12,801 research outputs found

    Minimum Makespan Multi-vehicle Dial-a-Ride

    Get PDF
    Dial a ride problems consist of a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs, where each object requires to be moved from its source to destination vertex. We consider the multi-vehicle Dial a ride problem, with each vehicle having capacity k and its own depot-vertex, where the objective is to minimize the maximum completion time (makespan) of the vehicles. We study the "preemptive" version of the problem, where an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log^3 n)-approximation algorithm for preemptive multi-vehicle Dial a ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint. We also show that the approximation ratios improve by a log-factor when the underlying metric is induced by a fixed-minor-free graph.Comment: 22 pages, 1 figure. Preliminary version appeared in ESA 200

    A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers

    Full text link
    We propose a ridesharing strategy with integrated transit in which a private on-demand mobility service operator may drop off a passenger directly door-to-door, commit to dropping them at a transit station or picking up from a transit station, or to both pickup and drop off at two different stations with different vehicles. We study the effectiveness of online solution algorithms for this proposed strategy. Queueing-theoretic vehicle dispatch and idle vehicle relocation algorithms are customized for the problem. Several experiments are conducted first with a synthetic instance to design and test the effectiveness of this integrated solution method, the influence of different model parameters, and measure the benefit of such cooperation. Results suggest that rideshare vehicle travel time can drop by 40-60% consistently while passenger journey times can be reduced by 50-60% when demand is high. A case study of Long Island commuters to New York City (NYC) suggests having the proposed operating strategy can substantially cut user journey times and operating costs by up to 54% and 60% each for a range of 10-30 taxis initiated per zone. This result shows that there are settings where such service is highly warranted

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The multi-vehicle dial-a-ride problem with interchange and perceived passenger travel times

    Get PDF
    The Dial-a-Ride Problem (DARP) introduced in the early 1980s is the NP-Hard optimization problem of developing the most cost-efficient vehicle schedules for a number of available vehicles that have to start from a depot, pick up and deliver a set of passengers, and return back to the same depot. DARP has been used in many modern applications, including the scheduling of demand-responsive transit and car pooling. This study departs from the original definition of DARP and it extends it by considering an interchange point where vehicles can exchange their picked-up passengers with other vehicles in order to shorten their delivery routes and reduce their running times. In addition to that, this study introduces the concept of generalized passenger travel times in the DARP formulation which translates the increased in-vehicle crowdedness to increased perceived passenger travel times. This addresses a key issue because the perceived in-vehicle travel times of passengers might increase when the vehicle becomes more crowded (i.e., passengers might feel that their travel time is higher when they are not able to find a seat or they are too close to each other increasing the risk of virus transmission or accidents). Given these considerations, this study introduces the Dial-a-Ride Problem with interchange and perceived travel times (DARPi) and models it as a nonlinear programming problem. DARPi is then reformulated to a MILP with the use of linearizations and its search space is tightened with the addition of valid inequalities that are employed when solving the problem to global optimality with Branch-and-Cut. For large problem instances, this study introduces a tabu search-based metaheuristic and performs experiments in benchmark instances used in past literature demonstrating the computation times and solution stability of our approach. The effect of the perceived passenger travel times to the vehicle running costs is also explored in extensive numerical experiments.</p
    corecore