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Minimum Makespan Multi-vehicle Dial-a-Ride

Inge Li Gørtz∗ Viswanath Nagarajan† R. Ravi‡

12 April 2009

Abstract

Dial-a-Ride problems consist of a set V of n vertices in a metric space (denoting travel time
between vertices) and a set of m objects represented as source-destination pairs {(si, ti)}mi=1,
where each object requires to be moved from its source to destination vertex. In the multi-
vehicle Dial-a-Ride problem, there are q vehicles each having capacity k and where each vehicle
j ∈ [q] has its own depot-vertex rj ∈ V . A feasible schedule consists of a capacitated route for
each vehicle (where vehicle j originates and ends at its depot rj) that together move all objects
from their sources to destinations. The objective is to find a feasible schedule that minimizes
the maximum completion time (i.e. makespan) of vehicles, where the completion time of vehicle
j is the time when it returns to its depot rj at the end of its route. We study the preemptive
version of multi-vehicle Dial-a-Ride, where an object may be left at intermediate vertices and
transported by more than one vehicle, while being moved from source to destination. Our main
results are an O(log3 n)-approximation algorithm for preemptive multi-vehicle Dial-a-Ride, and
an improved O(log t)-approximation for its special case when there is no capacity constraint

(here t ≤ n is the number of distinct depot-vertices). There is an Ω(log1/4−ε n) hardness of
approximation known even for single vehicle capacitated Dial-a-Ride [19]. For uncapacitated
multi-vehicle Dial-a-Ride, we show that there are instances where natural lower bounds (used

in our algorithm) are Ω̃(log t) factor away from the optimum.
We also consider the special class of metrics induced by graphs excluding any fixed minor

(eg. planar metrics). In this case, we obtain improved guarantees of O(log2 n) for capacitated
multi-vehicle Dial-a-Ride, and O(1) for the uncapacitated problem.

1 Introduction

The multi-vehicle Dial-a-Ride problem (mDaR) involves routing a set of m objects from their sources
to destinations using a set of q vehicles starting at respective depot vertices. Each vehicle has a
capacity k which is the maximum number of objects it can carry at any time. Two versions of Dial-
a-Ride are studied, based on whether or not object routes are preemptive. In this paper we consider
the less-examined preemptive version, where preemption (also known as transshipment) of objects
can occur at any vertex in the metric. The standard objectives in Dial-a-Ride problems are total
completion time and maximum completion time (makespan). The multi-vehicle total completion
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time problem admits a simple reduction to single vehicle Dial-a-Ride, as discussed below. Here, we
study the makespan version of the problem, which is more interesting from an algorithmic point of
view. Our main result is a poly-logarithmic approximation ratio for this problem.

While the multiple qualifications may make the problem appear contrived, this is exactly the
problem that models courier or mail delivery over a day from several city depots: preemption is
cheap and useful for packages, trucks are capacitated and the makespan reflects the daily working
time limit for each truck. Despite its ubiquity, this problem has not been as well studied as other
Dial-a-Ride versions. One reason from the empirical side is the difficulty in handling the possibility
of preemptions in a reasonable mathematical programming model. On the theoretical side which is
the focus of this paper, the difficulty of using preemption in a meaningful way persists; it is further
compounded by the hardness of the makespan objective.

The preemptive Dial-a-Ride problem has been considered earlier with a single vehicle, for which
an O(log n) approximation [11] and an Ω(log1/4−ε n) hardness of approximation [19] are known; here
n is the number of vertices. Note that the completion time and makespan objectives coincide in
the single vehicle case.

Moving to multiple vehicles, the total completion time objective admits a straightforward
O(log n) approximation along the lines of the single vehicle problem [11]: using probabilistic tree
embedding [17], one can reduce to tree-metrics at the loss of an expected O(log n) factor, and there
is a simple constant factor approximation for this problem on trees. The makespan objective, which
we consider in this paper turns out to be considerably harder. Due to non-linearity of the makespan
objective, the above reduction to tree-metrics does not hold. Furthermore, the makespan problem
does not appear significantly easier to solve even on trees.

The multi-vehicle Dial-a-Ride problem captures aspects of both machine scheduling and network
design problems. Unlike in the single-vehicle case, an object in multi-vehicle Dial-a-Ride may be
transported by several vehicles one after the other. Hence it is important for the vehicle routes to
be coordinated so that the objects trace valid paths from respective sources to destinations. For
example, a vehicle may have to wait at a vertex for other vehicles carrying common objects to
arrive.

Due to such scheduling issues, the multi-vehicle Dial-a-Ride problem is non-trivial even in the
absence of capacity constraints. In this paper, we first provide an approximation algorithm for the
uncapacitated mDaR problem, which is interesting in itself. Then we generalize the result to the
capacitated setting. We also show that improved approximation ratios can be achieved in both
cases, for metrics that exclude some fixed minor (eg. planar metrics).

We note that although our model allows any number of preemptions and preemptions at all
vertices, our algorithms do not use this possibility to its full extent. The algorithm for the capaci-
tated case preempts each object at most once. The algorithm in the uncapacitated case preempts
objects only at depot vertices and at most a logarithmic number of times.

1.1 Problem Definition and Preliminaries

We represent a finite metric as (V, d) where V is the set of vertices and d is a symmetric distance
function satisfying the triangle inequality. For subsets A,B ⊆ V we denote by d(A,B) the minimum
distance between a vertex in A and another in B, so d(A,B) = min{d(u, v) | u ∈ A, v ∈ B}. For a
subset E ⊆

(
V
2

)
of edges, d(E) :=

∑
e∈E de denotes the total length of edges in E.

The multi-vehicle Dial-a-Ride problem (mDaR) consists of an n-vertex metric (V, d), m objects
specified as source-destination pairs {si, ti}mi=1, q vehicles having respective depot-vertices {rj}qj=1,
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and a common vehicle capacity k. A feasible schedule is a set of q routes, one for each vehicle
(where the route for vehicle j ∈ [q] starts and ends at rj), such that no vehicle carries more than k
objects at any time and each object is moved from its source to destination. The completion time
Cj of any vehicle j ∈ [q] is the time when vehicle j returns to its depot rj at the end of its route
(the schedule is assumed to start at time 0). The objective in mDaR is to minimize the makespan,
i.e., min maxj∈[q]Cj . We denote by S := {si | i ∈ [m]} the set of sources, T := {ti | i ∈ [m]}
the set of destinations, R := {rj | j ∈ [q]} the set of distinct depot-vertices, and t := |R| the
number of distinct depots. Throughout, we consider the preemptive version, where objects may
be left at intermediate vertices and carried by multiple vehicles, while being moved from source to
destination.

Lower bounds for single vehicle Dial-a-Ride The following are simple lower bounds for the
single vehicle problem: the minimum length TSP tour on the depot and all source/destination ver-

tices (Steiner lower bound), and
∑m

i=1 d(si,ti)
k (flow lower bound). [11] gave anO(log n)-approximation

algorithm for this problem based on the above lower bounds. A feasible solution to preemptive
Dial-a-Ride is said to be 1-preemptive if every object is preempted at most once while being moved
from its source to destination, i.e. for each object i ∈ [m] there is one intermediate vertex vi such
that it is first moved non-preemptively from source si to vi, and later non-preemptively from vi
to destination ti. [21] showed that the single vehicle preemptive Dial-a-Ride problem always has a
1-preemptive tour of length O(log2 n) times the Steiner and flow lower-bounds.

Lower bounds for mDaR The quantity
∑m

i=1 d(si,ti)
qk is a lower bound similar to the flow bound

for single vehicle Dial-a-Ride. Analogous to the Steiner lower bound above, is the optimal value
of an induced nurse-station-location instance. In the nurse-station-location problem [16], we are
given a metric (V, d), a set T of terminals and a multi-set {rj}qj=1 of depot-vertices; the goal is to
find a collection {Fj}qj=1 of trees that collectively contain all terminals T such that each tree Fj is
rooted at vertex rj and maxqj=1 d(Fj) is minimized. [16] gave a 4-approximation algorithm for this
problem. The optimal value of the nurse-station-location instance with depots {rj}qj=1 (depots of
vehicles in mDaR) and terminals T = S ∪T is a lower bound for mDaR. Two natural lower bounds
implied by this nurse-station-location instance are:

1. 1
q times the minimum length forest that connects every vertex in S ∪T to some depot vertex.

2. maxi∈[m] d(R, si) and maxi∈[m] d(R, ti).

Finally, it is easy to see that maxi∈[m] d(si, ti) is also a lower bound for mDaR.

We note that the approximation bounds for uncapacitated mDaR are relative to the above
simple lower bounds. However, these do not suffice for the capacitated setting (see Section 3 for
an example). Hence our algorithm for capacitated mDaR relies on stronger lower bounds from
subproblems that are obtained by restricting to suitable subsets of depots and demands.

1.2 Results, Techniques and Paper Outline

Uncapacitated mDaR. We first consider the special case of multi-vehicle Dial-a-Ride where the
vehicles have no capacity constraints (i.e. k ≥ m). This problem is interesting in itself, and serves
as a good starting point before we present the algorithm for the general case. The uncapacitated
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mDaR problem itself highlights differences from the single vehicle case: for example, in single
vehicle Dial-a-Ride, preemption plays no role in the absence of capacity constraints; whereas in the
multi-vehicle case, an optimal non-preemptive schedule may take Ω(

√
q) longer than the optimal

preemptive schedule (see Section 2). Our first main result is the following:

Theorem 1.1. There is an O(log t)-approximation algorithm for uncapacitated preemptive mDaR.
Additionally, the schedule preempts each object only at depot vertices, and at most 2 log2 t times.

The above algorithm has two main steps: the first one (in Subsection 2.1) reduces the instance, at
a constant factor loss in the performance guarantee, to one in which all demands are between depots
(a “depot-demand” instance). In the second step (Subsection 2.2), we use a sparse spanner [31] on
the demand graph to construct routes for moving objects across depots.

We also construct instances of uncapacitated mDaR where the optimal value is Ω(log t/ log log t)
times all our lower bounds for this problem (Subsection 2.3). This suggests that stronger lower
bounds are needed to obtain a better approximation ratio than what our approach provides.

We then consider the special class of metrics induced by graphs excluding some fixed minor (such
as planar or bounded-genus graphs), and obtain the following improved guarantee in Subsection 2.4.

Theorem 1.2. There is an O(1)-approximation algorithm for uncapacitated preemptive mDaR on
metrics induced by graphs that exclude any fixed minor. The resulting schedule preempts each object
only at depot vertices, and at most thrice.

The algorithm in Theorem 1.2 has the same high-level approach outlined for Theorem 1.1: the
difference is in the second step, where we use a stronger notion of sparse covers in such metrics
(which follows from the “KPR decomposition” theorem [26]), to construct routes for moving objects
across depots.

Capacitated mDaR. In Section 3, we study the capacitated multi-vehicle Dial-a-Ride problem,
and obtain our second main result. Recall that there is an Ω(log1/4−ε n) hardness of approximation
for even single vehicle Dial-a-Ride [19].

Theorem 1.3. There is an O(log3 n)-approximation algorithm for preemptive mDaR. Additionally,
the schedule preempts each object at most once.

This algorithm is considerably more complex than the one for the uncapacitated special case,
and is the main technical contribution of this paper. It has four key steps:

1. We preprocess the input so that demand points that are sufficiently far away from each other
can be essentially decomposed into separate instances for the algorithm to handle indepen-
dently.

2. We then solve a single-vehicle instance of the problem that obeys some additional bounded-
delay property that we prove (Theorem 3.4); This property combines ideas from algorithms for
light approximate shortest path trees [5, 25] and capacitated vehicle routing [22]. The bounded-
delay property is useful in partitioning the single vehicle solution among the q vehicles available
to share this load This partitioning scheme serves to average out the effect of the cutting in
the objective function. This is similar to the α-point rounding method in scheduling [23], and
has also been used in network design, eg. [24], [6] and [26].

