

ACCELERATING HALIDE ON AN FPGA

SERGI GRANELL ESCALFET

Thesis supervisor: KOJI INOUE (Kyushu University)

Thesis co-supervisor: TERUO TANIMOTO (Kyushu University)

Tutor: ANTONIO MARIA GONZÁLEZ COLÁS (Department of Computer Architecture)

Degree: Master Degree in Innovation and Research in Informatics

Specialisation: High Performance Computing

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

15/05/2023

Universitat Politècnica de Catalunya - BarcelonaTech
Facultat d’Informàtica de Barcelona

Master in Innovation and Research in Informatics
High-Performance Computing

Master Thesis

Accelerating Halide on an FPGA by using CIRCT and
Calyx as an intermediate step to go from a high-level and

software-centric IRs down to RTL

Author:
Sergi Granell Escalfet

Directors:
Koji Inoue

Teruo Tanimoto

Tutor:
Antonio González

May 7, 2023

https://www.upc.edu/
https://www.kyushu-u.ac.jp/

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my parents and family
for supporting and encouraging me in pursuing my interests and goals throughout my
life. I would also like to extend my heartfelt appreciation to Ami and my friends for
their constant support, understanding, and companionship during this journey.

I am profoundly grateful to Professors Koji Inoue and Teruo Tanimoto for welcoming me
as a research student at their Cyber-Physical Computing Laboratory at Kyushu Univer-
sity. Their guidance, expertise, and insights have been invaluable in the development of
this thesis.

I would also like to express my sincere gratitude to Professor Antonio González for
accepting the role of tutor for this thesis.

Special thanks to Rachit Nigam, one of the main developers of Calyx, and Morten Borup
Petersen, a developer of MLIR and CIRCT, for their assistance and insights during the
development of this project, promptly answering my questions and providing guidance
in navigating the intricacies of these technologies.

Lastly, I wish to acknowledge the numerous individuals who have contributed, directly
or indirectly, to the completion of this thesis. Your support, advice, and encouragement
have made this journey a truly rewarding and unforgettable experience.

Abstract

Image processing and, more generally, array processing play an essential role in modern
life: from applying filters to the images that we upload to social media to running object
detection algorithms on self-driving cars. Optimizing these algorithms can be complex
and often results in non-portable code. The Halide language provides a simple way
to write image and array processing algorithms by separating the algorithm definition
(what needs to be executed) from its execution schedule (how it is executed), delivering
state-of-the-art performance that exceeds hand-tuned parallel and vectorized code.

Due to the inherent parallel nature of these algorithms, FPGAs present an attractive
acceleration platform. While previous work has added an RTL code generator to Halide,
and utilized other heterogeneous computing languages as an intermediate step, these
projects are no longer maintained.

MLIR is an attractive solution, allowing the generation of code that can target multiple
devices, such as parallelized and vectorized CPU code, OpenMP, and CUDA. CIRCT
builds on top of MLIR to convert generic MLIR code to register transfer level (RTL)
languages by using Calyx, a new intermediate language (IL) for compiling high-level
programs into hardware designs.

This thesis presents a novel flow that implements an MLIR code generator for Halide
that generates RTL code, adding the necessary wrappers to execute that code on Xilinx
FPGA devices. Additionally, it implements a Halide runtime using the Xilinx Runtime
(XRT), enabling seamless execution of the generated Halide RTL kernels.

While this thesis provides initial support for running Halide kernels and not all features
and optimizations are supported, it also details the future work needed to improve the
performance of the generated RTL kernels. The proposed flow serves as a foundation
for further research and development in the field of hardware acceleration for image and
array processing applications using Halide.

Contents

List of Figures

1 Introduction 1
1.1 Introduction . 2

1.1.1 Writing and optimizing algorithms for high-performance 4
1.1.2 Halide’s answer to image and array processing acceleration 6
1.1.3 Halide on FPGA efforts . 6
1.1.4 Generating HLS directly vs using an IR 8

1.2 Goals and contributions of the thesis . 10
1.3 Thesis organization . 11

2 Hardware acceleration 12
2.1 Accelerating CPUs . 13

2.1.1 Software pipelining and the Initiation Interval (II) 14
2.2 GPUs for hardware acceleration . 16

2.2.1 General-Purpose Graphics Processing Units programming APIs . . 16
2.3 FPGAs for hardware acceleration . 18

2.3.1 FPGA architecture overview . 18
2.3.2 Hard blocks . 20
2.3.3 FPGA programming . 21

3 Tools and components 25
3.1 Halide . 26

3.1.1 Algorithm vs schedule motivation 27
3.1.2 Language overview . 31
3.1.3 Schedules . 32
3.1.4 Compilation flow . 34
3.1.5 Implementation overview . 36

3.2 MLIR . 40
3.2.1 Motivation . 40
3.2.2 Dialects . 40
3.2.3 MLIR Language . 42
3.2.4 Dialect conversion . 43

3.2.5 Passes . 44
3.2.6 mlir-opt and mlir-translate tools 45

3.3 CIRCT . 48
3.3.1 Dialects . 48
3.3.2 Transformation passes . 48
3.3.3 Scheduling . 50
3.3.4 SystemVerilog emission . 51
3.3.5 circt-opt and circt-translate tools 51

3.4 Calyx . 53
3.4.1 Language overview . 53
3.4.2 Compilation . 57

3.5 Xilinx Vitis . 60
3.5.1 v++ kernel compiler . 61
3.5.2 Build targets . 61
3.5.3 Programmable-logic (PL) Kernel Properties 62
3.5.4 Kernel Interface Requirements . 63
3.5.5 Vivado Design Suite’s package_xo and the kernel.xml file 64

3.6 Xilinx Runtime (XRT) . 66
3.6.1 XRT-Managed Kernel Execution Models 66

4 Methodology 70
4.1 From Halide down to RTL . 72
4.2 Development methodology . 74

4.2.1 MLIR generation . 74
4.2.2 Transformation to hardware dialects with CIRCT 75
4.2.3 Adding Xilinx platform-specific wrappers 75
4.2.4 Compiling the RTL kernel . 75
4.2.5 Running the RTL kernel and debugging it 76

5 Implementation of the project 79
5.1 Emitting MLIR . 80

5.1.1 Marking loops to be offloaded to an accelerator 80
5.1.2 Generating the function signature 81
5.1.3 Halide IR type to MLIR type conversion 81
5.1.4 Halide IR to MLIR translation . 82

5.2 Emitting a generic RTL kernel . 95
5.2.1 Lowering MLIR to CIRCT’s Calyx dialect 96
5.2.2 Lowering CIRCT’s Calyx dialect to hardware dialects 99

5.3 Wrapping the generic RTL kernel for Xilinx FPGAs 102
5.3.1 Calyx external memory to AXI converter 103
5.3.2 Kernel control interface (AXI4-Lite subordinate) 106
5.3.3 Top-level module . 108
5.3.4 Generating the kernel.xml . 109
5.3.5 Exporting SystemVerilog . 109

5.4 Halide XRT runtime backend . 111
5.4.1 Opening the device . 111
5.4.2 Loading the kernel into the device 111
5.4.3 Allocating device memory . 112
5.4.4 Copying memory from/to the host to/from the device 112
5.4.5 Launching the kernel . 112
5.4.6 Kernel execution sequence diagram example 113

5.5 Bugs and issues . 115
5.5.1 Add support for multiple calyx::AssignOp with guards to the same

destination . 115
5.5.2 Clock-enable done signal Calyx registers 116
5.5.3 calyx::NotLibOp was lowered incorrectly 117
5.5.4 Avoid leaving read/write-enable signals of external memories un-

connected . 117

6 Experiments and results 118
6.1 Setup . 119

6.1.1 Avnet Ultra96-V2 Board . 119
6.1.2 Evaluation kernels . 120

6.2 Test load kernel . 121
6.2.1 Resource utilization . 121
6.2.2 Execution time . 122

6.3 Test load div int8 kernel . 124
6.3.1 Resource utilization . 124
6.3.2 Execution time . 125

6.4 Test blur3x3 sliding window kernel . 127
6.4.1 Resource utilization . 128
6.4.2 Execution time . 130

7 Conclusions and future work 132
7.1 Conclusions . 133
7.2 Future work . 134

7.2.1 Support vectorized accesses to local memory 134
7.2.2 Improved support for MLIR’s arith min and max operations . . . 134
7.2.3 Generalize MemRefType lowering . 135
7.2.4 Proper support for scf::IfOp in CIRCT’s SCFToCalyx pass 135
7.2.5 Implement lowering of calyx::ParOp in CalyxToHW 135
7.2.6 Add floating-point support in the MLIR to RTL lowering 136
7.2.7 Avoid useless pipeline stages after comb canonicalization of lowered

pipeliend Calyx operations . 136
7.2.8 Emit loops and memory accesses using MLIR’s affine dialect . . 136
7.2.9 Use CIRCT’s static scheduling infrastructure to lower MLIR to

Calyx . 137
7.2.10 Add AXI-Stream support . 137

7.2.11 Coalescing buffer to implement write-combining 137
7.2.12 Generate HLS code from MLIR . 138
7.2.13 Halide autoschedulers for FPGA targets 138

Bibliography

List of Figures

1.1 Memory wall performance gap . 5
1.2 Energy required to perform different operations 5

2.1 Typical FPGA architecture. 18
2.2 FPGA lookup table (LUT) with three inputs. 19
2.3 FPGA configurable logic block (CLB) with FA, carry, and register chains. 19
2.4 Early FPGA (left) vs. modern FPGA with hard blocks (right). 20
2.5 Structure of a DSP48 Block. 21
2.6 FIFO-based sliding window buffer design for the Laplace stencil kernel. . 24
2.7 Pipeline by cascading processing elements (PEs) 24

3.1 Breadth first execution strategy . 27
3.2 Total fusion execution strategy . 28
3.3 Sliding window execution strategy . 29
3.4 Locality, parallelism and redundant work tradeoff triangle 29
3.5 Tiling strategy . 30
3.6 Sliding window within tiles strategy . 31
3.7 Domain order . 33
3.8 Halide compilation flow . 35
3.9 CIRCT dialects. 49
3.10 Calyx compilation passes example. 59
3.11 Vitis PL kernel compilation flows. 61
3.12 kernel.xml example . 65

4.1 Flow from Halide to execution on Xilinx FPGAs 71
4.2 Vitis, building and packaging the embedded system design. 76
4.3 Waveform markers example . 78

5.1 Generic MLIR to CIRCT’s hardware dialects steps 95
5.2 Write enable logic for local memories . 101
5.3 CIRCT with hardware dialects to SystemVerilog steps 102
5.4 Calyx external memory access to AXI converter 104
5.5 Calyx external memory access to AXI converter FSM 105
5.6 Control interface read handler FSM. 106

5.7 Control interface write handler FSM. 107
5.8 Logic that generates the interrupt signal from ISR and GIE registers. . . 107
5.9 Host driver continuously polling the kernel control registers 108
5.10 Reduced AXI4-Lite control interface traffic after interrupt support 108
5.11 fsm_enum_typedefs.sv example . 110
5.12 calyx::AssignOp multiplexer chain . 115
5.13 Write enable signal to registers bug . 116
5.14 Waveform of fixed Calyx register writes 116

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION

1.1 Introduction
Image processing has become a key technology in many aspects of our daily lives. While
we might not be aware of all many of those aspects, it can be considered an indispensable
tool in the digital era.

We can find image processing in many fields ranging from applying filters when
taking pictures that we upload to social media, to medical imaging techniques such as
MRI scans. Some examples of image-processing applications include:

Photography: not only to apply our favorite filters to our pictures, but also the image
processing techniques that our smartphones and digital cameras use to take pictures
in the first place, such as noise reduction, color and lighting imbalance correction, and
many more.

Security and surveillance: many security systems use image processing to recognize
faces, detect motion in a scene, identify license plates, count people in events, etc.

Medical imaging: pathology and techniques such as computed tomography (CT) and
X-ray scans, magnetic resonance imaging (MRI), depend on image processing to improve
the clarity of the scans, helping doctors identify and treat diseases more accurately.

Social media: platforms like Instagram and instant messaging applications can use
image processing to apply filters to the pictures and videos that we upload or send.

Video games: most modern video games make heavy use of the graphical capabilities
of the Graphic Processing Units (GPUs) to render realistic scenes by using techniques
that range from the more traditional Phong shading model to more advanced techniques
such as deferred shading, physically based rendering (PBR) and ray tracing.

Video streaming: services like YouTube and Netflix rely on image processing to apply
compression to the videos they host to reduce the storage needs and minimize the network
bandwidth required to stream the videos.

Robotics: from creating a virtual mapping of our rooms by using sensors to be able
to vacuum the floor autonomously, to robots that can navigate their environments and
self-driving cars, robotics is a field that heavily relies on image processing.

Automotive industry: related to the previous point, modern vehicles feature such ad-
vanced driver assistance systems (ADAS) that use image processing to detect the envi-
ronments and enable features such as pedestrian detection, line departure warnings, and
adaptive cruise control, which help improve driving safety and convenience.

Art and design: artists and designers use a wide range of tools that rely on image
processing to create and improve their works.

Retail and e-commerce: QR codes and automatic product recognition are examples of
image-processing applications that are used in retail and e-commerce.

2

CHAPTER 1. INTRODUCTION

The abovementioned examples consist of a wide range of usages and algorithms
with different image processing computational requirements, sizes and resolution of the
images, and real-time processing demands.

The tasks that many image processing pipelines realize are based on algorithms and
methods that can be classified into the following categories:

Stencil algorithms: they involve updating the value of each element in an array (e.g.,
a grid of pixels in an image) based on the values of its neighboring elements. Examples
of stencil algorithms are:

a) Convolution: applying a filter or kernel to an image to blur, sharpen, or detect
edges. Convolution is a core operation in many image-processing tasks and serves
as the basis for convolutional neural networks (CNNs) used in deep learning.

b) Morphological operations: a technique for the analysis and processing of geometrical
structures. Basic operations include dilation, erosion, opening, and closing, which
rely on updating a pixel based on the values of the neighbors.

c) Image gradients: can be used to extract information from images. Each output
value can measure the intensity and rate of change of the pixels in the original
picture, which is useful for edge detection and feature extraction.

Histogram equalization: a contrast-enhancement technique by using a histogram (a
representation of frequency distribution) to redistribute the pixel intensities of an image.

Image registration: the process of aligning two or more images of the same scene to
combine the information content of all images to get a better picture of the scene.

Some of the image processing tasks can be performed on a small device such as a
smartphone or a smartwatch, which have limited computational capabilities and require
low power consumption. Others, such as training deep learning models require a high-
performance computer (HPC) or a data center. In some cases, a mix of both approaches
is used: for example, a deep model pre-trained using a supercomputer can be run in a
smaller device to perform real-time image processing.

The growing trends of the increase in the sophistication of modern image processing
pipelines, growing resolution of image sensors, and the increasing demand for real-time
video processing, have created a need for highly efficient image processing pipeline im-
plementations.

Writing efficient image processing algorithms, just like writing any high-performance
code, is a challenging task, as it requires a deep understanding of the underlying hardware
architecture and the image processing pipeline. Optimizing local/inner loops is not
enough to realize the full potential of the hardware, and a broader approach is required:
globally recognizing and reorganizing computations to exploit locality and parallelism
by performing techniques such as blocking and tiling, the underlying hardware can be
more efficiently used.

3

CHAPTER 1. INTRODUCTION

1.1.1 Writing and optimizing algorithms for high-performance

Optimizing image and array processing algorithms requires deep knowledge of the un-
derlying hardware architecture to be able to exploit parallelism and hardware-specific
features Sometimes the use of programming languages such as C or C++ alone is not
enough: using SIMD (Single Instruction Multiple Data) compiler intrinsics or writing
hand-tuned assembly routines is often required to achieve a significant performance im-
provement over purely high-level language implementations.

Many image-processing applications are based on image-processing pipelines, that is
largely feed-forward pixel processing stages where each stage performs a specific task,
such as filtering, edge detection, or image registration. The output of each stage is fed
into the input of the next stage, and the output of the last stage is the result of the
pipeline. Those pipelines are not just data flows with linear single producers and single
consumers, but more generally graphs of interdependent stages with computations over
arrays of pixels.

Optimizing algorithms for maximum performance entails modifying the code to ex-
ploit the underlying hardware architecture in a way that sacrifices not only generality
and portability but also makes it more difficult to make the algorithm composable with
other algorithms. Some of the most common optimization techniques include paralleliz-
ing the code among many compute units, vectorization, tiling, loop fusion and unrolling,
writing hand-tunes C and assembly, using compiler intrinsics, and so on. These tech-
niques make the resulting code much longer intricately interleaved code that is difficult
to understand, debug and maintain.

It is common [1, 2, 3] to try to overcome these issues by using a domain-specific
language (DSL), which as the name implies, allows expressing the algorithm in a more
specialized and simple way relevant to that particular domain, in contrast to general-
purpose languages (GPL) such as C or C++. The main idea behind DSLs is to provide
a high-level, concise, and expressive syntax for programming the algorithm in a way that
is more natural in the domain.

As an example of the cost of writing and optimizing a real-world image processing
pipeline, in this lecture [4] given at 2015’s IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), it is mentioned that the implementation of the Local
Laplacian Filters algorithm [5] in Adobe Photoshop Camera Raw / Lightroom [6] took
the developers 3 months of work, and amounted to a total of 1500 lines of expert-
optimized C++. The result, though, was that the optimized version was 10 times faster
than the reference C implementation.

Another concept that is important to consider is the “Memory Wall” problem
[7]. It refers to the fact that there is an increasing gap between processor and memory
performance (Figure 1.1), which can limit the overall system performance in many ap-
plications. While processors have been keeping up with Moore’s law to a large extent
(at least until a few years ago), where transistor densities and performance double every
two years, DRAMs struggled to keep up with that pace.

4

CHAPTER 1. INTRODUCTION

Processor-memory
performance gap

Figure 1.1: Performance gap between processor and DRAM memory. For the processor,
the performance is measured as memory requests per second on average. For the DRAM
memory, the performance is measured as accesses per second (inverse of the DRAM
access latency).
Source: Computer Architecture: A Quantitative Approach by John L. Hennessy, David A. Pat-
terson [8].

In modern consumer processors, this problem is mainly tackled by the use of caches,
which are small, fast SRAM memories that are used to store frequently accessed data.
There has also been Processing In-Memory (PIM) research, which aims to move the
processing of data closer to the memory, but no real commercial products implement
this solution.

If we take a look at Figure 1.2 we can see how not only there is a big gap between
the time-wise performance of CPU and DRAM memory as shown before, but there is
also a huge difference in the energy required between performing operations in the ALU
of a CPU and accessing DRAM.

Operation (32b) Energy/Op (28 nm) Cost (vs. ALU)
ALU op 1 pJ -
Load from SRAM 5 pJ 5x
Move 10mm on-chip 32 pJ 32x
Send off-chip 500 pJ 500x
Send to DRAM 1 nJ 1,000x
Send over LTE >50 µJ 50,000,000x

Figure 1.2: Energy required to perform different operations: from an ALU operation
inside a CPU to sending data over LTE.
Source: Halide: a language and compiler for high-performance image processing, CS448h, Oct.
20, 2015

5

http://cs448h.stanford.edu/2015-10-20-halide.pdf
http://cs448h.stanford.edu/2015-10-20-halide.pdf

CHAPTER 1. INTRODUCTION

Therefore, the conclusion is that communication dominates computation in both
energy and time leading to a tradeoff when writing high-performance applications
between reusing data, which implies memory accesses to temporary storage, and data
recomputation.

1.1.2 Halide’s answer to image and array processing acceleration

Halide [9] is a popular DSL that aims to simplify the problems of portability and op-
timization when writing high-performance image and array processing algorithms. The
main idea behind Halide is to raise the level of abstraction and to decouple the algo-
rithm definition from its schedule, that is, the execution strategy.

Where usually the programmer has to experiment and rewrite large portions of the
algorithm and the schedule (optimizations) together, the decoupling that Halide provides
between "what needs to be computed" (algorithm) and "how it needs to be computed"
(schedule) allows programmers to explore efficiently different optimizations strategies
(loop nesting and loop fusion, tiling, recomputation and storage balancing, vectorization,
parallelism) without having to change the algorithm.

As a real-case example, the previously mentioned implementation of Local Laplacian
Filters for Adobe Lightroom which took the developers 3 months to optimize, was also
implemented in Halide and it took just one day and 60 lines of Halide code. Also, the
code generated by Halide was 20 times faster than the reference C implementation, and
2 times faster than the optimized C++ implementation when running on a CPU. When
generating code for a GPU, the Halide implementation was 90 times faster than the
reference C implementation, and 9 times faster than the optimized C++ implementation.
[4]

Currently, as of the writing of this Thesis, the official targets that the Halide compiler
can generate code for are:

• CPU architectures: x86, ARM, MIPS, Hexagon, PowerPC, RISC-V
• Operating systems: Linux, Windows, macOS, Android, iOS, Qualcomm QuRT
• GPU Compute APIs: CUDA, OpenCL, OpenGL Compute Shaders, Apple Metal,

Microsoft Direct X 12

There are also continuous efforts to add support to Halide to generate code targeting
more platforms and computing libraries, such as the work in progress [10] to add support
for Vulkan.

1.1.3 Halide on FPGA efforts

As shown in the previous section, Halide supports code generation for a wide range of
hardware architectures, including CPUs, GPUs, and even mobile devices. However, it
does not yet officially support code generation for FPGAs, which are a very popular
choice [11, 12] for accelerating image-processing pipelines given the parallel nature of
most of the image-processing algorithms, which often involve repetitive operations on
large arrays of data.

6

CHAPTER 1. INTRODUCTION

Nonetheless, given the attractiveness of using FPGAs to accelerate image processing
pipelines, there has been an interest in the research community to explore the possibility
of using Halide to generate code for FPGAs.

1.1.3.1 Halide-HLS

The first work that modified Halide’s source code to add code generation for FPGAs
was Halide-HLS [13]. In the paper, the authors extend Halide to generate code target-
ing Xilinx Zynq FPGAs. They do so first by adding new scheduling primitive, such as
accelerate, which defines both the scope and the interface of the accelerator and the
granularity of the accelerator task, fifo_depth, which specifies a FIFO buffer with a
given depth, instantiated between two functions, and linebuffer, which is syntactic
sugar for a combination of existing Halide primitives and intends to instantiate a line
buffer for a given function. Other than adding these new primitives, Halide-HLS also
modifies the behavior of some of the fundamental Halide primitives to better map them
to FPGA and hardware characteristics. After Halide’s compiler applies all the trans-
formations, Halide-HLS’s code generator translates the hardware accelerator portions
of IR into HLS-synthesizable C code, and the rest of the IR is translated into a C++
testbench wrapper.

However, Halide-HLS is currently unmaintained (the commit dates from 5 years ago),
and the generated HLS is Vivado HLS, which is no longer supported by Xilinx (it got
upgraded to Vitis HLS). Therefore, the HLS code it generates is no longer supported
by the latest FPGA vendor tools, which means no one can actually make use of it now.
That is precisely one of the limitations when generating HLS code for a specific vendor
directly instead of using an intermediate representation (IR).

1.1.3.2 HeteroHalide

Building on the ideas from Halide-HLS, more research has been done to bring Halide to
FPGAs, namely HeteroHalide [14]. Unlike Halide-HLS, where human-readable HLS is
directly generated, in this paper, the researchers generate HeteroCL [15] as an interme-
diate step, that is, the paper presents a Halide-to-HeteroCL code generator. HeteroCL
is an intermediate Python-based multi-paradigm domain-specific language for heteroge-
neous computing. By using HeteroCL, HeteroHalide can generate efficient accelerators
by choosing different backends according to the application. The authors of Hetero-
Halide evaluated it against a multi-core CPU and the previously mentioned Halide-HLS
compiler. As a result, the authors claim HeteroHalide achieves ×4.15 speedup on average
over 28 CPU cores, and ×2 4 throughput improvement compared with Halide-HLS on a
Xilinx Zynq-7020 board. HeteroHalide also makes extensions to Halide scheduling prim-
itives, allowing some of them to be lowered with annotations, using lazy transformation
such that it can generate specific scheduling primitives at the HeteroCL backend level,
thus emitting more efficient accelerators. As of the time of writing, HeteroHalide sup-
ports both CPU and FPGA flows (Vitis HLS, Intel HLS, etc.). However, HeteroHalide
seems to be unmaintained as the latest commit dates back from 3 years ago.

7

CHAPTER 1. INTRODUCTION

Since then, MLIR (explained in the next chapter) has appeared and gained popu-
larity, and its features make it very appealing to use as an intermediate language for
compiler infrastructures. Therefore, in this thesis, we propose a new Halide backend
that uses MLIR as an intermediate language (in a similar way that HeteroHalide uses
HeteroCL) to generate code for FPGAs. The main motivation for this is that MLIR is a
novel approach to building reusable and extensible compiler infrastructure, and by using
MLIR as an intermediate language, we can leverage the work done by these projects
to generate code for FPGAs, and we can also benefit from the extensibility of MLIR in
emitting RTL code have support for more FPGA vendors and tools in the future without
code changes,

More details about Halide will be further explained in Chapter 3 Section 3.1.

1.1.4 Generating HLS directly vs using an IR

As seen before, some code generators, such as Halide-HLS, emit human-readable HLS
directly, which carries many limitations when compared to using an IR:

• Vendor lock-in: generating HLS code specifically for one vendor can lead to a strong
dependency on the vendor’s tools, libraries, and hardware. This makes it difficult
to switch to another vendor or adapt the code to new hardware architectures
without significant rework.

• Limited optimizations: an extensible IR can enable a broader range of optimiza-
tions and transformations, potentially leading to better performance when com-
pared to vendor-specific HLS tools, which may not support all the possible opti-
mizations that can be applied to a given application.

• Portability: directly generating vendor-specific HLS code reduces the portability
of the application across different vendors and hardware platforms. On the other
hand, using a generic and extensible IR can help target multiple vendors and
platforms more easily, as the same IR can be adapted and optimized for different
target architectures.

• Maintainability: emitting HLS requires conforming to the syntactic rules of the
target human-readable language being emitted, which increases the code size and
makes adding more features more complicated, whereas using an IR the code gets
simpler and easier to handle, reducing the total code size and making it more
maintainable.

• Flexibility: an extensible IR can enable the exploration of various optimization
strategies, scheduling, and mapping of computations to hardware resources. This
can lead to better performance and resource utilization for a given application.
When emitting HLS directly, some optimizations and transformations may not be
possible, or they may be more difficult to implement because emitting HLS usually
involves emitting pre-written HLS code chunks.

