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ABSTRACT

The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured
grids using a spatially-elliptic,  2nd-order accurate, cell-centered, finite-volume method has been recently
implemented in the VULCAN-CFD code. The construction of cell-average gradients using a weighted linear
least-squares method and the use of these gradients in the construction of the inviscid fluxes is the focus
of  this  paper.  A  comparison  of  least-squares  stencil  construction  methodologies  is  presented  and
approaches designed to minimize the number of cells used to augment/stabilize the least-squares stencil
while preserving accuracy are explored. Due to our interest in hypersonic flow, a robust multidimensional
cell-average  gradient  limiter  procedure  that  is  consistent  with  the  stencil  used to  construct  the  cell-
average  gradients  is  described.  Canonical  problems  are  computed  to  illustrate  the  challenges  and
investigate the accuracy, robustness and convergence behavior of the cell-average gradient methods on
unstructured  cell-centered  finite-volume  grids.  Finally,  thermally  perfect,  chemically  frozen,  Mach  7.8
turbulent flow of air through a scramjet engine flowpath is computed and compared with experimental
data to demonstrate the robustness, accuracy and convergence behavior of the preferred gradient method
for a realistic 3-D geometry on a non-hex-dominant grid. 

INTRODUCTION

The use of computational fluid dynamics (CFD) to characterize the external and internal flows typical of
hypersonic vehicles is extremely challenging due to the complex physical modeling required to compute these
flows. Nonetheless, over the past two decades, multiple CFD codes have been developed that are capable of
computing these types of flows [1-4]. With the notable exception of the VULCAN-CFD code, the codes developed
have almost exclusively employed unstructured grid methodologies. For the most part,  these unstructured-grid
codes provide significantly improved geometric flexibility at the expense of  increased computational overhead,
usually in the form of an increase in the number of processors required, relative to structured-grid codes.   To
address this additional overhead, there has been a concerted effort by the CFD community at large to develop
unstructured grid codes that  scale to “many”  thousands of  processors so as to either enable computation of
“Grand Challenge  Problems”  or  to  perform less  complex  engineering  analyses  rapidly  enough  that  they are
relevant  to  engineering  design  time  scales.  Unfortunately,  most  engineers  still  work  in  a  computational
environment having finite resources where many programs compete for computational access. This competition
naturally creates pressure on resource managers to configure their batch queuing software such that the time
spent  “in  the  queue”  for  jobs  requiring  “many  thousands”  of  processors  can  become  untenable  from  an
engineering  design  point  of  view.  This  problem  is  further  exacerbated  in  restricted  access  computational
environments because computational resources are usually severely limited by the nature of the work. Moreover,
as the number of processors required to rapidly compute a single “design point” solution increases, the number of
processors available to compute other points in the design space decreases linearly, thereby adversely affecting
the time required to cover the design space.

Historically, the development strategy for the VULCAN-CFD code has been to develop and implement
solution methodologies that are efficient when computing the flows of interest to the scramjet community. This
strategy resulted in the development of a “multiregion” framework in VULCAN-CFD [5,6] wherein the user has the
ability to decompose the computational domain into multiple spatially-elliptic flow and/or parabolic/hyperbolic flow
subdomains or “regions” where the flow solution is computed using the algorithm most appropriate for the flow
physics. To date, this multiregion framework, has been instantiated by solving the spatially-elliptic flow regions with
a structured-grid implicit time marching scheme and the parabolic/hyperbolic flow regions with a structured-grid
implicit space marching scheme. The issue of geometric complexity has been addressed via the use of multiblock
curvilinear structured grids within each region. However, when geometric complexity becomes too extreme, the
time required to generate the multiblock curvilinear structured grids can become prohibitive. Therefore, in an effort
to  still  address  the  aforementioned  computational  resource  constraints  though  a  multiregion  approach,  while
leveraging the ability of  the unstructured-grid approach to reduce the total  time to obtain a flow solution,  the
incorporation  of  an  unstructured-grid  spatially-elliptic  flow solver  capability  into  the  VULCAN-CFD multiregion
domain decomposition framework was initiated. This was accomplished utilizing a code developed as part of a
hybrid  structured/  unstructured  grid  NASA Research  Award  (NRA),  funded  by  the  Fundamental  Aeronautics
Program as described by Spiegel et al. [7,8]. 
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The cell-average and cell face gradient methods implemented by Spiegel et al. were based on the Green-
Gauss approach for the cell-average gradient and an edge normal augmented approach for the cell-face gradient.
However, these methods do not represent the current state of the art. Consequently, the best cell-average gradient
and cell-face gradient construction practices available in the literature for 2nd-order, cell-centered, finite-volume,
unstructured-grid flow solvers, were implemented. In addition, to improve convergence of the solver to steady
state, the implicit scheme was rewritten to 1) improve the left hand side as compared to the approximations used
by the original LU-SGS and matrix-free SGS schemes using an operator overloaded linearization of a 1 st-order
advection scheme and a hand linearization of a thin-layer Navier-Stokes diffusion scheme and 2) to couple the
partitions during the linear solve subiterative process. Additional point implicit schemes have also been added
such  as  Symmetric  Gauss-Seidel  (SGS)  and  Symmetric  Successive  Over-Relaxation  (SSOR).  Finally,  all
thermodynamic, chemical kinetic and turbulence models, as well as all relevant boundary conditions available in
the structured-grid solver, were implemented in the unstructured-grid solver. The majority of these modifications
were recently described in detail in [9].

The current work seeks to demonstrate how the least-squares cell-average gradient stencil affects the
stability and robustness of the unstructured solver on a realistic 3-D Scramjet Inlet geometry. A previous work,  [9],
described the face neighbor (fn1) and the face neighbor of face neighbors (fn2) least-squares stencils. A more
recent  work,  [10],  described  a  vertex/node  neighbor  (nn)  stencil  and  the  3-D  extension  of  a  new  stencil
construction method (symF), designed to address the short comings of the fn2 and nn stencils [11], that selectively
augments  the  fn1 stencil  with  cells  from the  nn stencil.  Moreover,  in  Ref.  [10],  a  robust,  stencil-consistent,
multidimensional cell-average gradient limiter procedure was described and investigated via the computation of
canonical problems that were designed to compare the accuracy, efficiency, robustness and convergence behavior
of the cell-average gradient weighted linear least-squares fn1, fn2, nn and the symF stencil methodologies. In the
current work, numerical experiments are performed for hypersonic turbulent flow over a backward facing step and
a turbulent flat plate using the fn1,  fn2,  nn and symF stencil methods and compared to examine robustness and
precision. Finally, the inlet portion of the  HIFiRE 7 REST scramjet engine shock tunnel experiment geometry is
computed and compared against experimental data [12].

Results and Discussion

1. Least-Squares Cell-Average Gradient Construction

Cell-average gradients are perhaps the most important and one of the most difficult quantities to obtain
accurately and robustly on irregular, unstructured grids. The cell-average gradients are required to accomplish
three  things  when  computing  the  residual  of  the  discrete  equations  for  each  time  step/cycle  of  the  solution
process: 1) to perform the higher-order reconstruction when computing the inviscid fluxes, 2) to compute the cell-
face gradient when computing the viscous fluxes, and 3) to compute the source terms for the turbulence modeling
transport  equations. Moreover,  there is evidence in the literature that  a different  definition of  the cell-average
gradient may be required to compute each of these quantities [13]. 

