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A B S T R A C T

The Dial-a-Ride Problem (DARP) introduced in the early 1980s is the NP-Hard optimization
problem of developing the most cost-efficient vehicle schedules for a number of available
vehicles that have to start from a depot, pick up and deliver a set of passengers, and return
back to the same depot. DARP has been used in many modern applications, including the
scheduling of demand-responsive transit and car pooling. This study departs from the original
definition of DARP and it extends it by considering an interchange point where vehicles can
exchange their picked-up passengers with other vehicles in order to shorten their delivery
routes and reduce their running times. In addition to that, this study introduces the concept of
generalized passenger travel times in the DARP formulation which translates the increased in-
vehicle crowdedness to increased perceived passenger travel times. This addresses a key issue
because the perceived in-vehicle travel times of passengers might increase when the vehicle
becomes more crowded (i.e., passengers might feel that their travel time is higher when they
are not able to find a seat or they are too close to each other increasing the risk of virus
transmission or accidents). Given these considerations, this study introduces the Dial-a-Ride
Problem with interchange and perceived travel times (DARPi) and models it as a nonlinear
programming problem. DARPi is then reformulated to a MILP with the use of linearizations
and its search space is tightened with the addition of valid inequalities that are employed when
solving the problem to global optimality with Branch-and-Cut. For large problem instances, this
study introduces a tabu search-based metaheuristic and performs experiments in benchmark
instances used in past literature demonstrating the computation times and solution stability of
our approach. The effect of the perceived passenger travel times to the vehicle running costs is
also explored in extensive numerical experiments.

1. Introduction

The first models for the dial-a-ride problem (DARP) were developed in the early 1980s to plan the routes of buses based on
telephone requests from passengers (Psaraftis, 1980). Over the years, the applicability of DARP models has been extended to
on-demand services including minibuses, shared modes, and last-mile transport modes (Ho et al., 2018). There are both static
and dynamic DARP formulations in literature, however static formulations have received more attention because, in practice, the
transportation requests of passengers are known in advance (Borndörfer et al., 1999; Cordeau and Laporte, 2007; Gkiotsalitis, 2023).
The fleet availability and size are also known in advance, and vehicles start from and return to a pre-specified depot (Alesiani et al.,
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2021). Prospective passengers can impose a time window on both their departure and arrival times from/to their origin/destination
locations (Jaw et al., 1986). Typically, DARP formulations impose a maximum limit on the ride times of passengers and the
route times of vehicles (Parragh, 2011). The simplest version of DARP considers a single vehicle and can be solved as a dynamic
program (Psaraftis, 1980). The main difference of DARP from the pickup and delivery problem (PDP) in logistics is that it considers
the ride times of passengers as an additional problem constraint.

The classic DARP formulation aims to develop vehicle schedules where each vehicle starts from the depot, picks up and delivers
assengers, and returns to the same depot. In this formulation, passengers cannot transfer between vehicles and they are inside the
ame vehicle from their embarkment at the pickup location until their disembarkment at the delivery location. Given that service
roviders seek to reduce the vehicle running times, it is often beneficial to use different vehicles for the pick up and the delivery of
assengers. This has led to the recent development of dial-a-ride problems with transfers (DARPT), where passengers are allowed to
ransfer between vehicles (Deleplanque and Quilliot, 2013). This study considers the case where vehicles start from the depot, pick
p passengers, and return them to the depot (called interchange point) where they are re-arranged to (potentially) different vehicles.
hen, passengers are delivered to their final destinations by the re-arranged vehicles. The problem description discussed herein has
he benefit that a vehicle can be assigned to pick up a group of closely located passengers even if their destination locations are
idely dispersed since these passengers will be reassigned to other vehicles at the interchange point. For a graphical illustration of

he DARPT the reader is referred to Fig. 3.
Our proposed formulation guarantees that passengers will have at most one transfer at the depot location, called the interchange

point. Meanwhile, the service provider can reduce its vehicle running time costs by arranging the schedules of the available vehicles
more efficiently via splitting them into pickup schedules and delivery schedules. That is, a vehicle can pick up a different set of
passengers than the set of passengers that will finally deliver. This problem formulation is beneficial for applications where the
depot of the service operator is at a central location which splits the pickup and delivery locations of passengers into two, resulting
in a centralized hub-and-spoke network. The main reasoning behind using one transshipment point, lies in the idea of improving
vehicle capacity utilization, allowing vehicles to stop for transfers and adjustments of their transport loads, as well as allowing
drivers to switch vehicles or get release times for conforming to policy-related matters. We note that hub-and-spoke networks
are widely used in fixed-line services given their economy of scale-related benefits compared to point-to-point networks (Fielbaum
et al., 2016). In this study, we propose a DARP formulation that applies to DARP problems with a pickup and delivery distribution
of passengers which resembles a hub-and-spoke network. We call this problem the dial-a-ride problem with interchange (DARPi)
because passengers might change vehicle at the interchange point location.

The DARPi problem description resembles the pickup and delivery problem with a crossdock (PDPCD). Under the PDPCD, a
transportation request can be either directly delivered from its origin to its destination by one vehicle or it can be picked up by one
vehicle, and then transported to the cross-dock and delivered to its destination by another vehicle. In the proposed network setting,
all passengers must pass from the cross-dock; however, only those who will reach their destination point with a different vehicle
will need to disembark. Furthermore, there are additional significant differences, such as:

1. the consideration of route duration constraints for pickup and delivery vehicles.
2. the consideration of ride time constraints for passengers.
3. the consideration of the inconvenience of passengers when the in-vehicle occupancy increases beyond a certain level, resulting

in overcrowding, in the perceived passenger ride times.

To consider in-vehicle overcrowding, we use perceived travel times that capture the discomfort of passengers when traveling
inside a crowded vehicle. This is an important topic because recent studies show that the perception of a passenger’s in-vehicle
travel time changes with the level of crowdedness (Yap et al., 2020). This is especially true when passengers cannot find a seat,
they are too close to each other, or they cannot meet the social distancing requirements during a pandemic (Gkiotsalitis, 2021).

In this work we consider the static DARP case in which the objective function is to minimize the vehicle running costs. Quality
of service is enforced by defining appropriate maximum ride times for each user considering the perceived travel times. Our
contribution in this paper is threefold:

• first, we formulate the Dial-a-Ride Problem with interchange and generalized travel times that consider in-vehicle crowding
(DARPi).

• second, we model this problem as a quadratic integer program and linearize this formulation resulting in a MILP.
• third, we propose a tabu search heuristic in order to find solutions even for large instances.

In addition to the above, we generate test instances for different problem sizes and we test our model on these instances
investigating (i) the optimality gap of the tabu search heuristic in small problem instances, (ii) its performance stability in larger
problem instances, and (iii) the impact on passenger travel times and vehicle crowdedness when considering perceived travel times
in the problem’s formulation.

The remainder of our paper is structured as follows. Section 2 provides a literature review on the dial-a-ride and pick up
and delivery problems considering their classic forms and their extensions that consider transfers. Section 3 introduces the DARPi
formulation when considering the actual travel times of passengers. Section 4 expands this formulation by considering the perceived
ravel times of passengers. DARPi is formulated as a mixed-integer non-linear program and it is linearized to a mixed-integer linear
MILP) one, which we show that it an NP-complete decision problem. In Section 5 we introduce a problem specific Tabu search-based
olution method equipped with arc-exchange neighborhood structures to compute solutions for larger instances. Section 7 provides
he numerical experiments of our study using benchmark instances of up to 200 requests. Finally, future directions are provided in
ur conclusion section.
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2. Literature review

2.1. Dial-a-ride studies

DARP seeks to define a set of minimum cost routes in order to satisfy a set of transportation requests. Each request involves
ransporting a set of users from a set of origins, called pickup points, to a set of destinations, called delivery points. Users associated with

distinct requests can share the same vehicle as long as the vehicle’s capacity is not exceeded. A maximum ride time, corresponding
to the maximum duration of the trip between the pickup and the delivery point, is associated with each request. In this section we
review relevant literature on the static, multi-vehicle case where time windows, route duration constraints and passenger ride time
constraints are simultaneously considered.

One of the first heuristics to solve the DARP was proposed in the work of Jaw et al. (1986). The authors presented a sequential
insertion procedure for solving a DARP variant considering only time window and ride time constraints. Several metaheuristic
algorithms have been later proposed to solve the DARP. Cordeau and Laporte (2003a) formulated and solved the static DARP
with a tabu search heuristic. Their model allows users to specify a time window of a fixed width on their inbound or outbound
trips, with an upper limit on the travel time for any user. Their work has later been extended to the dynamic case by Attanasio
et al. (2004), where the primary objective is to accept as many requests, received throughout the day, as possible while satisfying
operational constraints. The authors developed a number of parallel heuristics based on a Tabu search previously proposed for the
static case (Cordeau and Laporte, 2003b). Madsen et al. (1995) were the first to explicitly solve the DARP with multiple objectives.
They resort to the weighted sum approach to incorporate cost as well as user-related objectives into their optimization procedure.
A classical cluster first, route second algorithm is proposed in Borndörfer et al. (1999) where customer satisfaction is taken into
account in terms of punctual service. Customer ride times are implicitly considered by means of time windows. Xiang et al. (2006)
present a heuristic for solving a large-scale static dial-a-ride problem bearing complex constraints. Wong and Bell (2006) present a
modified insertion heuristic to solve the DARP with multi-dimensional capacity constraints, and the performance of the proposed
algorithm is tested via simulation. Recently, Gschwind and Drexl (2019) have considered a DARP variant that aims at finding a set
of minimum-cost routes satisfying constraints on vehicle capacity, time windows, maximum route duration, and maximum user ride
times. The authors propose an Adaptive Large Neighborhood Search which proves to be very competitive with state of-the-art DARP
heuristics regarding solution quality and running time. Comprehensive surveys on the DARP literature are provided by Cordeau et al.
(2010), Doerner and Salazar-González (2014), Parragh et al. (2008).

Many papers have also focused on studying a generalization of the DARP in which users can be transferred from one vehicle
to another at intermediate points, called transfer or transshipment points. This problem is called the Dial-A-Ride Problem with
Transfers (DARPT). Most research works consider multiple transfer points which might correspond to a pickup or drop off
location. Deleplanque and Quilliot (2013) consider transfer in multiple transfer points. In this work, the transfer points can be
located at any pickup or dropoff node in the network and there is no dedicated transshipment facility for the transfers. In many
of these applications, a user is dropped off at a transfer point before he is picked up by another vehicle (Schönberger, 2017). The
synchronization of passenger transfers between vehicles is the main challenge in this variant. More specifically, this area of research
aims to minimize the impacts of passenger transfers on users’ inconvenience (e.g., users’ waiting time). Masson et al. (2014) presented
a generalization of the DARP where passengers could make transfers at intermediate points and claimed that significant savings could
be achieved when transfers are allowed, in terms of total distance traveled.

The literature review reveals a gap in past studies related to manpower requirements for the transportation of people with limited
mobility. These requirements could include the preference of assigning the same driver to a user in multiple periods or the users
might request to have accompanying staff members on the vehicle. Additional concerns about manpower requirements in DARPs
include the loads of the accompanying staff members and the synchronization of vehicles and assistants. In addition, most DARPs
consider only new user requests under a dynamic and deterministic environment. These problems do not consider, however, other
types of events such as long delays in vehicle arrival times that require modifications of existing plans or affect the synchronization of
vehicles. New modeling techniques and frameworks should be proposed to capture these factors related to disruption management.
The aforementioned statements are recommended topics for future work. For a more comprehensive survey on research gaps and
opportunities in dial-and-ride problems, the interested reader is referred to the work of Ho et al. (2018).

2.2. Fleet scheduling studies involving transfers

Comparable to the DARPT is the Pickup and Delivery Problem with Transfers (PDPT) for the transportation of goods. The first
definition is based on the General Pickup and Delivery Problem (PDP) by Savelsbergh and Sol (1995), in which packages are directly
shipped from suppliers to their associated customer by the same carrier. Berbeglia et al. (2007) have identified different categories of
PDPs where distinction is made in planning based on supplier-customer ratio. Many suppliers delivering to many customers (many-
to-many), or a single supplier to a single customer (one-to-one), while keeping in mind the possibilities of shipments between these
two examples (one-to-many and others). Pickup and Delivery Problems with intermediate facilities extend classical PDPs introducing
the opportunity for a vehicle to drop or pickup loads at an intermediate facility, called cross-dock (or, sometimes, transshipment
point) in this context. The introduction of this type of facility may lead to a more efficient use of the vehicle capacities but increases
considerably the complexity of the problem. The main issue in such a problem is how to model the operations carried out at the
intermediate facility and, in particular, how to model the flows of freight moving from a pickup vehicle to a delivery vehicle.
3

While in PDP the same vehicle fleet is used for performing both pickup and delivery operations, PDPT is an extension that relaxes
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the constraint that packages are delivered by the same carrier, enabling the transfer of packages between carriers. The PDPT has
predefined transfer locations where carriers may interchange packages. Mitrović-Minić and Laporte (2006) were one of the first that
developed a PDPT with a single transfer point. Additional research into solution techniques for PDPT with a single transfer node
was performed by Cortés et al. (2010), Masson et al. (2013) and Rais et al. (2014), where the last allows transfers to take place at
any node. Cortés et al. (2010) showed PDPT can yield solutions that in broad terms are more efficient when transfers are allowed.
The authors presented a mathematical formulation and proposed a solution method based on Benders decomposition to quantify
the trade off between the advantage of adding flexibility (by relaxing the coupling constraints) and the extra disutility due to the
addition of transfers to the operational scheme. Masson et al. (2014) introduced the transfer of packages with the use of shuttle
services between two transfer points. Additionally, Ghilas et al. (2016) modeled transportation of passengers with time windows
and synchronization of routes while using scheduled lines for transfers.

