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Kurzreferat

Am Large Hadron Collider und am ATLAS-Detektor werden umfangreiche Aufrüs-
tungsarbeiten vorgenommen. Diese Arbeiten sind in mehrere Phasen gegliedert und um-
fassen unter AnderemÄnderungen an der Ausleseelektronik der Flüssigargonkalorimeter;
insbesondere ist es geplant, während der letzten Phase ihren Primärpfad vollständig aus-
zutauschen. Die Elektronik besteht aus einem analogen und einem digitalen Teil: während
ersterer die Signalpulse verstärkt und sie zur leichteren Abtastung verformt, führt letzterer
einen Algorithmus zur Energierekonstruktion aus. Beide Teile müssen während der Auf-
rüstung verbessert werden, damit der Detektor interessante Kollisionsereignisse präzise
rekonstruieren und uninteressante effizient verwerfen kann.

In dieser Dissertation werden Simulationsstudien präsentiert, die sowohl die analoge
als auch die digitale Auslese der Elektromagnetischen Kalorimeter optimieren. Die Kor-
rektheit der Simulation wird mithilfe von Kalibrationsdaten geprüft, die im sog. Run 2 des
ATLAS-Detektors aufgenommen worden sind. Der Einfluss verschiedener Parameter der
Signalverformung auf die Energieauflösung wird analysiert und die Nützlichkeit einer er-
höhten Abtastrate von 80MHz untersucht. Des Weiteren gibt diese Arbeit eine Übersicht
über lineare und nichtlineare Energierekonstruktionsalgorithmen. Schließlich wird eine
Auswahl von ihnen hinsichtlich ihrer Leistungsfähigkeit miteinander verglichen.

Es wird gezeigt, dass ein Erhöhen der Ordnung des Optimalfilters, der gegenwärtig
verwendete Algorithmus, die Energieauflösung um 2 bis 3 % verbessern kann, und zwar in
allen Regionen des Detektors. Der Wiener Filter mit Vorwärtskorrektur, ein nichtlinearer
Algorithmus, verbessert sie um bis zu 10 % in einigen Regionen, verschlechtert sie aber
in anderen. Ein Zusammenhang dieses Verhaltens mit der Wahrscheinlichkeit fälschlich
detektierter Kalorimetertreffer wird aufgezeigt und mögliche Lösungen werden diskutiert.

Abstract

The Large Hadron Collider and the ATLAS detector are undergoing a comprehensive
upgrade split into multiple phases. This effort also affects the liquid argon calorimeters,
whose main readout electronics will be replaced completely during the final phase. The
electronics consist of an analog and a digital portion: the former amplifies the signal and
shapes it to facilitate sampling, the latter executes an energy reconstruction algorithm.
Bothmust be improved during the upgrade so that the detector may accurately reconstruct
interesting collision events and efficiently suppress uninteresting ones.

In this thesis, simulation studies are presented that optimize both the analog and the
digital readout of the Electromagnetic Calorimeters. The simulation is verified using cali-
bration data that has been measured during Run 2 of the ATLAS detector. The influence of
several parameters of the analog shaping stage on the energy resolution is analyzed and
the utility of an increased signal sampling rate of 80MHz is investigated. Furthermore,
a number of linear and non-linear energy reconstruction algorithms is reviewed and the
performance of a selection of them is compared.

It is demonstrated that increasing the order of the Optimal Filter, the algorithm cur-
rently in use, improves energy resolution by 2 to 3 % in all detector regions. The Wiener
filter with forward correction, a non-linear algorithm, gives an improvement of up to 10 %
in some regions, but degrades the resolution in others. A link between this behavior and
the probability of falsely detected calorimeter hits is shown and possible solutions are
discussed.
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Chapter 1

Introduction

Throughout the field of high-energy particle physics, the StandardModel is considered the best-
proven theory to explain the fundamental interactions of the universe. Since the discovery of
the Higgs boson at the Large Hadron Collider (LHC) in 2012, all of its predictions have been
verified successfully. Nonetheless, several issues remain: the Higgs boson self-coupling has not
yet been observed; there are still open questions regarding the electroweak phase transition; the
measured CP violation is too weak to explain the matter–antimatter imbalance observed in the
universe; Standard Model extensions like supersymmetry, which predict multiple Higgs bosons
to exist, cannot be ruled out; and finally, there are multiple phenomena (like dark matter) that
are explained only insufficiently by the Standard Model. Thus, the search for physics beyond
the Standard Model continues.

The LHC is currently the most powerful particle accelerator in the world. Two general-
purpose experiments – ATLAS and CMS – as well as several specialized experiments make use
of the proton–proton and heavy-ion collisions at the LHC to realize a rich physics program.
The ATLAS experiment has, among others, two important goals: high-precision measurements
of Standard Model parameters and processes (like the 𝑊 mass or the Higgs self-coupling) and
the search for physics beyond the Standard Model. To achieve these goals, the detector must
identify the final state of each collision with high accuracy. Particularly important is the iden-
tification and reconstruction of electrons, photons, and particle jets. For this task, the most
vital subsystem of the detector are the liquid argon (LAr) calorimeters.

The LHC and its experiments are planned to undergo an upgrade in two phases: one that
has started in 2019 and one scheduled for 2025. The goal of this is to increase the rate at
which the detectors record data and to improve the data quality. The LAr calorimeters are
also affected by this: the accuracy of their energy measurements must be improved and they
must send data to the ATLAS trigger at higher resolution, so that more “uninteresting” events
may be suppressed. For the second upgrade phase, it is planned to completely replace both the
analog and the digital readout electronics of the calorimeters on the main readout path.

The readout electronics work as follows: Each time a particle passes through a calorimeter
cell, a voltage pulse is induced in the analog electronics. The digital electronics sample this
pulse and pass the samples through an energy reconstruction algorithm, which estimates the
deposited energy based on the amplitude of the pulse. This algorithm must be both fast and
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2 Introduction

accurate, even in the face of strong overlap between pulses that are caused by subsequent
events. The upgrade of the electronics opens the opportunity to improve this algorithm. With
the new hardware being faster and having more memory available, more complex algorithms
may be considered.

Extensive studies are required to determine how both the analog and the digital readout
electronics can be optimized in terms of energy resolution. These studies are necessarily based
on simulations of the future upgraded electronics, as measurements do not exist yet. The com-
puter program AREUS is used for this purpose. It performs a detailed simulation of the signal
digitization and energy reconstruction algorithm. It also allows the user to pass in custom pulse
shapes and electronic-noise descriptions, which may be obtained from dedicated simulations.
In contrast to other simulations, AREUS is free-running, i.e. the electronics are simulated not
only for disjunct events, but for contiguous runs of data taking. This makes it possible to study
long-term effects and correlations in the energy reconstruction.

The analog electronics may be studied by transforming the pulse shapes and noise descrip-
tions in certain, well understood ways. If the transformation depends on some parameter, the
data can be transformed for each possible value and passed to the simulation. The results can
then be compared to study the impact of the parameter on the energy resolution or other figures
of merit. Energy reconstruction algorithms may be compared similarly; where an algorithm
depends on hyperparameters, these may be varied to analyze their influence.

It is important to perform this optimization carefully, to study the quality of the relationship
between parameters and energy resolution, and to look for unexpected influences. Otherwise,
solutions may turn out to be statistical fluctuations or the result of over-training. A sign of the
latter would be, for example, if an algorithm performs well in some regions of the detector, but
considerably worse in others.

In this thesis, parameters of the analog readout electronics are tuned for an optimal energy
resolution. A number of energy reconstruction algorithms is presented, their hyperparameters
are optimized, and their performance is compared to the Optimal Filter, the current state-of-
the-art algorithm.

In chapter 2, an overview of the current state of high-energy particle physics is given to
motivate this research. In chapter 3, the LHC, the ATLAS detector, and the LAr calorimeters
as the underlying experimental setup are presented. In chapter 4, the upgrade project in gen-
eral and the concrete changes of the LAr calorimeter readout in particular are described. In
chapter 5, a brief introduction to the theory of linear filters is given. The Optimal Filter and
the Wiener filter as the most important examples of linear filters are introduced. Furthermore,
a number of non-linear approaches to the problem of energy reconstruction are reviewed. In
chapter 6, the setup of the simulation studies is documented. The data that has been used is
cited, the most important algorithms of the simulation are described, and the figures of merit
are defined. In chapter 7, the studies are presented, their results analyzed, and conclusions
are drawn. A summary of this work and an outlook on potential future studies are given in
chapter 8.



Chapter 2

An Overview of High-Energy
Particle Physics

The field of particle physics at high energies has seen a rapid development since its beginning
in the second half of the twentieth century. At its core, it deals with interactions of subatomic
particles at energies higher than the particles’ rest energies. The investigated phenomena are
hence intrinsically subject to both quantum physics and special relativity. It is the equal im-
portance of both theories that distinguishes this field of physics from most others.

This chapter aims to give a brief overview over high-energy particle physics. Section 2.1 be-
gins by introducing the Standard Model, a theory that consolidates our current understanding
of particle physics. Section 2.2 details the ways in which the Standard Model has been proven
so far. Section 2.3 concludes by showing the limits of the Standard Model and by naming a
select few ongoing experimental efforts to find new physics in contradiction to it.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) currently is the best-verified and most comprehensive theory of el-
ementary particle physics. It emerged in the early 1970s [1] from two independently evolving
theories: quantum chromodynamics [2–5] and the electroweak theory [6–8] extended by the
Brout–Englert–Higgs mechanism [9–14]. Whenever new particles have been discovered since
its inception, it has been extended rather than replaced by another theory [15, 16].

The Standard Model is a quantum field theory, i.e. a relativistic field theory in which all
observable particles are interpreted as quantized excitations of their underlying fields. Addi-
tionally, the three1 fundamental interactions described by the Standard Model are introduced
by imposing certain local gauge symmetries, i.e. by requiring that the theory be invariant un-
der certain continuous, location-dependent transformations of its fields. The symmetries are
commonly denoted by the Lie groups of these transformations.

1The fourth fundamental interaction, gravitation, is generally neglected, both because it is vastly weaker than
the other interactions on the subatomic scale, and because its quantization still is an unsolved problem [17].
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Figure 2.1: Particle content of the StandardModel of particle physics [19]. The fermions
are arranged by family and generation, the gauge bosons by symmetry group. Each
particle is annotated with its mass in GeV (top) and gauge bosons or the charges that
they couple to (bottom). The fermions are additionally annotated with their color 𝐶 (left)
and electric charge 𝑄 (right), if they carry any. The hand symbol signifies a coupling to
the weak isospin 𝐿.

Concretely, the symmetries of the Standard Model are:

SU(3)𝐶 × SU(2)𝐿 × U(1)𝑌 . (2.1)

Following convention, each symmetry is subscripted with the charge it conserves according to
Noether’s theorem [18]: The color charge 𝐶 , the weak isospin 𝐿, and the weak hypercharge
𝑌 . However, due to electroweak symmetry breaking (EWSB), 𝐿 and 𝑌 are not conserved, only
a combination of them: 𝑄 ∶= 1

2 𝑌 + 𝐿𝑧, the conventional electric charge. This is described in
more detail in section 2.1.3.

Figure 2.1 shows the particle content of the Standard Model. The particles are usually
grouped according to their spin: fermions with spin ½, which are commonly understood as
matter particles; vector bosonswith spin 1, which aremediators of the fundamental interactions;
and scalar bosons with spin 0, of which there is only one after EWSB.

2.1.1 Fermions

The fermions are categorized into two families: quarks, which carry color charge, and leptons,
which do not. Each family contains six flavors of particles, which are arranged into three
generations. They are arranged such that each generation is identical w.r.t. the electric and
color charges of its constituents.

Quarks, as carriers of color charge, are subject to the confinement effect and cannot appear
as free particles. Instead, they can only be found in color-singlet bound states called hadrons.
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These are further divided intomesons (quark–antiquark pairs) and baryons (quark triples). The
two lightest baryons, protons and neutrons, are able to form stable atomic nuclei and make up
the majority of visible matter in the universe.

Leptons can be further categorized based on their electric charge. The three neutral flavors
are called neutrinos. Although they are known to have a small, non-zero mass2, the Standard
Model treats them as massless. They only participate in the weak interaction, which makes
it exceedingly difficult to detect them. The three charged leptons, by contrast, are additionally
subject to electromagnetism andmuch easier to detect. Only the lightest among them, the elec-
tron, is stable. Together with protons and neutrons, it forms atoms, the fundamental building
blocks of all ordinary matter.

2.1.2 Vector Bosons

The vector, or gauge bosons are naturally divided by the interactions they mediate. In the
Standard Model, each particle carries certain charges and each gauge boson only couples to
certain charges. Hence, not all particles experience all interactions.

The gluons are the mediators of the strong interaction, modeled by the SU(3)𝐶 group. They
couple to the color charge, which is three-dimensional with axes red, blue, and green. The
gluons are massless, but carry color charge themselves due to the non-Abelian nature of their
gauge symmetry. This causes them to self-interact and gives rise to several characteristic prop-
erties of the strong interaction, such as:

• asymptotic freedom: the strong coupling decreases at shorter distances;

• confinement: only color-singlet bound states can be observed;

• chiral symmetry breaking: gluon-bound compound states have a large mass that is pri-
marily generated by the interaction, not by the particles’ rest masses.

The strong interaction not only binds quarks into hadrons; its residual effects also stabilize
atomic nuclei via an attractive force between nucleons, i.e. protons and neutrons.

The W and Z bosons mediate the weak interaction, modeled by the spontaneously bro-
ken portion of the SU(2)𝐿 × U(1)𝑌 symmetry. They are the only massive vector bosons in the
Standard Model and their mass causes the weak interaction to be of extremely short range.
Additionally, 𝑊 and 𝑍 are the only bosons that break parity symmetry by coupling differently
to left- and right-handed particles3. Due to its weakness and short range, the weak interaction
is negligible in everyday life. It is most prominent as the cause of radioactive beta decay.

The photon is the gauge boson of the electromagnetic interaction, modeled by the group
U(1)𝑄 left unbroken by EWSB. It has no mass and does not self-interact, making it the only
known gauge boson with infinite range. As such, it governs nearly all physical effects down
to the atomic scale.

2Only upper bounds exist on the neutrino masses [20, pp. 628, 1006].
3𝑊 bosons couple exclusively to left-handed particles. 𝑍 bosons, while preferring left-handed partners, also

couple to right-handed particles, if they carry electric charge.
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Figure 2.2: Particle content of the Standard Model before EWSB [19]. The fermions
are arranged by family, generation, and chirality, the gauge bosons by symmetry group.
All particles are annotated with the gauge bosons or the charges that they couple to
(bottom). The scalar bosons and fermions are additionally annotated with their color 𝐶
(left), chirality (top left or right), and weak hypercharge 𝑌 (right), if they carry any.

2.1.3 The Higgs Boson and Electroweak Symmetry Breaking

An issue of the Standard Model – as described so far – is that it is inconsistent: careful analysis
reveals that the non-zero masses of 𝑊 and 𝑍 gauge bosons break the symmetry whose re-
quirement introduced them to the theory in the first place. In a similar manner, it is impossible
to naïvely introduce non-zero fermion masses due to the way that parity symmetry violation
of the 𝑊 and 𝑍 bosons is modeled. The GWS model [6–8] solves both issues by unifying
electromagnetic and weak interaction into a single electroweak interaction, whose combined
symmetry is spontaneously broken by the ground state of the universe.

Figure 2.2 shows the Standard Model before symmetry breaking. It is similar to fig. 2.1, but
differs in several notable ways:

• All symmetries are upheld exactly. The 𝑊 1,2,3 and 𝐵 gauge bosons of SU(2)𝐿 ×U(1)𝑌 are
not the gauge bosons that are physically observed after symmetry breaking.

• All gauge bosons are massless and instead of the real scalar field 𝐻 , there is a complex
SU(2)𝐿 doublet 𝛷.

• The fermions are massless as well. As a consequence, their left- and right-handed com-
ponents may be regarded as independent particles.
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• Parity violation is implemented by arranging the left-handed fermions into SU(2)𝐿 dou-
blets and the right-handed ones into singlets.

• Right-handed neutrinos do not exist. If they did, they would be sterile with respect to
all three interactions. (But see section 2.3 on Standard Model extensions that introduce
them.)

In this model, the self-interaction of the Higgs field 𝛷 is set up in such a way that the
field has degenerate ground states with a non-zero vacuum expectation value. By picking any
particular ground state and expanding 𝛷 into a Taylor series around it, the electroweak gauge
symmetry is broken. According to the Brout–Englert–Higgs mechanism, this causes 𝛷, 𝑊 1,2,3,
and 𝐵 to mix into new fields:

• three of the four degrees of freedomof𝛷 become longitudinalmodes of the gauge bosons;
• the remaining degree of freedom becomes a real, massive scalar field called the Higgs
boson 𝐻 ;

• the gauge bosons 𝑊 1,2,3 and 𝐵 can be rotated into new bosons 𝑊 ±, 𝑍 and 𝛾 . While
the 𝑊 and 𝑍 bosons become massive from interacting with 𝛷, 𝛾 remains massless. It
corresponds to the U(1)𝑄 subgroup that remains unbroken by the ground state of 𝛷.

In this model, the gauge symmetry of the 𝑊 and 𝑍 bosons is still fulfilled at the fundamen-
tal level. It is the choice of a ground state of the vacuum that breaks it and allows these bosons
to appear massive. In an analogous manner, fermion masses are added to the theory by in-
troducing Yukawa couplings between the fermions and the 𝛷 field. After symmetry breaking,
each fermion gains bothmass and a coupling to the remnant Higgs boson𝐻 . Characteristically,
this coupling is proportional to the fermion mass.

2.2 Verification of the Standard Model

The Standard Model has been verified experimentally in multiple ways over the course of its
existence. This section presents a select few cases of the Standard Model predicting particles
that have been found later.

The charm quark was first speculated about in 1964 [15, 21, 22], less than a year after the
quark model itself had been proposed and raised some controversy [23, 24]. It was meant to
create a symmetry between the proposed three quarks and the four leptons known at the time.
In 1970, the charm quark was further motivated by the GIM mechanism, which required it in
order to explain an observed suppression of flavor-changing neutral currents [25]. 𝐽/𝜓 , the
first charmed hadron, was observed in 1974 [26, 27] and convinced a majority of physicists of
the quark model, which would become integral part of the Standard Model [28, p. 415–418].

The top and bottom quark were first proposed in 1973 [29], at a time when the quark model
was still a contentious topic in physics. They were necessary to explain the CP violation in
neutral kaon decays, which was found nine years prior [30]. The discovery of the 𝜏 lepton in
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1975 [16] made the existence of a third generation of quarks seem even more likely. In 1977,
the Υ as the first bottom-containing meson was discovered [31]. Its isospin partner, the top
quark, was not found until 1995 [32, 33] due to its unexpectedly high mass of 176GeV.

The 𝑊 and 𝑍 bosons were first proposed in Glashow’s unified electroweak theory in 1961 [6].
Thismodel still left the origin of the vector bosonmasses unexplained and did not see significant
recognition initially [34]. The boson masses were explained independently by Weinberg and
Salam in 1968 [7, 8] and in 1972, the GWS model was proven to be renormalizable [35, 36].
The model predicted “weak neutral currents”, i.e. 𝑍-mediated interactions, which were found
only one year later at CERN [37, 38]. In 1983, direct evidence for the existence of the 𝑊 and 𝑍
bosons was found, also at CERN [39, 40].

The Higgs boson, first proposed in the seminal symmetry-breaking papers [10, 12, 13], has
been a crucial prediction of the combined GWSmodel from 1967 on. However, it has beenmuch
harder to detect than the weak gauge bosons due to its higher (and initially unknown) mass,
smaller interaction cross-section, and the ambiguous final states of its decays. First evidence of
it was seen at the Tevatron starting in 2011 [41, 42], but the statistical significance was too low
for a conclusive discovery. In 2012, a boson compatible with the predictions for the Standard
Model Higgs boson was discovered at CERN [43, 44]. Since then, the properties of this boson
have been further investigated and it has been confirmed to be the Higgs boson [45, 46].

2.3 Beyond the Standard Model

Although the Standard Model has been verified repeatedly and to great accuracy, it is known
that it describes certain phenomena insufficiently and fails completely to describe others. This
section lists some of these limitations and describes searches for Physics Beyond the Standard
Model (BSM).

One of themost promising leads is a discrepancy between the predicted andmeasured value
of the anomalousmagnetic moment of themuon. Themost accurate experimental value known
today [47] deviates from calculations by about three standard deviations [20, ch. 57]. The
“Muon 𝑔−2” experiment E989 [48] currently ongoing at Fermilab aims to reduce the uncertainty
on this value [49].

Another lead is the so-called strong CP problem. CP invariance is a symmetry under which
left-handed matter and right-handed antimatter behave identically, and vice versa. So far, the
strong interaction has been found to obey this symmetry exactly. The problem is that there is
no reason for this within the Standard Model. The proposed IAXO experiment [50] will search
for axions, hypothetical particles whose existence might explain this surprising CP invariance.

A closely related (though somewhat inverse) problem of the Standard Model is the lack of
an explanation for observed CP violation. Although the Standard Model breaks CP invariance
via the CKM quark mixing matrix, this effect is too small to explain the matter–antimatter
imbalance seen in the universe. An additional CP-violating term in the PMNS neutrino mixing
matrix might fill this gap. There are several experiments both ongoing and proposed [51–54]
that search for such a term.
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Related to this is the problem of the still unknown neutrino masses: it is not yet understood
why they are so much smaller than those of the charged leptons. In the Standard Model as it
stands, they are assumed to be exactly massless. One explanation for this large difference is the
seesaw mechanism: it introduces sterile, right-handed neutrinos with a Majorana mass term
to the theory. Such a term is gauge-invariant and naturally leads to small masses for the left-
handed and enormousmasses for the right-handed neutrinos. It would also allow twomore CP-
violating parameters, thus solving the matter–antimatter imbalance problem described above.
This extension of the Standard Model predicts a neutrino-less beta decay, which is searched for
by several experiments such as GERDA [55] and SNO+ [56]. However, this decay has not been
observed yet and only lower limits on its lifetime exist [57].

Furthermore, the Standard Model does not explain gravitation in any way. Attempts to
quantize gravitation in the same manner as electro- or chromodynamics yield an unrenor-
malizable theory without predictive power. Various, more complicated theories such as loop
quantum gravity and superstring theory exist, but have not been able to make any verifiable
predictions yet.

Finally, there is the naturalness problem of the Higgs field 𝛷. In the perturbative formalism
that is used to derive quantitative predictions from the Standard Model, the vacuum expecta-
tion value of 𝛷 (like all other parameters) receives corrections from higher-order terms in the
perturbation series. However, because 𝐻 is a scalar field, these corrections are on the order of
the cut-off scale Λ at which one expects the perturbative approach to break down.

This leaves two options: the first is that the Standard Model works as-is up to the energy
scale of gravitation 𝑀P ≈ 1019GeV and the corrections need to be countered by an extremely
fine tuning of the bare value of the vacuum expectation value, on the order of 10−34. This is
possible, but makes it surprising that the value is neither close to zero nor close to 𝑀P. The
second option is that Λ is far lower, on the order of 1 TeV. In that case, one should expect to
see BSM physics at contemporary particle accelerators such as the LHC4.

4For some of the goals of the LHC physics program, see sections 3.1.4 and 4.1.





Chapter 3

LHC, ATLAS, and the Liquid-Argon
Calorimeters

This chapter describes the experimental setup that this thesis is concerned with. Section 3.1
describes the LHC, section 3.2 the ATLAS experiment. The latter also introduces the ATLAS co-
ordinate system and various notational conventions. Section 3.3 focuses further on the ATLAS
detector’s LAr calorimeters and their readout electronics.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is currently the most powerful particle accelerator in the
world [58]. It is situated at the Franco-Swiss border near Geneva and operated by CERN, the
European Organisation for Nuclear Research. It is installed in the tunnel that was originally
constructed for the Large Electron–Position Collider (LEP). The tunnel has a circumference of
26.7 km and lies between 45m and 170m below the surface on a plane that slopes towards Lake
Geneva by 1.4 %.

The LHC is a synchrotron that collides two counter-rotating beams of particles of equal
charge. The beams normally consist of protons, though fully ionized lead ions may also be
used in special heavy-ion runs. Due to the tight space requirements in the LEP tunnel, the
rings of both beams are situated in the same mechanical structure.

3.1.1 History

TheLHCproject was approved by the CERNCouncil in 1994. Two years later, in 1996, construc-
tion of a 14 TeV machine in a single stage was approved. Commissioning started on September
10, 2008 [59] with the first proton beam travelling around the full circle of the LHC. Only nine
days later, a magnet quench incident occurred that damaged multiple magnets and cryostats
and compromised the beam pipe vacuum [60, 61]. It delayed operations by more than year;
ultimately, for LHC Run 1, data was taken from March 2010 until December 2012 [62, 63]. Be-
cause of the accident, the initial center-of-mass energy had been reduced to 7 TeV. This was
increased to 8 TeV in April 2012 [64].

11
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After the Long Shutdown 1 (LS1), the LHC operated in Run 2 from June 2015 until October
2018 [65, 66] at a center-of-mass energy of 13 TeV. In this time, the LHC delivered an integrated
luminosity of 160/fb[66, p. 7], of whichATLAS recorded 139/fbwith sufficient quality [67, p. 17].

Currently, the LHC is in Long Shutdown 2 (LS2), a period in which the accelerator is up-
graded in order to increase the provided luminosity even further. At the same time, the detec-
tors perform their Phase-I upgrade to adapt to the higher luminosity. This is described in more
detail in chapter 4. Run 3 is expected to start in early 2021.

3.1.2 Experiments

There are four primary experiments located at the LHC:

ATLAS [68] is a general-purpose particle detector built with the objective to exploit the full
discovery potential of the LHC. It is designed to be sensitive to a large variety of par-
ticle signatures and perform accurate calorimetry on the full range of possible particle
energies. While it can take data in all of the LHC’s collision modes, it is optimized for
proton–proton (𝑝𝑝) collisions. It is described in more detail in section 3.2.

CMS [69] is the other general-purpose detector at the LHC that focuses on 𝑝𝑝 runs. It shares
many of the physics and performance goals with ATLAS, but achieves them through
different design decisions. The two experiments complement each other and are able to
independently verify each other’s findings.

ALICE [70] is the only experiment at the LHC that is optimized for heavy-ions runs. While it
is also a general-purpose detector, its physics program puts strong emphasis on quantum
chromodynamics (QCD) and the physics of quark-gluon plasmas.

LHCb [71] is a detector specialized on the measurement of 𝐵 mesons. Its objective is the
indirect search for new physics through the CP violation and rare decays of bottom and
charm quarks.

Furthermore, there are three smaller experiments: LHCf [72], which measures particles in
the far-forward regions around the ATLAS interaction point; TOTEM [73], which measures
the total 𝑝𝑝 interaction cross-section and the cross-section of diffractive scattering to improve
understanding of low-energy QCD processes; and MoEDAL [74], which searches for magnetic
monopoles and other exotic particles.

3.1.3 Injection Chain and Bunch Filling Scheme

Proton beams are injected into the LHC through a chain of pre-accelerators that increase the
beam energy in multiple steps [76, ch. 1]. Figure 3.1 shows the full CERN accelerator complex
and the LHC injector chain. Proton beams are produced in the Linac 2 facility at an energy
of 50MeV. They are transferred to the Proton Synchrotron Booster (PSB) and accelerated to
1.4 GeV before being injected into the Proton Synchrotron (PS). The PS further boosts them to
an energy of 25GeV and transfers them to the Super Proton Synchrotron (SPS), which further
increases their energy to 450GeV. From the SPS, the beams are injected into the LHC, which
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Figure 3.1: The LHC (dark blue ring) is the last in a complex chain of particle acceler-
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Figure 3.2: The standard filling scheme presently in use at the LHC [77, fig. 1]. The
pattern is structured into batches, where each batch consists of 72 filled nominal buckets
followed by at least 8 empty ones.

accelerates them to their final energy. This was 6.5 TeV per beam in Run 2, adding up to a
center-of-mass energy of 13 TeV.

The proton beams at the LHC are not continuous, but instead focused longitudinally into
radio frequency buckets [76, sec. 2.5]. Each bucket is either empty or filled with a bunch of
up to 1.15 × 1011 protons. While the buckets have a time distance of 2.495 ns, only every tenth
bucket is nominally used. The bunches in these nominal buckets are ultimately brought to
collision at the LHC intersection points, giving rise to a nominal bunch crossing (BC) distance
of Δ𝑡BC = 24.95ns.

Not every nominal LHC bucket is actually filled with a bunch. The gaps in the beam follow
a well-defined pattern and account for the rise time of various kicker magnets in the LHC
injection and beam-dump system. Figure 3.2 shows the “25 ns scheme”, which currently is the
standard bunch-filling scheme.

3.1.4 Energy Scale and Luminosity

The 𝑝𝑝 collisions at the LHC occur with a maximal center-of-mass energy of √𝑠 = 13TeV. For
a given process 𝑃 , the expected event rate in the collisions is given by:

̇𝑛𝑃 (𝑡) = 𝜎𝑃 ⋅ 𝐿(𝑡), (3.1)

where 𝜎𝑃 is the cross-section of 𝑃 and 𝐿(𝑡) is the accelerator’s instantaneous luminosity. 𝐿 is
independent of 𝑃 but changes over time. For example, it is typically maximal at the beginning
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of a data-taking run and decreases exponentially as collisions remove protons from the beams1.
Hence, the total expected number of events of process 𝑃 is:

𝑛𝑃 = 𝜎𝑃 ⋅ ∫
𝑡2

𝑡1
𝐿(𝑡)d𝑡, (3.2)

where ∫ 𝐿(𝑡)d𝑡 is the integrated luminosity.
The original design of the LHC foresaw a peak luminosity of 𝐿max = 1034/(cm2 s). There

are two motivations for both this value and the value of √𝑠. One is given by several studies
searching for BSMphysics: √𝑠 is on the same scale as themasses ofmany hypothetical particles
predicted by extensions of the Standard Model2, and 𝐿max is high enough to produce even rare
events at a rate that allows meaningful analysis [78, sec. 1.1].

The other, equally important motivation is a better understanding of the EWSB and the
measurement of the Higgs boson mass 𝑚H. The LHC has been designed to allow a Higgs boson
search over the full mass range that is allowed by theory, but particular consideration has been
given to the range below 300GeV. This range was strongly favored by higher-order contribu-
tions to precisely measured Standard Model parameters and the then-recent measurement of
the top quark mass 𝑚t at the Tevatron [79].

3.1.5 Pileup

The instantaneous luminosity 𝐿(𝑡) is of great importance to all LHC experiments and must be
known accurately. ATLAS, for example, measures it in several ways for cross-validation, both
with its regular subsystems and with dedicated detectors [80, sec. 3].

A related quantity is ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing:

⟨𝜇⟩ =
𝜎inel⟨𝐿(𝑡)⟩𝑡

𝑓r
, (3.3)

where 𝜎inel is the 𝑝𝑝 inelastic interaction cross-section, ⟨𝐿(𝑡)⟩𝑡 is the average luminosity of a
data-taking run, and 𝑓r is the LHC revolution frequency. When taking a limited detector
efficiency 𝜀 into account, ⟨𝜇⟩ and 𝜎inel have to be replaced with their visible counterparts,
⟨𝜇⟩vis ∶= 𝜀⟨𝜇⟩ and 𝜎inel,vis ∶= 𝜀𝜎inel. These two substitutions cancel out and do not change
the equation qualitatively [80, sec. 2].

The quantity ⟨𝜇⟩ is vital to filter-design studies, as it is a measure of pileup, an effect where
multiple 𝑝𝑝 interactions occur in the same or subsequent BCs. In-time pileup, when multiple
interactions occurring in the same BC, presents an irreducible background that can only be
removed on average or by regional analysis. Out-of-time pileup, in which detector signals from
𝑝𝑝 interactions in subsequent BCs interfere with each other, can and should be suppressed as
much as possible. For more information, see also section 3.3.5.

1 This simple behavior is complicated by an technique called luminosity leveling, which is expected to be em-
ployed after the upgrade described in section 4.3. This technique begins an LHC run with suboptimal collider
parameters that keep the luminosity below the theoretical maximum. Over the course of the run, as protons are
removed from the beam, the parameters are tuned continuously so that the luminosity remains constant.