While no cell-average gradient method has been found to be accurate for all arbitrary polygons, with some
caveats [14], the weighted linear least-squares method has been found to be a robust method when computing
cell-average gradients [14-16] for node-centered and cell-centered 2nd-order finite-volume schemes. Therefore,
based on the results in the literature [13-17], the weighted linear least-squares (WLSQ) method was chosen in [9]
to  replace the  Green-Gauss  method originally described in [7,8].  The  WLSQ gradient  method is  based on a
polynomial fit over a set of nearby cells. For second-order finite-volume schemes, the gradients need to be at least
first-order accurate on general unstructured grids; and thus, it is sufficient to fit a linear polynomial. Suppose we
wish to compute the gradient of a solution variable q at a cell i, and have a set {gi} of N(≥ 3) nearby cells (i.e., a
gradient stencil) available for fitting the linear polynomial:

                                                     q j= qi+∂ x qi (x j− x i)+∂ y qi (y j− y i)+∂ z qi ( z j− z i)                                                     (1)

where j  ∈ {gi}, (xi, yi, zi) and (xj, yj, zj) denote the cell centroid coordinates of cell, i, and the set of neighbor cells, j,
respectively, ∂ xqi , ∂ yqi and ∂ z qi are the derivatives we wish to compute. As the number of cell neighbors often
exceeds three on 3-D unstructured grids, the polynomial fit (1) typically leads to an overdetermined problem:

                                                                                    Ax = b,                                                                                   (2)

where

                     A =

w1( x1−x i)
⋮

w j ( x j− xi )
⋮

wN ( xN −x i)

w1( y1− y i)
⋮

w j ( y j− y i)
⋮

wN ( yN − y i)

w1( z1− z i)
⋮

w j( z j −z i)
⋮

wN ( zN − z i)

, x =
∂ x qi

∂ y qi

∂ z qi

, b =

w1(q1−qi)
⋮

w j (q j −qi )
⋮

wN (qN −qi)

,                          (3)

and wj is the weight applied to the equation corresponding to the neighbor cell j. The following inverse-distance 
weight is widely used in finite-volume methods:
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                                                     w j=
1

d j
p (l ) , d j= √(x j− x i)2+( y j− yi)2+( z j− z i)2 ,                                                   (4)

where p(l) is a parameter ranging from zero (unweighted LSQ) to one (fully weighted LSQ) and l =1, 2 or 3, where
1 refers to the parameter used for the WLSQ gradients used in the inviscid flux reconstruction, 2 refers to the
parameter used for the WLSQ gradients used in the construction of the cell face gradients for the viscous flux, and
3 refers to the parameter used for the WLSQ gradients used in the construction of turbulence model source terms.
The overdetermined WLSQ system (2) can be solved in various ways. We chose to use QR factorization via the
Householder transformation [18], which directly solves the overdetermined system as

                                                                                          x = R−1Qb,                                                                                (5)

where Q is the orthonormal matrix and R is the upper triangular matrix generated from A by the QR factorization. 
The solution can be expressed in the following form:

                                                                          
∂ x qi

∂ y qi

∂ z qi

= ∑
j∈ { g i}

cij
x

cij
y

cij
z

(q j −qi ) ,                                                              (6)

where cx
ij, cy

ij and cz
ij are the WLSQ coefficients to be computed and stored at all cells once for a given stationary

grid. From Eq. (6), it  is clear that the cost of the gradient calculation is directly proportional to the number of
neighbors involved in the gradient stencil.

1.1. The fn1, fn2 and nn stencils

In 3-D, the stencil of the linear least-squares average gradient operator must have at least 3 participating
cells  to be well posed.  This condition can usually be met using the face neighbor stencil, ( fn1),  illustrated in the 2-
D example shown in Fig. 1. However, on highly skewed grids, the  fn1 stencil may become biased and give rise to
instabilities [16,17]. These instabilities  can be  alleviated  by augmenting  the  stencil to  reduce or  eliminate the
bias [16,17].

Fig. 1: The  fn1 stencil for computing the WLSQ cell-average gradient on a triangular grid.

Three augmentation approaches have been considered to address this difficulty. The first approach is to
augment the fn1 stencil cells with all of the cells that share a face with the cells of the fn1 stencil, resulting in the
face neighbors of face neighbors stencil, (fn2), shown in Fig. 2. The second approach is to augment the  fn1 stencil

Fig. 2: The fn2 and nn stencils for computing the WLSQ cell-average gradient on a triangular grid.

with all the cells that share a node with the nodes of cell i, resulting in the node neighbors stencil, (nn), shown in
Fig. 2. However, as illustrated in Fig. 2, the fn2 stencil can result in gaps in the stencil that do not exist in the nn
stencil  that  could potentially cause an instability when the grid is  highly skewed [16,17].  Furthermore,  Fig.  2
illustrates that, for 2-D  triangular grids, the fn2 stencil is a subset of the nn stencil, while the converse is true for
quadrilateral grids,  i.e., the  nn stencil  is  a subset of  the  fn2 stencil  as shown in Fig. 3. Also note that Fig. 3
illustrates that the nn stencil is more spatially compact than the fn2 stencil for quadrilateral grids, and by analogy,
prismatic  grids.  In  3-D,  the  nn stencil  of  hexahedral  and prismatic  grids  are  not  a  subset  of  the  fn2 stencil.
Moreover, the nn stencil on nonhexahedral grids also can potentially have many more cells in the nn stencil than in
the fn2 stencil thereby requiring significantly more storage and operations to compute the gradient.
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Fig. 3: The fn2 and nn stencils for computing the WLSQ cell-average gradient on a quadrilateral grid.

It has been shown in Refs. [16,17] that the set of neighbors, {gj}, that define the WSLQ stencil, affects the
stability of finite-volume solvers. Reference [16] formally shows that a finite-volume scheme can be unstable when
using the face-neighbor gradient stencil on tetrahedral and hybrid grids, and that adding extra cells to the stencil
can cure the instability. Reference [17] shows that a larger stencil size usually leads to stability. Therefore, this
suggests that the most robust stencil should be the vertex stencil on triangular/tetrahedral grids and the union of
nn and  fn2 stencils  on  general  unstructured grids.  However,  due to  their  size,  these  stencils  can noticeably
increase the time and memory  required to compute the solution to Eq. (6), especially in  3-D [19] as well  as
decreasing the accuracy of the gradients [11]. Recently, Nishikawa [11] explored ways to construct a gradient
stencil  that  achieves  robustness  and accuracy of  the  fn2 and  nn stencils  with  a  smaller  stencil.  In  Ref.  [11],
Nishikawa proposed two augmentation methods that resulted in a robust, efficient and accurate stencil for the 2-D
problems examined. These methods were the symmetric augmentation of the fn1 stencil, (sym), and the symmetric
F-decreasing augmentation of the  fn1 stencil,  (symF). These stencils, were compared with the  fn1,  fn2,  and  nn
stencils using a 2-D cell-centered finite-volume Euler solver on four unstructured grids. For a detailed discussion of
the test problems and the results obtained, the reader is referred to Ref. [11].  The end result of the numerical
experiments conducted was that the symF stencil was the only stencil that allowed a solution to be obtained for all
of the test problems.  In the interest of brevity, a brief description of the sym and symF stencils follows.