Another closely related research area of the literature is the Vehicle Routing Problem with Cross-docking (VRPCD) for the
ransportation of goods. The work of Wen et al. (2009) has been used as the basis for various papers. This seminal work addressed
practical distribution problem stemming from a Danish company. The authors considered time window constraints on all pickup

nd delivery nodes of the distribution network as well as on the cross-dock (CD) facility, to model the presence of a fixed planning
orizon. In addition, the restriction of the simultaneous arrival of vehicles at the CD was dropped and more elaborate synchronization
onstraints were considered to properly coordinate the inbound and outbound product flows. The authors presented a Mixed Integer
inear Programming (MILP) formulation and proposed a Tabu Search heuristic embedded within an Adaptive Memory Programming
ramework to solve problem instances involving up to 200 transportation requests.

Hasani-Goodarzi and Tavakkoli-Moghaddam (2012) studied the VRPCD with split deliveries and multiple products. As in the
ork of Lee et al. (2006), the authors imposed simultaneous arrival of inbound vehicles at the CD. The problem was formulated as
MILP aiming to determine the best vehicle routes and the optimal number of utilized vehicles. In a later work, Tarantilis (2013)
roposed a multi-restart Tabu Search algorithm for solving the benchmark problem instances of Wen et al. (2009) and examined
n alternative scenario involving different vehicles for performing the pickup and delivery operations. Furthermore, the author
xamined total routing costs for open and closed route network configurations. Morais et al. (2014) developed three Iterated Local
earch heuristic algorithms for solving the VRPCD. The proposed algorithms were tested on the set of instances introduced by Wen
t al. (2009) as well as on a set of randomly generated instances of larger size, involving up to 500 nodes. To solve the VRPCD, Dondo
nd Cerdá (2013) developed two different solution approaches: (i) a rigorous MILP formulation and (ii) a sweep-heuristic based on a
ILP model. The authors considered two alternative objective functions. The first one involved the minimization of the total routing

osts, whereas the second one involved the minimization of the return time to the CD of the last outbound vehicle.
Sadri Esfahani and Fakhrzad (2014) proposed two meta-heuristic algorithms based on Tabu search and Variable Neighborhood

earch to solve the VRPCD. Birim (2016) also presented a Simulated Annealing algorithm to address the Vehicle Routing Problem in a
ross-docking setting with heterogeneous fleet of vehicles. An Adaptive Memory Programming algorithm was developed in the work
f Nikolopoulou et al. (2017) for solving large scale problem instances in a cross-docking network with many-to-many relationship
etween suppliers and customers. Grangier et al. (2017) proposed a metaheuristic based on large neighborhood search for solving the
RPCD. Abad et al. (2018) proposed a bi-objective mathematical programming model to tackle the integrated pickup and delivery
ollution-routing problem with consolidation decisions and used a matheuristic based on large neighborhood search. Baniamerian
t al. (2019) considered a profitable heterogeneous vehicle routing problem with cross-docking. The authors developed a hybrid
eta-heuristic algorithm based on modified Variable Neighborhood Search and a Genetic Algorithm to solve problem instances of

arge scale. Finally, Zachariadis et al. (2022) introduced a new Vehicle Routing Problem with cross-docking and capacity restrictions
t the cross-dock. A mathematical formulation is proposed to capture the business setting of the new problem. Subsequently, a local
earch-based metaheuristic algorithm was developed for solving medium and large-scale problem instances.

Another research stream in the literature has focused on the study of hybrid cross-docking distribution networks. The work
f Petersen and Ropke (2011) was the first one to study a VRPCD considering optional returns at the CD. In a later work, Santos et al.
2013) studied a hybrid network structure with cross-docking, where direct shipping between suppliers and customers was allowed.

hybrid distribution network was also examined in the work of Nikolopoulou et al. (2019). The authors developed a Tabu Search
lgorithm to compare two alternative distribution strategies, namely direct shipping and cross-docking, in terms of transportation
osts incurred when products must be transferred between two sets of origin and destination points. Recently, Gunawan et al.
2021) proposed a matheuristic algorithm for the VRPCD that does not consider time windows for supplier and customer points.
or a comprehensive review of distribution networks with consolidation of freight and merging operations, the reader is referred
o the work of Guastaroba et al. (2016). It is also worth noting that a number of works have focused on the Pickup and Delivery
roblem with Crossdock (PDPCD) which introduces pickup and delivery routes to VRPCD (see Petersen and Ropke, 2011; Santos
t al., 2013).

Summarizing, the literature review reveals the following gaps:

• the DARP with an interchange point has not been formulated in past literature
• there is no inclusion of perceived travel times in the DARP formulation
• there is no exact formulation for the DARP with an interchange point that considers perceived travel times

In addition to the above, although the PDP and VRPCD models have been extensively studied in the past, our literature review
eveals a gap in the study of hybrid network schemes. A direction for future studies can be a hybrid strategy allowing both direct-
hipping vehicle trips as well as product consolidation at the cross-dock as a more cost-effective transportation option. Furthermore,
he use of meta-heuristics to solve this category of problems is a popular choice among the research community. The development
4



Transportation Research Part C 156 (2023) 104353K. Gkiotsalitis and A. Nikolopoulou
Table 1
Classification of the cited articles based on the problem features considered.

Dial-a-Ride problem

Research Work DD MTP T D TW MO SD HF HU RT/RD
Psaraftis (1980)a ✓ ✓

Jaw et al. (1986) ✓ ✓

Madsen et al. (1995)b ✓ ✓ ✓ ✓ ✓

Cordeau and Laporte (2003b) ✓ ✓ ✓

Attanasio et al. (2004) ✓ ✓ ✓ ✓

Wong and Bell (2006) ✓ ✓ ✓ ✓ ✓

Xiang et al. (2006)c ✓ ✓ ✓ ✓ ✓

Parragh (2011) ✓ ✓ ✓ ✓

Gschwind and Drexl (2019) ✓ ✓

Gkiotsalitis (2021) ✓ ✓ ✓ ✓

Dial-a-Ride with Transfers

Research Work DD MTP T D TW MO SD HF HU RT/RD

Deleplanque and Quilliot (2013)d ✓ ✓ ✓ ✓

Masson et al. (2014) ✓ ✓ ✓ ✓

Schönberger (2017)e ✓ ✓ ✓

This work ✓ ✓ ✓ ✓

Pickup and Delivery with Transfers

Research Work DD MTP T D TW MO SD HF HU RT/RD

Mitrović-Minić and Laporte (2006) ✓ ✓ ✓ ✓

Cortés et al. (2010) ✓ ✓

Masson et al. (2013) ✓ ✓

Rais et al. (2014) ✓ ✓

Ghilas et al. (2016) ✓ ✓

Vehicle Routing with Cross-docking

Research Work DD MTP T D TW MO SD HF HU RT/RD

Lee et al. (2006) ✓ ✓ ✓

Wen et al. (2009) ✓ ✓ ✓

Liao et al. (2010)f ✓

Hasani-Goodarzi and Tavakkoli-Moghaddam (2012)f ✓ ✓ ✓ ✓

Vahdani et al. (2012) ✓ ✓

Dondo and Cerdá (2013) ✓ ✓

Esfahani and Fakhrzad (2014)f ✓ ✓

Tarantilis (2013) ✓ ✓ ✓ ✓

Moghadam et al. (2014) ✓ ✓ ✓ ✓

Morais et al. (2014) ✓ ✓

Nikolopoulou et al. (2017) ✓ ✓ ✓ ✓ ✓

Yin and Chuang (2016) ✓ ✓ ✓

Yu et al. (2016) ✓ ✓ ✓

Baniamerian et al. (2019) ✓ ✓ ✓

Grangier et al. (2017) ✓ ✓ ✓

Nikolopoulou et al. (2019) ✓ ✓ ✓

Birim (2016) ✓ ✓ ✓

Abad et al. (2018)f ✓ ✓

Baniamerian et al. (2019) ✓ ✓ ✓ ✓

Zachariadis et al. (2022)g ✓ ✓ ✓ ✓ ✓

DD: Direct delivery; MTP: Multiple transfer points; T: Transfer; D: Dynamic; TW: Time windows; MO: Multiple objectives; SD: Split deliveries; HF: Heterogeneous
fleet; HU: Heterogeneous users; RD/RT: Ride time and route duration constraints.
a Single vehicle.
b Multiple types of vehicle capacities.
c Driving constraints are considered.
d Dynamic transfer point.
e A least transfer time is ensured for all passengers at the transfer point.
f Multiple products.
g Capacity of the cross-dock facility is considered.

of hybrid methods involving cooperative schemes between exact methods and metaheuristics would also be worth exploring. This
is because models are becoming more complex and there is a need to capture more and more realistic operational features and the
increasing number of user requests.
5
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Table 2
Classification of the cited articles based on the model type and the solution methods proposed.

Research work Model type Solver/Solution method

Psaraftis (1980) – DP
Jaw et al. (1986) – IH
Madsen et al. (1995) – IH
Borndörfer et al. (1999) – B&C, SP
Cordeau and Laporte (2003b) – TS
Attanasio et al. (2004) – TS
Lee et al. (2006) NLP TS
Mitrović-Minić and Laporte (2006) – H
Wong and Bell (2006) – IH
Xiang et al. (2006) – LS, CG
Cordeau and Laporte (2007) – TS
Wen et al. (2009) MILP TS
Cortés et al. (2010) MILP B&C
Liao et al. (2010) – TS
Parragh (2011) MILP B&C, NVS
Hasani-Goodarzi and Tavakkoli-Moghaddam (2012) MILP GAMS
Vahdani et al. (2012) NLP PSO/SA/VNS
Deleplanque and Quilliot (2013) – IH
Dondo and Cerdá (2013) MILP H
Esfahani and Fakhrzad (2014) MILP TS, VNS
Masson et al. (2013) – B&C, ALNS
Tarantilis (2013) – TS
Masson et al. (2014) – ALNS
Morais et al. (2014) – ILS
Moghadam et al. (2014) MINLP SA, SA/ACO
Rais et al. (2014) MIP MIP Solver
Ghilas et al. (2016) MIP CPLEX
Nikolopoulou et al. (2017) – TS
Yin and Chuang (2016) NLP AMABC
Yu et al. (2016) MILP SA
Baniamerian et al. (2019) MILP GA
Grangier et al. (2017) MILP LNS, SPM
Nikolopoulou et al. (2019) MILP AMP, TS
Schönberger (2017) MA
Abad et al. (2018) MILP GA/PSO
Birim (2016) MILP SA
Baniamerian et al. (2019) MILP GA/VNS, SA/ABC
Gschwind and Drexl (2019) – ALNS
Gkiotsalitis (2021) MILP –
Zachariadis et al. (2022) MILP TS
This work MILP TS

ABC: Artificial bee colony; ACO: Ant colony optimization; AMP: Adaptive memory programming; AMABC: Adaptive memory
artificial bee colony; BBO: Biogeography-based optimization; B&C: Branch and cut; B&P: Branch and price; CG: Column generation;
DP: Dynamic programming; GA: Genetic algorithm; H: Heuristic; IH: Insertion heuristic; LS: Local search; MA: Memetic algorithm;
MILP: Mixed-integer linear programming; IP: Integer programming; MINLP: Mixed-integer non-linear programming; NLP: Non-
linear programming; PSO: Particle swarm optimization; SA: Simulated annealing; SAICA: Self-adaptive imperialist competitive
algorithm; SP: Set partitioning; SPM: Set partitioning and matching problem; TS: Tabu search; VNS: Variable neighborhood
search.

Tables 1 and 2 provide a classification of the cited articles in the literature with respect to the special features considered and
he algorithms used to solve the problems.

. DARPi with actual passenger travel times

DARPi is formally defined as follows. Let  = ( ,) be a directed graph. The vertex set  is partitioned into { ∪ ∪} where
 = ⟨𝑜1, 𝑜2, 𝑜3, 𝑜4⟩ are four copies of the depot,  = ⟨1,… , 𝑛⟩ the set of pickup vertices and  = ⟨𝑛 + 1,… , 2𝑛⟩ the set of delivery
ertices. In more detail, 𝑜1 symbolizes the start of the vehicle to pickup customers, 𝑜2 the return of the vehicle to the interchange

point, 𝑜3 the departure of the vehicle from the interchange point to deliver customers, and 𝑜4 the end of the trip of the vehicle after
it has delivered all customers. The locations of 𝑜1, 𝑜2, 𝑜3, 𝑜4 are the same because they all refer to the depot location. If two passenger
equests have a common pickup but different delivery location, the corresponding pickup vertex is duplicated. The same applies
f two requests have a common delivery location but different pickup locations. On the other side, if the origin-destination pair
f several passengers is the same, the request of these passengers can be represented by a pickup and a delivery pair. That is, the
ickup and delivery vertices are associated with exactly one origin-destination pair. It follows that we have 𝑛 requests, where each
equest is a couple (𝑖, 𝑛 + 𝑖) with 𝑖 ∈  being the pickup point and 𝑛 + 𝑖 ∈  the associated delivery point for this origin-destination

pair. The feasible arc set is  =
{

{(𝑜 , 𝑗) ∶ 𝑗 ∈ } ∪ {(𝑖, 𝑗) ∶ 𝑖 ∈  , 𝑗 ∈  , 𝑖 ≠ 𝑗} ∪ {(𝑖, 𝑜 ) ∶ 𝑖 ∈ } ∪ {(𝑜 , 𝑗) ∶ 𝑗 ∈ } ∪ {(𝑖, 𝑗) ∶ 𝑖 ∈
6

1 2 3
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, 𝑗 ∈ , 𝑖 ≠ 𝑗} ∪ {(𝑖, 𝑜4) ∶ 𝑖 ∈ }
}

. Note that a vehicle cannot go directly from a pickup point to a delivery point without passing
from the interchange point, denoted by 𝑜2, 𝑜3. This is a key difference to DARP problems with transfers (DARPT) or Pickup-and-

elivery Problems with Transfers (PDPT). In essence, a vehicle starts from 𝑜1, serves pickup nodes belonging to set  , returns to the
nterchange point 𝑜2 where it exchanges its passengers, and then departs from the interchange point 𝑜3 delivering its newly assigned
assengers to their delivery points. Finally, it returns back to the depot 𝑜4. This is shown in Fig. 3 in our demonstration section,
here 0 is the location of the depot and corresponds to 𝑜1, 𝑜2, 𝑜3, 𝑜4.