4



3. The partitioned segments of the single vehicle tour are assigned to the available vehicles.
However, to check if this assignment is feasible, we solve a matching problem that identifies
cases when this load assignment must be rebalanced. This is perhaps the most interesting step
in the algorithm since it identifies stronger lower bounds for subproblems where the current
load assignment is not balanced.

4. We finish up by recursing on the load rebalanced subproblem. An interesting feature of the
recursion is that the fraction of demands that are processed recursively is not a fixed value
(as is more common in such recursive algorithms) but a function of the number of vehicles
on which these demands are served.

We prove the new bounded-delay property of single-vehicle Dial-a-Ride in Subsection 3.1. We
present the algorithm for Theorem 1.3 in Subsection 3.2 and establish an O(logm log n logmn)-
approximation bound. In Subsection 3.3 we show how to remove the dependence on m (number
of objects) to obtain the final O(log3 n) approximation ratio. The main idea here is an O(1)-
approximation algorithm for the multi-vehicle stacker crane problem (Theorem 3.9), which is the
special case of mDaR when capacity k = 1. We note that [18] gave a constant-factor approximation
for multi-vehicle stacker crane, when all depots are identical. To the best of our knowledge, ours
is the first constant-factor approximation for minimizing makespan in the stacker crane problem
with multiple distinct vehicles/depots.

When the underlying metric is induced by graphs excluding a fixed minor, we can establish a
stronger bounded-delay property in step (2) of the above framework. The main idea here is the
construction of well-separated covers in such metrics, which we show can be obtained using the
KPR decomposition [26]. This leads to the following improved guarantee, proved in Subsection 3.4.

Theorem 1.4. There is an O(log2 n)-approximation algorithm for preemptive mDaR on metrics
induced by graphs excluding any fixed minor. Additionally, the schedule preempts each object at
most once.

1.3 Related Work

Dial-a-Ride problems form an interesting subclass of Vehicle Routing Problems that are well studied
in the operations research literature. [15] provided a classification of Dial-a-Ride problems using
a notation similar to that for scheduling and queuing problems: preemption is one aspect in this
classification. [32] and [14] surveyed several variants of non-preemptive Dial-a-Ride problems that
have been studied in the literature. Most Dial-a-Ride problems arising in practice involve making
routing decisions for multiple vehicles.

Dial-a-Ride problems with transshipment (the preemptive version) have been studied in [28, 29,
30]. These papers considered a more general model where preemption is allowed only at a specified
subset of vertices. Our model and that of [11] is the special case when every vertex can serve as a
preemption point; these results are nevertheless useful under restricted preemptions when the set
P of preemption-points forms a “net” of the underlying metric (i.e. every vertex in V has a nearby
point in P ). It is clear that preemption only reduces the cost of serving demands: [30] studied
the maximum decrease in the optimal cost upon introducing one preemption point. [28, 29] also
modeled time-windows on the demands, and obtained heuristics and a column-generation based
exact approach; they also described applications (eg. courier service) that allow for preemptions.
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For single vehicle Dial-a-Ride, the best known approximation guarantee for the preemptive
version is O(log n) [11], and an Ω(log1/4−ε n) hardness of approximation (for any constant ε > 0) is
shown in [19]. The non-preemptive version appears much harder and the best known approximation
ratio is min{

√
k log n,

√
n log2 n} [11, 21]); however, to the best of our knowledge, APX-hardness

is the best lower bound. There are known instances of single vehicle Dial-a-Ride where the ratio
between optimal non-preemptive and preemptive tours is Ω(

√
n) in general metrics [11], and Ω̃(n1/8)

in the Euclidean plane [21]. A 1.8-approximation is known for the k = 1 special case of single vehicle
Dial-a-Ride (the stacker-crane problem) [18].

[10] studied the related k-delivery TSP problem, which involves transporting a number of iden-
tical objects from supply to demand vertices, using a single capacity k vehicle. The key difference
from Dial-a-Ride is that an object can be moved from any supply vertex to any demand vertex.
[10] gave an approximation algorithm for k-delivery TSP that outputs a non-preemptive tour of
length at most five times an optimal preemptive tour. They also showed that for any k-delivery
TSP instance, the optimal non-preemptive tour is at most four times the optimal preemptive tour.

The truck and trailer routing problem [8, 33] is another problem where preemption plays a
crucial role. Here, a number of capacitated trucks and trailers are used to deliver all objects.
Some customers are only accessible without the trailer. The trailers can be parked at any point
accessible with a trailer and it is possible to shift demand loads between the truck and the trailer
at the parking places. The papers [8, 33] gave some heuristics for this problem.

Single vehicle preemptive Dial-a-Ride is closely related to the uniform buy-at-bulk problem [4,
20], under the cost function dxk e where k is the vehicle capacity. Such a connection was formally used
in [19] to establish the hardness of approximation for the single vehicle problem. Approximation
algorithms for several buy-at-bulk variants have been studied recently, eg. non-uniform buy-at-
bulk [9, 12], buy-at-bulk with node-costs [12] and buy-at-bulk with protection [3]; poly-logarithmic
approximation guarantees are known for all these problems. However the techniques required to
solve the multi-vehicle Dial-a-Ride problem appear quite different from these buy-at-bulk results.

The uncapacitated mDaR problem generalizes the nurse-station-location problem, for which a
4-approximation algorithm was given in [16]. In fact we also use this algorithm as a subroutine
for uncapacitated mDaR. Nurse-station-location is the special case of uncapacitated mDaR when
each source-destination pair coincides on a single vertex. In this paper, we handle not only the
case with arbitrary pairs (uncapacitated mDaR), but also the more general problem (capacitated
mDaR) with finite capacity restriction.

2 Uncapacitated Multi-Vehicle Dial-a-Ride

In this section we study the uncapacitated special case of mDaR, where vehicles have no capacity
constraints (i.e. capacity k ≥ m). We give an algorithm that achieves an O(log t) approximation
ratio for this problem (recall t ≤ n is the number of distinct depots).

As a warm-up for the multi-vehicle setting, we first present an example that demonstrates a
large gap between preemptive and non-preemptive schedules for uncapacitated mDaR.

Example (Preemption gap in Uncapacitated mDaR) Consider an instance of uncapacitated
mDaR where the metric is induced by an unweighted star with q leaves (where q is number of
vehicles), all q vehicles have the center vertex as depot, and there is a demand between every
ordered pair of leaf-vertices. A preemptive schedule having makespan 4 is as follows: each vehicle
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j ∈ [q] visits leaf j and brings all demands with source j to the root, then each vehicle j visits its
corresponding leaf again, this time delivering all demands with destination j. On the other hand,
in any non-preemptive schedule, one of the q vehicles completely serves at least q−1 demands since
there are q(q − 1) demands in all. The minimum length of any tour containing the end points of
q demands is Ω(

√
q), which is also a lower bound on the optimal non-preemptive makespan. Thus

there is an Ω(
√
q) factor gap between optimal preemptive and non-preemptive tours. This is in

contrast to the uncapacitated single vehicle case, where it is easy to see that the optimal preemptive
and non-preemptive tours coincide.

The algorithm for uncapacitated mDaR proceeds in two stages. Given any instance, it is first
reduced (at the loss of a constant factor) to a “depot-demand instance” where all demands are
between depot vertices (Subsection 2.1). This reduction uses the nurse-station-location algorithm
from [16]. Then the depot-demand instance is solved using an O(log t)-approximation algorithm
(Subsection 2.2); this is the main step in the algorithm, and is based on constructing a sparse-
spanner on the demand graph. For metrics excluding a fixed minor, we show (in Subsection 2.4)
that a constant-factor approximation can be achieved using a different construction based on the
KPR decomposition [26].

2.1 Reduction to Depot-demand Instances

We define depot-demand instances as those instances of uncapacitated mDaR where all demands are
between depot vertices. Given any instance I of uncapacitated mDaR, the algorithm UncapMulti
(Figure 1) reduces I to a depot-demand instance J . We now argue that the reduction in UncapMulti
only loses a constant approximation factor. Let B denote the optimal makespan of instance I. Since
the optimal value of the nurse-station-location instance solved in the first step of UncapMulti is a
lower bound for I, we have maxqj=1 d(Fj) ≤ 4B.

Claim 2.1. The optimal makespan for the depot-demand instance J is at most 17B.

Proof: Consider a feasible schedule for J involving three rounds:

1. Each vehicle traverses (by means of an Euler tour) its corresponding tree in {Fj}qj=1 and
moves each object i from its source-depot (the source in instance J ) to si (source in original
instance I).

2. Each vehicle follows the optimal schedule for I, which moves each object i from si to ti.

3. Each vehicle traverses its corresponding tree in {Fj}qj=1 and moves each object i from ti to
its destination-depot (the destination in J ).

Clearly this is a feasible schedule for J . From the observation on the nurse-station-location instance,
the time taken in each of the first and third rounds is at most 8B. Furthermore, the time taken in
the second round is the optimal makespan of I which is B. This proves the claim.

Assuming a feasible schedule for J , it is clear that the schedule returned by UncapMulti is feasible
for the original instance I. The first and third rounds in I’s schedule require at most 8B time
each. Thus an approximation ratio ρ for depot-demand instances implies an approximation ratio of
17ρ+16 for general instances. In the next subsection, we show an O(log t)-approximation algorithm
for depot-demand instances (here t is the number of depots), which would imply Theorem 1.1.
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Input: instance I of uncapacitated mDaR.

• Solve the nurse-station-location instance with depots {rj}qj=1 and all
sources/destinations S ∪ T as terminals, using the 4-approximation algo-
rithm [16]. Let {Fj}qj=1 be the resulting trees covering S ∪ T such that
each tree Fj is rooted at depot rj .

• Define a depot-demand instance J of uncapacitated mDaR on the same metric
and set of vehicles, where the demands are {(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤
i ≤ m}. For any object i ∈ [m] let the source depot be the depot rj for which
si ∈ Fj and the destination depot be the depot rl for which ti ∈ Fl.

• Output the following schedule for I:

1. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all
objects from sources in Fj and brings them to their source-depot rj .

2. Vehicles implement a schedule for depot-demand instance J , and all
objects are moved from their source-depot to destination-depot (using
the algorithm in Section 2.2).

3. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all ob-
jects having destination-depot rj and brings them to their destinations
in Fj .

Figure 1: Algorithm UncapMulti for uncapacitated mDaR.

2.2 Algorithm for Depot-demand Instances

Let J be any depot-demand instance: note that the instance defined in the second step of Uncap-
Multi is of this form. Let B̃ denote the optimal makespan of instance J . Our algorithm works on
the induced metric (R, d) of depot vertices, and only uses one vehicle at each depot in R.

Consider an undirected graph H consisting of vertex set R and edges corresponding to demands:
there is an edge between vertices r and s iff there is an object going from either r to s or s to
r. Note that the metric length of any edge in H is at most B̃ the optimal makespan of J . We
further reduce J to the following instance H of uncapacitated mDaR: the underlying metric is
shortest paths in graph H (on vertices R), with one vehicle at each R-vertex, and for every edge
(u, v) ∈ H there is a demand from u to v and one from v to u. Note that any schedule feasible for
H is also feasible for J : since the demands in J are a subset of that in H, and the vehicles in J
are a superset of that in H. Moreover, any schedule for H with makespan β corresponds to one
for J with makespan β · B̃: this uses the fact that each edge of H has length at most B̃ in J ’s
metric. The next lemma finds a low makespan schedule for H, which in turn implies an O(log |R|)
approximation for depot-demand instances.

Lemma 2.2. There exists a poly-time computable schedule for H with makespan O(log t), where
t = |R|.