1.2. Construction of the symmetric augmented fn1 stencil, i.e., the sym stencil => {gj}sym

The construction of the symmetric augmented fn1 stencil,  {gi}sym, described in Ref. [11], begins with the
cells defining the fn1 stencil, {gi}fn1, shown in Fig. 1, for cell i, and adds cells to it from the union of the nn and fn2
stencil neighbors {vi} that will symmetrize the stencil as much as possible. The symmetric augmentation begins
with one of the face neighbors, jfn1  ∈ {gi}fn1, and searches for a cell, jsym  ∈ {vi}, located symmetrically opposed with
respect to the centroid of the cell i as viewed from the centroid of cell  jsym.This is repeated to form the set of ksym

cells, {ki}sym, until the stencil, {gi}sym, is formed from the union of {gi}fn1 and {kj}sym, As shown in Fig. 4, this process is
repeated for each face neighbor cell until each face neighbor cell has a symmetrically opposed cell that is not a
face neighbor. Note that a {ji}sym cannot also be a  member of {gi}fn1.

Fig. 4: The process for constructing the sym augmented fn1 stencil for a grid of triangular cells.

1.3. Construction of the symmetric F-decreasing augmented fn1 stencil, i.e., the symF stencil => {gj}sym

The symmetric  F-decreasing  augmented  fn1 stencil,  {gi}symF,  is  constructed using an augmentation  of
{gi}sym, based on the magnitude of the gradient. As described in [11], this is accomplished by considering the
normal equation:

                                                                                    AT Ax= ATb ,                                                                               (7)
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where

AT A =

∑
j∈ { g i}

w j
2 Δ x j

2

∑
j ∈{ gi }

w j
2 Δ x j Δ y j

∑
j∈ { g i}

w j
2 Δ x j Δ z j

∑
j∈ { g i }

w j
2 Δ y j Δ x j

∑
j ∈{ g i }

w j
2 Δ y j

2

∑
j∈ { g i }

w j
2 Δ y j Δ z j

∑
j ∈ { gi }

w j
2 Δ z j Δ x j

∑
j ∈{ gi }

w j
2 Δ z j Δ y j

∑
j∈ { g i}

w j
2 Δ z j

2

                                                        x =
∂ x qi

∂ y qi

∂ z qi

, AT b =

∑
j ∈{ g i }

w j
2 Δ x j Δ q j

∑
j∈ { g i}

w j
2 Δ y j Δ q j

∑
j ∈ { gi }

w j
2 Δ z j Δ q j

,                                                                 (8)

and                                

                          Δ x j = x j −x i , Δ y j = y j− yi , Δ z j = z j− z i , j = 1, 2, 3, ⋯ , N.                                 (9)

Equation (7) is then scaled such that its right hand side is on the order of the typical variation of  q over the stencil,

i.e., O(Δqi), resulting in,

                                                                                     s−1 AT Ax = ̃b ,                                                                           (10)

where

                                                                 ̃b = s−1 AT b ,  and s = ∑
j ∈{ gi }

w j
2 d j .                                                            (11)

The magnitude of the gradient is bounded from below and that lower bound is determined by the measure F as
was shown in Ref. [11] and defined as 

                                                                                F = s

∥AT A∥F

,                                                                              (12)

where ∥ ⋅ ∥F is the Frobenius norm. This measure is used to select cells from {vi} for use in the stencil if their
inclusion decreases F thereby decreasing the magnitude of the gradient. The algorithm employing the use of F to
construct the symF stencil, illustrated in Fig. 5 for a grid of triangular cells, proceeds as follows:

1. Construct the symmetric augmentation stencil.

2. Compute ATA and s, where {gi} = {gi}sym, and then compute F.

3. Let F0 = F,  (ATA)0  = ATA, s0 = s, and the initial stencil, {gi}symF,0,  or symF0, is the{gi}sym stencil.

4. Let {vi
R} be the subset of the cells in { v j } , but not in{gi}symF,0, and NR be the number of cells in {vi

R}.

5. If NR = 0, no further augmentation is possible, stop,  else,

6. for m = 1 to NR , perform the following:

1) Compute ATA and s by adding the contributions of the m-th cell at (xm,ym,zm):

    AT A = ( AT A)0 +
wm

2 Δ xm
2

wm
2 Δ xm Δ ym

wm
2 Δ xm Δ zm

wm
2 Δ ym Δ xm

wm
2 Δ ym

2

wm
2 Δ ym Δ zm

wm
2 Δ zm Δ xm

wm
2 Δ z mΔ ym

wm
2 Δ zm

2

, s = s0 + wm
2 d m ,                       (13)
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where

Δ xm= xm− x i , Δ ym= ym− y i , Δ zm= z m− z i ,    

                                       d m= √Δ xm
2 +Δ ym

2 +Δ zm
2 and w j=

1

d j
p(1 ) .                                                 (14)

                  2) Compute F = s /∥ AT A∥ F .

                  3) If F < KFF0, where KF=0.85, add the m-th cell to {gi}symF, and set F0=F, (ATA)0= ATA and s0 =s.

In Ref. [11], the set { v j } was the union of the nn and fn2 stencils, and KF was chosen to be 0.85 to only accept
cells that significantly reduce the stencil F. Some modifications were made to the algorithm when extending it to 3-
D to simplify its implementation in the VULCAN-CFD [10] code. These modifications were:

1. Due  to  memory  considerations,  the  current  algorithm  uses  the  nn stencil  as  the  basis  of {v j } for
tetrahedral, pyramidal and prismatic cells. This modification will have no effect on the stencils constructed
for  tetrahedral  cells  because the  fn2 stencil  is  a  subset  of  the  nn stencil.  However,  it  will  affect  the
construction of  stencils for prismatic and pyramidal cells.  This remains an open area of  research but
testing to date has not shown this modification to be a problem. 

2. Hexahedral cells are forced to use the  fn1 stencil.  This restriction is based on an examination of the
curved, high aspect ratio hexahedral grid numerical experiments presented in [11] where it was shown
that the  fn1 stencil had behavior similar to the symF stencil even when the fn2 and nn stencils failed.

 

Fig. 5: The process for constructing the symF augmented fn1 stencil for a grid of triangular cells.

2. Inviscid Flux

2.1 Cell-Face State Variable Reconstruction

The inviscid fluxes in the unstructured-grid solver are computed using an upwind flux scheme. Currently,
either  the  LDFSS [20]  or  the  HLLC scheme  [21]  can  be  selected.  Both  of  these  schemes  require  that  the
reconstruction variables, q, be specified on the left (L) and right (R) sides of the cell face midpoint, f, as shown in
Fig. 6. The reconstruction variables are defined as

                                      q = ( ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ , u , v , w , P , k ,ω )  for thermal equilibrium, or

                                      q = (
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ , u , v , w ,T ve ,P , k ,ω ) for thermal nonequilibrium,

where
ρ 1
ρ ,…,

ρ ncs
ρ ,ρ ,u ,v , w , P ,T ve , k ,ω are  the  chemical  species  mass  fractions,  from  1 to  the  number  of

chemical species, static density, cartesian velocity components, vibrational/electronic temperature, static pressure,
turbulent kinetic energy, and specific  turbulent dissipation rate, respectively. 