To each vertex 𝑖 ∈  , there is an associated pickup or delivery demand 𝑞𝑖 with 𝑞𝑖 ≥ 0 ∀𝑖 ∈  , and 𝑞𝑖 = 𝑞𝑖−𝑛 ∀𝑖 ∈ . This demand
represents the number of passengers of the origin-destination pair (𝑖, 𝑛 + 𝑖). Note that vehicles start from 𝑜1 empty and return to 𝑜4
mpty. That is, 𝑞𝑜1 = 𝑞𝑜4 = 0. There is also a minimum service duration for boarding/alighting every passenger. If 𝛽 ∈ R+ is the fixed

time requirement for handling a single passenger, then this duration is 𝛽
∑

𝑖∈ 𝑞𝑖 at the interchange location. For the interchange
location, we also assume an additional fixed time for unloading and reloading, 𝑎 ∈ R+.

Let  be the set of vehicles. The capacity of vehicle 𝑘 ∈  is denoted as 𝑄𝑘 ∈ R+ and the maximum allowed duration of route
𝑘 as 𝑇𝑘 ∈ R+. The cost and travel time of traversing a feasible arc (𝑖, 𝑗) 𝑖 ∈  without performing intermediate stops is 𝑐𝑖𝑗 ∈ R+ and
𝑡𝑖𝑗 ∈ R+, respectively. Note that the triangular inequality holds because both the costs and the travel times are non-negative. Let
𝐿 ∈ R+ be the maximum allowed ride time of any traveler and [𝑒𝑖, 𝑙𝑖] the time window within which we should serve vertex 𝑖.

Let also 𝑢𝑘𝑖 ∈ R+ be the time at which vehicle 𝑘 starts serving vertex 𝑖 ∈ ∪ and 𝑟𝑖 ∈ R+ the ride time of user 𝑖 corresponding to
request (𝑖, 𝑛+1). We also introduce binary variables 𝑥𝑘𝑖𝑗 , 𝜂

𝑘
𝑖 and 𝜃𝑘𝑖 . 𝑥𝑘𝑖𝑗 is equal to 1 if vehicle 𝑘 serves vertices (𝑖, 𝑗) ∈  sequentially,

i.e., vertex 𝑗 is served directly after vertex 𝑖. 𝜂𝑘𝑖 = 1 if vehicle 𝑘 unloads request 𝑖 ∈  to the interchange point. 𝜃𝑘𝑖 = 1 if vehicle 𝑘
reloads request 𝑖 ∈  from the interchange point. Binary variables 𝜂̃𝑘 and 𝜃𝑘 indicate also whether vehicle 𝑘 unloads or reloads at
the interchange point, respectively.

The problem has the following continuous, nonnegative variables, the first two of which have been already described:

𝑢𝑘𝑖 the time at which vehicle 𝑘 starts servicing vertex 𝑖 ∈ 
𝑟𝑖 the ride time of traveler 𝑖 corresponding to request (𝑖, 𝑛 + 𝑖), where 𝑖 ∈ 
𝜏𝑘 the time at which vehicle 𝑘 ∈  finishes unloading at the interchange point
𝑤𝑘 the time at which vehicle 𝑘 ∈  starts reloading at the interchange point
𝑧𝑖 the time at which request 𝑖 ∈  is unloaded at the interchange point

The compact, three-index formulation of the DARPi model is cast below. Note that we use a very large positive number 𝑀 → +∞
or modeling purposes. In addition, the nomenclature of the model is provided in the Appendix - Table A.15.

(DARPi with Actual Travel Times):

min
∑

𝑘∈

∑

(𝑖,𝑗)∈
𝑐𝑘𝑖𝑗𝑥

𝑘
𝑖𝑗 (1)

subject to:
∑

𝑘∈

∑

𝑗∶(𝑖,𝑗)∈
𝑥𝑘𝑖𝑗 = 1 ∀𝑖 ∈  ∪ (2)

∑

𝑖∈

∑

𝑗∶(𝑖,𝑗)∈
𝑞𝑖𝑥

𝑘
𝑖𝑗 ≤ 𝑄𝑘 ∀𝑘 ∈  (3)

∑

𝑖∈

∑

𝑗∶(𝑖,𝑗)∈
𝑞𝑖𝑥

𝑘
𝑖𝑗 ≤ 𝑄𝑘 ∀𝑘 ∈  (4)

∑

𝑗∶(𝑜1 ,𝑗)∈
𝑥𝑘𝑜1𝑗 =

∑

𝑗∶(𝑜3 ,𝑗)∈
𝑥𝑘𝑜3𝑗 = 1 ∀𝑘 ∈  (5)

∑

𝑗∶(𝑗,𝑜2)∈
𝑥𝑘𝑗𝑜2 =

∑

𝑗∶(𝑗,𝑜4)∈
𝑥𝑘𝑗𝑜4 = 1 ∀𝑘 ∈  (6)

∑

𝑖∶(𝑖,ℎ)∈
𝑥𝑘𝑖ℎ −

∑

𝑗∶(ℎ,𝑗)∈
𝑥𝑘ℎ𝑗 = 0 ∀ℎ ∈  ∪, 𝑘 ∈  (7)

𝑢𝑘𝑗 ≥ 𝑢𝑘𝑖 + 𝑡𝑖𝑗 −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (8)

𝑒𝑖 ≤ 𝑢𝑘𝑖 ≤ 𝑙𝑖 ∀𝑖 ∈  , 𝑘 ∈  (9)

𝜂𝑘𝑖 − 𝜃𝑘𝑖 =
∑

𝑗∈∪{𝑜2}∶𝑗≠𝑖
𝑥𝑘𝑖𝑗 −

∑

𝑗∈∪{𝑜4}∶𝑗≠𝑖+𝑛
𝑥𝑘𝑖+𝑛,𝑗 ∀𝑖 ∈  , 𝑘 ∈  (10)

𝜂𝑘𝑖 + 𝜃𝑘𝑖 ≤ 1 ∀𝑖 ∈  , 𝑘 ∈  (11)
1
𝑀

∑

𝑖∈
𝜂𝑘𝑖 ≤ 𝜂𝑘 ≤

∑

𝑖∈
𝜂𝑘𝑖 ∀𝑘 ∈  (12)

1
𝑀

∑

𝑖∈
𝜃𝑘𝑖 ≤ 𝜃𝑘 ≤

∑

𝑖∈
𝜃𝑘𝑖 ∀𝑘 ∈  (13)

𝜏𝑘 = 𝑢𝑘𝑜2 + 𝑎𝜂̃𝑘 + 𝛽
∑

𝑞𝑖𝜂
𝑘
𝑖 ∀𝑘 ∈  (14)
7

𝑖∈
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𝑤𝑘 ≥ 𝜏𝑘 ∀𝑘 ∈  (15)

𝑢𝑘𝑜3 = 𝑤𝑘 + 𝑎𝜃𝑘 + 𝛽
∑

𝑖∈
𝑞𝑖𝜃

𝑘
𝑖 ∀𝑘 ∈  (16)

𝑤𝑘 ≥ 𝑧𝑖 −𝑀(1 − 𝜃𝑘𝑖 ) ∀𝑖 ∈  , 𝑘 ∈  (17)

𝑧𝑖 ≥ 𝜏𝑘 −𝑀(1 − 𝜂𝑘𝑖 ) ∀𝑖 ∈  , 𝑘 ∈  (18)

𝑢𝑘𝑜2 − 𝑢𝑘𝑜1 ≤ 𝑇𝑘 ∀𝑘 ∈  (19)

𝑢𝑘𝑜4 − 𝑢𝑘𝑜3 ≤ 𝑇𝑘 ∀𝑘 ∈  (20)

𝑟𝑖 =
∑

𝑘∈

∑

𝑗∶(𝑗,𝑛+𝑖)∈
𝑥𝑘𝑗,𝑛+𝑖𝑢

𝑘
𝑛+𝑖 −

∑

𝑘∈

∑

𝑗∶(𝑗,𝑖)∈
𝑥𝑘𝑗,𝑖𝑢

𝑘
𝑖 ∀𝑖 ∈  (21)

𝑟𝑖 ≤ 𝐿 ∀𝑖 ∈  (22)

The objective function (1) strives to minimize the total vehicle running costs. Constraints (2) ensure that each request-related
vertex is visited exactly once. Constraints (3) and (4) ensure that the vehicle capacity at the pickup and delivery route is not
exceeded. Constraints (5) ensure that the pickup route of each vehicle will start from 𝑜1 and the delivery route of each vehicle will
start from 𝑜3. Similarly, constraints (6) ensure that every pickup route of a vehicle will return to 𝑜2 and every delivery route will
return to 𝑜4. Constraints (7) ensure that when a vehicle arrives to a pickup or delivery vertex, it should depart from that vertex
ensuring the flow conservation. Constraints (8) ensure that if arc (𝑖, 𝑗) ∈  is served by vehicle 𝑘, then the time at which vehicle 𝑘
starts servicing vertex 𝑗 is greater than or equal to 𝑢𝑘𝑖 plus the travel time from 𝑖 to 𝑗. Constraints (9) ensure that a vertex 𝑖 ∈  will
be served within its time window. Let us now explain constraints (10). When

∑

𝑗∈∪{𝑜2}∶𝑗≠𝑖
𝑥𝑘𝑖𝑗 = 1

vehicle 𝑘 will pickup request 𝑖. Similarly, when
∑

𝑗∈∪{𝑜4}∶𝑗≠𝑖+𝑛
𝑥𝑘𝑖+𝑛,𝑗 = 1

vehicle 𝑘 will deliver request 𝑖. Constraints (10) result in the following four cases: (a) if request 𝑖 is picked up but not delivered by
vehicle 𝑘, then 𝜂𝑘𝑖 − 𝜃𝑘𝑖 = 1 and because 𝜂𝑘𝑖 + 𝜃𝑘𝑖 ≤ 1 (see constraints (11)) we have that 𝜂𝑘𝑖 = 1 and 𝜃𝑘𝑖 = 0; (b) if request 𝑖 is not
picked up, but it is delivered by vehicle 𝑘, then 𝜂𝑘𝑖 − 𝜃𝑘𝑖 = −1 and because 𝜂𝑘𝑖 + 𝜃𝑘𝑖 ≤ 1 we have that 𝜂𝑘𝑖 = 0 and 𝜃𝑘𝑖 = 1; (c) if request
𝑖 is not picked up and not delivered by vehicle 𝑘, then 𝜂𝑘𝑖 − 𝜃𝑘𝑖 = 0 and because 𝜂𝑘𝑖 + 𝜃𝑘𝑖 ≤ 1 we have that 𝜂𝑘𝑖 = 0 and 𝜃𝑘𝑖 = 0; (d) if
equest 𝑖 is picked up and delivered by vehicle 𝑘, then 𝜂𝑘𝑖 − 𝜃𝑘𝑖 = 0 and because 𝜂𝑘𝑖 + 𝜃𝑘𝑖 ≤ 1 we have that 𝜂𝑘𝑖 = 0 and 𝜃𝑘𝑖 = 0. Note that
ases (c) and (d) have the same result because even if a vehicle picks up a request 𝑖 it will not unload it to the interchange point
𝜂𝑘𝑖 = 0) and will not reload it from the interchange point (𝜃𝑘𝑖 = 0) if it will be delivered to 𝑖 + 𝑛 by the same vehicle.

Constraints (12) and (13) determine whether vehicle 𝑘 unloads and/or reloads at the interchange point. Constraints (14)
etermine the time at which vehicle 𝑘 finishes unloading at the interchange point, which depends on whether it performs any
nloading (𝜂̃𝑘) and on the amount of unloading requests (∑𝑖∈ 𝑞𝑖𝜂𝑘𝑖 ). Constraints (15) ensure that a vehicle starts reloading at an
nterchange point after it has finished the unloading process. Constraints (16) determine the time at which vehicle 𝑘 has finished its
nloading/reloading operations at the interchange point and it is ready to leave. Constraints (17) ensure that reloading of a request
can start after this request has been unloaded at the interchange point. Constraints (18) ensure that the time a request 𝑖 is unloaded
t the interchange point is later than the time vehicle 𝑘, which unloads request 𝑖, finished its unloading process. Constraints (17) and
18) combined ensure that if a request is unloaded and reloaded by two different vehicles at the interchange point, the unloading
ehicle should have completed its unloading process before the reloading vehicle can reload this request. Constraints (19) and (20)
nsure that pickup routes from the start of a trip 𝑜1 to the interchange point 𝑜2 and delivery routes from the interchange point 𝑜3
o the end of the trip 𝑜4 do not exceed the maximum allowed route duration 𝑇𝑘. Constraints (21) and (22) compute the ride time
f each request 𝑖 and ensure that this ride time is less than the maximum allowed ride time 𝐿.

In this model, constraints (21) are nonlinear. To linearize them, we introduce variable 𝑢̃𝑖 which indicates the time at which
ertex 𝑖 ∈  ∪ starts to get serviced. Each vertex 𝑖 ∈  ∪ is served by exactly one vehicle and we can exploit this fact to linearize
onstraints (21). The idea is to replace constraint (21) by 𝑟𝑖 = 𝑢̃𝑛+𝑖 − 𝑢̃𝑖, ∀𝑖 ∈  . To do so, we need to force 𝑢̃𝑖 to take the value of
𝑘∗
𝑖 , where 𝑘∗ is the vehicle that actually serves vertex 𝑖. Let 𝜎𝑘𝑖𝑗 be continuous slack variables. Then, we can write 𝑢̃𝑖 as:

𝑢̃𝑖 + 𝜎𝑘𝑗,𝑖 = 𝑢𝑘𝑖 ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪,∀𝑘 ∈ 

𝜎𝑘𝑗𝑖 ≤ 𝑀(1 − 𝑥𝑘𝑗,𝑖) ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪, 𝑘 ∈ 

𝜎𝑘𝑗𝑖 ≥ −𝑀(1 − 𝑥𝑘𝑗,𝑖) ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪, 𝑘 ∈ 

(23)

Constraints (24) together with constraints (23) can now replace the nonlinear constraints (21):
8

𝑟𝑖 = 𝑢̃𝑛+𝑖 − 𝑢̃𝑖∀𝑖 ∈  (24)
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4. DARPi with perceived passenger travel times

4.1. Mixed-integer linear formulation

In the DARPi formulation with actual travel times of Eqs. (1)–(20),(22)–(24) we considered the actual ride times of passengers.
here is solid evidence, however, that passenger travel times are perceived as longer than the actual ones in crowded vehicles (Shen
t al., 2016). This is due to the inconvenience caused because of crowding. This inconvenience is associated with multiple aspects
uch as reduced travel comfort (e.g. inability to travel seated), loss of travel time productivity, safety and security concerns, increased
tress, fatigue and anxiety, as well as raised perception of travel time (Tirachini et al., 2013).

