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Abstract
Background Rhizobia are soil bacteria that engage into
a mutualistic symbiosis with plants and benefit the host
by fixing atmospheric N. In addition, rhizobia can be
considered as biocontrol agents, contributing to plant
health through direct inhibition of a wide range of
pathogens. More recently, it became evident that rhizo-
bial invasion of plant roots can also trigger an increased
systemic resistance state in the host, a process resem-
bling the Induced Systemic Resistance (ISR) mecha-
nism. However, this indirect biocontrol property of
rhizobia was relatively less explored.
Scope In this review article, we present an overview of
the current knowledge of ISR -like responses induced by
rhizobia, considering general characteristics of this phe-
nomenon, discussing the molecular pathways leading to
this response and highlighting potential links between
ISR -like responses and the nodulation signaling
pathway.
Conclusions A more detailed knowledge of these re-
sponses can result in development of biotechnological
tools for sustainable crop production, through optimiza-
tion of the systemic protective effect conferred by
rhizobia.
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Rhizobia as biocontrol agents

Rhizobia constitute a diverse group of microorganisms
well known by their ability to induce formation of
nitrogen fixing nodules in the roots or stems of legume
plants. These bacteria exhibit two alternative lifestyles,
one as free -living organisms inhabiting in soils and
rhizosphere and other as plant endophytes. The ability
to persist and succeed in both states relies on different
strategies, each involving expression of specific traits.

As free -living bacteria in soils, rhizobia interact with
a great microbial diversity, in fluctuating environmental
conditions. As stable components of soil microbiota,
rhizobia possess a plethora ofmetabolites andmolecules
that allow them to interact and compete with other soil
microbes. In this sense, some rhizobial strains produce
siderophores that chelate iron (Bejoysekar and
Chakrabartty 2014; Gupta et al. 2018; Srinivasan
2017), antibiotics and hydrolytic enzymes active against
diverse bacteria and fungus in the soils (Bhattacharya
et al. 2013; Gopalakrishnan et al. 2015). Moreover,
rhizobia use a wide variety of carbon sources,
outcompeting other soil members (Gopalakrishnan
et al. 2015). Since these properties can prevent the
spread or activity of plant pathogens, rhizobia may be
therefore considered as biocontrol agents. Indeed, it was
demonstrated that rhizobia are able to prevent or reduce
the incidence of several diseases in plants through
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expression of direct biocontrol properties (Arora et al.
2001; Das et al. 2017; Schmidt et al. 2018; Volpiano
et al. 2018, 2019).

In the alternative endophytic lifestyle, rhizobia colo-
nize plant tissues and engage into a very intimate asso-
ciation that benefits the legume host through Biological
Nitrogen Fixation (BNF). To succeed in this alternative
lifestyle, rhizobia should display a set of traits different
to those expressed in soils. For instance, rhizobia must
display particular features allowing evasion and tempo-
ral suppression of plant defense responses, in order to
gain access to the interior of root tissues (Cao et al.
2017; Zamioudis and Pieterse 2012). Strikingly, rhizo-
bial infection of the roots and symbiosis development
can also lead to a plant increased systemic defense state,
in a process resembling the Induced Systemic Resis-
tance (ISR) mechanism well described for other Plant
Growth Promoting Bacteria (PGPB) (Fernandez-Göbel
et al. 2019; Pieterse et al. 2014; Yu et al. 2019). Molec-
ular events mediating these responses are still not fully
understood, and could involve a mechanism that differs
from that described for other PGPB. Therefore, we
propose the term ISR -like responses to describe the
increased state of systemic defense elicited by rhizobia.
In this article, we present an overview of ISR and
discuss different aspects of the ISR -like responses in-
duced by rhizobial bacteria.

ISR responses in the context of plant immunity

Plant defense responses

Plant roots are exposed to an enormous diversity of
microbes, potentially capable of establishing a continu-
um spectrum of interactions ranging from mutualistic to
pathogenic. Plant immune system exerts a key role,
displaying gate -keeping functions that ward off patho-
gens but also promote and maintain beneficial microbes
(Yu et al. 2019). Plant innate immunity towards patho-
gens is activated after recognition of microbe molecular
patterns and effector molecules (Jones and Dangl 2006;
Pieterse et al. 2012). Plant pattern -recognition receptors
(PRRs) perceive common microbial compounds known
as microbe -associated molecular patterns (MAMPs)
such as flagellin, elongation factor Tu (EFTu), bacterial
lipopolysaccharides and peptidoglycans, and fungal
chitooligosaccharides (Saijo et al. 2018). PRRs repre-
sent the first defense line in plants and elicit a MAMP -

