51 research outputs found

    SEASONAL AND SPATIAL VARIATION OF PM10 IN AN URBAN AREA FROM ROMANIA

    Get PDF
    The cyclic variance of PM10 mass concentration in the urban area in the South-East of Romania has been analysed in the article. SE of Romania is considered to be a territory which has medium level of pollution for a period of last ten years, from 2009 to 2018. The spatial dispersion of PM10 concentration was obtained using the METI-LIS soft wear for each season. The objective of dispersion models is to evaluate how pollutant concentration is spread out taking into account the diffusion. The average measurements of PM10 and meteorological parameters as inputs has been used. An evident seasonal change of PM10 concentrations is observed in the article. In order to establish national measures (including economic ones) for the improvement of the atmospheric pollution control it was analysed the mechanism of atmospheric pollution. It was observed that the air quality was overall better in spring and in summer in comparison to the other two periods. With regard to the seasonal variation characteristics of PM10 significant differences for the air quality registered in different months in the researched region were observed. The impact of air temperature on atmospheric pollution was insignificant in spring and autumn; moreover, precipitation was defined as an important influence factor upon the atmospheric pollution. The impact of precipitation on the possibility of atmospheric pollution was obviously different in the four seasons. The research results indicate the meteorological parameters that influence the air pollution become active during the cold seasonal days. It was shown that relative humidity and wind speed are the meteorological parameters that impact the PM10. It was found out that the probability of atmospheric pollution decreased with the increase of air temperature in summer. The research results also testify that the air pollution mapping could be enhanced using atmospheric dispersion models and in-situ measurements

    Importance of Similarity Measure in Gene Expression Data-A Survey

    Get PDF
    The usage of data mining techniques in research fields of computational biology include gene finding, genome assembly , prediction of gene expression etc, are very promising because the large amount of data is involved in these research fields. These techniques aims that to disclose the unknown knowledge and relationships. Different data sources are available one such as DNA Micro Array is the technology which enables the researchers to investigate and address issues which are non traceable. DNA Micro Array experiments generates thousands of gene expression measurements and provide a simple way for collecting huge amounts of data in short time. Micro array data analysis allows identifying the most relevant genes for a target disease and group of genes with similar patterns under different experimental conditions.Clustering methods are widely used on gene expression data to categorize genes with similar expression profiles. The goal of clustering in micro array technology is to group genes or experiments into clusters according to a similarity measure. In this paper we introduce the concept of micro Array technology, clustering on gene expression data and survey on similarity measure. Finally we conclude this paper promising that similarity measure plays an important role on gene expression data while using one of the data mining techniques is clustering

    Genetic and epigenetic changes of NKIRAS1 gene in human renal cell carcinomas

    No full text
    Renal cell carcinoma (RCC) is the most common malignant tumor of kidney associated with the worst clinical outcome. No molecular markers for RCC diagnostics and prognosis that could be applied in clinics were described yet. Large-scale screening of 3p human chromosome genes/loci in RCC and histologically normal tissues surrounding the tumors using NotI-microarray approach demonstrated that NKIRAS1 gene contained the largest percent of genetic/epigenetic changes in RCC tumor cells. Aim: To validate the results of NotI microarray analysis and study genetic, epigenetic changes, and the expression level of NKIRAS1 gene in human RCC samples. Methods: DNA and RNA were isolated from freshly-frozen renal tumors’ samples (n = 12) and from normal tissues surrounding the tumors. Epigenetic changes (methylation status) of NKIRAS1 were detected by bisulfite sequencing. Genetic changes and expression level were analyzed by Quantitative real-time PCR (qPCR) with SYBR Green. For relative quantification 2-ΔΔCP method was used. Nonparametric tests (Wilcoxon, Kruskal — Wallis and Mann — Whitney) were applied for statistical data analysis using the BioStat software. Results: NKIRAS1 expression was downregulated in 75% of RCC samples (9 of 12) compared with surrounding normal tissue. High grade tumors (3 and 4) showed lower expression of NKIRAS1 at the mRNA level than tumors of low grade (1 and 2). No significant association was found between gene expression level and gender or age. Analysis of NKIRAS1 gene copy number was performed in 19 tumor samples. Changes in the copy number of NKIRAS1 gene were observed in 64% (9 of 14) of cRCC samples. 9 samples displayed ratio ( 0.85) and were considered as normal copy number. Changes in NKIRAS1 gene copy number were detected in all 3 benign oncocytomas, 1 papillary cancer and 1 sarcoma, where hemizygous deletion was observed. No changes in methylation status of NKIRAS1 were found in RCC. Conclusions: We have validated the results of NotI microarray analysis of NKIRAS1 gene in RCC. It was shown the decreased expression level of NKIRAS1 in this type of tumor