A 1st-order accurate scheme results when the cell-average values to the left, i and right, j of the cell face are used.
A  2nd-order  accurate scheme results  when the  L and  R primitive variables are  reconstructed to the cell  face
midpoint with an extrapolation or interpolation method based on the left and right cell-average primitive variables
and gradients as given by

                                                           q f
L = qi + ∇ qi ⋅ r⃗ if                                                                            (15)

                                                            q f
R = q j + ∇ q j ⋅ r⃗ jf ,                                                                         (16)

augmented stencil, {g
j
}

symF

j

i

j

j

j

jj

i
j

j

j

j

j

j

j
j

j

j

i

FjFj

Fj

Fj

j

j

j

j

j j

 {g
j
}

sym

Find the cells, F
j
, that satisfy the

F < KFF0 criteria from the unused

cells in {g
j
}

nn



7

 Fig. 6: The 2nd-order reconstruction of the L and R states to the cell face midpoint. 

where qi and q j are the cell average solution, ∇ qi and ∇ q j are the cell average weighted least squares
gradients,  of  cells  i and  j,  respectively,  and r⃗ if and r⃗ jf are  the  vectors  shown  in  Fig.  6.  A more  general
implementation of the scheme above, which is an unstructured-grid interpretation of Fromm's scheme [22], is the
higher-order variable extrapolation (or UMUSCL) reconstruction scheme [23]. UMUSCL was implemented to allow
to additional control of the dissipation of the scheme. The UMUSCL scheme can be written as

                                         q f
L = qi + χ

2
(q j−qi) + (1− χ )∇ qi ⋅ r⃗ if ,                                                  (17)

                                        q f
R = q j + χ

2
(qi−q j) + (1− χ ) ∇ q j ⋅ r⃗ jf ,                                                  (18)

where χ is used to control the behavior and the 1-D order of accuracy of the scheme when the flow is smooth.

             0,  gives Fromm's scheme                                                                                      
χ   -1,  gives a 2nd-order fully upwind MUSCL-type scheme                                    (19)

          1/3,  gives a 3rd-order upwind biased MUSCL-type scheme                                       

2.2. Cell-Average Gradient Limiter Construction

When  computing  hypersonic  flow,  discontinuities  will  usually  exist  somewhere  in  the  computational
domain. In the vicinity of these discontinuities, the higher-order reconstruction of the state variables to the cell face
used to achieve 2nd-order accuracy of the inviscid flux scheme will produce oscillations in the flow solution, and
eventually cause the computation to fail. These oscillations can be suppressed by locally forcing the reconstruction
to be 1st-order through the use of some sort of gradient limiter. The gradient limiter has been implemented in two
different ways for the UMUSCL scheme; a 1-D “face”-based limiter approach or a multidimensional “stencil”-based
limiter approach. Both methods were described in detail in [11] with the modified form of the multidimensional
limiter process (MLP) of Park and Kim [24] having been found to be the preferred method for general grids. Figure
7 presents the cells involved in the fn2 and nn stencils used to compute the limiter coefficients for a cell i. These
stencil-based  limiter  approaches  compute  cell-limiter  coefficients  that  are  used  to  limit  the  higher-order
reconstruction that, when applied to the UMUSCL higher-order reconstruction scheme, results in equations for the
left and right states having the form

                                             ̃q f
L = qi + Φ i(qi) [ χ

2
(q j−qi) + (1− χ ) ∇ qi ⋅ r⃗ if ]                                                  (20)

                                          ̃q f
R = q j + Φ j (q j )[

χ
2

(qi −q j ) + (1− χ )∇ q j ⋅ r⃗ jf ] ,                                     (21)

where Φ i (qi ) and Φ j (q j) are the cell-limiter coefficients that are used to limit the reconstruction consistently for

all faces of the cells i and j, respectively and                                                

                                                  q f = qi + χ
2

(q j−qi) + (1− χ )∇ qi ⋅ r⃗ if ,                                               (22)

where the value of χ is consistent with the value used in Eqs. (17,18). 

The  primary  difference  between  the  implementation  of  the  MLP approach  and  other  stencil-based
approaches is that the reconstruction of the solution is to the cell nodes instead of to the cell face midpoints.
Figure 7 illustrates the  stencil cells and nodes that participate in the computation of the MLP “node-reconstruction-
based” limiter coefficients, for a fn2 stencil Φ i (qi

MLP fn2) , and an nn stencil, Φ i (qi
MLPnn ) . The modified MLP limiter

coefficient of  a  general  stencil  for  a cell i, Φ i (qi
MLP g j ) , described  in Ref. [11]  is  computed  using  the  equation

j

i

L R
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Φ i (qi
MLPg j) = min(1, [Ψ i , n

g j (qi , n) , n=1→ N i , nodesi ]) ,                                             (23)
and

                               Ψ i , n
{ g j} (qi , n) =

ϕi , n(
qi

max( { g j})−qi

qi , n−qi

) ,if (qi , n−qi)>0

ϕi , n (
qi

min ({ g j} )−qi

qi , n−qi

) , if (qi , n−qi)<0

1 if (qi , n−qi )=0

,                                               (24)

                                                      
where Φ i (qi

MLP g j ) , is computed in two steps: 1) the cell-node limiter coefficient, Ψ i , n
g j (qi , n) , is computed at each

node, n, that is a vertex of cell i, using Eq. (24), 2) the cell-limiter coefficient is computed as the minimum of those
cell-node limiter coefficients using Eq. (23). In Eq. (24), the quantities, qi

max({ g j }) and qi
min( { g j}) , are the maximum

and minimum values of the solution of the stencil cells,{gj} and qi , n is the  reconstruction of q to  each node, n, of
cell, i,  based on an unlimited form of Fromm's scheme, i.e., 

                                                                     qi , n=qi+∇ qi ⋅ r⃗ i n.                                                                        (25)

The node-limiter coefficient in Eq. 24, ϕi , n , is computed using a generalization of the form used in Refs. [25,26],
which can be written as

                                                         ϕi , n(
Δ2

Δ1
) =

L (Δ1 ,Δ2)(limiter )

Δ1
,                                                                  (26)

where, L (Δ1 ,Δ2)(limiter) , can be any 1-D limiter function found in the literature, where Δ1 and Δ2 are suitable

successive  1-D  reconstruction variable differences. Currently, the Sweby [27], van Leer [28], van Albada [29],
MLP-u2 [24],  and Koren [30]  limiter functions have been implemented in the VULCAN-CFD unstructured-grid
solver so as to be consistent as possible with the limiters implemented in the structured-grid solver. 

Fig. 7: The fn2 and nn stencil cells and nodes that participate in the construction of the Φ i (qi
MLP{ g j }) , cell-limiter 

coefficients for the cell i where N 
i, nodes

 = 3.