2Examples of hypothetical particles that could be discovered are the lightest stable supersymmetric particle
(LSP) of supersymmetry, the MSSM Higgs bosons (𝐴, 𝐻±, and 𝐻0), and heavy gauge bosons 𝑊 ′ and 𝑍′ of an
undiscovered gauge symmetry.
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Figure 3.3: Cut-away view of the ATLAS detector [81]. The detector is 25m high and
44m long and it weighs approximately 7000 t [68].

3.2 The ATLAS Detector

ATLAS is one of the two general-purpose detectors installed at the LHC. It is situated in Un-
derground Experimental Hall 15 (UX15) near CERN’s Meyrin site and surrounds Interaction
Point 1 in a cylindrical, forward-backward symmetrical fashion. Figure 3.3 shows a 3D model
of it.

Section 3.2.1 introduces the ATLAS coordinate system and nomenclature. Sections 3.2.2
to 3.2.5 describe the various subsystems of the detector. The liquid-argon calorimeters, as the
focus of this thesis, are described separately in section 3.3.

3.2.1 ATLAS Coordinate System and Nomenclature

The nominal interaction point of the colliding beams is defined to be the origin of the ATLAS
coordinate system. The 𝑥-axis points towards the center of the LHC ring and the 𝑦-axis points
upwards. The 𝑧-axis points along the beam in such a way as to make a right-handed coordinate
system3. Spherical coordinates are often preferred due to the detector’s symmetric design. For
them, the azimuthal angle 𝜙 is taken from the positive 𝑥-axis towards the positive 𝑦-axis and
the polar angle 𝜃 is taken from the positive 𝑧-axis.

A typical issue at hadron colliders is that at high energies, it is not the composite hadrons
that interact, but their individual partons, i.e. gluons and quarks [82]. Each parton carries only
a fraction of the entire hadron’s momentum and the fraction fluctuates considerably between

3The terms “side A” and “side C” are sometimes used to refer to the positive and negative half of the 𝑧-axis
respectively.
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collisions. Because of this, the collision’s center of mass has a momentum that is not zero
in the lab frame, but instead randomly distributed. More precisely, all measured momenta
vary considerably in their component along the beam axis; the variance of their transverse
component is small in comparison.

For this reason, it is often preferable to use quantities that are invariant under longitudinal
Lorentz boosts [20, ch. 47]. For example, the full momentum 𝑝 of a particle is usually eschewed
in favor of its transverse momentum:

𝑝T ∶= 𝑝 ⋅ sin 𝜃, (3.4)

and its longitudinal rapidity4:
𝑦L ∶= artanh 𝑝L

𝐸 . (3.5)

In the ultrarelativistic limit, 𝑝T is approximated by the transverse energy 𝐸T and 𝑦L by the
pseudorapidity 𝜂, where:

𝐸T ∶= 𝐸 ⋅ sin 𝜃, 𝜂 ∶= artanh cos 𝜃 = − ln tan 𝜃
2 . (3.6)

These quantities are easier to measure in the detector and the approximation is generally per-
missible due to the high center-of-mass energy of the 𝑝𝑝 collisions. In particular, 𝜂 almost
universally substitutes 𝜃 in the cylindrical coordinate system.

3.2.2 Inner Detector

The Inner Detector is the ATLAS subsystem closest to the interaction point. It is shown in
fig. 3.4. It covers the pseudorapidity region |𝜂| < 2.5 and serves to reconstruct tracks for the
final-state particles of each 𝑝𝑝 collision. It also reconstructs each event’s primary and secondary
vertices, which is particularly important for 𝑏- and 𝜏-tagging of hadron jets.

Three distinct mechanical units make up the Inner Detector: a barrel and two end-caps. The
barrel covers the central region and surrounds the beam pipe in multiple cylindrical layers. The
end-caps cover the forward and backward regions and consist of multiple concentric wheels
perpendicular to the beam axis. This separation is employed in all ATLAS subsystems.

A solenoid magnet surrounds the Inner Detector and immerses it in a magnetic field. This
field curves the tracks of charged particles to allow measuring their charge and momentum.
In the barrel, it is homogeneous with a strength of 2 T; in the end-caps, it is weaker and bends
outwards considerably.

Both the barrel and the end-caps consist of three sub-detectors, each one contributing lo-
cation measurements in a distinct radial range from the beam pipe. Tracks are reconstructed
from these measurements via a chain of sophisticated pattern-recognition algorithms.

4The longitudinal rapidity 𝑦L differs from the regular rapidity 𝑦 in that it is based on 𝑝L instead of the full
momentum 𝑝. The overwhelming majority of texts on hadron collider physics drop the distinction and call 𝑦L
simply the rapidity. This is approximately correct if particles are boosted, i.e. 𝑝T ≪ 𝑝L.
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Figure 3.4: Cut-away view of the ATLAS inner detector [83].

The Pixel Detector is the inner-most and (with approx. 80.4 million readout channels) most
granular sub-detector. It consists of silicon pixel sensors and provides a resolution of 10 µm in
the 𝑅𝜙-plane and 110 µm on the 𝑧-axis (barrel) or 𝑅-axis (end-caps). A single type of sensor
module is used throughout the Pixel Detector, making it extremely homogeneous. Themodules
are arranged in such a manner that each particle crosses at least three layers of them.

In addition to the above, the Pixel Detector has been extended with the Insertable B-Layer
(IBL) during LS1 [84, 85]. The IBL is a fourth pixel layer that is located within the inner-most
pixel layer. To make space for it, the beam pipe has been replaced with a newer, smaller one.

The addition of the IBL has been motivated by three reasons: 1. it pre-empts future ir-
reparable failures in the inner-most pixel layer; 2. it provides additional redundancy in track
reconstruction, which is required when increasing the LHC’s instantaneous luminosity beyond
its design value; 3. it improves the performance of vertexing and 𝑏-jet tagging thanks to its lo-
cation close to the interaction point.

The Semiconductor Tracker (SCT) surrounds the Pixel Detector and provides on average
four measurements per track. It has approx. 6.3 million readout channels and employs silicon
micro-strip sensors with a length between 7 cm and 12 cm. Each sensor has 698 active strips
with a pitch of 80 µm. This results in a resolution of about 17 µm in the 𝑅𝜙-plane.

The remaining coordinate (𝑧 in the barrel, 𝑅 in the end-caps) is measured via the small-
angle-stereo method: Each module actually consists of two layers of micro-strip sensors, which
are glued back-to-back onto a carrier plate. While one layer is aligned to the beam pipe (parallel
in the barrel, radial in the end-caps), the other is rotated by 40mrad. The resultingmoiré pattern
of crossing strips allows measuring 𝑧 and 𝑅 respectively with a resolution of 580 µm.
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Figure 3.5: Cut-away view of the ATLAS calorimeter system [87].

The Transition Radiation Tracker (TRT) provides the majority of location measurements,
typically 36 per track. It consists of many straws, where each one is a proportional drift tube
detector. The cathode of each straw is kept at a potential of about −1530V, the anode is kept at
ground potential and connects directly to the readout electronics. The straws are interleaved
with polypropylene, which causes crossing ultrarelativistic particles to emit transition radi-
ation. The straws’ gas filling is based on xenon5 and absorbs the transition radiation well,
converting it to signals of much higher amplitude than that of ionizing particles. This allows
discriminating between the two signals in the front-end electronics.

The TRT can only measure the 𝑅𝜙 location of a hit. With a resolution of 130 µm and about
351 000 readout channels, it is also coarser than the previous two sub-detectors. However, this
is compensated by the high number of hits per track.

3.2.3 Calorimeter System

The ATLAS calorimeters, shown in fig. 3.5, are designed to stop the particles that come out
of a 𝑝𝑝 collision and to measure their energy as accurately as possible. Additionally, precise
location information is highly desirable, too.

The calorimeters are categorized as either electromagnetic or hadronic. The former absorb
photons, electrons, and positrons well, while the latter are optimized to absorb pions, kaons,

5In 2012, several inaccessible leaks have formed in the gas pipes between the detector and the cleaning and
mixing stations. For Run 2, the xenon-based gas mixture has been replaced with an argon-based one in the modules
most affected by these leaks. The reason for this is that argon, while absorbing transition radiation much less
efficiently than xenon, is significantly cheaper [86].
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and other hadrons. Neutral particles, such as neutrons and 𝐾0
L, also generally require the addi-

tional depth of the hadronic calorimeters to be stopped completely. Muons, while depositing
energy in both calorimeters, cannot be stopped if their energy is greater than a few GeV. Neu-
trinos pass through both calorimeters undetected; their presence can only be inferred by the
non-conservation of visible 𝑝T.

All calorimeters used in ATLAS are sampling calorimeters: they consist of alternating layers
of an absorber material and an active medium. The absorber decelerates the incoming particles
and causes them to produce showers, but does not allow any measurements. The showers, in
turn, excite the active medium and produce a signal that is proportional to the visible energy,
i.e. the energy that is deposited in the active medium. If the sampling fraction of the detector,
the ratio of a particle’s visible to its total deposited energy, is known, the total deposited energy
can be inferred from the signal.

The ATLAS detector has four calorimeters: three based on liquid argon (LAr) and one based
on scintillator tiles. The LAr calorimeters are discussed in more detail in section 3.3.

The Electromagnetic Calorimeter covers the pseudorapidity range of |𝜂| < 3.2 and consists
of an Electromagnetic Barrel (EMB) and two Electromagnetic End-Caps (EMEC), each of the
three having its own cryostat. The active medium is LAr. The absorber is lead, with additional
stainless steel sheets for mechanical strength. For the readout, copper electrodes insulated with
polyimide are inserted into the gaps between the absorber sheets.

Both the EMB and the EMECs are equipped with a presampler, a thin LAr gap without
absorbers in front of the calorimeter proper. Its purpose is to estimate the energy that has
been lost between the interaction point and the calorimeters. A slight overlap between the
barrel and end-cap presamplers improves the energy resolution in a region where the amount
of dead material is highly heterogeneous. For |𝜂| > 1.8, the amount of material between the
calorimeters and the interaction point is small enough that no presampler is necessary.

TheTile Calorimeter is a hadronic calorimeter that covers the pseudorapidity range |𝜂| < 1.7.
It consists of a central barrel and two extended barrels and surrounds the other calorimeters in
a cylindrical manner. Steel is used as the absorber material and plastic scintillator6 tiles as
the active medium. The three barrels are segmented azimuthally into 64 independent mod-
ules, each supported by a strong-back steel girder, which also houses the readout electronics.
Each scintillator tile is read out on both ends via wavelength-shifting fibers that are coupled to
photomultiplier tubes in the girder.

The Tile Calorimeter also contains several special modules that instrument the gap between
the barrel and the end-cap calorimeters. Their measurements help correct for energy losses
in the gap’s dead material, e.g. the cryostat walls, the services for the inner detector, and the
services and power supply for the other calorimeters. These special modules are either reduced
sections of otherwise normal Tile calorimeter modules (then called plugs) or thin scintillator
detectors attached to the extended barrel or end-cap cryostat (then called gap and cryostat
scintillators respectively).

6The scintillator material is polystyrene doped with 1.5 % PTP and 0.044 % POPOP.
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Figure 3.6: Cut-away view of the ATLAS Muon Spectrometer [88].

The Hadronic End-Caps (HEC) are two hadronic calorimeters, one being located on each
side of the ATLAS detector. Each one is located within its respective end-cap cryostat, directly
behind the EMEC.They cover the pseudorapidity region of 1.5 < |𝜂| < 3.2. This overlaps slightly
with the 𝜂 coverage of the Tile and Forward Calorimeters in order to soften the impact of the
drop in material density in these two transition regions. Like the Electromagnetic Calorimeter,
the HECs are LAr sampling calorimeters, but they use copper as absorber material.

The Forward Calorimeters (FCal) are the calorimeters closest to the beam pipe and exposed
the most to radiation damage. They are embedded inside the HECs, using the same cryostats,
and cover the pseudorapidity region 3.1 < |𝜂| < 4.9. Each FCal consists of three longitudi-
nally arranged, cylindrical modules. All modules are LAr calorimeters, though their absorber
material differs. The first one, FCal1, uses copper and is optimized for electromagnetic interac-
tions. The other two, FCal2 and FCal3, use tungsten in order to efficiently absorb and contain
hadronic showers.

3.2.4 Muon Spectrometer

The Muon Spectrometer is the outermost and largest subsystem of ATLAS. It is shown in
fig. 3.6. Its purpose is to provide precise tracking of muons and reliable triggering on their
detection. Similar to the Inner Detector, this is achieved by bending the muon trajectories via
a magnetic field and measuring their location and momentum. The field is generated by three
large superconducting air-core toroid magnets: one barrel magnet and two end-cap magnets
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that are inserted into each end of the barrel magnet. This magnet design minimizes undesirable
multiple-scattering effects, though its disadvantages are that the field is comparatively weak
(0.5 T on average) and inhomogeneous [78, sec. 6.3].

The Muon Spectrometer uses four different kinds of detectors. Two of them are used for
tracking, i.e. reconstruction of muon trajectories and momenta. This requires the 𝜂 coordi-
nate of the muon tracks to be measured with high precision, as this is the primary bending
direction of the magnets. The other two serve multiple purposes: they provide the ATLAS
trigger with fast and coarse muon track information, enable BC identification, and measure
the complementary 𝜙 coordinate for the former two detectors.

Monitored Drift Tube (MDT) chambers are the primary tracking detectors of the Muon
Spectrometer. Each chamber consists of drift tubes arranged in multiple layers and held in
place by spacer bars. This design was chosen due to its high reliability in case of individual
tube failure and to improve drift-time resolution. The tubes are operated with a voltage of
3080V and an Ar/CO2 gas mixture at 3 bar. The chambers are arranged in three layers around
the interaction point, both in the barrel and the end-caps. They cover the full pseudorapidity
range of |𝜂| < 2.7. The only exception to this is the region |𝜂| > 2.0 in the inner-most layer,
where radiation is too high for their operation [89, sec. 6.1].

Cathode Strip Chambers (CSC) replace the MDT chambers in this region. A CSC is a multi-
wire proportional chamber with parallel anode wires and cathode plates. These plates are
lithographically segmented into strips. In contrast to conventional proportional chambers, the
signal is not read out via the anode wires; instead, the track position is inferred by interpolation
of the charges induced onto neighboring cathode strips.

Resistive-Plate Chambers (RPC) provide the muon trigger information in the barrel region
|𝜂| < 1.05. Each chamber contains two detectors, each detector in turn consisting of two elec-
trode plates of constant distance with a high voltage and an operating gas between them. The
high voltage causes any electrons from the ionizing muons’ tracks to form avalanches on their
way to the anode. Because these avalanches are formed nearly instantaneously7, the signal ar-
rives in only a few nanoseconds. Pick-up strips located behind the electrode plates pick up the
avalanches inductively and lead the signal to the readout electronics. Each detector’s pick-up
strips are orthogonal to each other, allowing to measure both 𝜂 and 𝜙.

Thin-Gap Chambers (TGC) finally provide the trigger information in the end-cap region
1.05 < |𝜂| < 2.4. They are multi-wire proportional chambers where the wire–cathode distance
(1.4mm) is smaller than the pitch between wires (1.8mm). The operating gas, a mixture of CO2
and n-pentane, is highly quenching and allows the chambers to be operated close to the Geiger
region. In this mode, the signal amplitude not only arrives fast and is almost independent of the
detected particle’s energy and incident angle, but it is also insensitive to any mechanical defor-
mations of the chamber. The 𝜙 coordinate is read out via the cathodes, which are segmented
into radial strips, the 𝜂 coordinate is read out via the anode wires.

7In wire-based detectors, avalanching occurs only in the region close to the anode wire. Outside of this region,
electrons drift comparatively slowly.
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3.2.5 Trigger and Data Acquisition System

At a frequency of 40.08MHz, bunch crossings in the LHC happen more quickly than they can
be written to permanent storage. Hence, a trigger algorithm must be applied that discards all
events deemed “uninteresting”. Events selected by the trigger are transferred off the detector
and processed further by the data acquisition system (DAQ) before ultimately being put into
storage. Together, trigger and DAQ are referred to as TDAQ. In addition, the DAQ distributes
the LHC clock signal to the various subsystems via the trigger, timing, and control system
(TTC). Finally, it allows monitoring and configuring the detector’s run-time parameters via
the Detector Control System (DCS).

Since its original design, the TDAQ has evolved significantly. To handle the expected in-
crease in instantaneous luminosity in Run 2, its architecture has been streamlined and its hard-
ware upgraded [90]. For the sake of relevance, the trigger as of Run 2 (2015–2018) is described
in this section. Other sources describe the original design employed in Run 1 [68, 91].

The ATLAS trigger logic is split into two levels, each one further restricting the number of
selected events. The higher level also has access to more information and more time to come
to a trigger decision.

The L1 trigger is the first trigger stage in ATLAS. It reduces the event rate to 100 kHz (75 kHz
in Run 1) and its latency is less than 2.5 µs. To accomplish this, it is implemented in custom
hardware and located close to the detector in USA158.

The L1 trigger is split into a calorimeter trigger and a muon trigger. The calorimeter trigger
receives data at a reduced granularity and searches for clusters of energy depositions that are
typical for high-𝑝T electrons, photons, jets or 𝜏 leptons. It also triggers on events with a high
missing 𝐸T andwhere the sum of 𝐸T across all jets is above a given threshold. Themuon trigger
has access to RPC and TGC data and searches for high-𝑝T muons.

Both triggers forward their results (particle multiplicities and energy sums) to the Central
Trigger Processor (CTP). The CTP compares them with a list of customizable trigger conditions.
These conditions include thresholds on certain quantities, but also clocks and random triggers.
The list of satisfied trigger conditions is then compared to a list of trigger items, where each
condition may contribute to each item. Each trigger item is associated with a pre-scale factor,
which further reduces the frequency with which they are accepted. Ultimately, the L1 accept
signal is a list of all matched trigger items. If an event matches none, it is discarded.

Parallel to this selection step, the L1 trigger also marks a number of locations in 𝜂 − 𝜙
space as regions of interest (RoI). These regions seed the algorithms of the next trigger stage,
highlighting parts of the detector data that should be read out and investigated first.

TheHigh-Level Trigger (HLT) is the second stage of the ATLAS trigger process. It combines
what used to be two separate stages in Run 1: the L2 trigger and the Event Filter. In contrast to
the L1 trigger, it is software-based and runs above ground on a cluster of commercially available
computers.

8Despite the proximity, the finite signal propagation speed in the cables between detector and trigger alone
introduces a latency of about 1 µs. It is not feasible to put the trigger any closer due to a lack of space and the cost
of making its electronics radiation-hard enough.
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For each incoming event, the HLT executes a sequence of algorithms. It starts with fast
triggers for early rejection and continues with slower algorithms similar to those for offline re-
construction. A typical algorithm consists of one or more feature extraction steps – which re-
quest data fragments from the RoIs – and a hypothesis step, which checkwhether the data meet
certain trigger conditions. For some algorithms (e.g. those that require the missing transverse
momentum), data from the entire detector is requested. Overall, each algorithm is designed to
terminate within a few hundred milliseconds.

Each accepted event is tagged based on the chain of L1 trigger item and HLT algorithms
that it passed. Depending on this trigger chain, another pre-scale factor is applied and may
discard the event9. Only after this stage is the event written to one or more files, the so-called
streams. The streams, too, are selected based on the event’s trigger chain. The most important
ones are the physics streams10, which contain the full detector information for the event and
commit it to permanent storage.

3.3 The ATLAS Liquid-Argon Calorimeters

At the ATLAS experiment, liquid-argon calorimeters are used for hadronic calorimetry in the
end-caps and for electromagnetic calorimetry throughout the detector. They have been chosen
due to their intrinsic radiation hardness and because their response to ionization signals is both
highly linear and stable over time [68, ch. 5].

Liquid argon as a detection medium was first investigated in the early 1950s, when it was
found that it didn’t suffer from space charge accumulation effects like the contemporary crys-
tal counters did [92]. Starting in 1968, when it became apparent that multi-wire gas chambers
could not deliver the spatial resolution required by future experiments, the high-energy physics
community became interested in noble liquids [93, 94]. Six years later, in 1974, three indepen-
dently developed liquid-argon calorimeters were presented [95–97]. Soon after, liquid-argon
calorimeters were used in a multitude of particle physics experiments, e.g. R807-808 at the ISR,
DØ at Tevatron, and H1 at HERA [98].

This section first details the working principle of LAr calorimeters in general. Afterwards,
the geometry and the readout and trigger electronics of the ATLAS LAr calorimeters are de-
scribed. Finally, the most important sources of noise in the LAr calorimeters are enumerated.

3.3.1 Working Principle

LAr calorimeters work in an analogous manner to gaseous ionization detectors: an active de-
tector volume of liquid argon is flanked by two electrodes and a high voltage is maintained
between them. A particle passing through the detector will deposit some of its energy by ion-
izing the argon atoms along its track. The ions and free electrons thus produced are separated
by the electric field and drift to the cathode and anode respectively. Because of the high density
of liquid argon, particles have an extremely short mean free path in it and drift at a constant
speed (approx. 225 ns/mm for electrons).

9A pre-scale factor of 𝑛 means that the event is kept with a probability of 1/𝑛.
10The ATLAS physics streams are: electrons, muons, jets, photons, 𝐸miss

T and 𝜏 leptons, and 𝐵 physics.
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Figure 3.7: Sketch of an EMBmodule with the detector cells in all four layers [68, p. 114].
Segmentation in 𝜙 is achieved by ganging multiple electrodes, in 𝜂 and depth by etching
the electrodes.

While the argon ions can usually be neglected due to their low drift speed, the electrons
induce a current pulse on the anode while drifting. The pulse is approximately triangular in
shape, with a near-instantaneous rise time and a slow, linear drop back to zero. This shape is
derived in appendix A.

3.3.2 Detector Segmentation

The LAr calorimeter system consists of four subsystems EMB, EMEC, HEC, and FCal. Each one
covers a different pseudorapidity region, with some overlap between them to avoid gaps and to
lessen transition effects. In order to locate calorimeter hits, the detectors are segmented in three
dimensions: radially, azimuthally, and along the beam axis. On two axes, the segmentation is
achieved by etching the detector electrodes; on the third axis, multiple electrodes are ganged,
i.e. their outputs are summed via analog electronics. The units of this segmentation are called
calorimeter cells.

The detectors are segmented in a pseudo-projective manner towards the interaction point.
This means their cells form a rectangular grid in the 𝜂 − 𝜙 plane and are arranged in up to
four layers perpendicular to this plane. Figure 3.7 visualizes this grid geometry for the EMB,
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table 3.1 lists cell sizes for all detectors except of the FCal.
For various reasons, this geometry is only approximate and there are several deviations

from it, in particular in the far-forward region. Some of these deviations are:

• The EMB consists of two half-barrels with a 6mm gap between them at 𝜂 = 0. This crack
region is not instrumented and energy depositions in it are not read out [78, p. 121]. In
the front layer, the gap amounts to two cell widths, one per half-barrel, and the corre-
sponding readout channels are masked. In the other layers, the gap slightly reduces the
energy resolution of the cells next to it.

• Due to its weight (approx. 110 t), the EMB sags slightly, shifting detector cells from their
ideal positions in 𝜂 − 𝜙 space [68, sec. 5.2.4]. This effect amounts to a shift on the 𝜂 axis
by up to one cell width in the front layer, as fig. 3.8 shows.

• Due to its mechanical structure, the EMEC has a 3mm gap between its two wheels.
However, due to its coarser segmentation, this does not impact the readout.

• Also for mechanical reasons, the back layer covers only the outer wheel of the EMECs
(i.e. the region 1.5 < |𝜂| < 2.5), not the inner one.

Table 3.1: Segmentation of the LAr calorimeters into cells [68, p. 9]. The FCal does not
follow the grid-like geometry of the other calorimeters and thus is not listed here.

Calorimeter Layer Region (|𝜂|) Cell size (Δ𝜂 × Δ𝜙)

EMB Presampler 0.0… 1.5 0.025 × 0.1
1.5… 1.52 0.02 × 0.1

Front 0.0… 1.4 0.025/8 × 0.1
1.4… 1.475 0.025 × 0.025

Middle 0.0… 1.4 0.025 × 0.1
1.4… 1.475 0.075 × 0.025

Back 0.0… 1.35 0.05 × 0.025

EMEC Presampler 1.5… 1.8 0.025 × 0.1
Front 1.375… 1.425 0.05 × 0.1

1.425… 1.5 0.025 × 0.1
1.5… 1.8 0.025/8 × 0.1
1.8… 2.0 0.025/6 × 0.1
2.0… 2.4 0.025/4 × 0.1
2.4… 2.5 0.025 × 0.1
2.5… 3.2 0.1 × 0.1

Middle 1.375… 1.425 0.05 × 0.025
1.425… 2.5 0.025 × 0.025
2.5… 3.2 0.1 × 0.1

Back 1.5… 2.5 0.05 × 0.025

HEC all layers 1.5… 2.5 0.1 × 0.1
2.5… 3.2 0.2 × 0.2
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• The FCal adheres to the grid geometry much less than the other detectors. One reason
for this is that in the far-forward region, constant-size bins in 𝜂 are physically smaller
than in the central region. Another reason is the hexagonal arrangement of the FCal
electrodes. Figure 3.9 shows an example of what typical FCal cells look like.

3.3.3 Accordion Geometry

TheLAr calorimeters operate in ionization-chamber mode, i.e. no avalanche effect occurs at the
anode. Hence, the signal pulse is rather small (around 2.5 µA/GeV) and needs to be amplified.
In order not to distort the pulse’s sharp rising flank, the amplifier must have a short reaction
time and the signal run time to the readout electronics must be short [98, p. 1259].

A short signal run time corresponds to a short cable length. In the EMB, this is achieved
by arranging the absorbers and electrodes radially to the beam axis and reading them out on
the inside and outside face of the barrel. They are bent into an accordion shape so that the
azimuthal direction is covered homogeneously [100]. The accordion waves run radially and
their folding angle decreases with increasing radius. As fig. 3.10 shows, this keeps the LAr gap
and, by extension, the calorimeter response in µA/GeV constant.

In the EMECs, a similar accordion geometry is employed, but the accordion waves run
parallel to the 𝑧-axis to match the incident angle of particles. However, it is not possible to
keep the calorimeter response radially constant this way. Rather, a combination of parameters
is varied to minimize the change in response: the sampling fraction naturally decreases with
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increasing radius; the accordion folding angle decreases and the amplitude increases with in-
creasing radius; and the high voltage across the LAr gap is tuned specifically to this end. The
result of this effort is shown in fig. 3.10.

The accordion waves in the EMECs cannot be varied arbitrarily: the fabrication process of
the electrodes puts a limit on the ratio of outer to inner radius of the EMECs. To circumvent this
limit, the EMECs are split into two coaxial wheels, with a thin gap between them at |𝜂| = 2.5.

3.3.4 Readout Electronics

All ATLAS LAr calorimeters share a common readout system. This system provides calorimeter
information both to the L1 calorimeter trigger (at reduced resolution) and to the DAQ system
(at full resolution). It can read out the calorimeter data at the full L1 trigger rate of up to 100 kHz
and handles a dynamic range of energies from 10MeV up to 3 TeV.

In order to reduce cost while also meeting its latency requirements, the readout is split into
an off-detector back end and an on-detector front end. While the front end uses custom ASICs
to tolerate the high radiation levels inside the detector, the back end is built from commer-
cially available electronic components. The front end is further separated into cold electronics,
which are installed within the cryostats, and warm electronics, which are situated in front-end
crates (FEC) just outside of it. Figure 3.11 shows the general architecture common to all LAr
calorimeters.

The cold front-end electronics comprise summing boards and motherboards. The former
group neighboring electrodes into calorimeter cells, which is called ganging. The latter route
the summing board signals to readout cables while minimizing cross-talk between cells. They
also contain the point at which calibration pulses are injected into the readout chain.

The readout cables lead to the warm electronics via vacuum-sealed feedthroughs on the
cryostat. On the entire way, the components’ impedances have been matched to minimize re-
flections. Only the FCal electrodes, due to their unique shape, have a much smaller impedance
than the other components. This causes significant signal reflections in them and gives the
FCal signal a distinct pulse shape.

The HECs have a mechanical structure that differs greatly from that of the electromagnetic
calorimeters [101, sec. 10.1.3.2]. This allows the preamplifiers to bemounted on the (cold)moth-
erboards, greatly reducing the electronic noise. The other calorimeters, by contrast, amplify
their signals in the warm front end.

The warm front-end electronics consist of multiple boards, the most crucial of them being
the Front-End Board (FEB). It accepts the signals coming from the cold electronics and amplifies
them via a transimpedance preamplifier [102, sec. 4.1] before splitting the electronics chain into
a L1 trigger path and a main readout path (see fig. 3.12). In the HECs, where the preamplifier
part of the cold electronics, the FEBs have a preshaper, which inverts, shapes, and adjusts the
gain of its input to make the signal pulse shape more similar to that of the EMB and EMEC.

On the main readout path, the preamplifier output is split into three overlapping gain
levels: low (×1), medium (×10), and high (×100). On each level, an analog shaper applies a CR-
RC² band-pass filter, i.e. a high-pass filter followed by two low-pass filters. The former removes
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the long tail of the triangular signal pulse, the latter reduce the amplified thermal noise of the
cold electronics. The time constant 𝜏 ∶= 𝑅𝐶 = 13ns of the filters has been chosen to minimize
the total noise (see section 3.3.5 for details).

After shaping, the signals are sampled at the BC frequency of 40.08MHz and buffered in a
switched-capacitor array (SCA). If the L1 trigger accept signal arrives within the expected time
window, a gain-selector chip chooses the optimal gain level and reads a configurable number of
samples (typically four or five) from the SCA. The samples are passed through a 12-bit analog-
to-digital converter (ADC), formatted, and transmitted optically to the back end.

On the L1 trigger path, the signal is only digitized in the back end. The front end reduces
the detector resolution and makes the signal partially proportional to 𝐸T (as opposed to 𝐸).
The former is done by summing the signals of neighboring cells in multiple stages, the latter
by tuning the gain of each stage depending on the location of the cells. This conversion happens
only partially in the front end; the back end contains the final gain adjustment.

The FEB’s Linear Mixer chip first sums the signals of four neighboring cells. It also shapes
the sum in a similar manner to the main readout, but lacking the second low-pass filter. This is
applied in the back end to suppress the additional thermal noise caused by the longer analog
section.

The shaped signals are routed to the Layer Sum Board (LSB), which sums them to their
final resolution on the 𝜂 and 𝜙 axes. A Tower-Builder Board (TBB) receives these layer sums,
combines them into trigger towers and sends these to the back end. In the HEC and FCal, due
to their lower granularity, the layer sums are already produced on the FEB. Hence, the TBB is
replaced by a Tower-Driver Board (TDB), which only transmits its input to the back end.

In the addition to the boards described above, the FECs also contain: calibration boards
with the necessary logic to inject calibration pulses into the cold electronics; controller boards
which distribute the TTC and other signals to configure the front end; and baseplanes (two per
FEC) which route the signals between the other boards.

The back-end electronics are located in the USA15 cavern, approximately 70m away from
the detector. It consists of three systems: The TTC system, which receives the global LHC
clock signal and the L1 accept signal from the network and distributes it to the other systems;
the L1 receiver system; and the Readout Drivers (ROD).

The L1 receiver system receives signals from the front end’s trigger path and forwards them
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to the L1 calorimeter trigger. It also adjusts these signals with the missing low-pass filter and
the final, 𝜂-dependent gain to make it proportional to 𝐸T.

On the L1 trigger side, a pre-processor module receives these signals and digitizes them.
The sampling rate was 40.08MHz in Run 1 and 80.16MHz in Run 2 [91, sec. 3.3.1]. The resulting
samples are processed by an Optimal Filter (OF, see section 5.6 for a description). Maxima in
the OF output are used to identify BCs with energy deposits and to estimate the deposited 𝐸T
based on a look-up table.

If the deposited energy saturates the analog electronics, the OF is ignored. Instead, a rising-
edge-detecting algorithm identifies the offending BC and a sentinel value indicating an out-of-
range energy is produced. The algorithm has been adapted for Run 2, but still generally follows
its original design [103, sec. 5.5].

The BC information and 𝐸T are sent to downstreammodules, which calculate various quan-
tities and define RoIs. This information is eventually sent to the CTP, which ultimately decides
whether to send the L1 accept signal.