Relevant literature on crowding travel time valuations suggests that maximum mean crowding penalty values range from 1.4–1.5
o 2.1–2.5 (Kroes et al., 2014; Haywood and Koning, 2015; Batarce et al., 2016; Li et al., 2017), as indicated by stated-preference
xperiments. Along the same lines, crowding valuations can be estimated from revealed-preference data, where crowding penalties
re derived from passengers’ actual travel behavior. Crowding penalty values reported by revealed-preference studies indicate max.
alues of 1.55–1.95 at the crush capacity limit (Hörcher et al., 2017; Yap et al., 2020).

To model these perceived passenger travel times, we introduce first variables 𝜈𝑘𝑖 that denote the passenger load of vehicle 𝑘 upon
eaving vertex 𝑖. This passenger load is 𝜈𝑘𝑜1 = 0 at vertex 𝑜1 since all vehicles start their trips empty and 𝜈𝑘𝑜3 =

∑

𝑖∈
∑

𝑗∶(𝑖,𝑗)∈ 𝑞𝑖𝑥𝑘𝑖𝑗 at
ertex 𝑜3. At any other vertex,

𝜈𝑘𝑗 = 𝜈𝑘𝑖 + 𝑞𝑗 if 𝑥𝑘𝑖𝑗 = 1 ∀(𝑖, 𝑗) ∈  ∶ 𝑖 ∈  + {𝑜1}, 𝑘 ∈  (25)

𝜈𝑘𝑗 = 𝜈𝑘𝑖 − 𝑞𝑗 if 𝑥𝑘𝑖𝑗 = 1 ∀(𝑖, 𝑗) ∈  ∶ 𝑖 ∈  + {𝑜3}, 𝑘 ∈  (26)

Note that constraints (25) and (26) are conditional constraints. That is, the load upon leaving a pickup vertex 𝑗 is 𝜈𝑘𝑖 + 𝑞𝑗 only
f vehicle 𝑘 uses arc (𝑖, 𝑗). That is to say, 𝑥𝑘𝑖𝑗 = 1 ⟹ 𝜈𝑘𝑗 = 𝜈𝑘𝑖 + 𝑞𝑗 , ∀(𝑖, 𝑗) ∈  ∶ 𝑖 ∈  + {𝑜1}, 𝑘 ∈ . It is also worth noting that
t the delivery vertices (Eq. (26)), the load upon leaving vertex 𝑗 is equal to the load at the previous vertex 𝑖 minus the number of
elivered passengers, 𝑞𝑗 , at vertex 𝑗 given that 𝑥𝑘𝑖𝑗 = 1. This captures the in-vehicle load reduction after serving a delivery vertex.
hese constraints are linearized as follows.

emma 4.1. Constraints (25)–(26) are equisatisfiable with constraints

𝜈𝑘𝑗 + 𝑠𝑘𝑖𝑗 = 𝜈𝑘𝑖 + 𝑞𝑗 ∀(𝑖, 𝑗) ∈  ∶ 𝑖 ∈  + {𝑜1}, 𝑘 ∈  (27)

𝜈𝑘𝑗 + 𝑠𝑘𝑖𝑗 = 𝜈𝑘𝑖 − 𝑞𝑗 ∀(𝑖, 𝑗) ∈  ∶ 𝑖 ∈  + {𝑜3}, 𝑘 ∈  (28)

𝑠𝑘𝑖𝑗 ≤ 𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (29)

𝑠𝑘𝑖𝑗 ≥ −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (30)

here 𝑠𝑘𝑖𝑗 with 𝑖 ∈  , 𝑗 ∈  , 𝑘 ∈  are continuous slack variables.

roof . To prove the equisatisfiability of the constraints, let us focus on the pickup constraint. If 𝑥𝑘𝑖,𝑗 = 1 for some (𝑖, 𝑗, 𝑘) triplet,
hen constraints (29)–(30) will force 𝑠𝑘𝑖𝑗 to be equal to 0, thus 𝜈𝑘𝑗 = 𝑣𝑘𝑖 +𝑞𝑗 . Ergo, the condition 𝑥𝑘𝑖𝑗 = 1 ⟹ 𝜈𝑘𝑗 = 𝜈𝑘𝑖 +𝑞𝑗 , ∀(𝑖, 𝑗) ∈  ∶
∈  +{𝑜1}, 𝑘 ∈  is satisfied. If, however, 𝑥𝑘𝑖𝑗 = 0, then 𝜈𝑘𝑗 can differ from 𝜈𝑘𝑖 + 𝑞𝑗 because 𝑠𝑘𝑖𝑗 can take any value in 𝑠𝑖𝑗 ∈ [−𝑀,+𝑀].
ndeed, for 𝑥𝑘𝑖𝑗 = 0 we have that 𝑠𝑖𝑗 ∈ [−𝑀,+𝑀] and 𝜈𝑘𝑗 does not necessarily need to be equal to 𝜈𝑘𝑖 + 𝑞𝑗 . The same holds for the
eformulation of the delivery constraints. ■

Adding the requirement that the passenger load should not exceed the vehicle capacity and should not be negative we have:

0 ≤ 𝜈𝑘𝑗 ≤ 𝑄𝑘 ∀𝑗 ∈  , 𝑘 ∈  (31)

Note that constraints (3) and (4) in the DARPi formulation with Actual Travel Times can be replaced by the boundary conditions
𝑘
𝑜1

= 0, 𝜈𝑘𝑜3 =
∑

𝑖∈
∑

𝑗∶(𝑖,𝑗)∈ 𝑞𝑖𝑥𝑘𝑖𝑗 and constraints (27)–(31).
Using the in-vehicle passenger load upon leaving a vertex, 𝜈𝑘𝑗 , we can associate the perceived passenger travel times with the

n-vehicle crowding level. In more detail, although the perceived passenger travel times can be equal to the actual ones for low
rowding levels, there is a trigger point where the increase of the in-vehicle load affects the travel time perception. This point is
ypically considered to be the point when all seats of the vehicle are occupied and the newly boarded passengers need to stand.
uring pandemic outbreaks, this point can be the in-vehicle load level beyond which we cannot maintain the recommended social
istancing.

Let 0 ≤ 𝜌 ≤ 1 be the parameter value that corresponds to the in-vehicle loading point after which the perception of travel times
s affected. For in-vehicle crowding levels in the range of [0, 𝜌𝑄𝑘] for a vehicle 𝑘, the perceived passenger travel times are the same
s the actual ones. If, however, the in-vehicle load 𝜈𝑘𝑖 of vehicle 𝑘 upon leaving vertex 𝑖 is greater than 𝜌𝑄𝑘, then the perceived
n-vehicle travel time can be augmented by a progressive travel time penalty 𝛾(𝜈𝑘𝑖 − 𝜌𝑄𝑘). We note that 𝛾 ≥ 0 and this parameter
ndicates the marginal perceived travel time increase for one unit of in-vehicle crowding increase beyond the ‘‘trigger point’’ 𝜌𝑄𝑘.
9

his results in the piecewise linear function of Fig. 1.
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Fig. 1. Perceived vs Actual travel time for different crowding levels, 𝜈𝑘𝑖 .

From the piecewise linear function, the travel time penalty of vehicle 𝑘 when leaving vertex 𝑖 is:

𝑑𝑘𝑖 = 1 + 𝛾 max{𝜈𝑘𝑖 − 𝜌𝑄𝑘, 0} ∀𝑖 ∈  , 𝑘 ∈  (32)

It is important to note that if vehicle 𝑖 traverses arcs (𝑖, 𝑗) after leaving from vertex 𝑖, its perceived travel time becomes 𝑡𝑖𝑗𝑑𝑘𝑖 .
Clearly, if 𝜈𝑘𝑖 ≤ 𝜌𝑄𝑘 then 𝑡𝑖𝑗𝑑𝑘𝑖 = 𝑡𝑖𝑗 denoting that the perceived travel times of the in-vehicle passengers from 𝑖 to 𝑗 will be equal to
he actual ones. If, however, 𝜈𝑘𝑖 > 𝜌𝑄𝑘, there is a perceived travel time 𝑡𝑖𝑗 (1 + 𝛾(𝜈𝑘𝑖 − 𝜌𝑄𝑘)) = 𝑡𝑖𝑗 + 𝑡𝑖𝑗𝛾(𝜈𝑘𝑖 − 𝜌𝑄𝑘) ≥ 𝑡𝑖𝑗 .

The travel time penalty 𝑑𝑘𝑖 is provided by a nonlinear function. To linearize it, we introduce binary variables 𝛿𝑘𝑖 and continuous
ariables 𝑔𝑘𝑖 . Then, the nonlinear expression (32) is replaced by Eqs. (33)–(38):

𝑑𝑘𝑖 = 1 + 𝛾𝑔𝑘𝑖 ∀𝑖 ∈  , 𝑘 ∈  (33)

𝑔𝑘𝑖 ≥ 𝜈𝑘𝑖 − 𝜌𝑄𝑘 ∀𝑖 ∈  , 𝑘 ∈  (34)

𝑔𝑘𝑖 ≥ 0 ∀𝑖 ∈  , 𝑘 ∈  (35)

𝑔𝑘𝑖 ≤ 𝜈𝑘𝑖 − 𝜌𝑄𝑘 +𝑀𝛿𝑘𝑖 ∀𝑖 ∈  , 𝑘 ∈  (36)

𝑔𝑘𝑖 ≤ 𝑀(1 − 𝛿𝑘𝑖 ) ∀𝑖 ∈  , 𝑘 ∈  (37)

𝛿𝑘𝑖 ∈ {0, 1} ∀𝑖 ∈  , 𝑘 ∈  (38)

here constraints (32) and (33)–(38) are equisatisfiable.
To compute the perceived ride times of users, we use the artificial notion of perceived arrival times 𝑝𝑘𝑗 that may differ from the

ctual arrival times 𝑢𝑘𝑗 at the vertices. Considering the boundary conditions, the perceived time when the service starts at vertex
1, 𝑝𝑘𝑜1 , is equal to 𝑢𝑘𝑜1 . When traversing, however, a feasible arc (𝑖, 𝑗) ∈  we have a perceived arrival time at 𝑗. This conditional
quality constraint that provides the value of the perceived arrival time is expressed as:

𝑝𝑘𝑗 = 𝑢𝑘𝑗 + (𝑝𝑘𝑖 − 𝑢𝑘𝑖 ) + 𝑡𝑖𝑗𝑑
𝑘
𝑖 − 𝑡𝑖𝑗 if 𝑥𝑘𝑖𝑗 = 1 ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (39)

The term 𝑡𝑖𝑗𝑑𝑘𝑖 − 𝑡𝑖𝑗 represents the additional travel time when traversing arc (𝑖, 𝑗) due to the in-vehicle crowding upon leaving
ertex 𝑖. Note that if the in-vehicle load is not beyond 𝜌𝑄𝑘, then there is no additional perceived travel time when traversing arc
𝑖, 𝑗) because 𝑑𝑘𝑖 = 1 and thus 𝑡𝑖𝑗𝑑𝑘𝑖 − 𝑡𝑖𝑗 = 0. Even under this condition, however, the perceived arrival time of vehicle 𝑘 at vertex 𝑗

might not be the same as the actual one 𝑢𝑘𝑗 . The reason is that 𝑝𝑘𝑖 might be greater than 𝑢𝑘𝑖 which means that vehicle 𝑘 had a delayed
perceived arrival at vertex 𝑖. A special boundary condition is the perceived arrival time from vertex 𝑜3 because there is no travel
time from 𝑜2 to 𝑜3 (both are at the location of the depot). This boundary condition is presented in the following equality constraint
which is not conditional since all vehicles will unload and reload at the interchange point:

𝑝𝑘𝑜3 = 𝑢𝑘𝑜3 + (𝑝𝑘𝑜2 − 𝑢𝑘𝑜2 ) ∀𝑘 ∈  (40)

We stress again that these perceived arrival times are an intuitive modeling convention that keeps track of the perceived travel
times of passengers and has no physical meaning. Using this convention we can compute exactly the perceived ride time associated
with a customer request by replacing constraints (23)–(24) with:

𝑝̃𝑖 + 𝜎𝑘𝑗,𝑖 = 𝑝𝑘𝑖 ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪,∀𝑘 ∈ 

𝜎𝑘𝑗𝑖 ≤ 𝑀(1 − 𝑥𝑘𝑗,𝑖) ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪, 𝑘 ∈ 

𝜎𝑘𝑗𝑖 ≥ −𝑀(1 − 𝑥𝑘𝑗,𝑖) ∀(𝑗, 𝑖) ∈  ∶ 𝑖 ∈  ∪, 𝑘 ∈ 
(41)
10

𝑟𝑖 = 𝑝̃𝑛+𝑖 − 𝑝̃𝑖 ∀𝑖 ∈ 
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Finally, we note that constraints (39) are the only remaining nonlinear constraints due to their conditional form. Let again
ntroduce continuous slack variables 𝑠̃𝑘𝑖𝑗 where 𝑖 ∈  , 𝑗 ∈  , 𝑘 ∈ . Then, constraints (39) are linearized as follows:

𝑝𝑘𝑗 + 𝑠̃𝑘𝑖𝑗 = 𝑢𝑘𝑗 + (𝑝𝑘𝑖 − 𝑢𝑘𝑖 ) + 𝑡𝑖𝑗𝑑
𝑘
𝑖 − 𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (42)

𝑠̃𝑘𝑖𝑗 ≤ 𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (43)

𝑠̃𝑘𝑖𝑗 ≥ −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ , 𝑘 ∈  (44)

This results in the three-index DARPi formulation that considers the perceived travel times of passengers based on the in-vehicle
rowding levels:

(DARPi with Perceived Travel Times):

min
∑

𝑘∈

∑

(𝑖,𝑗)∈
𝑐𝑘𝑖𝑗𝑥

𝑘
𝑖𝑗 (45)

subject to: Eqs.(1) − (2), (5) − (20), (22), (27) − (31), (33) − (38), (41) − (44) (46)

𝜈𝑘𝑜3 =
∑

𝑖∈

∑

𝑗∶(𝑖,𝑗)∈
𝑞𝑖𝑥

𝑘
𝑖𝑗 (47)

𝜈𝑘𝑜1 = 0 (48)

This formulation is a compact MILP that can be solved to global optimality for small-sized instances with branch-and-cut. The
ontinuous LP relaxations when implementing branch-and-cut can be solved with the polynomial time interior point algorithm of
armarkar with runtime 𝑂(𝜔3.5𝐿) where 𝜔 is the number of variables. To do so, we need to turn each relaxed LP to its homogeneous

orm by introducing slack variables such that:

min
∑

𝑘∈

∑

(𝑖,𝑗)∈
𝑐𝑘𝑖𝑗𝑥

𝑘
𝑖𝑗

subject to: 𝐀𝝎 = 𝟎
𝟏⊺𝝎 = 1

𝝎 ≥ 0

here 𝝎 is a column vector that contains all the variables of the problem, 𝐀 an 𝑚 × 𝜔 matrix that contains the coefficients of all 𝑚
onstraints of the problem, and 𝟏 an 𝜔-valued column vectors of all ones.