Proof: Let α = blog2 tc. We use the well-known sparse spanner construction from [2] to obtain
subgraph A of H as follows: consider edges of H in an arbitrary order, and add an edge (u, v) ∈ H
to A iff the shortest path between u and v using current edges of A is more than 2α. It is clear
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from this construction that the girth of A (length of its shortest cycle) is at least 2α+ 2, and that
for every edge (u, v) ∈ H, the shortest path between u and v in A is at most 2α.

We now assign each edge of A to one of its end-points such that each vertex is assigned at most
two edges. Repeatedly pick any vertex v of degree at most two in A, assign its adjacent edges to v,
and remove these edges and v from A. We claim that at the end of this procedure (when no vertex
has degree at most 2), all edges of A would have been removed (i.e. assigned to some vertex).
Suppose for a contradiction that this is not the case. Let Ã 6= ∅ be the remaining graph; note that
Ã ⊆ A, so girth of Ã is at least 2α + 2. Every vertex in Ã has degree at least 3, and there is at
least one such vertex w. Consider performing a breadth-first search in Ã from w. Since the girth
of Ã is at least 2α+ 2, the first α+ 2 levels of the breadth-first search form a tree (where level one
consists of the singleton {w}). Furthermore, every vertex has degree at least 3, so each vertex in
the first α + 1 levels has at least two children (the root w has three). This implies that Ã has at
least 3 · 2α+1 − 2 > t vertices, which is a contradiction! For each vertex v ∈ R, let Av denote the
edges of A assigned to v by the above procedure; we argued that ∪v∈RAv = A, and |Av| ≤ 2 for all
v ∈ R.

The schedule for H involves 2α rounds as follows. In each round, every vehicle v ∈ R traverses
the edges in Av (in both directions) and returns to v. Since |Av| ≤ 2 for all vertices v, each round
takes 4 units of time; so the makespan of this schedule is 8α = O(log t). The route followed by each
object in this schedule is the shortest path from its source to destination in spanner A; note that
the length of any such path is at most 2α. To see that this is indeed feasible, observe that every
edge of A is traversed by some vehicle in each round. Hence in each round, every object traverses
one edge along its shortest path (unless it is already at its destination). Thus after 2α rounds, all
objects are at their destinations.

Combined with the reduction to depot-demands (UncapMulti ), it follows that the final schedule
for the uncapacitated mDaR instance I has makespan O(log t) · B. Additionally, this schedule
preempts each object at most 2α + 1 = 2blog2 tc + 1 times (and only at depots). This completes
the proof of Theorem 1.1.

2.3 Tight Example for Uncapacitated mDaR Lower Bounds

We note that known lower bounds for uncapacitated mDaR are insufficient to obtain a sub-
logarithmic approximation guarantee. The lower bounds we used in our algorithm are the following:
maxi∈[m] d(si, ti), and the optimal value of a nurse-station-location instance with depots {rj}qj=1

and terminals S ∪ T . We are not aware of any lower bounds stronger than these two bounds.

We show an instance G of uncapacitated mDaR where the optimal makespan is a factor Ω( log t
loglog t)

larger than both the above lower bounds. In fact, the instance we construct is a depot-demand
instance that has the same special structure as instance H in Lemma 2.2. That is, the demand
graph is same as the graph inducing distances. Take G = (V,E) to be a t-vertex regular graph
of degree θ(log t) and girth g = θ(log t/ loglog t); there exist such graphs, eg. [27]. Instance G is
defined on a metric on vertices V with distances being shortest paths in graph G. For every edge
(u, v) ∈ E of graph G, there is an object with source u and destination v (the direction is arbitrary).
There is one vehicle located at every vertex of V ; so the number of vehicles q = t.

Observe that both our lower bounds are O(1): the optimal value of the nurse-station-location
instance is 0, and maximum source-destination distance is 1. However as we show below, the
optimal makespan for this instance is at least g−1 = Ω(log t/ loglog t). Suppose (for contradiction)
that there is a feasible schedule for G with makespan M < g−1. A demand (u, v) ∈ E is said to be
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completely served by a vehicle j iff the route of vehicle j visits both vertices u and v. The number
of distinct vertices visited by any single vehicle is at most M < g: so the number of demands that
are completely served by a single vehicle is at most M − 1 (otherwise these demand edges would
induce a cycle smaller than the girth g). Hence the number of demands that are completely served
by some vehicle is at most t · g < |E|. Let (u, v) ∈ E be a demand that is not completely served
by any vehicle, i.e. there is no vehicle that visits both u and v. Since we have a feasible schedule
of makespan M , the path π followed by demand (u, v) from u to v (or vice versa) in the schedule
has length at most M . The path π can not be the direct edge (u, v) since demand (u, v) is not
completely served by any vehicle. So path π together with edge (u, v) is a cycle of length at most
M + 1 < g in graph G, contradicting girth of G.

2.4 Improved Algorithm for Metrics Excluding a Fixed Minor

We now give a constant-factor approximation algorithm for uncapacitated mDaR on metrics induced
by Kr-minor free graphs, for any fixed r (Theorem 1.2). This improvement comes from using the
existence of good ‘sparse covers’ in such metrics, as opposed to the spanner based construction in
Lemma 2.2. This guarantee is again relative to the above mentioned lower bounds.

Consider an instance of uncapacitated mDaR on metric (V, d) that is given by shortest paths in a
Kr-minor-free graph G = (V,E), with edge lengths w : E → R+. We start with some definitions. A
cluster is any subset of vertices. For any γ > 0 and vertex v ∈ V , N(v, γ) := {u ∈ V | d(u, v) ≤ γ}
denotes the set of vertices within distance γ from v. As observed in [7] and [1], the partitioning
scheme of [26] implies the following result.

Theorem 2.3 ([26]). Given Kr-minor free graph G = (V,E,w) and value γ > 0, there is an
algorithm that computes a set Z = {C1, · · · , Cl} of clusters satisfying:

1. The diameter of each cluster is at most O(r2) · γ, i.e. maxu,v∈Ci d(u, v) ≤ O(r2) · γ for all
i ∈ [l].

2. For every v ∈ V , there is some cluster Ci ∈ Z such that N(v, γ) ⊆ Ci.
3. For every v ∈ V , the number of clusters in Z that contain v is at most O(2r).

The set Z of clusters found above is called a sparse cover of G.

The reduction in Section 2.1 implies that it suffices to consider depot-demand instances, where
all demands are between pairs of depots. An O(1) approximation for depot-demand instances
would imply an O(1) approximation for general instances. Let J be any depot-demand instance
on metric (V, d) that is induced by Kr-minor-free graph G = (V,E,w), with a set R ⊆ V of depot-
vertices (each containing a vehicle), and where all demands {si, ti}mi=1 are between vertices of R.
The algorithm is described in Figure 2.

Note that γ = maxi∈[m] d(si, ti) is a lower bound on the optimal makespan of J . We claim that
the makespan of the above schedule is at most O(r2 2r) · γ. Observe that each depot is contained
in at most O(2r) clusters, and the distance from any depot to the center of any cluster containing
it is at most O(r2) · γ. Hence the time taken by each vehicle in either of the two Steps (5a)-(5b) is
at most O(r22r) · γ. Since r is a fixed constant, the final makespan is O(1) · γ.

We now argue the feasibility of the above schedule. Step (4) is well-defined: for all i ∈ [m], we
have si, ti ∈ N(si, γ) and there is some j ∈ [l] with N(si, γ) ⊆ Cj and we can set π(i) = j. It is now
easy to see that each object i ∈ [m] traces the following route in the final schedule: si  cπ(i)  ti.
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Input: Depot-demand instance J on metric G = (V,E,w), depot-vertices R ⊆ V ,
demands {si, ti}mi=1.

1. Let γ = maxi∈[m] d(si, ti) be the maximum source-destination distance.

2. Compute a sparse cover Z = {Cj}lj=1 given in Theorem 2.3 for parameter γ.

3. For each cluster Cj ∈ Z, choose an arbitrary vertex cj ∈ Cj as its center.

4. For each demand i ∈ [m], let π(i) ∈ [l] be such that si, ti ∈ Cπ(i).
5. Output the following schedule for J :

(a) Each vehicle r ∈ R visits the centers of all clusters containing r, and
returns to r; it carries the objects {i ∈ [m] | si = r} having source r,
and drops each object i at center cπ(i).

(b) Each vehicle r ∈ R again visits the centers of all clusters containing r;
it brings the objects {i ∈ [m] | ti = r} having destination r: each object
i is picked up from center cπ(i).

Output: An O(1)-approximate minimum makespan schedule for J .

Figure 2: Algorithm for uncapacitated mDaR on Kr-minor free graphs.

Combining this algorithm for depot-demand instances with the reduction in Subsection 2.1, we
obtain an O(r2 2r)-approximation algorithm for uncapacitated mDaR on Kr-minor free metrics.
When r is a fixed constant this is a constant approximation, and we obtain Theorem 1.2. Note
that each object in the resulting schedule is preempted at most thrice, and only at depot-vertices.

3 Capacitated Multi-Vehicle Dial-a-Ride

In this section we consider the general capacitated mDaR problem and obtain anO(log3 n)-approximation
algorithm. Our algorithm uses a structural result on single-vehicle Dial-a-Ride tours, which is
proved in Subsection 3.1. The main algorithm for mDaR is then described in Section 3.2 where we
prove a slightly weaker approximation bound of O(log2m log n). In Subsection 3.3 we show how to
remove the dependence on m to obtain an O(log3 n)-approximation algorithm even for “weighted
mDaR” (Theorem 1.3). Finally, in Subsection 3.4, we establish a stronger single-vehicle structure
theorem (than the one in Subsection 3.1) for metrics excluding any fixed minor; this immediately
leads to an improved O(log2 n)-approximation ratio for mDaR on such metrics (Theorem 1.4).

Bad Example for Simple Lower Bounds The lower bounds that were used in the uncapaci-
tated case are too weak for capacitated mDaR. Consider a line metric on vertices [q] = {1, 2, . . . , q}
where the distance between any pair i, j of vertices is d(i, j) = |i− j|. There are q vehicles, one at
each vertex. The capacity k = 1. There are q demands from vertex 1 to vertex 2; and one demand
from vertex i to i+ 1, for each i = 2, . . . , q− 1. The lower bounds are as follows: flow lower bound
of 2q−2

q ≤ 2, nurse station location bound of zero, and maximum source-destination distance of one.
However, the optimal makespan is at least

√
q. Suppose, for a contradiction, that the optimum is

M <
√
q. Then, only vehicles {1, 2, . . . ,M} can even reach vertex 1. Since there are q demands at

vertex 1 and the capacity is one, it must be visited at least q distinct times. So some vehicle must
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visit vertex 1 at least q/M times, and the tour length of this vehicle is at least q/M >
√
q > M ,

which is a contradiction to the optimal makespan. Hence the known lower bounds for mDaR are
an Ω(

√
q) factor off the true makespan.

As this example shows, it is important to balance the load assigned to vehicles carefully, taking
the metric into account. Indeed, the key step in our algorithm is a “load rebalancing” step, where
we derive stronger lower bounds from induced sub-instances.

Remark We note that the approach from the uncapacitated case does not seem useful here.
Firstly, one can not reduce general capacitated mDaR instances to depot-demand instances: it is
easy to construct examples (even with q = 1 vehicle) where the optimal solution is much shorter
than any routing that transports each object via a depot. Secondly, even depot-demand instances
of capacitated mDaR do not seem easy to solve (as shown above, the known lower bounds are too
weak here).

3.1 Single Vehicle Dial-a-Ride with Bounded Delay

Here we prove a structural property of single vehicle Dial-a-Ride that has an additional “bounded
delay” condition. This result is an important ingredient in the algorithm for capacitated mDaR,
which appears in the next subsection.