The RODs receive the digitized signal samples from the front end’s main readout path. They
check their integrity, process them, and send the results to the DAQ system. As in the trigger,
processing is based on an OF (see section 5.6 for a description).

3.3.5 Sources of Noise

The uncertainty of the reconstructed cell-level energy is commonly referred to as noise. Noise
has three primary contributions:

• quantization noise in the ADCs,

• thermal noise in the analog readout electronics,

• pileup noise due to the overlap between signal pulses and the detector’s high event rate.

The first two are collectively called electronic noise due to their similarity.
Quantization noise stems from the fact that the ADC introduces a rounding error into the

signal. This process is not fully deterministic; rather, the least significant bit tends to fluctuate,
even in the absence of input noise. This noise is fully uncorrelated.

Thermal noise occurs in the entire analog section of the electronics. However, the cold
electronics dominate due to their amplification by the preamplifier. Though simple thermal
noise is approximately uncorrelated [104, p. 69], the analog electronics shape it in many, non-
trivial ways. As such, the thermal noise must be assumed to be correlated in some way.

Pileup noise originates in the detector proper and is caused by its high event rate, as de-
scribed in section 3.1.5. In-time pileup can be understood as a randomly distributed energy
added on top of every signal energy deposition. While various methods exist to remove it
e.g. on the level of reconstructed jets [105, sec. 1], on the calorimeter cell level, it can only be
subtracted on average.

Out-of-time pileup, on the other hand, is caused by the overlap between pulses of hits that
closely follow each other. It could be removed completely from any cell hit in principle, if the
timing and amplitude of all past hits of the same calorimeter cell were known.
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Figure 3.13: Thermal and pileup noise 𝜎 over the pulse peaking time 𝑡p [102, fig. 7b].
The peaking time is defined as the time between the points when the pulse reaches 5 %
and 100 % of its amplitude. It depends only weakly on the amplitude and increases with
the time constant 𝜏 of the shaper.

The magnitude of pileup noise increases both with the luminosity (see section 3.1.5) and
with |𝜂|. The latter is primarily due to the fact that cells in the forward region are wider in 𝜂
and thus are hit by more particles per bunch crossing. For this reason, pileup noise dominates
over electronic noise at high |𝜂| and the latter can be neglected. This effect will only increase
in the future, when it is planned to increase the luminosity of the LHC even further.

The time constant 𝜏 of the shaper affects both electronic and pileup noise:

• Electronic noise is best suppressed with a high value of 𝜏, which corresponds to a lower
cut-off frequency of the shaper’s band-pass filter.

• Out-of-time pileup noise is best suppressed with a low value of 𝜏, which shortens the
positive lobe of the signal pulses and thus reduces overlap.

Figure 3.13 shows this trade-off. The current time constant of 13 ns optimizes the combined
noise [102, sec. 4.3]. As the LHC luminosity is scheduled to be increased, this choice is re-
evaluated in section 7.3.





Chapter 4

Upgrades to the ATLAS
Liquid-Argon Calorimeters

TheLHC is themost powerful particle accelerator in theworld andwill remain so for at least the
next two decades [106, sec. 1.1]. In order to extend its operability and increase its instantaneous
luminosity 𝐿 (see section 3.1.4), it is planned to be upgraded to the so-called High-Luminosity
LHC (HL-LHC). This will increase 𝐿 from its current peak value of 2.1 × 1034/(cm2 s) [107, p.5]
to a value between 5 × 1034/(cm2 s) and 7.5 × 1034/(cm2 s). To handle the increased amount of
data, background interactions, and radiation, the experiments need to be upgraded as well.

The upgrade towards the HL-LHC is split into two stages: one is currently underway, while
the LHC is in Long Shutdown 2 (LS2); the other will be applied in 2025 during Long Shutdown
3 (LS3). The respective upgrades of the ATLAS detector are referred to as Phase-I Upgrade and
Phase-II Upgrade. Figure 4.1 shows the expected timeline for this process. While section 4.1
summarizes the physics goals of the HL-LHC, sections 4.2 and 4.3 describe the Phase-I and
Phase-II Upgrade respectively.

4.1 Physics Goals

The physics program at the HL-LHC has two important goals: precision measurements of the
Higgs sector and searches for BSM physics [109, sec. 8, 110, sec. XI.3].

To verify that the newly discovered particle at the LHC is indeed the Standard Model Higgs
boson, its couplings to as many final states as possible must be measured and compared to
Standard Model predictions. Of particular importance to this are: [110, sec. XI.3]:

• the decay 𝐻 → 𝛾𝛾 as well as the vector boson fusion channels 𝐻 → 𝑍𝑍(∗) → ℓℓℓℓ and
𝐻 → 𝑊 𝑊 (∗) → ℓ𝜈ℓ𝜈 for the gauge bosons;

• the Higgs decays to 𝑏�̄�, 𝜏+𝜏−, and 𝜇+𝜇− for quarks and leptons.

Furthermore, the Higgs self-coupling must be measured to confirm the Brout–Englert–Higgs
mechanism as the cause of EWSB.The best channel for this is𝐻 → 𝐻𝐻 → 𝑏�̄�𝛾𝛾 . [109, sec. 8.2.2].

On the search for BSM physics, multiple leads will be pursued:

35
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• The vector boson scattering process 𝑉 𝑉 → 𝑉 𝑉 (with 𝑉 = 𝑊 , 𝑍) will be probed for
the possibility that there are other, unknown mechanisms that preserve unitarity of the
cross-section in the longitudinal mode. [109, sec.8.2].

• The search for supersymmetric extensions of the StandardModel remains a high-priority
task in the LHC program. One of the most promising channels for it is the associated
production of charginos and neutralinos. [110, sec. XI.3.5].

• Finally, high-mass particles predicted by more exotic models are being searched for, e.g.
Kaluza–Klein gravitons or dilepton resonances [110, sec. XI.3.6].

To accomplish these goals, the LAr calorimeters must operate at optimal performance, so
that electrons and photons can be identified with high efficiency. In addition, the reconstruc-
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tion of boosted jets in the far-forward region is crucial for the measurement of vector boson
fusion and scattering processes.

4.2 Phase-I Upgrade

In Run 2, 𝐿max reached a peak value of 2.1 × 1034/(cm2 s). After the LS2, in Run 3, this value
is expected to be held or further increased to 3 × 1034/(cm2 s) [107, p.5]. This corresponds to
a ⟨𝜇⟩ of about 80. (see sections 3.1.4 and 3.1.5 for definitions.) Consequently, the number of
background events that need to be suppressed increases as well.

The Phase-I Upgrade of the LAr calorimeters affects exclusively the L1 trigger path; the
main readout path stays unmodified. The goal of this upgrade is to deploy more sophisticated
filter algorithms to the L1 trigger. This is so that, despite the increased amount of background
events, the trigger rate is kept below 110 kHz, the maximum supported by the main readout.

On a high level, the main change to the trigger path is the transition from trigger towers to
super cells in the Electromagnetic Calorimeter, as shown in fig. 4.2. This means that summing
no longer occurs across layers and that the trigger thus will receive a depth profile of energy
depositions. Additionally, super cells have a finer granularity of Δ𝜂 × Δ𝜙 = 0.25 × 0.1 in the
front and middle layer, thus generally providing higher-resolution information as well. The
higher resolution makes it necessary to move energy reconstruction from the L1 trigger to the
back-end electronics. The trigger, in return, can deploy algorithms that operate on a higher
level of abstraction and perform simple particle identification.
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not routed through the back end. 2. In the LTDB, the TBB path splits off before shaping,
not after.

Figure 4.3 shows how the Phase-I Upgrade will change the readout electronics. As can be
seen, the legacy trigger path via the TBB and TDB will stay in place and active throughout
Run 3. It will serve as a stable and well-understood physics trigger and as a baseline for the
validation of the new trigger [91, sec. 3.9.1].

4.2.1 Front-End Electronics

Most of the changes to the front-end electronics accommodate the new super-cell-based geom-
etry. The LSBs are replaced with new boards that provide finer-grained sums; the baseplanes,
which route the signals between the different boards, are upgraded to handle the increased
amount of data to be transferred; and new LAr Trigger Digitizer Boards (LTDB), which digi-
tizes the signal on-detector, are added. The LTDBs have four tasks:
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• They perform the final shaping of the analog signal pulse. This also amplifies the signal
with a gain that optimally uses the ADC’s dynamic range.

• Their analog sections also sum the (unshaped) inputs and forward the sums to the legacy
trigger path. Configurable delay lines ensure that the signals arrive in the TBBs and TDBs
with the same timing as before the upgrade.

• The on-board ADCs sample and digitize the signal at a rate of 40MHz. The least signifi-
cant bit is different for each detector region, but generally lower than before the upgrade.

• The LTDBs also take over the functionality of the crate monitoring boards. The latter are
removed in order to make more space on the baseplanes.

The digitized samples are ultimately serialized by LOCx2 chips [112] and sent to the back end
and the monitoring system.

4.2.2 Back-End Electronics

TheLArDigital Processing System (LDPS) is added to the back end for the task of energy recon-
struction. It follows the Advanced Telecom Computing Architecture (ATCA) [113, sec. 5.2.1],
with LAr Digital Processing Blades (LDPB) as the primary processing units. Each LDPB is
equipped with four mezzanine cards, the LAr Trigger Processing Mezzanines (LATOME).

As shown in fig. 4.4, the FPGA on each LATOME board is programmed in a modular fash-
ion [114]. Each module solves one particular task:
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• The input stage receives digitized samples from the LTDB and deserializes them.
• The configurable remapping groups data from super cells that belong to the same
trigger tower.

• The user code calculates 𝐸T, assigns it to the correct BC, and detects saturated pulses.
It also transmits several quality bits that signal the success of each operation.

• The output summing sends the 𝐸T values to the L1 calorimeter trigger. The values are
partly summed and partly at full super-cell resolution (see section 4.2.3).

• TheTDAQ/monitoring buffers data and sends it to themonitoring system upon request.

The user code consists of three blocks: the filter and selection block (consisting of two
sub-blocks), the baseline correction block, and the combine block.

• The filter sub-block applies an OF to the signal samples to calculate 𝐸T and 𝜉 ∶= 𝐸T𝜏 (see
section 5.6 for details). The filter coefficients are scaled by a factor as detailed below.

• The selection sub-block uses simple cuts on these values to detect calorimeter hits and
saturation of the analog electronics.

• In parallel, the baseline correction block estimates how much the baseline value of the
signal is shifted for the current BC.

• This estimate is applied to 𝐸T in the combine block. For saturated samples, this block also
checks whether there are high-energy deposits in neighboring cells; if not, the sample is
labeled as a misidentified saturated signal.

Strictly speaking, the filter applied in the user code is a scaled OF. The output sent to the
L1 calorimeter trigger must be proportional to 𝐸T, but the input received from the front end is
only partially proportional, as described in section 4.2.1. The scaling factor necessary to make
the data proportional is absorbed into the OF coefficients.

Besides the LDPS, the other back-end upgrade is the evolution of the Readout System (ROS).
This upgrade starts in Phase I and is continued in Phase II. It is planned to replace the highly
customized connections of the various sub-detectors to TDAQ and the TTC with a uniform
interface: the Front End Link Interface Exchange (FELIX). This also replaces the custom, point-
to-point connections from the detectors to nodes in the TDAQ network with switched connec-
tions that facilitate load balancing. Figure 4.5 shows the readout architecture before and after
this upgrade.

4.2.3 Level-1 Calorimeter Trigger

Although the trigger system is being upgraded to exploit the super-cell information passed to
it by the new back end, the current system (fig. 4.6a) will remain fully operational throughout
Run 3 as a stable baseline. Figure 4.6b shows a diagram of the planned changes.

Three new types of modules, so-called Feature Extractors (FEX), are added to the trigger:
the eFEX, the jFEX, and the gFEX. The eFEX is the only one that operates at super-cell resolu-
tion. It identifies isolated electrons, photons, and tau leptons. The jFEX, operating at trigger-
tower resolution, identifies isolated jets of sizeΔ𝑅 = 0.4. The gFEX has an even lower resolution
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(2 × 2 trigger towers or more), but in return, the full calorimeter is available to it. It calculates
the transverse energy imbalance 𝐸miss

T and identifies large-radius jets.
The FEXs summarize their results as trigger objects and forward them to the L1 topological

trigger. The topological trigger combines these objects with those of the L1 muon trigger and
sends the combined objects to the CTP. The CTP, as before, makes the L1 trigger decision
whether to accept or reject the event. The topological trigger has already been added during
LS1; during Phase I, it is only modified by including FEX trigger objects.

4.3 Phase-II Upgrade

After LS3, the HL-LHC is expected to reach an instantaneous luminosity 𝐿max of 5 × 1034 to
7.5 × 1034/(cm2 s). This corresponds to 140 to 200 𝑝𝑝 interactions per BC on average, which is
more than twice the amount expected after LS2. Because the current hardware trigger likely
cannot suppress the resulting amount of background events sufficiently, it will have to be up-
graded.

4.3.1 Hardware Trigger

Figure 4.7 shows the architecture of the upgraded TDAQ system. Most notably, the L1 calorime-
ter trigger is going to be replaced by an L0 trigger. It will have a trigger rate of either 1MHz
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LASP boards that process the EMB are not connected to the L0 calorimeter trigger.
Though the LDPS also calculates energy sums for the HEC and FCal for redundancy,
only the LASP sends this information to the trigger.

(baseline plan [115, sec. 4.2]) or up to 4MHz (evolved scenario with a new L1 trigger [115,
sec. 14.2]) and a latency of 10 µs (both scenarios). The increased latency with respect to Phase I
will allow for a more refined event selection at the lowest trigger level.

The FEXs, unchanged from Phase I, will still be part of the L0 trigger. However, a new fFEX
will be added: it will reconstruct electromagnetic objects in a region 2.5 < |𝜂| < 4.9 and jets in
a region 3.1 < |𝜂| < 4.9. To do so, it will receive data at full resolution from the FCal, HEC, and
inner EMEC. Figure 4.8 shows the data flow from the calorimeters to the FEXs.

In addition, a new Global Trigger is inserted between the L0 calorimeter trigger and the
CTP. It effectively replaces the L1 topological trigger. It receives not only the trigger objects
calculated by the FEXs, but also reconstructed energies from all calorimeters at full resolution1.
These data are used for a series of algorithms similar to the offline analysis, e.g. topological
clustering. Based on these results, new and refined trigger objects are sent to the CTP.

4.3.2 Readout Electronics

In addition to the trigger, the LAr calorimeter readout electronics are also planned to be up-
graded. There are three major reasons for this effort:

• The upgraded L0 trigger will need a way to access the calorimeters at full resolution at
a frequency of 40MHz. The current readout does not have the necessary bandwidth to
provide this information. (This is of no concern to the LDPS, which sends its data to the

1To conserve bandwidth, only cells where the transverse energy exceeds twice the average noise (|𝐸T| > 2𝜎)
are transmitted.
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Figure 4.9: Overview of the LAr readout electronics after the Phase-II Upgrade [117,
p. 3]. New components are underlaid with dark blue, sharp-cornered rectangles.

unmodified FEXs.) Furthermore, the current FEBs do not have the necessary data buffers
to support the increased L0 trigger latency.

• The current FEBs have been qualified for 10 years of operation, with some safety factors
included [116]. At the beginning of Run 4, they will be 15 to 20 years old and will not
withstand the planned 8 years of HL-LHC operation without severely reduced perfor-
mance due to radiation damage [110, sec. V.2.1]. This is of no concern to the LTDB and
the cold electronics, which all have been qualified for the total radiation dose expected
at the HL-LHC [111, sec. 2.5].

• There are several ASICs in the front end that have been fabricated using outdated tech-
nology and can no longer be replaced [109, sec. 3]. While spare parts exist, they will
likely not suffice for the entirety of the HL-LHC program [111, sec 6.3.1].

Based on these considerations, it is planned to replace the FEBs, the RODs, and the calibration
boards. Figure 4.9 shows a block diagram of the upgraded readout electronics.
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4.3.3 Back-End Electronics

The RODs are replaced by Liquid Argon Signal Processors (LASP), an evolution of the LDPS
developed for Phase I. Like the LDPS, they are based on the ATCA, with two LASPs per ATCA
blade. However, the FPGAs to be used will have more processing power, allowing the imple-
mentation of more sophisticated algorithms.

The LASPs perform the following four tasks:

• They receive the calorimeter signal from the front end via optical links. The signal is
digitized and arrives unbuffered at the rate of the LHC clock. It is available on two
different, overlapping gain scales, one of which must be chosen on each tick.

• Using the digitized calorimeter signal, it identifies hits and reconstructs their deposited
energy and timing. Due to the higher amount of available processing power, it is possible
to use more sophisticated filters with active suppression of out-of-time pileup. (This is
investigated in section 7.7.) It is also possible to implement different filters for the trigger
and the main readout path; the former would be optimized to correctly identify hits, the
latter to estimate the deposited energy and hit timing accurately.

• Data from all cells whose reconstructed energy exceeds a certain threshold are sent to
the Global Trigger and, in case of the end-caps, to the fFEX. If too many cells pass the
threshold, the LASPs must automatically discard the lowest-energy hits.

• The data must be buffered for at least 10 µs and, if an L0 trigger accept signal arrives,
sent to the DAQ network. Each LASP must be able to handle up to four accept signals in
consecutive BCs.

4.3.4 Front-End Electronics

The upgraded Front-End Board 2 (FEB2) will have several improvements over its predecessor,
though the general data flow stays similar. A combined preamp/shaper ASIC will handle both
amplification and pulse shaping in one circuit. Its output drives an ADC that samples and
digitizes the signal2. The samples are sent to the back end, which further processes them. To
guarantee synchronization between front end and back end, a bunch crossing identifier (BCID)
is transmitted for each data packet. This is a simple integer number that increases with each
BC and is reset after each LHC orbit via the global Bunch Counter Reset (BCR) signal.

The preamp/shaper chip not only amplifies and shapes the signal, it will also split it onto
two overlapping gain scales. These scales are separated by a factor of 30. Together, they cover
a dynamic range of 16 bits. This covers the entire range of energies possible at the LHC while
keeping the quantization noise below the intrinsic calorimeter resolution. This is important to
avoid degrading the total resolution by more than 5% [111, sec. 3.7.1].

The LAr cryostat will not be opened during the Phase-II Upgrade. This means that for the
HECs, amplification will continue to be handled by the cold electronics. To account for this, the

2The signal may be sampled at a rate of either 40MHz or 80MHz. It is foreseen that a sampling rate of 40MHz
will be used [111, sec. 3.7.2]. For a comparison of how both options impact the energy resolution see section 7.4.
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HECs will be read out by modified FEBs, on which the preamp/shaper chip inverts the signal
and adjusts its gain3.

The FEB2 has to stay compatible with the LTDB. Hence, it will also have to sum the
calorimeter signals into super cells and transmit these onto the trigger path. It has not been
decided yet whether this summing will be done within the preamp/shaper chip or on dedicated
chips comparable to today’s LSBs.

There are currently two prototypes for the preamp/shaper chip: the LAUROC [118], based
on 130 nm CMOS technology; and the HLC1 [119], based on 65 nm CMOS technology. A com-
parison of both is given in [111, sec. 5.1.2] and in [120]. A third approach, based on bipolar
silicon-germanium processes, is kept as a backup plan. It is disfavored because of its high
power consumption.

The ADC is being pursued with three different approaches. The baseline solution is to use
one 14-bit ADC per gain scale. The ADC is custom-made. It consists of a Dynamic Range
Enhancement (DRE) block followed by a 12-bit ADC.The 12-bit ADC is the same that has been
developed for the LTDB. The DRE block splits the signal onto two paths, one with gain 1 and
one with gain 4. It determines the two most significant bits and, based on them, picks one path
to present to the 12-bit ADC.The two results are combined in a way that preserves the required
bit precision.

Besides the DRE, an alternative method based on a multiplicative digital-to-analog con-
verter (MDAC) is currently being pursued. It does not change the architecture of the ADC, but
promises to reduce the quantization noise significantly [121].

Besides this fully custom ADC, the other two approaches are a commercial off-the-shelf
(COTS) ADC and a custom ADC chip that integrates a commercial intellectual-property (IP)
core. The former would require an additional ASIC to interface the ADCwith the other ATLAS
electronics. It thus only serves as a backup solution in case the other two approaches don’t meet
the requirements.

3In addition to inversion and gain adjustment, the current preshaper also performs a pole-zero cancellation to
equalize the signal pulse shapes of different HEC cells. It has been found that this has only negligible impact on
the energy resolution, so it will not be done in Phase II [111, p. 79f].





Chapter 5

Noise Suppression With Digital
Filters

Conceptually, the back end of the LAr calorimeters performs two important tasks: bunch cross-
ing (BC) identification and energy reconstruction. The former means that for each cell and each
BC, the back end has to determine whether there has been a hit by particles from the 𝑝𝑝 col-
lision. The latter means that if there has been a hit, the back end should estimate how much
energy has been deposited in that cell by the incident particles. Because the time of flight of
the particles and the lengths of the readout cables vary considerably, the back end must also
estimate the timing of each hit, i.e. the time between the hit and the last LHC clock signal.

In this chapter, various algorithms for these purposes are reviewed. In section 5.1, the
quantities and symbols used in this chapter are introduced. Several terminology pitfalls and
ambiguities in definition are pointed out as well. Section 5.2 serves as an introduction to digital
filters, the algorithms used primarily for low-latency energy reconstruction. In each subse-
quent section, an algorithm is introduced and its properties investigated.

It must be noted that the final two approaches – sparse signal restoration in section 5.8
and artificial neural networks in section 5.9 – have not been implemented in AREUS nor in-
vestigated in chapter 7 due to time constraints. Nonetheless, they have been included in this
chapter as both an inspiration and a reference to other physicists, who may wish to further
investigate the problem of online energy reconstruction.

5.1 Terminology

In the study of digital signal processing, many concepts have multiple competing definitions.
Hence, it is important to use a common subset of these definitions when comparing different
algorithms. In this section, the conventions used throughout the chapter are summarized.

5.1.1 Continuous Formulation

When a particle crosses a calorimeter cell after a BC and deposits an energy 𝐸, the analog
readout electronics respond with a voltage pulse 𝑤. Ignoring the finite flight time 𝜏 of the
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Figure 5.1: A typical response of the readout electronics to a hit in a LAr cell. Notable
features are the narrow positive lobe and the long, negative undershoot. The integral
over the entire pulse is approximately zero. The circles mark points where the pulse is
sampled by the ADC.

particle1 and assuming the response scales linearly with 𝐸, it is:

𝑤 ∶ ℝ → ℝ, 𝑡 ↦ 𝑤(𝑡),
𝑤(𝑡) ∶= 𝐸 ⋅ ℎ(𝑡) + 𝑢(𝑡). (5.1)

The function ℎ is the response function of the system and 𝑢 describes the noise of the readout
electronics. Various authors also call ℎ the analog pulse shape, pulse form or waveform.

The function ℎ describes an ideal and normalized pulse as produced by the readout elec-
tronics. A typical pulse is shown in fig. 5.1. Its domain is limited to an interval [0; 𝑇 ] where 𝑇
is the pulse length. Because the analog shaper of the readout electronics contains a high-pass
filter, the integral of the response approximately vanishes:

∞

∫
−∞

ℎ(𝑡)d𝑡 =
𝑇

∫
0

ℎ(𝑡)d𝑡 = 0. (5.2)

5.1.2 Discrete Formulation

The front-end electronics digitize the electric signals from the calorimeter and send a sequence
of discrete voltage samples to the back end. This sample sequence is the input of the energy-
reconstruction algorithm. The sampling period 𝑡s of this sequence may be assumed to be any
integer fraction of the BC period, 25 ns, though no sampling rate higher than two samples per
BC is likely to be pursued.

1It will be considered again in section 5.6.
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A singular hit with energy 𝐸 causes a sequence 𝑤 of non-zero samples to be registered:

𝑤 ∶ ℕ0 → ℝ, 𝑛 ↦ 𝑤[𝑛],
𝑤[𝑛] ∶= 𝐸 ⋅ ℎ[𝑛] + 𝑢[𝑛]

∶= 𝐸 ⋅ ℎ(𝑛𝑡s) + 𝑢(𝑛𝑡s), (5.3)

where ℎ[𝑛] is a sequence over the response function ℎ(𝑡) and 𝑢[𝑛] over the noise 𝑢(𝑡). In practice,
energy reconstruction needs to deal with not only one hit, but multiple hits in quick succession.
This can be modelled by turning 𝐸 into a sequence 𝐸[𝑡] of 𝑁 hits, also with the period 𝑡s. This
sequence should be much longer than an individual pulse, i.e. 𝑁 ≫ 𝐿, where 𝐿 ∶= 𝑇

𝑡s
is the

discretized pulse length. The sequence 𝐸 should also be stationary in the wide sense, i.e. its
average should not change too much2.

Under these assumptions, the input to the energy reconstruction becomes:

𝑤[𝑛] ∶=
min{𝑛, 𝐿−1}

∑
𝑘=0

ℎ[𝑘]𝐸[𝑛 − 𝑘] + 𝑢[𝑛]. (5.4)

The sum over 𝑘 is an acylic convolution (∗) of 𝐸 with ℎ. This can be used to rewrite eq. (5.4) in
terms of sequences instead of their elements:

𝑤 ∶= ℎ ∗ 𝐸 + 𝑢. (5.5)

In practice, the acyclic convolution is often approximated by the cyclic convolution, defined
as (𝑥 ⊛ 𝑦)[𝑛] ∶= ∑𝑁−1

𝑘=0 𝑥[𝑘]𝑦[𝑛 − 𝑘] (mod 𝑁), where out-of-bounds indices wrap around. This is
appropriate if 𝑥[𝑘] is only non-zero for indices 𝑘 ≪ 𝑁 .

5.1.3 Autocorrelation and Cross-Correlation

𝐸 and 𝑢 are stochastic sequences, i.e. each of their elements is itself a random variable. Because
they are wide-sense stationary, each element has the same statistical properties:

𝔼[𝐸[𝑖]] = 𝔼[𝐸[𝑗]] ∀𝑖, 𝑗 ∈ ℕ0, (5.6)

where 𝔼[⋅] is the expectation. This makes it possible to speak about quantities such as the
population mean 𝜇𝑋 and population variance 𝜎2

𝑋 of an entire sequence 𝑋.
For a stochastic sequence 𝑋, 𝜇𝑋 and 𝜎2

𝑋 may be estimated by the sample mean �̄� and the
sample variance 𝑠2

𝑥:

�̄� ∶= 1
𝑁

𝑁−1

∑
𝑛=0

𝑥[𝑛], (5.7)

𝑠2
𝑥 ∶= 1

𝑁 − 1

𝑁−1

∑
𝑛=0

(𝑥[𝑛] − �̄�)2 = 𝑁
𝑁 − 1 (𝑥2 − 𝑥2

) . (5.8)

2In practice, the sequence 𝐸 is non-stationary due to both the bunch-train pattern employed in the LHC and
the decreasing luminosity during a run.
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where 𝑥 is a concrete realization of 𝑋. (For simplicity, the distinction between both will be
suppressed from here on out.) Generally, 𝑠2

𝑥 underestimates 𝜎2
𝑋 ; the bias only vanishes if there

is no correlation between the sequence elements.
The energy-reconstruction algorithms presented here not only need 𝜇 and 𝜎2 to describe 𝐸

and 𝑢, but also a measure of similarity between two sequences. The simplest such measure is
the cyclic cross-correlation 𝑅∘. For two sequences 𝑥 and 𝑦 of length 𝑁 , it is:

𝑅∘
𝑥𝑦 ∶ (−𝑁, 𝑁) → ℝ,

𝑅∘
𝑥𝑦(𝑛) ∶= 1

𝑁

𝑁−1

∑
𝑘=0

𝑥∗[𝑘]𝑦[𝑘 + 𝑛] (mod 𝑁), (5.9)

where (⋅)∗ denotes complex conjugation and (mod 𝑁) means that indices outside the interval
[0; 𝑁 − 1] “wrap around”. The lag parameter 𝑛 shifts one of the sequences by 𝑛 samples and
accounts for the fact that one sequence might replicate the other in a delayed manner.

The autocorrelation of a sequence 𝑥 is defined as its cross-correlation with itself, 𝑅∘
𝑥𝑥. As a

measure of self-similarity, it is maximal for a lag of zero and converges to the quadratic mean
with increasing 𝑛:

𝔼[𝑅∘
𝑥𝑦(0)] = 𝜇2

𝑥 + 𝜎2
𝑥, (5.10)

lim
𝑛→∞

𝔼[𝑅∘
𝑥𝑦(𝑛)] = 𝜇2

𝑥. (5.11)

The speed with which 𝑅∘ converges to 𝜇2
𝑥 can be regarded as a kind of “coherence time”.

For stochastic sequences, 𝑅∘ is a biased estimator of the population cross-correlation. Better
results can be achieved using the acyclic cross-correlation, defined as:

𝑅𝑥𝑦 ∶ (−𝑁, 𝑁) → ℝ,

𝑅𝑥𝑦(𝑛) ∶= 1
𝑁 − |𝑛|

𝑁−1−max(0, 𝑛)

∑
𝑘=max(0, −𝑛)

𝑥∗[𝑘]𝑦[𝑘 + 𝑛]. (5.12)

It is unbiased, but has a high variance for |𝑛| ≈ 𝑁 . If one is only interested in the results for
𝑛 ≪ 𝑁 , this presents no issue and 𝑅(𝑛) ≈ 𝑅∘(𝑛). As a note, the sum in eq. (5.12) is sometimes
written as an operator “⋆”, i.e. (𝑥 ⋆ 𝑦)(𝑛) ∶= 𝑅𝑥𝑦(𝑛) ⋅ (𝑁 − |𝑛|).

Finally, a concept that will become useful is the conjugated reversal of a sequence 𝑥:

𝑥†[𝑛] ∶= 𝑥∗[𝑁 − 1 − 𝑛]. (5.13)

With it, the cross-correlation can be expressed as a convolution:

𝑅𝑥𝑦(𝑛) = 1
𝑁 − |𝑛| (𝑥† ∗ 𝑦)[𝑁 − 1 + 𝑛], (5.14)

where the shift by 𝑁 − 1 is necessary to make 𝑥 and 𝑦 “overlap”. This correspondence is impor-
tant because it means that certain relationships between convolution and Fourier transform
also hold for the cross-correlation.
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5.1.4 The Fourier Transform

Transforming sequences into the frequency domain can make information visible that is dif-
ficult to discern in the time domain. However, there are several competing definitions of this
transformation, sometimes with different normalization. Thus, this section will briefly intro-
duce the conventions used in this chapter. Generally, the conventions field of digital signal
processing are used [122].

For a finite sequence 𝑥 of length 𝑁 , the discrete Fourier transform (DFT) is:

�̂�[𝑘] ∶= ℱ [𝑥][𝑘] ∶=
𝑁−1

∑
𝑛=0

𝑥[𝑛] ⋅ e−2πi 𝑛𝑘
𝑁 , (5.15)

𝑥[𝑛] = ℱ −1[�̂�][𝑛] ∶= 1
𝑁

𝑁−1

∑
𝑘=0

�̂�[𝑘] ⋅ e2πi 𝑛𝑘
𝑁 . (5.16)

The same equations also hold if 𝑥 is infinite but periodic with period 𝑁 . In either case, the
sequence �̂� is complex, infinite, and periodic with period 𝑁 ; it is called the spectrum of 𝑥.
Though the properties of the DFT are well summarized elsewhere [123], three are particularly
important here:

1. If 𝑥 is real, then �̂� is symmetric under conjugated reversal: �̂�† = �̂�. This means that only
half the values must be calculated for most practical sequences.

2. The DFT of 𝑥† is �̂�∗.
3. For the circular convolution, it is: ℱ [𝑥 ⊛ 𝑦] = ℱ [𝑥] ⋅ ℱ [𝑦].

The last two properties lead to the Wiener–Khinchin theorem [124, 125]:

𝑅∘
𝑥𝑥(𝑛) = 1

𝑁 ℱ −1[|�̂�|2][𝑛], (5.17)

and Parseval’s theorem [126] as a special case:

𝜇2
𝑥 + 𝜎2

𝑥 = 𝔼[𝑅∘
𝑥𝑥(0)] = 𝔼

⎡⎢⎢⎣

1
𝑁

𝑁−1

∑
𝑘=0

|�̂�[𝑘]|
2⎤⎥⎥⎦

. (5.18)

The sequence |�̂�|2 is referred to as the power spectrum of 𝑥. An important consequence of
Parseval’s theorem is that the variance of a zero-mean sequence can be estimated by a sum
over its power spectrum.

