomas Magedanz. “Service function chaining in next generation
networks: State of the art and research challenges”. In: IEEE Communications
Magazine 55.2 (2016), pp. 216-223.

Barbara Martini, Federica Paganelli, AA Mohammed, Molka Gharbaoui, An-
drea Sgambelluri, and Piero Castoldi. “SDN controller for context-aware data
delivery in dynamic service chaining”. In: Proceedings of the 2015 1st IEEE Con-
ference on Network Softwarization (NetSoft). IEEE. 2015, pp. 1-5.

Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvre, Ravi Manghir-
malani, Ramesh Mishra, Ritun Patneyt, Meral Shirazipour, Ramesh Subrah-
maniam, Catherine Truchan, et al. “Steering: A software-defined networking
for inline service chaining”. In: 2013 21st IEEE international conference on net-
work protocols (ICNP). IEEE. 2013, pp. 1-10.

Jodo Soares, Carlos Gongalves, Bruno Parreira, Paulo Tavares, Jorge Carap-
inha, Joao Paulo Barraca, Rui L Aguiar, and Susana Sargento. “Toward a telco
cloud environment for service functions”. In: [EEE Communications Magazine
53.2(2015), pp. 98-106.

Zuo Xiang. SFC-Ostack: A Simple Research Framework for SFC on OpenStack.
https://github.com/stevelorenz/sfc-ostack. [Online; accessed 2022-
02-18]. 2018.

Konstantinos Antonakoglou, Xiao Xu, Eckehard Steinbach, Toktamn Mahmoodi,
and Mischa Dohler. “Toward haptic communications over the 5G tactile Inter-
net”. In: [EEE Communications Surveys & Tutorials 20.4 (2018), pp. 3034-3059.

 https://doc.dpdk.org/guides-20.11/sample_app_ug/l3 _forward_power_man.html
 https://doc.dpdk.org/guides-20.11/sample_app_ug/l3 _forward_power_man.html
https://doi.org/10.17487/RFC7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://github.com/stevelorenz/sfc-ostack

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Bibliography

Kwang-Cheng Chen, Tao Zhang, Richard D Gitlin, and Gerhard Fettweis. “Ultra-
low latency mobile networking”. In: IEEE Network 33.2 (2018), pp. 181-187.

Oliver Holland, Eckehard Steinbach, R Venkatesha Prasad, Qian Liu, Zaher
Dawy, Adnan Aijaz, Nikolaos Pappas, Kishor Chandra, Vijay S Rao, Sharief
Oteafy, et al. “The IEEE 1918.1 “tactile internet” standards working group and
its standards”. In: Proceedings of the IEEE 107.2 (2019), pp. 256-279.

Zhanwei Hou, Changyang She, Yonghui Li, Tony QS Quek, and Branka Vucetic.
“Burstiness-aware bandwidth reservation for ultra-reliable and low-latency
communications in tactile Internet”. In: IEEE Journal on Selected Areas in Com-
munications 36.11 (2018), pp. 2401-2410.

Ahmed Nasrallah, Akhilesh S Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing
Shao, Martin Reisslein, and Hesham EIBakoury. “Ultra-low latency (ULL) net-
works: The IEEE TSN and IETF DetNet standards and related 5G ULL research”.
In: IEEE Communications Surveys & Tutorials 21.1 (2018), pp. 88-145.

Yang Yang and Anthony M Zador. “Differences in sensitivity to neural timing
among cortical areas”. In: Journal of Neuroscience 32.43 (2012), pp. 15142~
15147.

Xian-Ming Zhang, Qing-Long Han, and Xinghuo Yu. “Survey on recent advances
in networked control systems”. In: IEEE Transactions on industrial informatics
12.5(2015), pp. 1740-1752.

Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.
“A survey on software-defined networking”. In: [EEE Communications Surveys
& Tutorials 17.1 (2014), pp. 27-51.

Frank Fitzek, Gerrit Schulte, and Martin Reisslein. “System architecture for
billing of multi-player games in a wireless environment using GSM/UMTS and
WLAN services”. In: Proceedings of the 1st workshop on Network and system
support for games. 2002, pp. 58-64.

Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan
Manihatty-Bojan, Gianni Antichi, Marcin Wojcik, and Andrew W Moore. “Where
has my time gone?” In: International Conference on Passive and Active network
measurement. Springer. 2017, pp. 201-214.

Nathan Hanford, Vishal Ahuja, Matthew K Farrens, Brian Tierney, and Dipak
Ghosal. “A survey of end-system optimizations for high-speed networks”. In:
ACM Computing Surveys (CSUR) 51.3 (2018), pp. 1-36.