First, we consider the simpler setting of the capacitated vehicle routing problem [22]. Capacitated
vehicle routing problem (CVRP) is a special case of single vehicle Dial-a-Ride when all objects have
the same source. Formally, we are given a metric (V, d), specified depot-vertex r ∈ V , and m objects
all having source r and respective destinations {ti}i∈[m]. The goal is to compute a minimum length
non-preemptive tour of a capacity k vehicle originating at r, that moves all objects from r to their
destinations. In CVRP with bounded delay, we are additionally given a delay parameter β > 1,
and the goal is to find a minimum length capacitated non-preemptive tour serving all objects such
that the time spent by each object i ∈ [m] in the vehicle is at most β · d(r, ti), i.e. β times the
distance from its source (r) to destination (ti). Two lower bounds for the CVRP are as follows:
minimum length TSP tour on {r} ∪ {ti | i ∈ [m]} (Steiner lower bound), and 2

k

∑m
i=1 d(r, ti) (flow

lower bound). These lower bounds also hold for the (less constrained) preemptive version of CVRP.
We will use the following known algorithm for CVRP.

Theorem 3.1 ([22]). Consider any CVRP instance on metric (V, d) with depot r, object destina-
tions T ⊆ V and capacity k. Given any tour σ on {r} ∪ T , there is a polynomial-time computable
CVRP solution of length at most d(σ) + 2

k ·
∑

v∈T d(r, v). Moreover, the time spent in the vehicle
by each object v ∈ T is at most the length in σ from r to v.

The idea is to move objects in groups of k each, where each group consists of contiguous vertices
in tour σ. Note that setting σ to be a 3

2 -approximate TSP tour [13] leads to a 2.5-approximation
algorithm for CVRP, which is the best approximation ratio known for it.

Theorem 3.2. There is a (2.5 + 3
β−1)-approximation algorithm for CVRP with bounded delay,

where β > 1 is the delay parameter. This guarantee is relative to the maximum of the Steiner and
flow lower bounds.

Proof: Our algorithm is basically a combination of the algorithms for light approximate shortest
path trees [25], and capacitated vehicle routing (Theorem 3.1). Let LB denote the maximum of the
Steiner and flow lower bounds.
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The first step is to compute an approximately minimum TSP tour C on the set {ti}i∈[m] of all
destinations and r. The algorithm from [13] gives a 1.5-approximation, so we have d(C) ≤ 1.5 · LB.
Number the vertices in the order in which they appear in C, starting with r being 0. For any pair
of vertices i < j, let dC(i, j) denote the length of the path in C from i to j. Next, we apply the
following procedure, which is similar to one in [25].

1. Set v0 ← 0.

2. For p ≥ 1 do:

(a) Set vp ← min{v ≥ vp−1 : β · d(0, v) < d(0, vp−1) + dC(vp−1, v)}.
(b) If vp = NIL (i.e. there is no v as above) then terminate loop.

Let t denote the number of iterations in the above loop. So we have vertices 0 < v1 < v2 < · · · <
vt < |V |. We claim that the following properties hold:

P1. For any 1 ≤ p ≤ t and vertex vp−1 ≤ u < vp, d(0, vp−1) + dC(vp−1, u) ≤ β · d(0, u).

P2.
∑t

p=1 d(0, vp) ≤ 1
β−1 · d(C).

Property (P1) is immediate by the definition of vertex vp, which is the first vertex v after vp−1
where d(0, vp−1) +dC(vp−1, v) > β ·d(0, v). To see property (P2), again by definition of vp, we have

β · d(0, vp) < d(0, vp−1) + dC(vp−1, vp), ∀1 ≤ p ≤ t.
Adding these inequalities,

β ·
t∑

p=1

d(0, vp) <
t∑

p=1

d(0, vp−1) +
t∑

p=1

dC(vp−1, vp) ≤
t∑

p=1

d(0, vp) + d(C).

Rearranging this inequality gives (P2).
Now we split tour C at the vertices 0 < v1 < v2 < · · · < vt < |V | obtained above. For each

1 ≤ p ≤ t, define sub-tour Cp which starts at r, goes to vp−1, traverses C until vp, then returns to
r. Assign all objects with destinations in {vp−1, · · · , vp − 1} to Cp. Also define tour Ct+1 which
starts at r, goes to vt, and traverses C until r; and assign all remaining objects to Ct+1. Using
property (P2), the total length of these sub-tours is:

t+1∑
p=1

d(Cp) = d(C) + 2
t∑

p=1

d(0, vp) ≤ (1 +
2

β − 1
)d(C). (3.1)

By property (P1), it is clear that Cp (for each 1 ≤ p ≤ t+ 1) visits each vertex u in it within time
β · d(0, u). For each Cp, we serve the set Dp of objects assigned to it, using Theorem 3.1. Let γp
denote the solution corresponding to Cp; note that its length d(γp) ≤ d(Cp) + 2

k ·
∑

z∈Dp
d(r, z).

Furthermore, the time spent in the vehicle by each object z ∈ Dp is at most the length from r to
z in Cp, which (as noted above) is at most β · d(0, z).

The final solution γ is the concatenation of tours γ1, · · · , γt+1. Clearly, the time spent in the
vehicle by any object i ∈ [m] is at most β · d(r, ti), which satisfies the bounded delay condition.
The length of tour γ is

t+1∑
p=1

d(γp) ≤
t+1∑
p=1

d(Cp) +
2

k
·
t+1∑
p=1

∑
z∈Dp

d(r, z) ≤ (1 +
2

β − 1
)d(C) +

2

k
·
m∑
i=1

d(r, ti).
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The second inequality uses (3.1) and the fact that {Dp : 1 ≤ p ≤ t + 1} is a partition of the set
of objects. Note that 2

k ·
∑m

i=1 d(r, ti) is just the flow lower bound, so it is at most LB. Since

d(C) ≤ 1.5 · LB, it follows that d(γ) ≤
(

2.5 + 3
β−1

)
· LB.

Now, we are ready to prove the bounded-delay property for the general Dial-a-Ride problem.
This makes use of the previous Theorem 3.2. We will also use the following “tree embedding”
result:

Theorem 3.3 ([17]). Given any metric (V, d) and function c :
(
V
2

)
→ R≥0, there is a polynomial-

time computable tree metric κ such that:

• κ is induced by a tree with O(log dmax
dmin

) levels, where dmax and dmin are the maximum and
minimum positive distances in metric (V, d).

• For all u, v ∈ V , κ(u, v) ≥ d(u, v).

• ∑u,v cuv · κ(u, v) ≤ O(log n) ·∑u,v cuv · d(u, v).

The usual form of this tree embedding result involves a probability distribution over such tree
metrics, where the expected length of each edge is only an O(log n) factor larger than its metric
length. In order to obtain a deterministic algorithm for bounded-delay Dial-a-Ride, we use the
above version of tree embedding, which guarantees an O(log n) factor bound (with probability one)
for a single cost function on edges.

Theorem 3.4. There is a polynomial time algorithm that, given any instance of single vehicle Dial-
a-Ride on metric (V, d) with demand pairs {(si, ti) : i ∈ D} and capacity k, outputs a 1-preemptive
tour τ satisfying the following conditions (here LB is the maximum of the Steiner and flow lower
bounds, n = |V | and m ≥ |D|):

1. Total length: d(τ) ≤ O(log n · logmn) · LB.

2. Bounded delay:
∑

i∈D Ti ≤ O(log n)
∑

i∈D d(si, ti) where Ti is the total time spent by object
i ∈ D in the vehicle under the schedule given by τ .

Proof: Recall the two lower bounds for single vehicle Dial-a-Ride: minimum TSP on {si, ti}i∈D
(Steiner lower bound) and 1

k

∑
i∈D d(si, ti) (flow lower bound). Let n = |V | and m ≥ |D| be any

value.
Using standard scaling arguments, we will first preprocess the instance to ensure dmax

dmin
=

O(m2n2), where dmax and dmin are the maximum and minimum positive distances in the met-
ric. We restrict attention to the vertex set U = {si, ti}i∈D of all sources/destinations. Let
M := max{d(u, v) : u, v ∈ U} be the diameter of this set; so dmax = M . Note that the
Steiner and flow lower bounds remain the same in the restricted metric (U, d), and M ≤ LB. If
M >

∑
i∈D d(si, ti) then we output the non-preemptive solution τ0 that visits all sources {si : i ∈ D}

along a 1.5-approximate TSP tour [13], and when visiting any source si makes a direct roundtrip
to/from its destination ti. This solution τ0 satisfies the two conditions:

1. d(τ0) equals the length of the approximate TSP on the sources plus 2
∑

i∈D d(si, ti), which is
at most 1.5 · LB + 2M ≤ 3.5 · LB.

2. The time Ti spent by object i in the vehicle is d(si, ti), so
∑

i∈D Ti ≤
∑

i∈D d(si, ti).
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In the following we assume M ≤∑i∈D d(si, ti). Now we modify the metric by setting to zero the
length of all edges smaller than M

4m2n2 ; the new distances d′ are shortest paths under the modified

lengths. So dmin ≥ M
4m2n2 and dmax

dmin
= O(m2n2) as desired. Since any shortest path has at most n

edges, any pairwise distance in d is at most M
4m2n

more than that in d′. Let τ be a 1-preemptive tour
in metric (U, d′) satisfying the two conditions in the theorem. Then we claim that τ also satisfies
these conditions in the original metric (V, d). Without loss of generality, any 1-preemptive tour has
at most 4|D| ≤ 4m edge traversals: each object is picked or dropped at most four times, and every
vertex-visit must involve picking/dropping some object (otherwise one can obtain a shorter tour
by shortcutting over such vertices). So:

1. d(τ) ≤ d′(τ) + 4m · M
4m2n

≤ d′(τ) + LB
mn = O(log n logmn) · LB.

2. The time Ti spent by any object i in the vehicle (under metric d) is at most M
mn more than the

time T ′i spent under metric d′. So
∑

i∈D Ti ≤
∑

i∈D T
′
i+m· Mmn ≤

∑
i∈D T

′
i+

1
n

∑
i∈D d(si, ti) =

O(log n) ·∑i∈D d(si, ti).

Based on the above discussion, we assume that the input metric satisfies dmax
dmin

= O(m2n2). Let
C denote a 1.5-approximate TSP tour [13] on all sources/destinations of the demands D; note that
the length d(C) ≤ 1.5 · LB. Define the following two cost functions on edges:

c1uv =

{
1 if (u, v) ∈ C
0 otherwise

, ∀u, v ∈ V

c2uv =

{
1 if (u, v) = (si, ti) for some i ∈ D
0 otherwise

, ∀u, v ∈ V

Let A :=
∑

i∈D d(si, ti). Now define a combined cost function c := 1
d(C) · c1 + 1

A · c2. Observe that∑
u,v cuv · d(u, v) = 2. We now use Theorem 3.3 on metric (V, d) and cost function c to obtain tree

metric κ that is induced by tree T where:

• T has l = O(log dmax
dmin

) = O(logmn) levels.

• κ(u, v) ≥ d(u, v), ∀u, v ∈ V , and

• ∑u,v cuv · κ(u, v) ≤ O(log n) ·∑u,v cuv · d(u, v) = O(log n).

The last property implies that
∑

e∈C κ(e) =
∑

u,v c
1
uv ·κ(u, v) ≤ O(log n) ·d(C) and

∑
i∈D κ(si, ti) =∑

u,v c
2
uv · κ(u, v) ≤ O(log n) ·∑i∈D d(si, ti). In other words, the Steiner and flow lower bounds

under metric κ are only an O(log n) factor more than those under metric d. Let L̃B denote the

maximum of these two lower bounds in metric κ; then we have L̃B = O(log n) · LB.