The resulting gradient limiter approach of Eq.s (23-26), Φi (qi
MLP{ g j} ) , while not a strict implementation

of the Φi(qi
MLPnn) limiter, has been found to be robust and suitable for use on general  3-D mixed element

grids. A slight difference in unstructured limiters, with respect to the structured-grid solver, is the replacement
of the Venkatakrishnan limiter [26], with the  MLP-u2 limiter [23]. The  MLP-u2 limiter is a modified form of
Venkatakrishnan's limiter. Venkatakrishnan's limiter has the form 

                                           ϕi , n(
Δ2

Δ1
) = 1

Δ1

(Δ2
2+ϵ2)Δ1+2 Δ1

2 Δ2

Δ2
2+2 Δ1

2+Δ1 Δ2+ϵ
2

,                                                      (27)

where                                     

                                      Δ1=qi
minor max−qi , Δ2=∇ qi ⋅r⃗ i n , ϵ2=( K L∣r⃗ i n∣)

3                                           (28)

and K L is an O(1) user definable constant that should be “tuned” for each computation. Park and Kim construct the
MLP-u2 limiter by retaining Venkatakrishnan's limiter function and redefining ϵ2 to be

                  ϵ2=
K 1

1+θ Δ qi , n
2 where Δ qi , n=qi , n

max−qi , n
min , θ =

Δ qi , n

K 2 ∣r⃗ in∣
K 3

and K1=5, K2=5, K 3=1.5.                  (29)

                                                                   fn2  stencil                                                   nn stencil        

isis

is

is

is

is

is

is
is

i

i,n=1

i,n=2

i,n=3

isis

is

is

is

is

is

is
is

i

i,n=1

i,n=2

i,n=3is is

is
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We have found this limiter to be robust, well behaved and relatively insensitive to the K
1
, K

2
, and K

3
 parameters. A

final limiter modification that has also been found to improve robustness when computing complex hypersonic
flows is to compute the MLP limiter coefficient as the minimum of the pressure limiter coefficient and each of the
primitive variable limiter coefficients, i.e.,

                                                    Φ i (qi
MLP{ g j} )=min[Φ i (P i

MLP {g j} ) ,Φ i(qi
MLP {g j} )] .                                                    (30)

3. Viscous Flux, Cell-Face Gradient Construction

The computation of the viscous flux requires that the cell-face average and the cell-face average gradient
of the primitive variables, ∇ q f , be computed, where the primitive variables are, 

                                          q = (
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ , u , v , w ,T , k ,ω )  for thermal equilibrium, or

                                          q = (
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ , u , v , w ,T ve ,T tr , k ,ω ) for thermal nonequilibrium   

where Tve and Ttr are the vibrational/electronic and translational/rotational  temperatures, respectively. Three cell-
face  average  gradient  schemes  have  been  implemented  in  the  VULCAN-CFD  code.  Two  schemes  due  to
Hasselbacher and Blazek [31] and a third scheme due to Nishikawa [32]. Hasselbacher observed that computing

∇ q f as a simple average of the face neighbor cell-average gradients, i.e.,

                                                                       ∇ q f =
(∇ qi+∇ q j )

2
,                                                                    (31)

leads to odd-even decoupling causing him to introduce face-derivative augmentation. Hasselbacher suggested two
methods  to  accomplish  this  augmentation:  the  so-called,  edge-normal  (EN)  and  face-tangent  (FT)  cell-face
gradient methods. The edge-normal augmented cell-face gradient method, as defined by Hasselbacher, is
 

                                                        ̂∇ q f
EN =∇ q f − [∇ q f ⋅ ̂eij −

(q j −qi )
∣ e⃗ ij∣

] ̂e ij ,                                                 (32)

where, referring to Fig. 1, e⃗ij is a vector drawn from cell-center i to cell-center j and ̂e ij is its unit vector. The face-
tangent  augmented cell-face gradient method, as defined by Hasselbacher, is

                                                   ̂∇ q f
FT = ∇q f − [∇ q f ⋅ ̂eij −

(q j−qi )
∣ e⃗ ij∣

] (
̂n f

̂n f ⋅ ̂eij

) .                                          (33)

The third method, developed by Nishikawa, considers the Hasselbacher's augmentation term to be a damping
term. For a detailed description of the derivation of the Nishikawa's alpha damped cell face gradient method, for a
2nd-order accurate finite volume scheme, the reader is referred to Ref. [32]. In a finite volume context, Nishikawa's
alpha-damped cell-face average gradient, ̂∇ q f

AD , has the form:
 

                                                     ̂∇ q f
AD=∇ q f + α (

̂n f

∣ e⃗ ij ⋅ ̂n f ∣
) (q f

R−q f
L )                                                      (34)

where α is a damping coefficient, having an optimum value of 4/3 in the context of a 2nd-order accurate finite
volume scheme, and q f

L and q f
R are the left and right reconstruction of the viscous state variables to the cell

face. The viscous state variables are reconstructed using Fromm's scheme where

                                                                       q f
L= qi +∇ qi ⋅ r⃗ if                                                                      (35)

                                                                      q f
R= q j+∇ qi ⋅ r⃗ jf .                                                                     (36)

The first term in Eq. (34) is the consistent term approximating the face gradient, and the second term is considered
to be an adjustable damping term. An extensive comparison of cell face gradient schemes can be found in Jalai
[34].
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4. Numerical Experiments and Validation

4.1. Hypersonic Turbulent Flow Over a 2-D Backward Facing Step Using Prismatic and Hexahedral Cells.

The first numerical experiment was conducted by computing hypersonic calorically perfect, turbulent flow
of air over a 2-D backward facing step with freestream conditions of, Mach 6.356, static pressure, P

ref
= 50,662.58

Pascals, static temperature,  T
ref

= 1297.75 Kelvin, ratio of specific heats, γ ref = 1.4, and unit Reynolds number,

Re
ref

= 1.2891x107/m, with the wall treated as isothermal (1172.6 Kelvin), using a turbulent wall matching boundary

condition [35]. The Wilcox (2006) k −ω two-equation turbulence model [36] was used to compute the Reynolds
stresses and Reynolds heat flux (Pr

t
=0.9)  and the turbulence model production term was based on the  magnitude

of the vorticity. The cell-average gradients were computed using weighted linear least-squares with the fn1, fn2, nn,
and  symF stencils. The inviscid fluxes were computed using the  HLLC scheme with the higher-order cell-face
states  constructed  using  UMUSCL, χ =1 /3, with  the  cell-average  gradients  limited  using  the Φ i (qi

MLP{ g j })
gradient limiter and the Park and Kim MLP-u2 1-D limiter function. The viscous fluxes were computed using the
Nishikawa cell face gradient method. The governing equations were solved implicitly using the Symmetric Gauss-
Seidel (SGS) scheme described in Ref. [9], with local time stepping and the CFL number linearly varied from 0.1 to
250 over time steps 1 to 500. Convergence was achieved by “freezing” the gradient limiter after 15,000 time steps
to prevent convergence stalling due to limiter “ringing”. The computations were stopped when the residual L