Paul Emmerich, Daniel Raumer, Sebastian Gallenmuller, Florian Wohlfart, and
Georg Carle. “Throughput and latency of virtual switching with open vswitch:
A quantitative analysis”. In: Journal of Network and Systems Management 26.2
(2018), pp. 314-338.

Giuseppe Lettieri, Vincenzo Maffione, and Luigi Rizzo. “A survey of fast packet
I/0 technologies for network function virtualization”. In: International Confer-
ence on High Performance Computing. Springer. 2017, pp. 579-590.

141

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

142

Linguan Zhang, Shanggi Lai, Chuan Wu, Zongpeng Li, and Chuanxiong Guo.
“Virtualized network coding functions on the Internet”. In: 2077 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS). |IEEE. 2017,
pp. 129-139.

Michail-Alexandros Kourtis, Michael] McGrath, Georgios Gardikis, Georgios
Xilouris, Vincenzo Riccobene, Panagiotis Papadimitriou, Eleni Trouva, Francesco
Liberati, Marco Trubian, Josep Batallé, et al. “T-nova: An open-source mano
stack for nfvinfrastructures”. In: [EEE Transactions on Network and Service Man-
agement 14.3 (2017), pp. 586-602.

Hyame Assem Alameddine, Sanaa Sharafeddine, Samir Sebbah, Sara Ayoubi,
and Chadi Assi. “Dynamic task offloading and scheduling for low-latency 10T
services in multi-access edge computing”. In: IEEE Journal on Selected Areas in
Communications 37.3 (2019), pp. 668-682.

Hassan Halabian. “Distributed resource allocation optimization in 5G virtu-
alized networks". In: IEEE Journal on Selected Areas in Communications 37.3
(2019), pp. 627-642.

Hassan Hawilo, Manar Jammal, and Abdallah Shami. “Network function virtualization-
aware orchestrator for service function chaining placement in the cloud”. In:
IEEE Journal on Selected Areas in Communications 37.3 (2019), pp. 643-655.

Long Qu, Chadi Assi, Khaled Shaban, and Maurice] Khabbaz. “A reliability-
aware network service chain provisioning with delay guarantees in NFV-enabled
enterprise datacenter networks". In: /[EEE Transactions on Network and Service
Management 14.3 (2017), pp. 554-568.

Satyam Agarwal, Francesco Malandrino, Carla Fabiana Chiasserini, and Swades
De. “"VNF placement and resource allocation for the support of vertical ser-
vices in 5G networks". In: IEEE/ACM Transactions on Networking 27.1 (2019),
pp. 433-446.

llias Benkacem, Tarik Taleb, Miloud Bagaa, and Hannu Flinck. “Optimal VNFs
placement in CDN slicing over multi-cloud environment”. In: /EEE Journal on
Selected Areas in Communications 36.3 (2018), pp. 616-627.

Abdelquoddouss Laghrissi, Tarik Taleb, and Miloud Bagaa. “Conformal map-
ping for optimal network slice planning based on canonical domains”. In: IEEE
Journal on Selected Areas in Communications 36.3 (2018), pp. 519-528.

Toke Hailand-Jgrgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend,
Tom Herbert, David Ahern, and David Miller. “The express data path: Fast pro-
grammable packet processing in the operating system kernel”. In: Proceedings

of the 14th international conference on emerging networking experiments and
technologies. 2018, pp. 54-66.

Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauri-
cio Vasquez Bernal. “Creating complex network services with ebpf: Experi-
ence and lessons learned”. In: 2078 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR). IEEE. 2018, pp. 1-8.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Bibliography

Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A Syed. “Inkev: In-kernel
distributed network virtualization for den”. In: ACM SIGCOMM Computer Com-
munication Review 46.3 (2018), pp. 1-6.

Sebastian Gallenmuller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul
Emmerich, and Georg Carle. “High-performance packet processing and mea-
surements”. In: 2018 10th International Conference on Communication Systems
& Networks (COMSNETS). IEEE. 2018, pp. 1-8.

Sebastian Gallenmuller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. "Comparison of frameworks for high-performance packet 10",
In: 20715 ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS). IEEE. 2015, pp. 29-38.

Nguyen Van Tu, Kyungchan Ko, and James Won-Ki Hong. “Architecture for
building hybrid kernel-user space virtual network functions”. In: 2077 13th In-
ternational Conference on Network and Service Management (CNSM). IEEE. 2017,

pp. 1-6.
Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the cost of context

switch”. In: Proceedings of the 2007 workshop on Experimental computer science.
2007, 2-es.