Given the bounded delay property (Theorem 3.2) for capacitated vehicle routing (CVRP), the
rest of the proof is a simple extension of Theorem 4.1 from [21], which obtains a single vehicle
1-preemptive tour within an O(log2 n) factor of the Steiner and flow lower bounds.

We partition the demands in D into l sets as follows. For each p = 1, · · · , l, set Dp consists of
all demands i ∈ D having their nearest common ancestor (nca) in level p of tree T (i.e. the nca

of si and ti is some vertex in level p). We serve each Dp separately using a tour of length O(L̃B).
Finally we concatenate the tours for each level p.
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Serving Dp For each vertex v at level p in T , let Lv denote the demands in Dp that have v as
their nca. Let LBv denote the maximum of the Steiner and flow lower-bounds (in metric κ) for the
single vehicle Dial-a-Ride problem with demands Lv. Clearly the flow lower bounds are disjoint
for different vertices v. Also, the subtrees under any two distinct level p vertices are disjoint, so
the Steiner lower bounds are disjoint for different v. Thus

∑
v LBv ≤ L̃B, where v ranges over all

vertices in level p of T . We now show how each Lv is served separately.

Serving Lv Consider the following two instances of the CVRP problem in metric κ: Isrc with
all sources in Lv and common destination v, and Idest with common source v and all destinations
in Lv. Clearly, the Steiner lower bound for both Isrc and Idest is at most LBv. Moreover, the flow
lower bound 2

k

∑
i∈D d(si, v) for Isrc is at most 2LBv, since κ(si, ti) = κ(si, v) + κ(v, ti) (recall v is

the nca of si and ti) for all i ∈ Lv. Similarly, the flow lower bound for Idest is at most 2LBv.
Consider instance Isrc. Setting delay parameter β = 2 in Theorem 3.2, we obtain a non-

preemptive tour σv that moves all objects in Lv from their sources to vertex v, such that (1) the
length of σv is at most 11 LBv, and (2) the time spent by each object i ∈ Lv in the vehicle is at most
2κ(si, v). Similarly for instance Idest, we obtain a non-preemptive tour τv that moves all objects
in Lv from vertex v to their destinations, such that (1) the length of τv is at most 11 LBv, and (2)
the time spent by each object i ∈ Lv in the vehicle is at most 2κ(v, ti). Concatenating these two
tours, we obtain that σv · τv is a 1-preemptive tour serving Lv, of length at most 22 · LBv, where
each object i ∈ Lv spends at most 2(κ(si, v) + κ(v, ti)) = 2 · κ(si, ti) time in the vehicle.

We now use a depth-first-search traversal (DFS) on T (restricted to the end-points of demands
Dp) to visit all vertices v in level p that have some demand in their subtree (i.e. Lv 6= ∅), and use
the algorithm described above for serving demands Lv when v is visited in the DFS. This is the
tour serving Dp. Note that twice the length of the DFS is at most the Steiner lower bound on κ,

so it is at most L̃B. Thus the tour serving Dp has length at most L̃B + 22
∑

v LBv, where v ranges

over all vertices in level p of T . Recall that
∑

v LBv ≤ L̃B, so the tour serving Dp has length at

most 23 · L̃B. Additionally, the time spent by each object i ∈ Dp in the vehicle is at most 2κ(si, ti).

Finally, concatenating the tours for each level p = 1, · · · , l, we obtain a 1-preemptive tour
on T of length O(logmn) · L̃B. Additionally, the time spent by each object i in the vehicle is
at most 2 · κ(si, ti). This translates to a 1-preemptive tour on the original metric having length
O(log n · logmn) · LB. Moreover,

∑
i∈D Ti ≤

∑
i∈D 2 · κ(si, ti) ≤ O(log n)

∑
i∈D d(si, ti) where Ti is

the time spent by object i in the vehicle. This completes the proof of Theorem 3.4.

3.2 Algorithm for Capacitated mDaR

We are now ready to present our algorithm for capacitated multi-vehicle Dial-a-Ride. The algorithm
assumes an upper bound B on the optimal makespan (by enumerating over polynomially many
choices) and returns either a feasible schedule of makespan O(log n logm logmn)·B, or a certificate
that the optimal makespan is greater than B.

For any parameter B, the algorithm relies on a partial coverage algorithm Partial〈Q,D,B〉 that
given subsets Q ⊆ [q] of vehicles and D ⊆ [m] of demands, outputs one of the following:

• a schedule for Q of makespan O(log n · logmn) · B covering a constant fraction of demands
D, or

• a certificate that the optimal makespan is more than B.
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The main steps in Partial are as follows. First, we preprocess the input so that demand points that
are sufficiently far away from each other can be decomposed into separate instances for the algorithm
to handle independently (step 1). We then obtain a single-vehicle tour from Theorem 3.4 satisfying
the 1-preemptive and bounded-delay properties (step 2). Then we partition the single vehicle tour
into |Q| equally spaced pieces (step 3). The bounded-delay property is useful in partitioning the
single vehicle solution among the q vehicles available to share this load. Using the bounded-delay
property we show that the number of objects that are carried in the vehicle over some cut edge is
O( 1

logm) · |D|. These objects will not be served by the schedule. Using a matching sub-problem, we
assign some of these pieces to vehicles of Q, so as to satisfy a subset of demands in D (step 4 and
5). The matching problem identifies cases when the load assignment must be rebalanced. A piece
can be matched with a vehicle if the distance between them is at most 2B, and each vehicle can be
assigned two pieces. All demands with both source and destination in pieces that got assigned to
some vehicle will then be served (step 7 (a) and (b)). Finally, a suitable fraction of the unsatisfied
demands in D are served recursively by unused vehicles of Q (step 7).

Formally, algorithm Partial〈Q,D,B〉 is given in Figure 3. We set parameter ρ = Θ(log n logmn),
the precise constant in the Θ-notation comes from the analysis. Let parameter α := 1 − 1

1+log2m
;

all logarithms here are taken with base two. For any subset P ⊆ [q], we abuse notation and use P
to denote both the set of vehicles P and the multi-set of depots corresponding to vehicles P .

Lemma 3.5. If there exists a schedule of vehicles Q covering all demands D, having makespan at
most B, then Partial invoked on 〈Q,D,B〉 returns a schedule of vehicles Q of makespan at most
(16 + 16ρ) ·B that covers at least an αlog z fraction of D, where z := min{|Q|, 2m} ≤ 2m.

The final algorithm invokes Partial iteratively until all demands are covered: each time with the
entire set [q] of vehicles, all uncovered demands, and bound B. If D ⊆ [m] is the set of uncovered
demands at any iteration, Lemma 3.5 implies that Partial〈[q], D,B〉 returns a schedule of makespan
O(log n · logmn) ·B that serves at least 1

4 |D| demands. If any call to Partial violates the condition
in Lemma 3.5, we obtain a certificate that the optimum is more than B. Hence, a standard set-
cover analysis implies that all demands will be covered in O(logm) rounds, resulting in an overall
makespan of O(logm log n logmn) ·B.

Proof of Lemma 3.5. We proceed by induction on the number |Q| of vehicles. The base case
|Q| = 1 is easy: the tour τ in Step (2) has length O(log n logmn)·B ≤ ρB, and satisfies all demands
(i.e. fraction 1). In the following, we prove the inductive step, when |Q| ≥ 2.

Preprocessing Suppose Step (1) applies. By definition d(Qj , v) ≤ B for all v ∈ Vj , j ∈ {1, 2}.
So d(Q1, Q2) ≤ d(Q1, v1) + d(v1, v2) + d(v2, Q2) ≤ 2B + d(v1, v2) for all v1 ∈ V1 and v2 ∈ V2.
Since d(Q1, Q2) > 3B this implies d(V1, V2) > B. Hence there is no demand with source in one
of {V1, V2} and destination in the other. So demands D1 and D2 partition D. Furthermore, in
the optimal schedule, vehicles Qj (any j = 1, 2) only visit vertices in Vj (otherwise the makespan
would be greater than B). Thus the two recursive calls to Partial satisfy the assumption that there
is some schedule of vehicles Qj serving Dj having makespan B. Inductively, the schedule returned
by Partial for each j = 1, 2 has makespan at most (16 + 16ρ) · B and covers at least αlog c · |Dj |
demands from Dj , where c ≤ min{|Q| − 1, 2m} ≤ z. The schedules returned by the two recursive
calls to Partial can clearly be run in parallel and this covers at least αlog z(|D1| + |D2|) demands,
i.e. an αlog z fraction of D. So we have the desired performance in this case.
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Tour partitioning The more interesting part of the algorithm is when Step (1) does not apply:
now the MST length on Q is at most 3|Q| · B. Note that when the depots Q are contracted to a
single vertex, the MST on the end-points of D plus the contracted depot-vertex has length at most
|Q| · B (the assumed makespan B schedule induces such a tree). Thus the MST on the depots Q
along with end-points of D has length at most 4|Q| ·B. Using the flow lower bound for mDaR, we
have

∑
i∈D d(si, ti) ≤ k|Q| ·B (again using the assumption that there is a schedule of makespan B).

It follows that for the single vehicle Dial-a-Ride instance solved in Step (2), the Steiner and flow
lower-bounds (denoted LB in Theorem 3.4) are O(1) · |Q|B. Theorem 3.4 now implies that with
high probability, τ is a 1-preemptive tour serving D, of length at most O(log n · logmn)|Q| ·B such
that

∑
i∈D Ti ≤ O(log n) · |D|B, where Ti denotes the total time spent in the vehicle by demand

i ∈ D. The bound on the delay uses the fact that maxmi=1 d(si, ti) ≤ B.

Choosing a large enough constant in ρ = Θ(log n logmn), the length of τ is upper bounded by
ρ|Q| · B. So, for any offset η, the cutting procedure in Step (3) results in at most |Q| pieces of τ ,
each of length at most 2ρB. The objects i ∈ C ′′ defined in Step (3) are called a cut objects. Note
that there are only polynomially many combinatorially distinct offsets, and we can just enumerate
over them.

Claim 3.6. The number of objects in C ′′ is at most
∑

i∈D
Ti
ρB ≤ O( 1

logm) · |D|.

Proof: Consider choosing the offset η at random from [0, ρB]. The probability that any object
i ∈ D is cut equals Ti

ρB where Ti is the total time spent by i in tour τ . So the expected number of
cut objects,

E[|C ′′|] =
∑
i∈D

Ti
ρB

≤ O(log n) · |D|B
ρB

≤ O(
1

logm
) · |D|.

Step (3) chooses the offset minimizing |C ′′|, so the claim follows.

We restrict attention to the objects C ′ = D \ C ′′ that are not cut. Claim 3.6 implies, again
choosing a large enough constant in ρ = Θ(log n logmn), that:

|C ′| ≥ (1− 1

2 logm
)|D| ≥ α · |D| demands are not cut. (3.2)

For each object i ∈ C ′, the path traced by it (under single vehicle tour τ) from its source si to
preemption-point and the path from its preemption-point to ti are both completely contained in
pieces of P. Figure 4 gives an example of objects in C ′ and C ′′, and the cutting procedure.

Recall that the number of pieces |P| ≤ |Q|. A piece P ∈ P is said to be non-trivial if the vehicle
in the 1-preemptive tour τ carries some C ′-object while traversing P . Note that the number of
non-trivial pieces in P is at most 2|C ′| ≤ 2m: each C ′-object appears in at most 2 pieces, one where
it is moved from source to preemption-vertex and another from preemption-vertex to destination.
Retain only the non-trivial pieces in P; so |P| ≤ min{|Q|, 2m} = z. The pieces in P may not be
one-to-one assignable to the depots since the algorithm thus far has not taken the depot locations
into account. We determine which pieces may be assigned to depots by considering a matching
problem between P and the depots in Steps (4) and (5).