Stochastic sequences like the electronic noise are inherently aperiodic. In addition, the
complex phases of their spectra are random, i.e. they contain no useful information. Conse-
quently, the DFT does not describe them well. A better fit is the power spectral density (PSD):

𝑆 ∶ [− 𝑓s
2 ; 𝑓s

2 ] → ℝ+
0 , 𝑓 ↦ 𝑆(𝑓),

𝑆(𝑓) ∶= lim
𝑁→∞

1
𝑁𝑓s

𝔼
⎡⎢⎢⎣|

𝑁−1

∑
𝑛=0

𝑥[𝑛]e−2πi𝑛 𝑓
𝑓s |

2⎤⎥⎥⎦
, (5.19)
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where 𝑓s ∶= 𝑡−1
s is the sampling rate. The PSD is based on the discrete-time Fourier transform

(DTFT), which is a Fourier transform for aperiodic time-discrete signals. In contrast to the
power spectrum, the PSD is a continuous function of 𝑓 . If it were extended beyond its domain
of [−𝑓s/2; 𝑓s/2]3, it would continue periodically due to aliasing [127, sec. 3.2]. It further differs
from the power spectrum in units: if the signal is measured in V, the power spectrum has units
V2, whereas the PSD has units V2/Hz.

Calculating the PSD theoretically requires two averages over the measured data 𝑥: a time
average over the index 𝑛 and an ensemble average over all realizations of 𝑥. However, if 𝑥 is
strictly ergodic, both averages are the same and the PSD can be approximated with the power
spectrum of 𝑥:

𝑆(𝑓 = 𝑘
𝑁 𝑓s) ≈ |�̂�[𝑘]|

2

𝑁𝑓s
. (5.20)

Variants of the Wiener–Khinchin theorem and Parseval’s theorem also hold for the PSD:

𝑅𝑥𝑥(𝑛) = ℱ −1
DTFT[𝑆][𝑛] ∶=

𝑓s/2

∫
−𝑓s/2

𝑆(𝑓)e2πi𝑛 𝑓
𝑓s d𝑓 , (5.21)

𝜇2
𝑥 + 𝜎2

𝑥 =
𝑓s/2

∫
−𝑓s/2

𝑆(𝑓)d𝑓 , (5.22)

where the finite sum is replaced by the integral of the discrete-time Fourier transform.
Finally, one-sided spectral densities must be introduced. Like the power spectrum, the PSD

is symmetric if the underlying stochastic process is purely real. In this case, it is customary to
use only the positive half of the PSD and scale it by a factor of two:

𝑆os ∶ [0; 𝑓s
2 ] → ℝ+

0 , 𝑓 ↦ 𝑆os(𝑓 ),

𝑆os(𝑓 ) ∶= 2𝑆(𝑓), (5.23)

𝜇2
𝑥 + 𝜎2

𝑥 =
𝑓s/2

∫
0

𝑆os(𝑓 )d𝑓 . (5.24)

Whenever one is given a PSD on the interval [0; 𝑓s/2], it is important to know whether it is
truly a one-sided PSD or simply one half of a two-sided PSD, as they differ by a factor two.
Figure 5.2 shows a typical one-sided PSD of noise in the analog LAr readout electronics.

5.2 Digital Filters

Digital filters are employed in the LAr back end to perform energy reconstruction. Given a
signal sequence:

𝑤 ∶= ℎ ∗ 𝐸 + 𝑢, (5.25)
3𝑓s/2 is known as the folding or Nyquist frequency 𝑓N. For a real signal, the interval [0; 𝑓N] is the smallest

interval that contains the full information about the PSD.
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Figure 5.2: Typical one-sided PSD of electronic noise in the analog LAr readout. In the
right diagram, the noise is under-sampled and thus distorted by aliasing. Nonetheless,
in accordance with Parseval’s theorem, its variance remains the same.

with some additive noise 𝑢, they should reconstruct the energy sequence 𝐸. There are many
approaches for such filters, eachwith their own trade-offs, and theymust be evaluated carefully.

Two important properties of filters are stability and latency. Stability is usually defined
in terms of the Bounded-Input-Bounded-Output (BIBO) criterion: for any bounded input, the
filter must produce a bounded output. Unstable filters are highly undesirable as they may pro-
duce run-away outputs that render them useless until their internal state is reset. The latency
of a filter is the delay (in units of 𝑡s) introduced by it to the readout chain. It can be estimated by
applying the filter to the analog pulse ℎ and taking the distance between the maximum sample
of ℎ and the response.

Linear filters are the category of digital filters that has been researched the most and is well
understood. A filter is linear if its output 𝑦[𝑛] at time step 𝑛 is a linear function of its previous
outputs and inputs 𝑥:

𝑦[𝑛] = 1
𝑏[0]

⎛
⎜
⎜
⎝

𝑃 −1

∑
𝑘=0

𝑎[𝑘]𝑥[𝑛 − 𝑘] −
𝑄−1

∑
𝑘=1

𝑏[𝑘]𝑦[𝑛 − 𝑘]
⎞
⎟
⎟
⎠

, (5.26)

where 𝑃 and 𝑄 are the feed-forward and feed-back filter depth respectively and 𝑎 and 𝑏 are
the corresponding filter coefficients. The stability of linear filters can be investigated via the
Z-transform [128, sec. 13.2], a generalization of the discrete-time Fourier transform.

A special group of linear filters are those without feed-back terms. For them, eq. (5.26)
simplifies to:

𝑦[𝑛] =
𝑃 −1

∑
𝑘=0

𝑎[𝑘]𝑥[𝑛 − 𝑘], (5.27)

or equivalently:
𝑦 = 𝑎 ∗ 𝑥, (5.28)
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i.e. a convolution of the inputwith the sequence of filter coefficients. The defining characteristic
of such filters is their finite impulse response (FIR): when applied to the unit impulse, their
response returns to zero in finite time. Consequently, filters of this category are called FIR
filters.

One advantage of FIR filters is that they are stable by definition. In the frequency domain,
they can be understood as band-pass filters without infinite resonances. Another advantage is
that they are easy to implement in hardware: they consist of only delay terms, additions, and
multiplications. As such, they can be used on their own or provide a basic building block for
more complex filters.

Finally, non-linear filters are much less well understood and no general theory of them
exists. Nonetheless, some of them – such as the extended Kalman filter [129] – have important
applications in the field of digital signal processing. One simple, but important non-linear filter
is the Maximum Finder with threshold:

𝑦[𝑛] ∶=
{

𝑥[𝑛 − 1] if 𝑥[𝑛 − 2] < 𝑥[𝑛 − 1] > 𝑥[𝑛] and 𝑥[𝑛 − 1] > 0,
0 otherwise.

(5.29)

It is trivially stable and has a latency of exactly one sampling period. At the LHC, it has been
used during the Runs 1 and 2 on the LAr trigger readout as a fast peak-detection algorithm.
Nonetheless, it is likely to be replaced in the Phase-1 Upgrade [114, sec. 5.2.2].

5.3 Wiener Filter

TheWiener filter was developed independently byWiener [130] and Kolmogorov [131]. While
it has been improved upon, e.g. by the Kalman filter [132, 133], it is still often used due to its
simplicity. It is an FIR filter based on a minimization of the mean squared error.

5.3.1 Frequency Domain

Let 𝑤 be the sequence of filter inputs and 𝑠 be a sequence of desired outputs, both of length 𝑁 .
The simplest choice for 𝑠 is 𝑠 ∶= 𝑇𝑑𝐸, i.e. the true sequence of energy depositions delayed by
𝑑 samples: 𝑠[𝑛] ∶= 𝐸[𝑛 − 𝑑]. The delay allows the filter to collect more information about the
peak. In particular, energy resolution improves dramatically if the full positive lobe of ℎ may
be collected before a non-zero output is desired.

Let further 𝑐 be the sequence of 𝑃 Wiener filter coefficients and Δ ∶= 𝑐 ∗ 𝑤 − 𝑠 the error
sequence, i.e. the difference between desired and actual output. Then, the objective is to find a
𝑐 that minimizes the expression:

𝔼[|Δ|2], i.e. 𝜇2
Δ + 𝜎2

Δ.

A consequence of this objective is that the Wiener filter is generally biased, i.e. 𝜇Δ ≠ 0.
When transformed into the frequency domain, this expression becomes:

𝔼[| ̂𝑐�̂� − ̂𝑠|2],
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or expanded:
𝔼[| ̂𝑐�̂�|2 + | ̂𝑠|2 − ̂𝑐∗�̂�∗ ̂𝑠 − ̂𝑐�̂� ̂𝑠∗].

This is a functional of the complex function ̂𝑐. The derivative w.r.t. ̂𝑐 can be calculated in the
Wirtinger calculus [134, 135, sec. 0.4]. It is just what one would expect when naïvely treating

̂𝑐 and ̂𝑐∗ as independent variables. Setting it to zero gives the solution:

̂𝑐[𝑘] =
𝔼[�̂�∗ ⋅ ̂𝑠][𝑘]
𝔼[|�̂�|2][𝑘]

= 𝑆𝑤𝑠(𝑘𝑓s/𝑁)
𝑆𝑤𝑤(𝑘𝑓s/𝑁) . (5.30)

𝑆𝑤𝑤 is the PSD of the filter input 𝑤. 𝑆𝑤𝑠 can be regarded as a “cross-power spectral density”
between 𝑤 and 𝑠.

Equation (5.30) is well-suited to determine 𝑐 via simulation, i.e. when the sequence 𝐸 of
true deposited energies is known. If one wants to derive 𝑐 from actual measurements, one can
insert the definitions of 𝑤 and 𝑠 and using the fact that 𝐸 and the noise 𝑢 are uncorrelated. The
solution then is:

̂𝑐 = 𝑇𝑑
ℎ̂∗ ⋅ 𝑆𝐸

|ℎ̂|
2𝑆𝐸 + 𝑆𝑢

, (5.31)

where 𝑆𝐸 and 𝑆𝑢 are the PSDs of 𝐸 and 𝑢 respectively. The arguments to ℎ̂, 𝑆𝐸 , and 𝑆𝑢 are
analogous to eq. (5.30) and have been suppressed for clarity.

While this solution seems more complicated than eq. (5.30), all quantities can readily be
measured at the ATLAS detector [111, sec. 6.1]:

• The Fourier transform of the time-shift operator is 𝑇𝑑(𝑓 ) = e−2πi𝑑 𝑓
𝑓s .

• The analog pulse shape ℎ can be obtained either directly from test beam data, or indirectly
from delay runs [111, sec. 6.1.4].

• The PSD 𝑆𝑢 can be estimated from electronic noise that is measured in pedestal runs.
• Energy depositions in different BCs are uncorrelated. Thus, 𝑆𝐸(𝑓 ) = 𝜇2

𝐸𝛿(𝑓)+𝜎2
𝐸 /𝑓s, with

the Dirac distribution 𝛿. The parameters 𝜇𝐸 and 𝜎2
𝐸 can be determined from minimum-

bias runs [136].

5.3.2 Time Domain and the Matrix Formalism

Because it is often inconvenient and inefficient to calculate filter coefficients in the frequency
domain, it is useful to transform the above solutions back into the time domain analytically.
By applying the inverse Fourier transform to eq. (5.30), one gets:

𝑅∘
𝑤𝑤 ∗ 𝑐 = 𝑅∘

𝑤𝑠, (5.32)

where 𝑅∘
𝑤𝑤 and 𝑅∘

𝑤𝑠 should be understood to be correlation sequences for non-zero lag values.
For sufficiently small filter depth 𝑃 , this is approximately equal to the acyclic version:

𝑅𝑤𝑤 ∗ 𝑐 = 𝑅𝑤𝑠. (5.33)
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To solve this equation, one typically uses the following matrix formalism:

𝑨 = (𝑎𝑖𝑗) ∈ ℝ𝑃 ×𝑃 , 𝑎𝑖𝑗 ∶= 𝑅𝑤𝑤(𝑗 − 𝑖),
𝒗† = (𝑣†

𝑖 ) ∈ ℝ𝑃 , 𝑣†
𝑖 ∶= 𝑅𝑤𝑠(−𝑖),

𝒄† = (𝑐†
𝑖 ) ∈ ℝ𝑃 , 𝑐†

𝑖 ∶= 𝑐[𝑃 − 1 − 𝑖],

where the autocorrelation matrix 𝑨 is a real and symmetric Toeplitz matrix [137] and the cross-
correlation 𝒗† and the coefficients vector 𝒄† are column vectors. The superscript dagger is a
reminder that the elements in the vectors are ordered reverse w.r.t. to the sequences. This
reversal is done in order to describe filter application as a scalar product:

𝑦 = 𝑥 ∗ 𝑎 ⇔ 𝒚 = 𝒙⊺𝒂†, (5.34)

where (⋅)⊺ denotes transposition.
In this formalism, the deconvolution of 𝑅𝑤𝑤 and 𝑐 simplifies to a matrix inversion:

𝒄† = 𝑨−1𝒗†, (5.35)

for which many efficient algorithms already exist.
Equation (5.31) can be transformed into the time domain in a similar manner. However,

this process requires that the sequence 𝐸 is uncorrelated and that the response function ℎ has
zero mean (which are both true). Under these assumptions, it is:

𝒄† = (𝑯𝜎2
𝐸 + 𝑼)

−1𝒉𝜎2
𝐸 , (5.36)

where:

𝑯 = (ℎ𝑖𝑗) ∈ ℝ𝑃 ×𝑃 , ℎ𝑖𝑗 ∶= (ℎ ⋆ ℎ)(𝑗 − 𝑖),
𝑼 = (𝑢𝑖𝑗) ∈ ℝ𝑃 ×𝑃 , 𝑢𝑖𝑗 ∶= 𝑅𝑢𝑢(𝑗 − 𝑖),
𝒉 = (ℎ𝑖) ∈ ℝ𝑃 , ℎ𝑖 ∶= ℎ[𝑖 − 𝑃 − 1 + 𝑑].

The integer number 𝑑 is the delay of the desired output. Both 𝑯 and 𝑼 are real and symmetric
Toeplitz matrices. The term ℎ ⋆ ℎ is the unnormalized portion of the autocorrelation 𝑅ℎℎ, as
defined in eq. (5.12).

5.3.3 Peak Broadening and Narrowing

TheWiener filter as defined above ideally deconvolves the sequence 𝐸 and the response func-
tion ℎ, producing a sharp and narrow output whenever there was a hit. However, an ideal filter
output would require infinitely many filter coefficients. Because the number of coefficients is
limited in practice, the filter output will contain ripple-like artifacts right before and up to 𝑃
samples after any considerable input. This is demonstrated in fig. 5.3. Additionally, while the
Wiener filter minimizes the mean squared error 𝔼[|Δ|2] across all BCs, it tends to have a high
variance when regarding only those BCs in which a hit is known to have occurred.
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Figure 5.3: An example of the effect of peak broadening. This shows the original system
response ℎ (circle) as well as a regularWiener filter’s response to ℎ (squares). Because the
filter’s depth (𝑃 = 6) is too small, it cannot model the high-frequency behavior correctly
and there are visible ripples in its undershoot. A Wiener filter with broadened peak
(triangles) does not suffer from this problem.

One solution to both problems is to modify 𝑠, the desired output sequence. Adding so-
called pre-peak and post-peak values to 𝑠 effectively broadens the response of the filter. As
fig. 5.3 shows, this reduces both ripple effects and the variance in BCs where the filter has a
strong response. In return, however, this naturally increases the error in BCs right before and
after a strong response. Hence, a Wiener filter with broadened response gives bad results in
cases where two hits occur in subsequent BCs.

The effect of peak broadening can be understood better in the frequency domain. Modifying
the desired sequence 𝑠 in the described manner is equivalent to multiplying the right-hand side
of eq. (5.30) with a transfer function 𝐵:

𝐵(𝑓) = 1 + 𝑠pree
2πi 𝑓

𝑓s + 𝑠poste
−2πi 𝑓

𝑓s , (5.37)

where 𝑠pre and 𝑠post are the desired relative amplitudes of the pre- and post-peak sample. They
are usually in the range [−1; 1].

Figure 5.4 shows 𝐵 for select values of 𝑠pre and 𝑠post. In particular, the most common choice
(𝑠pre = 𝑠post = 0.5) results in 𝐵(𝑓) = 2 cos2(π𝑓/𝑓s), which suppresses high frequencies. The
opposite effect, making the Wiener filter output even narrower, can be achieved by picking
negative values for 𝑠pre or 𝑠post. This effect is conversely called peak narrowing.

5.4 Matched Wiener Filter

TheWiener filter as defined in section 5.3 minimizes the mean squared error across all BCs. Its
output has a high variance, but it is well suited to separate the response function ℎ from noise.
In more practical terms, it provides a bad energy resolution, but excellent BC identification.
This makes it well suited for the trigger path of the calorimeter readout, where only a rough
estimate of the energy is needed but no event should be missed.
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Figure 5.4: The absolute value of the transfer function 𝐵 imposed on the Wiener coef-
ficients’ spectrum ̂𝑐. Positive pre- and post-peak values suppress high frequencies while
negative ones suppress low frequencies. If 𝑠pre ≠ 𝑠post, 𝐵 also acquires a non-constant
complex phase, which is not shown here.

However, the situation is different on the main readout path: there, the BC in which a hit
occurred is known and the energy should be reconstructed with the highest precision possi-
ble. Because of that, only the error 𝔼[|Δ|2] in these BCs should be minimized. This leads to
a different minimization criterion and different filter coefficients. The difference to the reg-
ular Wiener filter is two-fold: While the variance in BCs with a cell hit decreases, the bias
in surrounding BCs increases. As a consequence, multiple hits in quick succession cannot be
separated as easily.

The solution of this minimization is superficially similar to eq. (5.35):

𝒄† = 𝑨−1𝒗†, (5.38)

though the definition of 𝑨 and 𝒗† differs:

𝑨 = (𝑎𝑖𝑗) ∈ ℝ𝑃 ×𝑃 , 𝑎𝑖𝑗 ∶= 𝔼[𝑤[𝑖 + 𝑑 − 𝑃 + 1]𝑤[𝑗 + 𝑑 − 𝑃 + 1]],
𝒗† = (𝑣†

𝑖 ) ∈ ℝ𝑃 , 𝑣†
𝑖 ∶= 𝔼[𝑤[𝑖 + 𝑑 − 𝑃 + 1]𝑠[𝑑]],

𝒄† = (𝑐†
𝑖 ) ∈ ℝ𝑃 , 𝑐†

𝑖 ∶= 𝑐[𝑃 − 1 − 𝑖].

The primary difference to eq. (5.35) is the fact that the delay 𝑑 is not averaged over and so it
appears explicitly. It ensures that only samples around a peak in the input signal are considered.

In practice, 𝑨 and 𝒗 are calculated by simulating 𝑁 individual pulses with true energies 𝐸𝑖
and 𝑃 samples𝑤𝑖𝑗 around the peak. When these values are arranged into a vector 𝒆 = (𝐸𝑖) ∈ ℝ𝑁

and a matrix 𝑾 = (𝑤𝑖𝑗) ∈ ℝ𝑁×𝑃 , it is:

𝑨 ≈ 𝑾 ⊺𝑾 , 𝒗 ≈ 𝑾 ⊺𝒆. (5.39)

As in the previous section, eq. (5.38) can be analyzed in terms of 𝒉 and 𝑼 . This leads to an
alternative formula for the coefficients:

𝒄† = (𝜇2
𝐸 + 𝜎2

𝐸) 𝑼 −1𝒉
1 + (𝜇2

𝐸 + 𝜎2
𝐸) 𝒉⊺𝑼 −1𝒉

. (5.40)
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By inserting eq. (5.40) into the definition of the reconstruction error Δ, the filter’s bias and
mean squared error can be calculated:

𝔼[Δ] = 𝜇𝐸
1 + (𝜇2

𝐸 + 𝜎2
𝐸) 𝒉⊺𝑼 −1𝒉

≠ 0, (5.41)

𝔼[|Δ|2] =
𝜇2

𝐸 + 𝜎2
𝐸

1 + (𝜇2
𝐸 + 𝜎2

𝐸) 𝒉⊺𝑼 −1𝒉
≲ 1

𝒉⊺𝑼 −1𝒉
. (5.42)

This filter does not have a universally accepted name. It is called Wiener–Hopf filter in
some sources [138, 139], which ignores the important differences between this filter and the
classic Wiener filter as described in section 5.3. In other sources, it is described generically as
an “inverse filter based on least squares error” [140, sec. 3.2]. In this thesis, it will be referred
to as matched Wiener filter, as belongs to the wider class of matched filters.

Matched filters are those linear filters whose coefficients 𝒄† are proportional to 𝑼 −1𝒉. Com-
mon to all of them is that they maximize the signal-to-noise ratio of a sequence if the shape of
the signal pulse is known. As such, they provide the best noise suppression among all linear
filters. The scale of their coefficients is a free parameter and may be chosen freely – in this case
to minimize 𝔼[|Δ|2].

5.5 Matched Wiener Filter Without Bias

The Wiener filter can be varied further by requiring it to be unbiased. This inherently must
be traded off with a worse energy resolution. While such a filter does not see much use in
practice, it is useful in order to better understand the filter presented in section 5.6.

The filter coefficients can be derived by minimizing the variance 𝜎2
Δ under the constraint

that 𝜇Δ = 0 using the method of Lagrange multipliers4. This leads to the coefficients:

𝒄† = 𝑼 −1𝒉
𝒉⊺𝑼 −1𝒉

, (5.43)

which define a filter with the following bias and mean squared error:

𝔼[Δ] = 0, (5.44)

𝔼[|Δ|2] = 1
𝒉⊺𝑼 −1𝒉

. (5.45)

The unbiased matched Wiener filter is highly similar to the biased one given by eq. (5.40).
In particular, in the limit 𝜇2

𝐸 + 𝜎2
𝐸 ≫ 𝜎2

𝑢 (the scale of signal hits is much higher than the scale of
the noise), the biased filters tends towards the unbiased one. Furthermore, both are matched
filters, so both provide the same degree of noise suppression.

4Minimizing the mean squared error 𝔼[|Δ|2] under the constraint 𝔼[Δ] = 0 leads to the same result.
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5.6 Timing Reconstruction, Optimal Filtering, and Selection
Criteria

A problem that has not been addressed so far is that of the hit timing. The timing 𝜏 ∈ [0; 𝑡s] is
used to describe variations in the phase of arriving signal pulses5. All derivations so far have
assumed that the timing is constant and zero for all hits. In practice, this is approximately true
for high-energy hits; but for lower energies (and especially for hits from soft 𝑝𝑝 collisions), the
spread in time becomes non-negligible. In this case, the definition of the electronics’ response
must be adapted.

In the continuous formulation, eq. (5.1) becomes:

𝑤(𝑡) ∶= 𝐸 ⋅ ℎ(𝑡 − 𝜏) + 𝑢(𝑡). (5.46)

This can be transferred to the discrete case by assuming 𝜏 ≪ 𝑡s and approximating the Taylor
expansion of ℎ. Equation (5.4) thus becomes:

𝑤[𝑛] ∶=
min{𝑛, 𝐿−1}

∑
𝑘=0

ℎ[𝑘]𝐸[𝑘 − 𝑛] −
min{𝑛, 𝐿−1}

∑
𝑘=0

ℎ′[𝑘] 𝐸[𝑘 − 𝑛]𝜏[𝑘 − 𝑛]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝜉[𝑘−𝑛]

+𝑢[𝑛],

𝑤 ∶= ℎ ∗ 𝐸 − ℎ′ ∗ 𝜉 + 𝑢, (5.47)

where ℎ′ is a sequence over the derivative of ℎ. Depending on the concrete definition of ℎ′, 𝜏
may be given either in nanoseconds or in units of 𝑡s.

5.6.1 Optimal Filtering

Equations (5.30), (5.35) and (5.38) use 𝑤 and 𝑠 directly and are agnostic regarding the precise
nature of these quantities. For this reason, addition of the timing term ℎ′ ∗ 𝜉 presents no issue
when using them. For example, filter coefficients to estimate 𝜉 can be calculated by replacing
𝑠 ∶= 𝑇𝑑𝐸 with 𝑠𝜉 ∶= 𝑇𝑑𝜉.

However, the analytic eqs. (5.31), (5.36) and (5.40) need to be adapted. Inserting the def-
inition of 𝑤 given by eq. (5.47) into the Wiener minimization problem leads to impractically
complicated formulas. They depend on quantities such as 𝜎2

𝜉 and 𝑅𝜉𝐸 , which are difficult to
measure.

On the other hand, extending the unbiased matched Wiener filter of section 5.5 to include
hit timing yields favorable results; the undesirable quantities cancel out exactly. The resulting
Optimal Filter (OF) [141] consists of two sets of coefficients, commonly called 𝒂† and 𝒃†, which
estimate 𝐸 and 𝜉 respectively:

𝒂† ∶= 𝑄2𝑼 −1𝒉 − 𝑄3𝑼 −1𝒉′

𝑄1𝑄2 − 𝑄2
3

, (5.48)

𝒃† ∶= 𝑄3𝑼 −1𝒉 − 𝑄1𝑼 −1𝒉′

𝑄1𝑄2 − 𝑄2
3

, (5.49)

5Cf. section 6.2.2 for a more concrete definition of 𝜏.
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where:

𝑄1 ∶= 𝒉⊺𝑼 −1𝒉, 𝑄2 ∶= 𝒉′⊺𝑼 −1𝒉′, 𝑄3 ∶= 𝒉′⊺𝑼 −1𝒉.

One can confirm that in the limit𝑄3 → 0 of negligible interaction between𝐸 and 𝜉, 𝒂† converges
to the coefficients of the unbiased matched Wiener filter.

5.6.2 Selection Criteria

Although the derivation of the OF assumed that the BC of a hit has already been identified,
this filter may also be used when this is not the case. The procedure then is to apply the OF to
all BCs:

̃𝐸[𝑛] ∶=
min{𝑛, 𝑃 −1}

∑
𝑘=0

𝑎[𝑘]𝑤[𝑛 − 𝑘], (5.50)

̃𝜉[𝑛] ∶=
min{𝑛, 𝑃 −1}

∑
𝑘=0

𝑏[𝑘]𝑤[𝑛 − 𝑘], (5.51)

and only to accept the result if the estimated sequences ̃𝐸 and ̃𝜉 pass certain selection criteria.

The Maximum Finder as the simplest selection criterion has been introduced in section 5.2.
It accepts a BC whenever there is a peak in the sequence ̃𝐸; the sequence ̃𝜉 is not used at all.
The criterion is trivial to implement and works well in low-pileup environments. However, it
has several disadvantages: it is impossible, by construction, to select two hits in subsequent
BCs. The Maximum Finder also introduces additional latency of one 𝑡s. Furthermore, low-
energy hits may be masked by the negative undershoot caused by high-energy hits, as shown
in fig. 5.5. Thus, as the LHC moves towards higher luminosities and increasing pileup, the
Maximum Finder is expected to become less relevant.

The |𝝌| criterion is based on the minimization of a 𝜒2 difference between the actual samples
and the reconstruction result [142, p. 71]. Its definition has been optimized for calculation on
an FPGA and it introduces no latency. Like the Maximum Finder, this criterion does not make
use of ̃𝜉. It selects BCs where among the 𝑃 most recent samples 𝑤𝑖, at least 𝑚 satisfy:

|𝜒𝑖| ∶= |𝑤𝑖 − (𝒘⊺𝒂†) ℎ𝑖| < 𝜖ℎ𝑖. (5.52)

The thresholds 𝑚 ∈ ℕ and 𝜖 < 1 can be chosen freely.

The 𝝉 selection criterion requires that the reconstructed hit timing 𝜏 be within a certain range.
Because the OF only estimates 𝐸 and 𝜉 ∶= 𝐸𝜏, implementing this criterion would normally
require a division operation ̃𝜉/ ̃𝐸, which is notoriously costly on FPGAs [143]. The division can
be avoided by multiplying all sides of the comparison with ̃𝐸. The selection criterion then is:

̃𝐸𝜏min < ̃𝜉 < ̃𝐸𝜏max, (5.53)
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Figure 5.5: A pathological sample sequence (circles) and the response of the Maximum
Finder with threshold (squares). The sequence is the OF response to two overlapping
pulses: one at 𝑡 = 0ns with an amplitude of 100 % and one at 𝑡 = 250ns with an amplitude
of 10 %. As the samples in the undershoot never exceed zero, the second pulse is not
detected by the Maximum Finder.

where 𝜏min and 𝜏max are freely choosable constants. Setting them to powers of two ensures
that even this multiplication is cheap on an FPGA. Like the |𝜒| criterion, 𝜏 selection introduces
no latency and may avoid dead time after a selected BC. And because it is even more efficient
to implement than the |𝜒2| criterion, it is foreseen to be used after the Phase-1 Upgrade [114,
sec. 5.2.2].

5.6.3 Filtering of In-Time Pileup

In each BC, there are dozens of soft 𝑝𝑝 collisions that produce low-energy hits in the detector.
If the statistical properties of this background are known well enough, one might be interested
in removing it on average from the reconstructed energy6.

This means that the sequence 𝑤 is modified to contain a pileup term:

𝑤 = ℎ ∗ 𝐸 + ℎ ∗ 𝐸pu + 𝑢, (5.54)

where 𝐸pu is the sequence of the energies of all pileup hits within the same BC and calorimeter
cell. It turns out that the effect of this pileup term can be subsumed into the noise autocorre-
lation in eqs. (5.31) and (5.36):

𝑅𝑢𝑢(𝑛) → 𝑅𝑢𝑢(𝑛) + 𝜎2
pu(ℎ ⋆ ℎ)(𝑛), (5.55)

where 𝜎2
pu is the variance of the deposited energy per BC due to pileup events. The term ℎ ⋆ ℎ

is the unnormalized portion of the autocorrelation 𝑅ℎℎ, as defined in eq. (5.12).

6An exact removal per BC is impossible as hits from soft and hard 𝑝𝑝 collisions differ only in their energy
distribution and frequency of occurrence. In other words, while the effects of out-of-time pileup can be suppressed,
in-time pileup presents an irreducible background.
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Figure 5.6: A pathological sample sequence (circles) and the response of the Maximum
Finder with threshold (squares). The sequence is the OF response to two overlapping
pulses of the same amplitude: one at 𝑡 = 0ns and one at 𝑡 = 375ns. The second pulse’s
energy is underestimated due to the first pulse’s undershoot.

One peculiar effect of the bipolar response function ℎ is that in-time pileup can only be
reconstructed on average. That is, an attempt to optimize the OF (or any linear filter) to re-
construct the combined sequence 𝐸 + 𝐸pu simply yields a scaled version of the original OF
coefficients:

𝒂†
incl pu =

𝜇𝐸 + 𝜇pu
𝜇𝐸

𝒂†. (5.56)

The formal reason for this is that 𝔼[ℎ ∗ 𝐸pu][𝑛] = ∑𝑘 ℎ[𝑘] ⋅ 𝜇pu = 0, i.e. the effects of in-time and
out-of-time pileup cancel out on average. Another consequence is that using 𝒂†

incl pu necessarily
increases the filter’s noise 𝔼[|Δ|2].

5.7 Forward Correction

One issue of matched filters – such as the OF – is that their result is only reliable when applied
to a BC that is known to contain a cell hit. Before and after the correct BC, they typically
produce a long pulse similar to their input. An important consequence of this is that if two
hits occur in quick succession, their pulses will overlap. In such a case, matched filters will
underestimate the energy of the second hit. This is visualized in fig. 5.6. One possibility to
avoid this is to enhance the filter with a forward correction [142, sec. 6.3.3, 144, sec. 5.6.3].

Forward correction requires a filter that estimates the deposited energy 𝐸 for each BC, as
well as a selection criterion that estimates whether a hit has occurred at all or not. It operates
as a four-stage feedback loop, as shown in fig. 5.7:

1. The filter input 𝑤[𝑛] is corrected via element-wise addition of correction values 𝑑[𝑛],
which have been calculated in step 4 of a previous iteration.

2. The corrected input 𝑤c is passed to the linear filter, which responds with an energy
estimate ̃𝐸.
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Figure 5.7: The forward-correction algorithm. The bold numbers correspond to the
steps described in the text.
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Figure 5.8: An alternative forward-correction algorithm. In contrast to the version in
fig. 5.7, the selection step operates on uncorrected samples.

