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Transcriptomic approaches revealed thousands of genes differentially or specifically
expressed during nodulation, a biological process resulting from the symbiosis between
leguminous plant roots and rhizobia, atmospheric nitrogen-fixing symbiotic bacteria.
Ultimately, nodulation will lead to the development of a new root organ, the nodule.
Through functional genomic studies, plant transcriptomes have been used by scientists
to reveal plant genes potentially controlling nodulation. However, it is important to
acknowledge that the physiology, transcriptomic programs, and biochemical properties
of the plant cells involved in nodulation are continuously regulated. They also differ
between the different cell-types composing the nodules. To generate a more accurate
picture of the transcriptome, epigenome, proteome, and metabolome of the cells
infected by rhizobia and cells composing the nodule, there is a need to implement plant
single-cell and single cell-types strategies and methods. Accessing such information
would allow a better understanding of the infection of plant cells by rhizobia and will
help understanding the complex interactions existing between rhizobia and the plant
cells. In this mini-review, we are reporting the current knowledge on legume nodulation
gained by plant scientists at the level of single cell-types, and provide perspectives on
single cell/single cell-type approaches when applied to legume nodulation.

Keywords: legume, nodulation, root hair, single cell-type single-cell, transcriptome

INTRODUCTION

Nodulation is a complex biological process which occurs between the root system of plants
(i.e., legumes and the genus Parasponia of the Ulmaceae family) and rhizobia, soil bacteria
capable to fix and assimilate the atmospheric dinitrogen. The establishment of nitrogen-fixing
nodules requires two developmental programs, one leading to the formation of infection threads
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(plant-made structures through which rhizobia grow to reach the
developing nodule) and one leading to nodule morphogenesis.
Several molecular, physiological and cellular aspects of this
biological interaction were characterized during the past two
decades. For instance, the root and bacterial exudates used to
initiate the recognition between the two partners are now well-
characterized [e.g., plants flavonoids and iso-flavonoids (Phillips
et al., 1994), bacterial nodulation factor (Nod factor) (Lerouge
et al., 1990), and polysaccharides (Fraysse et al., 2003)]. More
specifically, Nod factors are lipo-chitooligosaccharides whose
synthesis is stimulated upon recognition of plant flavonoids by
rhizobial NodD proteins (Oldroyd and Downie, 2008). Several
functional genomic studies revealed the role of plant genes
in controlling the perception then infection of the legume
root hair cells and nodule cells by rhizobia (Oldroyd, 2013).
Notably, the nodulation signaling pathway, a conserved gene
regulatory pathway between legume species which is induced
upon recognition of the Nod factor by Nod factor receptors,
was characterized across several legume species (Oldroyd,
2013). In addition to these functional genomic studies, the
development of microarrays followed by the emergence of high-
throughput sequencing technologies led researchers to better
characterize the overall response of the legume transcriptome
to rhizobia inoculation and infection. For instance, these
transcriptomic analyses were conducted to reveal the early
responses of the legume root hair cells to rhizobia inoculation
as well as the transcriptomic changes occurring during nodule
development [see below for a more detailed description of
these studies (Colebatch et al., 2002, 2004; Barnett et al.,
2004; El Yahyaoui et al., 2004; Kouchi et al., 2004; Lee et al.,
2004; Asamizu et al., 2005; Starker et al., 2006; Benedito
et al., 2008; Brechenmacher et al., 2008; Hogslund et al.,
2009; Libault et al., 2009; Afonso-Grunz et al., 2014; Roux
et al., 2014; Kant et al., 2016; Peng et al., 2017; Yuan et al.,
2017)].