Even if the relaxed LPs can be solved in polynomial time, DARPi is NP-Hard because it is a generalization of the pickup and
elivery problem with a cross-dock (PDPCD) when considering the passenger ride times and the maximum vehicle route times. Since
DPCD is an NP-complete decision problem (see Santos et al., 2013), DARPi is also NP-complete, and its optimization version is
P-Hard. Thus, one cannot guarantee a globally optimal solution for large problem instances. To obtain solutions for larger instances,

n Section 5 we introduce a problem-specific Tabu search equipped with an arc-exchange neighborhood structure.
Finally, we note that the definition of our perceived travel times allows vehicles to perform their operations even if their in-vehicle

rowding has to exceed their trigger point 𝜌𝑄𝑘 due to the high passenger demand and the fixed number of available vehicles. If we
ere using the trigger point 𝜌𝑄𝑘 as a hard capacity constraint that cannot be exceeded, the problem would have been infeasible
very time at least one of the vehicles had to exceed that limit.

.2. Valid inequalities

Our DARPi formulation with perceived travel times can become more tight by adding inequality constraints that exclude solutions
hich cannot be optimal. To do so, these inequality constraints should not eliminate any feasible solutions. That is, if  is the feasible

egion of our problem, a valid inequality 𝝅𝐱 ≤ 𝜋0 should hold for any 𝐱 ∈  . By making the formulation more tight with the addition
f valid inequalities, we increase the computational time of checking the feasibility of potential solutions since additional inequality
onstraints are added. At the same time, however, the tighter formulation can exclude many solutions that are not optimal resulting
n a more focused search process. To tighten the formulation, we add the following valid inequality constraints.

.2.1. Serve time tightening

𝑢𝑘𝑖 ≥ 𝑒𝑖 +
∑

𝑗∶(𝑗,𝑖)∈𝐴
max{0, 𝑒𝑗 − 𝑒𝑖 + 𝑡𝑖𝑗}𝑥𝑗𝑖 ∀𝑖 ∈ 𝑃 ∪𝐷, 𝑘 ∈ 𝐾 (49)

𝑢𝑘𝑖 ≤ 𝑙𝑖 +
∑

𝑗∶(𝑖,𝑗)∈𝐴
max{0, 𝑙𝑖 − 𝑙𝑗 + 𝑡𝑖𝑗}𝑥𝑖𝑗 ∀𝑖 ∈ 𝑃 ∪𝐷, 𝑘 ∈ 𝐾 (50)

hese valid inequalities were used in the past for solving the asymmetric TSP with time windows by branch and cut (Ascheuer et al.,
11

001).
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4.2.2. Arc elimination
With arc elimination we remove arcs that are infeasible. In more detail:

• arc (𝑖, 𝑗) ∈ 𝐴 is infeasible if 𝑒𝑖 + 𝑡𝑖𝑗 > 𝑙𝑗
• arcs (𝑖, 𝑗) and (𝑗′, 𝑛 + 𝑖) are both infeasible if 𝑡𝑖,𝑗 + 𝑡𝑗,𝑜2 + 𝑡𝑜3 ,𝑗′ + 𝑡𝑗′ ,𝑛+𝑖 > 𝐿 for 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑃 , 𝑗′ ∈ 𝐷

4.2.3. Sub-tour elimination
With sub-tour elimination we add valid inequalities that remove solutions which cannot be optimal, as follows:

• ∑

𝑘∈𝐾 𝑥𝑘𝑖𝑗 +
∑

𝑘∈𝐾 𝑥𝑘𝑗𝑖 ≤ 1 ∀𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑃

• ∑

𝑘∈𝐾 𝑥𝑘𝑛+𝑖,𝑛+𝑗 +
∑

𝑘∈𝐾 𝑥𝑘𝑛+𝑗,𝑛+𝑖 ≤ 1 ∀𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑃

.2.4. Ride time: Lower bound
Finally, we add an additional set of valid inequalities related to the lower bounds of ride times to remove solutions that cannot

e optimal:

𝑟𝑘𝑖 ≥ 𝑡𝑖,𝑜2 + (𝑎𝜃𝑘 + 𝛽
∑

𝑖∈𝑃
𝑞𝑖𝜃

𝑘
𝑖 ) + 𝑡𝑜3 ,𝑛+𝑖 ∀𝑖 ∈ 𝑃 , 𝑘 ∈ 𝐾 (51)

With these constraints we request that the ride time 𝑟𝑘𝑖 of traveler 𝑖 corresponding to request (𝑖, 𝑛 + 𝑖) performed by vehicle 𝑘
hould be at least equal to the travel time from 𝑖 to 𝑜2 plus the travel time from 𝑜3 to 𝑛 + 𝑖 plus the time spent during loading and
nloading at the interchange point (𝑎𝜃𝑘 + 𝛽

∑

𝑖∈𝑃 𝑞𝑖𝜃𝑘𝑖 ).

. Solution method

A local search-based metaheuristic algorithm has been developed, which is capable of deriving high-quality solutions in short
omputational times for medium and large-scale problem instances. From the algorithmic viewpoint, the proposed framework
s initiated by a construction heuristic algorithm that is used to generate an initial solution. Afterwards, the generated solution
s improved via a single point trajectory local-search metaheuristic algorithm. In particular, a Tabu Search based scheme is
dopted, equipped with arc-exchange neighborhood structures. The construction heuristic algorithm and the Tabu Search scheme
re described in Sections 5.1 and 5.2, respectively.

.1. Construction heuristic algorithm

The proposed construction heuristic algorithm generates routes iteratively by performing minimal cost insertions of service
ocations. In the beginning, empty routes are initiated, consisting of one pickup and delivery vehicle, each one containing just
wo occurrences of the depot node, corresponding to the start and end of the route. The number of routes is equal to the number
f vehicles performing pickup and delivery operations. At each iteration, the pickup and delivery pair insertion that respects the
apacity and time constraints is identified and performed. Only feasible insertion positions are taken into account.

.2. Tabu search algorithm

A local search metaheuristic algorithm is applied for improving the solution produced by the constructive procedure of
ection 5.1. It explores the solution space by performing arc-exchange moves from a current solution to another neighboring
olution. These moves are defined by the local search operators presented in Section 5.2.1. The conducted search is diversified
y the application of a tabu search based guiding mechanism described in Section 5.2.2. Finally, the overall structure of the local
earch framework is given in Section 5.2.3.

.2.1. Local search operators
The neighborhood structures considered are (a) the 0-1 node relocation, (b) the 1-1 node exchange and (c) the 2-Opt. A

exicographic neighborhood evaluation scheme is adopted, while only feasible solutions are considered. The neighborhood structures
ave quadratic complexity and all of them involve a constant number of edge exchanges. The 0-1 node relocation removes any
upplier (or customer) node from its current position and reinserts this node into any other available position of a pickup (or
elivery) route. Both intra- and inter-route node relocation moves are considered. The 1-1 node exchange swaps the positions of
ny two supplier (or customer) nodes served by the same or different pickup (or delivery) routes. Lastly, the 2-Opt exchange move
emoves a pair of edges and replaces them by a new pair to create the modified solution. More specifically, for any two supplier (or
ustomer) nodes belonging to the same route, the node sequence between them is reversed. On the other hand, if the nodes belong
o different routes, then the removal of an edge creates two segments in each route. Two new routes are then created by swapping
12

he route segments following the nodes.
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Table 3
Lower and upper time for visiting any vertex 𝑖 ∈ 𝑃 ∪𝐷.
𝑖 𝑒𝑖 𝑙𝑖 𝑒𝑛+𝑖 𝑙𝑛+𝑖
1 442 562 823 943
2 455 575 852 972
3 360 471 793 913
4 475 595 1007 1127

5.2.2. Diversification component
Our Tabu Search framework operates according to the best admissible local search move scheme. Specifically, all neighborhoods

defined by the operators of Section 5.2.1) of the current incumbent solution are exhaustively explored, and the highest quality
easible neighboring solution is selected. To avoid an over-intensified search, the proposed framework is equipped with a
iversification component based on the aspiration criteria of Tabu Search and the Attribute Based Hill Climber (Whittley and Smith,
004). Each arc (𝑖, 𝑗) ∈  is associated with a threshold objective tag 𝑡𝑎. Every time a local-search move 𝑚𝑣 is applied to solution 𝑆
ith objective value 𝑧(𝑆), the threshold tags of the eliminated arcs (𝐸𝑚𝑣) are set equal to 𝑧(𝑠), i.e. 𝑡𝑎 = 𝑧(𝑠),∀𝑎 ∈ 𝐸𝑚𝑣. Any move 𝑚𝑣

hat leads to solution 𝑆′ is considered admissible, only if the cost tags of the generated arcs 𝐺𝑚𝑣 exceed the objective function value
f the modified solution 𝑆′ (i.e. 𝑡𝑎 > 𝑧(𝑆′),∀𝑎 ∈ 𝐺𝑚𝑣). To control the diversification effect, arc tags are periodically re-initialized to
nfinity through the search process.

.2.3. Feasibility evaluation of tentative moves
Whenever a local search move is evaluated, we need to check the vehicle capacity and time window constraints for both pickup

nd delivery routes. The main assumption is that the pickup routes leave the depot and visit customers as early as possible. All
roducts from the pickup routes are unloaded from the vehicles as soon as these vehicles arrive at the interchange point. The
elivery routes are initiated as soon as all necessary products are loaded onto the delivery vehicles.

.2.4. Overall algorithm structure
The proposed solution method employs a set of checking procedures for evaluating the feasibility of each insertion within the

ocal search. Each of these procedures enables us to check if a given insertion is consistent with a specific category of the problem
onstraints, by maintaining and frequently updating extra route information. These checks are listed below:

• VehicleCapacity(): Evaluates whether a current move leads to routes that satisfy the vehicle capacity constraints
• BestObjectiveMove(): Evaluates whether a current move improves the best move identified during local search
• Diversification(): Evaluates whether a current move is forbidden according to the diversification component
• RouteDuration(): Evaluates whether a current move leads to routes that respect the route duration constraints
• RideTime(): Evaluates whether a current move leads to routes that respect the ride time constraints
• PRideTime(): Evaluates the perceived ride time of nodes and ensures that the ride time constraints are respected
• TWfeasibility(): Evaluates if a current move leads to delivery routes that respect the customer time window constraints

A pseudocode of the proposed solution framework is presented next (Algorithm 1). Let 𝑧(𝑚𝑣(𝑆)) refer to the solution objective
hange brought by the application of move 𝑚𝑣 at solution 𝑆. At each iteration, the steps necessary for identifying the best move
or a randomly selected neighborhood structure are presented in Lines 6–13. In particular, the move should lead to feasible vehicle
outes w.r.t. vehicle capacity constraints (Line 8) and satisfy the adopted diversification component (Line 9). These moves are then
hecked for feasibility w.r.t. to the route duration constraints and the ride time constraints (Lines 10, 11). The perceived ride times
f suppliers and customers are also evaluated (Line 12). Finally, the TWfeasibility() method is employed to evaluate feasibility of the
ickup and delivery routes generated by a move 𝑚𝑣 considering time windows limitations (Line 13). The selected move is applied,
nd arc tags are set according to the diversification component (see Section 5.2.3). These tags are randomly reinitialized to infinity
ccording to parameter 𝑟𝑠𝑡 (Lines 16–18). The algorithm is terminated after a certain number of iterations (𝑖𝑡𝑒𝑟𝑠) is reached, by
eturning the lowest objective solution 𝑆𝑏𝑒𝑠𝑡 encountered.

. Demonstration

We present the application of our DARPi model in a toy network. The toy network is presented in 2 and it contains 𝑛 = 4 requests.
he vehicle capacity is 𝑄𝑘 = 20 and we have 2 vehicles. The earliest possible start time of each vehicle is 𝑒𝑜1 = 360 and the latest
ossible end time 𝑙𝑜4 = 1320. Note that all times are in seconds. The fixed time for unloading and reloading at the interchange point is
= 10. In addition, the fixed time for handling a single passenger at the interchange point is 𝛽 = 1. The maximum allowed duration
f a route 𝑇𝑘 = 480 ∀𝑘 ∈ {1, 2}. The maximum ride time of any traveler is 𝐿 = 550. The passenger demand for pickup/delivery at
ach vertex is 𝑞1 = 𝑞5 = 16, 𝑞2 = 𝑞6 = 10, 𝑞3 = 𝑞7 = 4, 𝑞4 = 𝑞8 = 4.