8

CHAPTER 1. INTRODUCTION

• Reusability: by using an IR, it becomes easier to reuse code across different projects
and applications, since the IR can be adapted and optimized for different hardware
targets without modifying the original application code.

9

CHAPTER 1. INTRODUCTION

1.2 Goals and contributions of the thesis
The primary objective of this thesis is to develop a Halide backend capable of generating
RTL kernels for execution on FPGA devices, with a particular focus on Xilinx FPGA
devices.

For that, as a first step generic MLIR will be emitted. Then, the generic MLIR will
be converted down to a generic RTL kernel using CIRCT’s hardware-oriented dialects
and Calyx as an intermediate language to perform the conversion. Finally, a Xilinx-
specific wrapper around the generated RTL code will be generated, and a Xilinx Runtime
backend for Halide will be implemented so that Halide kernels can be run on Xilinx
FPGA seamlessly.

The contributions of the thesis are:

1. Add a new backend to Halide that generates generic MLIR which can
target multiple acceleration devices.

2. Convert the generic MLIR down to RTL using CIRCT and Calyx.

3. Generate a wrapper around generic the generic RTL kernel to target
Xilinx FPGAs.

4. Implement a Xilinx Runtime (XRT) Halide runtime backend so that
the generated Halide kernels can be run on Xilinx FPGAs.

5. Contribute to open source projects by finding bugs, fixing them, adding
and bringing the necessity of new features.

10

CHAPTER 1. INTRODUCTION

1.3 Thesis organization
Chapter 1

This chapter is the introduction of the thesis, and it explains the motivation, goals
and contributions of the thesis, as well as its organization.

Chapter 2
This chapter gives a brief explanation of the most frequently used devices to per-
form hardware acceleration.

Chapter 3
This chapter explains and describes the main tools and libraries used in the thesis.

Chapter 4
This chapter explains the methodology, development tools and settings, and strate-
gies used to develop the thesis.

Chapter 5
This chapter explains the implementation of the Halide backend that emits RTL
code, going through all the steps involved in the process. The chapter also explains
the bugs and issues encountered during the development of the project and how
they were solved or circumvented.

Chapter 6
This chapter contains the experiments and results used to evaluate this project,
and from that, understand how the project can be improved further.

Chapter 7
This chapter contains the conclusions that were drawn from the thesis, as well as
future work and possible improvements.

11

Chapter 2

Hardware acceleration

Hardware acceleration refers to the process of using specialized hardware components
to perform specific computationally intensive functions and tasks more efficiently than
software running on a general-purpose CPU (Central Processing Unit). The main idea
behind it is to offload specific tasks from the CPU to dedicated hardware units, which
were designed and optimized to perform those tasks, usually resulting in faster processing
(decreased latency), increased throughput and reduced energy consumption.

When accelerating tasks on a computing system, there is usually a trade-off between
flexibility and efficiency, forming a hierarchy where on the ends we find general-purpose
CPUs and fully customized hardware, respectively. Starting from CPUs that give the
most flexibility, the next computing system that we find going towards the efficiency
end is more specialized processors such as GPUs, after that, we step on fixed-function
logic implemented on field-programmable gate arrays (FPGAs), and finally, we find
fixed-function logic implemented on application-specific integrated circuits (ASICs).

12

CHAPTER 2. HARDWARE ACCELERATION

2.1 Accelerating CPUs
Single-core processors were commonly used in the early days of computing to execute
tasks sequentially. As the demand for higher performance and more complex computing
tasks increased, there was also a need to improve CPU processing power. In response
to this need, several strategies and trends emerged, including adding new features and
functions for programmers to use, such as vector instructions, parallelism, and copro-
cessors, but also improving the performance of the CPU itself with techniques such as
out-of-order execution [16]. Some of those features and optimizations include:
Vector instructions : also known as Single Instruction Multiple Data (SIMD) in-

structions, they enable the CPU to perform the same operation on multiple data
elements simultaneously, which takes advantage of data-level parallelism, improv-
ing performance for tasks that involve repetitive operations on large datasets, such
as multimedia processing, machine learning and scientific simulations. Nowadays,
many CPUs have vector instructions on their instruction set architecture (ISA).
For example, on x86 CPUs, we can find Intel’s MMX [17], SSE, and AVX [18].
Some ARM CPUs feature Neon [19] SIMD instructions, and for the AArch64 ar-
chitecture, ARMv9-A’s baseline adds SVE2 [20]. After some years of working on
the extension, RISC-V finally had version 1.0 of the Vector Extension ratified in
2021 [21].

Parallel processing : to further increase performance, modern CPUs integrate mul-
tiple processing cores into a single chip, allowing multiple tasks (or threads) to
be executed concurrently. This approach is known as chip-level multicore process-
ing or multiprocessing, and enables the CPU to exploit task-level and thread-level
parallelism, leading to improved performance, especially in multi-threaded appli-
cations. Modern CPUs typically have multiple cores, ranging from two to over a
hundred in some high-performance processors. In the field of HPC, some popular
parallel programming APIs include OpenMP [22], MPI [23], and also OpenCL [24]
which can also target GPUs, FPGAs, and other accelerators.

Coprocessors : they are auxiliary processing units designed to offload specific tasks
from the main CPU, providing additional acceleration when running those tasks.
They can be integrated into the same chip as the CPU or implemented as separate
devices. They are optimized for particular tasks, such as floating-point arithmetic,
machine learning, or cryptographic operations.

Compiler optimization techniques : while the previous topics referred to the hard-
ware itself, compilers also play a very important role in not just generating high-
performance code that can only exploit the underlying hardware, but also in ap-
plying optimization techniques to the code being generated. Image and array
processing code is often related to doing some computation over a uni or multi-
dimensional array, and therefore loops are a fundamental part of these kinds of
algorithms. Some relevant compiler techniques related to loop optimization in-
clude:

13

CHAPTER 2. HARDWARE ACCELERATION

• Loop transformations such as unrolling, which increases the number of loop
body iterations performed in a single loop iteration which reduces the loop
control overhead, fusion, which combines two or more adjacent loops with the
same iteration space into a single loop reducing loop overhead and improv-
ing data locality, fission, which splits a single loop with multiple independent
statements into multiple loops, each containing a single statement, to improve
cache locality and expose more opportunities for parallelism and vectoriza-
tion (also known as horizontal unrolling), tiling (or blocking), which divides
the iteration space of a loop into smaller chunks or tiles, improving cache
locality by processing data in smaller, cache-friendly blocks, and interchange
(or reorder), which reorders the nesting of loops in a nested loop structure,
potentially improving data locality and cache performance when the original
loop order results in non-contiguous memory access patterns which penalizes
the cache efficiency.

• Software pipelining: explained in more detail in the next section.

2.1.1 Software pipelining and the Initiation Interval (II)

Similar to hardware pipelining where a CPU can overlap part of the execution of in-
structions with other instructions to increase the throughput, software pipelining is a
compiler optimization technique that exploits instruction level parallelism by overlap-
ping the different iterations of a loop body (kernel) to execute simultaneously. The loop
is converted into a prologue, an iteration on the kernel, and finally an epilogue.

A key metric used widely to characterize a pipelined loop is called Initiation In-
terval (II) which accounts for the number of cycles it takes for a loop iteration to
complete, or in other words, the number of cycles it takes for the next iteration of the
loop to start in the steady-state schedule. In loops without software pipelining, the II is
equivalent to the latency of the body of the loop. The minimum initiation interval
(MII) is a lower bound on the smallest possible value of II for which a schedule can
exist. Two primary constraints impact the MII :

1. Resource-constrained lower bound (ResMII): this constraint is determined
by the availability of hardware resources, such as functional units or memory ports,
and can be calculated by analyzing the computation graph for the loop body
to count the number of resources used in comparison to the hardware resources
available.

2. Recurrence-constrained MII (RecMII): this constraint is determined by
loop-carried dependencies, which are dependencies between instructions in different
loop iterations. The RecMII is the maximum of the recurrence cycles (minimum
number of cycles between dependent instructions) divided by the distance in it-
erations between the dependent instructions. RecMII is typically zero for image
processing loops because of the absence of loop-carried data dependences [25].

14

CHAPTER 2. HARDWARE ACCELERATION

The actual II for a given schedule is determined by the scheduling algorithm and must
be greater than or equal to the MII = Max(ResMII, RecMII). The goal of software
pipelining techniques is, while satisfying the resource and dependency constraints, to
find a schedule with an II as close to the MII as possible. Finding the optimal schedule
is an NP-complete problem and therefore heuristics are usually used.

Software pipelining has been extensively studied especially in the field of VLIW (Very
Long Instruction Word) and superscalar processors [26, 27].

The List Scheduling technique [28] tries to heuristically schedule the instructions
within a basic block. Some common heuristics to pick up the next instruction to schedule
include prioritizing instructions on the critical/longest path or also picking the instruc-
tion with the largest number of dependents, therefore unlocking the most instructions
to be schedulable next. Since this technique is limited to a basic block, its effectiveness
is limited when we consider loops due to the back-edges.

Most software pipelining techniques are derived from an algorithm widely known as
Modulo Scheduling [29], and a practical implementation of it, called Iterative Modulo
Scheduling [30], which schedules and unschedules operations combined with backtracking
to find the minimum possible II under a given set of resource constraints.

Building upon Modulo Scheduling, other techniques to implement software pipelining
include Hypernode Reduction Modulo Scheduling (HRMS) [31], which tries to reduce the
register pressure by scheduling some nodes late and other nodes earlier. A pre-ordering
selects the order in which the nodes will be scheduled. During scheduling, the nodes
are scheduled as soon/late as possible if predecessors/successors have been previously
scheduled. Hyperblocks are sets of basic blocks in which control may only enter from
the top but may exit from one or more locations.

This paper [32] considers the increase in the register pressure when performing soft-
ware pipelining (due to variables being live for more iterations), and tackles that with
a novel heuristic module scheduling strategy that tries to generate schedules with the
lowest II, and, from all the possible schedules with such II, it tries to select that with
the lowest register requirements.

Another technique, Swing Modulo Scheduling (SMS) [33], tries to improve HRMS
by also considering the criticality of the nodes by giving priority to operations in the
critical path.

15

CHAPTER 2. HARDWARE ACCELERATION

2.2 GPUs for hardware acceleration
Initially, GPUs were conceived to accelerate graphics rendering tasks for visualization
applications and computer games. For that, they employed fixed-function pipelines
composed of a series of stages, each responsible for a specific aspect of the rendering
process, such as vertex transformation, texture mapping, and rasterization. Those fixed-
function pipelines were relatively rigid with limited programmability and customization.

Due to the growing demand for high-performance computing and the need to solve
increasingly complex problems, GPUs have evolved into highly parallel, multi-core pro-
cessors that can handle a wide range of computationally intensive tasks and not just
graphics processing. This evolution has led to the emergence of General-Purpose
computing on Graphics Processing Units (GPGPU), which refers to the use of
GPUs for non-graphics-related tasks, often in the context of hardware acceleration and
high-performance computing.

Instead of using a fixed-function pipeline, modern GPUs employ a programmable
pipeline, which allows developers to write custom code for several stages of the pipeline.
This custom code is written using shader languages that get compiled into instructions
that get executed on the GPU’s shader cores. Vertex shaders, geometry shaders, and
fragment or pixel shaders are some examples of programmable shaders that give
developers more control over the graphics rendering process. GPUs became capable
of handling computationally intensive tasks beyond just graphics rendering, such as
machine learning, scientific simulations, and data analytics.

2.2.1 General-Purpose Graphics Processing Units programming APIs

Some of the most relevant APIs that facilitate GPGPU programming are:

• CUDA (Compute Unified Device Architecture) [34]: developed by NVIDIA, CUDA
is a parallel computing platform and programming model designed specifically for
NVIDIA GPUs. It allows developers to write parallel code in C, C++, or For-
tran, using CUDA-specific extensions. It also includes GPU-accelerated libraries,
debugging and optimization tools and a runtime library to deploy applications.

• OpenCL (Open Computing Language): mentioned before, is an open standard for
parallel programming across heterogeneous devices, including GPUs, CPUs, and
FPGAs [35]. It provides a C-like programming language and a runtime API for
managing parallel execution on different devices.

• Vulkan: is a low-overhead, cross-platform 3D graphics and compute API [36]. It is
designed to provide high-efficiency, cross-platform access to modern GPUs used in
a wide variety of devices from PCs and consoles to mobile phones and embedded
platforms. Vulkan Compute is a part of the Vulkan API that focuses specifically
on general-purpose GPU computing and it enables developers to offload complex,
parallel computations to the GPU for processing. Vulkan utilizes SPIR-V [37], an

16

CHAPTER 2. HARDWARE ACCELERATION

intermediate binary representation for shaders and compute kernels, which can be
generated from various high-level languages, including GLSL, HLSL, and OpenCL.

17

CHAPTER 2. HARDWARE ACCELERATION

2.3 FPGAs for hardware acceleration

2.3.1 FPGA architecture overview

FPGAs (Field Programmable Gate Arrays) are a type of hardware that can be pro-
grammed/reconfigured to perform a wide range of tasks. FPGAs are frequently used
to accelerate a wide range of applications, including image processing, video processing,
and machine learning.

Figure 2.1: Typical FPGA architecture.
Source: FPGA Design, Architecture and Applications

While the specifics details of the architecture of an FPGA are vendor/implementation
specific, a typical FPGA design consists of three main components (Figure 2.1):

1. Configurable logic blocks (CLBs): primary resource to implement the target
logic function. Usually made of several logic blocks such as lookup tables (LUTs),
multiplexers (MUX), full adders (FAs), and flip-flops (FFs). A LUT (Figure 2.2)
stores a predefined list of logic outputs for any combination of inputs (i0 to iN), and
any logic function of N bits can be implemented with a LUT with 2N configuration
bits that form the truth table. LUTs usually have a FF and a MUX at the end
to select between combinational or sequential logic modes. All the sequential
components have a common clock signal forming a clock network. Usually, clocks
are generated on-chip by programmable phase-locked loops (PLLs), delay-locked
loops (DLLs) and clock data recovery (CDR) circuits.

18

https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/

CHAPTER 2. HARDWARE ACCELERATION

Figure 2.2: FPGA lookup table (LUT) with three inputs.
Source: On the comparison of memristor-transistor hybrid and transistor-only heterogeneous
FPGAs

Some architectures also provide FAs and a carry chain to implement arithmetic
operations, and a register chain to build shift registers (Figure 2.3).

Figure 2.3: FPGA configurable logic block (CLB) with FA, carry, and register chains.
Source: FPGA basics: Architecture, applications and uses

Depending on the manufacturer, the CLB can also be called a logic block (LB),
logic element (LE) or logic cell (LC).

2. Programmable interconnect: traditionally, CLBs are arranged on a 2D grid
and are interconnected by a programmable routing network called island-style or
mesh-based FPGA architecture. In this architecture, CLBs are like islands in
the sea of routing interconnection, which comprises pre-fabricated wiring segments
and programmable switches that are organized in horizontal and vertical routing
channels.
FPGAs interconnect can occupy up to 80–90% of the total area, whereas the logic

19

https://www.sciencedirect.com/science/article/pii/S1319157817302963
https://www.sciencedirect.com/science/article/pii/S1319157817302963
https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses

CHAPTER 2. HARDWARE ACCELERATION

area occupies only 10–20% area [38]. Although the domination of the interconnect
greatly affects the area efficiency and delay of the architecture, the flexibility of an
FPGA mainly comes from its programmable interconnect.

3. Input/output blocks (IOBs): they are the interface between the FPGA and
external devices. IOBs are also connected to the programmable interconnect.

2.3.2 Hard blocks

While initially, FPGAs consisted of simple arrays of programmable logic and I/O blocks
they have evolved into complex heterogeneous multi-die systems with specialized hard
blocks such as embedded block RAMs (BRAM), digital signal processing (DSP) blocks,
processor subsystems, and high-performance external interfaces such as PCIe or DRAM
controllers.

Figure 2.4: Early FPGA (left) vs. modern FPGA with hard blocks (right).
Source: FPGA Architecture: Principles and Progression [39]

An example of a hard block is Xilinx’s DSP48 block [40], shown in Figure 2.5, which
efficiently implements a series of arithmetic operations including multiplication, addition,
multiply-accumulate, and word-level logical operations.

20

CHAPTER 2. HARDWARE ACCELERATION

Figure 2.5: Structure of a DSP48 Block.
Source: Xilinx, Understanding FPGA Architecture, DSP48 Block [40]

BRAMs are configurable RAM modules that support different memory layouts (width
and depth) and interfaces. For example, they can be changed to have byte, halfword,
word, and doubleword transfers. They can be dual-port RAM, which means they have
an extra port available for reading and writing data, and a typical BRAM has around
32 Kbit of memory storage, configurable as 32K x 1 bit, 16K x 2 bits, 8K x 4 bits, etc.
They can also be cascaded together to create larger memories.

BRAMs are commonly used for storing large amounts of data efficiently inside the
FPGA, like images or video, intermediate results of the design, FIFO buffers, large shift
registers, and large look-up tables.

On the other hand, an FPGA usually has millions of FFs on-chip which can provide
hundreds of Kbytes of bit-level storage, which be read to and written to on every cycle,
providing an enormous amount of total bandwidth. But unfortunately, they do not
provide the most efficient storage capacity when compared to BRAMs.

2.3.3 FPGA programming

Traditionally FPGAs were programmed using Register-Transfer Level (RTL) languages
such as VHDL or Verilog, the same ones used for VLSI design. Due to the increase in
complexity of the VLSI systems and FPGA designs, the design and verification process
of those systems has become a bottleneck for productivity.

High-Level Synthesis (HLS) languages aim to alleviate this problem by allowing
programmers to use higher-level languages such as C/C++ and OpenCL to program
FPGA devices. In a way, using HLS languages isolates the developer from low-level
design decisions such as creating control signals, explicitly declaring port directions and
widths, declaring intermediate registers and wires, and manually pipelining the design,
which promises great productivity gains over RTL. Usually, HLS tools automatically
generate RTL code which can be synthesized into FPGA or ASIC implementations.

Vendors and academics have proposed many HLS tools and compilers. Some of the
most popular ones nowadays are Vitis HLS [41], Intel HLS [42], Microchip’s SmartHLS
[43] (formerly known as LegUp [44]) and Siemens’ Catapult HLS [45].

21

CHAPTER 2. HARDWARE ACCELERATION

2.3.3.1 HLS synthesis

When using HLS tools, the programmer has to supply a functional algorithmic specifi-
cation and description of the interface (a function written in a high-level language such
as C, C++ or OpenCL), provide a target computational device, and give optimization
directives (usually in the form of #pragmas) and specific constraints such as the pipeline
initiation interval.

Where an RTL designer has to implement these manually, the goal of HLS is to make
these decisions automatically based upon user-provided input specification and design
constraints [46]:

• Analyze and exploit the concurrency in the algorithm.

• Insert registers as necessary to limit critical paths and achieve a desired clock
frequency.

• Generate control logic that directs the data path.

• Implement interfaces to connect to the rest of the system.

• Map data onto storage elements to balance resource usage and bandwidth.

• Map computation onto logic elements performing user-specified and automatic
optimizations to achieve the most efficient implementation.

HLS is common in computation-intensive applications such as image and video processing
and scientific simulations, where loops are often used to process data. As seen previously,
in this context loop pipelining is an attractive technique since it allows multiple iterations
of a loop to operate in parallel (overlapping parts of the kernel) by starting an iteration
before the previous iteration finishes.

2.3.3.2 HLS optimization techniques

As mentioned, a variety of Modulo Scheduling algorithms have been proposed to imple-
ment software pipelining, but they are not completely suitable for HLS synthesis due to
the differences between traditional software running on a CPU and hardware. On one
hand, when generating code for a CPU, the compiler can assume instructions take one
or more clock cycles, and on the other hand, in the realm of hardware, many operations
have essentially no delay (constant shifts, logical operations, and bitwise operations) or
small delay in not very complex combinational operations, which contribute little to the
cycle time.

Due to those differences, research has been done to adapt software-oriented Modulo
Scheduling algorithms to implement loop pipelining in hardware designs, taking into
account the different types of timing and resource constraints in high-level synthesis.

One example is Modulo Scheduling based on the formulation of a system of differ-
ence constraints (SDC) [47], which generalizes the SDC-based scheduling formulation

22

CHAPTER 2. HARDWARE ACCELERATION

proposed in [48] to support loop pipelining. In the paper, the authors propose a sched-
uler that exploits the unique mathematical properties of SDC to perform efficient global
optimization and fast incremental update on the SDC system minimizing the resource
usage of the synthesized pipeline. By formulating a linear programming (LP) prob-
lem over SDC, and a perturbation-based priority function that incrementally updates
the SDC constraint system, the resulting schedule minimizes the overall value lifetimes
which reduces registers in the synthesized pipeline.

While the II is usually considered an integer since it represents the number of cycles
between iterations in the steady-state, this paper [49] proposes allowing the II to be a
rational number. According to the authors, since the minimum rational II can be less
than the minimum integer II, having the II as a rational can help generate schedules
with higher throughput while also allowing more options in the design-space exploration.
Their results demonstrate an average speedup up to 1.24× when compared to integer-II
Modulo Scheduling.

The adoption of HLS to program hardware has greatly increased programmer pro-
ductivity and also has enabled a wider audience to target FPGAs. On the other hand,
the optimization principles done in traditional software design are usually no longer suf-
ficient to implement high-performant hardware designs due to fundamentally distinct
aspects of hardware design when compared to traditional software design, such as pro-
gramming for deep pipelines, distributed memory resources, and scalable routing. In
this paper [50], the authors present a collection of optimizing transformations for HLS
when targeting scalable and efficient architectures for HPC applications. They divide
those optimizations into three main categories:

1. Pipelining: for compute-bound designs, try to achieve an II of 1 for all essential
compute components. This ensures all pipelines run at maximum throughput. For
memory-bound designs, guarantee that memory is always consumed at line rate.

2. Scalability: fold the number of iterations N by increasing the parallelism of the
design to consume more elements per cycle (horizontal unrolling/vectorization)
and or iteration (vertical unrolling/loop unrolling).

3. Memory efficiency: for compute-bound designs, saturate pipelines with data
from memory to avoid stalls in compute logic, and for memory-bound designs,
maximize bandwidth utilization.

Another technique to take advantage of the temporal parallelism of stencil kernels is
the sliding window buffer design [51]. Stencil and filter kernels iterate over regular
domains where the sizes of the arrays are usually larger than the capacity of the FPGA
on-chip memory, therefore the arrays need to be stored in external memory. When paral-
lelizing the design, concurrent accesses to external memory make the memory bandwidth
a bottleneck. The idea behind sliding window buffers is to use delay buffers (or shift reg-
isters) of proper size in a way such that the input data is inserted into them in a FIFO
manner and at fixed positions in those buffers there are the elements that we need to
use to perform the computation. On each cycle, a new element (or multiple) is read from

23

CHAPTER 2. HARDWARE ACCELERATION

memory and inserted into the buffers, elements in the buffer move to the next position,
and the elements that are no longer needed (head of the buffer) are discarded.

Figure 2.6: FIFO-based sliding window buffer design for the Laplace stencil kernel.
Source: High-Level Synthesis Design for Stencil Computations on FPGA with High Bandwidth
Memory [51]

Figure 2.6 shows an example of a sliding window buffer design for the Laplace sten-
cil kernel, where each output element at position (x, y) depends on input elements at
positions (x − 1, y) (L), (x + 1, y) (R), (x, y − 1) (D), and (x, y + 1) (U), which can be
read directly from fixed positions in the sliding window buffer. By cascading multiple
PEs to form a deep-pipeline architecture utilizing the temporal parallelism of the stencil
computations can be exploited, as seen in Figure 2.7.

Figure 2.7: Pipeline structure using temporal parallelism by cascading processing ele-
ments (PEs).
Source: High-Level Synthesis Design for Stencil Computations on FPGA with High Bandwidth
Memory [51]

24

Chapter 3

Tools and components

This chapter describes and explains the main tools and components used in the project.
First, an overview of both the open Halide programming language and its source code
will be given. Next, MLIR and CIRCT will be explained, which are the main tools
used in the project to generate the RTL code. Following that, an overview of the Calyx
language will be presented. Calyx is used as an intermediate step during the lowering
from higher-level MLIR dialects down to digital circuits-centric CIRCT dialects to finally
generate RTL code. Then, the Xilinx Vitis and its flow to generate RTL kernels will be
described. Vitis is the tool used to generate the FPGA bitstream from the RTL code.
Finally, the Xilinx Runtime (XRT) will be described, which is the runtime environment
used to execute and communicate with the generated FPGA bitstream.

25

CHAPTER 3. TOOLS AND COMPONENTS

3.1 Halide
As mentioned during the introduction, the main idea behind Halide is to decouple the
algorithm definition from the schedule with which it will be executed. This decoupling
of the feed-forward imaging pipelines aims to simplify the algorithm specification in a
way that enables high-performance execution without sacrificing code clarity.

Images and intermediate buffers become functions over an infinite integer domain,
without explicit storage or boundary conditions. The composition of those functions, or
stencils, is what becomes the imaging pipeline with multiple stages, a rooted directed
acyclic graph (DAG). Edges in this graph correspond to caller-to-callee dependencies
that pass pixel data between functions.

In an imperative language such as C/C++, what would be values stored in arrays,
in Halide they are instead functions from coordinates to values. Images are repre-
sented as pure functions defined over an infinite integer domain, where the value of
a function at a given point represents the color of the corresponding pixel.

Halide functions can either be simple expressions on their arguments or reduc-
tions over a bounded domain. The expressions that define functions are from side
effects, and include operations such as arithmetic and logical operations, loads from ex-
ternal images, if-then-else (ternary) expressions, references to named values and even
calls to external C/C++ functions. Nonetheless, things that we would find in most
functional languages, such as higher-order functions, dynamic recursion, and richer data
structures such as tuples and lists are not supported in Halide. Halide simply maps func-
tions from integer coordinates to a scalar result, a sufficient representation to describe
a wide range of image processing algorithms. These constraints are in particular what
enable Halide to perform extremely flexible analysis and transformation of algorithms
during compilation.

Some operations such as general convolutions and histograms (which rely on iter-
ative or recursive computations, like summation, histogram, and scan) found in many
image and array processing pipelines, are enabled by the abovementioned reduction
functions, which are defined in two parts:

1. An initial value function specifying a value at each point in the output domain.

2. A recursive reduction function redefining (update definition) the value at the points
given by an output coordinate expression in terms of prior values of the function.