Load rebalancing The bipartite graph H defined in Step (4) represents which pieces and depots
may be assigned to each other. Piece P ∈ P and depot f ∈ Q are assignable iff d(f, P ) ≤ 2B, and
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in this case graph H contains an edge (P, f). We claim that for any ‘maximal contracting’ subset
S ⊆ P chosen in Step (4), the 2-matching π : P \ S → Q \ Γ(S) in Step (5) is guaranteed to exist.

Note that |Γ(S)| ≤ |S|2 , but |Γ(T )| > |T |
2 for all T ⊃ S. For any T ′ ⊆ P \ S, let Γ̃(T ′) denote the

neighborhood of T ′ in Q \ Γ(S). The maximality of S implies:

|S|
2

+
|T ′|
2

=
|S ∪ T ′|

2
≤ |Γ(S ∪ T ′)| = |Γ(S)|+ |Γ̃(T ′)| ≤ |S|

2
+ |Γ̃(T ′)|, ∀T ′ ⊆ P \ S.

That is, |Γ̃(T ′)| ≥ |T ′|
2 , for all T ′ ⊆ P \ S. Hence by Hall’s condition, there is a 2-matching

π : P \ S → Q \ Γ(S). Clearly, the set S and 2-matching π can be efficiently computed. Figure 4
shows an example of this step.

Recursion In Step (6), demands C ′ are further partitioned into two sets: C1 consists of objects
that are either picked-up or dropped-off in some piece of S; and C2-objects are picked-up and
dropped-off in pieces of P \ S. The vehicles Γ(S) suffice to serve all C1 objects, as shown below.

Claim 3.7. There exists a feasible schedule of vehicles Γ(S) serving demands C1, having makespan
B.

Proof: Consider the schedule of makespan B that serves all demands C ′ = C1 ∪C2 using vehicles
Q: this is implied by the assumption on instance 〈Q,D,B〉 in Lemma 3.5. We claim that in this
schedule, no vehicle from Q \ Γ(S) moves any C1 object. Suppose (for a contradiction) that the
vehicle from depot f ∈ Q \ Γ(S) moves object i ∈ C1 at some point in this schedule. Then, it
must be that d(f, si) and d(f, ti) ≤ 2B. But since i ∈ C1, at least one of si or ti is in a piece of
S, and this implies that there is some piece P ∈ S with d(f, P ) ≤ 2B, i.e. f ∈ Γ(S), which is a
contradiction! Thus the only vehicles participating in the movement of C1 objects are Γ(S), which
implies the claim.

In the final schedule, a large fraction of C1 demands will be served recursively by vehicles Γ(S),
and all the C2 demands are served by vehicles Q\Γ(S). Figure 4 shows an example of this partition.

Serving C1 demands Based on Claim 3.7, the recursive call Partial 〈Γ(S), C1, B〉 made in
Step (7) satisfies the assumption required in Lemma 3.5. Since

|Γ(S)| ≤ |P|
2
≤ |Q|

2
< |Q|,

we obtain inductively that Partial 〈Γ(S), C1, B〉 returns a schedule of makespan (16+16ρ)·B covering
at least αlog y ·|C1| demands of C1, where y = min{|Γ(S)|, 2m}. Note that y ≤ |Γ(S)| ≤ |P|/2 ≤ z/2
(recall |P| ≤ z), which implies that at least αlog z−1|C1| demands are covered.

Serving C2 demands These are served by vehicles Q \ Γ(S) using the 2-matching π, in two
rounds as specified in Step (7). This suffices to serve all objects in C2 since for any i ∈ C2,
the paths traversed by object i under τ , namely si  pi (its preemption-point) and pi  ti are
completely contained in pieces of P \ S.

Claim 3.8. The time taken in Step 7 by each vehicle Q \ Γ(S) is at most (16 + 16ρ) ·B.
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Proof: Consider any vehicle f ∈ Q \ Γ(S). Let π−1(f) = {F1, F2}; recall that |π−1(f)| ≤ 2. The
distance traveled by vehicle f in one round is at most

2 · (d(f, F1) + d(F1) + d(f, F2) + d(F2)) ≤ 4 · (2B + 2ρB).

So the time taken by this schedule is at most 2 · 4(2B + 2ρB) = (16 + 16ρ) ·B.
The schedule of vehicles Γ(S) serving C1, and vehicles Q \ Γ(S) serving C2 can clearly be run

in parallel. This takes time (16 + 16ρ) ·B and covers in total at least

|C2|+ αlog z−1|C1| ≥ αlog z−1|C ′| ≥ αlog z|D|

demands of D. This completes the proof of Lemma 3.5.

Using Lemma 3.5 repeatedly as mentioned earlier, we obtain anO(logm log n logmn)-approximation
algorithm. Using some preprocessing steps (described in Subsection 3.3), we obtain Theorem 1.3.

3.3 Weighted mDaR

Here we consider the weighted mDaR problem, where each object i ∈ [m] has a weight wi, and the
capacity constraint requires that no vehicle carry a total weight of more than k at any time. The
multi-vehicle Dial-a-Ride problem considered so far assumes that all objects have the same weight.
We obtain an O(log3 n)-approximation algorithm for weighted mDaR. In particular, this would
imply Theorem 1.3, by removing the dependence on m (number of demands) in the algorithm from
Section 3.2.

The main idea is a constant-factor approximation algorithm for the multi-vehicle stacker crane
(mSC) problem [18], i.e. the special case of mDaR when capacity k = 1. We present this first. The
algorithm for weighted mDaR then proceeds in two phases. The first phase handles vertex-pairs
that have more than k demand-weight between them, using the mSC algorithm; and the second
phase is just the algorithm from Section 3.2 with the property that number of demands m ≤ n2.

Theorem 3.9. There is an O(1)-approximation algorithm for the multi-vehicle stacker crane prob-
lem.

Proof: An instance of the mSC problem is given by metric (V, d), m demand pairs {si, ti}mi=1 and
q vehicles with depots {rj}qj=1. The goal is a minimum makespan schedule that moves each object
from its source to destination, such that no vehicle carries more than one object at any time. We
give a non-preemptive schedule that is an O(1)-approximation relative to the optimal preemptive
schedule.

The algorithm for mSC is given in Figure 5. It follows the outline of the algorithm for general
(unweighted) mDaR from Section 3.2, but is much simpler. The analysis is also similar to that of
Partial in Section 3.2. To avoid repetition we only mention the changes required. We will show
inductively that:

If there is a makespan B schedule of vehicles Q ⊆ [q] satisfying demands D then the
mSC algorithm 〈Q,D,B〉 returns a schedule of makespan 72 ·B.

The base case q = 1 follows directly from the single vehicle case [18]. If there is an edge of
length larger than 3B in the MST, then we recurse with two disjoint subproblems just as in Partial.
So, as discussed in Subsection 3.2, the MST on all sources/destinations in D is at most 4|Q|B (the
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MST on vertices Q is at most 3|Q|B, and the MST on the end-points of D is at most |Q|B when
all depots Q are contracted to a single vertex). That is,

The TSP on all sources/destinations in D has length T ≤ 8 · |Q|B (3.3)

Using the assumption on the makespan B schedule, we have that the single-vehicle flow lower
bound F :=

∑
i∈D d(si, ti) ≤ |Q|B. This means that the length of the single-vehicle tour d(τ) ≤

1.8 ·max{F, T} ≤ 15 · |Q|B. So we can cut tour τ into |Q| disjoint pieces each of length at most
15B. Moreover, if any object i is being carried over a cut edge, we can extend that piece to also
visit the destination ti: this is possible since the capacity k = 1. The increase in length of any
piece is at most maxi∈D d(si, ti) ≤ B. So each piece in P has length at most 16 ·B. Thus Step (3)
is well-defined.

Next, we construct the bipartite graph H with vertex sets P and Q, and choose a ‘maximal
contracting set’ S. Exactly as shown in the analysis of Partial, this implies a 2-matching π : P\S →
Q \ Γ(S) such that there exists a schedule of vehicles Γ(S) serving all demands C in the pieces S
with makespan B (c.f. Claim 3.7). The final schedule involves:

• Schedule for vehicles Q \ Γ(S) given by π, which covers demands D \ C, and has makespan
4(16B + 2B) = 72 ·B.

• Schedule for vehicles Γ(S) obtained recursively to cover demands C, at makespan 72 ·B. This
follows by induction since |Γ(S)| < |Q|, and 〈Γ(S), C,B〉 satisfies the makespan B assumption.

This proves the inductive step.

Algorithm for Weighted mDaR For every u, v ∈ V let demu,v denote the total weight of objects
having source u and destination v. Define H = {(u, v) ∈ V × V | demu,v ≥ k/2} to be the heavy
vertex-pairs, and Ĥ the set of demands between pairs of H. We handle the heavy demands using
Theorem 3.9, and the remaining ‘light’ demands using the (unweighted) mDaR algorithm. Below,
Opt denotes the optimal makespan of the weighted mDaR instance.

Heavy demands In this pre-processing step, we cover all demands Ĥ between heavy vertex-
pairs. For each (u, v) ∈ H, we can partition all demands between them such that the total weight
of each part is in the range [k2 , k]. For any (u, v) ∈ H, let gu,v denote the number of parts in this
partition of (u, v) demands; note that gu,v ≤ 2

kdemu,v. We now handle each of these gu,v parts as
a single unsplittable object of weight k. This can be viewed as an instance of mSC (the weights
and capacity are all k), which we solve using the O(1)-approximation algorithm in Theorem 3.9.
An identical analysis yields a constant-factor approximation even relative to a solution that routes
each object in a “splittable” manner (where the k units of demand between some pair of vertices
may be sent on k different paths). So we obtain a non-preemptive routing for all heavy demands
of makespan O(1) · Opt.

Light demands Let L = {(u, v) ∈ V × V | 0 < demu,v < k/2} be the light vertex-pairs. The
algorithm for these treats all (u, v) demands as a single object of weight demu,v from u to v; so there
are m = |L| ≤ n2 distinct objects. The algorithm for this case is identical to Partial of Section 3.2
for the unweighted case: Theorem 3.4 generalizes easily to the weighted case, and the Steiner and
flow lower-bounds stay the same after combining demands in L. Thus we obtain an O(log2m log n)
approximate schedule that covers all remaining demands. Since m ≤ n2, we have:
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Theorem 3.10. There is an O(log3 n)-approximation algorithm for weighted preemptive mDaR.

3.4 Improved Guarantee for Metrics Excluding a Fixed Minor

In this section, we give an improved O(log2 n)-approximation algorithm for capacitated mDaR on
metrics induced by graphs excluding any fixed minor (Theorem 1.4). The main ingredient is the
following improvement in the single vehicle structure from Theorem 3.4.

Theorem 3.11. There is a polynomial time algorithm that, given any instance of single vehicle
Dial-a-Ride on a metric (V, d) excluding a fixed minor, with demand pairs D and capacity k, outputs
a 1-preemptive tour τ satisfying the following conditions (here LB is the maximum of the Steiner
and flow lower bounds, n = |V | and m ≥ |D|):

1. Total length: d(τ) ≤ O(logmn) · LB.

2. Bounded delay:
∑

i∈D Ti ≤ O(1) ·∑i∈D d(si, ti) where Ti is the total time spent by object
i ∈ D in the vehicle under the schedule given by τ .

Using this 1-preemptive tour within the algorithm of Section 3.2, setting parameter ρ =
Θ(logmn), we immediately obtain an O(logm logmn)-approximation algorithm for capacitated
mDaR on such metrics. Combined with the preprocessing in Subsection 3.3, we obtain an O(log2 n)-
approximation algorithm for even weighted mDaR. In proving Theorem 3.11, we first show that
metrics induced by fixed minor-free graphs allow a so-called γ-separated cover (Subsection 3.4.1).
Then we show (in Subsection 3.4.2) how this property can be used to obtain the single-vehicle tour
claimed in Theorem 3.11.