In addition, Table 3 presents the time window for serving each vertex.
Because the toy network used in this demonstration is small, we can solve it to global optimality with branch-and-cut and

armarkar’s algorithm for the relaxed LPs. Our DARPi formulation is an extension of PDPCD because it considers also the passenger
ide times and the maximum vehicle route times. To compare the solution of DARPi against the solution of PDPCD, we first present
he results of PDPCD in Section 6.1, and then the results of DARPi with actual and perceived travel times in Sections 6.2 and 6.3,
13

espectively.
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Algorithm 1 Pseudocode of the employed tabu search framework that improves initial solution 𝑆0 derived from the construction
euristic
1: solution 𝑆𝑏𝑒𝑠𝑡 ← 𝑆0, 𝑆 ← 𝑆0
2: double 𝑡ℎ𝑟𝑠, 𝑟𝑠𝑡
3: integer 𝑖𝑡𝑒𝑟𝑠
4: 𝑡ℎ𝑎 ← +∞,∀𝑎 ∈ 𝐸
5: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑠 do
6: select at random a local search operator 𝑖 ∈ {1, 2, 3}
7: identify the minimum cost local search move 𝑚𝑣𝑖 which leads to solution 𝑆′ such that:
8: (a) vehicle capacity constraints are not violated // VehicleCapacity()
9: (b) 𝑡ℎ𝑎 > 𝑧(𝑆′),∀𝑎 ∈ 𝐺(𝑚𝑣𝑖) // Diversification()

10: (c) routes are feasible w.r.t. route duration constraints // RouteDuration()
11: (d) routes are feasible w.r.t. ride time constraints // RideTime()
12: (e) routes are feasible w.r.t. perceived ride time constraints // PRideTime()
13: (f) routes are feasible w.r.t. time windows // TWfeasibility()
14: 𝑡ℎ𝑎 ← 𝑧(𝑆′),∀𝑎 ∈ 𝐸𝑚𝑣𝑖
15: apply move 𝑚𝑣𝑖
16: if 𝑟𝑎𝑛𝑑(0, 1) < 𝑟𝑠𝑡 then
17: 𝑡ℎ𝑎 ← +∞,∀𝑎 ∈ 𝐸
18: end if
19: if 𝑧(𝑆′) < 𝑧(𝑆𝑏𝑒𝑠𝑡) then
20: 𝑆 ← 𝑆′

21: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆′

22: end if
23: end while
24: return 𝑆𝑏𝑒𝑠𝑡

Fig. 2. DARPi Network where vertices 𝑜1 , 𝑜2 , 𝑜3 , 𝑜4 are at location 0 (depot). For visualization purposes, the presented arc travel times 𝑡𝑖𝑗 are rounded to two
decimal places.

6.1. PDPCD results

To compute the solution for the PDPCD which considers parcels instead of passengers, the vehicle travel time and passenger ride
time constraints should be inactive. For this we set 𝐿 = +∞ and 𝑇𝑘 = +∞ ∀𝑘 ∈ 𝐾. The optimal pickup and delivery routes of the
two vehicles are presented in Fig. 3, where gray color is used to illustrate the routes of the first and black color the routes of the
second vehicle. These routes together with their associated travel times are summarized in Table 4.

Finally, the start time of serving each vertex is presented in Table 5. Note that these start times satisfy the imposed time windows.
Table 5 reports also the ride time of each request even if we do not impose any constraints to it.
14
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Fig. 3. Optimal pickup and delivery routes of the two vehicles for PDPCD.

Table 4
Travel time of each route and total travel cost for the service provider.
Vehicle Route type Served vertices Route travel time

1 pickup 𝑜1 → 1 → 3 → 𝑜2 99.813
2 pickup 𝑜1 → 2 → 4 → 𝑜2 170.025
1 delivery 𝑜3 → 5 → 𝑜4 307.154
2 delivery 𝑜3 → 6 → 7 → 8 → 𝑜4 486.091

total travel cost: 1063.080

Table 5
Start of service time 𝑢𝑖 at each vertex 𝑖 ∈ 𝑃 ∪𝐷 and passenger ride time 𝑟𝑖 for request 𝑖 ∈ 𝑃 .
𝑖 𝑒𝑖 𝑢̃𝑖 𝑙𝑖 𝑒𝑛+𝑖 𝑢̃𝑛+𝑖 𝑙𝑛+𝑖 Ride time, 𝑟𝑖
1 442 442.00 562 823 823.00 943 381.00
2 455 525.49 575 852 852.00 972 326.51
3 360 454.20 471 793 912.82 913 458.62
4 475 475.00 595 1007 1105.73 1127 630.73

Table 6
Travel time of each route and total travel cost for the service provider.
Vehicle Route type Served vertices Route travel time

1 pickup 𝑜1 → 3 → 1 → 𝑜2 99.813
2 pickup 𝑜1 → 2 → 4 → 𝑜2 170.025
1 delivery 𝑜3 → 7 → 5 → 𝑜4 369.310
2 delivery 𝑜3 → 6 → 8 → 𝑜4 462.086

total travel cost: 1101.234

6.2. DARPi results with actual travel times

We now turn our attention to the DARPi problem with actual travel times. To compute its solution, the vehicle travel time and
assenger ride time constraints are considered. The optimal pickup and delivery routes of the two vehicles are presented in Fig. 4,
here gray color is used to illustrate the routes of the first and black color the routes of the second vehicle. These routes together
ith their associated travel times are summarized in Table 6.

Finally, the start time of serving each vertex is presented in Table 7. Note that these start times satisfy the imposed time windows.
able 7 reports also the ride time of each request even if we do not impose any constraints to it. There are two main points that
e can conclude from this demonstration w.r.t. the behavior of the PDPCD and DARPi:

• the total travel cost of the vehicles with the PDPCD solution is less (1063.080) compared to the total travel cost with the
DARPi solution (1101.234). Intuitively, DARPi has additional constraints compared to PDPCD related to the route travel times
and the passenger ride times; thus, its solution cannot have a lower objective function score than the solution of the PDPCD.
15
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Fig. 4. Optimal pickup and delivery routes of the two vehicles for DARPi with actual travel times.

Table 7
Start of service time 𝑢𝑖 at each vertex 𝑖 ∈ 𝑃 ∪𝐷 and passenger ride time 𝑟𝑖 for request 𝑖 ∈ 𝑃 .
𝑖 𝑒𝑖 𝑢𝑖 𝑙𝑖 𝑒𝑛+𝑖 𝑢𝑛+𝑖 𝑙𝑛+𝑖 Ride time, 𝑟𝑖
1 442 442.0 562 823 823.0 943 381.0
2 455 544.5 575 852 852.0 972 307.5
3 360 429.8 471 793 913.0 913 483.2
4 475 595.0 595 1007 1009.5 1127 414.5

𝑢1𝑜1 = 𝑢2𝑜1 = 360
𝑢1𝑜2 = 599.99, 𝑢2𝑜2 = 646.82
𝑢1𝑜3 = 643.99, 𝑢2𝑜3 = 743.77
𝑢1𝑜4 = 1123.99, 𝑢2𝑜4 = 1223.77 .

That is, the total travel vehicle costs of the DARPi solutions are greater than or equal to the total travel vehicle costs of the
PDPCD solutions.

• The ride times 𝑟𝑖 of the DARPi solution are less than or equal to the maximum allowed ride time 𝐿 = 550, satisfying the ride
time constraint. The same holds true for the total route travel times which are less than 𝑇𝑘 = 480. In contrast, the PDPCD
solution had delivery route 2 with travel time 486 > 𝑇𝑘 and request 𝑖 = 4 with ride time 630.73, which are both greater than
𝐿.

6.3. DARPi results with perceived travel times

We solve again the DARPi problem, this time with perceived passenger travel times to explore the potential increase in vehicle
running costs when in-vehicle occupancy levels are reduced. We consider 𝜌 = 0.45 and 𝛾 = 0.1, resulting in a trigger point of
𝜌𝑄𝑘 = 9 in-vehicle passengers, after which there is an inconvenience for in-vehicle passengers which is translated to increased
perceived travel times. The optimal pickup and delivery routes of the two vehicles are presented in Table 8 and the start times
of serving each vertex are presented in Table 9. Notice that the actual ride times have now become perceived ride times and this
resulted in a redistribution of pickup passengers. This re-arrangement of passengers at the central interchange point allows vehicles
with increased crowding levels to exchange passengers with vehicles having fewer passengers. The perceived ride times are still
less than the maximum ride time 𝐿 = 550, however, the total travel cost has increased from 1101.2 to 1111.3 when considering
perceived instead of actual running times.

7. Numerical experiments

In this section, we report our computational experience with the Branch-and-cut algorithm and the Tabu search metaheuristic
implemented for DARPi with perceived travel times. The two solution methods are tested with instances generated based on the
datasets of Wen et al. (2009) introduced for the VRPCD, which are publicly released at https://doi.org/10.11583/DTU.11786763.v1.
These datasets are modified and extended because our DARPi formulation requires more data fields related to route duration, ride
16

time constraints, fixed number of vehicles, 𝛾 and 𝜌. The coordinates of the vertices of the instances remain the same as in Wen
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Table 8
Travel time of each route and total travel cost for the service provider.
Vehicle Route type Served vertices Route travel time

1 pickup 𝑜1 → 3 → 2 → 4 → 𝑜2 180.203
2 pickup 𝑜1 → 1 → 𝑜2 99.702
1 delivery 𝑜3 → 7 → 5 → 𝑜4 369.310
2 delivery 𝑜3 → 6 → 8 → 𝑜4 462.086

total travel cost: 1111.300

Table 9
Start of service time 𝑢𝑖 at each vertex 𝑖 ∈ 𝑃 ∪𝐷 and perceived passenger ride time 𝑟𝑖 for request 𝑖 ∈ 𝑃 .
𝑖 𝑒𝑖 𝑢𝑖 𝑙𝑖 𝑒𝑛+𝑖 𝑢𝑛+𝑖 𝑙𝑛+𝑖 Perceived ride time, 𝑟𝑖
1 442 555.2 562 823 859.7 943 550.0
2 455 500.8 575 852 852.0 972 468.2
3 360 441.8 471 793 793.0 913 550.0
4 475 551.3 595 1007 1009.5 1127 550.0

et al. (2009). All instanced considered in our numerical experiments are made available at https://data.mendeley.com/datasets/
trwyhf453c/draft?a=0bebd39a-dc43-4f3a-ad27-efc7ad406b41 and include all Wen et al. (2009) instances ranging from 20 to 200
requests, in addition to smaller instances with 4 to 20 requests used for verification purposes.

Various computational experiments were performed to examine the characteristics of the problem considered as well as to assess
he performance of the proposed solution method. Small scale problems were generated to validate the proposed model and solved
ith both the proposed Tabu search-based solution method and with an branch and cut algorithm. The branch and cut algorithm

s implemented with the use of Gurobi 9.0.3 in Python 3.7 and it is publicly released at the aforementioned repository. The Tabu
earch-based algorithm equipped with arc-exchange neighborhood structures is coded and implemented in C#. Its parameters were
nitially tuned to improve its performance. We tested values for the 𝑟𝑠𝑡 parameter within the range [0.002, 0.006]. The value of 0.003

was selected for the problem instances of smaller scale (from 50 up to 100 requests), while for larger scale problem instances (from
150 up to 200 requests) the value of 𝑟𝑠𝑡 was set equal to 0.004 for which a more effective algorithm behavior was observed. The 𝑡ℎ𝑟𝑠
value was fixed at 0.85 as at this value the algorithm managed to obtain solutions of higher quality within reduced computational
times. We used a maximum number of 100,000 iterations as a termination condition for the Tabu search.

For all experiments we used a single thread of a server with an Intel Xeon CPU E5-2650 v2 (2.60 GHz) processor and 16 GB
of RAM. Preliminary experiments were conducted to determine a well-performing setting for the input parameters. A time limit of
four CPU hours was imposed on the execution of algorithms. This allowed the exact branch and cut approach to solve instances
with up to 10 requests.

7.1. Small-scale instances

Small-scale instances were generated because branch-and-cut can be applied in instances with up to 10 requests due to the
exponential increase of its computational complexity. Because branch-and-cut solves DARPi instances exactly, we can use the small
instances to examine the optimality gap of the Tabu search solutions.

Table 10 provides the results when using branch and cut and tabu search for small instances. Column 2 (CNS) reports the number
of constraints of the instance. Column 3 (NE) reports the number of explored nodes until the termination of branch and cut. Column
6 (ost) reports the performance of the globally optimal solution derived by branch and cut. Column 7 (bst) reports the performance
of the best solution found by the Tabu search metaheuristic. Because we run Tabu search 10 times for each instance to increase the
chance of finding a solution close to the globally optimal one, column 8 (avg) reports the average performance of the best Tabu
search solutions in these 10 runs. Column 9 (% diff) reports the difference between the performance of the best and average Tabu
search solution. Column 10 (gap %) reports the optimality gap between the performance of the branch and cut and the tabu search
olution. Note that this optimality gap is 0% for instances with up to 8 requests. It is also worth noting that Tabu search can solve
nstances with 10 requests in 11.6 CPU seconds, whereas branch and cut requires more than 3 CPU hours. In five out of seven test
roblems, the proposed Tabu search-based algorithm managed to find the optimal solution. For the other two problem instances, the
aps of solutions of the Tabu search-based algorithm and the exact model are on average 2.75%. Note that the deviation from the
ptimal solution for these two instances is because in the metaheuristic algorithm best solutions are provided under the assumption
hat all the necessary operations are performed as early as possible. More specifically, the pickup routes leave the depot and visit
ustomers as early as possible, the pickup routes are unloaded from the vehicles as soon as these vehicles arrive at the interchange
oint and the delivery routes are initiated as soon as all necessary products are loaded onto the delivery vehicles (see Section 5.2.3).
his assumption is not present in the exact model that is able to explore more options regarding the timing of the pickup/drop-off
perations, and thus, provide better solutions.

