52 research outputs found

    An OpenCL software compilation framework targeting an SoC-FPGA VLIW chip multiprocessor

    Get PDF
    Modern systems-on-chip augment their baseline CPU with coprocessors and accelerators to increase overall computational capability and power efficiency, and thus have evolved into heterogeneous multi-core systems. Several languages have been developed to enable this paradigm shift, including CUDA and OpenCL. This paper discusses a unified compilation environment to enable heterogeneous system design through the use of OpenCL and a highly configurable VLIW Chip Multiprocessor architecture known as the LE1. An LLVM compilation framework was researched and a prototype developed to enable the execution of OpenCL applications on a number of hardware configurations of the LE1 CMP. The presented OpenCL framework fully automates the compilation flow and supports work-item coalescing which better maps onto the ILP processor cores of the LE1 architecture. This paper discusses in detail both the software stack and target hardware architecture and evaluates the scalability of the proposed framework by running 12 industry-standard OpenCL benchmarks drawn from the AMD SDK and the Rodinia suites. The benchmarks are executed on 40 LE1 configurations with 10 implemented on an SoC-FPGA and the remaining on a cycle-accurate simulator. Across 12 OpenCL benchmarks results demonstrate near-linear wall-clock performance improvement of 1.8x (using 2 dual-issue cores), up to 5.2x (using 8 dual-issue cores) and on one case, super-linear improvement of 8.4x (FixOffset kernel, 8 dual-issue cores). The number of OpenCL benchmarks evaluated makes this study one of the most complete in the literature

    Exploiting Hardware Abstraction for Parallel Programming Framework: Platform and Multitasking

    Get PDF
    With the help of the parallelism provided by the fine-grained architecture, hardware accelerators on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many applications. However, designers are required to have excellent hardware programming skills and unique optimization techniques to explore the potential of FPGA resources fully. Intermediate frameworks above hardware circuits are proposed to improve either performance or productivity by leveraging parallel programming models beyond the multi-core era. In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which targets enhancing productivity without losing performance. It helps designers develop parallelized applications and implement them on FPGAs. The PolyPC framework implements a custom hardware platform, on which programs written in an OpenCL-like programming model can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a complete development environment including intermediate software framework, and automatic system builders. Designers\u27 programs can be either synthesized as hardware processing elements (PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both software and hardware PEs to improve the efficiency of utilizing hardware resources. The PolyPC framework is evaluated regarding performance, area efficiency, and multitasking. The results show a maximum 66 times speedup over a dual-core ARM processor and 1043 times speedup over a high-performance MicroBlaze with 125 times of area efficiency. It delivers a significant improvement in response time to high-priority tasks with the priority-aware scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the design flow, the OpenCL application programs are converted into executables through the front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and the framework is generated from users\u27 specifications

    Accelerating Halide on an FPGA by using CIRCT and Calyx as an intermediate step to go from a high-level and software-centric IRs down to RTL

    Get PDF
    Image processing and, more generally, array processing play an essential role in modern life: from applying filters to the images that we upload to social media to running object detection algorithms on self-driving cars. Optimizing these algorithms can be complex and often results in non-portable code. The Halide language provides a simple way to write image and array processing algorithms by separating the algorithm definition (what needs to be executed) from its execution schedule (how it is executed), delivering state-of-the-art performance that exceeds hand-tuned parallel and vectorized code. Due to the inherent parallel nature of these algorithms, FPGAs present an attractive acceleration platform. While previous work has added an RTL code generator to Halide, and utilized other heterogeneous computing languages as an intermediate step, these projects are no longer maintained. MLIR is an attractive solution, allowing the generation of code that can target multiple devices, such as parallelized and vectorized CPU code, OpenMP, and CUDA. CIRCT builds on top of MLIR to convert generic MLIR code to register transfer level (RTL) languages by using Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. This thesis presents a novel flow that implements an MLIR code generator for Halide that generates RTL code, adding the necessary wrappers to execute that code on Xilinx FPGA devices. Additionally, it implements a Halide runtime using the Xilinx Runtime (XRT), enabling seamless execution of the generated Halide RTL kernels. While this thesis provides initial support for running Halide kernels and not all features and optimizations are supported, it also details the future work needed to improve the performance of the generated RTL kernels. The proposed flow serves as a foundation for further research and development in the field of hardware acceleration for image and array processing applications using Halide

    Compilers for portable programming of heterogeneous parallel & approximate computing systems