3. The selection criterion is applied to ̃𝐸 to determine whether there was a cell hit in the
current BC or not. If there was a hit, the over-all output of the algorithm, ̃𝐸sel is ̃𝐸.
Otherwise, ̃𝐸sel is zero. Depending on the selection criterion, this step may introduce
some additional latency.

4. In addition, ̃𝐸sel is used to estimate the undershoot that the linear filter would produce
if there were no further hit. This estimate is written to a buffer to become the correction
values 𝑑[𝑛 + 𝑖] from step 1 for all subsequent BCs.

Forward correction has been shown to work well in low-pileup environments [142, sec. 8.5,
144, sec. 6.3.8]. Its usefulness at the HL-LHC still needs to be evaluated. The obvious difficulty
with forward correction is that it introduces feedback to the energy reconstruction. One thus
loses the guaranteed stability of FIR filters and has to take runaway output into account that
quickly saturates the digital electronics.

Furthermore, any implementation of forward correction requires considerable resources on
an FPGA: a buffer of approximately 𝐿 samples must be provided in order to store the correction
values 𝑑. Similarly, a model that estimates the undershoot must be stored on the FPGA, using
either the full filter response 𝑎 ∗ ℎ or an approximation thereof.

An alternative way to apply forward correction is shown in fig. 5.8. The selection criterion
is a regular Wiener filter (i.e. a deconvolution filter) with a threshold applied to it. Crucially,
this filter sees the original input 𝑤 and not the forward-corrected values 𝑤c. If theWiener filter
identifies a hit, an OF is used to estimate its energy. The feedback loop of the forward correction
only applied to the OF.Themotivation for this is that, by taking the selection criterion out of the
feedback loop, the algorithm may become more stable. However, due to the lack of theoretical
models for non-linear filters, this hypothesis requires rigorous testing.
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5.8 Sparse Signal Restoration

Sparse-representation theory provides an approach to energy reconstruction that is completely
different from the more well-known filter-based approach. While its usage for offline decon-
volution of noisy signals has been researched in the past [145, 146], little research has gone
into online deconvolution. Part of the reason is that most algorithms are much more complex
than linear filters. With computers growing more powerful and deconvolution tasks becoming
more difficult, this trade-off is worth being reconsidered.

The theory is stated in terms of a known signal 𝒔, a dictionary 𝑯 , and an unknown sparse
representation 𝒙, where:

𝒔 = (𝑠𝑖) ∈ ℝ𝑃 , 𝑯 = (ℎ𝑖𝑗) ∈ ℝ𝑃 ×𝑁 , 𝒙 = (𝑥𝑖) ∈ ℝ𝑁 , (5.57)

and 𝑃 < 𝑁 . The 𝑁 columns of 𝑯 are also called atoms and the 𝑁 entries of 𝒙 atom weights.
For energy reconstruction, 𝒔 are the 𝑃 most recent samples, 𝑯 is the convolution matrix of the
system response ℎ, 𝒙 are the hit energies to be reconstructed. The atoms are time-shifted slices
of ℎ, each 𝑃 samples long.

Given these quantities, the problem is to find the sparsest 𝒙 that explains 𝒔:

min
𝒙

‖𝒙‖0 subject to 𝑯𝒙 = 𝒔, (5.58)

where ‖⋅‖0 is the ℓ0 pseudo-norm that counts the non-zero entries of a vector. The equality can
only be satisfied if the problem is noise-free. If 𝒔 is contaminated with additive noise (as is the
case here), the problem can be modified in three ways:

min
𝒙

‖𝒙‖0 subject to ‖𝑯𝒙 − 𝒔‖2
2 < 𝜖, (5.59)

min
𝒙

‖𝑯𝒙 − 𝒔‖2
2 subject to ‖𝒙‖0 < 𝐾, (5.60)

min
𝒙

1
2 ‖𝑯𝒙 − 𝒔‖2

2 + 𝜆‖𝒙‖0, (5.61)

where the squared ℓ2 norm ‖⋅‖2
2 is the usual sum of squares. The free parameters 𝜖, 𝐾 , and 𝜆

quantify the trade-off between sparsity and accuracy of the representation 𝒙. Although the cor-
respondence between these parameters is non-trivial, all three problems are ultimately equiv-
alent.

Various algorithms exist to solve one or another of these problems. The important ones are
reviewed briefly in this section, in particular regarding the possibility to use them in the LAr
readout electronics.

5.8.1 Greedy Algorithms

An optimization algorithm is greedy if, at each iteration, it proceeds in the way that reduces the
residual error the most. Such algorithms are easy to implement, but not necessarily optimal.
Most importantly, they can converge to local minima far away from the global minimum.

The simplest among these algorithms is Matching Pursuit [147], shown in listing 5.1. It
solves eq. (5.60) via pure forward search. This means that is starts out with ‖𝒙0‖0 = 0 and a
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correspondingly large residual error. In each iteration, it selects the best-matching atom, i.e.
the atom with the greatest projection onto the residual. The weight of this atom is calculated
and added to 𝒙. Then, the residual is updated and the process is repeated until ‖𝒙‖0 = 𝐾 . Once
an atom 𝑖 has been selected, its weight 𝑥𝑖 is not modified anymore, unless the atom is selected
again.

The algorithm is attractive due to its extreme simplicity. It requires only addition, com-
parison, and multiplication. In particular, the correlation calculation in line 8 of listing 5.1 is
amenable to parallel computation.

The algorithm as described here has three disadvantages:

1. It may attribute hits to the wrong BC, especially where there is strong coherence between
atoms. Figure 5.9 visualizes this effect for the undershoot of a typical LAr pulse, but this
also concerns neighboring atoms close to the peak, as fig. 5.10 demonstrates.

2. It may reconstruct negative energies, resulting in a run-away sequence of ever-increasing
weights that overcompensate their predecessors. This can be prevented by skipping the
absolute value in line 9 of listing 5.1 and selecting an atom only if its overlap with the
residual error is greater than zero.

3. It has to restart from scratch and requires multiple iterations to converge for each BC. For
online usage, this is both prohibitively expensive and unnecessary, since there already
is a good initial value for each BC: the result of the previous time step with all entries
of 𝒙 shifted by one place. In order to make use of this initial value, however, Matching
Pursuit must be extended with a way to remove old, unimportant atoms.

Listing 5.1: The Matching Pursuit algorithm in the Python programming language, us-
ing the NumPy array routines [148]. The operator @ denotes the usual matrix product.
H.T is the transpose of H. H.shape[1] is 𝑁 , the number of atoms.

1 from numpy import *
2
3 def matching_pursuit(H, s, K):
4 r = s.copy() # Residual error of the representation.
5 x = zeros(H.shape[1]) # H.shape[1] ≡ 𝑁.
6 active = [] # len(active) ≡ ‖𝒙‖0.
7 while len(active) < K: # Stopping criterion.
8 a = H.T @ r # Overlap of each atom with residual.
9 i = argmax(abs(a)) # Select atom with best overlap.
10 active.append(i) # Increase ‖𝒙‖0.
11 x[i] = a[i] # Weight of the selected atom.
12 r -= a[i] * H[:, i] # Subtract atom from the residual.
13 return x
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Figure 5.9: A pathological sparse-signal restoration problem. Assume that at 𝑡 = 475ns,
only the samples marked by dashed lines are available to the algorithm. At this point, it
is impossible to determine with certainty whether the hit that produced them occurred
at 𝑡 = 0ns, at 𝑡 = 75ns or at any time in-between.
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Figure 5.10: Left: the dictionary 𝑯 of a typical LAr pulse for 𝑃 = 5. Each atom is a 𝑃 -
elements slice out of the pulse. Right: The mutual coherence of the atoms, i.e. their inner
product with each other after normalization. Conventional wisdom is that the solution
of sparse signal restoration becomes ambiguous if different atoms are highly coherent
with each other. This is trivially the case for atoms in the pulse’s undershoot, but also
for the atom pairs (1, 2) and (6, 7).
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Several extensions to Matching Pursuit exist. The two best-known ones are Orthogonal
Matching Pursuit [149, 150] and Orthogonal Least Squares [151]. They differ only in subtle
nuances [152]. Both extend the original Matching Pursuit by recalculating the weights of all
selected atoms in each iteration. This turns the scalar product in line 11 into a matrix multipli-
cation with the Moore–Penrose inverse of a sub-matrix of 𝑯 . Though this calculation can be
made FPGA-friendly [153], it is not clear whether the algorithm can satisfy the strict latency
requirements in the ATLAS readout.

Another direction inwhichMatching Pursuit can be extended is the addition of a backwards
search step, i.e. allowing the algorithm to remove the least-important atoms. Many algorithms
of varying complexity exist, and only two shall be described here.

Subspace Pursuit [154] is based on Orthogonal Matching Pursuit, but adds the 𝐾 best-
matching atoms to the solution set simultaneously, not one by one. Only then, the residual is
updated. The algorithm then switches multiple times between adding 𝐾 more best-matching
atoms (for a total of 2𝐾 atoms) and pruning the 𝐾 atoms with the smallest projection, updating
the residual after each step. This may be repeated until some stopping criterion is reached.

Forward–Backward Pursuit [155] improves upon this by introducing an asymmetry be-
tween forward and backward steps. It starts out with ‖𝒙0‖0 = 0 and has two hyperparameters:
𝛼 and 𝛽 < 𝛼. In each iteration, it adds the 𝛼 best-matching atoms and calculates their weights.
It then updates the residual and removes the 𝛽 worst-matching selected atoms. This process is
repeated until 𝐾 atoms have been selected. It has been reported that due to this modification,
Forward–Backward Pursuit is more robust w.r.t its hyperparameters than Subspace Pursuit.

Many more algorithms exist and cannot be fully examined here. Numerous variations
of Orthogonal Matching Pursuit are named in the presentation of Fusion Forward–Backward
Pursuit [156]. Single Most Likely Replacement [157, 158] and Single Best Replacement [159]
improve upon Orthogonal Least Squares based on a stochastic analysis of sparse signal restora-
tion. Despite their complexity issues, it seems possible to transfer insights from these algo-
rithms back to the original Matching Pursuit, e.g. avoiding the update of already-calculated
atom weights.

5.8.2 Convex Optimization

It is possible to replace the ℓ0 pseudo-norm in eq. (5.61) with the ℓ1 norm, a process called
convex relaxation [160–162]. This turns the problem into an unconstrained convex quadratic
optimization problem:

min
𝒙

1
2 ‖𝑯𝒙 − 𝒔‖2

2 + 𝜆‖𝒙‖1, (5.62)

which can be solved by many general-purpose optimization algorithms. Equation (5.62) is
referred to both as Basis Pursuit Denoising [163] and Lasso [164, 165]. Both terms only refer
to the problem statement; they do not suggest any algorithm to perform the optimization.

Two common algorithms to solve this problem are interior-point methods [166, 167], such
as the primal–dual method [168], and iterative-shrinkage algorithms [169]. However, any al-
gorithm for non-linear convex problemsmay be used, e.g. the BFGS algorithm [170–173]. Some
of these algorithms have been implemented on FPGAs [174], so it may be possible that they
fulfill the strict latency requirements at ATLAS.
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5.9 Artificial Neural Networks

The artificial neural network (ANN) is a machine learning algorithm that has recently seen
an immense increase in popularity. “Machine learning” means that, just like the Wiener filter
of section 5.3, a generic algorithm is adapted to a concrete problem via a training procedure.
For the Wiener filter, this is the calculation of its coefficients based on an exemplary input 𝒘
and the desired output 𝒔. For ANNs, training is the numeric minimization of a non-linear and
high-dimensional error function.

Research into perceptrons, i.e. artificial neurons in the modern sense, started in 1957 [175].
An introduction to ANNs in general as well as their history until 2015 are given elsewhere [176,
ch. 3]. The most notable development since then has been the publication of the TensorFlow
library [177] and its adoption in machine-learning libraries like Keras [178]. This made deep
neural networks more approachable for beginners and greatly accelerated their adoption both
in industry and academics [179].

ATLAS, like other experiments, has adopted ANNs to solve a variety of problems [180].
They are currently being used for track reconstruction [181], particle identification [182], and in
the L1 calorimeter trigger [183]. Furthermore, research is going on to extend their usage in the
trigger [184, 185] and use them for jet energy calibration [186], calorimeter cell clustering [187],
and pileup suppression in the calculation of missing 𝐸T [188]. For energy reconstruction at the
calorimeter cell level, investigations have been performed in 2010 [189]. More, independent
studies are currently underway [190].

5.9.1 Feed-Forward Neural Networks

The fundamental unit of an ANN is the neuron. A neuron is a mapping 𝑦 ∶ ℝ𝑛 → ℝ with 𝑛 + 1
adjustable parameters:

𝑦(𝒙|𝒘, 𝑏) = 𝜑(𝒘⊺𝒙 + 𝑏), (5.63)
where 𝒙 ∈ ℝ𝑛 is the neuron input. The adjustable parameters 𝒘 ∈ ℝ𝑛 and 𝑏 ∈ ℝ are the neuron
weights and the bias respectively. For the activation function 𝜑 ∶ ℝ → ℝ, many different choices
exist, each useful in its own context. The most common ones are the hyperbolic tangent tanh,
the logistic function 𝜎, the identity 𝐼 , and the rectified linear unit (ReLU) 𝑅, where:

𝜎(𝑥) ∶= 1
2 (1 + tanh 𝑥) , (5.64)

𝐼(𝑥) ∶= 𝑥, (5.65)

𝑅(𝑥) ∶=
{

𝑥 if 𝑥 > 0,
0 otherwise.

(5.66)

Although a single neuron can solve linearly separable problems [191], the technique only
realizes its full potential by joining them into neural networks. The simplest way to do so is the
multi-layer perceptron (MLP) or feed-forward network [175]. It organizes neurons into layers
and the output of one layer is the input to the next (see fig. 5.11). Its simplicity stems from the
fact that eq. (5.63) can be adapted in a straight-forward manner to describe an entire layer of
𝑀 neurons with 𝑁 inputs:

𝒚(𝒙|𝑾 , 𝒃) = 𝝓(𝑾 ⊺𝒙 + 𝒃), (5.67)
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𝑥 𝑦 𝑧

ANN(𝑥, 𝑦, 𝑧) = 𝒙4

Input layer

Hidden layer

Hidden layer

Output layer

𝒙1 = (𝑥, 𝑦, 𝑧)

𝒙2 = 𝑓(𝑾1𝒙1 + 𝒃1)

𝒙3 = 𝑓(𝑾2𝒙2 + 𝒃2)

𝒙4 = 𝑓(𝑾3𝒙3 + 𝒃3)

Figure 5.11: A feed-forward network or MLP. Inputs are received by the input layer,
which does no computation of its own. Each subsequent layer performs a linear transfor-
mation followed by element-wise application of its activation function. The final layer’s
output is the over-all result of the network. This architecture is stateless: the result for
one input (𝑥, 𝑦, 𝑧) does not depend on previous inputs (𝑥′, 𝑦′, 𝑧′).

where 𝑾 ∈ ℝ𝑁×𝑀 , 𝒃 ∈ ℝ𝑀 and 𝝓 is the element-wise application of 𝜑.
In order to apply ANNs to a problem, their weights and biases must be calibrated via train-

ing. Training is the minimization of an error function 𝑒(𝒚, 𝒔) that, for each input 𝒙𝑖, measures
the distance between the desired output 𝒔𝑖 and the actual ANN output 𝒚(𝒙𝑖). Many training
algorithms exist [192–194], but virtually all are based on back-propagation [195], an algorithm
that allows to efficiently calculate 𝜕𝑒/𝜕𝑤𝑖𝑗 .

5.9.2 Time-Series Analyses with Neural Networks

Energy reconstruction can be understood as a pattern-identification problem on time series.
There are two architectures of neural networks that are used for such problems: recurrent
neural networks (RNNs) and convolutional neural networks (CNNs). For time-series analyses,
both can be understood to operate on an input sequence 𝑥 ∶ ℤ → ℝ and produce an output
sequence 𝑦 ∶ ℤ → ℝ.

In RNNs, connections between neurons are not only “feed-forward” as in MLPs, but may
also lead backwards. Hence, a neuron’s output 𝑦[𝑖] at time step 𝑖 depends not only on 𝑥[𝑖], but
also on its previous output 𝑦[𝑖 − 1]. This allows the ANN to exploit the autocorrelation of 𝑥.

Research into RNNs started in the late 80s [196]. For a while, the Elman network [197]
was the most common choice for RNNs. Its main disadvantage is that the gradient computed
via back-propagation tends to diverge or to go to zero when propagated sufficiently far. The
long short-term memory (LSTM) architecture provided a solution to this [198]; by arranging
multiple neuron layers into an LSTM unit (see fig. 5.12a) and combining their outputs in a
particular manner, the “vanishing-gradient problem” can be circumvented.
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Figure 5.12: Typical LSTM and GRU layers. At time step 𝑡, the output 𝑦[𝑡] depends on
the input 𝑥[𝑡], the previous output 𝑦[𝑡−1], and – for the LSTM – the internal state 𝑐[𝑡−1].
Round rectangles denote feed-forward layers with the given activation function. Circles
denote element-wise operations (addition, multiplication, and 𝑥 → 1 − 𝑥).

In 2014, the gated recurrent unit (GRU) [199] as a simplification of LSTMs has been pro-
posed (see fig. 5.12b). While it has been proven unable to solve certain problems solvable by
LSTMs [200], it offers comparable performance on others [201]. RNNs are a topic of active
research and various approaches exist to improve their performance [202, table 4].

CNNs follow a different approach; they don’t have any internal state and are better un-
derstood as non-linear digital filters. A convolutional neuron is equivalent to an FIR filter
composed with an activation function 𝜑. Like linear filters, they model correlations in their
input through the weights associated with different time lags; see fig. 5.13 for a visualization.
Like in the MLP, convolutional neurons can be arranged into layered networks. Neurons in
higher layers are able to pick up higher orders of correlation, improving pattern recognition
beyond what linear filters can achieve.

Research of CNNs began in parallel in the context of image classification [205] and time-
series classification [206, 207]. In the latter context, they are also called time-delayed neural
network (TDNN) and time-lagged feed-forward network (TLFN)7. Like RNNs, they are a topic
of active research. The technique of dilation [208, 209], shown in fig. 5.14, is a recent develop-
ment that has been shown to dramatically reduce the number of adjustable parameters in deep
CNNs without decreasing their performance. Dilated CNNs have been shown to out-perform
classical RNNs on several time-series analysis problems [202]. The difference to state-of-the-art
RNNs is much smaller and both approaches should be considered competitive.

7The term TLFN implies that the first layer is convolutional, while higher layers are fully connected.
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ANN(𝑥, 𝑡) = 𝑥41[𝑡]

Figure 5.13: An exemplary CNN with two hidden layers. Conventionally, the weights
of each layer are called kernel. The kernel size 𝐾 corresponds to the filter depth 𝑃 of FIR
filters.

… , 𝒙1[𝑡 − 1], 𝒙1[𝑡]

… , 𝒙2[𝑡 − 2], 𝒙2[𝑡 − 1], 𝒙2[𝑡]

… , 𝒙3[𝑡 − 4], 𝒙3[𝑡 − 3], 𝒙3[𝑡 − 2], 𝒙3[𝑡 − 1], 𝒙3[𝑡]

… ,𝑥41[𝑡]

Input
layer

𝐾 = 2
Hidden
layer

𝐾 = 2
Hidden
layer

𝐾 = 2
Output
layer

𝒙1[𝑡] = (𝑥[𝑡], 𝑦[𝑡], 𝑧[𝑡], …)

𝑓(𝑾11𝒙1[𝑡 − 1] + 𝑾12𝒙[𝑡] + 𝒃1)

𝒙2[𝑡] = (𝑥21[𝑡], 𝑥22[𝑡], 𝑥23[𝑡])

𝑓(𝑾21𝒙2[𝑡 − 2] + 𝑾22𝒙2[𝑡] + 𝒃2)

𝒙3[𝑡] = (𝑥31[𝑡], 𝑥32[𝑡])

𝑓(𝑾31𝒙3[𝑡 − 4] + 𝑾32𝒙3[𝑡] + 𝒃3)

ANN(𝑥, 𝑡) = 𝑥41[𝑡]

Figure 5.14: A dilated CNN. For clarity, neurons of one layer are overlapped and their
scalar output sequences joined into vectors. While all layers have the same kernel size,
the distance between samples grows exponentially.



Chapter 6

Simulation of the ATLAS
Liquid-Argon Calorimeter Readout
Electronics

This chapter describes the setup of the simulation studies that are presented in chapter 7. In
particular, section 6.1 introduces AREUS, the simulation program with which the studies of
this thesis have been carried out. In sections 6.2 to 6.4, the data used in the simulation and
their origin are detailed. Sections 6.5 and 6.6 document other crucial implementation details of
the simulation. Finally, the statistical treatment of the results is explained in section 6.7.

For the purpose of reproducibility, the data, AREUS configuration files, and computer
scripts that are explained here have been made available online [210]. They are open to all
CERN users and contain detailed usage instructions.

6.1 AREUS

AREUS [142, 144, 211] is a program for the simulation of the LAr readout electronics. More con-
cretely, it simulates the readout chain from the analog electronics just outside of the calorimeter
up to – and including – the cell-level reconstruction in the back-end electronics.

Such simulation has already previously existed in Athena [212], the commonATLAS offline
software1. However, the Athena simulation is event-based: It has a notion of “interesting”
events and only simulates a certain time interval around such events (32 BCs before and 32
after it). In contrast, AREUS simulates arbitrarily long time intervals. This allows researching
complex and non-linear filters, whose behavior might be correlated at time frames larger than
32 BCs.

AREUS performs discrete-time simulation at various resolutions. Calorimeter hits are sim-
ulated with a fixed frequency of 40MHz, approximately the LHC bunch crossing frequency.

1In this context, offline software means software that runs independent of the LHC clock. Athena is used e.g.
for event reconstruction in the high-level trigger, for monitoring of the online software, for event simulation, and
for data analysis.
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The digital electronics are simulated at a sampling rate that is an integer multiple of that. This
makes it possible to study the impact of a sampling rate of 80MHz on the energy resolution of
the readout electronics. Finally, the analog electronics are simulated at a fixed sampling rate
of 2 GHz (Δ𝑡 = 0.5ns). This fine resolution is necessary to accurately take the hit timing 𝜏 into
account, due to which pulses might be digitized with a slight phase shift.

The AREUS program is written in a modular manner. The processing steps are formally
independent of each other, and they only communicate through dedicated channels. These
channels adhere to the Observer pattern [213, pp. 293–303]: objects that represent a later pro-
cessing step observe objects that represent an earlier step and are notified whenever the earlier
step produces some output. Strongly typed message objects are used for communication, thus
it is guaranteed that each object only observes subjects that it understands.

Figure 6.1 shows a typical setup in which various processing steps are arranged into a
chain of subjects and observers. The setup models the LAr readout electronics and is similar
to the one used for the simulation studies in this thesis. Concretely, it performs the following
processing steps:

1. The Event Loop is the root subject and drives the simulation by notifying its observers
repeatedly until a given termination condition is met. It is also where the user may
specify a BC pattern, i.e. a pattern in which the LHC nominal buckets are filled with
bunches (see fig. 3.2 and the corresponding text).

2. The Hit Samples read hit n-tuple files of detector events from disk and arrange them into
a sequence of hits. This process and the format of hit n-tuple files is described in more
detail in section 6.2.

3. The Cell Map receives the hits and sorts them by calorimeter cell. This produces one hit
sequence for each calorimeter cell. At this step, AREUS also applies a cell position mask
to the hits and discards all hits outside of the mask. This limits the simulation to a certain
region of interest and speeds it up significantly.

4. Each Super Cell receives the hit sequences of multiple cells and merges them into one
sequence. This counter-intuitive split makes the mapping between cells and super cells
configurable. AREUS calls this the position map.
This flexibility was important for Phase-I Upgrade studies, as the mapping was not final-
ized at the time. Nonetheless, it is also possible to use this system for Phase-II Upgrade
studies, where super cells no longer exist. All that is necessary is to pass a position map
to AREUS that defines exactly one “super cell” for each calorimeter cell.

a) The Hit Sample Maker receives the hit sequences of all simulated super cells and
writes them into a hit n-tuple file. This way, these intermediary results can be
reused in later simulations to save computation time.

b) The Test Sequence Maker does almost the same, but produces its output in a different
format. It observes only a single super cell and writes only this cell’s sequence of
hits into the output file. This test sequence may later be read via the Test Cell to
reproduce the hit sequence. Such simulations are useful for debugging and if one
is interested in the behavior of only a single cell.
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Event Loop
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Figure 6.1: An example of a processing chain defined in AREUS [142, fig. 7.1]. Objects in
light blue are instantiated once per simulation, objects in dark green multiple times. For
example, AREUS instantiates one LAr Filter object per simulated super cell. Cylinders
represent output files that are produced by AREUS.
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5. The Digitization performs two tasks at once: it simulates the analog electronics and the
ADC.The former includes signal shaping, pulse superpositioning, and the addition ther-
mal noise; it is described in sections 6.3 and 6.4. The latter includes the conversion from
analog to digital quantities and the addition of quantization noise; it is described in sec-
tion 6.5.
Up to this point, the processing chain in AREUS is rigid and the steps must be performed
in the correct order2. After the digitization, by contrast, processing steps can be arranged
in a nearly arbitrary manner. This makes it possible to create chains that solve complex
problems using only a few configurable building blocks.

6. The Filters are a whole class of different processing steps, where each represents a specific
filter algorithm. Their common feature is that they all describe transformations from one
sequence of digitized samples to another. For example, the OF, the Wiener filter, and the
Maximum Finder all are implemented as filters in AREUS. Filters can be run in sequence
or in parallel. A Muxer makes it possible to combine the output of several parallel filters
into one. Section 6.6 describes the filters implemented in AREUS in more detail.

7. At the end of the simulation chain, there are sink objects that only observe subjects but
are not observable themselves. AREUS supports two different kinds of sinks:

a) The Filter Analysis records all data produced by the processing chain it observes
and performs some simple analyses on it. For example, it records the energy re-
constructed by the digital filters for each BC and calculates the reconstruction error,
i.e. the difference to the true deposited energy. The reconstruction error is pre-
sented as a function of the BC, of the deposited energy, as a histogram and more.
All data is written to a file at the end of the simulation.
The filter analysis records not only the output of the filter it observes, but of each ob-
ject in the processing chain, starting at the digitization. This works because when-
ever a filter object creates a message for its observers, it attaches its own input
message as metadata. The filter analysis follows this linked list for each BC.

b) The Tree Maker (called N-Tuple Maker in AREUS) collects a more restricted set of
data andwrites them into an n-tuple file. Among this data are e.g. the true deposited
energy, the number of hits, and the reconstructed energy. In contrast to the filter
analysis, which produces human-readable output, this is intended as the input to
a dedicated external analysis. This is useful for higher-level analyses that e.g. use
the simulated output of multiple cells to calculate shower-shape variables. At least
one such analysis has been carried out so far [144, sec. 6.2.4].

Figure 6.2 shows an example of several filter algorithms working cooperatively. There are
three digitization objects, each with a different least significant bit: High Gain, Medium Gain,
and Low Gain. Medium and Low Gain are each observed by one saturation filter. A muxer

2Being written in C++, AREUS combines the strong typing of the language and its runtime-type-information
capabilities to ensure processing steps are in the correct order. If any object observes a subject it is not compatible
with, the program aborts with a corresponding error message.
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Saturation Filter
default priority: 0
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Saturation Filter
default priority: 0
above threshold: 3000
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…

…

Figure 6.2: An example of several filter algorithms working cooperatively. A priority is
associated with each object and determines which signal is forwarded by a muxer. The
muxer only considers the priority of objects it observes directly. The saturation filter
differs from most AREUS objects in that it can change their priority dynamically.

observes High Gain as well as the two saturation filters. At each time step, it forwards the
output of the subject with the highest priority.

By default, the muxer forwards High Gain output, as it has the highest priority. However,
if the Medium Gain output exceeds a certain threshold (e.g. due to a high-energy event), it
is assumed that the High Gain has saturated. In this case, the Medium Gain saturation filter
increases its own priority for a certain number of time steps. The muxer then switches to
Medium Gain in the next time step. It the Low Gain determines that the Medium Gain has
saturated as well, the Low Gain increases its priority to make the muxer switch to it.

This way, six AREUS objects, each configured slightly different, can be combined to sim-
ulate a complex gain-selection stage. To a subsequent filter, like the OF, the resulting sample
sequence is indistinguishable from any other sequence.

6.2 Hit Generation and Sampling

Hit sequences are generated in three independent phases:

• Hit files containing events are created. This is done outside of AREUS.
• An AREUS helper script slims the hit files into smaller, simpler hit n-tuple files.
• The hit n-tuple files are used to produce hit sequences. This is done by AREUS itself.
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6.2.1 Generating Hit Files at ATLAS

The fundamental unit of hit files is the event, i.e. a single 𝑝𝑝 collision [136, sec. 3]. An event
consists of a hard-scatter process and the Underlying Event. The former is an inelastic collision
between two partons of the interacting protons and is characterized by a large momentum
transfer. The latter is the collection of all the soft, i.e. low-momentum interactions that accom-
pany the hard-scatter process. Though the soft interactions are the most numerous at the LHC,
it is the hard interactions that are actually interesting.

Event simulation is often done by dedicated Monte-Carlo generators such as Pythia [214].
Their results are written into event files3 in the HepMC [215] format. More details on this can
be found in the ATLAS Physics Analysis Workbook [216].

The next step is the detector simulation, i.e. a simulation of how the particles emerging
from the 𝑝𝑝 collision interact with the detector material. This is done using Geant4 [217, 218]
and results in hit files4. These hit files describe which calorimeter cells have been hit and how
much energy has been deposited by each event. See section 6.2.5 for the hit files that have been
used for this thesis.

6.2.2 Converting Hit Files to Hit N-Tuple Files

To make hit files readable by AREUS, they have to be slimmed to hit n-tuple files. This means
that all data irrelevant to AREUS is discarded and the data format is flattened. A specialized
script is used to perform this operation [219]. The hit n-tuple files are defined as follows:

• Each entry corresponds to one event.

• There is one group of related branches for each calorimeter: EMB, EMEC, HEC, FCal,
Tile Calorimeter.

• For each calorimeter, there is one scalar branch that contains 𝑁 , the number of cell hits
in the calorimeter for the given event.

• The other branches contain vectors of length 𝑁 that contain information about each hit
in the given calorimeter and event:

– a numeric ID of the calorimeter layer or module in which the hit occurred,
– the 𝜂 and 𝜙 coordinates of the cell that has been hit,
– the total deposited energy in MeV,
– the timing 𝜏 of the hit in ps.

The conversion process is complicated by a few incompatibilities and legacy issues that are
worth being pointed out separately:

1. The layer/module ID follows the CBNT format [220]. No official documentation about it
exists beyond the code that generates and reads it [221–223].

3At ATLAS, event files can be recognized by the tag EVNT in their name.
4At ATLAS, hit files can be recognized by the tag HITS in their name.
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2. The 𝜂 and 𝜙 coordinates are raw, i.e. they ignore misalignment, sagging of the detector,
and similar effects (cf. fig. 3.8).

3. Geant4 only calculates the visible energy, i.e. the energy that a particle deposits in the
liquid argon. The total deposited energy is defined as the visible energy divided by the
calorimeter’s sampling fraction [224, 225].

4. The timing 𝜏 is defined as the time span between the BC and the hit, reduced by the time
of flight of a particle moving from the interaction point to the calorimeter cell at the
speed of light in vacuum [226, 227]. As such, it is always non-negative.

6.2.3 Generating Hit Sequences

AREUS generates hit sequences in a straight-forwardmanner. For each simulated BC, the event
loop propagates whether the given nominal LHC bucket is filled according to the BC pattern.
If it is empty, no hits are simulated for this BC. Otherwise, a number of events are sampled
from the hit n-tuple files and each of their hits is propagated to the correct cell based on its
coordinates. If a cell is hit multiple times within one BC, AREUS keeps these hits separate and
simulates them separately5. This is important if both hits vary considerably in their timing and
so produce voltage pulses that are shifted with respect to each other.