In order to prove the validity of the proposed algorithm additional computational experiments were performed for the original
RPCD problem as examined by Wen et al. (2009) for small instances. To do this, we have relaxed the route duration constraints
nd the ride time constraints, as these do not exist in the VRPCD setting. The 𝛾 value was set equal to 0. The results confirm that
17

the proposed algorithm performs well and it has managed to match 3 out 5 best solutions found in the literature (see Table 11).

https://data.mendeley.com/datasets/trwyhf453c/draft?a=0bebd39a-dc43-4f3a-ad27-efc7ad406b41
https://data.mendeley.com/datasets/trwyhf453c/draft?a=0bebd39a-dc43-4f3a-ad27-efc7ad406b41
https://data.mendeley.com/datasets/trwyhf453c/draft?a=0bebd39a-dc43-4f3a-ad27-efc7ad406b41
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Table 10
Results from small instances with up to 10 requests.

Instance CNS Branch and cut Tabu search

NE CPU (s) ost bst Avg %diff CPU (s) Gap %

4 1091 1 0.1 1101.23 1101.23 1101.23 0.00 1.11 0
5 1536 39 0.4 1115.99 1115.99 1115.99 0.00 1.21 0
6 3082 5,625 3.8 1390.48 1390.48 1390.48 0.00 2.80 0
7 3988 9,892 13.7 1459.75 1459.75 1459.75 0.00 3.47 0
8 5014 70,204 106.1 1556.51 1556.51 1556.51 0.00 6.04 0
9 6160 213,507 1196.3 1518.77 1558.93 1558.93 0.00 6.00 2.64
10 9891 2,611,554 10 917.7 1823.83 1875.83 1875.83 0.00 11.61 2.85

CNS: problem constraints, NE: nodes explored by Branch and Cut, ost: cost of the globally optimal solution, bst: cost of the best solution of the tabu search,
avg: cost of the average solution of the tabu search, gap: optimality gap of the tabu search solution.

Table 11
Comparative results on VRPCD problem instances.

Instance W T M N G LS TS

bst t bst t bst t bst t bst t bst t bst t %bks

50a 6471.9 3865 6450.28 28 6453.08 – 6450.28 68 6455.77 149 6450.28 216.42 6450.28 58 0
50b 7410.6 3185 7428.54 15 7434.9 – 7428.54 8 7320.77 240 7428.54 257.22 7428.54 62 1.47
50c 7330.6 3269 7311.77 13 7317.35 – 7311.77 39 7311.77 120 7311.77 286.92 7311.77 68 0
50d 7050.3 3658 7021.39 117 7035.5 – 7028.22 22 7028.69 681 7028.17 239.64 7028.17 73 0.13
50e 7516.8 3159 7451.42 20 7482.01 – 7451.42 32 7452.83 168 7462.33 308.97 7451.42 67 0

Methods: W - Wen et al. (2009); T –Tarantilis (2013); – Morais et al. (2014); N – Nikolopoulou et al. (2017); G – Grangier et al. (2017); LS – Zachariadis et al.
2022); TS - This Paper.
otation: bst - best solution obtained over multiple runs (W 25 runs; T 3 runs; N 10 runs; G 10 runs; LS 10 runs; TS 10 runs); t - computational time in s (The
verage time required for generating the final solutions is reported in W and N; All other methods report the total time for obtaining the best solution); %bks
the %deviation between the best TS solution and the best known solution (bks) =100*((LS-bks)/bks).

.2. Tabu search results on larger instances

The effectiveness of the proposed Tabu search-based solution method in larger instances allows us to use it as a tool for examining
he impact of increasing the passenger inconvenience on the total transportation costs, for the basic DARPi model.

Initially, the proposed solution method was applied to the well-studied benchmark instances of Wen et al. (2009) considering
ifferent ride time duration levels (short and large). Table 12 presents the best solution values obtained for each route duration

level as well as the % deviation between the best solution scores and the average solution scores obtained over the total number of
runs. For the smaller scale problem instances (20 – 30 requests) the increase of the ride time limit of passengers does not have any
effect on the total solution cost. As the number of passengers increases, however, we observe a decrease of the total transportation
costs when the ride time limit of passengers is increased. The final column of the Table 12 shows that for medium and larger scale
problem instances with more than 50 requests, the average decrease in transportation costs is approximately 0.37%.

The rather limited impact of the route duration on the total transportation costs may be attributed to the inherent problem
characteristics. The problems of the benchmark dataset exhibit clustered geographic distribution, with the passenger transfer facility
being in between the pickup and delivery clusters. Given a solution provided by the proposed algorithm, the cost of the CD adjacent
arcs (the distance traveled by vehicles when leaving and returning to the depot) makes up for a large percentage of the total solution
cost. Furthermore, the problem instances involve rather narrow time windows for each pickup and delivery point, as well as small
vehicle capacities. As a result, the tightness of the time window constraints, the vehicle capacities, as well as the long distances that
the vehicles need to travel to depart from or return to the transfer point, do not allow the exploration of cost savings opportunities
given the increase of the passengers’ ride time.

7.3. Examining the sensitivity of solutions to perceived travel times

To gain more insight on the impact of the increase of the vehicle occupancy on the total transportation costs, we have performed
additional computational experiments. The computational results are summarized in Tables 13 and 14.

Table 13 presents the computational results for the shorter ride time level of 𝐿 = 850 and for the cases where (i) the in-vehicle
occupancy is not considered (𝛾 is 0) and (ii) the in-vehicle occupancy, and as result the passenger inconvenience, is taken into
account (𝛾 is 0.1). It presents the best solution values obtained for each 𝛾 value, as well as the percent deviation between scores
(column 7) demonstrating the increase in total vehicle running costs when accounting for overcrowding. The results reveal that
when increasing the limit of passengers’ inconvenience, the transportation costs increase. For medium and larger scale problem
instances with more than 50 requests, the average increase in transportation costs is approximately 0.43%.

We also calculate the crowding vehicle penalties for the pickup and delivery operations of vehicles to show the reduction of
crowding. In more detail, the crowding vehicle penalty for vehicle 𝑘 when departing from vertex 𝑖 is computed as:

̃𝑘 𝑘
18
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Table 12
Results from large instances with up to 200 requests. For each instance we perform 10 runs to report the best and average performances of the Tabu search-based
algorithm’s solutions.

Instance L = 850 L = 1100

bst Avg %diff CPU(s) bst Avg %diff CPU(s) %diff𝑏𝑠𝑡

20a 3398.60 3398.60 0.00 6 3398.60 3398.60 0.00 6 0.00
20b 3417.50 3419.92 0.07 4 3416.89 3419.76 0.08 30 −0.02
20c 3303.16 3303.16 0.00 9 3303.16 3303.16 0.00 9 0.00
20d 3646.47 3646.47 0.00 0 3646.47 3646.47 0.00 0 0.00
20e 3209.35 3209.35 0.00 0 3209.35 3209.35 0.00 0 0.00
30a 4509.63 4510.91 0.03 31 4509.63 4510.91 0.03 31 0.00
30b 5013.93 5018.93 0.10 39 5013.93 5018.93 0.10 39 0.00
30c 5123.11 5128.39 0.10 23 5107.78 5108.39 0.01 23 −0.30
30d 4487.22 4488.28 0.02 24 4487.22 4488.28 0.02 24 0.00
30e 5066.04 5070.28 0.08 37 5058.49 5063.05 0.09 26 −0.15
50a 7360.73 7385.07 0.33 95 7331.25 7346.67 0.21 137 −0.40
50b 7865.96 7876.90 0.14 42 7862.33 7870.54 0.10 45 −0.05
50c 7634.50 7635.40 0.01 13 7630.42 7630.42 0.00 10 −0.05
50d 7681.55 7692.46 0.14 28 7672.13 7677.76 0.07 108 −0.12
50e 7796.72 7828.75 0.41 80 7760.43 7768.53 0.10 115 −0.47
100a 14 466.99 14 510.27 0.30 580 14 442.16 14 485.65 0.30 519 −0.17
100b 15 787.54 15 852.62 0.41 204 15 664.93 15 709.88 0.29 272 −0.78
100c 15 074.70 15 093.47 0.12 532 15 042.87 15 085.57 0.28 778 −0.21
100d 15 347.13 15 450.26 0.67 158 15 226.49 15 269.69 0.28 85 −0.79
100e 15 077.87 15 114.58 0.24 642 15 027.57 15 052.97 0.17 191 −0.33
150a 21 208.80 21 269.17 0.28 822 21 110.83 21 187.04 0.36 966 −0.46
150b 22 070.86 22 125.09 0.25 1306 21 988.67 22 028.96 0.18 1551 −0.37
150c 21 262.91 21 321.02 0.27 761 21 169.45 21 239.26 0.33 1183 −0.44
150d 22 089.48 22 210.00 0.55 762 21 966.67 22 039.05 0.33 1113 −0.56
150e 21 088.25 21 166.69 0.37 425 21 106.84 21 120.62 0.07 1782 0.09
200a 28 855.58 28 972.76 0.41 934 28 710.74 28 836.97 0.44 2524 −0.50
200b 29 273.88 29 342.16 0.23 1400 29 194.73 29 288.86 0.32 1068 −0.27
200c 28 224.55 28 275.80 0.18 1021 28 138.12 28 191.00 0.19 2296 −0.31
200d 29 428.14 29 498.82 0.24 1169 29 265.25 29 332.83 0.23 2386 −0.55
200e 28 283.70 28 368.94 0.30 1785 28 163.86 28 224.06 0.21 1358 −0.42

Average 0.21 0.16

L: maximum allowed passenger ride time, bst: cost of the best solution of the tabu search after 10 runs, avg: cost of the average solution of the tabu search
from the 10 runs, %diffbst: performance difference of the best solution for 𝐿 = 850 and 𝐿 = 1100.

This penalty is applied to vehicles when moving from one vertex to another and they have more in-vehicle passengers than the
crowding limit 𝜌𝑄𝑘. In Tables 13 and 14 we present the average in-vehicle crowding penalties for the pick-up (pVP) and delivery
(dVP) vehicles. These key performance indicators together with the total vehicle running costs reported in the best solutions (bst)
demonstrate the trade-off between (i) reducing the crowdedness of vehicles that is beyond 𝜌𝑄𝑘, and (ii) increasing the vehicle
running costs.

As expected, the perceived travel times of passengers are greater than the actual travel times, when overcrowding is considered.
An interesting observation is that, on average, the actual travel times of passengers as well as the average vehicle penalties due to
overcrowding (ATT and PTT), seem to decrease when 𝛾 increases. This result might be attributed to the fact that when 𝛾 increases,
the solutions obtained are expected to be of lower quality in terms of transportation costs. This allows for the exploration of route
schemes where the actual duration between a passenger’s pickup and drop-off locations is reduced. Furthermore, route based on
actual travel times does not penalize crowding levels beyond a certain threshold, allowing more passengers entering a crowded
vehicle, if this results in reduced running costs for the overall fleet. As a result, a route based on actual travel times might result in
higher perceived travel times and thus causes greater passenger inconvenience.

Table 14 presents the computational results for increased ride times given different in-vehicle occupancy levels (𝛾 is equal to
0, 0,1 or 0.2). The results reveal a marginal increase in transportation costs when considering low levels of in-vehicle occupancy
(𝛾 is equal to 0.1) compared to the case where the in-vehicle occupancy is not considered (𝛾 is 0). However, a further increase of
the in-vehicle occupancy results to an increase in routing costs, reaching an average of 2.09% for larger scale problem instances.
Note that the evaluated increase in routing costs (2.09%) is less sensitive to the type of the network (its lowest value is 1.66%
for a network with 200 requests and its highest value is 3.48% for a network with 150 requests). In contrast, for higher values
of 𝛾, the average routing costs increase from 0.02% to 2.09% demonstrating that for a given number of vehicles an increase in
the perceived overcrowding levels can result in a major rerouting of the vehicles yielding higher routing costs. Hard constraints
such as the number of vehicles, the vehicle capacity and the time windows also exist and play a significant role in the total cost of
the solution. In addition, the actual travel times of passengers as well as the average vehicle penalties due to overcrowding (ATT
and PTT), seem to decrease when 𝛾 increases. These results are consistent with those presented in Table 13. Despite the increase
in routing costs given a further increase of the in-vehicle occupancy, the actual travel times of passengers decrease. This is an
important finding for dial-a-ride companies that seek to increase their customer service level. Regarding the computational times
19
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Table 13
Results in large instances with and without the consideration of perceived passenger travel times for a maximum allowed ride time of 𝐿 = 850.