triggered immunity (MTI), which is often efficient in
controlling potential intruders. However, successful
pathogens suppress MTI through virulence effector
molecules, bypassing this first defense response. In turn,
plant immune system has evolved a second line of
defense called effector -triggered immunity (ETI), in
which NB -LRR (nucleotide -binding–leucine rich re-
peat) receptor proteins recognize these effector mole-
cules. ETI constitutes an accelerated and amplified MTI
defense reaction and, usually, results in a hypersensitive
cell death response (HR) at the infection site, which
prevents invading pathogens (mainly biotrophs) to gain
access to inner plant tissues. The local onset of MTI and
ETI often results in an induced resistance in distant plant
tissues. This phenomenon is known as systemic ac-
quired resistance (SAR) and is characterized by local
and systemic increased levels of salicylic acid (SA).
However, SA itself does not make up the systemic
signal. Instead, several plant metabolites have been pro-
posed as putative long - distance signaling molecules,
including the methyl ester of SA, azelaic acid and
pipecolic acid, among others. This signaling event re-
sults in the systemic expression of pathogenesis -related
(PR) genes, many of which encode PR proteins with
antimicrobial activity (Pieterse et al. 2014).

The plant immune system plays a central role in the
social network of plants. As stated above, it can be
activated to ward off pathogens, but it must be sup-
pressed in order to accommodate mutualists. It is gen-
erally accepted that beneficial endophytic microbes
must overcome or evade plant immune local responses,
mainly MTI, to achieve a successful root establishment
and to exert their positive effect (Yu et al. 2019). In
addition, an active plant -driven immune suppression
has been shown to be required for rhizobia -legume
symbiosis (Benezech et al. 2019). In order to better
understand the significance, mechanisms involved and
consequences of manipulating plant immunity, this trait
should be considered in a wider scenario, as the result of
a long evolutionary process including the acquisition
and later refinement of a common molecular language
(Bulgarelli et al. 2013; Oldroyd 2013) and appropriate
plant -microbe responses (Lagunas et al. 2015).

ISR and priming in plants

ISR is a biocontrol mechanism by which selected mi-
croorganisms prime the whole plant body for an en-
hanced defense against a broad range of pathogens,
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without directly activating costly defenses (Pieterse
et al. 2014). Root -associated biocontrol microorgan-
isms, such as Pseudomonas, Bacillus, Trichoderma
and mycorrhizal fungal species have been reported to
induce systemic resistance in plants (Cameron et al.
2013; Choudhary and Johri 2009; De Vleesschauwer
and Höfte 2009; Iavicoli et al. 2003; Kloepper et al.
2004; Van Loon et al. 1998). These beneficial microor-
ganisms produce elicitors responsible for the onset of
immunity, including antibiotics, flagella, N -acyl
homoserine lactones, iron regulated siderophores,
biosurfactants and volatile organic compounds, among
others. Moreover, elicitors can act redundantly to elicit
MTI (Ongena et al. 2007; Pieterse et al. 2014; Stringlis
et al. 2018).

Once the specific elicitor is locally perceived, a
signaling pathway is triggered in order to accurately
respond to this molecule. After these local responses
are switched on, a second immune signaling event
allows transforming the local phenomenon into a
potentiated systemic state of defense (Fig. 1a, b).
Like in SAR, a long distance signaling molecule
(not identified yet) activates the systemic immunity
in distant plant tissues. However, unlike SAR, ISR -
expressing plants do not accumulate PR proteins after
the initial stimulus, and JA - or ET - dependent
defense genes (and in some cases SA -dependent
genes) are expressed only after pathogen attack (sec-
ond stimulus) (Pieterse et al. 2014). A large number
of studies supports that ISR triggered by beneficial
microbes is based on an enhanced defense response
as a consequence of a stronger and/or faster defense
reaction when the plant is exposed to biotic or abiotic
stress (Conrath et al. 2006, 2015; Figueredo et al.
2014; Tonelli et al. 2011). This phenomenon, called
priming, is defined as the physiological state (the
primed state of defense) in which the plant is condi-
tioned for the superactivation of defenses against
environmental challenges (Martinez-Medina et al.
2016). Since defense responses are only deployed
following the perception of the triggering stimulus,
priming is proposed to be an adaptive, low -cost
defensive mechanism (Mauch-Mani et al. 2017).