In Halide, recursion in reduction functions is limited to within a single function using
update definitions and with the recursion bounded to a fixed depth before it begins by
an explicit reduction domain, which makes Halide’s language of algorithms not Turing-
complete but is flexible to extensive analysis and transformations. The meaning of
reduction functions, unlike pure functions, depends on the order in which the reduction
function is applied, which is defined by a reduction domain bounded by minimum and
maximum expressions for each dimension.

26

CHAPTER 3. TOOLS AND COMPONENTS

3.1.1 Algorithm vs schedule motivation

Let’s consider a possible Halide algorithm to implement a 3×3 blur filter, with an input
in and an output by, implemented as a two-stage pipeline, each computing a 3 × 1
window:

bx(x, y) = in(x-1, y) + in(x, y) + in(x+1, y)
by(x, y) = bx(x, y-1) + bx(x, y) + bx(x, y+1)

In this code, bx calculates the horizontal blur of the input by averaging over a 3 × 1
window, and each value in by is calculated by using the values calculated in the first
stage.

If we were to implement the same algorithm in C/C++, an option would be to write
something like the following code (without taking into account the borders):

Buffer bx(in.width(), in.height());
for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)
bx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3;

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)

by(x, y) = (bx(x, y-1) + bx(x, y) + bx(x, y+1)) / 3;

The above code executes the stages in a breadth first manner: each function is entirely
evaluated before the next one. One of the downsides of this strategy is that we need
to allocate a new buffer (bx) to store the intermediate result of the first stage, which
results in a very poor producer-consumer locality: the first stage (bx) is completely
calculated before the second stage (by) starts. The advantage of this strategy is that since
all the required pixels in each stage are computed and stored independently from each
other, each stage can be fully parallelized while also minimizing recomputation.

Usually, when we use libraries to implement image processing pipelines by composing
library functions together we end up with a breadth first execution manner (Figure 3.1).

Figure 3.1: Breadth first execution: each function is entirely evaluated before the next
one.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [52]

As seen during the introduction, in modern systems communication dominates computa-
tion in both energy and time. We can therefore tradeoff recomputation for storage (and

27

CHAPTER 3. TOOLS AND COMPONENTS

therefore communication) by inlining the first stage into the second one to maximize
locality, which introduces recomputation as a side-effect:

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)

out(x, y) = (in(x-1, y-1) + in(x, y-1) + in(x+1, y-1) +
in(x-1, y) + in(x, y) + in(x+1, y) +
in(x-1, y+1) + in(x, y+1) + in(x+1, y+1)) / 9;

Now, values are computed on-demand, without needing to allocate and store to a tem-
porary buffer for later reuse, since the stage bx has been completely inlined into by
(Figure 3.2), which means that the distance from producer to consumer is small, maxi-
mizing locality. The downside is that this strategy performs redundant work since
it recomputes values at shared positions (the overlapping filter positions between itera-
tions). Since each pixel can be computed independently this strategy provides the same
abundant data parallelism as the previously seen breadth-first strategy.

Figure 3.2: Total fusion strategy: the first stage has been inlined into the second stage,
removing the necessity of temporal storage but introducing recomputation.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [52]

We have seen the two extremes in terms of data locality: breadth-first and total fusion.
If we consider a sliding window strategy, where the sliding window buffer is a buffer

with a fixed size of as many rows as the filter (in the example, 3), each row sized as
the input image row size plus as many trailing elements as the filter columns (also 3),
we move towards data locality since the producer-consumer distance has been reduced
to the sliding window size, and also minimizes recomputation (data reusability).
The downside is that we are introducing a dependence between iterations that limits
parallelism: the sliding window buffer needs to be updated before the next iteration
can be executed, meaning that iterations get serialized (Figure 3.3).

Buffer bx(in.width(), 3);
for (int y = -1; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)
bx(x, (y + 1) % 3) = (in(x-1, y+1) + in(x, y+1) + in(x+1, y+1)) / 3;
if (y < 1)

continue;
out(x, y-1) = (bx(x, 0) + bx(x, 1) + bx(x, 2) / 3;

28

CHAPTER 3. TOOLS AND COMPONENTS

Figure 3.3: Sliding window strategy: a sliding window buffer holds the values precom-
puted before their first use, and dropped after their last use.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [52]

The previous three execution strategies are the extremes in the triangle of trade-
offs, the vertices of which are redundant work, locality and parallelism, as represented in
Figure 3.4. Depending on the algorithm and the architecture, the optimal strategy will
be at a different point within the tradeoff space.

redundant worklocality

parallelism

tradeoff
space

Figure 3.4: Locality, parallelism and redundant work are in tension with each other and
must be traded off in order to maximize the efficiency of a particular algorithm in a
particular architecture.

Another way to introduce locality while preserving parallelism is to tile the computa-
tion, which means that we divide the input into smaller (rectangular) pieces and process
each piece independently. This strategy is illustrated in Figure 3.5. As opposed to the
sliding window, strategy, tiling does not introduce a dependence between iterations, and
therefore it preserves parallelism. However, it introduces redundant work since the
same values tile boundaries are computed multiple times, once for each tile. The amount
of redundant work is proportional to the number of tiles, which is a function of the tile
size and the input size. The tile size is a parameter that can be tuned to maximize
performance depending on the algorithm and the architecture.

The following code would be a possible implementation of tiling with a tile size of
32 elements.

29

CHAPTER 3. TOOLS AND COMPONENTS

for (int y0 = 0; y0 < in.height() / 32; y0++)
for (int x0 = 0; x1 < in.width() / 32; x0++)

Buffer bx(32, 32);
for (int y1 = 0; y1 < 32; y1++)

for (int x1 = 0; x1 < 32; x1++)
bx(x1, y1) = (in(x0*32+x1-1, y0*32+y1) +

in(x0*32+x1, y0*32+y1) +
in(x0*32+x1+1, y0*32+y1)) / 3;

for (int y1 = 0; y1 < 32; y1++)
for (int x1 = 0; x1 < 32; x1++)

out(x0*32+x1, y0*32+y1) = (bx(x1, y1-1) +
bx(x1, y1) +
bx(x1, y1+1)) / 3;

Figure 3.5: Tiling strategy: the input is divided into rectangular tiles that can be
computed in parallel while preserving intra-tile locality at the expense of recomputation
at tile boundaries.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [52]

When compared to regular tiling, a way to improve the reusability, and when com-
pared to the sliding window shown before, a way to improve parallelism is to im-
plement a sliding window within tiles (Figure 3.6). In this case, the rows at tile
boundaries also have to be recomputed.

for (int y0 = 0; y0 < in.height() / 8; y0++)
Buffer bx(in.width(), 3);
for (int y1 = -1; y1 < 8; y1++)

for (int x = 0; x < in.width(); x++)
bx(x, (y1+1)%3) = (in(x-1, y0*8+y1+1) +

in(x, y0*8+y1+1) +
in(x+1, y0*8+y1+1)) / 3;

if (y1 < 1)
continue;

out(x, y0*8+y1-1) = (bx(x, 0) + bx(x, 1) + bx(x, 2)) / 3;

30

CHAPTER 3. TOOLS AND COMPONENTS

Figure 3.6: Sliding window within tiles strategy: tiles can be evaluated in parallel,
and each tile performs a sliding window internally.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [52]

We have seen some of the most frequently used execution strategies when it comes to
image and array processing. The best choice differs depending on each target architecture
and the computational characteristics of the pipeline stages.

3.1.2 Language overview

In the previous section, we have seen many different ways to organize the computation
of an algorithm. Now, let’s see how we can use Halide’s C++ algorithmic language to
describe algorithms.

In Halide, a Func represents a pipeline stage. It assigns a value, an Expr, to each
integer coordinate. Coordinates are represented by Var, which have no meaning by
themself, and just represent an axis on a buffer/image. The following code defines an
algorithm that stores the sum of the value of the coordinates (x + y) at that same
coordinate (output(x, y)).

Func gradient;
Var x, y;

Expr e = x + y;
gradient(x, y) = e;

Buffer<int32_t> output = gradient.realize({800, 600});

The Expr can be omitted by assigning directly into gradient: gradient(x, y) = x +
y;.

The last line, which calls the method realize, is what performs the compilation
and execution of the algorithm. This method JIT1 compiles the pipeline that we just
defined, runs it and returns the output which gets stored into the Buffer called output.
In this case, the output is a 2D array of 32-bit signed integers with dimensions 800×600.

The following code is a bit more complex example that takes as an input an image
and makes it brighter by multiplying each RGB channel value by 1.5 and clamping it to
255 (8 bits per channel):

1https://en.wikipedia.org/wiki/Just-in-time_compilation

31

https://en.wikipedia.org/wiki/Just-in-time_compilatio

CHAPTER 3. TOOLS AND COMPONENTS

Func brighter;
Var x, y, c;

Expr value = input(x, y, c);
value = cast<float>(value);
value = value * 1.5f;
value = min(value, 255.0f);
value = cast<uint8_t>(value);
brighter(x, y, c) = value;

// It can be written in one line as:
brighter(x, y, c) = cast<uint8_t>(min(input(x, y, c) * 1.5f, 255));

Note that Halide does type inference and also takes advantage of operator overloading
in C++, which allows writing code more simply and cleanly.

3.1.3 Schedules

In the previous section, we have seen the basic data types that Halide provides to write
algorithms, and how the method realize triggers the compilation and execution of the
algorithm. Halide’s scheduling directives specify how the loop nest over all the regions
of the functions in the pipeline will be organized. The directives also help specify the
storage and communication of intermediate data for each stage results. In other words,
the algorithm’s schedule defines intra-stage order and inter-stage interleaving. For each
stage:

1. In what order should the stage values be computed?

2. When should the stage inputs be computed?

For each stage, we can choose at what granularity to compute each of its inputs, at what
granularity to store each of the values for reuse, and in what order its domain should
be traversed when computing them:

• Domain order: defines the order in which the domain of each function should be
traversed: each dimension can be traversed sequentially or in parallel, if dimensions
are of constant size then they can be unrolled or vectorized, they can also be
reordered (from/to column/row-major to row/column-major), and they can also
be split by a constant factor, creating two new dimensions. Shown in Figure 3.7.

• Call schedule: specifies the granularity of interleaving the computation of a
function with the storage and computation of each function on which it depends.
It represents a point in the triangle of choices presented before:

– Breadth-first schedule: stores and computes at the coarsest granularity (called
the root level outside any other loops).

32

CHAPTER 3. TOOLS AND COMPONENTS

– Fused schedule: stores and computes at the finest granularity, inside the
innermost loop of the output function. Values are produced and consumed in
place but must be reallocated and recomputed on each iteration.

– Sliding window schedule: stores at the root granularity, while computing at
the finest granularity. The loops between the storage and computation lev-
els must be strictly ordered in order to reuse shared values in subsequent
iterations.

Figure 3.7: Domain order: expresses thread parallelism, vectorization, and traversal
order (row-major or column-major). Dimensions can be split into inner and outer com-
ponents to express tiling strategies.
Source: Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recompu-
tation in Image Processing Pipelines. [53]

By default, the function representing the output is scheduled as root, and the other
functions as inline.

The domain order and the call schedule together define a vast range of schedules
which includes the majority of common patterns used in hand-optimized image process-
ing pipelines.

3.1.3.1 Scheduling example

To show how some of the scheduling directives in Halide work, in this section a series of
examples will be shown.

The following code implements 4 × 4 tiling by splitting both x and y by a factor of 4
and then reordering the variables to express a tiled traversal since we have to interleave
the inner and outer x and y dimension loops.

// Algorithm
Func gradient(x, y) = x + y;

// Schedule
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

33

CHAPTER 3. TOOLS AND COMPONENTS

Since this tiling pattern is very common, Halide already provides a helper method to
specify it:

gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);

The following is a more complex example that features more scheduling directives. First,
the function is tiled with 64 × 64-sized tiles. Then the two new outer loops generated by
the tiling are fused together into a single loop, the iterations of which are parallelized.
Finally, the inner loops are tiled again with 4 × 2-sized sub-tiles, and the innermost
loop (x_vectors) is vectorized with the same factor as x_vectors, which means that
no iterations will be performed at this nesting level, and instead, the whole loop will
be vectorized. Finally, the y_pairs loop is fully unrolled with a factor matching the
sub-tile vertical size (2), therefore eliminating the sub-tile loops in favor of unrolling and
vectorization,

// Algorithm
Func gradient(x, y) = x + y;

// Schedule
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient

.tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)

.fuse(x_outer, y_outer, tile_index)

.parallel(tile_index);

Var x_inner_outer, y_inner_outer, x_vectors, y_pairs;
gradient

.tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)

.vectorize(x_vectors)

.unroll(y_pairs);

Buffer<int> result = gradient.realize({350, 250});

3.1.4 Compilation flow

After the programmer has defined the algorithm and the schedule, the call to realize
invokes Halide’s compiler, which goes through a series of steps (Figure 3.8) to generate
code for a particular architecture:

1. Lowering and loop synthesis: generates the loop nests and allocations required
to evaluate the pipeline, beginning from the function defining the output. The
order of loops is given by the schedule (including additional loops for split dimen-
sions), and they are also labeled as being serial, parallel, unrolled, or vectorized.
Loop bounds are left as symbolic expressions depending on the required region of
the output function, which will be resolved later.

34

CHAPTER 3. TOOLS AND COMPONENTS

2. Bounds inference: recursively back from the output using interval analysis, for
each function, it evaluates the bounds of the dimensions based on the bounds
required by its caller and the indices it is called with.

3. Sliding window optimization and storage folding: the compiler traverses
the loop nests seeking opportunities for sliding window optimizations. A sliding
window optimization can be applied when the results of a function are to be stored
by a serial loop at a higher loop nesting level than its computation. Therefore,
iterations of that loop can reuse values generated by previous iterations.

4. Flattening: multi-dimensional loads, stores, and allocations are flattened into
their linear single-dimensional equivalent: the flattened index is calculated as the
dot product of the multi-dimensional coordinates minus the minimum offset of
each dimension.

5. Vectorization and unrolling: this compilation pass converts loops that were
scheduled as vectorized or unrolled into the corresponding loops. During vector-
ization, occurrences of a loop index are replaced with a special value ramp(n)
which represents the vector [0, 1, . . . , n − 1].

6. Back-end code generation: low-level optimizations are performed and machine
code is emitted for the resulting pipeline. The primary backends use LLVM for
code generation. After running constant-folding and dead-code elimination passes
the Halide IR, it is ready to be lowered to LLVM IR. Vector patterns are analyzed
and mapped into specific SIMD opcodes on each architecture (ARM NEON, x86
SSE and AVX, etc).

GPU code generation : the data parallel grids generated by Halide are a good
fit for GPU architectures. GPU kernel launches are modeled as loops man-
ually scheduled to be parallel and annotated with Halide’s GPU scheduling
directives gpu_* such as gpu_threads and gpu_blocks. Outside the loops
that target a GPU, the compiler generates the same code as it would in the
pure CPU target. The loops that are to be executed on a GPU are replaced
by the target GPU API calls to launch that kernel at the corresponding point
in the host code, passing the necessary arguments (closure).

Figure 3.8: Halide compilation flow: tiles can be evaluated in parallel, and each tile
performs a sliding window internally.
Source: Decoupling algorithms from the organization of computation for high performance image
processing. [53]

35

CHAPTER 3. TOOLS AND COMPONENTS

Halide also has support for an autotuner that stochastically tries to automatically
find good schedules for Halide pipelines. Since the autotuner targets CPU and GPU
architectures, for now, we will ignore it. For more information refer to Halide’s paper
[53].

3.1.5 Implementation overview

Halide’s source code is structured into two main parts: the compiler and code generation
part, and the runtime part. In this section, we will briefly describe the main components
of the compiler and code generation part, emphasizing the parts that are the most
relevant when implementing a new code generator backend, which is the goal of this
thesis.

As described in the previous section, the last step of the compilation flow is code
generation, which is in charge of translating Halide IR to the backend machine code
(most of the backends use LLVM). Since we will be implementing a new backend, our
input will be the Halide IR.

3.1.5.1 Halide IR

All Halide IR nodes have an explicit type described by the enum IRNodeType. Among
those types, we can find IntImm to create an integer immediate, Add to represent an
addition, Store and Load to perform memory accesses, etc.

IRNodeType is wrapped into a struct IRNode which also contains a reference count.
struct IRNode has an important virtual method, accept that is used to implement the
visitor pattern2, used throughout the compiler to traverse the IR nodes.

All nodes in the IR are split into two types: expressions and statements, and
analogously to C, expressions represent some value and have some type (e.g. x + 3),
and statements are side-effecting pieces of code that do not represent a value (e.g.
assert(x > 3)).

There are two base classes, BaseExprNode and BaseStmtNode, both derived from IRNode,
that all the IR nodes end up deriving from, depending if they are expressions or state-
ments, respectively. The final IR nodes are not derived directly from those base nodes
but the curiously recurring template pattern3 is used instead. Therefore, intermediary
classes ExprNode and StmtNode exist, which the final IR nodes directly derive from and
which take as a template argument the final IR node itself. They provide an implemen-
tation of the accept function necessary for the visitor pattern to work, and a concrete
instantiation of a unique IRNodeType per class.

As of writing, Halide has a type system consisting of five different types: signed
integers, unsigned integers, IEEE floating point numbers, opaque pointers (similar to
void *) and floating point numbers in the bfloat4 format. These base types (called the
type code) are wrapped into a struct Type that includes more information, such as the

2https://en.wikipedia.org/wiki/Visitor_pattern
3https://en.cppreference.com/w/cpp/language/crtp
4https://cloud.google.com/tpu/docs/bfloat16

36

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.cppreference.com/w/cpp/language/crtp
https://cloud.google.com/tpu/docs/bfloat16

CHAPTER 3. TOOLS AND COMPONENTS

number of bits (and bytes) required to store a single scalar value of this type and the
number of vector lanes when it represents a vector type.

As an example, the following code is the definition of the IntImm IR node, the type
of which is an expression and contains a single integer value of 64 bits:

struct IntImm : public ExprNode<IntImm> {
int64_t value;

static const IntImm *make(Type t, int64_t value);

static const IRNodeType _node_type = IRNodeType::IntImm;
};

Another example is the definition of the IfThenElse IR node, the type of which is a
statement and contains an expression as the condition of the if part. The true and false
branches are represented as statements:

struct IfThenElse : public StmtNode<IfThenElse> {
Expr condition;
Stmt then_case, else_case;

static Stmt make(Expr condition, Stmt then_case, Stmt else_case = Stmt());

static const IRNodeType _node_type = IRNodeType::IfThenElse;
};

There is an IR node that represents something similar to a basic block, called Block,
which is of type statement and is used to implement a list of statements. This node type
can be used for example as the IfThenElse node’s then_case and else_case branches if
we want to make larger than a single statement.

3.1.5.2 The for loop statement

Loops are probably one of the most important concepts when it comes to image and array
processing algorithms. Halide has a single IR node type to represent loops, called For.
This node type is of type statement and contains a statement representing the body of
the loop (body), a string representing the name of the loop variable (name), an expression
representing the lower bound of the loop (min), another expression representing the
extent of the loop(extent), an enum of type ForType (for_type) representing which
kind of traversal this loop should be executed with, and an enum of type DeviceAPI
(device_api) representing which device will be in charge of executing this loop:

37

CHAPTER 3. TOOLS AND COMPONENTS

struct For : public StmtNode<For> {
std::string name;
Expr min, extent;
ForType for_type;
DeviceAPI device_api;
Stmt body;

/* ... */
};

In more detail, name is the name of the induction variable (a symbol) that must exist
and can be referred to when executing every iteration of body.

Some of the ForType traversals include Serial, Parallel and Vectorized.
Loops are marked with a DeviceAPI that tells the compiler which API should be used

to execute the loop, and it will generate code that calls into the runtime that implements
that API to offload loops to that device. Some of the DeviceAPI types include Host, CUDA
and OpenCL.

3.1.5.3 IR tree traversal

Halide defines two main classes implementing the visitor pattern to traverse the IR
nodes: IRVisitor and IRMutator.

IRVisitor is used to traverse the IR nodes and perform some action on them (like
generating code), but without modifying them, while IRMutator is used to traverse the
IR nodes and modify them. The IRVisitor class has a visit method for each IR node
type, and the IRMutator class has a mutate method for each IR node type.

An IRVisitor can be passed to an IR node by calling the accept method of the IR
node with the IRVisitor as an argument. Then, the corresponding visit method of the
passed IRVisitor is called, and the visit method of the IR node is called recursively
(default implementation) on all the IR nodes that are children of the IR node.

An IRMutator can be passed to an IR node by calling the mutate_expr or mutate_stmt
method of an IR node, depending if the IR node is an expression or a statement, re-
spectively. Then, the corresponding mutate method of the passed IRMutator is called,
and the mutate method of the IR node is called recursively (default implementation) on
all the IR nodes that are children of the IR node. The polymorphic visit methods of
IRMutator can return a new IR node, which will replace the original IR node in the IR
tree.

By using an IRVisitor, one can traverse the IR node to perform actions such as
gathering information about the whole IR tree (such as the number of memory accesses
to a particular buffer) or also to generate code for the IR tree.

On the other hand, IRMutator is used to apply transformations and optimizations
to the IR before code generation. For example, the Simplify pass uses an IRMutator to
simplify the IR tree by applying algebraic identities and other simplifications.

38

CHAPTER 3. TOOLS AND COMPONENTS

3.1.5.4 Runtimes

Halide implements a series of runtimes for each of the devices/targets that it can target.
Each of those runtimes uses device/target-specific APIs to seamlessly compile, execute,
and retrieve the results of the kernel on that device without user intervention.

Those runtimes are implemented inside the runtime/ directory of the Halide repos-
itory. We can find files such as cuda.cpp and opencl.cpp which implement the Halide
runtime for CUDA and OpenCL, respectively.

39

CHAPTER 3. TOOLS AND COMPONENTS

3.2

The Multi-Level Intermediate Representation (MLIR) [54] is an open-source compiler
infrastructure project intended to provide a common intermediate representation (IR)
that can be used to represent multiple levels of abstractions in a compiler while still
maintaining a unified interface. MLIR aims to address the challenges faced in building
compilers and optimizing code generation for modern high-performance computing and
machine learning applications, such as addressing software fragmentation, improving
compilation for heterogeneous hardware and significantly reducing the cost of building
domain-specific compilers, and also aid in connecting together existing compilers and
tools.

3.2.1 Motivation

The main target of mature compiles such as GCC and LLVM are CPU architectures,
therefore they employ a single abstraction level to represent the target system. For
example, the LLVM IR is roughly “C with vectors”.

Many compilation and system design problems are better modeled at a higher- or
lower-level abstraction, and for example, many languages (such as Swift, Rust, Julia
or Fortran) that use LLVM end up developing their own IR in order to solve domain-
specific problems. Machine learning frameworks also use domain-specific abstractions
(“ML graphs”) to support their needs.

The MLIR project aims to provide a common infrastructure to tackle these program-
ming language design and implementation challenges by making it easy to define and
introduce new abstraction levels and provide the infrastructure to use them to solve
common compiler engineering problems.

MLIR infrastructure provides (a) standardized Static Single Assignment5 (SSA)-based
IR data structures, (b) a declarative system for defining IR dialects, and (c) a wide
range of common infrastructure including documentation, parsing and printing logic,
location tracking, multithreaded compilation support, pass management, etc.

MLIR was created by the TensorFlow [55] team but now it is a subproject under
LLVM’s umbrella6.

3.2.2 Dialects

As explained, one of the main design goals of MLIR is to provide an extensible compiler
framework, and it achieves that by allowing the definition of new dialects to represent
new abstractions. A dialect is a collection of related operations, attributes and
types that can be used to represent a particular domain. Attributes are the mechanism
for specifying constant data on operations in places where a variable is never allowed
(such as the comparison predicate of a cmpi operation).

5https://en.wikipedia.org/wiki/Static_single-assignment_form
6https://mlir.llvm.org/

40

https://en.wikipedia.org/wiki/Static_single-assignment_form
https://mlir.llvm.org/

CHAPTER 3. TOOLS AND COMPONENTS

MLIR allows for multiple dialects (even those outside of the main code tree) to
co-exist together within one module. Dialects are produced and consumed by certain
passes.

MLIR provides a dialect conversion framework to convert between, and within, differ-
ent dialects. Since dialects allow different levels of abstraction, they enable optimizations
at various stages of the compilation process. Some examples of the MLIR dialects are:

• Arith: arithmetic dialect, holds basic integer and floating point mathematical
operations which include: unary, binary, and ternary arithmetic ops, bitwise and
shift ops, cast ops, and compare ops. Operations in this dialect also accept vectors
and tensors of integers or floats.

• Func: creation of high-level function abstractions and function calls.

• Memref : stands for memory reference, provides a collection of operations and
types focused on representing and manipulating multi-dimensional arrays, or ten-
sors, in memory.

• SCF : a dialect for structured control flow, which includes operations such as loops
and conditionals.

• Vector : supports multi-dimensional vector types and custom operations on them.

• Affine: a dialect for affine expressions and affine loops that allows polyhedral
model7 compilation, analysis and optimizations (explained in the next section).

3.2.2.1 Creating a dialect

To keep the code organized, dialect definitions are organized into different directories in
the MLIR source tree. If we wanted to create a dialect called Foo, this would be the
organization of directories:

• mlir/include/mlir/Dialect/Foo: contains public include files and contains a
TableGen8 file in the Operation Definition Specification9 (ODS) format, describing
the operations in the dialect.

• mlir/lib/Dialect/Foo: contains the implementation of the dialect.

– mlir/lib/Dialect/Foo/IR: contains implementations of functions for the
dialect which are not automatically generated by ODS.

– mlir/lib/Dialect/Foo/Transforms: contains rewrite rules for the dialect,
described in TableGen file using the Table-driven Declarative Rewrite Rule10

(DRR) format.

• mlir/test/Dialect/Foo: contains tests for the dialect.
7https://en.wikipedia.org/wiki/Polytope_model
8https://llvm.org/docs/TableGen/
9https://mlir.llvm.org/docs/DefiningDialects/Operations/

10https://mlir.llvm.org/docs/DeclarativeRewrites/

41

https://en.wikipedia.org/wiki/Polytope_model
https://llvm.org/docs/TableGen/
https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/DeclarativeRewrites/

CHAPTER 3. TOOLS AND COMPONENTS

3.2.3 MLIR Language

MLIR is based on the traditional three-address SSA representations (like LLVM IR) but
with notions of polyhedral loop optimization as first-class concepts.