The way in which AREUS reads the hit n-tuple files is configurable. Any number of files
may be declared and each of them may be sampled in one of two modes:

Poisson: Given a positive parameter 𝜇, AREUS samples a random number of events from the
file every BC. The number is Poisson-distributed with mean 𝜇.

fixed_distance: Given a positive integer parameter 𝑁 , AREUS samples one hit from the file
every 𝑁 BCs. Empty buckets due to the BC pattern are not counted and so may increase
the distance by an arbitrary amount.

In order to evaluate energy reconstruction algorithms, a workload must be picked. The
most common choice is a series of rare, high-energetic hits (the signal) on a background of
extremely frequent low-energy hits.

• The signal hits may come from simulated events with high-energy particles such as
𝑍 → 𝑒𝑒 events. If one is only concerned with the performance of energy reconstruc-
tion, these hits may also be created arbitrarily. It often makes sense to inject them in
fixed_distance mode to make their number predictable and to ensure they do not
interfere with each other.

• The background hits should be as faithful to the true background at ATLAS as possible.
As explained above, it is dominated by soft parton–parton interactions with little mo-
mentum transfer. Such interactions are named minimum-bias interactions [136, sec. 3]
after the corresponding L1 trigger. For this reason, they’re typically the only background
that needs to be considered and their average number per BC can be considered equal to
⟨𝜇⟩. As such, Poisson mode is a good fit for these hits.

5This functionality is implemented in the cell map. The objects it receives are of type CLArHit, but the objects
it propagates are of type CLArCellHit. Each CLArCellHit is implemented as a collection of CLArHits.
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Figure 6.3: Fraction of events in an LHC bucket that stays the same when using AREUS’
random skip feature. The simulation has been repeated 10 000 times for each data point.
The points show the mean value, the error bars the standard deviation.

6.2.4 Sample Looping and Random Skips

A problem when simulating high-pileup scenarios is the limited number of available simulated
minimum-bias events. For example, using a hit file with one million events, only 5000 BCs
can be simulated with a pileup of ⟨𝜇⟩ = 200. If AREUS exhausts a hit file during simulation,
it either terminates simulation or restarts reading from the beginning. When simulating high-
pileup scenarios, only the latter is a reasonable choice.

However, reusing the same hit file runs the risk of introducing a long-range periodicity
into the hit sequence. Assuming that AREUS exhausts a hit file after simulating 𝑁 BCs and
restarts reading from the beginning, the bucket of BC 𝑁 + 1 will share approximately 50 % of
its events with the first BC’s bucket6.

One method to avoid this overlap would be to sample events from the hit files in a random
order. However, this method is extremely inefficient, as hit files are based on the ROOT file
format, which is optimized for sequential reading. Random access would slow the simulation
down by several orders of magnitude.

As a compromise, AREUS provides a feature called random skip. Whenever it reads an event
from a hit file, it first skips a random number of events. The number is uniformly distributed
between 0 and a parameter 𝑀 . Setting 𝑀 = 0 disables the feature. This kind of randomization
takes the way ROOT files are read into account while also reducing the similarity of BCs in
subsequent loops over the same hit file. This is shown in fig. 6.3.

6.2.5 Hit N-Tuple Files Used in This Thesis

The studies presented in this thesis are based on one file with “signal” hits and two files with
“background” hits.

6It is not 100 % because the number of events per BC is random. This means it is random at which point in the
hit file AREUS starts reading events for BC 𝑁 + 1. Thus, a full overlap isn’t guaranteed.
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The “signal” hits are artificial in nature and designed to cover the energy range of the
readout electronics uniformly and not to interfere with each other. The signal hits occur at
a constant rate of once every 30 BCs in all observed calorimeter cells. The number has been
chosen because pulses from the readout electronics have a maximal length of 625 ns, equivalent
to 25 BCs. The remainder accounts for the fact that the FIR filters have a typical depth of 𝑃 ≈ 5
and might prolong the pulse by as many BCs.

The energy of each hit is random and sampled from a uniform distribution. The minimum
of the distribution is 1 µeV, an arbitrary small number that avoids division by zero when calcu-
lating some ratios. The maximum of the distribution depends on the calorimeter cell and has
been chosen so as to avoid gain switching, since this would introduce non-trivial effects (see
section 6.5). It is 59GeV in the presampler, 7 GeV in the front layer, and 35GeV in the middle
and back layers.

The “background” hits are derived from simulated minimum-bias events. Table 6.1 lists
the hit files that have been used. For statistical reasons7, the full simulation is split into a
simulation of low-𝑝T interactions and a simulation of high-𝑝T interactions. When using both
samples together, theymust beweighted according to their interaction cross-section (79.310mb
for both) multiplied by their filter efficiency (99.652 % for low-𝑝T, 0.345 32 % for high-𝑝T) [230,
231]. This can be achieved by multiplying the 𝜇 parameter of each hit file’s sampling Poisson
distribution (see section 6.2.3).

6.3 Pulse Shapes

AREUS does not simulate the individual parts of the analog electronics. Instead, it treats them
as a black box and uses a database that maps cell locations and deposited energies to pulses.
The energy dependence of the pulses is taken into account so that saturation effects and non-
linearity can be simulated, if necessary. For each hit that occurs, AREUS looks up the corre-
sponding pulse from the database. If there is no entry for an energy, it linearly interpolates
between the two entries with the closest energies.

Table 6.1: Samples used to simulate background hits. Both samples have been created
in the campaign MC15, 14 TeV using Pythia 8. A2 is the set of tuned generator parame-
ters [228], MSTW2008LO is the parton distribution function, and minbias inelastic is the
physics process. Low and high refer to the low-𝑝T and high-𝑝T approximation respec-
tively. The tags are described on AMI [229].

Dataset Short physics description AMI tags

119995 Pythia8_A2MSTW2008LO_minbias_inelastic_low e1133, s3142, s3144
119996 Pythia8_A2MSTW2008LO_minbias_inelastic_high e1133, s3142, s3144

7The energy distribution of minimum-bias events has a strong peak at low energies and a long tail at high
energies. The latter domain is sampled separately to collect a sufficient number of events without drowning it out
with the corresponding amount of low-energy events.
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Additionally, AREUS uses the pulse database to build a conversion function between de-
posited energy and induced voltage. This function is piecewise linear and its breakpoints are
given by each pulse’s associated energy and peak voltage. AREUS uses this function to con-
vert electronic quantities, such as noise, into the physical domain of energies. This calibration
effectively removes any non-linearity effects of the analog electronics from quantities that are
measured in units of energy.

6.3.1 Pulse Databases Provided by AREUS

By default, AREUS provides three different pulse databases:

analytical: Pulses are described by an analytical model with 8 parameters. The model was
originally designed for the trigger readout path in Run 2 [232] and later adapted for
Run 3 [144, sec 4.3.4]. As such, it is likely unsuitable for studies of the Phase-II Upgrade.
Furthermore, the model neglects saturation and the pulses always scale linearly with the
deposited energy.

analytical-readout: This is similar to analytical, but uses a model [233] that is tuned
to the main readout path of the HEC. Since the analog readout electronics of the HEC
are not expected to change in a significant manner8, this model can be used for Phase-II
Upgrade studies.

spice: This is a collection of numeric pulses that have been calculated via a SPICE simula-
tion [234]. Like analytical, this has been originally designed for the trigger readout
path of Run 2 [232] and adapted for Run 3 [144, sec. 4.3.4]. In contrast to analytical,
this takes non-linearity and saturation effects into account.

6.3.2 Pulse Databases Used in This Thesis

For this thesis, two custom databases of numeric pulses have been used. They contain pulses
of various amplitudes for six representative cells of the electromagnetic calorimeters. Both
databases are based on a simulation of the preamp/shaper chip LAUROC 1 [210, 235], so they
are tuned to themain readout path after the Phase-II Upgrade. One simulation covers the pulses
at the chip’s high-gain output, the other the pulses at its low-gain output. Since there has been
no major design change in version 2 (the current prototype), this simulation is expected to still
be accurate (but see also section 6.4.2).

Because this thesis also investigates the impact of the shaping stage on the energy res-
olution, the shaper is not covered by the simulation. Instead, it is approximated with ideal
low-pass and high-pass filters (see listing 6.1). These filters ignore parasitic effects and the
active amplification in the real electronics, but suffice to make comparisons between different
shaper parameters. Figure 6.4 shows examples of the pulses that have been used.

Figure 6.5 shows the linearity of the energy-to-voltage conversion implied by the pulses
and their associated energies. Ignoring saturation of the high gain, the conversion is linear to
an accuracy of about 1 % in both databases. Since these simulations have been performed, the
non-linearity of the LAUROC 1 has been measured and shown to be less than 0.5 % [236].

8The FEB2 preshaper is virtually identical to the current one, see section 4.3.4.
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Figure 6.4: The ideal pulse shapes used in this thesis, based on a simulation of the
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Figure 6.5: Linearity of the simulated analog electronics. Shown are the results for a
simulated cell in the EMB front layer at 𝜂 = 0.5 (points) and the ideal, linear behavior
(line). The relative integrated non-linearity (INL) is defined as (𝑉peak − 𝐸𝑎)/𝐸𝑎, where
𝑎 the slope of the line. The high-gain electronics saturate for 𝐸 ≳ 70GeV and thus are
expected to be strongly non-linear in this domain.



86 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics

6.4 Thermal Noise

The thermal noise of the analog electronics has been thoroughly investigated in the past. In
particular, its variance and autocorrelation coefficients are measured on a regular basis [237].
From this, it is known that the noise closely follows a Gaussian distribution.

There is correlation between the noise of neighboring channels (“coherent noise”) due to
common grounding and the proximity to the high-voltage power supply. It has been shown to
be smaller than 2% and is ignored in AREUS.

The thermal noise is also correlated in time. For one, this is because of the band-pass filters
employed in the analog electronics, which suppress high-frequency noise. Another reason is
that the transistors that are part of the analog electronics contribute flicker noise, which is
dominant at low frequencies. Figure 6.6 shows typical power spectral densities (PSD) of the
thermal noise.

Listing 6.1: The band-pass filter applied to the LAUROC pulses, in the Python program-
ming language. The parameter Δ𝑡 is the time step of the simulation, 𝜏 is the filter’s time
constant.

1 def ideal_shaper(samples, Δt, τ):
2 α = Δt / Δ(t + τ) # 𝛼 is a useful short-hand.
3 samples = _highpass(samples, α)
4 samples = _lowpass(samples, α)
5 samples = _lowpass(samples, α)
6 return samples
7
8 def _lowpass(samples, α): # The first-order low-pass filter
9 out = [] # is defined recursively:
10 x = 0.0 # 𝑥𝑛 = 𝛼𝑠𝑛 + (1 − 𝛼)𝑥𝑛−1.
11 for sample in samples:
12 x = α*sample + (1-α)*x
13 out.append(x)
14 return out
15
16 def _highpass(samples, α): # The first-order high-pass filter
17 out = [] # is defined recursively:
18 prev = 0.0 # 𝑥𝑛 = 𝛼(𝑠𝑛 − 𝑠𝑛−1) + 𝛼𝑥𝑛−1.
19 x = 0.0 # Note that (1 − 𝛼) does not appear.
20 for sample in samples:
21 x = α*(sample-prev) + α*x
22 prev = sample
23 out.append(x)
24 return out
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Figure 6.6: Typical thermal noise in the LAr readout electronics. These are the results
for the high-gain output of a simulated cell in the EMB front layer at 𝜂 = 0.5. The noise
PSD, as it would be measured at the preamplifier output (circles) is passed through an
ideal CR-RC² band-pass filter with 𝜏 = 13ns (rectangles). It is then folded onto itself to
reduce the sampling rate to 40MHz (up-pointing triangles). The result of this is used to
simulate noise with AREUS. The PSD of the simulated noise is averaged over 1000 runs
(down-pointing triangles). See page 89 for details on the artifacts in the last curve.

6.4.1 Noise Simulation

AREUS provides three different noise models for simulation. Each model generates noise with
a different PSD.

• White noise has a flat PSD, shown in fig. 6.7a. It is the simplest form of noise and is easily
generated by sampling numbers from a pseudo-random number generator.

• Pink or flicker noise has a PSD proportional to 1/𝑓 , shown in fig. 6.7b. AREUS generates
it via the Voss–McCartney algorithm [238–240, 241, sec. 1.4.4], which is shown in list-
ing 6.2, lines 3 to 12. It is accurate within the band [𝑓s/2𝑁+1; 𝑓s/2], where 𝑁 is the order
of approximation. Outside of this band, the PSD is flat.

• The spectral-noise model generates noise of an arbitrary spectral density. An example
of this is shown in fig. 6.7c. The model uses the method of randomized phases [242].
It calculates Fourier coefficients from the PSD and rotates each coefficient by a random
complex phase. Applying the inverse DFT to these coefficients produces Gaussian noise.
An implementation of this method is given in listing 6.2, lines 14 to 22.

There is notmuch literature on the problem of generating noise of arbitrary spectral density.
As such, the following paragraphs present the method used by AREUS in more detail and
compare it to an alternative.

The method of randomized phases has the clear advantage that the generated noise se-
quence is consistent: its variance is exactly what is expected based on the given PSD and
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Listing 6.2: Various noise-simulation algorithms in the Python programming language,
using the NumPy array routines [148]. The algorithms are implemented as generators, i.e.
functions that pause execution every time they yield a value and may resume execution
from these points. Shown are the Voss–McCartney algorithm, themethod of randomized
phases, and the method of shaped noise. The parameter 𝜎tot is the standard deviation of
the generated noise; 𝑁 is the order of the approximation; 𝑆 is an array of equidistant
points on a PSD; 𝑓s is its sampling rate.

1 from numpy import *
2
3 def voss_mccartney(σ_tot, N):
4 σ = σ_tot / sqrt(N) # Split noise across 𝑁 uncorrelated
5 rand = random.normal(0.0, σ, N) # generators.
6 periods = 1 << arange(N) # [1, 2, 4, 8, … , 2𝑁−1]
7 pos = periods >> 1 # [0, 1, 2, 4, … , 2𝑁−2]
8 while True:
9 pos = (pos + 1) % periods # Update generator 𝑖 every
10 mask = (pos == 0) # 𝑝𝑜𝑠[𝑖] steps.
11 rand[mask] = random.normal(0, σ, count_nonzero(mask)))
12 yield sum(rand)
13
14 def method_of_randomized_phases(S, f_s):
15 n_s = (len(S) - 1) * 2 # Number of samples from an irfft call.
16 ps = S * n_s * f_s / 2 # Use eqs. (5.20) and (5.23) to convert
17 X = sqrt(ps, dtype=complex) # from PSD to power spectrum.
18 while True:
19 φ = random.uniform(size=X.shape) # Rotate each amplitude by a
20 X *= exp(2j * pi * φ) # random complex phase in [0; 2𝜋].
21 for sample in fft.irfft(X):
22 yield sample
23
24 def method_of_shaped_noise(S, f_s):
25 n_s = (len(S) - 1) * 2
26 while True:
27 u = random.normal(size=n_s)
28 X = fft.rfft(u) * sqrt(S/2) # The 2 is from eq. (5.23).
29 for sample in fft.irfft(X):
30 yield sample
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Figure 6.7: PSDs of noise simulated with AREUS (dark blue) and the ideal curves (light
orange) at 𝑓s = 2Hz. The simulated PSDs are averaged over 50 independent runs. The
pink noise has been simulated to an order of 𝑁 = 5 and hence is accurate down to 𝑓s/64
(dashed line). The spectral noise shows spectral leakage, an effect caused by discontinu-
ities between batches of simulated noise.

eq. (5.22) (Parseval’s theorem). However, an important limitation of this method is that it is
based on the Fourier transform and the number of available Fourier coefficients is finite.

Consequently, the inverse DFT only produces a finite number of noise samples. Most im-
plementations circumvent this issue by generating the entire noise sequence once in the begin-
ning, using as many Fourier coefficients as necessary. For AREUS, which may require millions
of samples and for which the thermal noise is only one of many things to simulate, this would
be prohibitively expensive.

Instead, AREUS generates spectral noise in multiple batches, repeating the phase random-
ization and inverse DFT every time a batch of noise is exhausted. While this approach solves
the computational issue, it introduces discontinuities in the noise sequence. These discon-
tinuities appear between each pair of noise batches and distort the PSD of the noise in two
characteristic ways:

• They cause spectral leakage, i.e. a broadening of sharp peaks in the original PSD. This
effect is visible in fig. 6.7c and can be modeled by convolving the original PSD with an
appropriately scaled sinc function.

• They cause batching artifacts at 𝑓 = 0 and 𝑓 = 𝑓s/2. These artifacts force the PSD of
the simulated noise towards zero, independent of the values of the original PSD at these
points. This is because, according to the laws of the DFT, the Fourier coefficients that
correspond to these two points should always be real. Multiplying them with a random
complex phase causes destructive interference between their contributions to different
noise batches9. The effect can be observed in fig. 6.6.

9It is possible to exempt these two coefficients from phase randomization; however, this would lead to unnat-
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Figure 6.8: Thedifference between PSDs produced via themethod of randomized phases
and the method of shaped white noise. The simulated PSDs on the left are averaged over
𝑁 = 50 independent runs. The right figure shows that, as 𝑁 increases, the difference 𝜖rel
between both methods decreases like 1/√𝑁 . This is compatible with the hypothesis that
the differences are statistical in nature. The difference is calculated according to eq. (6.1).

The method of shaped noise [243] is another way to generate noise with an arbitrary PSD.
The algorithm is shown in listing 6.2, lines 24 to 30. The procedure is to generate an appropri-
ately sized batch of white noise, transform it into the frequency domain, multiply each Fourier
coefficient with a factor proportional to the target PSD, and transform the result back into the
time domain.

In contrast to the method of randomized amplitudes, this method produces noise whose
variance itself is random. This effect removes the batching artifact at 𝑓 = 0, but the artifact at
𝑓 = 𝑓s/2 remains. Figure 6.8 show that the noise produced with both methods is asymptotically
indistinguishable in the frequency domain. In particular, fig. 6.8b shows that the difference
between both methods vanishes if averaged over enough runs. The difference is defined as:

𝜖rel ∶= √∫
𝑓s

0
d𝑓(

𝑆1(𝑓 ) − 𝑆2(𝑓 )
𝜎2 )

2
, (6.1)

where 𝑆1 and 𝑆2 are the PSDs to compare and 𝜎2 is the noise variance.
Finally, there is a knownmethod to improve spectral-noise simulation by sampling the PSD

at random, non-equidistant points [244]. However, this makes it impossible to apply the Fast
Fourier Transform algorithm, so it has not been explored further.

6.4.2 Noise Simulation for This Thesis

In this thesis, the spectral-noise model implementing the method of randomized phases has
been used. The method of shaped noise has been forgone because it is computationally more

urally coherent artifacts in the generated noise sequence.



6.5. Quantization 91

expensive (requiring two Fourier transforms per batch instead of one) and both methods pro-
duce noise that is sufficiently similar.

The noise PSDs are based on the same simulation as the pulse databases described in sec-
tion 6.3.2. As for the pulses, it is expected that the simulation describes version 2 of the LAU-
ROC as accurately as version 1. However, there is one caveat: it has been shown that the de-
tailed simulation of the electronics underestimates the measured thermal noise by about 20 %.
The reason for this is not fully understood at this point, but it is suspected that the simulation
of the MIM capacitors used in the preamplifier is too inaccurate [245, pp. 8–12].

6.5 Quantization

The simulation of ADCs in AREUS is implemented in a straight-forward manner. Its input is
the pulse that has been acquired from the pulse database, possibly by interpolation (see sec-
tion 6.3 for details). This pulse is sampled in time and the thermal noise is added (see section 6.4
for details). The pulse is then overlaid with pulses from previous BCs and its amplitude is quan-
tized.

Pulse sampling occurs at a fixed sampling rate 𝑓s. The rate is configurable, but always is
a multiple of 40MHz, the approximate LHC clock rate. The sampling points may be shifted
by a constant static phase 𝜙stat. This does not simulate jitter. However, each pulse may ad-
ditionally be shifted by a random dynamic phase 𝜙dyn to simulate variation in the hit timing.
This is useful in cases when the hit n-tuple file does not contain useful timing information.
Because the hit timing is strictly non-negative (see section 6.2.2), 𝜙dyn follows the half-normal
distribution [246].

In summary, the sample sequence 𝑠 ∶ 𝑛 → 𝑠[𝑛] is a superposition of the 𝐾 last pulses
𝑔𝑘 ∶ 𝑡 → 𝑔(𝑡) and the thermal noise 𝑢 ∶ 𝑛 → 𝑢[𝑛] as follows:

𝑠[𝑛] ∶=
𝐾−1

∑
𝑘=0

𝑔𝑛−𝑘 (
𝑘
𝑓s

+ 𝜙stat + 𝜙dyn[𝑛 − 𝑘]) + 𝑢[𝑛]. (6.2)

The result of sampling is a sequence of time-discrete voltages. Amplitude quantization is
done by applying a scaling factor to these voltages and rounding them to a configurable number
of bits. Numbers are rounded towards the nearest integer, exact halves are rounded away from
zero10. The scaling factor – which may be supplied in V, MeV or MeV of transverse energy11 –
is a measure of howmany volts one ADC count corresponds to. Hence, the factor is informally
called the least significant bit.

6.5.1 Simulation ofQuantization Noise

As detailed in section 3.3.5, amplitude quantization adds additional noise to the sample se-
quence. An ideal ADC with a bit width 𝑏 has two extreme voltages 𝑉min and 𝑉max that can be

10This method has no positive/negative bias and only a slight bias away from zero. This is usually negligible in
comparison with the quantization noise.

11If the scaling factor is given in regular or transverse energy, it first needs to be converted to volts. This is done
using the piecewise linear conversion function defined in section 6.3.
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Figure 6.9: Visualization of ENOB simulation. Shown are the PSDs of a sine wave sam-
pled and quantized in various ways. They correspond to the wave before quantization
(circles), after quantization with 12 bits (rectangles), 5 bits (up-pointing triangles), and
12 bits again (down-pointing triangles). For the last curve, the wave has been smeared
before quantization to simulate an ENOB of 5.

encoded. With these, the ADC’s full-scale range 𝐷 and resolution Δ are defined as:

𝐷 = 𝑉max − 𝑉min, (6.3)

Δ = 𝐷
2𝑏 . (6.4)

Quantizing a sample introduces an error 𝑒𝑏. The error is uniformly distributed in [− Δ
2 ; Δ

2 ] and
so has a variance

𝜎2
ideal = Δ2

12 = 2−2𝑏 𝐷2

12 . (6.5)

A real ADC consists of electronics that are themselves noisy. Therefore, its noise 𝜎real is
always greater than 𝜎ideal. To quantify this, 𝑏eff, the effective number of bits (ENOB) is defined
such that:

𝜎2
real = 2−2𝑏eff 𝐷2

12 = 22(𝑏−𝑏eff) Δ2

12 . (6.6)

AREUS simulates this effect by adding Gaussian-distributed noise to the samples before
quantizing them [144, sec 5.1]. The magnitude of this noise is chosen so as to bridge the gap
between 𝜎ideal and 𝜎real:

𝜎2
smear = 𝜎2

real − 𝜎2
ideal = (4𝑏−𝑏eff − 1)

Δ2

12 . (6.7)

An example of this simulation is shown in fig. 6.9. A sine wave is quantized once with an
ideal ADC (𝑏 = 5) and once with a real ADC (𝑏eff = 5, 𝑏 = 12). The resulting noise has the same
magnitude and PSD (though the exact distribution differs).
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6.5.2 ADC Model Used in This Thesis

The readout electronics installed during the Phase-II Upgrade will have to cover a dynamic
range of 16 bits. It is planned to do this with two overlapping gain stages: A high gain (×30)
and a low gain (×1). Each stage is digitized separately with a 14-bit ADC. This ADC in turn is
planned to consist of two 12-bit ADCs with dynamic switching between [111, sec. 3.7].

For the purpose of simulation, this readout chain can be approximated as four distinct gain
stages, where two stages correspond to the low gain and two to the high gain. This has been
summarized in table 6.2, together with the value of the least significant bit that has been used
in each stage and detector region. The values have been calculated using the formula:

LSB = 𝐼max
𝑘min ⋅ 2𝑏 ⋅ 𝐺 ⋅ 𝑠min

, (6.8)

where 𝐼max is the maximum current allowed by the analog electronics; 𝑘min ∶= min𝜂 𝑘(𝜂) is the
minimum of the energy-to-current conversion factor across each layer; 𝑏 ∶= 12 is the bit width
of the simulated ADC; 𝐺 ∈ [1, 4, 30, 120] is the gain of the given stage. The factor 𝑠min ≈ 0.75 is
the positive fraction of the dynamic range; the remainder is reserved to represent the negative
undershoot of the bipolar signal pulse without saturation.

For lack of a more appropriate value, it is assumed that the ADCs installed in the Phase-II
Upgrade will have an ENOB of 11.3 bits. This is the middle between the minimum required by
the specification (11 bits) and the valuemeasured on a prototypeADC (11.6 bits) and compatible
with the current electronics [111, sec. 7.1.2].

6.6 Digital Filters

The filters implemented in AREUS are generally as described in chapter 5. However, in a few
cases, they either provide some additional features or only a subset of what is possible. These
deviations are documented here.

One important point is that the comparative studies presented in this thesis are focused
on the main readout. In this context, it may be assumed that the BCs in which a hit has oc-
curred have already been identified. This means that the sole purpose of the digital filters is to
reconstruct the energy deposited in these hits as accurately as possible.

Table 6.2: Least significant bits in the three layers of the electromagnetic calorimeter
for all four simulated gain stages. Equation (6.8) has been used to calculate them based
on 𝐼max and 𝑘min [111, tab. 3.2f].

Layer 𝐼max (mA) 𝑘min (mA/TeV) Least significant bit (MeV)
HG ×4 HG ×1 LG ×4 LG ×1

Presampler 2 0.28 19.4 77.5 581 2325
Front 2 2.26 2.4 9.6 72 288
Middle 10 2.26 12.0 48.0 360 1440
Back 10 2.33 11.6 46.6 349 1397
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This focus not only limits the applicability of the conclusions drawn here, but it also has
an impact on the choice of filter algorithms to compare. For example, there is no point in
investigating the performance of a naïve Wiener filter as defined in section 5.3, since it is
explicitly not optimized for the problem of energy reconstruction.

6.6.1 Optimal Filter

The OF is implemented in AREUS exactly as described in section 5.6. However, it should be
noted that the numbering of filter coefficients follows the convention of eq. (5.27) and not of
eq. (5.34). This means that the sequence of OF coefficients 𝑎 is proportional to ℎ†, the reversed
sequence of ideal pulse samples ℎ. This is opposite to the ordering commonly used in particle
physics [141].

Because the BCs with cell hits have already been identified, no selection criterion must be
applied. Hence, the filter coefficients 𝒃† are ignored here. Nonetheless, AREUS also provides
variants of the base OF algorithm which use 𝒃 to estimate 𝜉 and e.g. apply 𝜏 selection.

6.6.2 Wiener Filter

TheWiener filter is implemented in AREUS according to eq. (5.35):
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⎜
⎜
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, (6.9)

which, since all involved quantities are real, can be simplified to:
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Because AREUS has access to the true deposited energy, it can calculate 𝑅𝑤𝑤 and 𝑅𝑤𝑠 during
simulation.

In a deviation from the description in section 5.3, the Wiener filter in AREUS is unbiased.
This is implemented via a renormalization of the filter coefficients 𝑐:

𝑐′ = 𝑐 ⋅ max𝑛 ℎ[𝑛]
max𝑛 (𝑐 ∗ ℎ) [𝑛] , (6.11)

where ℎ is the normalized system response of the readout electronics. Consequently, if a nor-
malized pulse is passed through the Wiener filter, the response is normalized as well. For this
reason, AREUS’s Wiener filter can be used for energy reconstruction.

Additionally, AREUS supports both peak broadening and narrowing as described in sec-
tion 5.3.3. Peak narrowing, unless disabled, is done automatically during filter calibration. Af-
ter calculating the coefficients 𝑐, AREUS calculates the ideal filter response 𝑔 ∶= 𝑐′ ∗ ℎ to and
locates its peak sample 𝑔[𝑖max]. It then verifies that 𝑔[𝑖max−1] and 𝑔[𝑖max+1] are below a certain
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threshold, zero by default. If not, it decreases the desired pre-peak and post-peak samples, 𝑠pre
and 𝑠post, and restarts the calibration process.

Peak broadening, in contrast, is implemented by setting both the threshold on 𝑔[𝑖max − 1]
and 𝑔[𝑖max + 1] as well as the initial values for 𝑠pre and 𝑠post to 0.5. This can be enabled for
the pre-peak sample and the post-peak sample separately. (Note that during calibration, the
automatic peak-narrowing process might reduce the initial values again.)

6.6.3 Wiener Filter with Forward Correction

Due to its complexity, forward correction is not implemented as a mere add-on to other filters
in AREUS, but as a filter of its own. In particular, it is tightly coupled with the Wiener filter,
as the Wiener filter is well suited for detecting whether a hit has occurred.

The Wiener filter with forward correction (WFFC) is based on the algorithm visualized in
fig. 5.7. By default, it uses a peak-broadened Wiener filter with 𝑠pre = 0 and 𝑠post = 0.5. The
selection algorithm is:

̃𝐸sel[𝑛] =
⎧⎪
⎨
⎪⎩

̃𝐸[𝑛 − 1] if
̃𝐸[𝑛]

̃𝐸[𝑛 − 1]
> 𝑔[𝑖max + 1]

𝑔[𝑖max] − 𝑚,

0 otherwise,
(6.12)

where ̃𝐸 is the Wiener filter output sequence, 𝑔 is defined as above, and 𝑚 is a variable margin
that allows to relax the selection criterion as necessary. The algorithm triggers for the previous
sample whenever the current sample is greater than the post-peak sample one would expect
of a signal pulse.

In this thesis, a more restrictive selection algorithm is used. It uses a peak-broadened
Wiener filter with 𝑠pre = 𝑠post = 0.5 and its criterion is

̃𝐸[𝑛 − 2]
̃𝐸[𝑛 − 1]

> 𝑔[𝑖max − 1]
𝑔[𝑖max] − 𝑚 ∧

̃𝐸[𝑛]
̃𝐸[𝑛 − 1]

> 𝑔[𝑖max + 1]
𝑔[𝑖max] − 𝑚, (6.13)

i.e. it additionally applies an analogous threshold to the sample before the previous one. Anal-
ogous criteria exist for the other two combinations of pre-peak and post-peak samples. If no
peak broadening is used at all, the peak candidate must only be greater than zero.

The forward correction is as described in the original publication [142, p. 77, 144, p. 102]:

𝑑[𝑛 + 𝑖] = −
̃𝐸[𝑛 − 1]

𝑔[𝑖max] ⋅
⎧
⎪
⎨
⎪
⎩

𝑔[𝑖max + 𝑖 + 1] if 𝑖 ∈ [1; 𝑃1 + 1) ,
̄𝑔− if 𝑖 ∈ [𝑃1 + 1; 𝑁 − 𝑃2) ,

𝑔[𝑖max + 𝑖 + 1] if 𝑖 ∈ [𝑁 − 𝑃2; 𝑁) ,
(6.14)

where 𝑁 is the number of samples in the undershoot of 𝑔. It is determined by finding the last
sample in 𝑔 that is below a configurable threshold 𝑚last, −0.01 by default. 𝑃1 and 𝑃2 are the
depths of two FIR filters that reproduce sections of the undershoot, ̄𝑔− is an estimate of the
undershoot’s flat section:

̄𝑔− ∶= 1
𝑁 − 𝑃2 − 𝑃1 − 1

𝑁−𝑃2

∑
𝑘=𝑃1+1

𝑔[𝑖max + 𝑘 + 1]. (6.15)
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In addition to this forward correction, the current sample is also corrected:

̃𝐸[𝑛] → ̃𝐸[𝑛] − ̃𝐸[𝑛 − 1] ⋅ 𝑔[𝑖max + 1]
𝑔[𝑖max] . (6.16)

This allows the WFFC to trigger correctly in multiple subsequent BCs.
TheWFFC in AREUS is equipped with two more features to improve its run-time behavior:

• A swing-up protection checks in each iteration 𝑛 whether the absolute forward correction
|𝑑[𝑛]| is above a certain threshold. If this is true for a number of consecutive samples, the
filter is reset. The motivation for this is that a large correction value indicates that the
filter has diverged due to its non-linear behavior. In such a case, it is unable to return to
finite values without outside intervention.