Priming is characterized by the acquisition of
memory with a low fitness cost, more robust defense
response, and better performance in challenged
plants. Priming can be maintained throughout the
plant’s life cycle and can be even transmitted to
subsequent generations, therefore representing a type

of immunological memory (Martinez-Medina et al.
2016; Mauch-Mani et al. 2017).

Modulation of legume immunity by rhizobia

It is generally assumed that rhizobia are first recognized
by plants as intruders, and that hosts mount a defense
response against these bacteria. Development of a suc-
cessful interaction will depend on the bacterial ability to
evade, block or overcome plant defenses (Soto et al.
2006, 2009; Zamioudis and Pieterse 2012). Similarities
in the molecular signals, machinery and mechanisms
used by rhizobia and pathogens to invade plants support
the notion that nitrogen fixing symbiosis has evolved
from pathogenic interactions (Deakin and Broughton
2009). Therefore, it becomes evident that modulation
of plant immunity plays an important role in symbiosis
development. Some particular structural features of rhi-
zobial cells are related with evading MTI. For instance,
rhizobial bacteria do not possess the flg22 epitope (a
well characterized MAMP) (Felix et al. 1999; Lopez-
Gomez et al. 2011). In addition, legume hosts lack the
ability to mount a defense response to other potential
MAMPs such as the elf18 peptide of EFTu and the
csp15 peptide from rhizobial cold shock proteins
(Boller 2005).

Besides avoiding recognition by plants, classical
view of symbiosis development indicates that a success-
ful interaction also relies on the rhizobial ability to
actively suppress the host innate immunity. Early
transcriptomic experiments performed in model le-
gumes seemed to support this notion, revealing a tran-
sient induction of defense genes at the first steps of the
interaction that is later repressed (Clúa et al. 2018;
Kouchi et al. 2004; Libault et al. 2010; Lohar et al.
2006). However, recent works performed in Lotus and
Aeschynomene challenge this classical view, raising
questions about the existence of this transient defense
induction (Gully et al. 2018; Kelly et al. 2018; Benezech
et al. 2019). Nevertheless, it is clear that plant immunity
has to be regulated during symbiosis development. This
regulation is achieved through both plant and bacterial
factors. Several rhizobial molecules have been related
with the suppression of the defense responses, including
Nod factors (NFs), effectors secreted through Type III
secretion system (T3SS) and surface polysaccharides
such as extracellular polysaccharides (EPS), lipopoly-
saccharides (LPS), capsular polysaccharides (KPS) and
cyclic β -glucans (Janczarek et al. 2015).
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Nod factors

NFs are key molecules involved in legume -rhizobia
symbiosis. They consist of an N -acetyl glucosamine
backbone with an N -linked fatty acid moiety and sev-
eral species specific molecular decorations. NFs are
produced by rhizobia in response to (iso)flavonoids
secreted by their compatible hosts, at the onset of the
molecular recognition between legumes and rhizobia.

Even when it is not a general rule, these signaling
molecules are essential for the initiation of symbiosis
in the majority of the studied associations. NFs percep-
tion by specific LysM -RLKs (Lysin -motif Receptor
Like Kinases) triggers a signaling transduction pathway
that allows bacterial infection and nodule organogenesis
in legumes, processes tightly coordinated. In addition, a
role for NF perception in suppressing plant MTI re-
sponses has been proposed (Cao et al. 2017; Muñoz

Fig. 1 Systemic defense responses induced by rhizobial and non-
rhizobial beneficial microbes. a A local stimulus induced by
beneficial microorganisms (in this case, in the plant roots) triggers
an increased systemic defense response in the host. This increased
response is expressed after biotic or abiotic stress challenge. Local
and systemic responses are connected through a systemic signal. b
Induced systemic resistance elicited by non-rhizobial PGPR. A
local stimulus (MAMP perception) triggers MTI, which can be
later attenuated by microbial effectors. MTI often results in an
increased systemic defense response. A hormonal crosstalk is
involved in sensing and connecting local and systemic defense
responses. However, the precise nature of the signal linking local
and systemic responses has not been determined yet. Perception of
the systemic signal results in transcriptional reprogramming of
transcription factors (TFs) and mitogen-activated protein kinases
(MAPKs), leading to a primed state of defense. Epigenetic mod-
ifications may also be related with this primed defense. After a
challenge, the plant defense response is faster and more robust