3.4.1 γ-Separated Covers

We are given a metric (V, d) that is induced by a graph G = (V,E) with edge-lengths w : E → Z+.
For any pair u, v ∈ V of vertices, the distance d(u, v) equals the shortest path between u and v
under edge-lengths w. We assume that the graph G does not contain any Kr-minor; here r is a
fixed parameter. Recall that a cluster refers to any subset of vertices. We prove the following.

Theorem 3.12. Given a Kr-minor free graph G = (V,E,w) and integer γ ≥ 0, there is a
polynomial-time algorithm to compute a collection C of clusters along with a partition Z1, . . . , Zp
of C such that:

1. p ≤ 3r.

2. For each l ∈ [p] and distinct A,B ∈ Zl, the distance between A and B, d(A,B) ≥ γ.

3. The diameter of any cluster S ∈ C is maxu,v∈S d(u, v) ≤ O(r2) · γ.

4. For any pair u, v ∈ V with d(u, v) ≤ γ, there is some cluster A ∈ C having u, v ∈ A.

Such a collection C is called γ-separated cover.

The proof of this theorem is based on the KPR decomposition algorithm [26]. In fact, with-
out conditions (1-2), it is implied by Theorem 2.3. Achieving conditions (1-2) requires a further
modification to the KPR decomposition, as described below.
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We first remind the reader of the main property of the KPR decomposition [26]. We will
consider graph G as having unit length edges, by subdividing each edge (u, v) ∈ E to become a
path of length wuv between u and v. This increases the number of vertices, and we denote the new
vertex set also by V . The distance function d remains unchanged by this modification. We show
later (using standard scaling arguments) that one can always ensure maxu,v wuv is polynomial in
the original number n of vertices.

Definition 3.13 (Theorem 4.2, [26]). Let G1 = G and δ ∈ Z+ a distance parameter. Let
G1, G2, · · · , Gr+1 be any sequence of subgraphs of G, where each Gi+1 is obtained from Gi as
follows:

1. Construct a breadth-first-search tree in Gi from an arbitrary root-vertex.

2. Select any set of δ consecutive levels in this breadth-first-search tree, and let Gi+1 be any
connected component of the subgraph in G induced by these levels.

Then, the diameter of Gr+1 is O(r2) · δ.

We are now ready to proceed with the proof of Theorem 3.12. We give a recursive procedure
Split in Figure 6 to generate the desired γ-separated cover C of G. The input to Split consists of an
induced subgraph H = (V (H), E(H)) of G, set T ⊆ V (H) of terminals, depth i of recursion and
color τ ∈ {0, 1, 2}i. We initialize C = ∅, and invoke Split〈G,V, 0, φ〉.

At the end of the algorithm, C consists of several tuples of the form 〈C, τ〉 where C is a cluster and
τ ∈ {0, 1, 2}r is its color. This naturally corresponds to partitioning C into p = 3r parts: clusters
of the same color form a part. We now show that C satisfies the conditions in Theorem 3.12.
Condition 1 clearly holds by the construction.

Condition 4. Let u, v ∈ V be such that d(u, v) ≤ γ, and let P ⊆ V denote the vertices on any
shortest u− v path in G; note that |P | ≤ γ + 1. Then, we have the following.

Claim 3.14. For each i ∈ {0, · · · , r}, there is some call to Split at depth i such that all vertices of
P appear as terminals.

Proof: The base case i = 0 is obvious since all vertices are terminals. Assuming the claim to be
true for depth i, we prove it for i + 1. Let 〈H,T, i, τ〉 denote the call to Split at depth i where
P ⊆ T ⊆ V (H). Since the P -vertices define a path of length at most γ (in G and also H), all
P -vertices appear in some γ + 1 consecutive levels of any BFS on H. Thus there exist values
j ∈ {0, 1, 2} and l ∈ Z+ such that P is contained in levels {(3l+ j)γ, · · · , (3l+ j + 2)γ} of the BFS
on H. This implies that one of the recursive calls (corresponding to this value of j and l) contains
P as terminals.

Using this claim when i = r implies that there is some depth r call where both u and v (in fact
all of P ) are terminals; hence some cluster in C contains both u and v.

Condition 3. This is a direct consequence of the KPR decomposition. Note that every subgraph
at depth r of algorithm Split is obtained from G via the sequence of operations in Definition 3.13
with δ = 4γ + 1. Thus each such subgraph has diameter O(r2) · γ. Finally, any cluster in C is a
subset of some subgraph at depth r of Split; so it also has diameter O(r2) · γ.

Condition 2. This well-separated property is the main reason for the use of ‘terminals’ in algorithm
Split and the decomposition defined in Step (3). Let A and B be any two distinct clusters in C
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having the same color : we will show that d(A,B) ≥ γ. Each of A and B corresponds to a root-leaf
path in the recursion tree for algorithm Split, where the root is Split〈G,V, 0, φ〉. Consider the call
〈H,T, i, τ〉 to Split after which the paths for A and B diverge; let αa = 〈Ha, Ta, i + 1, τ ′〉 and
αb = 〈Hb, Tb, i + 1, τ ′〉 denote the respective recursive calls from 〈H,T, i, τ〉 where A ⊆ Ta and
B ⊆ Tb (note that both have the same color τ ′ since A and B have the same color at the end of the
algorithm). We will show that d(Ta, Tb) ≥ γ which in particular implies d(A,B) ≥ γ. Note that
both αa and αb are generated by the same value j ∈ {0, 1, 2}, since they have the same color τ ′.
Let αa (resp. αb) correspond to value l = la (resp. l = lb). Consider two cases:

1. la 6= lb. In this case, we show that the terminal-sets Ta and Tb are far apart in the BFS
on H. Observe that Ta appears within levels {(3la + j)γ, · · · , (3la + j + 2)γ}; and Tb within
{(3lb+j)γ, · · · , (3lb+j+2)γ}. If la < lb (the other case is identical), then 3lb+j ≥ 3la+j+3;
i.e. Ta and Tb are separated by at least γ−1 levels in the BFS of H. Using Claim 3.15 below,
we have d(Ta, Tb) ≥ γ in G; otherwise H contains a path from Ta to Tb of length at most
γ − 1, meaning that Ta and Tb are separated by ≤ γ − 2 levels in the BFS, a contradiction!

2. la = lb = l. In this case, it must be that Ha and Hb are two disconnected components of
the subgraph (of G) induced on levels {(3l + j − 1)γ, · · · , (3l + j + 3)γ} of the BFS on H.
Furthermore, Ta and Tb both appear within levels {(3l + j)γ, · · · , (3l + j + 2)γ}. Again by
Claim 3.15, we must have d(Ta, Tb) ≥ γ in G; otherwise H contains a path from Ta to Tb
of length at most γ − 1, which would mean that Ha and Hb are connected within levels
{(3l + j − 1)γ, · · · , (3l + j + 3)γ}.

Claim 3.15. For every call Split〈H,T, i, τ〉, and terminals x, y ∈ T , if d(x, y) ≤ γ (in graph G)
then H contains an x− y path of length at most d(x, y).

Proof: We proceed by induction on i. The claim is obviously true for the call Split〈G,V, 0, φ〉 at
depth 0 since H = G. Assuming the claim for any depth i call Split〈H,T, i, τ〉, we prove it for any
call Split〈H ′, T ′, i + 1, τ ′〉 generated by it. Let x, y ∈ T ′ with d(x, y) ≤ γ in G. Clearly x, y ∈ T ,
and by the induction hypothesis, H contains an x − y path π of length at most d(x, y) ≤ γ. It
suffices to show that π is also contained in H ′. Let j ∈ {0, 1, 2} and l ∈ Z+ denote the values that
generated the recursive call Split〈H ′, T ′, i + 1, τ ′〉. Since x, y ∈ T ′, both these vertices lie within
levels {(3l + j)γ, · · · , (3l + j + 2)γ} of the BFS on H. Furthermore, π is an x − y path in H of
length at most γ; so π is contained within levels {(3l + j − 1)γ, · · · , (3l + j + 3)γ} and so it lies in
the connected component H ′ that contains x and y.

Running time. Given an input graph G = (V,E,w) and parameter γ as in Theorem 3.12, we
first show how to ensure that maxu,v wuv is polynomial in n (the original number of vertices). To
this end, delete all edges in E with weight more than γ ·n2, to obtain edge-set E′; note that (V,E′)
is also Kr-minor free. Set new weights w′uv = bn2wuv/γc for all (u, v) ∈ E′; and let d′ be the
resulting distance function (given by shortest paths under w′). Note that for all u, v ∈ V : (a)

d′(u, v) ≥ n2d(u,v)
γ − n, and (b) if d(u, v) ≤ γn2 then d′(u, v) ≤ n2d(u,v)

γ . This new instance has

integer weights with maxu,v w
′
uv ≤ n4 as desired. Let C be the collection of clusters obtained from

the above algorithm applied to (V,E′, w′) and parameter γ′ = n2, which satisfies the four properties
in Theorem 3.12. We show below that C also satisfies all these properties w.r.t. the original input
(V,E,w) and γ.

1. The first condition is obvious, since we use the same collection C.
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2. For any A,B ∈ C, if d(A,B) ≤ γ then d′(A,B) ≤ n2d(uv)
γ ≤ n2 = γ′; i.e. d′(A,B) ≥ γ′ implies

d(A,B) ≥ γ. This shows condition 2.

3. For any u, v ∈ V , if d′(u, v) = O(r2) ·γ′ then d(u, v) ≤ γ
n2d
′(u, v)+ γ

n = O(r2) ·γ, which proves
condition 3.

4. For any u, v ∈ V , if d(u, v) ≤ γ then d′(u, v) ≤ n2d(u,v)
γ = γ′. This gives condition 4.

Since maxu,v wuv is polynomial in n, it is easy to see that each call to Split generates only
polynomial in n recursive calls. Since the depth of the recursion is at most r, the running time is
polynomial for any fixed r.

This completes the proof of Theorem 3.12.

We note that the collection C also satisfies the ‘sparse cover’ property (i.e. condition (3) in
Theorem 2.3), namely each vertex v ∈ V appears in at most O(2r) clusters. It is easy to show
(inductively) that the number of depth i calls to Split where any vertex v appears as a terminal is
at most 2i. However this property is not required in the proof of Theorem 3.11 that appears next.

3.4.2 Improved Bounded Delay Tour

Recall that we are given an instance of single-vehicle Dial-a-Ride on a metric (V, d) induced by an
edge-weighted Kr-minor free graph G = (V,E,w); here w : E → Z+ denotes the edge-lengths and
d the shortest-path distances under w. The vehicle has capacity k and {si, ti}i∈D are the demand-
pairs. Again r is a fixed constant. LB denotes the maximum of the Steiner (i.e. minimum TSP
tour on all sources and destinations) and flow lower-bounds (i.e. 1

k

∑
i∈D d(si, ti)) for this instance.

Let ∆ denote the diameter of the metric; as discussed in the proof of Theorem 3.4, we may
assume, without loss of generality, that ∆ is polynomial in |D| and n = |V |. We group the demands
D into into dlog2 ∆e groups based on the source-destination distances: For each j = 1, · · · , dlog2 ∆e,
group Gj consists of those demands i ∈ D with 2j−1 ≤ d(si, ti) ≤ 2j . We will show how to service
each group Gj separately at a cost of O(1) · LB, such that the time spent by each object i ∈ Gj in
the vehicle is Ti = O(2j) = O(1) · d(si, ti). Since the number of groups is O(log n|D|), this would
immediately imply Theorem 3.11.