3.2.3.1 Polyhedral model

Polyhedral (also known as Polytope) loop optimization is a powerful technique for opti-
mizing loop nests, particularly those found in high-performance computing and scientific
applications.

It represents the iteration space of a loop nest as a polyhedron in a multi-dimensional
space which allows the application of mathematical transformations to this representa-
tion to optimize the code.

The affine dialect mentioned before incorporates affine transformations, which are
linear combinations of loop indices and loop bounds, plus a constant. They allow for
precise mathematical modeling of the relationships between loop iterations and the data
they access. It also incorporates affine loops, an expressive representation of loop nests
that provides a natural way to apply polyhedral optimization techniques, and affine
memory access patterns, allowing the compiler to reason about and optimize memory
accesses within loop nests.

3.2.3.2 IR

MLIR is intended to be general enough to represent other compiler-like data structures,
such as Abstract Syntax Trees in a language frontend, generated instructions in a target-
specific backend, High-Level Synthesis constructs, and circuits (more on it in the CIRCT
section 3.3).

The IR is based on a graph-like data structure of nodes, called Operations, and
edges, called Values. Each Value is the result of exactly one Operation or Block
Argument and has a Value Type defined by the type system.

MLIR has an open type system (there is no fixed list of types), and types may have
application-specific semantics. MLIR dialects may define any number of types with no
restrictions on the abstractions they represent.

Operations are contained in Blocks, and Blocks are contained in Regions. Oper-
ations are also ordered within their containing block and Blocks are ordered in their
containing region. Operations may also contain regions, enabling hierarchical structures
to be represented. An example of a hierarchical structure is the scf.if operation of the
scf dialect, which contains two regions for the then and else branches. Operations are
generic and allow the representation from higher-level concepts such as function defini-
tions, function calls, buffer allocations, and process creation, to lower-level concepts like
target-independent arithmetic and instructions, configuration registers, and logic gates.

MLIR can be represented in three different forms, which all describe the same seman-
tic content: a human-readable textual form suitable for debugging (.mlir extension), an
in-memory form suitable for programmatic transformations and analysis, and a compact
serialized form suitable for storage and transport.

42

CHAPTER 3. TOOLS AND COMPONENTS

The following MLIR code is a human-readable (.mlir) example of a function that by
combining different dialects and their operations and types, squares (x2) the elements
of a buffer of a given size:

func.func @myfunc(%buffer: memref<?xi32>, %size: index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
scf.for %i = %c0 to %size step %c1 {

%0 = memref.load %buffer[%i] : memref<?xi32>
%1 = arith.muli %0, %0 : i32
memref.store %1, %buffer[%i] : memref<?xi32>

}
return

}

The code defines a function, called myfunc, with two arguments: a buffer and a size.
The buffer is of type memref<?xi32>, an un-sized 1D buffer of 32-bit signed integers,
and the size is of type index. The memref type represents a multi-dimensional array in
memory, and the index type represents an integer type that can be used to index into
a memref (MLIR provides conversion operations between indices and integers).

First, the body of the function creates different constants using the arith.constant
operation of the arith dialect. Then, a scf.for operation is used to iterate over the
buffer, starting from %i being 0 up to the size passed as a function argument, with a
step of 1.

The scf.for body first performs a memref.load operation on the buffer at the
current index %i, then it squares the loaded value using the arith.muli operation of
the arith dialect, and finally it stores the result back into the buffer at the same index.

3.2.4 Dialect conversion

As mentioned before, MLIR also provided a framework that allows performing operation
conversions between and within dialects. This framework allows for transforming illegal
operations to those supported by a provided conversion target via a set of pattern-based
operation rewriting patterns.

MLIR provides different modes of operand conversion: (a) partial conversion,
which legalizes as many operations to the target as possible, but allows pre-existing
operations that were not explicitly marked as illegal to remain unconverted (useful when
partially lowering parts of the input in the presence of unknown operations), (b) full
conversion, which legalizes all input operations, and is only successful if all operations
are properly legalized to the given conversion target (ensures that only known operations
will exist after the conversion process), and (c) analysis conversion, which analyzes
which operations are legalizable to the given conversion target if a conversion were
to be applied, and is done by performing a partial conversion and recording which
operations would have been successfully converted if successful (note that no rewrites or
transformations are applied to the input operations).

43

CHAPTER 3. TOOLS AND COMPONENTS

The MLIR framework walks the operations in preorder, examining an operation
before the operations in any of the regions it might have (such as scf.for seen before).

3.2.4.1 Type conversion

When converting between dialects, sometimes it is required to also convert the types of
the operands, results of the operations and signatures of block arguments and regions.
MLIR provides a type conversion framework that allows for converting between different
types and also provides a set of predefined type conversion patterns that can be used to
convert between types that are “structurally equivalent”.

3.2.5 Passes

In MLIR, passes represent the basic infrastructure for the transformation and optimiza-
tion of the IR, the main unit of abstraction and transformation are the operations.

All passes in MLIR derive from OperationPass and have to adhere to a set of re-
strictions (such as not modifying any state referenced or relied upon outside the current
operation being operated on) to avoid problematic behavior in multithreaded and other
advanced scenarios.

By default, operation passes are operation-agnostic, and therefore, a pass may oper-
ate on many different types of operations. Examples of operation-agnostic passes include
canonicalization and common sub-expression elimination (CSE).

Before applying a pass, the required dialects must be loaded into the MLIRContext
before entities from these dialects (operations, types, attributes) can be created.

3.2.5.1 Canonicalization pass

MLIR has a single canonicalization pass that iteratively applies the canonicalization
patterns of all loaded dialects greedily, to simplify and normalize the code by removing
redundant or unnecessary operations, folding constants, and applying general algebraic
simplifications. This pass aims to bring the code into a more consistent and canonical
form, potentially exposing more opportunities for further optimizations and making it
easier for subsequent optimization passes to analyze and transform the code further.

Some examples of canonicalization patterns include:

• Removing operations that have no side effects and no uses, such as dead code
elimination.

• Folding constant expressions, i.e., replacing expressions involving constants with
their pre-computed results (like replacing addi 1, 2 with 3).

• Simplifying arithmetic expressions and removing identity operations, such as re-
placing x ∗ 1 and x + 0 with x.

• Simplifying control flow by removing trivial branches or merging blocks.

44

CHAPTER 3. TOOLS AND COMPONENTS

3.2.5.2 Pass manager

The PassManager can be used to configure and schedule a pass pipeline. The two
main classes are the PassManager itself and also the OpPassManager. The PassManager
class contains various configurations used for the entire pass pipeline and also acts as
the top-level entry point. The OpPassManager class is used to schedule passes to run at
a specific level of nesting runs passes on either a specific operation type or any isolated
operation. The top-level PassManager also functions as an OpPassManager.

To aid debugging, the pass manager can be configured to print the IR before and after
each pass is run. This can be done by calling enableIRPrinting() on the PassManager
class.

3.2.6 mlir-opt and mlir-translate tools

While MLIR is written in C++ and can be used as a regular C++ library (and also
provides a C wrapper), it also provides different command-line tools, such as mlir-opt
that can be used to run the passes and transformations on MLIR human-readable text
files (.mlir), and mlir-translate that can be used to translate between MLIR dialects
and other formats, such as LLVM IR and SPIR-V.

For example, the following command can be used to run an affine loop tiling pass
on a 2D loop nest, with tile sizes of 32 × 4, on the file input.mlir:

mlir-opt input.mlir --affine-loop-tile="tile-sizes=32,4"

Let’s consider the following MLIR, that uses the affine dialect to implement a 2D loop
nest that copies a 2D array of 1024 × 1024 32-bit integers from a memref src to the
memref dst:

func.func @test1(%src: memref<1024x1024xi32>, %dst: memref<1024x1024xi32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = memref.dim %src, %c0 : memref<1024x1024xi32>
%dim1 = memref.dim %src, %c1 : memref<1024x1024xi32>
affine.for %i0 = 0 to %dim0 {

affine.for %i1 = 0 to %dim1 {
%0 = affine.load %src[%i0, %i1] : memref<1024x1024xi32>
affine.store %0, %dst[%i0, %i1] : memref<1024x1024xi32>

}
}
return

}

After applying the –-affine-loop-tile="tile-sizes=32,4" pass mentioned above:

45

CHAPTER 3. TOOLS AND COMPONENTS

#map = affine_map<(d0) -> (d0)>
#map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#map2 = affine_map<(d0)[s0] -> (d0 + 4, s0)>
func.func @test1(%arg0: memref<1024x1024xi32>, %arg1: memref<1024x1024xi32>) {

%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim = memref.dim %arg0, %c0 : memref<1024x1024xi32>
%dim_0 = memref.dim %arg0, %c1 : memref<1024x1024xi32>
affine.for %arg2 = 0 to %dim step 32 {

affine.for %arg3 = 0 to %dim_0 step 4 {
affine.for %arg4 = #map(%arg2) to min #map1(%arg2)[%dim] {

affine.for %arg5 = #map(%arg3) to min #map2(%arg3)[%dim_0] {
%0 = affine.load %arg0[%arg4, %arg5] : memref<1024x1024xi32>
affine.store %0, %arg1[%arg4, %arg5] : memref<1024x1024xi32>

}
}

}
}

}

Note how the generated code has two extra inner affine.for loops that implement the
requested tiling.

After this tiling pass, we can lower the affine dialect to the arith, memref and scf
dialects by passing the –-lower-affine argument to the mlir-opt tool. Note that we
can pass multiple arguments to the mlir-opt, and it will run the passes in order one
after each other:

mlir-opt input.mlir --affine-loop-tile="tile-sizes=32,4" --lower-affine

After tiling and lowering the affine dialect, we get the following MLIR:

46

CHAPTER 3. TOOLS AND COMPONENTS

func.func @test1(%arg0: memref<1024x1024xi32>, %arg1: memref<1024x1024xi32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim = memref.dim %arg0, %c0 : memref<1024x1024xi32>
%dim_0 = memref.dim %arg0, %c1 : memref<1024x1024xi32>
%c0_1 = arith.constant 0 : index
%c32 = arith.constant 32 : index
scf.for %arg2 = %c0_1 to %dim step %c32 {

%c0_2 = arith.constant 0 : index
%c4 = arith.constant 4 : index
scf.for %arg3 = %c0_2 to %dim_0 step %c4 {

%c32_3 = arith.constant 32 : index
%0 = arith.addi %arg2, %c32_3 : index
%1 = arith.cmpi slt, %0, %dim : index
%2 = arith.select %1, %0, %dim : index
%c1_4 = arith.constant 1 : index
scf.for %arg4 = %arg2 to %2 step %c1_4 {

%c4_5 = arith.constant 4 : index
%3 = arith.addi %arg3, %c4_5 : index
%4 = arith.cmpi slt, %3, %dim_0 : index
%5 = arith.select %4, %3, %dim_0 : index
%c1_6 = arith.constant 1 : index
scf.for %arg5 = %arg3 to %5 step %c1_6 {

%6 = memref.load %arg0[%arg4, %arg5] : memref<1024x1024xi32>
memref.store %6, %arg1[%arg4, %arg5] : memref<1024x1024xi32>

}
}

}
}

}

Note how affine.for operations have been replaced with scf.for operations, and
affine.load and affine.store operations have been replaced with memref.load and
memref.store operations respectively.

47

CHAPTER 3. TOOLS AND COMPONENTS

3.3 CIRCT

Circuit IR Compilers and Tools (CIRCT) is a project built on top of MLIR that aims
to take advantage of the infrastructure and methodology of MLIR to provide a set of
tools and libraries to help with the design and verification of digital circuits.

Note that as of writing, the project is still in an experimental stage and many breaking
code changes occur frequently. SiFive11 is contributing to CIRCT intending to use it to
compile Chisel (open-source HDL language) to Verilog, which according to them is one
order of magnitude faster than the current Chisel compiler [56].

CIRCT is also developed under the umbrella of the LLVM project12.

3.3.1 Dialects

CIRCT consists of a number of hardware-oriented dialects added to the ones already
present in MLIR. The top of Figure 3.9 shows the legend for the diagram below it,
which shows the different dialects that are part of CIRCT. The edges represent existing
dialect transformation passes. In purple, we can see the dialects that are part of MLIR,
and inside the CIRCT box, the dialects that are part of CIRCT.

For the purposes of this thesis, the most relevant dialects in CIRCT are:

• HW : generic hardware dialect used to represent hardware designs outside of a
particular use-case. Intended to be the place where other dialect operations are
instantiated.

• comb: intended to model digital combinational logic.

• seq: intended to model digital sequential logic.

• fsm: intended to represent finite-state machines.

• sv: represents various SystemVerilog-specific constructs.

• calyx: represents the Calyx IR types and operations. More information about
Calyx is explained in the next section.

3.3.2 Transformation passes

As shown in Figure 3.9, CIRCT provides transformation passes that can be used to trans-
form from one dialect to another. For example, the circt::createConvertFSMToSVPass()
pass transforms operations in the fsm dialect to operations in the sv dialect. For that,
it uses the seq dialect to instantiate the register containing the current FSM state, the
comb dialect to implement the logic of the state machine transitions, and the sv dialect
to make the future SystemVerilog generated code more readable (for example, the FSM
states names get converted to SystemVerilog enum types).

11https://www.sifive.com/
12https://circt.llvm.org/

48

h

CHAPTER 3. TOOLS AND COMPONENTS

Figure 3.9: CIRCT dialects.
Source: CIRCT source code

49

https://github.com/llvm/circt/tree/main/docs/includes/img

CHAPTER 3. TOOLS AND COMPONENTS

3.3.3 Scheduling

As explained during the introduction, scheduling is also used in HLS to transform an
untimed high-level specification into a fully timed implementation. This transition im-
plements a custom architecture that meets a set of specification requirements. The
architecture generated contains a data path, control logic, memory interfaces, and logic
to communicate with the external world.

The data path consists of a set of storage elements such as registers and memories, a
set of functional units, such as multipliers, shifters, ALUs, and other custom functions,
and interconnect components, such as multiplexers and buses. Each component can
take one or more clock cycles to execute, can be pipelined, and can have input or output
registers. Moreover, the entire data path and controller can be pipelined in several
stages.

CIRCT provides a static scheduling infrastructure that implements scheduling.
The constraint is that an Operation can start after its operands have been computed.

The operations in the source MLIR are unaware of time so they need to be associated
with a suitable operator type. Operator types are an abstraction of the target architec-
ture onto which the source MLIR is scheduled to. The only property that needs to be
modeled is their latency.

3.3.3.1 Constructing a problem instance

First, a problem has to be created from MLIR code (passing a func::FuncOp as the
root of the code). Some of the problem definitions CIRCT provides are (users can create
their own problem definitions):

• Problem: base class for the rest of the problems. Corresponds to an acyclic problem
where Operations are linked to operator types (which have integer latencies) and
the solution comprises integer start times adhering to the precedence constraints
implied by the dependences.

• CyclicProblem: cyclic extension of Problem, the solution of which can be used to
construct a pipelined datapath with a fixed II in which the execution of multiple
iterations/samples/etc. may overlap. Operator types are assumed to be fully
pipelined.

• ModuloProblem: classic HLS modulo scheduling problem of pipeline scheduling
with limited resources.

The setLatency method of Problem can be used to set the latency of an OperatorType
for a given Operation. By default, the problem model automatically includes the SSA
def-use-edges maintained by MLIR but it is possible to add additional dependencies
that are not represented by value flow, such as memory dependencies, by using the
insertDependence method.

50

CHAPTER 3. TOOLS AND COMPONENTS

3.3.3.2 Scheduling the problem

After the Problem has been created, we can schedule and create a solution for it by using
one of the schedulers provided by CIRCT (or creating our scheduler):

• ASAP list scheduler: solves the problem using a list algorithm. Considered a demo
of the problem API to show how to write schedulers.

• Linear programming-based schedulers: solves Problem,CyclicProblem and others
optimally. Can also solve ModuloProblem with simple heuristics. This family of
schedulers is based on the simplex algorithm.

• Integer linear programming-based scheduler: an ILP solver using OR-Tools13.

3.3.3.3 Checking the solution

After the problem has been scheduled, the Operations can be queried and they will
contain the start time of the operation (getStartTime).

3.3.3.4 Scheduling affine operations

CIRCT provides a pass, AffineToLoopSchedule, which analyzes affine control flow
and loops and, creates a Scheduling problem using the Calyx operator library, solves
the problem and lowers the loops to the LoopSchedule dialect, which can represent
statically-scheduled pipelines (and as opposed to many other HLS representations, main-
tains the structure of loops after scheduling).

3.3.4 SystemVerilog emission

One of the main goals of CIRCT is to provide a way to emit as readable and polished
as possible SystemVerilog code.

For that, once the IR has been lowered and it only consists of hw, sv and comb dialects,
CIRCT provides different passes such as circt::createExportVerilogPass() that take
IR as input and emit SystemVerilog code. The functions circt::exportVerilog and
circt::exportSplitVerilog are helpers that take the MLIR module and run the pass to
export to Verilog code to either memory or disk, respectively.

The style of the emitted SystemVerilog code can be controlled by changing the options
in the circt::LoweringOptions struct.

3.3.5 circt-opt and circt-translate tools

Just as MLIR provides the mlir-opt and mlir-translate tools (Subsection 3.2.6) to
apply passes and transformations from the command line, CIRCT also provides the
circt-opt and circt-translate tools to easily run the passes and transformations
that CIRCT implements.

13https://developers.google.com/optimization

51

https://developers.google.com/optimization

CHAPTER 3. TOOLS AND COMPONENTS

For example, the following command runs the circt::createExportVerilogPass()
pass on the input MLIR file and outputs the resulting SystemVerilog code to the standard
output:

circt-opt input.mlir --export-verilog

52

CHAPTER 3. TOOLS AND COMPONENTS

3.4

As explained during the introduction, the difficulty of using HDLs (Hardware description
languages) to design and debug computational accelerators flexibly and efficiently was
one of the main motivations for the creation of HLS languages. However, HLS languages
are not the best fit when designing digital circuits: they employ many software-centric
constructs that do not have a clear mapping into hardware (such as pointer-based
virtual memory accesses, or sequential execution of instructions based on a program
counter). Hardware is by nature parallel.

This gap between HLS semantics and how hardware actually works has led to the
introduction of new domain-specific hardware description languages such as Spatial [57],
ShakeFlow [58] and Aetherling [59]. However, these DSL-to-hardware compilers not
only have to re-engineer a new intermediate language (IL) to conceive a high-
level architecture of the hardware to allow for easier programmability, but they must
also design a data path and a control path that implements the execution strategy and
performs architectural optimizations.

The idea behind Calyx [60] is to create a shared IL along a compiler infrastructure
that implements useful optimizations and analyses, so that new hardware DSLs can use
it as an intermediate step to quickly generate hardware designs.

3.4.1 Language overview

Calyx integrates an imperative sublanguage, which depicts a design’s control flow, with
a structural language that instantiates hardware modules and outlines their connections.
This combination brings together the software-like control flow representation and the
hardware-focused structure description.

In Calyx, components correspond to hardware modules, with input and output
ports, and are analogous to software functions. They are the basic building blocks and
encapsulate the hardware structures of the design they represent and the control flow
among them.

Component definitions have three distinct sections:

• cells: the instantion of hardware sub-components that form the component being
defined.

• wires: set of connection between the sub-components. They can be organized into
groups.

• control: imperative control flow that defines the component’s execution schedule
(when each group executes).

The following code shows the basic skeleton of a component:

53

CHAPTER 3. TOOLS AND COMPONENTS

component name(inputs) -> (outputs) {
cells { ... }
wires { ... }
control { ... }

}

Calyx provides some built-in components that can be used to implement more complex
designs. They form part of Calyx’s standard primitive library (their names are prefixed
with std), and some examples include memory cells of multiple dimensions (std_mem_d1
for a 1D memory cell), registers (std_reg), combinational adders (std_add), etc.

Calyx also has an attribute system that associates information with Calyx constructs.
This allows changing how the program is compiled or optimizing it,

3.4.1.1 Cells

As mentioned, this section instantiates the sub-components that will be used to imple-
ment the component being defined.

As an example, the following code instantiates a 32-bit register and a 32-bit adder
named reg and add, respectively:

cells {
reg = std_reg(32); // 32-bit register
add = std_add(32); // 32-bit adder

}

3.4.1.2 Wires

In the cells section, the sub-components are instantiated, but they are not connected
to each other. This is done in the wires section, which is organized into groups. Each
group is a set of connections (called assignments) between the ports of the sub-
components, which are executed in “parallel”, closely resembling non-blocking assign-
ments in RTL languages.

Unlike assignments done inside a group, assignments at the top level of the wires
section are continuous, that is, they always happen without any need for control state-
ments to orchestrate them.

For example, continuous with the example seen before that instantiates a register
and an adder, we can continuously connect the output of the register to both inputs
(called left and right) of the adder with the following code in the wires section:

wires {
add.left = reg.out;
add.right = reg.out;

}

The adder’s output (add.out) would contain the sum of the two inputs.

54

CHAPTER 3. TOOLS AND COMPONENTS

3.4.1.3 Groups

Using continuous assignments on the top of the wires section is useful to make perma-
nent connections between components. However, they do not bring any capabilities to
schedule the control flow of the execution. This is where groups come into play. As
the name indicates, they are a group of assignments that only get executed only when
determined by the control program (control section).

There are some limitations on the things that can be done within a group (also
resembling the restrictions imposed by RTL languages), for example, there must be
unique drivers to ports (of the sub-components and outputs), and combinational loops
can not exist. However, different groups can assign to the same port, the value assigned
to which gets determined by the group being currently executed as scheduled in the
control section.

It is important to note that when none of the groups that can drive a particular
port is active, the value of that port is 0, which is different from many RTL languages,
where the port would be left in a high-impedance state (z).

For example, the following code creates two groups, one assigning the value 1 to the
input of a register, and the other one assigning 2:

wires {
group assign_one {

myreg.in = 1;
}

group assign_two {
myreg.in = 2;

}
}

go and done ports
To control group execution, there are two very important ports that all groups implicitly
have: the go and done ports. The go port is used to trigger the execution of the group,
and the done port is used to signal that the group has finished executing. The control
section uses those signals to orchestrate group execution. Given a group named mygroup,
the done signal has to be manually assigned, which can be accessed as mygroup[done].

As an example, the following code defines a group that assigns the input ports of
a memory component to perform a memory write of 42 at address 16 and also sets the
group’s done signal depending on when the memory write has finished (port mem.done).

55

CHAPTER 3. TOOLS AND COMPONENTS

wires {
group write_to_mem {

mem.addr0 = 32'd16;
mem.write_data = 32'd42;
mem.write_en = 1'b1;
write_to_mem[done] = mem.done;

}
}

Interface signals, such as a group’s go and done signals define what Calyx calls a
calling convention.

Guarded assignments
An assignment can optionally have a guard expression that determines whether the
assignment is active or not. Omitting a guard expression is equivalent to using 1 (a
constant “true”) as the guard. The value of a port itself, and comparison and logical
operations between ports can be used as the guard expression.

Calyx specifies that as a requirement for well-formedness, for each port, of all the
assignments done to that port, only one guard should be active in any given cycle during
the execution of a Calyx program.

The following code shows an example of a Calyx group that assigns to the left port
of an adder depending on the value of a comparison (multiplexer):

group mygroup {
add.left = cmp.out ? reg1.out;
add.left = !cmp.out ? reg2.out;

}

Combinational groups
Combinational groups are a restricted version of groups which only perform combina-
tional assignments, and therefore they do not have a done port. They are to be used
with the with keyword in some code statements, as shown in the next section. The
syntax for creating combinational groups is as follows:

comb group name<attributes> {
assignments...

}

3.4.1.4 Control

We have seen how to instantiate sub-components and how to create connections between
them using group encapsulations. To orchestrate the execution of the groups, also called
enabling them, Calyx provides a control section that allows the programmer to specify
the control flow of the program.

The main control operators are:

56

CHAPTER 3. TOOLS AND COMPONENTS

• seq: used for sequential composition.

seq { c1; ...; cn; }

Each ci is a nested control statement that gets executed after the previous one
has finished.

• par: used for parallel composition.

par { c1; ...; cn; }

Each ci is a nested control statement that gets executed in parallel with the rest
of the statements. For well-formedness, the assignments in the children c1, . . ., cn
should never conflict with each other.

• if: conditional statement.

if <port> [with comb_group] {
true_c

} else {
false_c

}

Depending on the value of port, true_c or false_c groups will be executed. For
well-formedness, the combinational group is considered to be active during the
entire execution of the control program and therefore should not have conflicting
assignments with the conditional branches.

• while: loop statement.

while <port> [with comb_group] {
body_c

}

Executes the group body_c repeatedly while the value of port is non-zero. The
optional combinational group computes the value of port. For well-formedness,
the combinational group is considered to be active during the entire execution of
while loop and therefore should not have conflicting assignments with it.

3.4.2 Compilation

The Calyx compiler’s goal is to optimize and lower Calyx programs into synthesizable
RTL. The compiler’s compilation passes use the calling convention (go and done) signals
to realize the execution schedule. After the compilation passes, the resulting Calyx code

57

CHAPTER 3. TOOLS AND COMPONENTS

is a flat list of guarded assignments and no control statements or groups. Then the
compiler directly translates it into RTL.

The Calyx compiler implements three main compilation passes to generate the flat-
tened Calyx code before RTL is emitted:

1. GoInsertion: since Calyx semantics require that the assignments done within
a group are only enabled when the group is active, for each group in the Calyx
program, this pass inserts go signal of the group as the guard of all the assignments
in the group.

2. CompileControl: by performing a bottom-up traversal of the control program:

(a) For each control statement such as seq or while, instantiate a new group
(called the compilation group) to contain all the structure needed to realize
the control statement.

(b) Implement the schedule by instantiating an FSM that implements the control
statement and by connecting the constituent groups’ go and done signals.

(c) Replace the statement in the control program with the corresponding compi-
lation group generated before.

Each control statement has different semantics and it is implemented as follows:

• seq: the previous group’s done signal is connected to the current group’s go
signal, and so on successfully for each of the enables in the seq.

• par: since all the groups are executed in parallel, a 1-bit register is instanti-
ated for each of them that gets written when the corresponding group finishes
executing (done signal). The done signal for the compilation group’s done is
high when all the registers have the value 1 (AND gate).

• if: first, the cond group is executed to decide which branch to execute.
Two 1-bit registers are instantiated for this: cc, which tracks if the cond has
already been executed, and cs which stores the value of the executed cond.
Depending on the value of cs, the group in either of the branches of the
if gets executed, and the compilation group’s done signal is driven by the
corresponding branch’s group done signal.