than in non-induced plants. c ISR-like responses induced by
rhizobia. Nodulating bacteria produce signaling molecules (NF).
NF perception by LysM-RLKs triggers a sym pathway that initi-
ates the epidermal and cortical responses required for nodulation
process. In addition, NFs and other rhizobial molecules such as
effectors secreted through T3SS modulate plant defense reactions,
inducing features related with immune signaling and/or decreasing
this response. In the absence of NF, sym pathway can also be
activated by T3SS effectors in some associations. Nodulation
process is regulated by the autoregulation of nodulation (AON)
system. During this phenomenon, CLE peptides are produced in
the roots and migrate to the shoot where they are recognized by a
LRR-RLK. A shoot derived inhibitory signal (SDI) travels to the
root, preventing over nodulation. AON system can be related with
the systemic increase in the defense response (ISR-like responses
induced by rhizobia), probably mediated by a primed state involv-
ing a hormonal crosstalk and epigenetic modifications
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et al. 2015), possibly by reducing the levels of PRRs on
the plasma membrane (Cao et al. 2017). Interestingly,
NFs effect over plant MTI responses is not restricted to
legumes, since it was also observed in A. thaliana,
tomato and corn (Liang et al. 2013). In a recent work,
Rey et al. (2019) reported that pre -incubation of
Medicago seedlings with NFs inhibited the ROS burst
generated by inoculation of a culture filtrate of
Aphanomyces euteiches. However, ROS inhibition did
not affect induction of defense genes or the overall plant
pathogen resistance (Rey et al. 2019).

Molecular mechanisms by which NFs interfere with
the host’s immune system are not well understood, but it
seems clear that activation of the Nod signaling pathway
suppresses SA–dependent defense responses (Martinez-
Abarca et al. 1998; Zamioudis and Pieterse 2012). Strik-
ing similarities between defense modulation by rhizobia
and biotrophic pathogens suggest that nodulating bacte-
ria can be regarded as biotrophicmutualists (Gutjahr and
Paszkowski 2009).

On the other hand, it has been also demonstrated that
NFs themselves can induce some responses classically
associated with plant immune signaling (Day et al.
2001; D’Haeze and Holsters 2002).

Type III secretion system

Other rhizobial molecules related with suppression of
plant defenses are the effectors secreted through type III
secretion system (T3SS). T3SS is a complex secretory
system that allows injecting proteins (called effectors)
into the host cell cytoplasm. Even when the role of the
T3SS in mutualistic plant -microbe interactions is un-
clear, it is known that in the Rhizobium -legume symbi-
osis certain microbial effectors suppress defense reac-
tions while others possess avirulence activities
(Zamioudis and Pieterse 2012). As a consequence,
T3SS effectors may function as host -range specificity
determinants (Yang et al. 2010).

Interestingly, protein secreted through T3SS display
dissimilar roles in different legume hosts. In this sense,
mutation of T3SS in a bradyrhizobial strain able to
nodulate legumes belonging to Dalbergioid, Millettioid,
and Genistoid tribes resulted in contrasting symbiotic
phenotypes when inoculated in the different host plants
(Songwattana et al. 2017). Moreover, the same T3SS
effector can play different roles even in phylogenetically
related legume species. InnB effector secreted by
Bradyrhizobium elkanii USDA61 into host cells plays

a negative role in Vigna radiata, probably by triggering
ETI and aborting symbiosis development. However, this
effector plays a beneficial role in rhizobial symbiosis
with the phylogenetically related host plant Vigna mun-
go (Nguyen et al. 2018).

In addition, T3SS effectors can also trigger nodula-
tion signaling pathway during rhizobia -legume symbi-
osis. It was demonstrated that T3SS is crucial to pro-
mote nodulation of Glycine max and Aeschynomene
indica in a NF independent manner (Okazaki et al.
2013, 2016). These data suggest that further studies
are required in order to draw a better picture of the
important role of rhizobial T3SS effectors in legume
nodulation.

