15,950 research outputs found

    Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases.

    Get PDF
    Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.Includes MRC, NIHR, Wellcome Trust, H2020 and FP7

    Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats

    Get PDF
    Depression can influence pain and vice versa, yet the biological mechanisms underlying how one influences the pathophysiology of the other remains unclear. Dysregulation of locus coeruleus-noradrenergic transmission is implicated in both conditions, although it is not known whether this effect is exacerbated in cases of co-morbid depression and chronic pain. We studied locus coeruleus activity using immunofluorescence and electrophysiological approaches in rats subjected to unpredictable chronic mild stress (CMS, an experimental model of depression) and/or chronic constriction injury (CCI, a model of chronic neuropathic pain) for 2 weeks. CCI alone had no effect on any of the locus coeruleus parameters studied, while CMS led to a slight reduction in the electrophysiological activity of the locus coeruleus. Furthermore, CMS was associated with an increase in the number of tyrosine hydroxylase-positive cells in the locus coeruleus, although they were smaller in size. Interestingly, these effects of CMS were exacerbated when combined with CCI, even though no changes in the α2-adrenoreceptors or the noradrenaline transporter were observed in any group. Together, these findings suggest that CMS triggers several modifications in locus coeruleus-noradrenergic transmission that are exacerbated by co-morbid chronic pain

    Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats

    Get PDF
    Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.</p

    Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons

    Get PDF
    There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi -> spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.Peer reviewe

    Altered brainstem responses to modafinil in schizophrenia: implications for adjunctive treatment of cognition.

    Get PDF
    Candidate pro-cognitive drugs for schizophrenia targeting several neurochemical systems have consistently failed to demonstrate robust efficacy. It remains untested whether concurrent antipsychotic medications exert pharmacodynamic interactions that mitigate pro-cognitive action in patients. We used functional MRI (fMRI) in a randomized, double-blind, placebo-controlled within-subject crossover test of single-dose modafinil effects in 27 medicated schizophrenia patients, interrogating brainstem regions where catecholamine systems arise to innervate the cortex, to link cellular and systems-level models of cognitive control. Modafinil effects were evaluated both within this patient group and compared to a healthy subject group. Modafinil modulated activity in the locus coeruleus (LC) and ventral tegmental area (VTA) in the patient group. However, compared to the healthy comparison group, these effects were altered as a function of task demands: the control-independent drug effect on deactivation was relatively attenuated (shallower) in the LC and exaggerated (deeper) in the VTA; in contrast, again compared to the comparison group, the control-related drug effects on positive activation were attenuated in LC, VTA and the cortical cognitive control network. These altered effects in the LC and VTA were significantly and specifically associated with the degree of antagonism of alpha-2 adrenergic and dopamine-2 receptors, respectively, by concurrently prescribed antipsychotics. These sources of evidence suggest interacting effects on catecholamine neurons of chronic antipsychotic treatment, which respectively increase and decrease sustained neuronal activity in LC and VTA. This is the first direct evidence in a clinical population to suggest that antipsychotic medications alter catecholamine neuronal activity to mitigate pro-cognitive drug action on cortical circuits

    Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat.