• while: similar to the if implementation: first the condition group is executed
and its result is saved to a register which is used to enable the group in the
body. When the register has a 0, the compilation group is considered as
finished (cond is set to 1).

After this pass, the component’s control program is reduced to a single group
enable.

3. RemoveGroups: it inlines (flattens) all the assignments in groups using interface
signals (go and done) into the wires section by performing three transformations:

58

CHAPTER 3. TOOLS AND COMPONENTS

(a) Add new go and done ports to the component definition and wire them to
the single group enable in the control program.

(b) Collect all writes to a group’s go and done signals and inline them into all
uses of the signals. This eliminates all interface signals from the component.

(c) Since all assignments are guarded by expressions that encode the schedule
(ruled by the FSM state), it is safe to remove the groups and place them in
the top-level wires section.

Figure 3.10: Calyx compilation passes example.
Source: A Compiler Infrastructure for Accelerator Generators [60]

After these transformations, each code contains a flattened list of guarded assign-
ments that the last compiler pass, the Lower pass, takes as input and translates into RTL
(SystemVerilog). It also adds clock and reset signals to each component, now converted
into a hardware module.

59

CHAPTER 3. TOOLS AND COMPONENTS

3.5 Xilinx Vitis
Vitis [61] is a unified software platform developed by Xilinx that enables the development
of heterogeneous applications for Xilinx devices such as FPGAs, SoCs, and MPSoCs14. It
includes hardware acceleration libraries, development tools and debuggers, and runtime
libraries. Those heterogeneous systems include software applications running on x86 host
processors or ARM embedded processors, compute kernels running in programmable-
logic (PL) regions and Versal AI Engine arrays.
Some of the components of the Vitis unified software platform are:

• Compilers and cross-compilers which compose the development stack. It also in-
cludes the Vivado Design Suite which is an RTL language design, synthesis, and
implementation tool.

• Debuggers and program analyzers that help locate and fix any problems and ana-
lyze the performance of the design.

• Xilinx Runtime (XRT). it provides an API and drivers that allow running kernels
on the FPGA and issuing data transfers between the host application and the
kernel running on the FPGA. More information about XRT is given in a posterior
section.

Vitis supports several development flows, including:

Processor software (PS) development
It is the standard software development flow. Programmers can develop software
running on either the host for PCIe FPGA devices, or the embedded ARM pro-
cessor of SoC/MPSoC Xilinx devices using diverse programming languages such
as C, C++, and Python.

Programmable-logic (PL) kernel development
Programmers can develop kernels targeting the PL region of Xilinx devices using
C/C++ and OpenCL, which can be synthesized into RTL by using the Vitis HLS
tool. Kernels can also be written in RTL languages directly, such as Verilog and
SystemVerilog (SV), and then synthesized using the Vivado Design Suite.

Since the objective of the thesis is to generate RTL kernels, we will focus on the PL RTL
kernel design flow. The main binary file formats of interest when it comes to the PL
RTL kernel design flow are:

PL kernel (.xo)
This format represents compiled Xilinx kernels (Xilinx objects) that will be pro-
grammed into the PL region of the FPGA. Xilinx objects can be generated either
from HLS code using Vitis HLS, or directly from compiling RTL code by using the
IP packager feature of the Vivado Design Suite (package_xo command).

14Multiprocessor SoC

60

CHAPTER 3. TOOLS AND COMPONENTS

Device Binary (.xclbin) file
A binary file that contains the programmable device image (PDI)/bitstream of a
custom hardware design that can be programmed into the FPGA. This file also
includes some metadata needed to control the hardware design, and also kernel
names, memory requirements, and other information.

3.5.1 v++ kernel compiler

One of the main tools in Vitis is the v++ kernel compiler [62]. v++ has three main
command modes:

• –-compile (-c): launches the Vitis HLS tool to compile HLS code into PL kernel
object files (.xo).

• –-link (-l): links one or more PL kernels(.xo) with a platform into a FPGA
device binary (.xclbin).

• –-package (-p): packages the required files to boot and run the accelerated appli-
cation for software or hardware emulation, or to run on the hardware device. For
embedded processor platforms, it can also collect the various elements needed to
create a bootable SD card image.

Figure 3.11 shows the kernel compilation flow of the two main Vitis PL kernel devel-
opment flows. On the left, the flow when compiling RTL kernels, where the Vivado
Package IP tool is used to generate the .xo. On the right, there is the flow when
compiling C/C++ kernels, which uses the Vitis HLS tool is used to generate the .xo.

Figure 3.11: Vitis PL kernel compilation flows.
Source: Vitis Unified Software Platform Documentation: Application Acceleration Development
(UG1393)

3.5.2 Build targets

When generating an FPGA binary (.xclbin), a build target has to be selected, which
will define the nature and contents of the binary. There are three different build targets:
two emulation targets (for validation and debugging purposes), and a hardware target
to generate the kernel binary to be executed on the FPGA:

61

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Vitis-PL-Kernel-Development-Flow
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Vitis-PL-Kernel-Development-Flow

CHAPTER 3. TOOLS AND COMPONENTS

Software Emulation (sw_emu)
Its main goal is to ensure the functional correctness of the host program and HLS
(C/C++) kernels, therefore it provides a purely functional execution (no modeling
of timing or delays). While the kernel code runs natively (since it is written in an
HLS language), the application code can run either natively (x86), in the case of
simulating an FPGA PCIe device, or when simulating an embedded ARM FPGA
platform it can be compiled with a cross-compiler and run on an ARM processor in
an emulator such as QEMU [63]. As expected, this mode has the fastest execution
times.

Hardware Emulation (hw_emu)
This emulation mode runs an (almost) cycle-accurate simulation of the PL kernel
logic, therefore it can be useful for the following tasks:

• Check the functional correctness of the RTL code, which was either generated
from HLS or handwritten.

• Check and test the interactions between the different components, such as
host application and kernel, or between kernels.

• Extract hardware waveforms to gain introspection of the internals of the kernel
execution and also to help debug.

• Extract almost cycle-accurate performance estimates of the kernel execution.

Compared to the software emulation mode, this mode has longer execution times,
but it provides a much more accurate view of kernel activity and timings. Since
the DDR memory models and the memory interface generator only approximate
latency values, while providing good simulation performance, the whole kernel
execution numbers can not be considered fully cycle-accurate. In this mode, the
host application also runs natively (x86) when targeting a PCIe FPGA device, or
in an emulator (QEMU) when targeting an embedded ARM FPGA platform.

System Hardware Target (hw)
In this mode, v++ generates an FPGA binary by synthesizing and implementing
the design with Vivado. This type of build takes longer than when generating
binaries for either the software or hardware emulation modes, however, the kernel
can be loaded into the FPGA and can be run in the final operating environment.

3.5.3 Programmable-logic (PL) Kernel Properties

As seen before, programmable-logic (PL) kernels can be generated either from HLS
(C/C++) or from RTL code. Regardless of the source language, Vitis establishes that
all PL kernels have the same properties and must adhere to the same set of requirements
[64]. Vitis also defines two kinds of kernels: software-controllable and non-software-
controlled. The first ones are controlled through the host application, and the second
ones are data-driven and unmanaged by the host software. Since we will be launching

62

CHAPTER 3. TOOLS AND COMPONENTS

Halide kernels manually via a host application, we will focus on the software-controllable
kernels.

3.5.3.1 Software-Controllable Kernels

These kernels expose a programmable register interface, that the host can access to
configure and launch the kernel via register reads and writes. Within SW-controllable
kernels, we can find two types of kernels, depending on the kernel execution mode:

1. XRT-Managed Kernels: in this case, the host application communicates with
the kernel using higher-level XRT API commands such as set_arg, run, and wait,
and therefore the user does not need to know the low-level details of the register
interface and kernel execution protocols (explained later). The control and status
registers form a known interface described by XRT, allowing the higher-level API
command to be used.

2. User-Managed Kernels: in this case, since the host software has to communicate
with the kernel using register reads and writes through an AXI4-Lite interface, it
is the responsibility of the developer to know the offsets and sizes of the registers
and issue the accesses properly. Therefore, there are no high-level controls, checks
or profiling capabilities. The programmer/user has to run manual simulations for
performance analysis/debugging.

For most use cases, including this thesis, using XRT-Managed Kernels is the preferred
option since it provides a standard, well-known and tested interface to communicate
with the kernels. Also, XRT already implements all the necessary code for interfacing
with the kernel, therefore, for example, the programmer does not need to implement the
low-level register access code to communicate with the kernel.

3.5.4 Kernel Interface Requirements

Vitis requires [65] that all PL kernels must meet a set of requirements, for both XRT-
managed and user-managed kernels, to be able to integrate them into the target platform:

Clock One or more clock inputs. At least one clock is required for the kernel. It can
be named anything.

Reset Primary active-low reset input signal.

interrupt Active-high interrupt. If used, must be named exactly as shown.

s_axi_control One (and only one) AXI4-Lite subordinate control interface. It is a
required port and must be named exactly as shown.

AXI4 Memory Mapped Interface (m_axi) AXI4 memory mapped interfaces for
global memory access. It is optional. All of them must have 64-bit addresses. The
programmer can partition the memory space for each buffer kernel argument. The

63

CHAPTER 3. TOOLS AND COMPONENTS

offset of each partition is provided by the SW to the kernel through a register in
the AXI4-Lite control interface.

AXI4 Stream (axis) AXI4 Stream interface for data transfers between the host ap-
plication and kernels, or between kernels. It is an optional uni-directional port.

XRT-managed kernels have also an additional set of control requirements [66] (described
below).

3.5.4.1 Control Requirements for XRT-Managed Kernels

For both ap_ctrl_hs and ap_ctrl_chain execution modes (described in the next sec-
tion), a specific set of registers is required to be implemented through the AXI4-Lite
control interface in the kernel.

These registers are accessed by the host application to control the kernel execution
and to read the kernel status. A control register (offset 0x0) has bits that indicate the
kernel when to start execution (ap_start), and a bit that indicates the host when to
execution has finished (ap_done). The kernel can also indicate that it is idle (ap_idle),
and the host can read when the kernel is ready to accept new data (ap_ready). The
ap_continue bit is used in the ap_ctrl_chain kernel execution mode to indicate the
kernel that it can keep running.

3.5.5 Vivado Design Suite’s package_xo and the kernel.xml file

As mentioned before, Vivado Design Suite’s package_xo command is used to convert
RTL PL kernel code into a Xilinx object file (.xo), which can subsequently be used by
Vits’ v++ command during the linking stage.

When creating RTL kernels, a kernel.xml file has to be created and passed along
the RTL code to package_xo to generate the .xo.

3.5.5.1 kernel.xml

This file contains kernel attributes like the kernel name, the ports that the kernel uses
(AXI4-Manager, AXI4-Stream and AXI4-Lite for the control registers), the control pro-
tocol and the kernel arguments, which include scalars and also the offset into the specific
AXI4-Manager interface for buffer argument types.

64

CHAPTER 3. TOOLS AND COMPONENTS

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root versionMajor="1" versionMinor="6">
3 <kernel name="toplevel" language="ip_c" vlnv="vendor.org:kernel:toplevel:1.0"

attributes="" preferredWorkGroupSizeMultiple="0" workGroupSize="1"
interrupt="false" hwControlProtocol="ap_ctrl_hs">

↪→

↪→

4 <ports>
5 <port name="s_axi_control" mode="slave" range="0x1000" dataWidth="32"

portType="addressable" base="0x0"/>↪→

6 <port name="m00_axi" mode="master" range="0xFFFFFFFFFFFFFFFF" dataWidth="512"
portType="addressable" base="0x0"/>↪→

7 <port name="m01_axi" mode="master" range="0xFFFFFFFFFFFFFFFF" dataWidth="512"
portType="addressable" base="0x0"/>↪→

8 </ports>
9 <args>

10 <arg name="f0.extent.0" addressQualifier="0" id="0" port="s_axi_control"
size="0x4" offset="0x10" type="int" hostOffset="0x0" hostSize="0x4"/>↪→

11 <arg name="f0.min.0" addressQualifier="0" id="1" port="s_axi_control" size="0x4"
offset="0x18" type="int" hostOffset="0x0" hostSize="0x4"/>↪→

12 <arg name="b0" addressQualifier="1" id="2" port="m00_axi" size="0x8"
offset="0x20" type="int*" hostOffset="0x0" hostSize="0x8"/>↪→

13 <arg name="f0" addressQualifier="1" id="3" port="m01_axi" size="0x8"
offset="0x28" type="int*" hostOffset="0x0" hostSize="0x8"/>↪→

14 </args>
15 </kernel>
16 </root>

Figure 3.12: Example of a kernel.xml file, needed by Vivado Design Suite’s package_xo
command to generate the .xo.

The example kernel.xml shown in Figure 3.12 has the configuration for a kernel that
is managed by the ap_ctrl_hs control protocol. The kernel has two AXI4-Manager
interfaces (m00_axi and m01_axi), both of which have a data bus width of 512 bits.
There are two scalar arguments, both of type int, named f0.extent.0 and f0.min.0
respectively. The b0 argument is a buffer argument, and it is mapped to the m00_axi
interface, with an offset of 0x0. The f0 argument is also a buffer argument, and it
is mapped to the m01_axi interface, also with an offset of 0x0. Each argument also
contains the offset into the memory-mapped register in the AXI4-Lite s_axi_control
interface where the host has to write the argument value prior kernel execution, where
for the case of scalar values is the value itself and for buffer arguments is the offset into
the AXI4-Manager interface where the buffer is mapped to.

65

CHAPTER 3. TOOLS AND COMPONENTS

3.6 Xilinx Runtime (XRT)
Xilinx Runtime (XRT) [67] is an open-source standardized software interface that facili-
tates communication between the application code and the accelerated kernels deployed
on the programmable logic part of FPGAs.

XRT runs on the host CPU. When the target accelerator is a PCIe, the host corre-
sponds to the x86 CPU on the server, and in the case of embedded platforms, the host
refers to the ARM processor.

XRT allows the host to interact with the kernels in the FPGA through a set of APIs
that go from domain-specific APIs leveraged by Vitis AI, and high-level Python bindings
to low-level C and C++ APIs that offer finer-grained control.

The key functions of XRT are:

• FPGA image download: download FPGA binaries to the accelerator.

• Memory management: allocate and move data between the host and the acceler-
ator.

• Board management: provide tools to perform board recovery, debugging and power
management.

• Execution management: trigger, sequence and synchronize computations.

3.6.1 XRT-Managed Kernel Execution Models

XRT also defines kernel execution models [68] to hide the implementation details from
the user. The user can execute a kernel by using OpenCL or native XRT APIs, such
as OpenCL’s clEnququeTask function or the C++ xrt::run class, without the need of
handling the control interface of the kernels explicitly inside the host code.

On one hand, when using the Vitis HLS flow, the generated code implements one
of the execution models, which can be specified by using a #pragma . On the other
hand, when writing RTL kernels, since the user has full control over the RTL kernel
implementation, the user has to implement the control interface and the execution model
in the kernel code. In this case, it might be desirable to implement one of the XRT-
supported execution models and design the RTL kernel interface accordingly in order to
take advantage of the automatic execution flow managed by the XRT.

As explained in Subsection 3.5.4, at the low level, kernels are controlled through
control and status registers that are mapped into the AXI4-Lite subordinate interface
of the kernel.

XRT defines two main execution models:

• Sequential execution model (ap_ctrl_hs): simple one-point synchronization
scheme between the host and the kernel using the ap_start and ap_done signals.
The kernel can only be restarted after it has completed the current execution.
When there are multiple kernel execution requests from the host, the kernel gets

66

CHAPTER 3. TOOLS AND COMPONENTS

executed in sequential order, serving only one execution request at a time.
Mode of operation:

XRT Kernel

Write arguments0

ap_start0

ap_done0

Execution0Execution0

Read data0

Write arguments1

ap_start1

ap_done1

Execution1Execution1

Read data1

1. The host writes the kernel arguments to the control registers.
2. The host writes the ap_start bit to 1 to start the kernel execution.
3. The kernel starts executing.
4. The kernel writes the ap_done bit to 1 to indicate that the execution has

finished.
5. The host reads the ap_done bit to check if the kernel has finished execution.
6. Repeat 1. to 5. for the next kernel execution.

• Pipelined execution model (ap_ctrl_chain): the kernel allows multiple exe-
cutions to be overlapped and run in a pipelined fashion. The host-to-kernel syn-

67

CHAPTER 3. TOOLS AND COMPONENTS

chronization point is broken into two places: input synchronization (dictated by
the signals ap_start and ap_ready) and output synchronization (ap_done and
ap_continue).

XRT Kernel

Write arguments0

ap_start0

ap_ready0

Execution0Execution0

Write arguments1

ap_start1

ap_ready1

Execution1Execution1

ap_done0

Read data0

ap_continue0

ap_done1

Read data1

68

CHAPTER 3. TOOLS AND COMPONENTS

Input synchronization:

1. The host writes the kernel arguments to the control registers.
2. The host writes the ap_start bit to 1 to start the kernel execution.
3. The kernel starts executing.
4. The kernel writes the ap_ready bit to 1 to indicate that it is ready to accept

new data for the next execution, even if it is still working on the previous
one.

5. Repeat 1. to 4. to start kernel execution again.

Output synchronization:

1. The host waits for ap_done to be asserted bit by the kernel when it has
finished producing the output data.

2. The host asserts the ap_continue to allow the kernel to keep running.
3. Repeat 1. to 2. to keep reading the output data of the kernel executions.

69

Chapter 4

Methodology

The flow from going to the high-level DSL of Halide down to RTL, and in particular to
generate a bitstream that can be executed on Xilinx FPGAs using the XRT, is complex
and involves many steps (Figure 4.1). This chapter gives a brief overview of those steps
and explains the methodology used to develop this project. The particular details of the
technical decisions involved in the implementation of those steps are given in the next
Chapter 5.

70

CHAPTER 4. METHODOLOGY

Halide IR

MLIR

CodeGen_MLIR

CIRCT (Calyx dialect)

CIRCT (HW dialects)

CodeGen_CIRCT

CIRCT (HW dialects)
+

Xilinx-specific RTL kernel wrappers

CodeGen_CIRCT_Xilinx_Dev

SystemVerilog files

ExportVerilog

Xilinx object file (.xo)

Xilinx Vivado package_xo

Xilinx binary file (.xclbin)

Xilinx Vitis v++

Execute on the FPGA
Halide XRT runtime (xrt.cpp)

Figure 4.1: High-level overview of the implemented flow from Halide down to execution
on Xilinx FPGAs.

71

CHAPTER 4. METHODOLOGY

4.1 From Halide down to RTL
Inside Halide’s source code, code generators for a particular device are prefixed with the
CodeGen_* prefix. For this project, three new code generator files were added:

1. CodeGen_MLIR.cpp: implements an IRVisitor (Section 3.1.5.3) that traverses the
Halide IR and generates generic MLIR code using high-level dialects (arith,
memref, scf). Note that thanks to the power of MLIR, the generated code could be
used to target more devices, not just FPGAs (which is the goal of this project).

2. CodeGen_CIRCT.cpp: given the MLIR from the previous step, performs a series
of passes to convert the MLIR that uses high-level dialects into MLIR that uses
CIRCT’s hardware dialects:

(i) SCF to Calyx dialect: transforms the MLIR code into the Calyx dialect.
Note that at this point the Calyx code can be emitted into a human-readable
Calyx text file and could also be compiled with the native Calyx compiler.

(ii) Calyx to hardware dialects: transforms the MLIR code consisting of the
Calyx dialect into CIRCT hardware dialects such as comb, seq, fsm and sv.

Note that at this point the MLIR represents a generic RTL kernel and Sys-
temVerilog can already be emitted. However, to be executed, the kernel needs
some platform-specific wrappers that abstract the details of the underlying FPGA
platform. For this project, the target platform is Xilinx FPGAs, so the next step
is to add Xilinx-specific wrappers.

3. CodeGen_CIRCT_Xilinx_Dev.cpp: from the generic MLIR RTL kernel from the
previous step, it generates and adds Xilinx-specific wrappers to the code. For
example, the generated code includes a Calyx external memory interface to AXI4-
Manager converters (one instance for each memory interface), the control code
that implements the RTL kernel interface requirements (Section 3.5.4) of the im-
plemented XRT-Managed Kernel Execution model (Section 3.6.1), and a toplevel
that instantiates the kernel itself, the memory converters, and the control code.

4. Emit Verilog: the last step of CodeGen_CIRCT_Xilinx_Dev.cpp is actually to
emit SystemVerilog code to disk (Section 3.3.4). A kernel.xml file (Section 3.5.5.1)
containing the description of the kernel and its arguments is also generated, which
is needed for the next step.

5. Xilinx Vivado package_xo: now that all the SystemVerilog files for the Xilinx-
specific RTL kernel have been generated, we can use Xilinx Vivado’s package_xo
tool to package the kernel into a Xilinx object file (.xo) (Section 3.5.5).

6. Xilinx Vitis v++: the last step to generate the FPGA bitstream is to use the
Xilinx Vitis v++ tool to compile the Xilinx object file into a Xilinx binary file
(.xclbin) (Section 3.5.1).

72

CHAPTER 4. METHODOLOGY

7. Halide XRT runtime (xrt.cpp): a Halide runtime (Section 3.1.5.4) using the
Xilinx XRT runtime API (Section 3.6) is implemented, which loads the Xilinx
binary file into the FPGA, allocates the necessary buffers, passes the kernel argu-
ments, executes the kernel and finally retrieves the results.

73

CHAPTER 4. METHODOLOGY

4.2 Development methodology
Given the hierarchical and staged nature of the RTL generation and execution flow
from Halide IR presented in the previous section and the independence of its stages, the
development methodology is based on a top-down and incremental and iterative
design methodology.

4.2.1 MLIR generation

The first step is to implement the CodeGen_MLIR.cpp code generator, which is probably
one of the most important pieces since it is the one that generates the generic MLIR
code that not only is the entry point to the rest of the flow but also can reused in the
future to target other devices and acceleration APIs. The development of this
MLIR code generator is done incrementally and iteratively, starting with the simplest
Halide pipeline (which generates simple Halide IR code) and adding conversion support
for more complex Halide IR nodes as the development progresses. The development of
this code generator is done incrementally, starting with the most basic and important
Halide IR nodes and adding support for the rest of them as the development progresses.
The first Halide code that was used to start the development of the MLIR generator
consisted of a simple function that writes the index x of a 1D buffer plus an offset to
position x of that buffer:

output(x) = x + 42;

The Halide compiler generates Halide IR Add, IntImm, For and Store nodes, and they
were the first to be implemented in the Halide IR to MLIR generator. MLIR gives
descriptive errors then the generated MLIR code is not valid. This is important in
incremental and iterative development because it helps make sure the generated code is
at least semantically correct.

From that, the next step was to also add Halide IR memory Load and other arithmetic
operations (such as Mul and Sub) support to the MLIR generator. Again, very simple
code was used so that the generated MLIR can be simple and inspected visually to make
sure it looks functionally correct (MLIR code is dumped as a human-readable text file,
.mlir):

output(x) = input(x) * 3 - 20;

With this, conversion to MLIR of all the basic Halide IR nodes was implemented:
For loops, memory loads and stores, and arithmetic-logic operations. Before proceeding
to implement conversion for more advanced IR nodes such as the ones related to vector
operations, the rest of the flow was implemented.

74

CHAPTER 4. METHODOLOGY

4.2.2 Transformation to hardware dialects with CIRCT

The next step was to implement CodeGen_CIRCT.cpp, which takes MLIR consisting of
high-level dialects and generates a generic RTL kernel consisting of CIRCT hardware
dialects. The conversion involves using some of the transformation passes already imple-
mented in CIRCT: first, convert high-level MLIR dialects to the Calyx dialect and then
from Calyx to hardware dialects. While this transformation was implemented inside
Halide for convenience, given the generated human-readable MLIR code in the previous
step of the flow, this step could perfectly be externalized to outside Halide’s source code
by for example using the circt-opt tool (Section 3.3.5) and running all the necessary
passes.

It is important to note that while those passes are already implemented in CIRCT,
the ones related to Calyx conversion to hardware dialects had never been tested
before in other environments other than simple dialect conversion unit tests,
and much less in real hardware. Some bugs were encountered later in those passes when
the full flow was implemented and the code was being executed with Xilinx’s cycle-
accurate simulator for the first time. Thanks to the Xilinx Waveform Viewer, the bugs
could be identified and the fixes were contributed back to the CIRCT project
(they are already merged upstream).

At this point, SystemVerilog code can already be generated. Even though it can
not yet be executed because it is missing platform-specific wrappers, generation can be
useful to run linters1 on it to make sure it is semantically correct and inspected visually
to have an idea if it looks functionally correct.

4.2.3 Adding Xilinx platform-specific wrappers

After the conversion down to the generic RTL kernel was implemented, the platform-
specific wrapper generator was added, and in particular, for this thesis, the one that
generates the wrappers needed for Xilinx devices.

While the wrapper generator was implemented inside Halide’s source code
(CodeGen_CIRCT_Xilinx_Dev.cpp), this part, similarly to the previous one, is com-
pletely independent of Halide, CIRCT and MLIR and just involves generating
SystemVerilog code, therefore it could be externalized as an external tool written in
a different language such as Python, without needing to use the complex MLIR C++
APIs. The code that generates the kernel.xml, the contents of which depend on the
kernel arguments (Section 3.5.5.1), was also implemented as part of this step.

4.2.4 Compiling the RTL kernel

Finally, using the Xilinx Vitis Accel Examples2 as a reference, the script gen_xo.tcl
was written. This is a generic TCL script that is run by Xilinx Vivado tool and takes

1A linter is a static code analysis tool used to flag programming errors, bugs, stylistic errors and
suspicious constructs in the code.

2https://xilinx.github.io/Vitis_Accel_Examples/2022.2/html/index.html

75

https://xilinx.github.io/Vitis_Accel_Examples/2022.2/html/index.html

CHAPTER 4. METHODOLOGY

all the emitted SystemVerilog code and kernel.xml and creates a Vitis project which is
needed to package the kernel. Finally, it calls package_xo to package the kernel’s source
code into a Xilinx object file .xo which in turn is compiled into the Xilinx binary file
(.xclbin) by using the Vitis kernel compiler v++, as explained before.

4.2.5 Running the RTL kernel and debugging it

Figure 4.2 shows an overview of the compilation and execution of a kernel for all the
different flows supported by Vitis (Section 3.5). For this thesis, since we are generating
an RTL kernel for the PL part of the FPGA, we are interested in the vertically central
part of the figure (PL Kernel Flow).