Cell surface polysaccharides

Interaction between rhizobial strains and their host le-
gumes involves bacterial cell surface polysaccharides.
These molecules participate in cell -to -cell interactions,
biofilm formation and root colonization, and play im-
portant roles during the early events leading to the
establishment of symbiosis (Donlan 2002). In addition,
cell surface polysaccharides such as lipopolysaccharides
(LPS), extracellular polysaccharides (EPS), capsular
polysaccharides (KPS) and cyclic β -glucans (CG) can
help rhizobia to tolerate the plant defense response or
mediate its attenuation in host legumes (Tellström et al.
2007).

Lipopolysaccharides (LPS)

LPS are components of cell wall in Gram negative
bacteria, including rhizobia. LPS from rhizobial cells
have the same general structural architecture as those
fromGram -negative pathogens. They consist of lipid A,
O -antigen and a core oligosaccharide. It is interesting to
note that rhizobia produce a lipid A with unique struc-
tural characteristics such as the absence of one or both of
the 1 - and 4 -phosphate groups at the β -(1,6) - glucos-
amine disaccharide (De Castro et al. 2008) and the
presence of very long chain fatty acids (VLCFA)
(Brown et al. 2011; Ramadas Bhat et al. 1994), also
observed in several bacteria that establish persistent
intracellular infection in their hosts. VLCFA have been
related with cell -envelope stability and stress adaptation
of rhizobia both in planta and in free -living conditions
(Bourassa et al. 2017).
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Early works showed that LPS are essential for sym-
biosis development, and that structural modifications in
the O -antigen and lipid A regions occur during this
interaction (D’Haeze et al. 2007; Kannenberg and
Carlson 2001; Kannenberg et al. 1998). Rhizobial mu-
tants in LPS are not only symbiotically defective but
also induce an increased defense response. Therefore, it
is assumed that rhizobial LPS are involved in defense
response attenuation of host legumes (Tellström et al.
2007).

Exopolysaccharides (EPS)

Exopolysaccharides produced by rhizobia are chemical-
ly diverse heteropolymers composed by linear or
branched repeating units containing monosaccharides
(D -glucuronic or D -galacturonic acid, D -glucose, D -
galactose, D -mannose, L -rhamnose) usually substituted
with non -carbohydrate moieties. An active role of EPS
in signaling to ameliorate plant defense responses has
been proposed. Recognition of rhizobial EPS by le-
gumes is crucial for infection, and a bacterial EPS
receptor 3 (Epr3) has been identified in L. japonicus
(Kawaharada et al. 2015). Several studies reported that
callose deposition and antimicrobial compounds pro-
duction are suppressed by EPS (Albus et al. 2001;
Scheidle et al. 2005). In addition, EPS are necessary
for negative regulation of genes related with plant de-
fense responses and calcium chelation (Aslam et al.
2008; Jones et al. 2008; Tellström et al. 2007). However,
the precise function of rhizobial EPS during infection
remains unresolved.

Capsular polysaccharides (KPS)

Rhizobial KPS are strain -specific antigens tightly asso-
ciated with the outer membrane (Fraysse et al. 2005;
Haeze et al. 2004; Kannenberg et al. 1998; Pellock et al.
2000). They are acidic linear polysaccharides, usually
comprising disaccharide repeating units (Le Quere et al.
2006; Reuhs et al. 1993, 1995). KPS probably functions
as a signal molecule during the early stages of symbio-
sis, and can also confer protection to rhizobia against
plant defense (Janczarek et al. 2015).

Cyclic β -glucans (CG)

Cyclic β -glucans (CG) are sugar oligomers secreted by
rhizobia into the periplasmic space. These sugar

oligomers consist of D -glucose units that may be
substituted with non -glycosidic anionic groups (Lepek
and D'Antuono 2005; Schue et al. 2011). Considering
that CG can protect rhizobia against detergents, it can be
hypothesized, as for others surface polysaccharides, that
they may also protect rhizobia against plant defense
responses.

It is important to consider that, even when the differ-
ent microbial molecules were presented separately in
this article, they are almost simultaneously perceived
by plants as a whole. This singular combination consti-
tutes a bacterial hallmark, allowing host recognition
according to the microbe lifestyle (pathogen, symbiont,
non -symbiotic beneficial microbe, etc). Therefore, the
outcome of plant responses after microbial perception
represents the balance of multiple interconnected signal-
ing pathways acting simultaneously, and not the re-
sponse to a single bacterial molecule.