Morten V Pedersen, Janus Heide, and Frank HP Fitzek. “Kodo: An open and
research oriented network coding library”. In: International Conference on Re-
search in Networking. Springer. 2011, pp. 145-152.

Danilo Cerovi¢, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, and
Guy Pujolle. “Fast packet processing: A survey”. In: [EEE Communications Sur-
veys & Tutorials 20.4 (2018), pp. 3645-3676.

David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister, Salva-
tore Pontarelli, and Dario Rossi. “High-speed software data plane via vec-
torized packet processing”. In: IEEE Communications Magazine 56.12 (2018),
pp. 97-103.

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. “The Design
and Implementation of Open {vSwitch}". In: 72th USENIX symposium on net-
worked systems design and implementation (NSDI 15). 2015, pp. 117-130.

Michail-Alexandros Kourtis, Georgios Xilouris, Vincenzo Riccobene, Michael |
McGrath, Giuseppe Petralia, Harilaos Koumaras, Georgios Gardikis, and Fidel
Liberal. "Enhancing VNF performance by exploiting SR-IOV and DPDK packet
processing acceleration”. In: 2015 IEEE Conference on Network Function Virtu-
alization and Software Defined Network (NFV-SDN). IEEE. 2015, pp. 74-78.

BPF Compiler Collection (BCC) - Tools for BPF-based Linux 10 analysis, network-
ing, monitoring, and more. https ://github . com/iovisor /bcc. [Onling;
accessed 2022-02-18].

143

https://github.com/iovisor/bcc

Bibliography

[55] Libxdp - Library for attaching XDP programs and using AF_XDP sockets. https :
/ /github . com/xdp-project/xdp-tools/tree/master/1lib/libxdp.
[Online; accessed 2022-02-18].

[56] Jagmohan Chauhan, Dwight Makaroff, and Anthony Arkles. “Is doing clock syn-
chronization in a VM a good idea?" In: Proc. IEEE Int. Perform. Comput. Com-
mun. Conf. 2010, pp. 1-2.

[57] iPerf- The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.
[Online; accessed 2022-02-18].

[58] Long Qu, Chadi Assi, and Khaled Shaban. “Delay-aware scheduling and re-
source optimization with network function virtualization”. In: IEEE Transactions
on communications 64.9 (2016), pp. 3746-3758.

[59] Christian Sieber, Raphael Durner, Maximilian Ehm, Wolfgang Kellerer, and
Puneet Sharma. “Towards optimal adaptation of nfv packet processing to
modern cpu memory architectures”. In: Proceedings of the 2nd Workshop on
Cloud-Assisted Networking. 2017, pp. 7-12.

[60] Wolfgang Hahn, Borislava Gajic, Florian Wohlfart, Daniel Raumer, Paul Em-
merich, Sebastian Gallenmuller, and Georg Carle. “Feasibility of compound
chained network functions for flexible packet processing”. In: European Wire-
less 2017; 23th European Wireless Conference. VDE. 2017, pp. 1-6.

[61] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E Engelstad, and
Kyrre Begnum. “IncludeOS: A minimal, resource efficient unikernel for cloud
services”. In: 2015 IEEE 7th international conference on cloud computing tech-
nology and science (cloudcom). IEEE. 2015, pp. 250-257.

[62] Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. “Network informa-
tion flow". In: IEEE Transactions on information theory 46.4 (2000), pp. 1204~
1216.

[63] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun
Shi, and Ben Leong. “Arandom linear network coding approach to multicast”.
In: IEEE Transactions on information theory 52.10 (2006), pp. 4413-4430.

[64] Vu Nguyen, Giang T Nguyen, Frank Gabriel, Daniel E Lucani, and Frank HP
Fitzek. “Integrating sparsity into Fulcrum codes: Investigating throughput, com-
plexity and overhead”. In: 2018 IEEE International Conference on Communica-
tions Workshops (ICC Workshops). IEEE. 2018, pp. 1-6.

[65] Frank Gabriel, Simon Wunderlich, Sreekrishna Pandi, Frank HP Fitzek, and
Martin Reisslein. “Caterpillar RLNC with feedback (CRLNC-FB): Reducing delay
in selective repeat ARQ through coding”. In: IEEE Access 6 (2018), pp. 44787~
44802.