While these studies allowed the identification of numerous
differentially expressed genes, opening avenues for new
functional analyses, the cellular complexity of the samples used
to establish these transcriptomic resources remains a difficulty
to accurately understand the response of plant cells to rhizobia
inoculation and infection. For instance, only root hair cells
localized in one specific zone of the root, the “susceptible zone”
of the root system, are potentially infected. Similarly, only a
subset of the nodule cells is infected by rhizobia upon endocytosis
and formation of the symbiosome, a plant cell compartment
containing the symbiotic bacteria. To overcome the problem
associated with sample heterogeneity, researchers implemented
strategies to isolate specific cell-types before applying the
collection of high-throughput sequencing methodologies such as
microarray hybridization and RNA-sequencing technology. Such
strategy successfully revealed the activation and repression of
transcriptomic programs in response to rhizobia inoculation and
infection. In this mini-review, we are discussing the outcome of
these analyses, their limitation, and opportunities to develop new
strategies to better capture the dynamic changes of the legume
transcriptome during the various stages of the nodulation
process.

ROOT HAIR INFECTION BY RHIZOBIA

The infection of the plant root hair cell by rhizobia is a continuous
process which is initiated by the chemical recognition between
plant and rhizobia [i.e., plants flavonoids and iso-flavonoids
are recognized by the bacteria leading to the activation of the
transcriptional regulators NodD (Fisher and Long, 1993), and
bacterial Nod factors as well as exopolysaccharides are recognized
by Lysin motif-receptor-like kinases of host plants (Limpens et al.,
2003; Madsen et al., 2003; Radutoiu et al., 2003; Kawaharada et al.,
2015)]. This recognition between the two partners is required
to insure the specificity of the interaction and the success of
the symbiosis. Upon recognition, the plant root hair cell will
adopt molecular and morphological changes in order to enhance
its infection by rhizobia. For instance, a gradual and constant
reorientation of the direction of root hair growth will lead to the
curling of the root hair cell. This curling is needed in order to trap
rhizobia into an infection pocket to enhance the infection rate of
the root hair cells. The reallocation of plasma membrane proteins
in response to rhizobia is also one of the earliest responses of the
plant to rhizobia inoculation. Specifically, several proteins of the
microdomain fraction of the plasma membrane are reallocated
at the tip of the root hair cells only several hours after bacterial
inoculation (Haney and Long, 2010; Qiao et al., 2017). Functional
analysis of the Medicago truncatula flotillin proteins suggest that
this reallocation is needed before the formation of the pre-
infection thread, then during the initiation and elongation of the
infection thread and the progression of rhizobia in the root hair
cells in this tubular structure (Haney and Long, 2010).

As described above, the initiation of the nodulation process
results from sequential and progressive changes in root hair cell
physiological, morphological, and molecular responses. While
the morphological responses of the root hair cells consecutively
to rhizobia inoculation (e.g., root hair cell branching and curling)
are well-documented based on their ease to be monitored
under the microscope, the molecular response of the root hair
cells remains poorly described, especially when considering the
specific programs required at each step of the infection of the
root hair cell (El Yahyaoui et al., 2004; Kouchi et al., 2004;
Lohar et al., 2006; Hogslund et al., 2009; Libault et al., 2010b;
Breakspear et al., 2014; Damiani et al., 2016; Jardinaud et al.,
2016; Figure 1). Having the objective to carefully decipher
the transcriptomic programs and the time-course of gene
activity consecutively to rhizobia inoculation, single cell-type
strategies were implemented. For instance, researchers isolated
root sections enriched in rhizobia-susceptible root hair cells
(Lohar et al., 2006; Hogslund et al., 2009; Figure 1). This strategy
was useful since it led to the identification of hundreds of genes
differentially expressed in response to bacteria inoculation. To
reach a higher level of resolution of these responses, populations
of root hair cells were isolated from the root system at different
time after bacterial inoculation (Libault et al., 2010b; Breakspear
et al., 2014; Figure 1). Such approach highlighted the regulation
of thousands of genes including many genes of the Nodulation
Signaling Pathway, the differential expression of genes at different
time of the infection, and the transient activation of the plant
defense system (Libault et al., 2010b). The rapid inhibition of
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FIGURE 1 | Schematic representation of the current biological knowledge gained during the past years in legume symbiosis at the level of single cell-types (blue
boxes) and some of the major remaining gaps existing in our understanding of legume nodulation (red boxes). Relevant studies are mentioned in each box. In
addition to gain more knowledge in various aspects of legume nodulation, data integration must be conducted. Ideally, multi-omic analyses at the level of single cell
relevant to study the nodulation process (e.g., infected root hair cells and cells composing the nodule) should be conducted. Another challenge is related to the
dynamic molecular changes occurring in those cells during the recognition, interaction, infection then symbiosis between plant cells and rhizobia. Taking in
consideration the permanent adaptation of each cell involved in nodulation will clearly enhance our understanding of legume nodulation.