Finally, it is important to consider recent works de-
scribing an active plant -driven suppression of immunity
during rhizobia legume -interaction. This response pre-
vents defense reactions, allowing a massive colonization
of plant organs and bacteroid persistence within the
nodules. Several proteins implicated in this response
were identified in model legumes, and include RSD1,
SymCRK, DNF2 and NAD1 in Medicago (Berrabah
et al. 2014; Bourcy et al. 2013; Domonkos et al. 2017;
Sinharoy et al. 2013) and APN1 in Lotus (Yamaya-Ito
et al. 2018).

ISR -like responses displayed by rhizobia

Many works provide data supporting the notion that
inoculation of legumes with rhizobia results in the in-
duction of an increased defense response effective
against diverse pathogens (necrotrophs, biotrophs) and
herbivores (Arfaoui et al. 2005, 2006, 2007;
Chakraborty and Chakraborty 1989; Diaz-Valle et al.
2019; Dutta et al. 2008; Figueredo et al. 2014, 2017;
Kalantari et al. 2018; Mabrouk et al. 2007; Osdaghi
et al. 2011; Rabie 1998; Smigielski et al. 2019)
(Table 1). This effect was also observed in non legumes
after rhizobial inoculation (Mishra et al. 2006; Reitz
et al. 2000). Moreover, this defense response is usually
referred as systemic. However, confirming systemic
nature of a defense response induced by rhizobial inoc-
ulation depends on carefully designed experiments, in-
volving (at least) three components: plants, rhizobia and
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pathogens. In addition, inoculation of rhizobia and path-
ogen must be spatially separated to avoid the possibility
of a direct inhibition between these microbes. In the case
of pathogens affecting the aerial part of plants, spatial
separation with rhizobia is natural. However, for soil-
borne pathogens, systems like split -root or overlapping
pots were used. Furthermore, to confirm that the defense
response is systemic, the protective effect must be de-
termined in organs different to those inoculated with
rhizobia. These conditions are fulfilled in some of the
works, confirming that rhizobia induce a defense re-
sponse resembling ISR (Diaz-Valle et al. 2019; Dutta
et al. 2008; Figueredo et al. 2014, 2017, 2018). Howev-
er, many others works were not originally designed with
this aim and, therefore, fail to accomplish some of the
requirements. Besides, it is important to consider that
plant nutritive status will affect the plant fitness and,
therefore, its response towards pathogen challenge.
This is especially important considering that rhizobia
contribute to plant nutrition through nitrogen -fixa-
tion. This fact adds another layer of complexity when
it comes to interpret the results. Nevertheless, there
are a number of observations consistent with the no-
tion that rhizobial inoculation induces defense re-
sponses resembling the ISR process well described
for others PGPB.

Local responses induced by rhizobia leading to systemic
resistance

Symbiotic plant -beneficial microbe interactions require
a high degree of coordination and a complex molecular
dialogue between both partners (Cameron et al. 2013;
VanWees et al. 2008; Zamioudis and Pieterse 2012). As
stated before, it is now generally assumed that rhizobia
actively suppress the host immune response to allow
infection and symbiosis. Therefore, it has been proposed
that local responses related with the immune suppres-
sion lead to a systemic state of resistance (Beardon et al.
2014). The nature of the rhizobial molecules triggering
the systemic signaling is not clear yet. Considering that
NFs possess a dual role over plant defense (suppressing
and activating features related with innate immunity),
they may be related with the priming of systemic re-
sponses in the host. Some evidences support this hy-
pothesis. Rey et al. (2013) reported that Medicago
truncatulamutants unable to perceive Nod factors were
more susceptible to A. euteiches and Colletotrichum
trifolii than wild -type plants, suggesting a crosstalk

between NF receptors and defense responses. In addi-
tion, peanut plants inoculated with a bradyrhizobial
strain defective in NF production display higher inci-
dence and severity of the stem rot caused by Sclerotium
rolfsii than plants inoculated with the ISR -eliciting wild
-type strain (Figueredo et al. 2017). Recently, a rapid
systemic redox change after inoculation of soybean
roots with Bradyrhizobium japonicum was demonstrat-
ed (Fernandez-Göbel et al. 2019). Furthermore, the au-
thors showed that this systemic response (related to an
increased resistance against abiotic stress) is NF -depen-
dent. However, how these local responses elicited by
NFs result in a systemic effect, and which is the molec-
ular pathway related to this mechanism, are not known.