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    Interplay of flg22-induced defence responses and nodulation in Lotus japonicus

    Get PDF
    In this study the interplay between the symbiotic and defence signalling pathways in Lotus japonicus was investigated by comparing the responses to Mesorhizobium loti, the symbiotic partner of L. japonicus, and the elicitor flg22, a conserved peptide motif present in flagellar protein of a wide range of bacteria. It was found that defence and symbiotic pathways overlap in the interaction between L. japonicus and M. loti since similar responses were induced by the mutualistic bacteria and flg22. However, purified flagellin from M. loti did not induce any response in L. japonicus, which suggests the production of other elicitors by the symbiotic bacteria. Defence responses induced by flg22 caused inhibition of rhizobial infection and delay in nodule organogenesis, as demonstrated by the negative effect of flg22 in the formation of spontaneous nodules in the snf1 L. japonicus mutant, and the inhibition of NSP1 and NSP2 genes. This indicates the antagonistic effect of the defence pathway on the nodule formation in the initial rhizobium-legume interaction. However, the fact that flg22 did not affect the formation of new nodules once the symbiosis was established indicates that after the colonization of the host plant by the symbiotic partner, the symbiotic pathway has prevalence over the defensive response. This result is also supported by the down-regulation of the expression levels of the flg22 receptor FLS2 in the nodular tissu

    Transcriptional Reprogramming of Legume Genomes: Perspective and Challenges Associated With Single-Cell and Single Cell-Type Approaches During Nodule Development

    Get PDF
    Transcriptomic approaches revealed thousands of genes differentially or specifically expressed during nodulation, a biological process resulting from the symbiosis between leguminous plant roots and rhizobia, atmospheric nitrogen-fixing symbiotic bacteria. Ultimately, nodulation will lead to the development of a new root organ, the nodule. Through functional genomic studies, plant transcriptomes have been used by scientists to reveal plant genes potentially controlling nodulation. However, it is important to acknowledge that the physiology, transcriptomic programs, and biochemical properties of the plant cells involved in nodulation are continuously regulated. They also differ between the different cell-types composing the nodules. To generate a more accurate picture of the transcriptome, epigenome, proteome, and metabolome of the cells infected by rhizobia and cells composing the nodule, there is a need to implement plant single-cell and single cell-types strategies and methods. Accessing such information would allow a better understanding of the infection of plant cells by rhizobia and will help understanding the complex interactions existing between rhizobia and the plant cells. In this mini-review, we are reporting the current knowledge on legume nodulation gained by plant scientists at the level of single cell-types, and provide perspectives on single cell/single cell-type approaches when applied to legume nodulation

    Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study

    Get PDF
    Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of thewidespread herbicide atrazine for 3 h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μMof atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using “omics” techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells.Ministerio de Economía y Competitividad; CGL2010-15993/BO

    Induced systemic resistance -like responses elicited by rhizobia

    Get PDF
    Rhizobia are soil bacteria that engage into a mutualistic symbiosis with plants and benefit the host by fixing atmospheric N. In addition, rhizobia can be considered as biocontrol agents, contributing to plant health through direct inhibition of a wide range of pathogens. More recently, it became evident that rhizobial invasion of plant roots can also trigger an increased systemic resistance state in the host, a process resembling the Induced Systemic Resistance (ISR) mechanism. However, this indirect biocontrol property of rhizobia was relatively less explored. Scope: In this review article, we present an overview of the current knowledge of ISR -like responses induced by rhizobia, considering general characteristics of this phenomenon, discussing the molecular pathways leading to this response and highlighting potential links between ISR -like responses and the nodulation signaling pathway. Conclusions: A more detailed knowledge of these responses can result in development of biotechnological tools for sustainable crop production, through optimization of the systemic protective effect conferred by rhizobia.Fil: Tonelli, Maria Laura. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; ArgentinaFil: Figueredo, María Soledad. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; ArgentinaFil: Rodríguez, Johan. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; ArgentinaFil: Fabra, Adriana Isidora. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; ArgentinaFil: Ibañez, Fernando Julio. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; Argentin
    corecore