the plant defense system in root hair cells is likely required to
promote the infection of the plant by rhizobia (El Yahyaoui et al.,
2004; Kouchi et al., 2004; Libault et al., 2010b).

Despite this effort, the temporal regulation of the expression
of the legume genes upon rhizobia inoculation was difficult
to highlight. This is inherent to the nodulation process itself
since new root hair cells are continuously infected and each
infection is independently progressing from another. Hence, the
lack of synchronization of the infection of the root hairs by
rhizobia logically leads to the isolation of a heterogeneous plant
material: a mixture of unresponsive root hair cells (those located
outside of the susceptible zone of the root system), responsive but
uninfected root hairs, and responsive and infected root hairs. The
latter category could also be divided in unique populations of cells
according to their stage of infection by rhizobia.

THE LEGUME NODULE, A COMPLEX
ROOT ORGAN

Concomitantly to root hair cell infection, the cortical cells of
the root are actively dividing leading to the formation of the
nodule primordia. The location of these divisions differ between
legume species. For instance, in M. truncatula, the inner cortex

and pericycle actively divide upon rhizobia inoculation whereas,
in Lotus japonicus, the outer cortex cells divide (Szczyglowski
et al., 1998; Timmers et al., 1999; Xiao et al., 2014). Alongside,
the infection thread progresses in and between plant cells until
it reaches those dividing cells. There, the bacteria which are
differentiated in bacteroids, are released in the symbiosome,
an organelle-like structure where the bacteroids are surrounded
by the host plasma membrane. The presence of microdomain-
associated proteins in the symbiosome membrane suggests a role
of these membrane proteins in regulating the communication
existing between the symbionts and the infected plant cells of the
nodule (Haney and Long, 2010; Lefebvre et al., 2010; Qiao and
Libault, 2017; Qiao et al., 2017).

Nodule organogenesis differs between legume species.
For instance, indeterminate nodule development requires
the maintenance of the primordia even upon formation
of a mature indeterminate nodule (e.g., M. truncatula and
Pisum sativum). Oppositely, in determinate nodules (e.g.,
Glycine max, L. japonicus, and Phaseolus vulgaris), the initially
active nodule meristem will degenerate in mature nodules.
As a consequence, the cellular organization differ between
determinate and indeterminate nodules (Brewin, 1991; Ferguson
et al., 2010). In indeterminate nodule four major zones can be
distinguished. These zones are biologically different one from
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another. Zone #1 which is located at the tip of the nodule is the
site of the permanent nodule meristem. Zone #2 corresponds
to the infection zone where the bacteria infect the plant cells.
Zone #3 is the nitrogen fixation zone where the bacteroids fix
and assimilate for the plant the atmospheric dinitrogen. Zone
#4 is located on the basal side of the nodule zone and is the
location of the senescence of the nodule cells. Oppositely to
indeterminate nodules, determinate nodules are not organized
in zones. However, these nodules remain structurally organized:
the plant cells colonized by rhizobia are exclusively located
in the center of the globular nodules and are surrounded by
uninfected epidermal, cortex, and vascular cells. In addition
to their complex cellular composition, the nodules are also
characterized by the level of endoreduplication of their cells, a
duplication of the genomic DNA without cell division (Foucher
and Kondorosi, 2000; Vinardell et al., 2003; Kondorosi and
Kondorosi, 2004). While most plant cells contain 2C of genomic
DNA, the infected cells of the nodules can reach 4, 8, 16, 32,
64C, etc., of genomic DNA content where C is the haploid DNA
content. As a consequence, the zone #3 of indeterminate nodules
is characterized by its massive endoreduplication.