[66] Daniel E Lucani, Morten Videbaek Pedersen, Diego Ruano, Chres W Sgrensen,
Frank HP Fitzek, Janus Heide, Olav Geil, Vu Nguyen, and Martin Reisslein. “Ful-
crum: Flexible network coding for heterogeneous devices”. In: leee Access 6
(2018), pp. 77890-77910.

144

 https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp
 https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp
https://iperf.fr/

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Bibliography

Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin] Wainwright,
and Kannan Ramchandran. “Network coding for distributed storage systems”.
In: IEEE transactions on information theory 56.9 (2010), pp. 4539-4551.

Joao Barros, Rui A Costa, Daniele Munaretto, and Joerg Widmer. “Effective
delay control in online network coding”. In: IEEE INFOCOM 2009. IEEE. 2009,
pp. 208-216.

Sreekrishna Pandi, Frank Gabriel, Juan A Cabrera, Simon Wunderlich, Martin
Reisslein, and Frank HP Fitzek. "PACE: Redundancy engineering in RLNC for
low-latency communication”. In: IEEE Access 5 (2017), pp. 20477-20493.

Mohammad Karzand and Douglas J Leith. “Low delay random linear coding
over a stream”. In: 2074 52nd Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE. 2014, pp. 521-528.

Simon Wunderlich, Frank Gabriel, Sreekrishna Pandi, Frank HP Fitzek, and
Martin Reisslein. “Caterpillar RLNC (CRLNQ): A practical finite sliding window
RLNC approach”. In: I[EEE Access 5 (2017), pp. 20183-20197.

Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, Martin
Reisslein, and Stefan Schmid. “Adaptable and data-driven softwarized net-
works: Review, opportunities, and challenges”. In: Proceedings of the [EEE 107.4
(2019), pp. 711-731.

Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. “Measuring {HTTPS} adoption on the web”. In: 26th USENIX
security symposium (USENIX security 17). 2017, pp. 1323-1338.

Thomas Hoeschele, Christoph Dietzel, Daniel Kopp, Frank HP Fitzek, and Mar-
tin Reisslein. “Importance of Internet Exchange Point (IXP) infrastructure for
5G: Estimating the impact of 5G use cases”. In: Telecommunications Policy 45.3
(2021), p. 102091.

Cisco. Cloud-Native Network Functions (CNFs) White Paper. https://www.cisco.
com/c/en/us/products/collateral/routers/cloud-native-broadband-
router /white-paper-c11-740841.html. [Online; accessed 2022-02-18].
2018.

Cornelius Diekmann, Johannes Naab, Andreas Korsten, and Georg Carle. "Ag-
ile network access control in the container age”. In: IEEE Transactions on Net-
work and Service Management 16.1 (2018), pp. 41-55.

Motassem Al-Tarazi and | Morris Chang. “Performance-aware energy saving
for data center networks". In: IEEE Transactions on Network and Service Man-
agement 16.1 (2019), pp. 206-219.

Ruben Milocco, Pascale Minet, Eric Renault, and Selma Boumerdassi. “Evalu-
ating the upper bound of energy cost saving by proactive data center man-
agement”. In: IEEE Transactions on Network and Service Management 17.3 (2020),
pp. 1527-1541.

145

 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html
 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html
 https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

146

Thang Le Duc, Rafael Garcia Leiva, Paolo Casari, and Per-Olov O stberg. “Ma-
chine learning methods for reliable resource provisioning in edge-cloud com-
puting: A survey”. In: ACM Computing Surveys (CSUR) 52.5 (2019), pp. 1-39.

Amit Sheoran, Sonia Fahmy, Lianjie Cao, and Puneet Sharma. “Al-Driven Pro-
visioning in the 5G Core”. In: IEEE Internet Computing 25.2 (2021), pp. 18-25.

Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. “ENVI: Elastic
resource flexing for Network function Virtualization”. In: 9th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 17). 2017.

Hui Yu, Jiahai Yang, and Carol Fung. “Fine-grained cloud resource provision-
ing for virtual network function”. In: /EEE Transactions on Network and Service
Management 17.3 (2020), pp. 1363-1376.

Xuesong Li, Wenxue Cheng, Tong Zhang, Fengyuan Ren, and Bailong Yang.
“Towards power efficient high performance packet I/O". In: IEEE Transactions
on Parallel and Distributed Systems 31.4 (2019), pp. 981-996.

Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier,
Pascal Felber, and Dave Dice. “The TURBO diaries: Application-controlled fre-
quency scaling explained”. In: 20714 USENIXAnnual Technical Conference (USENIX
ATC 14). 2014, pp. 193-204.