Based on current knowledge, some hypotheses have
been proposed, suggesting a role for phytohormones,
small RNAs and autoregulation of nodulation (AON)
system as long distance signals of local responses
(Beardon et al. 2014). Rhizobia have evolved mecha-
nisms to efficiently control SA levels of host plants and
establish successful infections. This suppression of SA -
dependent defenses can balance the host immunity to-
wards JA -related defenses, mostly active against her-
bivorous and necrotrophic pathogens. However, the role
of JA as long distance signal of ISR and the importance
of SA and JA -mediated signaling in rhizobium -legume
symbiosis have not been demonstrated (Beardon et al.
2014; Gutjahr and Paszkowski 2009). Interestingly,
priming for SA accumulation and SA -mediated defense
active against the powdery mildew fungi (biotroph) was
observed in Medicago plants after rhizobial inoculation
(Smigielski et al. 2019). Moreover, even when suppres-
sion of SA -dependent defense responses seems to be
widespread in rhizobial symbiosis, transcriptomic data
indicates that peanut increase SA response during sym-
biosis development. This leads to the expression of a
group of divergent PR -1 that is probably required for
symbiosis (Karmakar et al. 2019). Differences in the
modulation of the plant immune system can be related
with the more primitive infection mechanism described
for this legume.

Other molecules proposed as systemic signals are
small RNAs (sRNAs), a population of 21 to 24
nucleotide RNAs molecules that mediate RNA si-
lencing. These molecules are able to move by phlo-
em, acting as gene repressors at transcriptional and
post -transcriptional level (Bonnet et al. 2006;
Katiyar-Agarwal and Jin 2010; Liu and Chen
2018). However, further investigations are necessary
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Table 1 ISR-like responses induced by rhizobial inoculation on legumes

Legume
host

Rhizobial
strain

Pathogen Effects Spatial
separation
between
rhizobia
and
pathogen

Additional comments Reference

Pisum
sativum
L.

Rhizobium
leguminosar-
um

Fusarium
solani f. sp.
pisi

-Rot index per plant was
diminished.

-Phytoalexin production was
increased.

No -In vitro tests with
F. solani f. sp. pisi and
R. leguminosarum
showed no direct
antagonistic effects on
solid medium.

Chakraborty
and
Chakrabo-
rty 1989.

Vicia faba Rhizobium
leguminosar-
um

Botrytis fabae -Percentage of infection was
reduced.

-Phenolic compounds content
was increased.

No Rabie 1998.

Cicer
arietin-
um L.

Rhizobium sp. Fusarium
oxysporum
f. sp. ciceris

-Wilt incidence was reduced.
-Peroxidase and polyphenol

oxidase activity, expression of
phenylalanine
ammonia-lyase, chalcone
synthase and isoflavone
reductase genes, and
accumulation of phenolic
compounds were increased.

No -In vitro tests with
F. oxysporum f. sp.
ciceris and Rhizobium
sp. showed direct
antagonistic effects on
solid medium.

Arfaoui et al.
2005,
2006,
2007.

Pisum
sativum
L.

Rhizobium
leguminosar-
um

Orobanche
crenata

-Root infection by
O. crenata was reduced.
-Peroxidase and phenylalanine

ammonia lyase activity were
increased.

No Mabrouk
et al.
2007.

Cajanus
cajan L.

Rhizobium sp. Fusarium
udum

-Appearance of wilting
symptoms was delayed.

-Severity of disease was reduced.
-Peroxidase, phenylalanine

ammonia lyase and
polyphenol oxidase activity
was induced, and phenolic
compounds content was
increased.

Yes -Production of lytic
enzymes and fusaric
acid by the pathogen
were not affected by
Rhizobium sp.

Dutta et al.
2008.

Phaseolus
vulgaris

Rhizobium
leguminosar-
um

Xanthomonas
axonopodis
pv.
Phaseoli

-Common bacterial blight was
suppressed.

No Osdaghi
et al.
2011.

Arachis
hypoga-
ea L.

Bradyrhizobium
sp.

Sclerotium
rolfsii

-Wilting incidence and severity
were diminished.

-Phenolic compounds content
was increased.

Yes -Bradyrhizobium sp. Nod
factors participate in the
systemic resistance
against S. rolfsii.

Figueredo
et al.
(2014,
2017,
2018).

Phaseolus
vulgaris

Rhizobium
leguminosar-
um

Fusarium
solani f. sp.
phaseoli

-R. leguminosarum suppressed
Fusarium root rot and
increased plant and root
weight.