To date, most transcriptomic analyses conducted on legume
nodules focused on their developmental stages rather than their
cellular complexity [e.g., L. japonicus (Colebatch et al., 2002,
2004; Kouchi et al., 2004; Asamizu et al., 2005; Hogslund et al.,
2009), M. truncatula (Barnett et al., 2004; El Yahyaoui et al., 2004;
Starker et al., 2006; Benedito et al., 2008), G. max (Lee et al., 2004;
Brechenmacher et al., 2008; Libault et al., 2009; Yuan et al., 2017),
Cicer arietinum (Afonso-Grunz et al., 2014; Kant et al., 2016), and
Arachis hypogaea (Peng et al., 2017; Figure 1]. In indeterminate
nodules, Roux et al. (2014) collected different zones of the
M. truncatula nodules validating the use of laser microdissection
in order to better depict the unique transcriptional properties
of each zone. This method helps validating the used of laser
microdissection to enhance the purity of the biological samples
used from nodules (Roux et al., 2018). More recently, the same
group revealed the role of MtDME (DEMETER) as a major
regulator of the transcriptional activity of nodule genes and
transposable elements (Satge et al., 2016). However, additional
biological information is needed to reveal the complexity of the
transcriptional regulation, especially in determinate nodules.

APPLYING SINGLE-CELL/SINGLE
CELL-TYPE APPROACHES TO BETTER
UNDERSTAND LEGUME NODULATION

In order to better understand the role of legume genes during the
nodulation process, it is important to reveal the dynamic changes
of their expression during nodulation (Figure 1). Such study
should be conducted on infected root hair cells and nodule cells
in order to capture the complexity of the molecular regulation
at different stages of the infection of plant cells by the symbiotic
bacteria. Accordingly, there is a need to isolate and separate each
legume cell or cell-types (i.e., population of plant cells sharing
the same biological function) infected by rhizobia or contributing
to nodulation such as the root hairs preferentially located in the

susceptible zone of the root and the different nodule cell-types
(e.g., epidermal cells, vascular cells, and infected and uninfected
cortex cells of the nodule).

Various methodologies were established to isolate plant cell-
types (see Libault et al., 2017 for review). These methods consist
in isolating transgenic plant cell protoplasts (i.e., living plant cells
devoid in cell walls upon digestion of the cell wall by a cocktail
of cellulases, hemicellulases, and pectinases) expressing the green
fluorescent protein (GFP) in a cell-type dependent manner using
fluorescent-activated cell sorting (FACS) (Birnbaum et al., 2003;
Brady et al., 2007; Dinneny et al., 2008; Iyer-Pascuzzi et al.,
2011; Petersson et al., 2015; Marx, 2016). Another approach
consists in sequencing the transcriptome of cell nuclei upon
their isolation (e.g., isolation of biotinylated nuclei) expecting
that the cellular and nuclear transcriptomes are similar (Deal
and Henikoff, 2011). A more sophisticated approach allowing
the sequencing of transcripts interacting with ribosomes consists
in the isolation of mRNA using a cell type-preferential tagged
ribosomal protein (Zanetti et al., 2005). Applying those methods,
genes preferentially expressed in specific root cell-types were
characterized validating the idea of root cell-type-preferential
transcriptomes. More recently, the gDNA methylation profiles
from 6 different root cell-types from Arabidopsis were established
(Kawakatsu et al., 2016). Another strategy successfully applied
when analyzing the transcriptomic, epigenomic (Yan et al., 2013,
2015, 2016), proteomic (Larrainzar et al., 2007; Thal et al.,
2018), phosphoproteomic (Nguyen et al., 2012; Rose et al.,
2012), metabolomics (Brechenmacher et al., 2010), and glycomic
(Muszynski et al., 2015) responses of legume plants during the
nodulation process consist in to the massive isolation of root
hairs inoculated with rhizobia (Brechenmacher et al., 2009, 2012;
Libault et al., 2010a,c).