Serving group Gj Set distance parameter γ = 2j , and obtain a γ-separated cover C along with
its partition {Z1, · · · , Zp}, using Theorem 3.12. For any demand i ∈ Gj , since d(si, ti) ≤ γ, by
property (4) of Theorem 3.12, there is some cluster of C containing both si and ti: assign demand i
to such a cluster. We further partition demands in Gj into H1, · · · , Hp where each Hl contains all
demands assigned to clusters of Zl. The algorithm will serve demands in each Hl separately using
a tour of length O(1) · LB, that also satisfies the bounded delay condition 2. This suffices to prove
Theorem 3.11 since p = O(1) by property (1) of Theorem 3.12.

Serving Hl For any cluster S ∈ Zl let B(S) ⊆ Gj denote the demands assigned to S. Let LB(S)
denote the maximum of the Steiner and flow lower bounds restricted to demands B(S). A cluster
S ∈ Zl is called non-trivial if B(S) 6= ∅. Choose an arbitrary vertex in each cluster as its center.
Let T denote a 1.5-approximate TSP tour [13] containing the centers of all non-trivial clusters of
Zl.

Claim 3.16. We have
∑

S∈Zl
LB(S) ≤ O(1) · LB, and d(T ) ≤ O(1) · LB.
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Proof: It is clear that the sum of the flow lower-bounds over all clusters S ∈ Zl is at most the
flow lower-bound on demands Hl, since Hl = ∪S∈Zl

B(S). Let Tsp(S) denote the minimum length
TSP on the end points of demands B(S), i.e. the Steiner lower bound on S. We show next that∑

S∈Zl
Tsp(S) ≤ O(1) ·Tsp where Tsp denotes the minimum TSP on end points of Hl (i.e. Steiner

lower bound on Hl). This would prove the first part of the claim.
For any cluster S ∈ Zl, let n(S) denote the number of connected segments in Tsp ∩ S (i.e.

Tsp restricted to vertices of S), and let CS1 , · · · , CSn(S) denote these segments. Note that the tour

Tsp travels from one cluster in Zl to another at least
∑

S∈Zl
n(S) times. By property (2) of

Theorem 3.12, the distance between any two distinct clusters in Zl is at least γ. So we obtain:

Tsp ≥ γ
∑
S∈Zl

n(S) (3.4)

We define a TSP tour on end-points of demands B(S) by connecting the end points of segments
CS1 , · · · , CSn(S). This requires n(S) new edges, each of length at most O(γ), the diameter of cluster

S (by property (3) of Theorem 3.12). So the minimum TSP tour for any S ∈ Zl has length

Tsp(S) ≤∑n(S)
a=1 d(CSa ) +O(γ) · n(S). Hence,

∑
S∈Zl

Tsp(S) ≤
∑
S∈Zl

n(S)∑
a=1

d(CSa ) +O(γ)
∑
S∈Zl

n(S) ≤ Tsp +O(γ)
∑
S∈Zl

n(S) ≤ O(1) · Tsp .

The second inequality follows from the fact that the CSl s are disjoint segments in Tsp, and the
last inequality uses (3.4).

To obtain the second part of the claim, augment Tsp as follows. For each non-trivial cluster
S ∈ Zl, add two edges to the center of S from some vertex in Tsp ∩ S. This gives a TSP tour
visiting the centers of all non-trivial clusters in Zl. Note that the number of non-trivial clusters
of Zl is at most

∑
S∈Zl

n(S) since n(S) ≥ 1 for all non-trivial S ∈ Zl. Since the diameter of
each S ∈ Zl is O(γ) (property (3) of Theorem 3.12), the increase in length of Tsp is at most
O(γ)

∑
S∈Zl

n(S) ≤ O(1) · Tsp by (3.4). So there is a TSP tour on the centers of Zl’s non-trivial
clusters having length at most O(1) · LB.

For each S ∈ Zl, the demands B(S) assigned to it are served separately. The flow lower-
bound on S is at least γ

2k |B(S)|; recall that each demand i ∈ Gj has d(si, ti) ≥ γ/2. Consider an
instance Isrc of capacitated vehicle routing (CVRP) with all sources from B(S) and S’s center as
the common destination. Since the diameter of S is O(γ), the flow lower bound of Isrc is at most

O(γ) · |B(S)|
k ≤ O(1) · LB(S). The Steiner lower bound of Isrc is also O(1) · LB(S). So Theorem 3.2

(with delay parameter β = 2) implies a non-preemptive tour τsrc(S) that moves all objects from
sources of B(S) to the center of S, having length O(1) ·LB(S) such that each object spends at most
O(1) · γ time in the vehicle. Similarly, we can obtain non-preemptive tour τdest(S) that moves all
objects from the center of S to destinations of B(S), having length O(1) · LB(S) such that each
object spends at most O(1) · γ time in the vehicle. Concatenating τsrc(S) and τdest(S) gives a
1-preemptive tour serving demands in S having length O(1) ·LB(S) such that each object i ∈ B(S)
spends at most O(γ) ≤ O(1) · d(si, ti) time in the vehicle.

The final solution for demands Hl traverses the TSP tour T on centers of all non-trivial clusters
of Zl, and serves the demands in each cluster (as above) when it is visited. The resulting solution
has length at most d(T ) + O(1)

∑
S∈Zl

LB(S) ≤ O(1) · LB, by Claim 3.16. Moreover, each object
i ∈ Hl spends O(1) · d(si, ti) time in the vehicle.
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Finally, concatenating the tours serving each Hl (for l = 1, · · · , p), and then the tours serving
each Gj (for j = 1, · · · , dlog2 ∆e), we obtain the 1-preemptive tour claimed in Theorem 3.11.

4 Conclusion

We studied the preemptive multi-vehicle Dial-a-Ride problem and obtained anO(log n)-approximation
algorithm in the uncapacitated case and an O(log3 n)-approximation algorithm in the capacitated
setting. Both guarantees improve by a logarithmic factor when the metric is induced by a graph
excluding some fixed minor. While there is an Ω(log1/4−ε n) hardness of approximation for ca-
pacitated mDaR, there is no ω(1)-factor hardness result for the uncapacitated case: obtaining a
constant-factor approximation for uncapacitated mDaR is an interesting open question. Another
interesting direction is the multi-vehicle Dial-a-Ride problem with non-uniform capacities: our ap-
proximation algorithm only works when the ratio of maximum to minimum vehicle capacities is a
constant, and it would be interesting to obtain a poly-log ratio approximation algorithm for general
non-uniform capacities.
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Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0.

Preprocessing

1. If the minimum spanning tree (MST) on vertices Q contains an edge of
length greater than 3B, there is a non-trivial partition {Q1, Q2} of Q
with d(Q1, Q2) > 3B. For j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B}
and Dj be all demands of D induced on Vj . Run in parallel the schedules
from Partial〈Q1, D1, B〉 and Partial〈Q2, D2, B〉. In the following, assume
that every edge of the MST has length at most 3B.

Tour partitioning

2. Obtain single-vehicle 1-preemptive tour τ with capacity k and demands
D, by applying Theorem 3.4.

3. For any offset η ∈ [0, ρB], cut edges of tour τ at distances {pρB + η |
p = 1, 2, · · · } along the tour to obtain a set P of pieces of τ . Let C ′′ be
the set of objects i ∈ D such that i is carried by the vehicle in τ over
some cut edge; and C ′ := D \ C ′′. Choose η so that |C ′| is maximized.

Load rebalancing

4. Construct bipartite graph H with vertex sets P and Q and an edge
between piece P ∈ P and depot f ∈ Q iff d(f, P ) ≤ 2B. For any subset
A ⊆ P, Γ(A) ⊆ Q denotes the neighborhood of A in graph H. Let

S ⊆ P be any maximal set that satisfies |Γ(S)| ≤ |S|2 .

5. Compute a 2-matching π : P \ S → Q \ Γ(S), i.e. function such that
(P, π(P )) is an edge in H for all P ∈ P \ S, and the number of pieces
mapping to any f ∈ Q \ Γ(S) is |π−1(f)| ≤ 2.

Recursion

6. Define C1 := {i ∈ C ′ | either si ∈ S or ti ∈ S}; and C2 := C ′ \ C1.

7. Run in parallel the recursive schedule Partial〈Γ(S), C1, B〉 for C1 and the
following for C2:

(a) Each vehicle f ∈ Q \ Γ(S) traverses the pieces π−1(f), moving all
C2-objects in them from their source to preemption-vertex, and
returns to its depot.

(b) Each vehicle f ∈ Q \ Γ(S) again traverses the pieces π−1(f), this
time moving all C2-objects in them from their preemption-vertex
to destination, and returns to its depot.

Output: A schedule of Q of makespan (16 + 16ρ) · B that serves an
αlogmin{|Q|,2m} fraction of D; or a certificate that the optimal makespan is
more than B.

Figure 3: Algorithm Partial〈Q,D,B〉 for capacitated mDaR.
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Tour τ p1

s1

t2
p2

t1

p1

p2

The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S
Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Figure 4: Cutting and patching steps in algorithm Partial.
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Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0.

1. If the minimum spanning tree (MST) on vertices Q contains an edge of
length greater than 3B, there is a non-trivial partition {Q1, Q2} of Q
with d(Q1, Q2) > 3B. For j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B}
and Dj be all demands of D induced on Vj . Run in parallel the schedules
from 〈Q1, D1, B〉 and 〈Q2, D2, B〉. In the following, assume that every
edge of the MST has length at most 3B.

2. Obtain single-vehicle (non-preemptive) stacker crane solution τ for de-
mands D, by applying the algorithm from [18]. The length d(τ) is at
most 1.8 times the Steiner and flow lower-bounds.

3. Cut τ into |Q| disjoint pieces P, each of length ≤ 16 · B, so that no
object is carried over a cut edge in τ .

4. Construct bipartite graph H with vertex sets P and Q and an edge
between piece P ∈ P and depot f ∈ Q iff d(f, P ) ≤ 2B. For any subset
A ⊆ P, Γ(A) ⊆ Q denotes the neighborhood of A in graph H. Let

S ⊆ P be any maximal set that satisfies |Γ(S)| ≤ |S|2 .

5. Compute a 2-matching π : P \ S → Q \ Γ(S), i.e. function such that
(P, π(P )) is an edge in H for all P ∈ P \ S, and the number of pieces
mapping to any f ∈ Q \ Γ(S) is |π−1(f)| ≤ 2.

6. Define C ⊆ D be the demands served in pieces of S. Run in parallel the
recursive schedule 〈Γ(S), C,B〉 for C and the following for D \ C:
Each vehicle f ∈ Q \ Γ(S) traverses the pieces π−1(f).

Output: A schedule of makespan 72 · B; or a certificate that the optimal
makespan is more than B.

Figure 5: Algorithm for multi-vehicle stacker crane.
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Input: induced subgraph H = (V (H), E(H)), terminals T ⊆ V (H), depth i and
color τ ∈ {0, 1, 2}i.

1. If i = r then add tuple 〈T, τ〉 to collection C, and stop.

2. Construct a breadth-first-search (BFS) tree from any vertex u of H. For any
v ∈ V (H) define levelv to be the length of the shortest path from u to v (so
levelu = 0).

3. For each j ∈ {0, 1, 2} and integer l ≥ 0, consider the subgraph of G induced
by vertices {v ∈ V (H) : (3l + j − 1)γ ≤ levelv ≤ (3l + j + 3)γ}; and for each
connected component H ′ in this subgraph do:

(a) Set T ′ ← {v ∈ T ∩ V (H ′) : (3l + j)γ ≤ levelv ≤ (3l + j + 2)γ}.
(b) Set τ ′ ← τ concatenated with j.

(c) Recurse on Split〈H ′, T ′, i+ 1, τ ′〉.

Figure 6: Algorithm for γ-separated cover.
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