Yan Liu. “Optimizing PAPI for Low-Overhead Counter Measurement”. PhD
thesis. University of Maine, 2017.

Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and
Sylvia Ratnasamy. “SoftNIC: A software NIC to augment hardware”. In: EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155
(2015).

Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast userspace packet pro-
cessing”. In: 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE. 2015, pp. 5-16.

Paul Emmerich, Sebastian Gallenmuller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. “"Moongen: A scriptable high-speed packet generator”. In: Pro-
ceedings of the 2015 Internet Measurement Conference. 2015, pp. 275-287.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. “NetBricks: Taking the V out of NFV". In: 72th USENIX Symposium
on Operating Systems Design and Implementation (OSD/ 16). 2016, pp. 203-216.

Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach, Dam-
jan Marjon, and Pierre Pfister. “High-speed data plane and network functions
virtualization by vectorizing packet processing”. In: Computer Networks 149
(2019), pp. 187-199.

Vinicius Fulber Garcia, Leonardo da C Marcuzzo, Alexandre Huff, Lucas Bon-
dan, Jeferson C Nobre, Alberto Schaeffer-Filho, Carlos RP dos Santos, Lisan-
dro Z Granville, and Elias P Duarte. “On the design of a flexible architecture for
virtualized network function platforms”. In: 2079 IEEE Global Communications
Conference (GLOBECOM,). IEEE. 2019, pp. 1-6.

Bibliography

[92] Hristo Georgiev Trifonov. “Traffic-aware adaptive polling mechanism for high
performance packet processing”. In: (2017).

[93] Shihabur Rahman Chowdhury, Mohammad A Salahuddin, Noura Limam, and
Raouf Boutaba. “Re-architecting NFV ecosystem with microservices: State of
the art and research challenges”. In: IEEE Network 33.3 (2019), pp. 168-176.

[94] Shihabur Rahman Chowdhury, Haibo Bian, Tim Bai, Raouf Boutaba, et al.
“A disaggregated packet processing architecture for network function virtu-
alization”. In: IEEE Journal on Selected Areas in Communications 38.6 (2020),
pp. 1075-1088.

[95] Prateek Shantharama, Akhilesh S Thyagaturu, and Martin Reisslein. "Hardware-
accelerated platforms and infrastructures for network functions: A survey of
enabling technologies and research studies”. In: I[EEE Access 8 (2020), pp. 132021-
132085.

[96] Adel Bouridah, llhem Fajjari, Nadiib Aitsaadi, and Hacene Belhadef. “Opti-
mized Scalable SFC Traffic Steering Scheme for Cloud Native based Appli-
cations”. In: 2021 IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC). IEEE. 2021, pp. 1-6.

[97] Maciej Gawel and Krzysztof Zielinski. “Analysis and Evaluation of Kubernetes
based NFV management and orchestration”. In: 20719 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE. 2019, pp. 511-513.

[98] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and Ferhat
Khendek. “Deploying microservice based applications with kubernetes: Ex-
periments and lessons learned”. In: 2018 IEEE 11th international conference
on cloud computing (CLOUD). IEEE. 2018, pp. 970-973.

[99] Ahmad Faisal Sani and Mukhammad Andri Setiawan. “DNS tunneling Detec-
tion Using Elasticsearch”. In: IOP Conference Series: Materials Science and Engi-
neering. Vol. 722. 1. IOP Publishing. 2020, p. 012064.

[100] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, and
Dario Rossi. “FlowMon-DPDK: Parsimonious per-flow software monitoring at
line rate”. In: 2018 Network Traffic Measurement and Analysis Conference (TMA).
IEEE. 2018, pp. 1-8.

[101] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giaccone, and
Dario Rossi. “FloWatcher-DPDK: Lightweight line-rate flow-level monitoring
in software”. In: IEEE Transactions on Network and Service Management 16.3
(2019), pp. 1143-1156.

[102] Packetbeat documentation: Configure traffic capturing options. https ://www .
elastic.co/guide/en/beats/packetbeat/current/configuration-
interfaces.html. [Online; accessed 2022-02-18]. 2020.

[103] Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen. “XDP: challenges and
future work”. In: Proc. Linux Plumbers Conference. 2018.

147

 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html
 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html
 https://www.elastic.co/guide/en/beats/packetbeat/current/configuration-interfaces.html

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[115]

[116]

[117]

[118]

148

Nikolai Pitaev, Matthias Falkner, Aris Leivadeas, and loannis Lambadaris. “Char-
acterizing the performance of concurrent virtualized network functions with
OVS-DPDK, FD. IO VPP and SR-IOV". In: Proceedings of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering. 2018, pp. 285-292.