No Kalantari
et al.
(2018).
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to provide insight into the role of sRNAs as long -
distance ISR regulators.

An alternative explanation that accounts for the sys-
temic protection conferred by root nodule symbiosis is
to consider it as a part of a more widespread
autoregulatory mechanism that limits the root coloniza-
tion by all type of mutualists (Zamioudis and Pieterse
2012). Biotrophic symbionts such as rhizobia consume
considerable amounts of carbohydrates. Therefore, the
host retained mechanisms to control the number of
nodules so as to balance the benefits/costs of mutualism
(Gutjahr and Paszkowski 2009). The autoregulation of
this symbiotic association is initiated in the roots, where
rhizobial infection triggers the production of CLE gly-
copeptides that move via xylem to the shoot. There, they
are perceived by a homo - or heterodimeric receptor
complex (Ferguson et al. 2019). After perception, a
second unknown signal (possibly cytokinins or a micro
RNA) is generated in the shoot and is translocated back
to the roots via the phloem to restrict nodule formation
and root susceptibility to rhizobial infection (Miri et al.
2019; Tsikou et al. 2018). This phenomenon is known as
AON. Interestingly, legume plants mutated in the CLE
peptide receptor are hyper susceptible to nematode
(Lohar and Bird 2003) and pathogen (Tazawa et al.
2007) infection and abiotic stress (Fernandez-Göbel

et al. 2019), suggesting that systemic defense signaling
may be an intrinsic part of the autoregulation phenom-
enon (Fig. 1c). The AON phenomenon, at least superfi-
cially, resembles ISR, since a microbial infection in local
tissues primes resistance against secondary infections in
distant plant parts. Therefore, it has also been proposed
that ISR -like responses induced by rhizobia could be
the result of a more general mechanism of autoregula-
tion of microorganism -plant mutualistic interaction,
providing systemic protection in roots and shoots
against a broad spectrum of pathogens (Zamioudis and
Pieterse 2012).

Concluding remarks and future perspectives

Rhizobia are soil bacteria that establish a symbiotic
nitrogen fixation association with legumes, improving
the nutritional state and fitness of the host plant. Exper-
imental evidences support the notion that an additional
benefit of rhizobial inoculation is related with a systemic
increase of plant defense responses. However, some
questions regarding the evolutionary origin and signifi-
cance of this trait are still open. For instance, is ISR -like
response elicited by rhizobia an evolutionary remnant of
their pathogenic origins? In this sense, is it a side effect

Table 1 (continued)

Legume
host

Rhizobial
strain

Pathogen Effects Spatial
separation
between
rhizobia
and
pathogen

Additional comments Reference

Medicago
truncat-
ula

Sinorhizobium
meliloti

Erysiphe pisi -Less penetration of the fungus
was observed.

No -Elevated levels of free SA
and SA-dependent
marker gene expression
upon pathogen infec-
tion.

Smigielski
et al.
(2019).

Pisum
sativum

Rhizobium
leguminosar-
um

-Asexual spore formation was
reduced.

No

Phaseolus
vulgaris

Rhizobium etli Pseudomonas
syringae pv.
phaseolico-
la

-Disease symptomatology and
pathogen colonization were
diminished.

-Accumulation of the superoxide
anion (O2 −) and a faster and
stronger callose deposition
were observed.

Yes -Expression of defense
related genes in plants
treated with R. etli
exhibited a pattern that
is typical of the priming
response.

-Plants treated with R. etli
developed a
transgenerational
defense memory.

Diaz-Valle
et al.
(2019).
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of the host innate immunity manipulation? Or is it a
requisite for symbiosis success, related with a more
general phenomenon involving self -regulation of all
types of mutualism?

ISR -like responses elicited by rhizobia on legumes
constitute an interesting research field. However, lack of
experiments specifically designed with the aim of un-
derstanding this response has hindered the possibility to
gain further insight into the molecular base implicated in
this phenomenon. Therefore, a shift in the approaches
used to study rhizobial ISR -like responses is essential.
This research (together with a meta -analysis of avail-
able data), will provide valuable information in order to
unravel the molecular signals and pathways involved in
the local and systemic defense responses. Moreover, the
effect of this ISR - like responses over the composition
and structure of the host microbiome should not be
missed. Results of these investigations will be relevant
from a basic perspective, but could also impact on
productive systems, by optimizing the protective effect
conferred by rhizobia.
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