Figure 4.2: Vitis, building and packaging the embedded system design.
Source: Vitis Unified Software Platform Documentation: Application Acceleration Development
(UG1393)

When generating the .xclbin targeting the hardware simulator, a script called
launch_emu.sh is also generated by v++. This script launches the Xilinx cycle-accurate
simulator and has many options such as to also lunch the Xilinx Waveform Viewer in

76

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-and-Packaging-the-System

CHAPTER 4. METHODOLOGY

real-time, which is very useful to debug the generated RTL kernel and make sure it is
functionally correct. When simulating an embedded platform (ARM CPU and FPGA),
QEMU is also launched to simulate the ARM CPU and the host-side part of the ker-
nel that is executed on the FPGA. launch_emu.sh also provides arguments to forward
the QEMU network ports to the host machine, which can be useful to access QEMU
via SSH or to debug the host-side part of the kernel with GDB. This is an example of
the command line options that can be passed to launch_emu.sh to open the waveform
viewer, to forward port 22 of QEMU to port 1440 of the host machine and to select a
file containing which signals to open by default on the waveform viewer:

launch_emu.sh -forward-port 1440 22 -sim-gui -wcfg-file-path wave.wcfg

The waveform viewer also lets the user add markers at specific timestamps of the sim-
ulation, and by combining that with the ruler tool it is possible to measure the latency
of different stages of kernel execution. This is very useful to make sure the kernel is
working as expected and to identify possible bottlenecks.

As an example, the next figure shows the usage of markers in an example kernel
execution. Three markers were placed: the first, in white because it is the currently
selected one, marks when the data read from m01_axi (AXI4 interface used to read data
in that kernel) was ready (ARVALID signal), the second marker, in blue, marks when the
write was issued (WREADY signal) to m00_axi (AXI4 interface used to write data in that
kernel), and the third and last marker, also in blue, marks when the data was again
read from m01_axi. Since a marker was selected, a relative time ruler starting from the
point of the selected marker is shown at the bottom in yellow. In this example, the ruler
shows 73.166 ns from the read to the first write, and 186.499 ns from the first read to
the second read.

77

CHAPTER 4. METHODOLOGY

Figure 4.3: Using markers to measure the latency between a read, write and the next
read.

78

Chapter 5

Implementation of the project

The previous chapters gave an overview of the tools that were used to implement the
project and the methodology that was followed to carry such implementation. This
chapter describes the implementation details and technical decisions taken during the
development.

It is divided into different sections, each one corresponding to the implementation
of each of the compilation steps of a Halide kernel from Halide IR down to RTL and
compilation and execution of the kernel on the FPGA, that were presented in Section
4.1. The sections are ordered in the same way as the compilation steps are ordered in
the figure.

79

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.1 Emitting MLIR
As explained before, one of the main goals of this thesis is to emit generic MLIR from
Halide IR. For that, we will be focusing on generating MLIR code that corresponds
to high-level dialects to allow the generated MLIR code to (potentially) target many
devices and targets.

For that, the basic dialects that are needed are arith, func, memref and scf. To
generate vectorized code, the vector dialect is also needed (Section 3.2.2).

5.1.1 Marking loops to be offloaded to an accelerator

As explained in Section 3.1.5.2, each Halide For loop contains an enum DeviceAPI that
tells the Halide compiler if the loop is to be offloaded to a particular device, and therefore
the generated code (JIT or AOT) will have calls to the runtime that implements that
DeviceAPI to run the loop (which now it is a standalone kernel) on the target device,
instead of implementing the loop in the host code.

A new entry to enum DeviceAPI was added, XRT, which as the name indicates will be
used to mark loops to be executed using Xilinx Runtime.

Halide’s current GPU support relies on the user using Halide GPU-specific scheduling
directives (Section 6) to annotate loops to be executed on the GPU with
DeviceAPI::Default_GPU. Later, a specific GPU target is picked based on those available
on the host (CUDA, OpenCL, etc).

For that, during Halide’s compilation (implemented in a function called lower_impl)
the function inject_gpu_offload is called. This function takes a Stmt and runs an
IRMutator called InjectGpuOffload that traverses the IR tree and looks for For loop
nodes that are annotated to be executed on the GPU and they get replaced to a call to
the Halide runtime of the GPU API.

For this project, we will not be introducing any FPGA-specific scheduling func-
tions to Halide. When the Halide target has the feature CIRCT set (it can be set via
an environment variable or an API call), all loops are marked automatically to be
offloaded to the FPGA. Then, a new function, inject_accelerator_offload, was im-
plemented and gets called during Halide’s compilation, which runs an IRMutator called
InjectAcceleratorOffload that traverses the IR tree and does two things for each For
loop found:

1. Pass the loop Stmt to the code generation backend for that particular accelera-
tor. For that, a virtual class called CodeGen_Accelerator_Dev has been introduced,
which mainly consists of a function, add_kernel, that takes a Stmt and the ker-
nel name and is responsible to generate the kernel code. For this thesis, since
we are only targeting Xilinx FPGAs and the only implementation of this class is
CodeGen_Xilinx_Dev (explained later in the chapter).

2. Replace the loop with a call to the Halide runtime that has been implemented for
XRT (xrt.cpp, explained later in this chapter) to launch the kernel. The function
is called halide_xrt_run. Other than invoking kernel execution, first, the kernel

80

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

needs to be loaded from the disk. For this, inject_accelerator_offload also injects
calls to halide_xrt_initialize_kernels and halide_xrt_finalize_kernels before
and after the kernel execution call, which are responsible for loading and unloading
the kernel respectively.

CodeGen_Xilinx_Dev uses CodeGen_MLIR internally to generate the high-level MLIR
code to be transformed into RTL.

5.1.2 Generating the function signature

CodeGen_MLIR’s constructor takes a few important arguments that are needed for MLIR
emission:

• mlir::ModuleOp &mlir_module: where the MLIR code will be emitted to.

• Stmt stmt: corresponding to the Halide IR (For loop) code to be emitted.

• const std::string &name: the name of the kernel to be emitted.

• const std::vector<DeviceArgument> &args: the arguments of the kernel.

The constructor instantiates an mlir::OpBuilder builder which will be needed to
emit MLIR code. It also iterates the kernel arguments and creates an MLIR function by
using the Func dialect (mlir::func::FuncOp), with the passed arguments. Note that the
arguments passed are Halide IR arguments, so they have to be converted to the MLIR
equivalent by using the function mlir_type_of (explained in the next section). It is also
important to note that arguments of buffer type (args[i].is_buffer) are translated into
two MLIR FuncOp arguments:

• A 64-bit integer argument, corresponding to the base offset of the buffer within
the assigned AXI interface. This kernel argument gets written by the host code
prior to kernel execution.

• A MemRefType argument, which is a type from the Memref dialect and is used as
a reference to the buffer to be used by memory load and store accesses. Before
performing memory accesses the base address is added to the index of the ac-
cess (explained later in the chapter). This argument gets converted into a Calyx
external memory interface later on, in the SCF to Calyx pass.

After creating the FuncOp, the builder is set to point inside the function code Block
and the subclass CodeGen_MLIR::Visitor which is derived from an IRVisitor is called,
which is responsible for walking the IR tree and emitting the MLIR code.

5.1.3 Halide IR type to MLIR type conversion

Converting Halide IR types to MLIR types is quite straightforward since the types map
well. Since this conversion is needed at many places in the MLIR generator, it was
implemented as a function called mlir_type_of. This function is divided into two cases
depending on the number of lanes of the Halide IR type (Halide::Type::lanes()):

81

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

• If it is 1, it means that the type is scalar, and then a switch-case statement is used to
convert the Halide IR type to the corresponding MLIR type. For both signed and
unsigned integers, an mlir::IntegerType with as many bits as the Halide IR type
(Halide::Type::bits()) is returned. For the float type, depending on the number
of bits, 16, 32 or 64 the corresponding mlir::FloatType is returned, and for the
bfloat, builder.getBF16Type() is returned, which is also of type mlir::FloatType.
All of these MLIR type specializations are classes derived from the base MLIR type
class, mlir::Type.

• If the number of lanes is greater than 1, it means that the type is a vector type,
and therefore an mlir::VectorType is created with as many lanes as those in the
Halide IR type, and the element type (Halide::Type::element_of()) of which is
converted by calling mlir_type_of recursively.

Halide IR Handle type conversion is currently not implemented since we are only
converting For loop nests, and Handles are opaque pointers the main use of which is to
pass them to other external code.

All Halide IR nodes contain a type field with the type of the result of the operation.
Checking this type can be useful during the translation of some nodes, for example, to
check if the result of a division is a signed or unsigned integer or a floating point number
and emit the corresponding MLIR operation.

5.1.4 Halide IR to MLIR translation

The main logic implementing the conversion is in the IRVisitor-derived
CodeGen_MLIR::Visitor. This class’ constructor takes an mlir::OpBuilder as a refer-
ence and the kernel arguments.

5.1.4.1 The symbol table

CodeGen_MLIR::Visitor maintains a symbol table, which is a mapping between a name
(std::string) and an mlir::Value. The symbol table is an object of the templated class
Scope provided by Halide and used by code generators. It is basically an std::map but
also keeps track of the scope of the variables as a stack. Three private methods are
implemented to help using the symbol table:

• void sym_push(const std::string &name, mlir::Value value): pushes a new sym-
bol, an mlir::Value, with the given name to the symbol table. Note if a symbol
with the same name already exists, it will be hidden and calls to sym_get will re-
turn the latest pushed symbol under that name until sym_pop is called to remove
the symbol.

• void sym_pop(const std::string &name): pops (deletes) the symbol with the given
name from the symbol table’s stack for that symbol name.

• mlir::Value sym_get(const std::string &name): returns the symbol at the sym-
bol table’s stack top for that symbol name.

82

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.1.4.2 Class constructor

The mlir::func::FuncOp class has a method getArgument(unsigned idx) that returns an
mlir::BlockArgument (a class derived from mlir::Value) corresponding to the argument
at the given idx. The constructor of CodeGen_MLIR::Visitor iterates over the passed
kernel arguments and uses getArgument on the FuncOp, the body of which is about to be
generated, to retrieve the symbol and push it to the symbol table.

If the argument is a buffer, a transformation on the base address of that buffer
within the AXI interface needs to be applied: in MLIR, when using memory accesses on
mlir::MemRefType, the index passed to access the buffer corresponds to the index of the
i-th element and not the address (in bytes) of the element, but the kernel argument that
the host writes is the offset in bytes. Therefore it is convenient to pre-calculate the offset
into the AXI interface as if it was an index for a buffer consisting of elements of the same
element type that the mlir::MemRefType corresponds to. The size in bits of each element
of the buffer is obtained by calling getIntOrFloatBitWidth() on the element type, which
is then divided by 8 to convert it to bytes. The value that gets pushed into the symbol
table is the result of dividing the original address within the AXI interface by the size
of the element type in bytes (a shift is performed instead of a division since all sizes are
powers of two).

After the class constructor finishes the Halide IR tree is walked and the corresponding
overloaded visit method for the particular IR node type gets called.

5.1.4.3 Helper codegen methods for Halide Expr and Stmt

Another two important helper methods of that CodeGen_MLIR::Visitor class that will
be used to implement the translation of Halide IR nodes into MLIR (detailed in the
next) section are the two codegen overloaded methods, one taking an Expr and returning
the corresponding translated mlir::Value, and the other one taking an Stmt and just
translating the node:

mlir::Value codegen(const Expr &e);
void codegen(const Stmt &s);

Those two helper methods call the accept method of the Expr and Stmt classes respec-
tively, by passing this as the IRVisitor* argument they take, which in turn calls the
corresponding visit method of the CodeGen_MLIR::Visitor class for that Expr or Stmt
node type.

The CodeGen_MLIR::Visitor class also contains a mlir::Value value member that the
visitor methods for node types that translate Expr return the result of the translation
into.

The codegen method for Expr checks that after calling visit on the node, the value
that the visit method for that node type is supposed to have written to is non-null
and asserts otherwise. This was useful to help catch new Halide IR nodes that were

83

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

being emitted but no translation into MLIR was implemented yet, which helped with
the incremental methodology used to develop the project.

5.1.4.4 Translation of Halide IR nodes

Block Contains a sequence of statements to be executed in-order: first and rest.
first is never a Block, so this node can be treated as a linked list of statements. The
implementation was a simple as just calling codegen on both statements:

void CodeGen_MLIR::Visitor::visit(const Block *op) {
codegen(op->first);
codegen(op->rest);

}

Let, LetStmt They represent the “let” construct found in many functional programming
languages. They contain a string name, Expr value, and a body which is an Expr for Let
and a Stmt for LetStmt.

For Let, within the expression body, instances of the symbol name refer to the value,
and the value produced by the body is returned as the result of the Let expression:

void CodeGen_MLIR::Visitor::visit(const Let *op) {
sym_push(op->name, codegen(op->value));
value = codegen(op->body);
sym_pop(op->name);

}

For LetStmt, within the statement body, instances of the symbol name refer to the
value.

void CodeGen_MLIR::Visitor::visit(const LetStmt *op) {
sym_push(op->name, codegen(op->value));
codegen(op->body);
sym_pop(op->name);

}

IntImm, UIntImm, FloatImm Numeric immediates. The implementation is the same for
all of them since the type field of Halide IR nodes can be passed into mlir_type_of to
convert it to the corresponding mlir::Type. The arith dialect’s ConstantOp operation
is used to create the mlir::Value by passing the immediate number value (stored in the
value member of the Halide IR node for the three node types for immediate numbers
mentioned), and the type of the immediate. The following code snippet shows the
implementation of the translation into MLIR for the Halide IntImm IR node type:

84

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const IntImm *op) {
mlir::Type type = mlir_type_of(op->type);
mlir::IntegerAttr val = builder.getIntegerAttr(type, op->value);
value = builder.create<mlir::arith::ConstantOp>(type, val);

}

Note that there is no distinction between signed and unsigned immediates (IntImm
and UIntImm) because the node of the operations that are sign-aware (such as multipli-
cation and division) encode the signedness of the operation in the node’s type field (as
will be seen later).

Cast This Expr node has to translate the value member in the node to a given type,
also a member of the node. Not only the target type can be different from the type
of the value member (integer to float or float to integer) but also the bit size can be
different.

When translating between integers, truncation or sign/zero-extension has to be per-
formed. If the destination type is larger than the source type, depending on the source
signed-ness, mlir::arith::ExtSIOp or mlir::arith::ExtUIOp are emitted accordingly. If
the destination is smaller than the source, mlir::arith::TruncIOp is emitted.

When converting from float to integers, depending on the destination signedness,
mlir::arith::FPToSIOp or mlir::arith::FPToUIOp are emitted accordingly, and for the
opposite, mlir::arith::SIToFPOp or mlir::arith::UIToFPOp are used.

Finally, when converting between floats, depending on the destination type being
larger or smaller than the source type mlir::arith::ExtFOp or mlir::arith::TruncFOp
are emitted accordingly.

Reinterpret This node just reinterprets the value as another type, without affecting
any of the bits. For that, mlir::arith::BitcastOp is emitted.

void CodeGen_MLIR::Visitor::visit(const Reinterpret *op) {
value = builder.create<mlir::arith::BitcastOp>(mlir_type_of(op->type), codegen(op->value));

}

Variable This node just has to return the mlir::Value corresponding to the symbol
name. The implementation was as easy as just calling the sym_get helper method:

void CodeGen_MLIR::Visitor::visit(const Variable *op) {
value = sym_get(op->name);

}

Add, Sub Addition/subtraction of two Expr, a and b. Depending on the type of the
operands, mlir::arith::AddIOp/SubIOp or mlir::arith::AddFOp/SubFOp are emitted ac-
cordingly. The following code is the translation of the Halide Add IR node:

85

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Add *op) {
if (op->type.is_int_or_uint())

value = builder.create<mlir::arith::AddIOp>(codegen(op->a), codegen(op->b));
else if (op->type.is_float())

value = builder.create<mlir::arith::AddFOp>(codegen(op->a), codegen(op->b));
}

Mul, Div, Mod Multiplication, division or modulo of two Expr, a and b.
mlir::arith::MulIOp/MulFOp are emitted for the multiplication,
mlir::arith::DivSIOp/DivUIOp/DivFOp for the division and
mlir::arith::RemSIOp/RemUIOp/RemFOp for the modulo.

Currently, Calyx considers these operations as long-latency and will inject several
pipeline stages when the Calyx dialect gets lowered into the hardware dialects. Since
multiplication, division and modulo with power-of-two numbers can be simplified into a
shift left, shift right and bitwise and, respectively, to avoid the injection of the pipelines
later when the Calyx dialect is lowered, now at MLIR emission the simplification is
performed. Note that the canonicalization of the MLIR comb dialect also performs these
(and more) optimizations, but at that point, the Calyx dialect has already been lowered
and we would end up with the optimized code with useless pipeline stages. Avoiding
this deduplication of the optimizations is left as future work.

The following code is the translation of the Halide Mul IR node:

void CodeGen_MLIR::Visitor::visit(const Mul *op) {
int bits;
if (is_const_power_of_two_integer(op->b, &bits))

value = codegen(op->a << make_const(op->a.type(), bits));
else if (op->type.is_int_or_uint())

value = builder.create<mlir::arith::MulIOp>(codegen(op->a), codegen(op->b));
else if (op->type.is_float())

value = builder.create<mlir::arith::MulFOp>(codegen(op->a), codegen(op->b));
}

The is_const_power_of_two_integer is a Halide helper function that returns whether
an expression is a power of two and if so the log2 of it. make_const is a Halide function
that creates an Expr representing a constant of the given type and value.

For the division, the simplification is performed similarly (shift right):

void CodeGen_MLIR::Visitor::visit(const Div *op) {
int bits;
if (is_const_power_of_two_integer(op->b, &bits))

value = codegen(op->a >> make_const(op->a.type(), bits));
...

}

And the same for the modulo (bitwise and with a mask):

86

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Mod *op) {
int bits;
if (is_const_power_of_two_integer(op->b, &bits))

value = codegen(op->a & make_const(op->a.type(), (1 << bits) - 1));
...

}

EQ, NE Equality and inequality comparison operations. Depending on the types of the
source operands (operand a’s type is used since Halide guarantees that both operands
will have the same type), mlir::arith::CmpIOp or mlir::arith::CmpFOp are emitted,
depending on whether the operands are integer or floating-point types, respectively.
Those two MLIR operations take a predicate to indicate the type of comparison to
perform. In Halide, floating-point comparisons are treated as ordered, so the O prefix is
used on the floating-point comparison predicates. The following code is the translation
of the Halide EQ IR node:

void CodeGen_MLIR::Visitor::visit(const EQ *op) {
if (op->a.type().is_int_or_uint())

value = builder.create<mlir::arith::CmpIOp>(mlir::arith::CmpIPredicate::eq,
codegen(op->a), codegen(op->b));

else if (op->a.type().is_float())
value = builder.create<mlir::arith::CmpFOp>(mlir::arith::CmpFPredicate::OEQ,

codegen(op->a), codegen(op->b));
}

LT, LE, GT, GE Less than, less or equal, greater than and greater or equal comparison
operations. Very similar to EQ and NE but integers need to be checked whether it is a
signed or unsigned comparison and use the appropriate predicate. The following code is
the translation of the Halide LT IR node:

void CodeGen_MLIR::Visitor::visit(const LT *op) {
if (op->a.type().is_int_or_uint()) {

mlir::arith::CmpIPredicate predicate = op->type.is_int() ?
mlir::arith::CmpIPredicate::slt :
mlir::arith::CmpIPredicate::ult;

value = builder.create<mlir::arith::CmpIOp>(predicate,
codegen(op->a), codegen(op->b));

} else if (op->a.type().is_float()) {
value = builder.create<mlir::arith::CmpFOp>(mlir::arith::CmpFPredicate::OLT,

codegen(op->a), codegen(op->b));
}

}

And, Or, Not Logical operators. Since they are logical, first the operands are compared
with 0 to reduce them to 1-bit, and then the binary operators of arith dialect are used.
For example, the And has been implementation as follows:

87

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const And *op) {
mlir::Value a = codegen(NE::make(op->a, make_zero(op->a.type()));
mlir::Value b = codegen(NE::make(op->b, make_zero(op->b.type()));
value = builder.create<mlir::arith::AndIOp>(a, b);

}

Select Ternary operator that selects between two values depending on the value of a
condition. Maps perfectly to arith’s dialect SelectOp:

void CodeGen_MLIR::Visitor::visit(const Select *op) {
value = builder.create<mlir::arith::SelectOp>(codegen(op->condition),

codegen(op->true_value),
codegen(op->false_value));

}

Note that the SCF to Calyx pass does not have conversion support for this operand
yet. The Halide code tested so far has not produced the Select Halide IR node. Imple-
menting transformation support of this MLIR operation in the SCF to Calyx pass is left
as future work.

For The only loop construct that Halide IR has, the for loop. We have to iterate from
min to min + extent with a step of 1. First, the lower (lb) and upper (ub) bounds are cal-
culated and type-casted into mlir::IndexType, as needed by mlir::scf::ForOp and then
the mlir::scf::ForOp is created. To generate the body of the loop, the builder’s inser-
tion point is set to the start of the loop body (using RAII1

mlir::OpBuilder::InsertionGuard) and the body is generated by calling codegen. The
symbol that corresponds to the loop induction variable is pushed to the symbol table so
that it can be used within the loop body. The following code is the translation of the
Halide For IR node:

1Resource Acquisition Is Initialization

88

https://en.cppreference.com/w/cpp/language/raii

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const For *op) {
mlir::Value min = codegen(op->min);
mlir::Value max = builder.create<mlir::arith::AddIOp>(min, codegen(op->extent));
mlir::Value lb = builder.create<mlir::arith::IndexCastOp>(builder.getIndexType(), min);
mlir::Value ub = builder.create<mlir::arith::IndexCastOp>(builder.getIndexType(), max);
mlir::Value step = builder.create<mlir::arith::ConstantIndexOp>(1);

mlir::scf::ForOp forOp = builder.create<mlir::scf::ForOp>(lb, ub, step);
{

mlir::OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&forOp.getLoopBody().front());

mlir::Value i = forOp.getInductionVar();
sym_push(op->name, builder.create<mlir::arith::IndexCastOp>(max.getType(), i));
codegen(op->body);
sym_pop(op->name);

}
}

Instead of using the SCF dialect, emitting loops using the affine dialect to take
advantage of potential polyhedral optimizations is left as future work.

IfThenElse As of time of implementing the project and writing this thesis, the SCF
to Calyx pass does not yet have lowering support for mlir::scf::IfOp, which ideally
should be used to implement this Halide IR node. So far, the encountered IfThenElse
nodes only had the then-branch but not the else-branch. Therefore, as a temporary
workaround, a For loop is created in place of the if-then branch (no support for the
else-branch). The For loop consists of a lower bounds of 0 and an upper branch being
the result of the If condition (with a step of 1), therefore the resulting loop will not do
any iterations if the condition is false, and only one iteration if it is true:

void CodeGen_MLIR::Visitor::visit(const IfThenElse *op) {
internal_assert(!op->else_case.defined()) << "Else case not supported yet.";
codegen(For::make("if_then_branch", 0, Cast::make(Int(32), op->condition),

ForType::Serial, DeviceAPI::None, op->then_case));
}

If in the future the affine dialect is used for loops and control flow, this implemen-
tation has to be changed to emit AffineIfOp instead.

Allocate While this node is supposed to support the allocation of different memory
types as indicated by its memory_type field, in the current implementation this field is
ignored and memories are allocated supposing that they are static and device-local.
On FPGAs, after synthesis and depending on the vendor tool, they will most likely be
allocated as BRAM, FF or LUTRAMs. The constant_allocation_size helper method
of the Allocate node class is used to retrieve the size in the number of elements, where
each element is of a given type, of the memory.

89

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

Since buffer kernel arguments are decomposed into a mlir::MemRefType and an integer
offset (explained in Section 5.1.4.2), which both get pushed to the symbol table and are
needed by the Load and Store implementation (as seen later), we will mimic the same in
the implementation of this node to make Load and Store implementation generic. Unlike
external buffers which start at a specific offset in the AXI interface, local memories
indices start at index 0.

void CodeGen_MLIR::Visitor::visit(const Allocate *op) {
internal_assert(op->type.is_scalar()) << "Vector types not supported.";

int32_t size = op->constant_allocation_size();
mlir::MemRefType type = mlir::MemRefType::get({size}, mlir_type_of(op->type));
mlir::memref::AllocOp alloc = builder.create<mlir::memref::AllocOp>(type);
mlir::Attribute zero = builder.getI64IntegerAttr(0);
mlir::Value constantZero = builder.create<mlir::arith::ConstantOp>(zero);

sym_push(op->name, constantZero);
sym_push(op->name + ".buffer", alloc);
codegen(op->body);
sym_pop(op->name + ".buffer");
sym_pop(op->name);

}

Unfortunately, support for allocating device-local memories with vector types and
supporting vectorized memory accesses, which is indispensable to get good performance
on many algorithms that use local buffers, could not be implemented in time for this
thesis and is left as future work.

Free Since dynamic memory allocation is not supported, Free is a no-op.

Load Halide IR expression node to perform a memory load access from a memory refer-
enced by a name at a given index. Even though there is an optional predicate feel which
predicates the execution of the memory access, so far no Load node has been encoun-
tered that uses it and therefore it is ignored in the current implementation and left for
future work. Both the buffer (mlir::MemRefType) and the starting index of the buffer are
retrieved from the symbol table and a mlir::memref::LoadOp or a mlir::vector::LoadOp
operation is emitted depending on whether the return type of the node is a scalar or
vector. A special Halide IR node Ramp (explained later) can be found as the load index
for vector memory loads. Only vector loads with a stride of 1 as vector element strides
(in other words, consecutive buffer elements) are currently supported. To check for that,
the Halide helper strided_ramp_base is used, which also returns the base element of the
access.