2
 norm

had  dropped  6  orders  of  magnitude  from its  initial  value.  The  2-D geometry  was  discretized  to  form a  3-D
computational domain using the Pointwise® unstructured grid generator. The resulting grid consisted of triangular
and quadrilateral 2-D cells, as shown in Fig. 8, extruded in the Z-direction to form a 3-D grid of 15,781 prismatic
and 8,168 hexahedral cells for a total of 23,949 cells. The boundary conditions were: 1) reflection of all variables at
the min. and max. Z-direction boundary cell faces (Symmetry Boundary), 2) specification of all variables on the
min. X-direction boundary cell faces (Inflow Boundary), 3) 1st-order extrapolation of all variables at the max. X and
Y-direction boundary cell  faces (Outflow Boundary)  and 4) isothermal  no-slip wall-matching construction of all
variables  on  the  min.  Y-direction  wall  boundary cell  faces  (No-slip  Isothermal  Wall).  The  computations  were
performed using parallel processing on 6 partitions. A computation was performed using each stencil type with all
other  input  parameters being unchanged.  For  each computation,  the stencil  statistics,  convergence behavior,
contour plots of the flow solution and the X distribution of wall heat transfer were extracted and used to compare
the fn1, fn2, nn and symF stencils.

Table 1 presents the stencil statistics, i.e., the min., max., and mean stencil sizes as well as the standard
deviation, σ, of the stencil size and the relative augmentation cost. This grid, due to its quasi 2-D nature, and due
to it consisting of hexahedral and prismatic cells, has statistics such that the min. stencil size has been determined
by the topology of the hexahedral cells and the max. stencil size has been determined by the connectivity of the
prismatic cells. The min. stencil size of all 3 stencil types are smaller than expected based on a 3-D extension of
Fig. 3 for a hexahedral cell due to a boundary effect. This effect is caused by the exclusion of all boundary ghost
cells from the no-slip boundary adjacent hexahedral cell stencils. The key point of Table 1 is that the symF stencil is
both smaller and varies less over the computational domain than the fn2 and nn stencils by a significant amount.
The relative augmentation cost was computed using the equation (Acost -fn1cost )/(fn2cost-fn1cost), where  Acost is the
cost of a residual evaluation using the fn2, nn or symf stencil to compute the gradients and fn1cost is the cost of a
residual evaluation using the fn1 stencil. Using this metric, the symF stencil can be seen to be 5.3 and 10.7 times
less expensive than the fn2 and nn stencils, respectively.

Table 1: Stencil statistics and relative cost of the fn2, nn and symF stencils for the backward facing step grid. 

Stencil
Augmentation 

Method

Minimum (min.)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard

Deviation (σ)

Relative
Augmentation

Cost 

fn2 13 18.6 23 2.39 1

nn 13 33.8 53 6.24 2.04

symF 5 8.75 12 2.04 0.19

Figure 9 presents a plot of Mach no. (filled) contours and the static pressure (black line) contours  using
the fn2 stencil and is typical of the result obtained using all three stencil types. The flow solution can be seen to be
nearly oscillation free with the incident shock caused by the reattachment of the separation bubble being captured
without apparent difficulty. Figure 10 presents a comparison of the convergence history of the reduction of the L 2

norm of the residual for the computations performed using the fn1, fn2, nn and symF stencils, showing that the four
stencils gave very similar convergence behavior with the  fn2 stencil convergence being slightly better than the
other stencils. Figure 11 presents a comparison of  the wall  heat flux versus X and shows that the maximum
difference in heat transfer between stencil types was approximately 3% at the X location where the incident shock
caused by the reattachment of the separation bubble initiates. 
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Fig. 8: Computational grid and boundary conditions for hypersonic flow over a 2-D backward facing step.

Fig. 9: Mach No. and static pressure contour plot of hypersonic flow over a 2-D backward facing step using the
fn2 stencil.
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Fig. 10: A comparison of the residual convergence behavior for the computation of hypersonic flow over a 2-D
backward facing step using the fn1, fn2, nn, and symF stencils.

Fig. 11: A comparison of the axial distribution of wall heat transfer for the computation of hypersonic flow over a
2-D backward facing step using the fn1, fn2, nn, and symF stencils.
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4.2 Hypersonic  Turbulent  Flow  Over  a  2-D Flat  Plate  Using  a  Grid  Containing  Tetrahedral,  Pyramidal  and
Hexahedral Cells.

The second numerical experiment was conducted by computing hypersonic thermally prefect, chemically
frozen, turbulent flow of air over a 2-D flat plate with freestream conditions of, Mach 6, static pressure, P

ref
= 2100.0

Pascals, static temperature, T
ref

= 63.01 Kelvin, and unit Reynolds number, Re
ref

= 2.64x107/m, with the wall treated

as an isothermal (335.83 Kelvin),  no-slip, solve-to-the-wall  boundary condition.  The governing equations were
solved in a fully coupled manner, with local time stepping and the CFL number linearly varied from 0.1 to 250 over
time steps 1 to 500. The Wilcox (1998) k −ω two-equation turbulence model  [37]  was used to compute the
Reynolds stresses and Reynolds heat flux (Pr

t
=0.9), and the turbulence model production term was based on the

magnitude of the vorticity. The cell-average gradients were computed using weighted linear least-squares with the
fn1, fn2, nn and symF stencils. The inviscid fluxes were computed using the LDFSS scheme with the higher-order
cell-face states constructed using UMUSCL, χ =0, with the cell-average gradients limited using the Φ i (qi

MLP{ g j })
gradient limiter and the van Leer  1-D function. The viscous fluxes were computed using the Nishikawa cell-face
gradient method. Convergence was achieved by “freezing” the gradient limiter after 200 time steps   to prevent
convergence stalling due to limiter  “ringing”.  The computations were stopped when the residual  L

2
 norm had

dropped 6 orders of magnitude. The 2-D geometry was discretized to form a 3-D computational domain using the
Pointwise® unstructured grid generator. The resulting grid consisted of quadrilaterals on the surface of the plate
that  were  extruded  in  the  Y-direction  to  form  a  layer  of  hexahedrals  in  the  near  wall  that  transitioned  into
tetrahedral cells via a layer of pyramidal cells to form a  3-D grid of  98,928 hexahedral,  9,160 pyramidal and
65,085 tetrahedral  cells  for  a  total  of  173,173 cells  as  shown in  Fig.  12.  The boundary conditions  were:  1)
reflection of all variables at the min. and max. Z-direction boundary cell faces (Symmetry), 2) specification of all
variables on the min. X-direction boundary cell faces (Inflow Boundary), 3) 1st-order extrapolation of all variables at
the max. X- and Y-direction boundary cell faces (Outflow Boundary), and 4) isothermal no-slip solve-to-the-wall on
the min. Z-direction wall boundary cell faces (No-slip Isothermal Wall). The computations were performed using
parallel  processing on 6 partitions.  A computation was performed using each stencil  type with  all  other  input
parameters being unchanged. For each computation, the stencil statistics, convergence behavior, contour plots of
the flow solution and the X distribution of wall heat transfer were extracted and used to compare the fn1, fn2,  nn
and symF stencils.