• A saturation lock checks for each iteration 𝑛 whether the incoming sample 𝑤[𝑛] is above
a certain threshold. If it is, all samples are blocked from entering the algorithm and
replaced by zeros for a number of samples. The reason for this is to avoid processing sat-
urated pulses; due to their irregular shape, the Wiener filter would likely give a response
that does not match the selection criterion. It would hence fail to correct for the pulses,
which would bias subsequent results.

6.6.4 Other Algorithms

Due to time constraints, it has not been possible to implement ANNs or algorithms for sparse
signal restoration in AREUS. Bothmethods have been studied on small, artificial problems [247,
248], but a comprehensive optimization and comparison with linear filters has yet to be done.

6.7 Statistical Analysis

The data produced by the AREUS simulation must be interpreted statistically. For the task
of energy reconstruction, the most important figure of merit is the reconstruction error 𝛥, i.e.
the difference between the reconstructed energy 𝐸reco and the true deposited energy 𝐸true for
a given BC. Across all BCs, this error can be regarded as a random variable. It is Gaussian-
distributed for low luminosities, where electronic noise dominates; as the luminosity and ⟨𝜇⟩
increase, it becomes significantly non-Gaussian and the effect of outliers becomes significant.
This is shown in fig. 6.10.

Although the mean 𝔼[⋅] and the standard deviation 𝜎[⋅] are often used to describe unimodal
distributions like that of 𝛥, these measures are highly susceptible to outliers. More robust
measures are the median 𝑄2 and the interquartile range (IQR). They are defined as:

𝑄2 ∶= 𝐹 −1(0.5), (6.17)
IQR ∶= 𝐹 −1(0.75) − 𝐹 −1(0.25), (6.18)

where 𝐹 is the cumulative distribution function of the random variable (here 𝛥) and 𝐹 −1 is its
generalized inverse, the quantile function.
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Figure 6.10: Typical frequency distributions of the inclusive (𝛥tot, circles) and exclusive
(𝛥sig, squares) reconstruction error at a luminosity corresponding to ⟨𝜇⟩ = 200. The
non-Gaussian tails of the error distribution are clearly visible. The distribution has been
obtained by simulating 50 000 signal pulses in a cell in the EMEC middle layer at 𝜂 = 2.0.

For a Gaussian distribution 𝑁(𝜇, 𝜎), it is 𝑄2 = 𝜇 and IQR ≈ 1.35𝜎. The latter is somewhat
undesirable – ideally, the measure of spread would be comparable to 𝜎. For this reason, the
IQR is replaced with a bespoke quantity, the one-sigma half range:

𝜍 ∶= 𝐹 −1(0.84135) − 𝐹 −1(0.15865)
2 , (6.19)

i.e. half the width of the interval that contains 68.27 % of the data . It has the same statistical
properties as the IQR, but it is 𝜍 ≈ 𝜎 for Gaussian-distributed variables.

There are two variants of the reconstruction error 𝛥 that may be considered as a measure
of energy resolution:

1. the inclusive error 𝛥tot ∶= 𝐸reco − 𝐸true,sig − 𝐸true,pu compares the filter’s reconstructed
energy to the total deposited energy, including in-time pileup;

2. the exclusive error 𝛥sig ∶= 𝐸reco − 𝐸true,sig, by contrast, only considers energy depositions
due to the hard-scatter process.

The advantage of 𝛥tot is that it is intuitively correct: when a digital filter reconstructs energy
based on a signal pulse, it is impossible to tell how much of it is due to soft and how much due
to hard 𝑝𝑝 collisions. Especially in the rare case of a high-energy hit from the Underlying Event,
𝛥tot is expected to stay small, as it takes the hit’s energy into account. This is not the case when
using 𝛥sig.

However, though there is no difference between hits from soft and hard collisions on an
individual basis, they do differ in their statistics. While for the hard-scatter process, signal
pulses rarely overlap, the same is almost guaranteed for pulses from soft collisions. Because the
signal pulse approximately integrates to zero, pileup hits cancel out on average. As described
in section 5.6.3, matched filters without additional calibration reconstruct 𝛥sig on average, not
𝛥tot.
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Finally, as the focus of the studies presented here lies on the main readout, it is assumed
that bunch crossing identification has already happened. In other words, it is known for each
BC whether a hit from a hard-scatter process has occurred or not (see section 6.6).

Hence, although the filters are applied to each BC, their output is only considered in the
analysis if it corresponds to a non-zero signal energy deposition. In particular, the filters are
allowed to produce false positives, i.e. non-zero output in BCs without energy deposition due
to a hard collision. This allows for broad filter responses, as they are typical for e.g. the OF.



Chapter 7

Results of the Readout Electronics
Simulation Studies

In this chapter, comparative simulation studies of the ATLAS LAr readout electronics are pre-
sented. The overarching goal is to optimize their energy resolution for the Phase-II Upgrade.
To do so, parameters of both the analog and the digital electronics are varied and their impact
on the energy resolution is inspected. For a detailed description of the simulation setup, refer
to chapter 6.

First, a statistical analysis of the simulation setup is presented in section 7.1. A figure of
merit representative of the energy resolution is picked for the subsequent comparisons, and its
uncertainty is estimated.

In section 7.2, the electronic-noise simulation of AREUS is compared to data measured
during Run 2. This serves to verify the accuracy of the simulation. In a similar vein, the
dependence of the energy resolution on the time constant 𝜏 of the shaper is investigated in
section 7.3. This is both instructive and verifies that the simulation works as intended when
including pileup. The influence of 𝜏 – and several other parameters of the analog electronics –
is analyzed in more detail in section 7.4 and they are tuned for optimal performance.

In the following sections 7.5 to 7.7, three filter algorithms are chosen (the Optimal Filter,
the Wiener filter, and the Wiener filter with forward correction) and individually tuned for
optimal energy resolution. In section 7.8, these filters are compared with each other. Their
behavior is investigated and conclusions drawn from the study are presented.

7.1 Statistical Treatment

The purpose of this section is to investigate the figures of merit introduced in section 6.7 and
to select one for the subsequent analyses. To do so, the same simulation is executed multiple
times, using different seeds for the pseudo-random number generator each time. For each
run, statistical quantities are calculated for the reconstruction error 𝛥. These figures of merit
fluctuate statistically themselves; this section also calculates and discusses thesemeta-statistics.

The simulation follows the description in chapter 6. While it has been run for all six ref-
erence calorimeter cells chosen for this thesis, results are presented for the cell in the EMEC
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Figure 7.1: The sample mean of the exclusive (𝛥sig, circles) and inclusive (𝛥tot, squares)
reconstruction error, and the median for both (up- and down-pointing triangles resp.),
after application of the OF, for five different pileup scenarios. The results are shown
with a horizontal shift to avoid overlap. For the mean, error bars indicate the sample
standard deviation; for the median, they indicate the one-sigma interval, i.e. the interval
that contains the most central 68.27 % of the data . Simulation target is a cell in the
EMEC middle layer at 𝜂 = 2.0.

middle layer at 𝜂 = 2.0, except where indicated otherwise. The analog shaper is an ideal CR-
RC² band-pass filter with 𝜏 = 13ns. The digital filter for energy reconstruction is an OF with a
depth of 𝑃 = 5. Each run simulates 50 000 signal pulses at a constant distance of 30 BCs, for a
total of 1 500 000 simulated BCs. Of these, 40 000 BCs are used to calibrate the OF, the rest for
evaluation. (See the end of this section for a motivation of this number.)

The simulation has been run 250 times, 50 times for each of five pileup scenarios:

• ⟨𝜇⟩ = 0: no pileup noise, only electronic (thermal and quantization) noise;
• ⟨𝜇⟩ = 20: about as much pileup as in Run 2;
• ⟨𝜇⟩ = 80: the maximum amount of pileup expected in Run 3;
• ⟨𝜇⟩ = 140: the amount of pileup expected in Run 4, after the Phase-II Upgrade;
• ⟨𝜇⟩ = 200: the maximum amount of pileup expected in the HL-LHC era.

The inclusive and exclusive reconstruction errors, 𝛥tot and 𝛥sig, have been calculated for
each signal pulse after application of the OF. Their sample mean 𝛥, sample standard deviation
𝑠[𝛥], median 𝑄2[𝛥], and one-sigma half range 𝜍[𝛥] have been calculated for each simulation
run separately (see section 6.7 for their definition). They have then been averaged across 50
simulations for each pileup scenario. The results are shown in fig. 7.1.

For ⟨𝜇⟩ = 0, the four data points showno differences. This is to be expected, as the electronic
noise is the only source of error, i.e. 𝛥sig = 𝛥tot. Electronic noise is approximately Gaussian and
in this case, the one-sigma half range matches the standard deviation by construction.
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Figure 7.2: Comparison of the sample standard deviation (𝑠, filled markers) and the
one-sigma half range (𝜍, empty markers) of the inclusive reconstruction error 𝛥tot. The
left shows frequency distributions of both quantities for five pileup scenarios with 50
simulations per scenario; The right shows each distribution’s coefficient of variation.
Simulation target is a cell in the EMEC middle layer at 𝜂 = 2.0.

As the error bars in fig. 7.1 show, the measures of noise increase with ⟨𝜇⟩. Two effects
can be seen: One is that 𝜍 is smaller than 𝑠 in all cases, underlining its robustness against
non-Gaussian tails. The other is that 𝛥sig fluctuates considerably more than 𝛥tot. This can be
explained by the fact that linear filters cannot distinguish between signal and pileup hits, and
so inherently reconstruct 𝐸tot, the energy of both (see section 6.7). For this reason, the variance
𝑠2[𝛥sig] is effectively the sum of 𝑠2[𝛥tot] and 𝑠2[𝐸true,pu], the energy deposited due to pileup.

While this is an argument in favor of using 𝛥tot, the mean shows another effect to be aware
of. While 𝛥sig stays close to zero, independent of ⟨𝜇⟩, 𝛥tot shows a trend towards the nega-
tive with increasing ⟨𝜇⟩. The reason for this ultimately lies in the bipolar shape of the signal
pulse. By construction, its positive lobe and negative undershoot integrate to zero. Hence,
even though linear filters reconstruct 𝛥tot rather than 𝛥sig, the pileup hits cancel each other out
on average and 𝛥sig is the quantity that remains unbiased1.

Ultimately, it has been decided to use 𝛥tot for the following analyses. The reason is that
it more closely describes the behavior of the OF in absence of statistical effects; the pileup-
dependent bias of 𝛥tot is largely independent of the filter (see section 7.8) and is corrected in
later stages of the readout chain anyway [111, sec. 2.2.3].

To decide between the sample standard deviation and the one-sigma half range , 𝑠[𝛥tot]
and 𝜍[𝛥tot] resp., it has been investigated by how much their values vary between simulation
runs. This is visualized in fig. 7.2. It shows both the actual frequency distributions and each

1Curiously, the median 𝑄2[𝛥sig] also shows a negative bias, though it is much smaller. The cause for this is the
asymmetrical distribution of 𝛥sig: a slight shift of the maximum towards the negative is balanced out by a long,
non-Gaussian tail towards the positive. The median is ignorant of this tail and thus makes the shift visible.
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Figure 7.3: Coefficients of variation of 𝜍[𝛥tot] for the Optimal Filter (OF), the Wiener
filter (WF), and the Wiener filter with forward correction (WFFC) as a function of ⟨𝜇⟩,
the average number of 𝑝𝑝 interactions per bunch crossing.

distribution’s coefficient of variation. The latter is defined as:

𝑐V[𝛥] ∶= 𝑠[𝛥]
𝛥

, (7.1)

i.e. the distribution’s standard deviation divided by its mean.
As can be seen, 𝑐V is of the same order of magnitude for both 𝑠[𝛥tot] and 𝜍[𝛥tot]. However,

while it increases with ⟨𝜇⟩ for 𝑠[𝛥tot], it decreases for 𝜍[𝛥tot]. Furthermore, fig. 7.2a shows
several outliers in the distributions of 𝑠[𝛥tot], e.g. near 𝛥tot = 200MeV. As a robust estimator,
𝜍[𝛥tot] does not suffer from this problem. For this reason, it is used for the subsequent analyses,
except where noted otherwise.

The above procedure has been repeated for a baseline configuration2 of the Wiener filter
and the Wiener filter with forward correction (WFFC). The values of 𝑐V for all three filters are
presented in fig. 7.3. They are used to approximate the uncertainty of 𝜍[𝛥tot] for all subsequent
analyses. The underlying assumption is that, while modifications of the readout electronics
may change the energy resolution, they do not significantly change its uncertainty.

Finally, the training size, 𝑁 , has been investigated. This parameter of AREUS determines
for how many BCs it collects data to estimate the noise autocorrelation before it calibrates the
OF. The simulation has been run for several different sizes and repeated five times for each
one. The purpose is to also estimate roughly how the training size impacts the variance of the
energy resolution. The results are shown in fig. 7.4.

2The filter depth is 𝑃 = 6, the pre- and post-peak samples are 𝑠pre = 𝑠post = 0.5. Automatic peak narrowing
is employed for both filters. They are calibrated according to eq. (5.36), using the ideal pulse shape and ignoring
electronic noise. The WFFC selection criterion is eq. (6.15), its margin parameter is 𝑚 = 0.25. The corrective FIR
filters have a depth of 𝑃1 = 5 and 𝑃2 = 3 resp. The threshold determining the end of the undershoot is 𝑚last = −0.015.



7.2. Simulation Verification Using Run-2 Data 103

0

20

40

60

80

100

𝜍 [
𝛥 t

ot
]/ M

eV

1000 BCs
10000 BCs
40000 BCs

0 20 80 140 200
−2
0
2
4

⟨𝜇⟩

𝜖 re
l/%

(a) EMB, middle layer, 𝜂 = 0.5

0
20
40
60
80
100
120
140
160

𝜍 [
𝛥 t

ot
]/M

eV

1000 BCs
10000 BCs
40000 BCs

0 20 80 140 200
−5
0
5

⟨𝜇⟩

𝜖 re
l/%

(b) EMEC, middle layer, 𝜂 = 2.0

Figure 7.4: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different training
sizes. The points are shifted horizontally to avoid overlap. The bottom figure shows the
relative difference between each scenario and the baseline solution.

All three variants have the same energy resolution within the their respective uncertainty.
This is expected, as they only differ in the accuracy of their estimate of the noise autocorrela-
tion. There is one outlier in the EMB at ⟨𝜇⟩ = 20, but it likely is a statistical fluctuation.

It is also apparent that the uncertainty of the energy resolution decreases with increas-
ing training size. The reason for this is that the noise autocorrelation matrix generally is ill-
conditioned, meaning that it must be estimated with high precision to avoid overly large nu-
merical errors when inverting it. A training size of 40 000 BCs has been chosen for the baseline
simulation, as it keeps the uncertainty below 1% in all scenarios. Because resolution improve-
ments smaller than 1% are often considered not worth the engineering effort associated with
them, this limit is good enough for the comparisons presented here.

7.2 Simulation Verification Using Run-2 Data

In this section, the simulation of electronic noise is verified by comparing it to data that has
been measured during Run 2. This has been done by configuring AREUS with data from a cal-
ibration run and simulating a run without pileup, i.e. at ⟨𝜇⟩ = 0. The noise after OF application
is then compared to the corresponding noise measured at ATLAS.

The data have been taken from the calibration runs 322 719, 322 723, and 322 724 of the
high-gain readout, which have been recorded on May 10, 2017 [249]. They comprise:

• 𝜎elec, the electronic noise standard deviation before OF application in ADC counts;

• 𝑔𝑖, the normalized signal pulse shape of the calorimeter electrodes;



104 Results of the Readout Electronics Simulation Studies

Presampler,
𝜂 = 0.0

Front,
𝜂 = 0.5

Front,
𝜂 = 1.0

Middle,
𝜂 = 0.5

Middle,
𝜂 = 1.0

Middle,
𝜂 = 2.0

0

2

4

6

8
𝜎 A

D
C

Calibration
Table

(a) Before OF application in ADC.

Presampler,
𝜂 = 0.0

Front,
𝜂 = 0.5

Front,
𝜂 = 1.0

Middle,
𝜂 = 0.5

Middle,
𝜂 = 1.0

Middle,
𝜂 = 2.0

0

10

20

30

40

50

𝜎 O
F/M

eV

Data
Simulation

(b) After OF application in MeV.

Figure 7.5: Electronic noise in six reference calorimeter cells. The left figure shows data
from the calibration run (circles) and the table used for conversion (squares). The right
figure shows the standard deviation of measured (circles) and simulated (squares) noise.

• 𝜌(𝑛), the autocorrelation coefficients.

The latter are related to the autocorrelation proper via:

𝜌(𝑛) ∶=
𝑅(𝑛) − 𝜇2

elec
𝜎2
elec

. (7.2)

See section 5.1 for details on the notation. Because trivially 𝜌(0) = 1, the first coefficient is not
actually stored in the calibration files. Furthermore, the noise is unbiased, i.e. 𝜇elec = 0.

The pulse shapes have a length of 800 ns and a resolution of approx. 1 ns. Because they
are normalized, it is impossible to determine the energy–voltage conversion function that they
imply (see section 6.3). To circumvent this issue, this analysis compares the noise in units of
energy. This way, the conversion from deposited energy to voltage and the conversion from
voltage to reconstructed energy cancel out. The conversion function can thus be chosen arbi-
trarily, e.g. 𝑉 (𝐸) = 𝐸 ⋅ 1mV/MeV.

The noise PSD, 𝑆(𝑓), can be reconstructed from 𝜌(𝑛) via the Wiener–Khinchin theorem,
eq. (5.21). To do so, 𝜌(𝑛) must first be converted back to the autocorrelation 𝑅(𝑛) via eq. (7.2).
This requires 𝜎elec to be converted from ADC counts to volts, which is done in two steps:

1. It is first converted to MeV using a reference table [250]. Figure 7.5a shows that the
values in the table agree well with the calibration data.

2. It is then converted to volts via the above conversion function 𝑉 (𝐸).

One problem of this approach is that calibration data only contains 𝜌(𝑛) for 𝑛 < 32. This causes
𝑆(𝑓) to take on complex values in a manifestation of Gibbs’ phenomenon [251, 252]. Though
it introduces a small numeric error, the solution to this is to take the absolute value |𝑆(𝑓)|.
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With this data, an AREUS simulation has been run. It has been configured to use an ideal
12-bit ADC with a least significant bit of 10MeV. This value [253, sec. 2] has been chosen
because the calibration data has been taken for the high-gain readout. The ADC is assumed to
be ideal because quantization noise has already been absorbed by 𝜎elec.

The OF has been configured to a depth of 𝑃 = 5 and calibrated on 10 000 simulated BCs. It
has then been applied to 10 000 more BCs and the electronic noise 𝜎OF has been calculated as
the sample standard deviation of the OF output sequence. The uncertainty of 𝜎OF due to the
pseudo-random number generator has been estimated by repeating the process 50 times. It is
≲ 0.05MeV and negligible in comparison to the approximations taken for this study.

The reference noise measurements have been taken from the ATLAS conditions database
using the CaloNoiseTool [254, sec. 1.3] and the conditions tag OFLCOND-MC15c-SDR-14-03.
These measurements are taken regularly during pedestal runs [111, sec. 6.1.1]. The results of
the comparison are presented in fig. 7.5b.

They show that the simulation is accurate to a precision of 1 % in the front layer and 5%
in the middle layer. In the presampler, a large deviation by about 16 % is visible. The exact
reason for this is not clear; the most likely cause is the reduced high voltage employed in the
presampler since 2012 [255, 256]. Another reason may be that due to its noise autocorrelation,
the presampler’s 𝜎OF is more sensitive to the above approximations than in the other layers.

7.3 Dependence of the Noise on the Shaping Time

In this section, the claims made in section 3.3.5 are verified empirically – in particular the
statement that the electronic noise is suppressed best if 𝜏 is small and pileup noise if 𝜏 is large.
Another goal is to qualitatively verify fig. 3.13, which shows the dependence of both noise
sources on the signal pulse peaking time.

This has been achieved in multiple steps: First, the relationship between the pulse peaking
time 𝑡p (see below for a definition) and 𝜏 has been examined. In a second step, the readout
electronics have been simulated with only electronic noise enabled and the noise after OF ap-
plication is calculated; this is expected to decrease as 𝑡p increases. The third step has been to
disable thermal noise (but not quantization noise3) and simulate only pileup noise; this is ex-
pected to increase with 𝑡p. In a fourth and final step, the full noise simulation (electronic and
pileup) has been run. The resulting noise is expected to be approximately equal to the square
sum of its components and to have a local minimum.

To determine the relationship between 𝑡p and 𝜏, the ideal CR-RC² band-pass filter that is
applied to the pulse shapes introduced in section 6.3.2 is varied in 𝜏 and the pulses’ peaking
times are measured as a function of 𝜏. The peaking time 𝑡p is defined as the time between the
points at which a pulse reaches 5 % and 100% of its amplitude. For each simulated calorimeter
cell, only the lowest-energy pulse has been used, as the electronics are assumed to be per-

3It has been observed that disabling the quantization noise actually increased 𝑠[𝛥tot] for large 𝑡p. While this
has not been investigated in detail, the most likely cause is a systematic rounding effect due to the size of the least
significant bit, see section 6.5.2.
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Figure 7.6: The numeric results (circles) and a rational-power model (line) for the de-
pendence of the peaking time 𝑡p on the time constant 𝜏 of the shaper.

fectly linear up to this point. This removes the dependence of the peaking time on the pulse
amplitude.

The results are shown in fig. 7.6 for two exemplary calorimeter cells in the middle layer
of the EMB and EMEC respectively. For both cells, the relationship between 𝜏 and 𝑡p can be
modelled well by a rational-power function of the form 𝑓(𝑥) = 𝑎𝑥𝑏. This is also true for other
cells, albeit with less accuracy. These models are used below to map from 𝜏 to 𝑡p.

To simulate only thermal noise , the noise PSDs described in section 6.4.2 have been shaped
with varying values of 𝜏, much in the same manner as the pulse shapes. Then, the AREUS
simulation has been run using these pulse shapes and noise PSDs. No deposition of energy has
been simulated4, only the thermal noise of the analog electronics and the quantization noise
of the ADC.

In this configuration, 10 000 BCs have been simulated and the ADC output has been used
to calibrate an OF of filter depth 𝑃 = 5, as described in section 6.6.1. Afterwards, 190 000 more
BCs have been simulated (for a total of 200 000 BCs) and the calibrated OF has been applied
to them. To avoid any short-term correlations due to the thermal-noise simulation, only every
30th sample of the OF output has been recorded. Because 𝐸true ≈ 0 for all samples, 𝑠[𝛥tot] has
been calculated as the sample standard deviation of all recorded samples. The results of this
analysis are shown with black circles in fig. 7.7.

To simulate only pileup noise, the simulation of thermal noise has been effectively disabled:
the noise scale parameter, a factor all simulated thermal-noise values are multiplied with, has
been set to zero. At the same time, energy deposits from pileup samples have been added to
the simulation (see section 6.2.5 for details). Three different luminosity scenarios have been
studied: 1033/(cm2 s), 1034/(cm2 s) and 1035/(cm2 s). The former two because they are shown in

4Every 30 BCs, a negligible energy of 1 µeV has been deposited; otherwise, AREUS would produce no output
whatsoever.
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Figure 7.7: Sample standard deviation of the inclusive reconstruction error 𝛥tot as a
function of the peaking time 𝑡p when simulating thermal noise (circles), pileup noise
(empty triangles and squares), and both (filled triangles and squares). Quantization noise
is simulated in all scenarios. The one-sigma half range 𝜍[𝛥tot] shows the same behavior
as 𝑠[𝛥tot], but depends on 𝑡p in a less smooth way.

fig. 3.13, the latter one because it corresponds roughly to the maximal luminosity expected at
the HL-LHC. The three scenarios have been parameterized approximately as ⟨𝜇⟩ = 2, ⟨𝜇⟩ = 20,
and ⟨𝜇⟩ = 200 respectively.

Themodified simulation has been run as before and 𝛥tot has been calculated. Since 𝐸true ≠ 0
here, the energy deposited by pileup has to be taken into account. Figure 7.7 shows the results
of this analysis with empty triangles and squares.

For the full noise simulation, the above simulation of pileup noise is run with thermal noise
re-enabled. The results are shown in fig. 7.7 with filled triangles and squares. Crucially, because
the total noise has been calculated from an independent run of the simulation, it needs not come
out as exactly the square sum of thermal and pileup noise.

The graphs in fig. 7.7 qualitatively confirm the conclusions made from fig. 3.13. The curves
differ slightly in shape – the pileup noise curve, in particular, flattens towards the two ends of
the 𝑡p interval. The most likely cause for this is that the signal is shown after filtering here, but
before filtering in fig. 3.13.

This analysis has two important results:

1. the peaking time that minimizes the total for ⟨𝜇⟩ = 20 is confirmed to be close to 45 ns;
2. close to the minimum, the total noise curve is nearly flat, which means that a wide range

of 𝜏 values give near-optimal results.

This suggests that there is little benefit to optimizing 𝜏 during the Phase-II Upgrade. This is
confirmed more concretely in the following section 7.4.
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7.4 The Analog Readout Electronics and the ADC

The purpose of this section is to study how certain parameters of the readout electronics in-
fluence the energy reconstruction. Concretely, these parameters are the transfer function of
the analog shaper, the time constant 𝜏 of the shaper, and the sampling rate of the ADC. The
simulations for this section are set up in the same manner as for section 7.1. Where there are
differences, they are pointed out.

The analog shaper, as explained in section 3.3.4, is a CR-RC² band-pass filter. This is a short-
hand notation for one high-pass followed by two low-pass filters. The high-pass filter gives the
triangular LAr pulse a bipolar shape to facilitate estimating its amplitude; the low-pass filters
reduce the electronic noise by cutting off high frequencies.

The exact number of low-pass filters presents a trade-off that is highly similar to the opti-
mization of 𝜏. Increasing their number reduces electronic noise, but it also makes the positive
lobe of the pulse wider, hence increasing the effect of out-of-time pileup. With the expected
increase in pileup after the Phase-II Upgrade, it stands to question whether the current number
still is optimal.

To answer this question, the pulse shapes and noise PSDs described in sections 6.3 and 6.4
have been shaped with three different transfer functions:

𝐻𝑛(𝑓 ) = 2𝜋i𝑓𝜏
(1 + 2𝜋i𝑓𝜏)𝑛+1 , 𝑛 ∈ {1, 2, 3}. (7.3)

They describe a shaper with one, two, and three low-pass filters respectively. When applying
them to a PSD, care must be taken to take the magnitude squared of the transfer function:
𝑆′(𝑓 ) = |𝐻(𝑓)|2𝑆(𝑓).

These three sets of pulse shapes and noise PSDs have been used in simulation runs that
are otherwise as described in section 7.1. The results are shown in fig. 7.8. Using a single
low-pass filter, though it theoretically reduces out-of-time pileup, is not worth the resulting
increase in electronic noise. While this is trivially true at 𝜂 = 0.5, where pileup is low, the
difference is significant even at 𝜂 = 2.0. Conversely, adding a third low-pass filter gives a
modest improvement, most notable at ⟨𝜇⟩ = 0.

In a related simulation study, also using AREUS, the same comparison has been performed
for a cell in the HEC at 𝜂 = 2.35, where pileup is much higher [111, fig. 3.2b]. It has been found
that a third low-pass filter degrades the performance and using a single low-pass filter is at best
equivalent to the current shaper. Thus, it must be concluded that, while better options exist
for individual subsystems, only the current CR-RC² filter is optimal for both calorimeters and
will remain so after the Phase-II Upgrade. For the FCal, no comparable study is known at this
point and no definitive statement can be made.

The time constant of the shaper has already been studied extensively in section 7.3. It is
nonetheless useful to present these results in a different manner. For one, it is 𝜏 and not 𝑡p that
can be configured in the electronics. Furthermore, 𝜏 cannot be modified to arbitrary precision,
so it is more realistic to investigate only a few distinct values of it.
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Figure 7.8: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different band-
pass filters realized in the analog shaper. Shown are the results for one high-pass filter
followed by one (circles), two (squares), and three (triangles) low-pass filters. The bottom
figure shows the relative difference between each scenario and the baseline solution.
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Figure 7.9: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different values
of the time constant 𝜏 of the shaper. The bottom figure shows the relative difference
between each scenario and the baseline solution.
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Figure 7.10: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different sampling
rates. The filter depth 𝑃 of the OF has been adapted to each sampling rate. The bottom
figure shows the relative difference between each scenario and the baseline solution.

For this reason, a study has been carried out that is similar to the above; but instead of
varying the shaper’s transfer function, a CR-RC² band-pass filter has been used throughout
and the time constant 𝜏 has been varied between 8 ns, 13 ns and 18 ns. The results are shown in
fig. 7.9. They largely mirror the results for the transfer function: lowering 𝜏 does not decrease
pileup noise enough to compensate the increase in electronic noise. Conversely, increasing 𝜏
does decrease the total noise, but only slightly.

In a related simulation study (see above), the same comparison has been performed in the
HEC at 𝜂 = 2.35 [111, fig. 3.3b]. There, it has been found that choosing 𝜏 = 8ns reduces 𝑠[𝛥sig]
significantly by 11 %. For this reason, it is being considered to make 𝜏 programmable in the
FEB2 and adapt it to each detector region [111, sec. 3.6].

The sampling rate of the ADC is another parameter that promises improvement of the energy
reconstruction. Doubling it from 40 to 80MHz gives more data points of the signal pulse and
makes its approximation by linear filters more accurate.

To test this hypothesis, another simulation study has been carried out; it has been set up
as the ones before, but the shaper has been left in its default configuration (CR-RC², 𝜏 = 13ns).
Instead the simulation has been run once with the default sampling rate of 40MHz and once
with two samples per BC, corresponding to 80MHz. To ensure that the OF actually makes use
of the additional resolution, its filter depth has been doubled to 𝑃 = 10 in the latter case. The
results of this study are shown in fig. 7.10.

As expected, increasing the sampling rate consistently improves energy reconstruction.
The improvement is about 5 % in the EMB and about 10 % in the EMEC. A related study in the
HEC at 𝜂 = 2.35 found a similar improvement to that in the EMEC [111, 3.7b].
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Figure 7.11: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different values of
the OF depth 𝑃 . The bottom figure shows the relative difference between each scenario
and the baseline solution.

While this is the strongest improvement over the baseline so far presented in this thesis,
it comes with a high cost: doubling the sampling rate means that double the bandwidth is
necessary to transmit the sampled signal to the back end. Similarly, it requires double the
bandwidth of the ADC, which is difficult to realize in the chip technologies that are required
due to the radiation levels in the detector. Ultimately, it has been decided that the improved
energy resolution is not worth the additional cost. Hence, the Phase-II Upgrade is foreseen to
use a sampling rate of 40MHz.

7.5 The Optimal Filter (OF)

In this section, the OF and the influence of its parameters on the energy resolution are studied.
The simulation is as described in section 7.1 in all parameters except the ones being varied.

The filter depth 𝑃 is the main hyperparameter of the OF that is not given by the experimen-
tal data. With the Phase-II Upgrade bringing more efficient electronics to the back end, it
is possible that a computationally more expensive OF, using more coefficients to perform its
calculations, improves energy resolution.

Hence, three different scenarios have been simulated: 𝑃 = 5 (the number used during
Run 1), 𝑃 = 9, and 𝑃 = 13. The results are shown in fig. 7.11. As can be seen, 𝑃 = 9 gives a
modest improvement of 2 to 3 %. 𝑃 = 13 improves energy resolution further in the EMB, but
not in the EMEC. A related study for a HEC cell at 𝜂 = 2.35 gives results that are qualitatively
similar to those in the EMEC [111, fig. 4.3b].



112 Results of the Readout Electronics Simulation Studies

0

20

40

60

80

100
𝜍 [

𝛥 t
ot

]/M
eV

Calibration at matching ⟨𝜇⟩
Calibration at ⟨𝜇⟩ = 140

0 20 80 140 200
0
5
10

⟨𝜇⟩

𝜖 re
l/%

(a) EMB, middle layer, 𝜂 = 0.5

0
20
40
60
80
100
120
140
160

𝜍 [
𝛥 t

ot
]/M

eV

Calibration at matching ⟨𝜇⟩
Calibration at ⟨𝜇⟩ = 140

0 20 80 140 200

0
5
10

⟨𝜇⟩

𝜖 re
l/%

(b) EMEC, middle layer, 𝜂 = 2.0

Figure 7.12: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing. Shown are the results:
1. of an OF whose coefficients are tuned to each pileup scenario (circles); and 2. of an
OF that has been calibrated once for ⟨𝜇⟩ = 140. The bottom figure shows the relative
difference between each scenario and the baseline solution.