    Get PDF
    Programming heterogeneous systems such as the System-on-chip (SoC) processors in modern mobile devices can be extremely complex because a single system may include multiple different parallelism models, instruction sets, memory hierarchies, and systems use different combinations of these features. This is further complicated by software and hardware approximate computing optimizations. Different compute units on an SoC use different approximate computing methods and an application would usually be composed of multiple compute kernels, each one specialized to run on a different hardware. Determining how best to map such an application to a modern heterogeneous system is an open research problem. First, we propose a parallel abstraction of heterogeneous hardware that is a carefully chosen combination of well-known parallel models and is able to capture the parallelism in a wide range of popular parallel hardware. This abstraction uses a hierarchical dataflow graph with side effects and vector SIMD instructions. We use this abstraction to define a parallel program representation called HPVM that aims to address both functional portability and performance portability across heterogeneous systems. Second, we further extend HPVM representation to enable accuracy-aware performance and energy tuning on heterogeneous systems with multiple compute units and approximation methods. We call it ApproxHPVM, and it automatically translates end-to-end application-level accuracy constraints into accuracy requirements for individual operations. ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation, which greatly speeds up the analysis, enables greater portability, and enables future capabilities like accuracy-aware dynamic scheduling and design space exploration. We have implemented a prototype HPVM system, defining the HPVM IR as an extension of the LLVM compiler IR, compiler optimizations that operate directly on HPVM graphs, and code generators that translate the virtual ISA to NVIDIA GPUs, Intel’s AVX vector units, and to multicore X86-64 processors. Experimental results show that HPVM optimizations achieve significant performance improvements, HPVM translators achieve performance competitive with manually developed OpenCL code for both GPUs and vector hardware, and that runtime scheduling policies can make use of both program and runtime information to exploit the flexible compilation capabilities. Furthermore, our evaluation of ApproxHPVM shows that our framework can offload chunks of approximable computations to special purpose accelerators that provide significant gains in performance and energy, while staying within a user-specified application-level accuracy constraint with high probability

    The review of heterogeneous design frameworks/Platforms for digital systems embedded in FPGAs and SoCs

    Get PDF
    Systems-on-a-chip integrate specialized modules to provide well-defined functionality. In order to guarantee its efficiency, designersare careful to choose high-level electronic components. In particular,FPGAs (field-programmable gate array) have demonstrated theirability to meet the requirements of emerging technology. However,traditional design methods cannot keep up with the speed andefficiency imposed by the embedded systems industry, so severalframeworks have been developed to simplify the design process of anelectronic system, from its modeling to its physical implementation.This paper illustrates some of them and presents a comparative studybetween them. Indeed, we have selected design methods of SoC(ESP4ML and HLS4ML, OpenESP, LiteX, RubyRTL, PyMTL,SysPy, PyRTL, DSSoC) and NoC networks on OCN chip (PyOCN)and in general on FPGA (PRGA, OpenFPGA, AnyHLS, PYNQ, andPyLog).The objective of this article is to analyze each tool at several levelsand to discuss the benefit of each in the scientific community. Wewill analyze several aspects constituting the architecture and thestructure of the platforms to make a comparative study of thehardware and software design flows of digital systems.

    Translating Timing into an Architecture: The Synergy of COTSon and HLS (Domain Expertise: Designing a Computer Architecture via HLS)

    Get PDF
    Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy, thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads) running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped us reduce the development time from months/weeks to days/hours

    Acceleration by Inline Cache for Memory-Intensive Algorithms on FPGA via High-Level Synthesis

    Get PDF
    Using FPGA-based acceleration of high-performance computing (HPC) applications to reduce energy and power consumption is becoming an interesting option, thanks to the availability of high-level synthesis (HLS) tools that enable fast design cycles. However, obtaining good performance for memory-intensive algorithms, which often exchange large data arrays with external DRAM, still requires time-consuming optimization and good knowledge of hardware design. This article proposes a new design methodology, based on dedicated application- and data array-specific caches. These caches provide most of the benefits that can be achieved by coding optimized DMA-like transfer strategies by hand into the HPC application code, but require only limited manual tuning (basically the selection of architecture and size), are neutral to target HLS tool and technology (FPGA or ASIC), and do not require changes to application code. We show experimental results obtained on five common memory-intensive algorithms from very diverse domains, namely machine learning, data sorting, and computer vision. We test the cost and performance of our caches against both out-of-the-box code originally optimized for a GPU, and manually optimized implementations specifically targeted for FPGAs via HLS. The implementation using our caches achieved an 8X speedup and 2X energy reduction on average with respect to out-of-the-box models using only simple directive-based optimizations (e.g., pipelining). They also achieved comparable performance with much less design effort when compared with the versions that were manually optimized to achieve efficient memory transfers specifically for an FPGA

    Translating Timing into an Architecture: The Synergy of COTSon and HLS (Domain Expertise—Designing a Computer Architecture via HLS)

    Get PDF
    Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy, thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads) running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped us reduce the development time from months/weeks to days/hours
    • …
    corecore