Mizar project documentation. https://mizar.readthedocs.io/en/latest/.
[Online; accessed 2022-02-18]. 2020.

Daniel Raumer, Florian Wohlfart, Dominik Scholz, Paul Emmerich, and Georg
Carle. “Performance exploration of software-based packet processing sys-
tems”. In: Leistungs-, Zuverldssigkeits-und Verld sslichkeitsbewertung von Kom-
munikationsnetzen und verteilten Systemen 8 (2015).

Danish Sattar and Ashraf Matrawy. “An empirical model of packet process-
ing delay of the Open vSwitch”. In: 2077 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE. 2017, pp. 1-6.

Muhammad Faisal Igbal, Muhammad Zahid, Durdana Habib, and Lizy Kurian
John. “Efficient prediction of network traffic for real-time applications”. In: Jour-
nal of Computer Networks and Communications 2019 (2019).

SO Abdulsalam, Kayode S Adewole, and RG Jimoh. “Stock trend prediction
using regression analysis-a data mining approach”. In: (2011).

Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control.
RFC 5681. Sept. 2009. DOI: 18 .17487 /RFC5681. URL: https://www.rfc-
editor.org/info/rfc5681.

Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. “The macro-
scopic behavior of the TCP congestion avoidance algorithm”. In: ACM SIG-
COMM Computer Communication Review 27.3 (1997), pp. 67-82.

TRex: Realistic Traffic Generator. https ://trex-tgn.cisco.com/. [Onling;
accessed 2022-02-18]. 2022.

Len Brown. turbostat-Report processor frequency and idle statistics. 2019.

Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr
Luszczek, Dan Terpstra, and Shirley Moore. “Measuring energy and power
with PAPI". In: 2012 41st international conference on parallel processing work-
shops. IEEE. 2012, pp. 262-268.

A Morton. “Imix genome: Specification of variable packet sizes for additional
testing”. In: AT&T Labs, July (2013).

veth - Virtual Ethernet Device. https://man7 .org/linux/man-pages/man4/
veth.4.html. [Online; accessed 2022-02-18]. 2022.

Colin lan King. “Stress-ng". In: URL: http.//kernel. ubuntu. com/git/cking/stressng.
git/(visited on 28/03/2018) (2017).

Zuo Xiang, Sreekrishna Pandi, Juan Cabrera, Fabrizio Granelli, Patrick Seeling,
and Frank HP Fitzek. “An open source testbed for virtualized communication
networks”. In: IEEE Communications Magazine 59.2 (2021), pp. 77-83.

 https://mizar.readthedocs.io/en/latest/
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://trex-tgn.cisco.com/
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html

Bibliography

[119] ComNetsEmu: A virtual emulator/testbed designed for the book: Computing in
Communication Networks: From Theory to Practice. https://git.comnets.
net/public-repo/comnetsemu. [Online; accessed 2022-02-18].

[120] Albert Banchs, David M Gutierrez-Estevez, Manuel Fuentes, Mauro Boldi, and
Silvia Prowvedi. “A 5G mobile network architecture to support vertical indus-
tries”. In: IEEE Communications Magazine 57.12 (2019), pp. 38-44.

[121] Pang-WeiTsai, Francesco Piccialli, Chun-Wei Tsai, Mon-Yen Luo, and Chu-Sing
Yang. “Control frameworks in network emulation testbeds: A survey”. In: Jour-
nal of computational science 22 (2017), pp. 148-161.

[122] BobLantzand Brian O'Connor.“Amininet-based virtual testbed for distributed
SDN development”. In: ACM SIGCOMM Computer Communication Review 45.4
(2015), pp. 365-366.

[123] Jurgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zum-
beri, and Harald C Gall. "An empirical analysis of the docker container ecosys-
tem on github”. In: 2077 IEEE/ACM 14th International Conference on Mining Soft-
ware Repositories (MSR). IEEE. 2017, pp. 323-333.

[124] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: en-
abling innovation in campus networks”. In: ACM SIGCOMM computer commu-
nication review 38.2 (2008), pp. 69-74.

[125] FUJITA Tomonori. “Introduction to ryu sdn framework”. In: Open Networking
Summit (2013), pp. 1-14.

[126] PankajBerde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et
al. "ONQOS: towards an open, distributed SDN OS". In: Proceedings of the third
workshop on Hot topics in software defined networking. 2014, pp. 1-6.