However, single cell-type approaches have several limitations
when considering the nodulation process. For instance,
while the isolation of a population of legume root hairs
enhances plant sample homogeneity leading to a more accurate
depiction of the molecular mechanisms controlling root
hair infection by rhizobia, it is important to acknowledge
the heterogeneity of this cellular population according to
their unique stages of differentiation, unique responses to
their environment, different stages in their infection by
rhizobia, and the stochastic variations existing between cells.
Also, other strategies need to be established to properly
investigate the unique transcriptomic signature of the cells
composing the nodule. To overcome these limitations, single-cell
approaches (i.e., individual analysis of the transcriptome of
each cell composing a complex organ) coupled with droplet-
based microfluidic systems (Kolodziejczyk et al., 2015) are
emerging. These systems [e.g., Chromium Single Cell Gene
Expression Solution (10× Genomics), ddSEq (Bio-Rad), C1
(Fluidigm)] allow the separation and isolation of each single-cell
preliminary to their molecular analysis. However, there are
several technical limitations to consider when using these
droplet-based microfluidic systems. For instance, the use of
plant protoplasts in droplet-based microfluidic systems remains
challenging due to the cell size discrimination of these systems
(e.g., the 10× Genomics gel beads and C1 Fluidigm chips cannot
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incorporate cells/nuclei larger than 52 and 25 µm of diameter,
respectively). This size exclusion might lead to the absence
or relative depletion of the transcriptome of large plant cells.
Also, protoplast bursting remains a major concern leading to
a decrease in RNA-seq library construction efficiency and a
marginal representation of low-represented cell types (Shulse
et al., 2018). Consequently, isolated plant nuclei represent an
interesting alternative but it presupposes that the cell and nuclear
transcriptomes are similar. Previous studies concluded that
working on isolated nuclei is an acceptable way to overcome
the problem of fragile cells (Deal and Henikoff, 2011). There
is a need to validate this results on plant cells before to fully
consider isolated nuclei as an alternative to single-cell biology.
Consequently, the application of droplet technology on plant
cells will require the combination of unique expertise in plant
cell biology, molecular biology, and bioinformatics in order to
generate viable biological samples compatible with droplet-based
microfluidic systems. Being capable to overcome these limitations
will open new avenues not only to understand legume nodulation
but also to reveal the dynamic changes of the plant cell molecular
responses during the infection process (Figure 1).

CONCLUSION AND PERSPECTIVES

Accessing single-cell transcriptomes is only a first step to fully
understand legume nodulation. Additional avenues must be
considered in order to develop a system-level understanding of
legume nodulation including the integration of transcriptomic,
epigenomic, proteomic, and metabolomics datasets. In addition,
gene regulatory networks including the characterization of
the binding sites of transcription factors controlling the
nodulation process (Andriankaja et al., 2007) should also be
more systematically characterized. As mentioned above, such

experiments should be conducted at the level of single cells
or, at least, at the level of single cell-types. In order to reach
this goal, new strategies and technologies has been recently
applied on plants or should be adapted to plant single cell
biology (Figure 1). For instance, recent improvements of the
sensitivity of mass-spectrometers and the development of new
biochemical tools allow the characterization of plant single-cell
proteomes (Misra et al., 2014; Zhu et al., 2016), and the three-
dimensional spatial distributions of plant metabolites including
from soybean nodules (Stopka et al., 2017; Velickovic et al.,
2018). The establishment of single cell ATAC-seq methodology
[Assay for Transposase-Accessible Chromatin using sequencing
(Cusanovich et al., 2015)] to reveal the folding of the chromatin
fiber of eukaryotic cells at the level of single cell also represents
an interesting approach to better understand the impact of the
epigenome on gene expression. However, the future access to
such methodology will need to be adapted and applied to plant
single cells.
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