Table 2 presents the stencil statistics and the relative augmentation cost. This grid, due to its 3-D nature,
and due to it consisting of hexahedral, pyramidal and tetrahedral cells has statistics such that the min. stencil size
has been determined by the topology of the hexahedral cells and the max. stencil size has been determined by the
connectivity of the tetrahedral cells. The min. stencil size of all 3 stencil types are similar to the 3-D extension of
the stencils illustrated in Fig. 3 for a hexahedral cell. In this case, unlike the previous computations that used the
wall matching no-slip boundary condition, the solve-to-the-wall no-slip boundary condition allows the inclusion of
ghost cells in the no-slip boundary adjacent hexahedral cell stencils. Once again, the key point of Table 2 is that
the symF stencil is both smaller and varies less over the computational domain than the fn2 and nn stencils by a
significant amount and the relative augmentation cost metric indicates that the symF stencil was 3.4 and 6.2 times
less expensive than the fn2 and nn stencils, respectively.

Table 2: Stencil statistics and relative cost for the fn2, nn and symF stencils for the flat plate grid.

Stencil
Augmentation 

Type

Minimum (min,)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard

Deviation (σ)

Relative
Augmentation

Cost 

fn2 9 19.8 27 4.52 1

nn 19 42.6 107 20.3 1.82

symF 6 9.41 21 4.07 0.29

Figure 13 presents a contour plot of Mach no. contours using the nn stencil and is typical of the results
obtained using all three stencil types. The flow solution can be seen to be nearly oscillation free with the weak
leading edge shock caused by the rapid growth in the displacement thickness during the initial boundary layer
formation being preserved even in the tetrahedral cell part of the grid. Figure 14 presents a comparison of the
convergence history of the reduction of the L2 norm of the residual for the  fn1,  fn2,  nn and symF computations
showing that the stencils gave nearly identical convergence behavior. Figure 15 presents a comparison of the wall
heat  flux  versus  X and shows that  all  stencil  methods  produced very similar  results  and that  the  maximum
difference in heat transfer between stencil types was approximately 1.44% at the trailing edge of the plate. 
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Fig. 12: Computational grid and boundary conditions for hypersonic flow over a flat plate.

Fig. 13: Mach no. contour plot of hypersonic flow over a 2-D backward facing step using the nn stencil.
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Fig. 14: A comparison of the residual convergence behavior for the computation of hypersonic flow over a 2-D
flat plate using the fn1, fn2, nn, and symF stencils.

Fig. 15: A comparison of the axial distribution of wall heat transfer for the computation of hypersonic flow over a
2-D flat plate using the fn1, fn2, nn, and symF stencils.
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4.3  Validation  Against HiFiRE  7  REST  Scramjet  Engine  Shock  Tunnel  Data  Using  a  Grid  Containing
Tetrahedral, Pyramidal, Prismatic, and Hexahedral Cells.

The University of Queensland experimental test of a 75% scale replica of the HiFiRE 7 REST scramjet
engine conducted in the T4 Stalker Tube [12] was simulated previously using the unstructured-grid solver [9]. An
early implementation of  the  fn2 stencil  was used in this prior work and very good comparisons with the inlet
centerline  experimental data were obtained. In the current work, the unstructured-grid solver was used to compute
the  zero  degree angle-of-attack,  tare  (no  fuel  injection)  test  point,  and  the  bilateral  symmetry  of  the  model
geometry was exploited to generate a computational mesh for half of the REST scramjet flow path shown in  Fig.
16, using Pointwise®. The resulting surface grid was predominantly made up of triangles with quadrilaterals being
used along the blunt leading edges and in the internal portion of the flow path. This surface grid was then marched
normal to the wall surface into the interior of the computational domain to form a boundary layer grid made up of
prisms and hexes. This boundary layer grid then transitioned into pyramids and tetrahedra resulting in a mixed cell
type grid. The grid has a total of 44,568,851 cells consisting of 19,198,513 tetrahedral cells, 1,436,197 pyramidal
cells, 18,455,646 prismatic, and 5,488,495 hexahedral  cells, which were then decomposed into 768 partitions
using ParMETIS. 

In Ref. [9], the unstructured-grid solver was run with an early implementation of the fn2 stencil, with the
same inflow/reference conditions that Chan et al. used in Ref.  [12] to perform their CFD simulation using the
VULCAN-CFD structured-grid solver. These conditions were:

 
P

ref
= 1675.0 Pascals, T

ref
= 228.0 Kelvin,

 
and velocity,

U
ref

= 2379 m/s. As mentioned above, the zero degree angle-of-attack, tare case, was selected. However, it is

important to note that the angel-of-attack convention reported in [12] is relative to the combustor centerline. The
angle of attack relative to the x-axis, which runs parallel to the forebody  plate, is 6 degrees, as shown in Fig. 17. A
thermally perfect, chemically frozen air gas mixture was used to simulate the test gas, which at the given reference
conditions yields a Mach number of 7.845 and a unit Reynolds number of Re

ref
= 4.1x10^6/m. The model surfaces

were treated as no-slip, isothermal (300.0 Kelvin) walls,  using the Wilcox wall  matching formulation [35]. The
Menter Baseline two-equation turbulence model [38] was used to compute the Reynolds stresses and Reynolds
heat flux (Pr

t
=0.9). The inviscid fluxes were computed using the  LDFSS scheme with the higher-order cell-face

states being reconstructed using the  UMUSCL, χ =0, scheme with the cell-average gradients limited using the

Φ i (qi
MLP{ g j }) gradient limiter and the Park and Kim MLP-u2 1-D limiter function. The viscous fluxes were computed

using the face tangent gradient method. The boundary layer trips were not modeled.  The governing equations
were solved in a fully coupled manner with the matrix based SGS scheme with  linear-solve inter-partition coupling
and 10 subiterations. The computational domain was initialized to the reference conditions, and a 5-mm thick
“initial boundary layer” was constructed by linearly blending the no-slip isothermal wall condition into the interior of
the computational domain.   

A  Mach  contour  plot  on  the  symmetry  plane  of  the  forebody  and  inlet,  superimposed  over  the
computational grid, is presented in Fig. 17.  Figure 17 illustrates the small size of the forebody and cowl leading
edges relative to the forebody boundary layer  thickness.  Figure 17 also shows that  the shocks are captured
without significant oscillations and that the forebody leading edge and forebody compression corner shocks are
both captured with a small number of cells even where the grid is predominantly tetrahedral in nature. 