90

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Load *op) {
Expr index;
if (op->type.is_scalar()) {

index = op->index;
} else if (Expr ramp_base = strided_ramp_base(op->index); ramp_base.defined()) {

index = ramp_base;
} else {

user_error << "Unsupported load.";
}

mlir::Value baseIndex = sym_get(op->name);
mlir::Value indexI64 = builder.create<mlir::arith::ExtUIOp>(builder.getI64Type(),

codegen(index));
mlir::Value address = builder.create<mlir::arith::AddIOp>(baseIndex, indexI64);
mlir::Value addrIdx = builder.create<mlir::arith::IndexCastOp>(builder.getIndexType(),

address);

mlir::Value buffer = sym_get(op->name + ".buffer");

if (op->type.is_scalar()) {
value = builder.create<mlir::memref::LoadOp>(buffer, mlir::ValueRange{addrIdx});

} else {
value = builder.create<mlir::vector::LoadOp>(mlir_type_of(op->type), buffer,

mlir::ValueRange{addrIdx});
}

}

Store Halide IR expression node to perform a memory store access of a value to a
memory referenced by a name at a given index. Analogously to the Load node, the same
implementation and limitations apply.

91

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Store *op) {
Expr index;
if (op->value.type().is_scalar()) {

index = op->index;
} else if (Expr ramp_base = strided_ramp_base(op->index); ramp_base.defined()) {

index = ramp_base;
} else {

user_error << "Unsupported store.";
}

mlir::Value baseIndex = sym_get(op->name);
mlir::Value indexI64 = builder.create<mlir::arith::ExtUIOp>(builder.getI64Type(),

codegen(index));
mlir::Value address = builder.create<mlir::arith::AddIOp>(baseIndex, indexI64);
mlir::Value addrIdx = builder.create<mlir::arith::IndexCastOp>(builder.getIndexType(),

address);

mlir::Value value = codegen(op->value);
mlir::Value buffer = sym_get(op->name + ".buffer");

if (op->value.type().is_scalar())
builder.create<mlir::memref::StoreOp>(value, buffer, mlir::ValueRange{addrIdx});

else
builder.create<mlir::vector::StoreOp>(value, buffer, mlir::ValueRange{addrIdx});

}

Call As the name implies, while this node can represent a call to an external function
(Extern CallType), it is also used as a catch-all node for Halide operations that do not
have their own IR node (Intrinsic and PureIntrinsic). Examples of intrinsics such
intrinsics include bitwise and, shift left and right, widening multiplications, saturating
arithmetic operations, etc. Only the intrinsics encountered so far have been implemented.
Implementing the rest of them is left as future work.

92

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Call *op) {
if (op->is_intrinsic(Call::bitwise_and)) {

value = builder.create<mlir::arith::AndIOp>(codegen(op->args[0]),
codegen(op->args[1]));

} else if (op->is_intrinsic(Call::shift_left)) {
value = builder.create<mlir::arith::ShLIOp>(codegen(op->args[0]),

codegen(op->args[1]));
} else if (op->is_intrinsic(Call::shift_right)) {

if (op->type.is_int())
value = builder.create<mlir::arith::ShRSIOp>(codegen(op->args[0]),

codegen(op->args[1]));
else

value = builder.create<mlir::arith::ShRUIOp>(codegen(op->args[0]),
codegen(op->args[1]));

} else if (op->is_intrinsic(Call::widen_right_mul)) {
mlir::Value a = codegen(op->args[0]);
mlir::Value b = codegen(op->args[1]);
if (op->type.is_int())

b = builder.create<mlir::arith::ExtSIOp>(a.getType(), b);
else

b = builder.create<mlir::arith::ExtUIOp>(a.getType(), b);
value = builder.create<mlir::arith::MulIOp>(a, b);

} else {
internal_error << "Call " << op->name << " not implemented\n";

}
}

Broadcast Typical vector broadcast operation where a vector is created with each el-
ement/lane being the same value. It was implemented using the SplatOp operation of
the vector dialect which does exactly that.

void CodeGen_MLIR::Visitor::visit(const Broadcast *op) {
value = builder.create<mlir::vector::SplatOp>(mlir_type_of(op->type), codegen(op->value));

}

Ramp As mentioned before, represents a vector in a where each element at position i
is base + i × stride. Since other than the vector memory load and store operations
the only other vector operation that was implemented in this project was the SplatOp
operation, the translation of this node was implemented only using arith operations
and SplatOp. For that, a vector of indices is created, with each element at position i
containing the value i. Then, using SplatOp (broadcast) another vector is created with
each element being the stride of the Ramp node. Finally, the two vectors are multiplied
together and added to another vector SplatOp of the Ramp’s base value.

93

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

void CodeGen_MLIR::Visitor::visit(const Ramp *op) {
mlir::Value base = codegen(op->base);
mlir::Value stride = codegen(op->stride);
mlir::Type elementType = mlir_type_of(op->base.type());
mlir::VectorType vectorType = mlir::VectorType::get(op->lanes, elementType);

mlir::SmallVector<mlir::Attribute> indicesAttrs(op->lanes);
for (int i = 0; i < op->lanes; i++)

indicesAttrs[i] = mlir::IntegerAttr::get(elementType, i);

mlir::DenseElementsAttr indicesDenseAttr = mlir::DenseElementsAttr::get(vectorType,
indicesAttrs);

mlir::Value indicesConst = builder.create<mlir::arith::ConstantOp>(indicesDenseAttr);
mlir::Value splatStride = builder.create<mlir::vector::SplatOp>(vectorType, stride);
mlir::Value offsets = builder.create<mlir::arith::MulIOp>(splatStride, indicesConst);
mlir::Value splatBase = builder.create<mlir::vector::SplatOp>(vectorType, base);
value = builder.create<mlir::arith::AddIOp>(splatBase, offsets);

}

94

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.2 Emitting a generic RTL kernel
Given the generic MLIR code generated previously, the aim is to convert it into a generic
RTL kernel that theoretically can run on any FPGA, modulo the vendor-specific wrap-
pers.

Figure 5.1 shows all the transformation passes invoked to carry out the transforma-
tion of generic MLIR code to CIRCT code that only uses hardware dialects.

Generic MLIR

mlir::createForToWhileLoopPass()

circt::createSCFToCalyxPass()

circt::calyx::createRemoveCombGroupsPass()

circt::createCalyxToFSMPass()

circt::createMaterializeCalyxToFSMPass()

circt::createRemoveGroupsFromFSMPass()

circt::calyx::createClkInsertionPass()

circt::calyx::createResetInsertionPass()

circt::createCalyxToHWPass()

MLIR to Calyx

Calyx to hardware

CodeGen_CIRCT

CIRCT with hardware dialects

Figure 5.1: Passes executed to convert from generic MLIR to CIRCT’s hardware dialects.
After the MLIR to Calyx step, human-readable Calyx code can be emitted.

95

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.2.1 Lowering MLIR to CIRCT’s Calyx dialect

While the lowering pass that transforms generic MLIR to CIRCT’s Calyx dialect was
already implemented upstream in the circt::createSCFToCalyxPass, the reality is that
only basic support for the bare minimum operations was implemented and the rest
of operations were being marked as illegal for conversion. In CIRCT, the developers
implemented the passes to go from Calyx down to RTL quite later2 than this pass,
therefore for some time, CIRCT could only be used to transform from MLIR to Calyx
and emit human-readable Calyx code to be used by the native Calyx compiler.

It is interesting to note that not all the loop constructs are supported by this pass,
only mlir::scf::WhileOp is. As seen before, since CodeGen_MLIR emits mlir::scf::ForOp,
they have to be converted into WhileOp prior to SCF to Calyx execution. Thankfully,
MLIR already provides a pass that does that exact thing: mlir::createForToWhileLoopPass.

In particular, the missing support and limitations of this pass prior to this thesis
were:

• The SCF to Calyx pass was generating Calyx components with incremental argN
names which made it difficult for the RTL top-level generator (explained in the
next section) to connect the kernel argument ports.

• External memories were considered as having combinational reads, which is not
the case when dealing with AXI interfaces and most real memories.

• Variable memory-access sizes were not supported, which was limiting all the mem-
ory accesses to a particular external memory (AXI interface) to be of the same
size.

• Support for many basic operations in the arith dialect was missing (such as
MinSIOp).

• calyx::AssignOp only supported the source and the destination to be of the
same type. Since there is no vector or array construct in the Calyx language,
the AssignOp definition was modified to allow different types in source and des-
tination, to enable linearization and delinearization support of vectors when for
example reading from or writing to external memories.

• None of the operations of the vector dialect were supported (the whole dialect
was marked as illegal).

All those issues had to be fixed and the missing features were addressed during the
development of this thesis. While not all of the code changes were done in a very clean
way due to time constraints or implementation difficulties due to how the previous code
was structured way or adding, some of the changes were contributed to CIRCT and they
are already part of the upstream code.

2https://github.com/llvm/circt/pull/4600

96

https://github.com/llvm/circt/pull/4600

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.2.1.1 Passing custom argument names to Calyx

To implement this, a new MLIR string attribute related to the Calyx dialect was added to
the FuncOp arguments (circt::scfToCalyx::sPortNameAttr). When FuncOps are walked
in circt::createSCFToCalyxPass, and each of them is converted into a Calyx component,
the arguments of the FuncOp are checked if they contain that attribute, and if present, the
custom argument name is passed (calyx::PortInfo) to the Calyx component creation.
The changes and an integration test were accepted and merged to CIRCT3.

5.2.1.2 Support for sequential-reads memories

As explained, before implementing this thesis all Calyx memories were considered com-
binational memories and therefore they were missing a read-enable signal, which is un-
realistic and needed by the AXI interface.

To mark memories as having sequential reads, a new boolean attribute,
circt::scfToCalyx::sSequentialReads was added to both the FuncOp arguments that are
of type MemRefType, which represent external (AXI4) memories, and to
mlir::memref::AllocOp operations, that are emitted by the MLIR code generator for
Halide Allocate IR nodes to allocate local memories as explained before.

When circt::createSCFToCalyxPass converts both cases (external and local mem-
ories), the attribute is checked and a new assignable signal, read_en (returned by the
new readEn() method) is added to the memory interface.

Given the requirement of Calyx that once a group is done (done signal asserted) all
output signals need to remain stable, a new latch register that stores the data read from
memory and forwards it to the next groups depending on it is created.

The read_en is driven by a memref::LoadOp (and vector::LoadOp) when the access
if performed to a memory with sequential reads.

Currently, memory access ports contain a single done signal, therefore it is not
possible to perform a memory write and load at the same time. In any case, this is
implementation-defined and might lead to undefined behavior according to the AXI4
specification.

Implementing this allows interfacing (with extra logic, as explained later) with pro-
tocols such as AXI4 and the MLIR seq dialect’s high-level memories (HLMemOp).

While the code is ready and a pull request was submitted4, it has not been merged
yet as there is pending discussion about the best way to implement this feature and
potentially make the code more generic to add support for more kinds of memories.

5.2.1.3 Variable memory-access sizes

Initially, memory accesses to external memories were limited to a single size (the size of
the element type of the corresponding MemRefType). To support variable-size accesses to
external memories, a new signal, access_size, is added to the memory interface. This

3https://github.com/llvm/circt/pull/4841
4https://github.com/llvm/circt/pull/4857

97

https://github.com/llvm/circt/pull/4841
https://github.com/llvm/circt/pull/4857

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

signal carries the size of the memory access in the same format as the AXI4 protocol
specification: the log2 of the access size in bytes (which must be a power of two).

When there is a read or write to external memory, its access_size signal is assigned
to the size of the memory access. This is done by adding a new calyx::AssignOp opera-
tion of the calculated access size (which is a constant value for this Calyx group) to the
access_size signal.

5.2.1.4 Support more arith dialect operations such as MinSIOp

So far the only operation in the arith dialect that was being emitted but was not im-
plemented in the SCF to Calyx pass was the signed integer minimum operation MinSIOp.
This is a really common operation generated by Halide since checks for loop ranges to
implement things such as loop prologues/epilogues depend on it.

This operation was not implemented in an optimal way from a resource usage per-
spective due to the lack of some Calyx operations that would be beneficial. The imple-
mentation was done by instantiating two comparators and two Calyx assign operations
with guards being the output of the comparators, as a way to implement a multiplexer.
Probably a better implementation would be to instantiate a not gate instead of the
second multiplexer to feed the second assign operation’s guard.

Improving the Calyx language with new operands to support this and more cases
more optimally is left as future work. One way would be to add direct support for min
and max operations directly into the Calyx language. Another more generic way would
be to add cmp and select operations that would allow implementing this and more cases.

5.2.1.5 Adding initial vector support

To add initial support for vector types, the definition of the calyx::AssignOp operation
(in the CalyxStructure.td file, in TableGen format) was modified to remove the re-
striction that the source and destination have to be of the same type. After the change,
it is possible to assign a continuous array of bits into a vector, where each element of
the vector gets the corresponding slice of the array, and vice versa.

Note that this is not a clean way to support vectors and proper support would involve
adding native vector operations to the Calyx language. This is left as future work for
discussion.

5.2.1.6 Implement basic vector dialect operations

For vector::SplatOp support, a new operation, calyx::SplatLibOp, was added into Ca-
lyx, and therefore the conversion is direct. The lowering of calyx::SplatLibOp into
hardware is explained in the next section.

vector::LoadOp and vector::StoreOp operation lowering is the same as the already-
existing memref::LoadOp and memref::StoreOp lowering, thanks to the calyx::AssignOp
change just explained. The only difference is that now the access_size signal is calcu-
lated as the size of the vector element type multiplied by the vector length.

98

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.2.2 Lowering CIRCT’s Calyx dialect to hardware dialects

Some of the changes explained in the previous section also require corresponding changes
in the lowering from the Calyx dialect to the hardware dialects.

Not only the implementation of new features was needed, but also some bugs were
found and had to be fixed. While prior to the thesis there already was support for the full
flow to convert MLIR into SystemVerilog in CIRCT, the reality is that the conversion
was never tested beyond some simple dialect conversion tests, which do not test the
functional correctness of the transformed code when running in a real platform, be it a
cycle-accurate simulator or hardware.

This section explains the lower-level implementation to support the upper-level changes
that were done and the fix of the bugs that were found.

5.2.2.1 Conversion from mlir::VectorType to hw::ArrayType

To model vectors in hardware, the hw::ArrayType of the hw dialect of CIRCT is used.
A helper function Type convertType(Type type) is introduced which takes any type,

checks if it is of type mlir::VectorType and if so it converts it to the equivalent
hw::ArrayType: an array with as many elements and same element type as the vector.

Another helper, unsigned getTypeSize(Type type) was also implemented, which re-
turns the total number of bits of a given type, including arrays and vectors.

Those two helpers are needed to implement some of the changes introduced in the
Calyx to hardware lowering.

5.2.2.2 Allowing calyx::AssignOp to have different source and destination
types

As explained before, the calyx::AssignOp operation was modified to allow different
source and destination types to support assigning consecutive bits into vectors and vice
versa.

According to the Calyx specification, when a calyx::AssignOp’s guard is not active, it
has to assign zeroes to the signal. Originally, the calyx::AssignOp lowering checked if the
operation had a guard, and if so it created a constant 0 matching the width of the wires
and a comb::MuxOp that selects between the constant and the source signal depending
on the guard, as the new source signal. To support the lowering of vectors, the creation
of the 0 constant was modified to check if the source type of the mlir::AssignOp is of
mlir::VectorType, and if so, an array of 0s is created with hw::ArrayCreateOp.

After that, the source signal needs to be assigned using sv::AssignOp of the sv dialect
into the destination. First both types and converted into the hardware equivalent type
(convertType). Then, there are two cases:

1. Source and destination types are the same: a single sv::AssignOp is generated.
This was the only case in the implementation prior to this thesis.

2. Source and destination types are different:

99

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

(a) Source is an array: each element i of the array is retrieved with hw::ArrayGetOp
and assigned to the corresponding bits ([i × E +: E], where E is the element
size) of the destination with sv::IndexedPartSelectInOutOp to select them
and sv::AssignOp.

(b) Destination is an array: each element of the array is retrieved as assignable
with sv::ArrayIndexInOutOp, which gets assigned with the corresponding bits
selected from the source bits (sv::IndexedPartSelectOp).

Additionally, support for truncation (source type larger than destination type)
is also supported by using sv::IndexedPartSelectOp. This is needed to support
variable-length accesses to external memory, where the data bus width is fixed but
the access size can be smaller than that.

5.2.2.3 Adding support of vector arith::ConstantOp

Each element of the constant is retrieved and a hw::ConstantOp is created with the
corresponding constant value, then hw::ArrayCreateOp is used to create the array of
constants.

5.2.2.4 Lowering calyx::SplatLibOp into hardware

The lowering of this new calyx::SplatLibOp that had to be created to have minimal
support for vector code is simple: the source scalar value is repeated as many times as
the destination vector length (which is now an array) and hw::ArrayCreateOp is used to
create the array.

5.2.2.5 Adding support of vector types in Calyx arithmetic/binary opera-
tions

Calyx library operators also had to be updated to support vector types. The types of
the inputs are checked, and if they are scalars, the corresponding operation from the
comb dialect is instantiated (for example comb::AddOp for calyx::AddLibOp), which was
the default code. In the case they are vectors, hw::ArrayGetOp is used to extract the i-th
element of the left and right operands, the appropriate comb operation is instantiated
for each element, and the output is created by using hw::ArrayCreateOp with the outputs
of the comb operations.

5.2.2.6 Adding support of vector types in Calyx pipeline operations

Calyx pipeline operations use two helper functions, wireIn and wireOut to instantiate
wires that connect the pipeline stages. Those two functions were updated to support
vector types by using the result of convertType.

The helper function to instantiate clock-enabled registers, regCe, was also updated
to support vector types. Since registers the contents of which are arrays were already

100

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

supported, the only change was to create an array of zeroes for the reset value in case
the type was a vector and not a scalar.

5.2.2.7 Lowering of calyx::MemoryOp

Before this thesis, calyx::MemoryOp support was missing: the only use case was to emit
human-readable Calyx to be used with the native compiler, but not to be lowered into
hardware. To generate local memories in the RTL, support for lowering calyx::MemoryOp
had to be implemented.

Since the address generated CodeGen_MLIR already indexes elements and not bytes,
no change had to be done to the address calculation.

Memories are lowered as the seq dialect’s seq::HLMemOp, which represents a high-level
memory operation and intends to capture the semantics of a memory that eventually
maps to some form of on-chip resource (whether being FPGA or ASIC-based). The
abstraction aims to abstract away the physical implementation details of the memory,
and instead focus on the external interface and access semantics of the memory, which
facilitates analysis and transformation (e.g. memory merging, read/write conflicts, etc.)
and may serve as a target for other high-level abstractions. By default, seq::HLMemOp
can be lowered into simple SystemVerilog registers of hw::UnpackedArrayType by using
the circt::seq::createLowerSeqHLMemPass, which is what is currently being done.

A read port and a write port are created to access the memory by using
seq::WritePortOp and seq::ReadPortOp, respectively. Since the same address bus is
used for both reads and writes, the address of the memory interface is assigned to both
read and write ports. Since Halide group outputs have to remain stable, the data read
from memory is latched into a register that feeds the dependant groups. In this mem-
ory, writes take one cycle and reads are combinational, therefore the signal for the group
done is the or of the read and write enable signals. The write enable signal is masked
when the group done register is active to avoid writing more than once.

read_en

write_en

group done register

clk

write_en′

Figure 5.2: Write enable logic for local memories. The write_en’ signal to local mem-
ories is masked by the done register of the Calyx group not being active.

101

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.3 Wrapping the generic RTL kernel for Xilinx FPGAs
The final step to be able to execute Halide-generated code on Xilinx FPGAs is to wrap
the generic RTL kernel with the necessary Xilinx-specific logic, which includes the Calyx
external memory to AXI converters, the AXI4-Lite subordinate control logic as dictated
by the XRT-managed kernel execution models 3.6.1, and the top-level that instantiates
and connects all the components together. Figure 5.3 shows the steps taken to add the
necessary wrappers and export the SystemVerilog code.

CIRCT with hardware dialects

Add Calyx external memory to AXI converters

Add AXI4-Lite kernel control interface

Add top-level

circt::seq::createLowerSeqHLMemPass()

circt::createConvertFSMToSVPass()

circt::seq::createSeqLowerToSVPass()

circt::exportSplitVerilog(directory)

Generate kernel.xml

Add Xilinx wrappers

Generate SystemVerilog

CodeGen_CIRCT_Xilinx_Dev

SystemVerilog code kernel.xml

Figure 5.3: Steps needed to export SystemVerilog targeting Xilinx devices from CIRCT
with hardware dialects. First, the needed Xilinx-specific wrappers are added, and then
the passes to convert to SystemVerilog are executed. A kernel.xml file needed by Vitis
v++ is also generated.

102

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.3.1 Calyx external memory to AXI converter

As explained before, buffer kernel arguments are converted to Calyx external memory
interfaces. These interfaces consist of an addr bus for each dimension of the memory
(always unidimensional for this thesis), write enable and read enable (implemented in
5.2.1.2) signals, read and write data buses, an access size signal (implemented in 5.2.1.3),
and a single done signal that the external memory has to assert when the read/write
access has completed.

Since we are targeting an embedded FPGA device, we have to convert those signals to
the AXI interface in order to perform memory accesses. For that, a hardware component,
the “Calyx external memory access to AXI converter”, has been implemented.

5.3.1.1 AXI protocol

AXI, or the Advanced eXtensible Interface [69], is a protocol designed by ARM for
high-performance, high-frequency system designs. It is used for communication between
various components within an SoC such as processors, memory, and peripherals. The
AXI protocol has separate read and write channels, which enable concurrent data trans-
fers and improve overall system performance:

• Write channels: used to transfer write requests, data, and responses for write
transactions. There are three channels in total:

– Write request channel: the manager sends the address where the data will be
written, along with control information such as burst length, size, and type,
to the subordinate device. Signals on this channel have the prefix AW.

– Write data channel: the manager sends the actual data to be written to
the address specified previously in the subordinate device. This channel also
carries a signal called write strobe (wstrb) which contains a mask of which
byte lanes are valid and have to be written. Signals on this channel have the
prefix W.

– Write response channel: after the write operation is completed, the subordi-
nate sends a response back to the manager, indicating the success or failure
of the operation. Signals on this channel have the prefix B.

• Read channels: used to perform read requests to read data from the subordinate
to the manager. There are two channels:

– Read address channel: the manager sends the address from which the data
needs to be read, along with control information such as burst length and size
to the subordinate device. Signals on this channel have the prefix AR.

– Read data channel: the subordinate sends the requested data back to the
manager, along with a response indicating the success or failure of the oper-
ation. Signals on this channel have the prefix R.

103

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

Each of the five independent channels for reads and writes consists of a set of in-
formation signals and VALID and READY signals that implement a two-way handshake
mechanism. The information source uses the VALID signal to communicate that data
is available on the channel. The information receiver uses the READY signal to indicate
when it can accept the information. Both the read data channel and the write data
channel also include a LAST signal to indicate the transfer of the final data item in a
transaction.

When in a clock cycle both VALID and READY are asserted simultaneously, the data
is considered as “transferred”. The actual transfer takes place at the rising edge of the
clock cycle when both signals are high.

5.3.1.2 Calyx external memory to AXI converter

The converter has as inputs all the AXI signals that go from the subordinate to the
manager and the Calyx signals that are outputs from the kernel. The outputs of the
converter are the AXI signals that go from the manager to the subordinate and the
Calyx signals that are inputs to the kernel, as shown in Figure 5.4.

Since Calyx will only generate at most a single memory access in a given group, a
single finite-state machine can be used to handle the external memory requests coming
from the kernel. For simplicity, all transactions performed will have a length of 1 (the
LAST signal is always asserted), and the transfer response signal will not be checked. Im-
proving the converter to support multiple transfers per transaction (bursts) and checking
the transfer response signal is left as future work.

Calyx external memory
to AXI converter

m_axi_arready
m_axi_rdata

m_axi_rvalid
m_axi_rlast

m_axi_awready
m_axi_wready
m_axi_bvalid

calyx_write_data
calyx_addr0

calyx_write_en
calyx_read_en

calyx_access_size

m_axi_arvalid
m_axi_arlen
m_axi_rready
m_axi_awaddr
m_axi_awvalid
m_axi_awlen
m_axi_wdata
m_axi_wvalid
m_axi_wstrb
m_axi_wlast
m_axi_bready
calyx_read_data
calyx_done

Figure 5.4: Calyx accesses to external memory to AXI accesses converter. On the left
side, there are the inputs to the converter and on the right side the outputs. Red signals
are signals driven by Calyx, while the blue signals are driven by the AXI interface.

A finite-state machine, shown in Figure 5.5, takes care of handling the two-way
handshake mechanism required on each step of read and write transactions. The FSM
starts in the IDLE state where it ways for the kernel to generate a read or write access
to the corresponding external memory.

104

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

IDLEstart AW
awvalid=1

W
wvalid=1

B_WAIT
bready=1

AR
arvalid=1

R
rready=1

calyx_write_en

calyx_read_en

m_axi_awready m_axi_wready

m_axi_bvalid / calyx_done

m_axi_arready

m_axi_rvalid
/

calyx_done

Figure 5.5: State machine that has the main logic to convert Calyx accesses to external
memory to AXI accesses. The red edges are signals driven by Calyx, while the blue
edges are inputs from the subordinate of the AXI interface.

Note that the calyx_done is the only Mealy output signal, this is done to avoid an
extra state that asserts it, and also the kernel is notified as soon as the read or write is
completed (on the same cycle since it is combinational logic).

Read memory access When a read access is initiated (calyx_read_en asserted by
the kernel), the FSM moves to the AR handshake state, where it asserts the valid signal
of that channel (ARVALID) to indicate the subordinate that a read access is being started.
After the subordinate indicates that the address on the read address channel has been
accepted (ARREADY), the FSM moves to the R handshake state. In this state, the FSM
indicates that it is ready to accept the data (RREADY) and waits for the subordinate to
indicate that the data is available on the read bus (RVALID). When this happens, the
FSM moves back to idle and asserts the calyx_done signal to indicate to the kernel that
the read has been completed. During all the states that correspond to the read request
and until it finishes, the buses that carry the address and size of the read remain stable
because they are generated in the corresponding Calyx group.

Write memory access Similarly to the read memory access, at IDLE the FSM waits
for a write memory access to be started (calyx_write_en to move to the AW state, which
writes the address of the write to the subordinate. After that, the W state is where the
actual write of the data is performed. The next step is the B_WAIT state which waits for
the subordinate to indicate if the write was successful or not. During the transition from
the B_WAIT to the IDLE state, the kernel is also notified (calyx_done) that the write has
been completed and it can continue execution.

105

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.3.2 Kernel control interface (AXI4-Lite subordinate)

As explained before, to support seamless integration with the runtime libraries that Xil-
inx provides it is necessary to implement the XRT-managed kernel control requirements
(Section 3.5.4.1) of the implemented kernel execution model (Section 3.6.1).