Fixed coefficients are not an optimization, but rather a necessity. The OF coefficients depend
on the autocorrelation 𝑅 of the noise (see section 5.6), but 𝑅 changes over time. The reason for
this is that the instantaneous luminosity decreases exponentially over the course of an LHC
run5. This changes the shares with which electronic and pileup noise contribute to the total
noise. Consequently, while a given set of OF coefficients may be optimal for the beginning of
a run, this may not be the case close to the end of it.

To investigate this issue, the baseline simulation, as described in section 7.1, has been com-
pared to a scenario in which the OF has been pre-calibrated at ⟨𝜇⟩ = 140. In the latter case, since
the first 40 000 BCs have not been used for OF calibration, they have been used for evaluation.
The impact on the statistics is negligible, as they make up only 2.7 % of the full dataset.

The results of the comparison are presented in fig. 7.12. They show that energy resolution
indeed deteriorates when going from ⟨𝜇⟩ = 140 to lower luminosities. However, at ⟨𝜇⟩ = 200,
no significant difference can be found in the performance of both filters.

The reason for this is that at ⟨𝜇⟩ = 140, pileup already is the dominant contribution to
the total noise. If its magnitude increases even further, its share of the noise autocorrelation
increases only negligibly. These results are consistent with a related simulation study of a HEC
calorimeter cell at 𝜂 = 2.35 [111, fig. 4.6b].

5See, however, the footnote on luminosity leveling on page 15.
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Figure 7.13: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different pre- and
post-peak samples of the Wiener filter. The bottom figure shows the relative difference
between each scenario and the baseline solution.

7.6 TheWiener Filter

In this section, the Wiener filter and the influence of its parameters on the energy resolution
are studied. The simulation is as described in section 7.1 in all parameters except the ones being
varied.

The desired output sequence can be varied in several ways, the most common of which are
peak broadening and narrowing (see section 5.3.3). While peak narrowing is done automati-
cally in AREUS, there are multiple choices for manual peak broadening (see section 6.6.2). Both
the pre-peak and the post-peak sample can be set to either 0 or 0.5, giving four scenarios in
total. All four have been simulated to find the optimal choice. The results are shown in fig. 7.13.

As expected, the Wiener filter with a delta-impulse-like response performs worst. This is
because its response contains a lot of high frequency contributions in order to form its sharp
peak. Consequently, a lot of high-frequency electronic noise passes through.

The peak-broadened filters, by contrast, remove high-frequency contributions better and
hence reduce the impact of electronic noise. Among them, the variant with the broadest peak
(𝑠pre = 𝑠post = 0.5, “Both” in fig. 7.13) shows the best energy resolution. While this suggests
that one could improve the results further by broadening the peak even further, this approach
eventually meets the same fate as using more low-pass filters in analog shaping: broadening
the peak increases out-of-time pileup effects and thus deteriorates energy resolution in a setting
where signal pulses may overlap.

The filter depth 𝑃 can be optimized for the Wiener filter just like for the OF. For this study,
𝑃 has been varied between 4 and 9 to find the optimum. A summary of the results is shown
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Figure 7.14: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different values of
the Wiener filter depth 𝑃 . The bottom figure shows the relative difference between each
scenario and the baseline solution. The difference between the curves for 𝑃 = 6 and
𝑃 = 8 is smaller than 0.5 % and within their uncertainty.

in fig. 7.14. As can be seen, the Wiener filter reaches optimal resolution at 𝑃 = 6 and does not
improve further beyond this point.

The issue of fixed coefficients, as it applies to the OF, has not been investigated deeply for
the Wiener filter. As the calibration procedure of the Wiener filter does not actually make use
of the electronic noise, it is trivially independent of the calibration luminosity. This has been
verified by the fact that the calibration arrives at exactly the same filter coefficients in all five
pileup scenarios.

7.7 TheWiener Filter with Forward Correction (WFFC)

In this section, the WFFC and the influence of its parameters on the energy resolution are
studied. The simulation is as described in section 7.1 in all parameters except the ones being
varied.

Peak broadening and narrowing have been investigated for the WFFC in the same manner
as for the Wiener filter in the previous section. Figure 7.15 shows the results. They generally
agree with fig. 7.13. However, there are a few cases where the WFFC performs worse than the
bare Wiener filter, e.g. in the EMB by about 7 %, independent of ⟨𝜇⟩. Forward correction brings
a strong improvement only in the EMEC at high pileup, also amounting to approximately 7 %.

The reason for this effect can be seen in fig. 7.16. It shows how often the WFFC falsely
detects energy depositions, so-called false positives. This generally happens because the elec-
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Figure 7.15: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different pre- and
post-peak samples of theWFFC.The bottom figure shows the relative difference between
each scenario and the baseline solution.
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Figure 7.16: Histograms of the false-positive rate (FPR) of four WFFCs with different
peak-broadening settings. The FPR is defined as the number of false positives in a simu-
lation run divided by the number of simulated BCs. A false positive is a BC in which no
energy was deposited (𝐸true = 0), but the filter reconstructed some energy (𝐸reco ≠ 0).
The simulation has been run at ⟨𝜇⟩ = 0.
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Figure 7.17: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different selection
algorithms of the WFFC. See the text for details. The bottom figure shows the relative
difference between each scenario and the baseline solution.

tronic noise occasionally peaks in a manner similar enough to the expected Wiener filter re-
sponse pulse to pass the selection algorithm. Each false positive triggers a forward correction.
In absence of the expected pulse, this distorts the signal seen by the Wiener filter in later BCs.

The effect is strongest without any peak broadening, as the selection criterion is the most
permissive in this case. The false-positive rate can be reduced by making the selection criterion
more restrictive, as fig. 7.16 shows. It also naturally decreases with increasing pileup, as the
probability of a cell not being hit in a BC eventually converges to zero. This is the reason why
the WFFC performs best at high ⟨𝜇⟩ and in the far-forward region.

More restrictive selection criteria have been investigated to solve the issue of false positives.
To do so, the baseline WFFC first has been simulated at ⟨𝜇⟩ = 0 and the false positive with the
highest reconstructed energy has been recorded. This energy, 𝐸f

max, is 600MeV in the EMB and
360MeV in the EMEC. Then, the simulation has been run again with 𝐸f

max as a threshold: only
peaks with a higher reconstructed energy pass the WFFC selection. Peaks below the threshold
are not selected and do not cause forward correction.

Another method to reduce the number of false positives that has been investigated is a so-
called “max check”. It is an additional restriction on the selection criterion, requiring that the
pre-peak and post-peak sample not only exceed a given threshold, but also stay below the value
of the peak sample. The motivation for this is that electronic noise is of the order of magnitude
of the least significant bit. As such, the most common way by which a false positive occurs if
three subsequent samples have a value of one or two ADC counts.

Figure 7.17 shows the results for both selection restrictions, as well as for the baseline
solution. The “max check” restriction does not improve energy resolution significantly. The
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Figure 7.18: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different values
of the WFFC depth 𝑃 . The bottom figure shows the relative difference between each
scenario and the baseline solution.

threshold actually deteriorates energy resolution by up to 2 % in the EMB and non-significantly
by up to 1 % in the EMEC. This effect can be traced back entirely to BCs in which the true
deposited energy is below the threshold and thus does not pass the selection criterion. It is
weaker in the EMEC as its threshold is lower. In summary, neither restriction of the selection
criterion improves energy resolution.

Thefilter depth 𝑃 has been optimized for theWFFC in amanner analogous to the bareWiener
filter. 𝑃 has been varied between 4 and 9; the results for a selection of these values are shown
in fig. 7.18. Like the Wiener filter, the WFFC reaches an optimal resolution at 𝑃 = 6. While
𝑃 = 5 gives slightly better results in the EMEC, the difference is less than the uncertainty and
thus likely not significant.

The selection margin, 𝑚, influences the energy resolution by either relaxing or restricting
the selection criterion (see section 6.6.3). To investigate its impact, simulations have been run
in which it has been varied between 0.05 and 0.5 in steps of 0.05. The value 𝑚 = 0.5 is the
theoretical maximum. The value 𝑚 = 0.0 has not been used for technical reasons6.

Figure 7.19 shows the results. For visual clarity, only every other value of 𝑚 is presented.
In both the EMB and the EMEC, the baseline solution of 𝑚 = 0.25 gives nearly optimal results.
Though higher values perform slightly better (by 1 % for 𝑚 = 0.45 and ⟨𝜇⟩ = 200), the difference
is within the range of uncertainty and not necessarily significant.

6If 𝑚 = 0, the selection criterion becomes too strict and the ideal Wiener filter response in the EMEC no longer
passes the selection. The ideal WFFC response thus becomes a flat zero, which AREUS cannot handle.
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Figure 7.19: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different values
of the WFFC margin 𝑚. The bottom figure shows the relative difference between each
scenario and the baseline solution.

Interestingly, although the margin 𝑚 effectively relaxes the selection criterion, false pos-
itives do not seem to pose a problem in this case. One possible reason is that placing any
restriction whatsoever on the samples before and after the peak candidate sample suffices to
suppress the majority of false positives (see fig. 7.16).

7.8 Final Comparison and Conclusions

Figure 7.20 shows the energy resolution of all three filters after optimization. In the EMB,
forward correction actually deteriorates the energy resolution of the Wiener filter by 0.5 to
1.0 %, depending on ⟨𝜇⟩. The OF outperforms both Wiener filters by a significant fraction: at
⟨𝜇⟩ = 200, its noise is only 74 % of that of the WFFC.

In the EMEC, the picture is similar for ⟨𝜇⟩ ≤ 20. For higher pileup, however, the relation
changes: at ⟨𝜇⟩ = 80, OF and WFFC give the same resolution; at ⟨𝜇⟩ = 140 and ⟨𝜇⟩ = 200,
the WFFC improves energy resolution by up to 10 %. The bare Wiener filter is equivalent to
the OF at ⟨𝜇⟩ = 140 and outperforms it at ⟨𝜇⟩ = 200 by about 3 %. This is comparable to the
improvement seen when increasing the OF filter depth to 𝑃 = 9.

The performance of the WFFC differs strongly between EMB and EMEC. This can be ex-
plained using fig. 7.21, which shows the probability of a cell to be hit in any given BC. Since
pileup increases with |𝜂|, this probability is much higher in the EMEC than in the EMB. For
⟨𝜇⟩ ≥ 80, it even approaches one. In such a scenario, it becomes impossible for the WFFC
to find false positives (see section 7.7), as every detected peak is a true positive. Hence, the
negative impact of false positives on the energy resolution vanishes.
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Figure 7.20: One-sigma half range of the inclusive reconstruction error 𝛥tot as a function
of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing, for different filters. The
bottom diagram shows the relative difference between each filter and the WFFC.
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Figure 7.21: True-positive rate (TPR) of two different simulated cells as a function of
⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing. The TPR is defined as
the number of simulated BCs in which some energy was deposited in the cell (𝐸true ≠ 0)
divided by the total number of simulated BCs.
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Figure 7.22: Median of the inclusive reconstruction error 𝛥tot as a function of ⟨𝜇⟩, the
average number of 𝑝𝑝 interactions per bunch crossing, for different filters.

Figure 7.22 shows the median of 𝛥tot for all three filters. It shows the pileup-dependent bias
that has been explained in section 6.7. In the EMEC, OF and Wiener filter show nearly exactly
the same behavior; in the EMB, the Wiener filter seems to be less biased by approximately
2MeV at ⟨𝜇⟩ = 200.

This difference, however, is incidental: in the EMB middle layer, the signal pulse’s under-
shoot has a minuscule “dip” at its rising end (see fig. 6.4) that makes it slightly longer than
the expected 625 ns. Due to this, the analyzed signal pulses overlap slightly and each pulse is
biased by its predecessor’s undershoot. The undershoot of the Wiener filter response is less
sensitive to this effect than that of the OF and does not suffer from this problem.

Among the three filters, the WFFC has the smallest bias. The reason for this is a better
suppression of out-of-time pileup on the one hand, and an overestimation of the deposited
energy due to false positives on the other. The two effects cannot be separated easily. For this
reason, even if the WFFC is employed, it will remain necessary for later processing stages to
subtract the average amount of pileup7.

Figure 7.23 gives a comparison of the OF and theWFFC in all six reference calorimeter cells.
The middle-layer cell at 𝜂 = 1.0 shows roughly the same behavior as the one at 𝜂 = 0.5, though
the WFFC performance is much worse than expected. The most likely cause for this is that the
pulse shape is slightly different and requires theWFFC hyperparameters to be tuned differently.
It has been found that performance is particularly sensitive to the depth and positioning of the
two corrective FIR filters.

In the two front-layer cells, both filters are competitive for ⟨𝜇⟩ ≥ 80. There is the unusual
effect at 𝜂 = 1.0, where WFFC performance drops for ⟨𝜇⟩ = 200. As far as can be discerned,
the reason is that the WFFC occasionally assigns the wrong bunch crossing identifier (BCID)
to high-energy hits. This is possible because the WFFC, as implemented in AREUS, performs

7This average amount of pileup may be parameterized by the position of a BC in its bunch train; this technique
is referred to as baseline correction [114, sec. 5.2].
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Figure 7.23: One-sigma half range of the inclusive reconstruction error 𝛥tot of the OF
andWFFC as a function of ⟨𝜇⟩, the average number of 𝑝𝑝 interactions per bunch crossing.
Shown are the results for all six reference calorimeter cells. The bottom diagram shows
the relative difference between the OF and the WFFC. Positive values mean that the OF
energy resolution is worse.

its own BC identification even if the correct BC is known. Unfortunately, this issue could not
be explored further due to time constraints.

The reason that the WFFC performs better in the front than in the middle layer is that
pileup noise is much more dominant there, as fig. 7.24 shows. In the presampler, where the
level of pileup is comparable to the front layer, the WFFC outperforms the OF by about 10 %. It
additionally profits from the fact that the average signal energy to reconstruct is much higher
than in the front layer (see section 6.2.5), meaning that fewer hits from the signal sample file
deposit energies that are of the order of magnitude of the electronic noise.

In summary, the WFFC improves upon the OF energy resolution, though this result de-
pends highly on the scenario. The WFFC works best in high-pileup environments, where both
the occurrence and the average energy of hits is high. A prospective filter design that would
improve on these results, and be applicable in the central detector region as well, would have
take this into account and take measures against false positives due to electronic noise.



122 Results of the Readout Electronics Simulation Studies

0 20 80 140 200

0

1

2

3

4

⟨𝜇⟩

𝑠 p
u/𝑠

el
ec

Presampler, 𝜂 = 0.0
Front layer, 𝜂 = 0.5
Front layer, 𝜂 = 1.0
Middle layer, 𝜂 = 0.5
Middle layer, 𝜂 = 1.0
Middle layer, 𝜂 = 2.0

Figure 7.24: Ratio of pileup to electronic noise after digitization and before filtering.
The data has been acquired by simulating 15 000 BCs with negligible signal energy de-
positions (𝐸true,sig = 1 µeV) at varying pileup conditions ⟨𝜇⟩. The small, but non-zero
signal energy avoids division by zero when AREUS calculates certain ratios. Given the
sample standard deviation 𝑠(⟨𝜇⟩) of the resulting sample sequences, the electronic noise
is 𝑠elec ∶= 𝑠(0), and the pileup noise is 𝑠pu(⟨𝜇⟩) ∶= √𝑠2(⟨𝜇⟩) − 𝑠2(0).



Chapter 8

Conclusions and Outlook

The LHC physics program for the next two decades will require extensive upgrades to both
the accelerator and the experiments. To accelerate data taking, the accelerator’s instantaneous
luminosity will be increased by at least a factor of five from its design value. This is necessary
to achieve two of the goals of the ATLAS physics program: reducing the uncertainties on mea-
surements of Standard Model processes, particular those involving the Higgs boson; and the
continued search for particles that have been predicted by extensions of the Standard Model.
At the same time, trigger efficiencies of the ATLAS detector must be improved in order to keep
up with the increased event rate without discarding interesting data.

Two keys to this are an accurate energy reconstruction at the calorimeter cell level and an
efficient suppression of out-of-time pileup effects. To this end, it does not suffice to minimize
the noise in the analog readout electronics of the calorimeter; the algorithms that reconstruct
the deposited energy must be optimized as well. This opens up an enormous parameter space
that must be explored if one wants to find the optimal energy reconstruction.

In this thesis, a variety of energy reconstruction algorithms have been reviewed in an effort
to map out this space. A strong focus has been placed on Wiener filters and matched filters
such as the Optimal Filter (OF); they have been analyzed both in the time and the frequency
domain. A filter dubbed matched Wiener filter has been studied theoretically and compared to
the original Wiener filter. To the author’s knowledge, this has been the first time in the context
of ATLAS calorimetry.

In addition to linear filters, more advanced algorithms have been presented. Examples
include Matching Pursuit, as an example of sparse-signal restoration algorithms, and convo-
lutional neural networks. This lays a foundation for future studies of these algorithms in the
context of energy reconstruction.

The AREUS simulation, which has been presented and described in detail in this thesis, has
beenmaintained and improved continuously. The simulation of thermal noise, which originally
only comprised white noise, has been extended with pink-noise and spectral-noise models.
Randomness of the simulation of pileup hits has been improved by implementing the random-
skip feature. The analog-electronics simulation of the HEC has been refined and that of the
FCal has been made possible. This is of great importance for current and future research into
energy-reconstruction algorithms for the Phase-II Upgrade, as virtually all studies require a
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faithful simulation of the analog electronics.
Additionally, the implementation of the Wiener filter with forward correction (WFFC) has

been extended to make its selection criterion configurable. (Originally, the selection algorithm
was based exclusively on the post-peak sample.) Depending on the simulated cell and the
pileup scenario, this has improved the energy resolution of the WFFC by 15 to 100 %.

The AREUS simulation has been verified using Run-2 calibration data. This effort has sur-
faced several bugs in the simulation and data handling, which have subsequently been cor-
rected. At the same time, the SPICE simulation of pulse shapes for the Phase-I Upgrade has
been verified by comparison to official documentation and documented for future use. For
Phase-II Upgrade studies, a database has been aggregated that contains simulated pulse shapes
and noise power spectral densities (PSD) for six representative cells of the electromagnetic
calorimeters.

Using AREUS, three parameters of the analog readout electronics have been optimized for
the Phase-II Upgrade: the time constant of the shaper, the number of low-pass filters in the
analog shaper, and the sampling rate of the ADC.These studies answered vital design questions
in the lead-up to the technical design report for the Phase-II Upgrade of the LAr calorimeters.
The decision between a sampling rate of 40MHz and 80MHz was particularly pressing, as it
had a strong influence on the subsequent hardware design process.

After this, an in-depth comparison between three of the reviewed filters has been made:
the OF as a well-understood baseline algorithm; the Wiener filter as another linear filter with
higher emphasis on good signal identification; and the WFFC as a non-linear extension that
uses this property to improve its energy resolution. Each filter has been optimized for best
energy resolution. In particular, it has been shown that increasing the OF filter depth to 𝑃 = 9
can improve the energy resolution by 2 to 3 %. This improvement is best observable at high
luminosities in the EMEC, a domain that has not been investigated before.

It has been shown that the WFFC consistently outperforms the OF whenever electronic
noise is negligible in comparison to pileup effects. This improvement is strongest (10 %) in the
presampler and at high |𝜂|. The degradation of the WFFC performance has been traced back
to noise spikes falsely classified as signal peaks. This effect is strongest in the central region of
the middle layer, where cell hits are rare. As luminosity increases, the probability of a cell not
to be hit in any given bunch crossing goes to zero and the effect vanishes.

One of the problems that have been encountered is that the WFFC is susceptible to the pa-
rameterization of the pulse undershoot. Though it is possible to tune these parameters to each
cell’s pulse shape, it would be more scalable to modify the WFFC such that these parameters
become superfluous. One possibility is to simplify the current forward correction such that it
uses a single FIR filter deep enough to cover the entire undershoot.

For future studies, there are multiple avenues to consider. The technique of forward cor-
rection has shown promising results; methods to make it robust against electronic noise have
been suggested. Similarly, algorithms for sparse signal restoration, while being considerably
more complex, seem well suited as well. Finally, artificial neural networks have shown con-
siderable success on a multitude of tasks and should be considered for energy reconstruction
as well.

Finally, this thesis has demonstrated that after the Phase-II Upgrade, pileup effects will
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increase, but not homogeneously so. Any energy reconstruction algorithm to be used at ATLAS
will have to perform well both with negligible and non-negligible electronic noise. If it has to
be tuned for a specific noise mixture, this process has to be both automatic and predictable.

In conclusion, this work provides largely improved simulation studies that have been vital
in further developing the energy reconstruction in the ATLAS LAr calorimeters. New algo-
rithms have been presented that make it possible to surpass the theoretical limits of linear
filters. This effort is necessary for precise and efficient measurements of electrons and photons
at the LHC in the high-luminosity era.





Appendix A

Derivation of the Liquid-Argon
Electronics Pulse Shape

In order to derive the shape of current pulses induced into the readout electronics by ionization
events, the following approximations are useful:

• The problem is one-dimensional. Ignoring the dimensions transverse to the axis between
electrodes simplifies the math and is allowable as long as readout cells are smaller than
a typical electromagnetic shower.

• The electric field between the electrodes is constant. This is reasonable as long as the
high-voltage supply can react quickly enough to the (rather small) drop in voltage that
is caused by electron absorption at the anode, ion recombination at the cathode, and the
current protection resistors between the high-voltage supply and the electrodes.

• Ion charge does not build up. This approximation facilitates the derivation, but does
not actually hold up in the ATLAS LAr calorimeter. Especially in the FCal, ionization
of the liquid argon occurs at such a high rate that new events occur before argon ions
from previous events have recombined. These residual ions screen the electric field be-
tween electrodes and distort the signal pulse. This effect has already been investigated
in detail [257] and is ignored here.

In the simplest geometry, a LAr calorimeter consists of two planar electrodes: The cathode
at 𝑧 = 0 is connected to the ground, the anode at 𝑧 = 𝑎 is connected to a high voltage 𝑉0. The
distance between them is 𝑎. The electrodes thus form a capacitor with a homogeneous electric
field 𝑬 = 𝑉0

𝑎 𝒆z between them.
If an ionization event occurs, positive and negative charges (argon ions and free electrons

resp.) are produced in the space between the electrodes. The electric field 𝑬 causes the negative
charges to drift towards the anode and the positive charges to drift to the electrode. Moving
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Figure A.1: An ionizing particle crosses a LAr ionization chamber at a small angle.
When reduced to one dimension, this corresponds to a localized line charge. The drift
time 𝑡𝑑−𝑥 is variable and depends on the distance between the particle track and the
electrodes.

the electric charge drains energy from the capacitor at a rate:

d𝐸
d𝑡 = d𝒛

d𝑡 𝑬𝑞(𝑡) (A.1)

= d𝑧
d𝑡

𝑉0
𝑎 𝑞(𝑡), (A.2)

where d𝒛
d𝑡 is the velocity with which the charge is moved and 𝑞(𝑡) is the amount of charge

between the electrodes at a given time 𝑡. The fact that horizontal movement is being neglected
has been used, as well as the definition of 𝑬.

The energy stored in a capacitor is:

𝐸 = 1
2

𝑄2

𝐶 , (A.3)

where 𝐶 is its (constant) capacitance and 𝑄 (not to be mixed up with 𝑞) is the charge stored
on its electrodes. Because 𝐶 ∶= 𝑄

𝑉 , the charge is always proportional to the voltage across the
electrodes. Hence, without external influence, the drifting charges in the liquid argon would
reduce the electrode voltage over time.

However, the calorimeter’s high-voltage supply keeps the voltage constant via a recharging
current. The current is proportional to the change in energy as follows:

d𝑄
d𝑡 = d

d𝑡
√2𝐶𝐸 (A.4)

= d𝐸
d𝑡

𝐶
√2𝐶𝐸

(A.5)

= d𝐸
d𝑡

1
𝑉 , (A.6)
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Figure A.2: An ionizing particle crosses a LAr ionization chamber at a large angle.
When reduced to one dimension, this corresponds to a uniform ionization between the
electrodes. The drift time 𝑡d is nearly constant; it depends only on controllable factors
like the voltage 𝑉0 or the argon purity.

where the voltage 𝑉 = 𝑉0 is kept constant. Since the recharging current compensates the
energy that is put into the drifting ionization charges, it is:

d𝑄
d𝑡 = d𝑧

d𝑡
1
𝑎𝑞(𝑡), (A.7)

From experiments [258, 259], it is known that at sufficiently high voltages, electrons drift
through liquid argon at a constant speed d𝑧

d𝑡 = 𝑎
𝑡d
(where 𝑡d is the drift time) and that argon ions

move about two orders of magnitude slower. Due to this, both the movement and the screening
effect of the argon ions are neglected here.

The exact pulse shape then depends on 𝑞(𝑡). For example, if a track is only at a slightly
odd angle to the electrodes, 𝑞(𝑡) would be constant 𝑁𝑒 for a time 𝑡𝑑−𝑥, where 𝑁 is the number
of produced ionization pairs, 𝑒 is the elementary charge, 𝑑 is the distance between electrodes
and 𝑥 is the minimum distance between the track and the anode. The pulse would then be
approximately rectangular (see fig. A.1).

However, due to the accordion shape of the EMB and the EMECs, almost all ionization
tracks cross the entire distance between the electrodes (see fig. A.2). Due to the electrons’
constant drift speed, the charge between electrodes can be assumed as:

𝑞(𝑡) =
⎧⎪
⎨
⎪⎩

𝑁𝑒 (1 − 𝑡
𝑡d ) if 𝑡 < 𝑡d,

0 otherwise,
(A.8)

Putting everything together, the typical current pulse produced by an ionization track in the
LAr calorimeters is triangular in shape:

𝐼(𝑡) ∶= d𝑄
d𝑡 =

⎧⎪
⎨
⎪⎩

𝑁𝑒
𝑡d (1 − 𝑡

𝑡d ) if 𝑡 < 𝑡d,
0 otherwise.

(A.9)
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ADC analog-to-digital converter
ALICE A Large Ion Collider Experiment
AMI ATLAS Metadata Infrastructure
ANN artificial neural network
AREUS ATLAS Readout Electronics Upgrade Simulation
ASIC application-specific integrated circuit
ATCA Advanced Telecom Computing Architecture
Athena ATLAS offline software
ATLAS proper name, formerly “A Toroidal LHC Apparatus”
BC bunch crossing
BCID bunch crossing identifier
BCR Bunch Counter Reset
BEH Brout–Englert–Higgs mechanism, part of the Standard Model that explains vector

boson masses
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
BIBO bounded-input-bounded-output
BPD Basis Pursuit Denoising
BSM beyond the Standard Model
CBNT Combined N-Tuple, the predecessor of the n-tuple format called D3PD, which in turn

has been superceded by the hierarchic format xAOD
CERN European Organisation for Nuclear Research
CKM Cabbibo–Kobayashi–Maskawa matrix, describes quark flavor mixing
CMS Compact Muon Solenoid
CNN convolutional neural network
COTS commercial off-the-shelf
CSC Cathode Strip Chambers
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CTP Central Trigger Processor
DAQ data acquisition
DCS Detector Control System
DFT discrete Fourier transform
DRE dynamic range enhancement
DTFT discrete-time Fourier transform
DØ detector at the Tevatron
eFEX Electron Feature Extractor
EMB Electromagnetic Barrel Calorimeter
EMEC Electromagnetic End-Cap Calorimeters
ENOB effective number of bits
EWSB electroweak symmetry breaking
EYETS extended year-end technical stop
FBP Forward–Backward Pursuit
FCal Forward Calorimeters
FEB Front-End Board
FEB2 Front-End Board 2
FEC front-end crate
FELIX Front End Link Interface Exchange
FEX Feature Extractor
fFEX Forward Feature Extractor
FIR finite impulse response
FPGA field-programmable gate array
FPR false-positive rate
GERDA Germanium Detector Array
gFEX Global Feature Extractor
GIM Glashow–Iliopoulos–Maiani mechanism, an explanation for the suppression of

flavor-changing neutral currents; requires the charm quark to exist
GRU Gated Recurrent Unit
GWS Glashow–Weinberg–Salam model, describes the electroweak interaction
H1 detector at HERA
HEC Hadronic End-Cap Calorimeters
HERA Hadron-Electron Ring Accelerator
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HLC1 preamp/shaper chip for the FEB2 boards of the Phase-II Upgrade, based on 65 nm
CMOS technology

HL-LHC High-Luminosity LHC
HLT High-Level Trigger
IAXO International Axion Observatory
IBL Insertable B-Layer
INL integrated non-linearity
IP intellectual property
IQR interquartile range
ISR Intersecting Storage Rings
jFEX Jet Feature Extractor
L0 level 0 trigger stage
L1 level 1 trigger stage
L2 level 2 trigger stage
LAr liquid argon
LASP Liquid Argon Signal Processor
Lasso least absolute shrinkage and selection operator
LATOME LAr Trigger Processing Mezzanine
LAUROC preamp/shaper chip for the FEB2 boards of the Phase-II Upgrade, based on 130 nm

CMOS technology
LDPB LAr Digital Processing Blade
LDPS LAr Digital Processing System
LEP Large Electron–Position Collider
LHC Large Hadron Collider
LHCb Large Hadron Collider Beauty
LHCf Large Hadron Collider Forward
LOCx2 transmitter ASIC based on a low-overhead code
LS1 Long Shutdown 1
LS2 Long Shutdown 2
LS3 Long Shutdown 3
LSB least significant bit
LSB Layer Sum Board
LSP lightest stable supersymmetric particle
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LSTM Long Short-Term Memory
LTDB LAr Trigger Digitizer Board
MC Monte-Carlo simulation
MDAC multiplicative digital-to-analog converter
MDT Monitored Drift Tubes
MIM metal–insulator–metal, a capacitor technology
MLP multi-layer perceptron
MoEDAL Monopole and Exotics Detector at the LHC
MP Matching Pursuit
MSE mean squared error
MSSM minimal supersymmetric Standard Model
muxer Multiplexer
n-tuple a number of conventions on saving data in a ROOT file: n-tuple files have no

internal directory structure, but only contain one or more trees; the branches of each
tree should contain only primitive types and collections thereof

OF Optimal Filter
OLS Orthogonal Least Squares
OMP Orthogonal Matching Pursuit
one-sigma half range half the width of the interval that contains 68.27 % of the data
one-sigma interval the interval that contains the most central 68.27 % of the data
PMNS Pontecorvo–Maki–Nakagawa–Sakata matrix, describes neutrino flavor mixing
POPOP a secondary (i.e. wavelength-shifting) scintillator
pp proton–proton
PRNG pseudo-random number generator
PS Proton Synchrotron
PSB Proton Synchrotron Booster
PSD power spectral density
PTP para-Terphenyl, a primary scintillator
QCD quantum chromodynamics
R807-808 an otherwise unnamed particle detector at the ISR [260]
ReLU rectified linear unit
RNN recurrent neural network
ROB Readout Buffer
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ROD Readout Driver
RoI region of interest
ROOT C++ library and file format widely used in high-energy physics
ROS Readout System
RPC Resistive-Plate Chambers
SBR Single Best Replacement
SCA Switched-Capacitor Array
SCT Semiconductor Tracker
SM Standard Model
SMLR Single Most Likely Replacement
SNO+ Successor to the Sudbury Neutrino Observatory
SP Subspace Pursuit
SPICE library and program for electronics simulation
SPS Super Proton Synchrotron
TBB Tower-Builder Board
TDAQ trigger and data acquisition
TDB Tower-Driver Board
TDNN time-delayed neural network
TDR technical design report
TGC Thin-Gap Chambers
TLFN time-lagged feed-forward network
TOTEM Total Elastic and Diffractive Cross Section Measurement
TPR true-positive rate
TRT Transition Radiation Tracker
TTC trigger, timing, and control system
USA15 main ATLAS underground services area
UX15 Underground Experimental Hall 15
VEV vacuum expectation value
WF Wiener filter
WFFC Wiener filter with forward correction
μ the average number of 𝑝𝑝 interactions per bunch crossing
τ the time constant of the shaper
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