[127] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. “Opendaylight: To-
wards a model-driven sdn controller architecture”. In: Proceeding of IEEE In-
ternational Symposium on a World of Wireless, Mobile and Multimedia Networks
2074. |EEE. 2014, pp. 1-6.

[128] Manuel Peuster, Johannes Kampmeyer, and Holger Karl. “Containernet 2.0:
A rapid prototyping platform for hybrid service function chains”. In: 20718 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE. 2018,
pp. 335-337.

[129] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
“Mobile edge computing—A key technology towards 5G". In: ETSI white paper
11.11 (2015), pp. 1-16.

[130] Robert Pepper. Cisco visual networking index (VNI) global mobile data traffic
forecast update. Tech. rep. Cisco, Tech. Rep., Feb. 2013. Accessed: Jul. 10,
2019.[0Online]. Available ..., 2013.

149

https://git.comnets.net/public-repo/comnetsemu
https://git.comnets.net/public-repo/comnetsemu

Bibliography

[131] Jinsoo Kim andJeongho Cho."Exploring a multimodal mixture-of-YOLOs frame-
work for advanced real-time object detection”. In: Applied Sciences 10.2 (2020),
p. 612.

[132] Peter Wei, Haocong Shi, Jiaying Yang, Jingyi Qian, Yinan Ji, and Xiaofan Jiang.
“City-scale vehicle tracking and traffic flow estimation using low frame-rate
traffic cameras”. In: Adjunct Proceedings of the 2019 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers. 2019, pp. 602-610.

[133] Alex Dominguez-Sanchez, Miguel Cazorla, and Sergio Orts-Escolano. “Pedes-
trian movement direction recognition using convolutional neural networks”.
In: I[EEE transactions on intelligent transportation systems 18.12 (2017), pp. 3540-
3548.

[134] Jonathan Hui. “Real-time object detection with yolo, yolov2 and now yolov3”,
In: Available online: medium. com/@ jonathan_hui /real-time-object-detection-
with-YOLO-YOLOv2-28b1b93e2088 (accessed on 24 February 2019) (2018).

[135] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. “Efficient process-
ing of deep neural networks: A tutorial and survey”. In: Proceedings of the IEEE
105.12 (2017), pp. 2295-2329.

[136] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature
hierarchies for accurate object detection and semantic segmentation”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, pp. 580-587.

[137] Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn: Towards
real-time object detection with region proposal networks”. In: Advances in neu-
ral information processing systems 28 (2015).

[138] Joseph Redmon, Santosh Diwvala, Ross Girshick, and Ali Farhadi. “You only
look once: Unified, real-time object detection”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2016, pp. 779-788.

[139] LiLin, Xiaofei Liao, Hai Jin, and Peng Li. “Computation offloading toward edge
computing”. In: Proceedings of the IEEE 107.8 (2019), pp. 1584-1607.

[140] Jim Gettys. “Bufferbloat: Dark buffers in the internet”. In: /EEE Internet Comput-
ing 15.3 (2011), pp. 96-96.

[141] Justus Rischke, Peter Sossalla, Sebastian Itting, Frank HP Fitzek, and Martin
Reisslein. “5G Campus Networks: A First Measurement Study”. In: /EEE Access
9(2021), pp. 121786-121803.

[142] PatBosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. “P4:
Programming protocol-independent packet processors”. In: ACM SIGCOMM
Computer Communication Review 44.3 (2014), pp. 87-95.

150

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Bibliography

lke Kunze, Klaus Wehrle, Dirk Trossen, Marie-jJose Montpetit, Xavier de Foy,
David Griffin, and Miguel Rio. Use Cases for In-Network Computing. Internet-
Draft draft-irtf-coinrg-use-cases-02. Work in Progress. Internet Engineering
Task Force, Mar. 2022. 54 pp. URL: https://datatracker.ietf.org/doc/
html/draft-irtf-coinrg-use-cases-02.

Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. “Can the network
be the Al accelerator?” In: Proceedings of the 2018 Morning Workshop on In-
Network Computing. 2018, pp. 20-25.

René Glebke, Johannes Krude, ke Kunze, Jan Ruth, Felix Senger, and Klaus
Wehrle. “Towards executing computer vision functionality on programmable
network devices”. In: Proceedings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms. 2019, pp. 15-20.

Huanzhuo Wu, Zuo Xiang, Giang T Nguyen, Yunbin Shen, and Frank HP Fitzek.
“Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind
source Separation”. In: IEEE Network 35.5 (2021), pp. 21-27.

