11,444 research outputs found

    The International Linear Collider

    Full text link
    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Higgs factory.Comment: 41 page

    Interim Design Report

    Get PDF
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility

    Efficient and Robust Weighted Least-Squares Cell-Average Gradient Construction Methods for the Simulation of Scramjet Flows

    Get PDF
    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. The construction of cell-average gradients using a weighted linear least-squares method and the use of these gradients in the construction of the inviscid fluxes is the focus of this paper. A comparison of least-squares stencil construction methodologies is presented and approaches designed to minimize the number of cells used to augment/stabilize the least-squares stencil while preserving accuracy are explored. Due to our interest in hypersonic flow, a robust multidimensional cell-average gradient limiter procedure that is consistent with the stencil used to construct the cellaverage gradients is described. Canonical problems are computed to illustrate the challenges and investigate the accuracy, robustness and convergence behavior of the cell-average gradient methods on unstructured cell-centered finite-volume grids. Finally, thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet engine flowpath is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the preferred gradient method for a realistic 3-D geometry on a non-hex-dominant grid

    Implicit Large-Eddy Simulations of Hot and Cold Supersonic Jets in Loci-CHEM

    Get PDF
    This paper introduces a 4th-order accurate low-dissipation flux scheme for use on un- structured CFD codes, and compares this flux scheme with two others for LES calculations of hot and cold supersonic jets. The flux schemes are compared with experimental profiles of jet centerline Mach number, total temperature and total pressure, with jet spreading rate data, and with near- field acoustic measurements. The influence of grid resolution on these solution accuracy is also evaluated. The new low-dissipation flux scheme is shown to be stable on a high-speed compressible turbulent ow problem, and to be significantly more accurate than the existing baseline flux approach

    Imaging and 3D reconstruction of membrane protein complexes by cryo-electron microscopy and single particle analysis

    Get PDF
    Cryo-electron microscopy (cryo-EM) in combination with single particle image processing and volume reconstruction is a powerful technology to obtain medium-resolution structures of large protein complexes, which are extremely difficult to crystallize and not amenable to NMR studies due to size limitation. Depending on the stability and stiffness as well as on the symmetry of the complex, three-dimensional reconstructions at a resolution of 10-30 ˚ can be achieved. In this range of resolution, we may not be able to answer A chemical questions at the level of atomic interactions, but we can gain detailed insight into the macromolecular architecture of large multi-subunit complexes and their mechanisms of action. In this thesis, several prevalently large membrane protein complexes of great physiological importance were examined by various electron microscopy techniques and single particle image analysis. The core part of my work consists in the imaging of a mammalian V-ATPase, frozen-hydrated in amorphous ice and of the completion of the first volume reconstruction of this type of enzyme, derived from cryo-EM images. This ubiquitous rotary motor is essential in every eukaryotic cell and is of high medical importance due to its implication in various diseases such as osteoporosis, skeletal cancer and kidney disorders. My contribution to the second and third paper concerns the volume reconstruction of two bacterial outer membrane pore complexes from cryo-EM images recorded by my colleague Mohamed Chami. PulD from Klebsiella oxytoca constitutes a massive translocating pore capable of transporting a fully folded cell surface protein PulA through the membrane. It is part of the Type II secretion system, which is common for Gram-negative bacteria. The second volume regards ClyA, a pore-forming heamolytic toxin of virulent Escherichia coli and Salmonella enterica strains that kill target cells by inserting pores into their membranes. To the last two papers, I contributed with cryo-negative stain imaging of the cell division protein DivIVA from Bacillus subtilis and with image processing of the micrographs displaying the siderophore receptor FrpB from Neisseria meningitidis

    Simulation Studies of Digital Filters for the Phase-II Upgrade of the Liquid-Argon Calorimeters of the ATLAS Detector at the High-Luminosity LHC

    Get PDF
    Am Large Hadron Collider und am ATLAS-Detektor werden umfangreiche Aufrüstungsarbeiten vorgenommen. Diese Arbeiten sind in mehrere Phasen gegliedert und umfassen unter Anderem Änderungen an der Ausleseelektronik der Flüssigargonkalorimeter; insbesondere ist es geplant, während der letzten Phase ihren Primärpfad vollständig auszutauschen. Die Elektronik besteht aus einem analogen und einem digitalen Teil: während ersterer die Signalpulse verstärkt und sie zur leichteren Abtastung verformt, führt letzterer einen Algorithmus zur Energierekonstruktion aus. Beide Teile müssen während der Aufrüstung verbessert werden, damit der Detektor interessante Kollisionsereignisse präzise rekonstruieren und uninteressante effizient verwerfen kann. In dieser Dissertation werden Simulationsstudien präsentiert, die sowohl die analoge als auch die digitale Auslese der Flüssigargonkalorimeter optimieren. Die Korrektheit der Simulation wird mithilfe von Kalibrationsdaten geprüft, die im sog. Run 2 des ATLAS-Detektors aufgenommen worden sind. Der Einfluss verschiedener Parameter der Signalverformung auf die Energieauflösung wird analysiert und die Nützlichkeit einer erhöhten Abtastrate von 80 MHz untersucht. Des Weiteren gibt diese Arbeit eine Übersicht über lineare und nichtlineare Energierekonstruktionsalgorithmen. Schließlich wird eine Auswahl von ihnen hinsichtlich ihrer Leistungsfähigkeit miteinander verglichen. Es wird gezeigt, dass ein Erhöhen der Ordnung des Optimalfilters, der gegenwärtig verwendete Algorithmus, die Energieauflösung um 2 bis 3 % verbessern kann, und zwar in allen Regionen des Detektors. Der Wiener Filter mit Vorwärtskorrektur, ein nichtlinearer Algorithmus, verbessert sie um bis zu 10 % in einigen Regionen, verschlechtert sie aber in anderen. Ein Zusammenhang dieses Verhaltens mit der Wahrscheinlichkeit fälschlich detektierter Kalorimetertreffer wird aufgezeigt und mögliche Lösungen werden diskutiert.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook AppendicesThe Large Hadron Collider and the ATLAS detector are undergoing a comprehensive upgrade split into multiple phases. This effort also affects the liquid-argon calorimeters, whose main readout electronics will be replaced completely during the final phase. The electronics consist of an analog and a digital portion: the former amplifies the signal and shapes it to facilitate sampling, the latter executes an energy reconstruction algorithm. Both must be improved during the upgrade so that the detector may accurately reconstruct interesting collision events and efficiently suppress uninteresting ones. In this thesis, simulation studies are presented that optimize both the analog and the digital readout of the liquid-argon calorimeters. The simulation is verified using calibration data that has been measured during Run 2 of the ATLAS detector. The influence of several parameters of the analog shaping stage on the energy resolution is analyzed and the utility of an increased signal sampling rate of 80 MHz is investigated. Furthermore, a number of linear and non-linear energy reconstruction algorithms is reviewed and the performance of a selection of them is compared. It is demonstrated that increasing the order of the Optimal Filter, the algorithm currently in use, improves energy resolution by 2 to 3 % in all detector regions. The Wiener filter with forward correction, a non-linear algorithm, gives an improvement of up to 10 % in some regions, but degrades the resolution in others. A link between this behavior and the probability of falsely detected calorimeter hits is shown and possible solutions are discussed.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook Appendice
    corecore