Instance 𝛾 = 0 (without perceived travel times) 𝛾 = 0.1 (with perceived travel times)

bst ATT pVP dVP bst %diff ATT PTT pVP dVP

20a 3398.60 465.64 12.75 11.75 3398.60 0.00 465.64 590.94 12.75 11.75
20b 3416.89 381.24 10.50 13.93 3417.50 0.02 374.63 558.85 10.50 13.93
20c 3303.16 406.69 11.10 11.70 3303.16 0.00 406.69 546.19 11.10 11.70
20d 3646.47 374.24 11.25 11.25 3646.47 0.00 374.24 570.50 11.25 11.25
20e 3209.35 413.57 12.67 12.70 3209.35 0.00 413.57 583.83 12.67 12.70
30a 4509.63 407.59 15.83 12.36 4509.63 0.00 407.59 590.90 15.83 12.36
30b 5013.93 396.07 14.40 14.90 5013.93 0.00 396.07 626.34 14.40 14.90
30c 5107.78 388.22 13.30 13.20 5123.11 0.30 377.40 594.19 13.30 13.20
30d 4487.22 408.02 11.75 14.21 4487.22 0.00 408.02 564.53 11.75 14.21
30e 5051.72 407.04 14.60 12.50 5066.04 0.28 413.62 605.50 12.50 12.50
50a 7315.71 407.30 15.08 13.96 7360.73 0.62 406.07 591.09 15.08 13.96
50b 7864.93 396.88 13.31 13.56 7865.96 0.01 407.24 605.32 13.97 13.94
50c 7630.42 379.79 14.90 13.38 7634.50 0.05 376.35 570.49 14.90 13.38
50d 7674.14 415.33 12.90 15.12 7681.55 0.10 413.50 600.24 12.90 13.50
50e 7760.62 398.93 13.88 14.50 7796.72 0.47 397.20 620.66 13.88 13.56

Average – 403.10 13.21 13.27 – 0.12 402.52 587.97 13.12 13.12

100a 14 454.27 413.79 14.72 14.43 14 466.99 0.09 408.70 584.78 14.83 13.68
100b 15 652.75 418.28 13.34 14.67 15 787.54 0.86 416.87 607.45 13.47 14.53
100c 15 040.25 407.25 15.26 13.85 15 074.70 0.23 401.77 581.60 14.43 13.09
100d 15 226.49 416.62 13.53 14.72 15 347.13 0.79 416.67 627.31 13.19 14.07
100e 15 039.55 390.84 14.34 13.78 15 077.87 0.25 384.83 571.63 14.21 13.35
150a 21 116.44 391.89 14.30 14.39 21 208.80 0.44 393.12 583.68 14.76 14.05
150b 21 981.51 406.03 14.86 14.57 22 070.86 0.41 404.88 597.82 14.85 14.37
150c 21 190.89 391.66 15.38 14.68 21 262.91 0.34 391.05 592.45 14.77 14.28
150d 21 966.77 415.23 14.50 15.55 22 089.48 0.56 411.91 622.95 14.34 15.17
150e 21 054.56 387.98 14.68 14.68 21 088.25 0.16 387.74 588.46 14.64 14.54
200a 28 719.02 391.52 14.66 14.63 28 855.58 0.48 393.58 596.94 14.66 14.40
200b 29 194.73 397.70 15.35 14.90 29 273.88 0.27 397.34 600.89 14.97 14.95
200c 28 146.05 396.16 14.79 14.97 28 224.55 0.28 393.84 593.23 14.75 14.97
200d 29 244.26 395.21 14.68 14.75 29 428.14 0.63 397.52 605.09 14.58 15.13
200e 28 107.59 395.40 14.48 14.88 28 283.70 0.63 392.73 592.39 14.18 14.66

Average – 401.04 14.59 14.63 – 0.43 399.50 596.44 14.44 14.35

𝛾: marginal perceived travel time increase by passengers for one unit in-vehicle crowding increase beyond the acceptable crowding level 𝜌𝑄𝑘, bst: cost of the
best solution of the tabu search after 10 runs representing the total vehicle running costs, ATT: actual travel time of passengers, PTT: perceived travel time
of passengers, pVP: average Pickup Vehicle Penalties due to overcrowding, dVP: average Delivery Vehicle Penalties due to overcrowding, %diff: performance
difference (%) of the best solution for 𝛾 = 0 and 𝛾 = 0.1.

equired to obtain the best solution, we observed a slight increase in CPU times when gamma increases. This was expected and can
e attributed to the fact that when 𝛾 is greater than 0, additional calculations need to be performed within local search to guarantee
he feasibility of tentative moves.

. Conclusion

In this work we introduced a nonlinear model for the multi-vehicle dial-a-ride problem with interchange and perceived travel
imes. This model was linearized resulting in a mixed-integer linear programming formulation. We also added valid inequalities to
ighten the solution space and we proposed a Tabu search-based metaheuristic equipped with arc-exchange neighborhood structures
o solve large problem instances.

Our experiments show that DARPi can be solved to global optimality within a reasonable time for small instances with up to 10
equests. Because of its NP-Hard nature, a Tabu search-based metaheuristic was developed to obtain solutions for larger instances
nd study their sensitivity to the perceived travel times of passengers. Tabu search was capable of computing solutions for instances
ith up to 200 requests in less than 30 min. By deploying the DARPi formulation we show that vehicle routing costs might increase
y 2.09% if we seek to maintain an appropriate level of in-vehicle crowding that will not lead to excessive perceived passenger
ravel times. This information is valuable for decision makers and the application of our model for different values of 𝛾 can shed
ight to the trade-off between perceived passenger travel times and the vehicle running costs.

Our study offers an extension to the original DARP formulation by considering an interchange point that can reduce vehicle
unning costs and perceived passenger travel times. The selection of the interchange point is a critical decision and future research
an explore this in more detail with the employment of clustering methodologies. In addition, future research might consider the
doption of multiple interchange points resulting in a more general DARP formulation with multiple transfers. Further, the exact
alues of perceived travel times in relation to the vehicle crowdedness can be determined in more detail by conducting survey-
ased experiments that can extract the preferences of the affected passengers. Finally, with the possible introduction of autonomous
ehicles in the near future, the proposed routes of our model can be directly transmitted to autonomous vehicles, further automating
he process of scheduling with the aim to reduce the perceived travel times of passengers.
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Table 14
Results in large instances with and without the consideration of perceived travel times for a maximum allowed ride time of 𝐿 = 1100.

Instance 𝛾 = 0 (without perceived travel times) 𝛾 = 0.1 (with perceived travel times) 𝛾 = 0.2 (with perceived travel times)

bst ATT pVP dVP bst %diff1 ATT PTT pVP dVP bst %diff2 ATT PTT pVP dVP

20a 3398.60 465.64 12.75 11.75 3,398.60 0.00 465.64 599.14 12.75 11.75 3,402.17 0.10 468.31 773.49 12.75 11.75
20b 3416.89 369.64 10.50 13.93 3,416.89 0.00 369.64 557.21 10.50 13.93 3,429.79 0.38 379.17 806.61 10.50 13.93
20c 3303.16 414.91 11.10 11.70 3,303.16 0.00 414.91 559.47 11.10 11.70 3,339.58 1.10 409.60 783.49 11.10 11.70
20d 3646.47 371.97 11.25 11.25 3,646.47 0.00 371.97 565.66 11.25 11.25 3,672.47 0.71 374.17 789.04 11.25 11.25
20e 3209.35 411.83 12.67 12.70 3,209.35 0.00 411.83 591.07 12.67 12.70 3,227.48 0.57 412.67 809.17 12.67 12.70
30a 4509.63 412.82 15.83 12.36 4,509.63 0.00 412.82 589.12 15.83 12.36 4,555.36 1.01 405.48 755.22 15.83 10.64
30b 5013.93 393.79 14.40 14.90 5,013.93 0.00 393.79 614.03 14.40 14.90 5,069.83 1.11 394.03 831.86 14.40 12.32
30c 5107.78 383.59 13.30 13.20 5,107.78 0.00 383.59 617.60 13.30 13.20 5,204.35 1.89 378.44 812.66 13.30 11.86
30d 4487.22 408.02 11.75 14.21 4,487.22 0.00 408.02 564.53 11.75 14.21 4,494.25 0.16 418.17 822.88 11.75 14.21
30e 5058.49 408.94 14.60 12.50 5,058.49 0.00 408.94 594.76 14.60 12.50 5,181.41 2.43 402.43 836.63 12.50 12.50
50a 7331.25 402.19 15.08 13.42 7,331.25 0.00 402.19 604.06 15.08 13.42 7,431.40 1.37 407.64 835.68 15.08 13.42
50b 7862.33 403.62 13.31 13.38 7,862.33 0.00 403.62 603.12 13.31 13.38 7,949.04 1.10 402.71 881.79 13.31 13.94
50c 7630.42 380.47 14.90 13.38 7,630.42 0.00 380.47 561.69 14.90 13.38 7,762.74 1.73 382.22 807.28 14.90 13.38
50d 7672.13 413.64 12.90 15.12 7,672.13 0.00 413.64 620.27 12.90 15.12 7,778.63 1.39 407.32 865.65 12.90 13.03
50e 7760.43 400.91 13.88 14.50 7,760.43 0.00 400.91 608.52 13.88 14.50 7,911.01 1.94 397.49 840.60 13.88 12.06

Average 5293.87 402.80 13.21 13.22 5293.87 0.00 402.80 590.02 13.21 13.22 5360.63 1.13 402.66 816.80 13.07 12.58

100a 14 442.16 413.69 15.62 14.28 14,442.16 0.00 413.69 590.78 15.62 14.28 14,688.53 1.71 411.22 809.10 14.69 12.74
100b 15 664.93 414.21 14.00 14.31 15,664.93 0.00 414.21 627.75 14.00 14.31 16,011.33 2.21 414.34 848.50 13.34 13.22
100c 15 042.87 407.48 15.05 14.63 15,042.87 0.00 407.48 623.82 15.05 14.63 15,243.44 1.33 407.88 844.01 14.33 13.92
100d 15,226.49 416.62 13.53 14.72 15,226.49 0.00 416.62 652.56 13.53 14.72 15,638.56 2.71 420.43 861.72 13.12 13.02
100e 15 027.57 387.57 13.69 13.78 15,027.57 0.00 387.57 577.28 13.69 13.78 15,306.42 1.86 387.89 831.99 14.34 13.32
150a 21 110.83 392.92 14.34 14.32 21,110.83 0.00 392.92 602.77 14.34 14.32 21,374.03 1.25 390.35 838.10 14.18 13.33
150b 21 988.67 410.01 15.10 14.78 21,988.67 0.00 410.01 615.89 15.10 14.78 22,494.35 2.30 400.09 852.89 14.63 13.67
150c 21 169.45 390.35 15.38 14.99 21,169.45 0.00 390.35 602.28 15.38 14.99 21,735.32 2.67 392.69 835.64 14.26 13.83
150d 21 966.67 413.86 14.36 15.07 21,966.67 0.00 413.86 628.67 14.36 15.07 22,730.07 3.48 405.87 877.84 13.92 12.97
150e 21 059.07 385.96 15.03 15.05 21,106.84 0.23 390.75 616.50 14.68 14.81 21,527.85 1.99 380.66 865.01 14.50 14.07
200a 28 710.74 395.28 14.69 14.58 28,710.74 0.00 395.28 602.61 14.69 14.58 29,328.02 2.15 389.45 847.37 14.31 13.05
200b 29,194.73 397.70 15.35 14.90 29,194.73 0.00 397.70 636.45 15.35 14.90 29,678.33 1.66 396.73 872.92 14.68 14.02
200c 28 138.12 391.30 15.19 15.34 28,138.12 0.00 391.30 597.99 15.19 15.34 28,637.39 1.77 396.18 842.83 14.19 13.89
200d 29 249.20 396.64 14.58 15.21 29,265.25 0.05 396.69 611.96 14.83 14.90 29,932.41 2.28 394.27 865.88 14.21 13.56
200e 28 161.98 395.22 14.78 14.83 28,163.86 0.01 395.29 611.64 14.78 14.50 28,728.44 2.00 394.18 838.98 14.18 13.82

Average 21743.57 400.59 14.71 14.72 21747.95 0.02 400.92 613.26 14.71 14.66 22203.63 2.09 398.82 848.85 14.19 13.49

𝛾: marginal perceived travel time increase by passengers for one unit in-vehicle crowding increase beyond the acceptable crowding level 𝜌𝑄𝑘 , bst: cost of the best solution of the tabu search after
0 runs representing the total vehicle running costs, ATT: actual travel time of passengers, PTT: perceived travel time of passengers, pVP: average Pickup Vehicle Penalties due to overcrowding,
VP: average Delivery Vehicle Penalties due to overcrowding, %diff1 : performance difference (%) of the best solution for 𝛾 = 0 and 𝛾 = 0.1, %diff2 : performance difference (%) of the best solution
or 𝛾 = 0.1 and 𝛾 = 0.2.
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ppendix A. Table of notations

See Table A.15.

Table A.15
Nomenclature.

Sets

 = ⟨1,… , 𝑛⟩ the set of pickup vertices
 = ⟨𝑛 + 1,… , 2𝑛⟩ the set of delivery vertices
 = ⟨𝑜1 , 𝑜2 , 𝑜3 , 𝑜4⟩ four copies of the depot
 set of all vertices
 the feasible arc set
 set of vehicles

Parameters
𝑞𝑖 pickup or delivery demand of vertex 𝑖
𝛽 a fixed time requirement for handling a single passenger
𝑎 fixed time for unloading and reloading
𝑄𝑘 capacity of vehicle 𝑘

(continued on next page)
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Table A.15 (continued).
𝑇𝑘 maximum allowed duration of route 𝑘
𝑐𝑖𝑗 cost of traversing a feasible arc (𝑖, 𝑗) 𝑖 ∈  without performing intermediate stops
𝑡𝑖𝑗 travel time of traversing a feasible arc (𝑖, 𝑗) 𝑖 ∈  without performing intermediate

stops
𝐿 maximum allowed ride time of any traveler
[𝑒𝑖 , 𝑙𝑖] time window within which we should serve vertex 𝑖

Variables
𝑥𝑘𝑖𝑗 binary variable equal to 1 if vehicle 𝑘 serves vertices (𝑖, 𝑗) ∈  sequentially, i.e.,

vertex 𝑗 is served directly after vertex 𝑖
𝜂𝑘𝑖 binary variable equal to 1 if vehicle 𝑘 unloads request 𝑖 ∈  to the interchange point
𝜃𝑘𝑖 binary variable equal to 1 if vehicle 𝑘 reloads request 𝑖 ∈  from the interchange

point
𝜂̃𝑘 binary variable indicating whether vehicle 𝑘 unloads at the interchange point
𝜃𝑘 binary variable indicating whether vehicle 𝑘 reloads at the interchange point.
𝑢𝑘𝑖 the time at which vehicle 𝑘 starts servicing vertex 𝑖 ∈ 
𝑟𝑖 the ride time of traveler 𝑖 corresponding to request (𝑖, 𝑛 + 𝑖), where 𝑖 ∈ 
𝜏𝑘 time at which vehicle 𝑘 ∈  finishes unloading at the interchange point
𝑤𝑘 time at which vehicle 𝑘 ∈  starts reloading at the interchange point
𝑧𝑖 time at which request 𝑖 ∈  is unloaded at the interchange point
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