Computing in the Network Research Group (coinrg). https ://datatracker .
ietf.org/rg/coinrg/about/. Accessed: 2022-02-16.

lke Kunze, Klaus Wehrle, and Dirk Trossen. Transport Protocol Issues of In-
Network Computing Systems. Internet-Draft draft-kunze-coinrg-transport-issues-
05. Work in Progress. Internet Engineering Task Force, Oct. 2021. 22 pp. URL:
https ://datatracker . ietf .org/doc/html/draft - kunze-coinrg-
transport-issues-05.

Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee Vamanan,
and Aditya Akella. “TCP is Harmful to In-Network Computing: Designing a Mes-
sage Transport Protocol (MTP)". In: Proc. Twentieth ACM Workshop on Hot Top-
ics in Networks. 2021, pp. 61-68.

David D Clark and David L Tennenhouse. “Architectural considerations for
a new generation of protocols”. In: ACM SIGCOMM Computer Communication
Review 20.4 (1990), pp. 200-208.

Zuo Xiang and Renbing Zhang. COIN-DL. https://github.com/stevelorenz/
build-vnf/tree/master/coin_dl. 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. “Microsoft COCO: Common
objects in context”. In: Proc. European Conference on Computer Vision. Springer,
Cham, Switzerland. 2014, pp. 740-755.

151

https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-02
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-02
https://datatracker.ietf.org/rg/coinrg/about/
https://datatracker.ietf.org/rg/coinrg/about/
https://datatracker.ietf.org/doc/html/draft-kunze-coinrg-transport-issues-05
https://datatracker.ietf.org/doc/html/draft-kunze-coinrg-transport-issues-05
 https://github.com/stevelorenz/build-vnf/tree/master/coin_dl
 https://github.com/stevelorenz/build-vnf/tree/master/coin_dl

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Main Contributions
	Dissertation Organization

	Latency Measurement of Service Function Chaining on OpenStack Platform
	Introduction
	Background and Related Work
	sfc-ostack Framework
	Latency-aware Network Function Placement and Chaining
	Measurement Campaign and Results Evaluation
	Summary

	Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working
	Introduction
	Background and Related Work
	Proposed Approach: calvin
	Overview of calvin
	Classification of vnf
	vnf Implementations Selection for vnf Classes
	calvin Architecture Design and Workflow

	Performance Evaluation of Elementary and Basic Network Functions
	Measurement Setup for Elementary and Basic Network Functions
	Measurement Results and Evaluation for Elementary and Basic Network Functions

	Performance Evaluation of Advanced Network Functions
	rlnc Network Function
	aes Encryption
	Measurement Setup of Advanced Network Functions
	Measurement Results and Evaluation for Advanced Network Functions

	Summary

	X-MAN: A Non-intrusive Power Manager for Energy-adaptive Cloud-native Network Functions
	Introduction
	Background and Related Work
	Power Management in Linux Kernel
	CPU Core Load Estimation with hc
	In-band Power Management with ci

	Proposed Approach: x-man
	x-man Design Imperative: Per-core Power Management Based on Per-cnf Traffic Monitoring
	x-man System Architecture: User Space Power Management Based on Kernel Space Traffic Monitors
	Native x-man Adaptive Power Management
	x-man Extensions

	Performance Evaluation Setup for x-man
	Testbed for x-man Evaluation
	Workload Traffic Profiles
	cnf Deployment
	Monitoring Latency for cpu Utilization Estimation
	Power Management Mechanisms
	x-man Performance Metrics

	x-man Measurement Results and Evaluation
	x-man cpu Measurements
	Monitoring Latency for cpu Utilization Estimation
	Single cnf with Deterministic Traffic
	Two cnf with Deterministic Traffic
	Single cnf with Random Traffic
	Energy Consumption of x-man

	Summary

	comnetsemu: An Open Source Testbed for Virtualized Communication Networks
	Introduction of comnetsemu
	The Architecture of comnetsemu
	sdn Environment with Mininet
	comnetsemu Enhancements and Architecture

	comnetsemu Hands-on Examples
	comnetsemu Echo Server Example
	comnetsemu Mobile Edge Cloud Example

	Summary

	yolo-ct: coin for Low-latency Object Detection in Softwarized Networks
	Introduction
	Overview and Motivation
	Related Work

	Proposed Approach: yolo-ct
	yolo-ct Design and Architecture
	Modelling of Service Latency
	yolo-ct Implementation

	Comparison with Clean-slate mtp
	yolo-ct Evaluation and Measurement Results
	Feature Extraction Network Function
	End-to-end Response Latency

	Summary

	Summary
	Acronyms
	Bibliography