Figure 18 presents a comparison of the convergence history of the reduction of the L 2 norm of the residual
for the fn1, fn2,  nn and symF computations showing that the stencils gave nearly identical convergence behavior.
The  computation  was  run  for  1500  iterations  using  a  1st-order  advection  scheme to  establish  the  flow.  The
advection  scheme was  then switched to  the  2nd-order  scheme,  and the  solution  was  run an additional  1500
iterations. The gradient limiter was then frozen at iteration 3000, which can be seen in the residual plot in Fig. 20,
as an abrupt drop in the residual. The solution was then continued for an additional 2000 iterations to make certain
that each solution was stable with the frozen limiter. It  was deemed “safe” to freeze the limiter at cycle 3000
because the mass flow error, surface integrated heat transfer, as well as the integrated forces and moments had
all reached an asymptotic value. This approach resulted in the L

2
 of the Residual of the fn2,  nn and symF stencil

schemes converging approximately 5.0 orders of magnitude relative to the maximum value. However, the behavior
of the fn1 solution residual after the limiter was frozen was significantly different from the fn2, nn and symF  solution
residuals. Fig. 20 shows that the fn1 solution increases nearly 2 orders of magnitude relative to the other solutions
after iteration 3500. The precise reason for this is not currently known but it is thought that there are instabilities
occurring in the fn1 solution that the gradient limiter is, by virtue of it being frozen, is not able to suppress.

The body side and inlet cowl side wall static pressure at the symmetry plane are presented in Figs. 19 and
20. As in Ref. [9], the comparison of the wall pressure distribution with respect to the experimental wall pressure
data is very reasonable and is slightly better than the solution reported in Ref. [12] that was obtained using the
VULCAN-CFD  code  structured-grid  solver.  Figures  21  and  22  present  a  comparison  of  the  body  and  cowl
centerline wall heat flux using the four stencils. The fn2, nn and symF stencils give very similar wall heat transfer
distribution on the body and  cowl  side. The fn1 stencil  produced a similar wall  heat  transfer  distribution  on  the
body side. However, on the cowl side, the results were approximately ten percent higher than the fn2, nn and symF
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Fig.  16:  Schematic of  HIFiRE 7 REST scramjet  engine experimental  model  as  installed in the University of
Queensland T4 Stalker Tube, at 0 degrees angle of attack relative to the combustor centerline, 6 degrees angle-
of-attack relative to the forebody plate surface (the labeled x-axis), reprinted with permission from Ref. [12].

Figure 17: HIFiRE 7 REST  scramjet engine forebody/inlet symmetry plane computational Mach contours with 
unstructured grid superimposed computed using the fn2 stencil.

Fig. 18: A comparison of the residual convergence behavior for the HIFiRE 7 REST scramjet engine inlet using
the fn1, fn2, nn, and symF stencils.
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Figure  19:  A comparison  of  the  computed HIFiRE 7  REST scramjet  engine body wall  center-line  pressure
distributions using the fn1, fn2, nn, and symF stencils, with experimental data from Ref. [12].

Figure 20: A comparison of the computed HIFiRE 7 REST scramjet engine cowl wall center-line pressure 
distributions using the fn1, fn2, nn, and symF stencils, with experimental data from Ref. [12].
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Fig. 21: A comparison of the computed HIFiRE 7 REST scramjet engine body wall center-line axial distribution of
wall heat transfer using the fn1, fn2, nn, and symF stencils.

Fig. 22: A comparison of the computed HIFiRE 7 REST scramjet engine cowl wall center-line axial distribution of
wall heat transfer using the fn1, fn2, nn, and symF stencils.
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stencils. In Ref. [10], the fn1 stencil was found to be unstable for the Mach 8 blunt body grid tested, and Fig. 18
shows that the fn1 stencil solution convergence behavior was problematic after the limiter was frozen. 

Table 3 presents the stencil statistics and the relative augmentation cost. This grid, due to its 3-D nature,
and due to it consisting of hexahedral, pyramidal and tetrahedral cells has statistics such that the min. stencil size
has been determined by the topology of the hexahedral cells and the max. stencil size has been determined by the
connectivity of the tetrahedral cells. The min. stencil size of all 3 stencil types are similar to the 3-D extension of
the stencils illustrated in Fig. 3 for a hexahedral cell. In this case, Table 3 shows stencil statistics for the HiFiRE
REST grid. For this case, the mean stencil size of the fn1 stencil was 4.67. Table 3 shows that the average symF
stencil is significantly smaller and varies less over the computational domain than the  nn stencil.  However, the
table also shows that unlike the backward facing step and flat plate cases the symF stencil varies more than the
fn2 stencil, and the relative augmentation cost metric indicates that the  symF stencil was 1.4 and 5.1 times less
expensive than the  fn2 and  nn stencils, respectively. In all, the mean  symF stencil size was significantly smaller
than the nn stencil but not significantly smaller than the fn2 stencil.

Table 3: Stencil statistics and relative cost of the fn2, nn and symF stencils for the HiFiRE Inlet.

Stencil
Augmentation 

Type

Minimum (min.)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard 

Deviation (σ)

Relative
Augmentation

Cost 

fn2 9 17.6 31 3.16 1

nn 15 51.8 129 19.1 3.64

symF 4 14 83 5.48 0.72

Summary And Conclusions

The methods used in the VULCAN-CFD code to construct the cell-average and cell-face gradients were
described. Particular attention was paid to the weighted linear least-squares methods for the construction of cell-
average gradients. Multiple least-squares stencil construction methodologies were investigated, compared and
evaluated. Three of the stencil construction methods were based on the current state of the art, the fn1, fn2 and nn
methods and a fourth method, symF, is based on a 3-D extension/modification of a Frobenius-norm minimization-
based approach recently introduced by Nishikawa. The extension of Nishikawa's  symF method to  3-D turbulent
viscous flow for use in the VULCAN-CFD described in detail in Ref. [10] was summarized. In addition, a modified
form of the MLP cell-average gradient limiter method of Park and Kim that can be applied to a general stencil was
also summarized here. 

The numerical behavior of WLSQ cell-average gradients computed using the  fn1,  fn2,  nn and  3-D symF
stencil  construction  methods  were  examined  using  three  test  cases.  Turbulent  hypersonic  flow  over  a  2-D
backward facing step using a 2-D grid, a 2-D flat plate using a 3-D grid and a 3-D inlet geometry from the HiFiRE 7
REST scramjet experiment were computed. Stencil size statistics, convergence behavior and wall quantities of
interest, for twelve computations were collected, examined and compared. In addition, in the case of the HiFIRE 7
inlet, comparisons with experimental data were also made. All four stencil types were found to produce solutions
that had similar convergence behavior, shock capturing characteristics, and axial distributions of wall quantities of
interest for all three flows. In addition, the four stencil types were found to produce solutions that compared well
with the inlet body and cowl wall pressure data from the HiFRE 7 REST inlet experiment. Stencil analysis showed
that the 3-D symF stencil construction method was found to produce stencils having the smallest size and standard
deviation on  3-D as well  as  2-D unstructured grids.  The  3-D symF stencil  was found to produce stencils that
resulted in a WLSQ cost that was only slightly less than the fn2 stencil WLSQ cost and significantly less than the
nn stencil WLSQ cost for all test cases. Given that the symF stencil was not a clear winner over the fn2 stencil,
further investigation of other newly emergent techniques is warranted. An example of one such approach is a 3-D
hybrid  grid  extension  of  the  face-averaged  nodal  gradient  cell-centered  approach  recently  developed  by
Nishikawa. This approach, has the potential to reduce the cost of the computation of the least squares gradient by
up to a factor 6 for 3-D non-hexahedral grids and by a factor of 2 for hexahedral grids, relative to the fn2 and nn
cell-average gradient approaches explored in the current work.
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