    No full text
    The locus coeruleus contains noradrenergic neurons which project widely throughout the CNS. A major target of locus coeruleus projections in the rat is the olfactory bulb (Shipley et al.: Brain Res. 329:294–299, '85) but the organization of the projections within the bulb has not been systematically examined. In this study, the laminar distribution and densities of locus coeruleus-noradrenergic fibers in the main and accessory olfactory bulbs were determined with anterograde tracing and immunocytochemical techniques. Following iontophoretic injections of 1% wheat germ agglutinin-horseradish peroxidase into the locus coeruleus, the densest anterograde label in the accessory olfactory bulb was observed in the external plexiform layer, granule cell layer, and especially in the internal part of the mitral cell layer. Virtually no label was observed in the glomerular layer. In the main olfactory bulb, labelled axons were observed in the granule cell layer, in the internal and external plexiform layers, occasionally in the mitral cell layer, and least often in the glomerular layer. Noradrenergic fibers in the olfactory bulb were identified by using immunocytochemistry with an antibody to dopamine-β-hydroxylase. Laminar patterns and densities of noradrenergic innervation were determined with quantitative image analysis. In the accessory olfactory bulb, the densest innervation was in the innermost portion of the mitral cell layer followed by the granule cell layer, the superficial part of the mitral cell layer, and the external plexiform layer. The density of fibers in the glomerular layer was least. The laminar pattern of noradrenergic fiber distribution in the main olfactory bulb was similar to that in accessory olfactory bulb. The present studies demonstrate that locus coeruleus-noradrenergic fibers terminate preferentially in the internal plexiform, granule cell, and external plexiform layers. This suggests that the major influence of the locus coeruleus input to both the main and accessory the olfactory bulbs is on the predominant neuronal element in those layers, the granule cells. Additional studies are needed to resolve how this input influences specific olfactory bulb circuits

    Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling.

    Get PDF
    Although PI3Kγ has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3Kγ is present in neurons and that the lack of PI3Kγ in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility. Here, we found a previously unreported expression of PI3Kγ throughout the noradrenergic neurons of the locus coeruleus (LC) in the brainstem, serving as a mechanism that regulates its activity of control on attention, locomotion and sociality. In particular, we show an unprecedented phenotype of PI3Kγ KO mice resembling ADHD symptoms. PI3Kγ KO mice exhibit deficits in the attentive and mnemonic domains, typical hyperactivity, as well as social dysfunctions. Moreover, we demonstrate that the ADHD phenotype depends on a dysregulation of CREB signaling exerted by a kinase-independent PI3Kγ-PDE4D interaction in the noradrenergic neurons of the locus coeruleus, thus uncovering new tools for mechanistic and therapeutic research in ADHD

    A feasibility study to investigate chemogenetic modulation of the locus coeruleus by means of single unit activity

    Get PDF
    Aim: Selective chemogenetic modulation of locus coeruleus (LC) neurons would allow dedicated investigation of the role of the LC-NA pathway in brain excitability and disorders such as epilepsy. This study investigated the feasibility of an experimental set-up where chemogenetic modification of the brainstem locus coeruleus NA neurons is aimed at and followed by LC unit activity recording in response to clozapine. Methods: The LC of male Sprague-Dawley rats was injected with 10 nl of adeno-associated viral vector AAV2/7-PRSx8-hM3Dq-mCherry (n = 19, DREADD group) or AAV2/7-PRSx8-eGFP (n = 13, Controls). Three weeks later, LC unit recordings were performed in anesthetized rats. We investigated whether clozapine, a drug known to bind to modified neurons expressing hM3Dq receptors, was able to increase the LC firing rate. Baseline unit activity was recorded followed by subsequent administration of 0.01 and 0.1 mg/kg of clozapine in all rats. hM3Dq-mcherry expression levels were investigated using immunofluorescence staining of brainstem slices at the end of the experiment. Results: Unit recordings could be performed in 12 rats and in a total of 12 neurons (DREADDs: n = 7, controls: n = 5). Clozapine 0.01 mg/kg did not affect the mean firing rate of recorded LC-neurons; 0.1 mg/kg induced an increased firing rate, irrespective whether neurons were recorded from DREADD or control rats (p = 0.006). Co-labeling of LC neurons and mCherry-tag showed that 20.6 +/- 2.3% LC neurons expressed the hM3Dq receptor. Aspecific expression of hM3Dq-mCherry was also observed in non-LC neurons (26.0 +/- 4.1%). Conclusion: LC unit recording is feasible in an experimental set-up following manipulations for DREADD induction. A relatively low transduction efficiency of the used AAV was found. In view of this finding, the effect of injected clozapine on LC-NA could not be investigated as a reliable outcome parameter for activation of chemogenetically modified LC neurons. The use of AAV2/7, a vector previously applied successfully to target dopaminergic neurons in the substantia nigra, leads to insufficient chemogenetic modification of the LC compared to transduction with AAV2/9
    corecore