The kernel acts as an AXI4-Lite subordinate and exposes a set of registers that are
used by the host to control the kernel execution and set up the kernel arguments. AXI4-
Lite is a simpler version of the AXI protocol explained in Section 5.3.1.1 to facilitate the
design of the interfaces (for example, there is no burst support).

The kernel interface requirements of Vitis (Section 3.5.4) also contain an optional
interrupt signal that the kernel can use to communicate events to the host (more details
are explained in Section 5.3.2.2).

To generate the control interface the list of kernel arguments is needed so that a
register can be instantiated for each argument. The host writes to those registers prior
kernel execution, and their outputs are output signals of the control interface module
that the top-level will connect as inputs to the generic RTL kernel module. The address
of each register within the AXI4-Lite kernel control interface matches the address of
the corresponding argument in the kernel.xml file that will be generated later (Section
5.3.4).

5.3.2.1 AXI4-Lite subordinate implementation

Similar to the Calyx external memory to AXI interface explained in Section 5.3.1.2 and
following the AXI protocol’s natural split of read and write channels, the implemented
converter is also divided into two parts: the part that handles memory reads, and the part
that handles memory writes, each containing a state machine managing the respective
memory requests.

Control interface read handler FSM The IDLE state waits for requests by setting
the ARREADY signal to high. When the host writes the address of the register it wants
to read (be it a control register or a kernel argument) by putting it on the address bus
and the ARVALID signal to high, the address is latched in an internal register and the
FSM moves to the DATA state. In this state, the contents of the register that the host
requested are presented on the read data bus (and RVALID is asserted) and the FSM
waits for the host to indicate that it has received the data (RREADY), which moves the
FSM back to the IDLE state.

IDLE
arready=1

start DATA
rvalid=1

s_axi_control_arvalid

s_axi_control_rready

Figure 5.6: Control interface read handler FSM.

106

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

Control interface write handler FSM Similar to the read handler FSM, but now
there is an extra state, RESP, used to send the result of the write to the host (always
considered successful).

IDLE
awready=1

start DATA
wready=1

RESP
bvalid=1

s_axi_control_awvalid s_axi_control_wvalid

s_axi_control_bready

Figure 5.7: Control interface write handler FSM.

5.3.2.2 Adding interrupt support

There is also an optional interrupt signal that the kernel can use to communicate the
host some events so that the host can avoid continuous polling

At first, interrupt support for kernel-ready/done notification was not implemented,
which caused the Linux driver to continuously poll that register over the AXI4-Lite
control interface and made QEMU run very slow with high CPU usage when running
the hardware simulator.

Implementing interrupt supports requires adding the Global Interrupt Enable (GIE)
register, which acts as a global interrupt enable/disable toggle, the IP Interrupt Enable
(IER), each bit of which enables or disables a specific interrupt, and IP Interrupt Status
(ISR), which contains which interrupts have fired. After the host detects an interrupt
has fired, it can read the IP Interrupt Status register to know which interrupts have fired
and clear them by writing to the same register.

The interrupt signal has to be enabled whenever the Global Interrupt Enable is
on and any of the IP Interrupt Status bits are on. Currently, only one interrupt has
been implemented: ap_done, which notifies that the kernel has finished execution. The
following figure shows the logic that generates the interrupt signal:

ISR

ap_done

GIE

..
.

..
.

interrupt

Figure 5.8: Logic that generates the interrupt signal from ISR and GIE registers.

107

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

Before implementing interrupt support, the host driver was continuously polling the
s_axi_control registers, as can be seen in the following figure:

Figure 5.9: Host driver continuously polling the kernel control registers, as can be seen
on the s_axi_control row.

After implementing interrupt support, the host driver seems to generate s_axi_control
accesses once in a while, but at a much lower frequency than before, as can be shown in
the next figure:

Figure 5.10: Reduced AXI4-Lite control interface traffic after implementing interrupt
support.

Adding interrupt support helped especially the hardware emulator and QEMU to
not become unresponsive while executing kernels.

5.3.3 Top-level module

A top-level module that instantiates as many Calyx external interfaces to AXI converters
as buffer kernel arguments, the AXI4-Lite control interface, and the kernel itself was

108

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

implemented.
This top-level module is what the Vitis v++ compiler will use to generate the FPGA

bitstream and is the black box that the rest of the system will interact with.
Since according to the requirements the reset signal’s polarity is negative, the top

level is also in charge of inverting it before routing it to the instantiated components
which assume positive reset polarity.

5.3.4 Generating the kernel.xml

As explained before (Section 3.5.5.1) the contents of this file are needed by v++ to
generate the Xilinx binary file containing the bitstream. To help with the XML file
generation, the library tinyxml25 was used.

Basically, the kernel arguments are iterated and the appropriate port and arg sec-
tions are emitted.

5.3.5 Exporting SystemVerilog

CIRCT’s circt::exportSplitVerilog function, which runs the pass that invokes the
ExportVerilog emitter, is used to export the SystemVerilog code to disk to a specified
directory (based on the kernel name). It generates one .sv file per sv dialect module.

5.3.5.1 File generated containing the enums

A file that contains all the enums used in the generated SystemVerilog code is also
generated. This file is named fsm_enum_typedefs.sv and is included by the other
generated files.

The following code snippet is an example of such a file:
5https://github.com/leethomason/tinyxml2

109

https://github.com/leethomason/tinyxml2

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

1 `ifndef _TYPESCOPE_fsm_enum_typedecls
2 `define _TYPESCOPE_fsm_enum_typedecls
3 typedef enum {
4 ControlAXI_WriteFSM_state_t_IDLE,
5 ControlAXI_WriteFSM_state_t_DATA,
6 ControlAXI_WriteFSM_state_t_RESP
7 } ControlAXI_WriteFSM_state_t;
8 typedef enum {
9 ControlAXI_ReadFSM_state_t_IDLE,

10 ControlAXI_ReadFSM_state_t_DATA
11 } ControlAXI_ReadFSM_state_t;
12 typedef enum {
13 CalyxExtMemToAxi_state_t_IDLE,
14 CalyxExtMemToAxi_state_t_AW_HANDSHAKE,
15 CalyxExtMemToAxi_state_t_W_HANDSHAKE,
16 CalyxExtMemToAxi_state_t_B_WAIT,
17 CalyxExtMemToAxi_state_t_AR_HANDSHAKE,
18 CalyxExtMemToAxi_state_t_R_HANDSHAKE
19 } CalyxExtMemToAxi_state_t;
20 typedef enum {
21 control_state_t_fsm_entry,
22 control_state_t_fsm_exit,
23 control_state_t_seq_2_while_header,
24 control_state_t_seq_2_while_entry,
25 control_state_t_seq_2_while_seq_9_bb0_0,
26 control_state_t_seq_2_while_seq_8_assign_while_0_latch,
27 /* ... */
28 control_state_t_seq_1_bb0_0,
29 } control_state_t;
30 `endif // _TYPESCOPE_fsm_enum_typedecls

Figure 5.11: Example of an fsm_enum_typedefs.sv automatically generated by
CIRCT’s ExportVerilog emitter.

110

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.4 Halide XRT runtime backend
When a loop is offloaded to an accelerator (introduced in Section 5.1.1), depending on
the assigned DeviceAPI the corresponding device interface of the runtime backend will
be used.

The device interface is represented as an struct halide_device_interface_t with
contains function pointers that will get called with the corresponding functionality
is needed. This struct is generic and contains a pointer to the real device interface
struct halide_device_interface_impl_t, which contains the device-specific function point-
ers to the functions that need to be implemented.

Currently, the minimum functionality that needs to be present to be able to run
kernels is implemented, which consists of the following functions:

• halide_xrt_device_malloc: allocate buffers that the device can access.

• halide_xrt_device_free: deallocate them.

• halide_xrt_copy_to_device: copy a buffer to the device/flush the CPU cache so
that all changes are visible to the device.

• halide_xrt_copy_to_host: copy the buffer to the host/flush all the relevant de-
vice buffers and invalidate the CPU cache so that all changes are visible to the
host.

Additionally, the following functions which are not part of the
struct halide_device_interface_impl_t but rather called directly when the loop is of-
floaded to the accelerated are also implemented:

• halide_xrt_initialize_kernels: loads a kernel into the device.

• halide_xrt_finalize_kernels: unload the kernel.

• halide_xrt_run: starts kernel execution with the specified arguments.

5.4.1 Opening the device

Before using the XRT functions it is necessary to open a device. This is done by calling
xrtDeviceOpen with the device name as an argument. First, the number of available
devices on the system is queried by calling xclProbe. Then, if the number is greater than
0, xrtDeviceOpen is called passing the device index which returns a xrtDeviceHandle that
is needed fot future XRT calls.

5.4.2 Loading the kernel into the device

The offloading of loops to the accelerator step adds calls to halide_xrt_initialize_kernels
and halide_xrt_finalize_kernels to the generated host code.

111

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

halide_xrt_initialize_kernels takes the kernel name, constructs the filename (by
appending .xclbin) and uses the XRT library function xrtDeviceLoadXclbinFile to
load it from disk. If the call is successful, it calls xrtPLKernelOpen to load the kernel
into the programmable-logic part of the FPGA. The kernel handle obtained is stored in
a xrt.cpp-private struct XrtKernelState that keeps the current kernel state.

halide_xrt_finalize_kernels does the opposite, which is to call xrtKernelClose on
the kernel handle and then frees the kernel XrtKernelState.

5.4.3 Allocating device memory

A particularity about device memory in XRT is that it needs to be allocated from
a specific memory bank, which can only be obtained once the .xclbin file has been
opened. unfortunately, Halide calls the device memory allocated function before opening
the kernel, therefore device buffers have to be lazily allocated.

When halide_xrt_device_malloc is called, an xrt.cpp-private struct XrtBufferHandle
is allocated from the heap, which contains a yet-to-be-allocated buffer handle, the buffer
size, and a boolean indicating if there is a copy to this device buffer pending. Then,
passed halide_buffer_t’s device pointer field, which is used for device interface imple-
mentations to store their private handle, is set.

halide_xrt_device_free deallocates the buffer from the device by calling xrtBOFree
and then frees the xrt.cpp-private buffer handle from the heap.

5.4.4 Copying memory from/to the host to/from the device

Since buffers are lazily allocated to just before kernel execution, the
halide_xrt_copy_to_device function just sets the copy_to_device_pending flag of the
buffer handle to true.

halide_xrt_copy_to_host calls xrtBOSync with the flag XCL_BO_SYNC_BO_FROM_DEVICE
to flush any possible device cache/buffer and then calls xrtBORead to retrieve the memory
into the host pointer of the halide_buffer_t.

5.4.5 Launching the kernel

The generated host code calls halide_xrt_run with the kernel name and the argument
list The argument list is split into three different components: an array of halide_type_t,
called arg_types, an array of void pointers to the argument data, args, and an array of
booleans, arg_is_buffer that tells if the i-th argument is a buffer or not.

The function first calls xrtRunHandle to obtain an xrtRunHandle for the kernel. Then,
for each argument:

1. If the argument is a scalar, the argument value is dereferenced from memory and
set by calling xrtRunSetArg.

2. If it is a buffer, and it is not allocated yet, xrtBOAlloc is called to allocate it from
the corresponding memory bank, obtained by calling xrtKernelArgGroupId. Then,

112

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

if the buffer had a copy to device pending, xrtBOWrite is called to copy the data
to the device and xrtBOSync with flags XCL_BO_SYNC_BO_TO_DEVICE. After that, the
buffer handle is set to the kernel launch arguments by calling xrtRunSetArg.

After setting all the arguments, xrtRunStart is called to start the kernel execution.
Then, the host waits for kernel execution to be completed by calling xrtRunWait. Finally,
after execution has finished, the xrtRunHandle is closed by calling xrtRunClose.

The Halide runtime keeps track of the dirty status of buffers, and therefore if it detects
that the host needs to use the buffer after kernel execution, it will inject
halide_xrt_copy_to_host calls after kernel execution.

5.4.6 Kernel execution sequence diagram example

The following sequence diagram shows an example kernel execution of a kernel with two
arguments, the first one a scalar, and a second one a buffer, which is dirty (the host has
written into it) before kernel execution.

113

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

Host xrt.cpp XRT

halide_xrt_initialize_kernels

xclProbe

Device count

xrtDeviceOpen(i)

xrtDeviceHandle

halide_xrt_device_malloc

XrtBufferHandle

halide_xrt_copy_to_device(handle)

handle->copy_to_device_pending = true

halide_xrt_initialize_kernels(name)

xrtDeviceLoadXclbinFile

xrtPLKernelOpen

xrtKernelHandle

halide_xrt_run(args)

xrtRunOpen

xrtRunHandle

xrtRunSetArg(0, scalar)

xrtBOAlloc(size)

xrtBufferHandle

xrtBOWrite(handle)

xrtBOSync(handle, XCL_BO_SYNC_BO_TO_DEVICE)

xrtBufferHandle

xrtRunSetArg(1, buffer)

xrtRunStart

xrtRunWait

xrtRunClose

halide_xrt_copy_to_host(handle)

xrtBOSync(handle, XCL_BO_SYNC_BO_FROM_DEVICE)

xrtBufferHandle

xrtBORead(handle)

114

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

5.5 Bugs and issues
In this last section of the implementation chapter, we will list the bugs and issues that
were found in the tools used during the development of this project, and how they were
solved.

5.5.1 Add support for multiple calyx::AssignOp with guards to the same
destination

There are cases where more than one Calyx group will assign to the same destination.
This can happen for example when there is more than one memory access to the same
external memory: each group that performs the memory access will drive the external
memory signals.

This is perfectly valid, and by Calyx construction, when there is more than one
assign to the same signal, all the assigns will be guarded. Moreover, the Calyx
specification also enforces that the guards are mutually exclusive (one-hot) and at any
given time, at most one guard will be enabled.

Before the implementation of this thesis, multiple guarded assigns to the same loca-
tion were not supported. As explained before, the Calyx lowering to hardware dialects
had never been tested before in hardware. The only tests were integration tests which
did not test this case.

The implementation was quite straightforward: each guard can be considered as a
multiplexer that selects between zero or the value being assigned. Therefore, when there
is more than one guarded assign that targets a signal, a 2-to-1 multiplexer chain is
created to output the correct ini depending on the guardi, as shown in the next figure:

guard0 guard1 guardN

0

1in0 0

1in1 0

1inN

0

out

Figure 5.12: Multiplexer chain used to implement multiple calyx::AssignOp with
guards to the same destination.

Again, note that this works because guards are mutually-exclusive. While this might
not be the most optimal way to implement it since it makes a long combinational path,
it is expected that not a lot of assigns with guards will target the same destination,
therefore the mux chain should be relatively short. An improvement, depending on the
synthesized hardware, would probably be to use an N -to-1 multiplexer instead of a chain
of 2-to-1 multiplexers. This is left as future work.

The fix and some tests were submitted as part of this Git pull request6, which has
6https://github.com/llvm/circt/pull/4890

115

https://github.com/llvm/circt/pull/4890

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

already been merged.

5.5.2 Clock-enable done signal Calyx registers

In the lowering of a Calyx register, an extra 1-bit done_reg is also instantiated which
holds the group done signal.

The write_en signal of the calyx::RegisterOp is used both to drive the write_en
signal of the lowered seq::CompRegOp register that contains the data, and also as the
input to the done_reg register that contains the group done signal.

By construction during Calyx’s lowering, the write_en of the group that enables
the write to the register is an output (Moore output) of the current FSM machine state
that implements the Calyx control schedule. The group done signal is what the FSM
uses to transition to the next state. This causes the write_en signal to be active during
two cycles, which can cause garbage to be written to the register on the second cycle
(this happens when the input to the register depends on its output).

This bug was found using waveforms, and the next figure shows an instance of it.
Notice how after the write_en signal is asserted, the register’s value (reg_reg) gets
the input value (reg_in) (transitions from 0 to 1). After that, since write_en is still
enabled for an extra cycle, the register gets written again (transitions from 1 to 2).

Figure 5.13: Register being written during two consecutive cycles, leading to garbage
being written into it.

To fix this, the clock-enable signal that is used to drive the register that holds the
data is updated to be masked with the inverse of the done_reg signal. This way, the
register will only be written when the done_reg signal is not asserted, which is only
during the first cycle of write_en being active.

The following waveform shows an example of the behavior after the bug was fixed.
The FSM state B corresponds to a Calyx group, the signals of which are shown, that
performs a write to a register. Notice how the clock_en signal is only enabled during
the first cycle of the FSM state B, which is when the write to the register occurs.

clock
write_enB

done_regB

clock_enB

FSM state A B C

Figure 5.14: Waveform showing how writes to Calyx registers were fixed by masking the
clock_en signal by using the group’s done value.

116

CHAPTER 5. IMPLEMENTATION OF THE PROJECT

The same problem was happening with the internal registers instanced when lowering
Calyx pipelined operations. Both fixes were submitted and they are already merged7

5.5.3 calyx::NotLibOp was lowered incorrectly

While this was a very simple bug to fix, understanding the root cause took quite a long
time and needed debugging by using waveforms.

Basically, calyx::NotLibOp’s lowering to hardware was incorrect: instead of imple-
menting the NOT using an XOR with ones (which are equivalent), it was using zeroes,
therefore producing the wrong result. This was easily fixed by changing the lowering to
use comb::createOrFoldNot, which implements the NOT using an XOR with ones and
also applies a canonicalization optimization on the operation.

The fix was submitted and is already merged8.

5.5.4 Avoid leaving read/write-enable signals of external memories un-
connected

Calyx was leaving the read-enable (implemented in this thesis) and the write-enable sig-
nals unconnected (high-impedance) when no reads or writes were being done to external
memories, respectively, which led to sporadic memory accesses when running the code
on hardware.

To fix this, when the MemRefTypes of function arguments are converted into Calyx
input and output signals (as the interface to external memories) in the MLIR to Calyx
pass, the already existing calyx::noLoadsFromMemory and calyx::noStoresToMemory are
called, and if they return true, the read and write enable signals are forced to 0 by
assigning them (calyx::AssignOp) to the constant value. Those two functions are imple-
mented by iterating over all the SSA uses of the memory (mlir::Value) and checking if
there are any LoadOp or StoreOp operations, respectively.

7https://github.com/llvm/circt/pull/4890
8https://github.com/llvm/circt/pull/4944

117

https://github.com/llvm/circt/pull/4890
https://github.com/llvm/circt/pull/4944

Chapter 6

Experiments and results

118

CHAPTER 6. EXPERIMENTS AND RESULTS

6.1 Setup
During the development of the thesis, the hardware emulator provided by Vitis was
used, which even though is cycle-accurate, does not accurately model things like the
memory controller and the interactions between the PL block and the PS accessing it
that would happen on a real system. Therefore, to perform the evaluation of the thesis,
a real embedded FPGA board will be used.

6.1.1 Avnet Ultra96-V2 Board

The board used is an Avnet Ultra96-V2 Board1, which is an entry-level Arm-based Xilinx
Zynq UltraScale+ MPSoC development board. It contains a Xilinx Zynq UltraScale+
MPSoC ZU3EG A484 SoC which has the following specifications:

Processor Core Quad-core Arm® Cortex®-A53 MPCore™ up to 1.5GHz
Memory w/ECC L1 Cache 32KB I/D per core, L2 Cache 1MB, on-chip Memory 256KB

Graphics Processing Unit Mali™-400 MP2 up to 667MHz
Memory L2 Cache 64KB

DRAM Interface x16: DDR4 w/o ECC; x32/x64: DDR4, LPDDR4, DDR3, DDR3L, LPDDR3 w/ ECC
High-Speed Connectivity PCIe® Gen2 x4, 2x USB3.0, SATA 3.1, DisplayPort, 4x Tri-mode Gigabit Ethernet

Table 6.1: Main Processing System (PS) specifications of the Xilinx Zynq UltraScale+
MPSoC ZU3EG SoC

Programmable Functionality
System Logic Cells (K) 154

CLB Flip-Flops (K) 141
CLB LUTs (K) 71

Memory
Max. Distributed RAM (Mb) 1.8

Total Block RAM (Mb) 7.6
UltraRAM (Mb) -

Clocking Clock Management Tiles (CMTs) 3
Integrated IP DSP Slices 360

Table 6.2: Main Programmable Logic (PL) specifications of the Xilinx Zynq UltraScale+
MPSoC ZU3EG SoC

The Ultra96-V2 Board in particular includes a Micron 2 GB (512M x32) LPDDR4
Memory.

1https://www.avnet.com/wps/portal/us/products/new-product-introductions/npi/aes-
ultra96-v2/

119

https://www.avnet.com/wps/portal/us/products/new-product-introductions/npi/aes-ultra96-v2/
https://www.avnet.com/wps/portal/us/products/new-product-introductions/npi/aes-ultra96-v2/

CHAPTER 6. EXPERIMENTS AND RESULTS

6.1.2 Evaluation kernels

Three different Halide kernels will be used to evaluate the generated RTL code, and
for each, resource utilization and execution time analysis will be performed. For the
execution time analysis, each kernel has been run three times and the average time has
been taken. The result (output data) of the execution of each kernel on the FPGA
was binary-compared to make sure it was exactly equivalent as the result produced by
executing the same Halide code on the CPU (“golden model”). Note that for all the
kernels, the 150 MHz target frequency was met.

120

CHAPTER 6. EXPERIMENTS AND RESULTS

6.2 Test load kernel
This kernel tests the load and store from external memory functionality. The input and
output are 1D int32_t buffers. The kernel outputs a buffer where each element is the
same element as in the input buffer but multiplied by 5:

Halide::ImageParam in(Halide::type_of<int32_t>(), 1);
Halide::Func func;
Halide::Var x;

func(x) = 5 * in(x);

func.vectorize(x, VECTORIZATION_FACTOR);

The evaluation will consist of trying different vectorization factors: all the powers of
two from 1 to 32. Moreover, since the AXI data bus width can be configured, for each
vectorization factor two AXI data bus widths will be evaluated: the same bit width as
the element size times the vectorization factor, and also the maximum AXI data bus
width (1024 bits).

6.2.1 Resource utilization

The following table shows the Configurable logic blocks (CLB) utilization, in percentages,
for the different vectorization factors and AXI data bus widths. For a given vectorization
factor, we can see how using the largest AXI data bus possible (1024 bits) leads to
a considerable increase in CLB LUT as Logic usage, which is due to the extra
logic needed to drive the data bus wires in the Calyx external memory to AXI converter,
especially the part that shifts the value present on the data bus depending on the memory
access offset. When increasing the vectorization factors and keeping the AXI data bus
width as the vector bit size, an increase in the CLB LUT and CLB Register utilization
is seen, going from 39.29% up to 58.21% and 28.81% up to 40.78%, for vectorization
factors 1 and 32, respectively.

Vectorization factor
None (1) 2 4 8 16 32

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
CLB LUTs 39.29 50.55 39.61 50.75 39.09 51.65 42.65 53.50 47.58 55.52 58.21

LUT as Logic 35.65 46.88 35.97 47.09 35.51 47.98 39.01 49.84 43.91 51.85 54.55
LUT as Memory 8.92 8.98 8.92 8.98 8.76 8.98 8.93 8.98 8.98 8.98 8.98

CLB Registers 28.81 39.36 29.43 39.41 30.00 39.50 32.09 39.69 35.00 40.05 40.78
Register as FF 28.79 39.34 29.41 39.39 29.98 39.47 32.07 39.66 34.97 40.02 40.75
Register as Latch 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03

Table 6.3: Test load kernel evaluation: CLB Logic resource utilization (in percentage).

121

CHAPTER 6. EXPERIMENTS AND RESULTS

When loading from memory, Calyx inserts registers that latch the data read so that the
next group that depends on it can read it safely during the whole duration of the group.
By looking at the following table, we can see how it is likely that the synthesizer is placing
those registers on the BRAM, and in particular the RAMB36 primitive. Even though
for all vectorization factors and with AXI data bus width of 1024 the BRAM usage does
not change, it is still possible that the internal registers that store the vectors after each
operation are placed in BRAM, since even for the largest case, 32 × 4 × 8 = 1024 bits
are needed to store a vector, and each RAMB36E2 primitive has 36 Kbits.

Vectorization factor
None (1) 2 4 8 16 32

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
Block RAM Tile 8.56 46.76 8.56 46.76 9.49 46.76 15.05 46.76 25.46 46.76 46.76

RAMB36/FIFO 7.41 45.37 7.41 45.37 8.80 45.37 14.35 45.37 24.07 45.37 45.37
RAMB18 1.16 1.39 1.16 1.39 0.69 1.39 0.69 1.39 1.39 1.39 1.39

Table 6.4: Test load kernel evaluation: BLOCKRAM resource utilization (in percent-
age).

By looking at the following table, we can see how the synthesizer did not decide to use
any of the arithmetic acceleration units, DSPs, to implement any of the arithmetic/logic
operations in the kernel. Probably, since there are enough CLB blocks available and the
operation of the kernel is just a 32-bit multiplication by a constant 5 it decided to use
CLBs to implement all the operations.

Vectorization factor
None (1) 2 4 8 16 32

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
DSPs 0 0 0 0 0 0 0 0 0 0 0

Table 6.5: Test load kernel evaluation: ARITHMETIC resource utilization (in number
of resources).

6.2.2 Execution time

The host code (both when offloading the kernel on the FPGA and when running the
kernel on the host) takes an argument which is the size of the buffer, in the number of
elements.

For the timing analysis, a buffer with 4 × 1024 × 1024 = 4194304 32-bit integer
elements (16 MB in total) will be used.

When running the kernel on the host, the default Halide scheduling will be used
where the function representing the output is scheduled as root, and the other functions
as inline (see Section 3.1.3 for more details).

122

CHAPTER 6. EXPERIMENTS AND RESULTS

The following plot shows the execution times when running the kernel on the FPGA
(in blue) and the host (in red).

1 2 4 8 16 32080.794998

500

1000

2000

3000

4000
4,055.48

2,053.81

1,196.52

692.35
425.98 324.42

FPGA vectorization factor

Ex
ec

ut
io

n
tim

e
(m

s)
Test load kernel execution time

FPGA
Host

We can see how until about a vectorization factor of 16, the execution time gets
reduced by half as the vector size doubles. From vectorization factors of 16 and onward,
the execution time also reduces substantially but not as much as the increase in the
vectorization factors. The AXI interface may be becoming a bottleneck from and after
accesses of 512 bits (16-lane vectorization).

The best timing on the FPGA, despite using 32 vector lanes, is still around 4 times
slower than the CPU. We have to keep in mind the synthesized design runs at a fre-
quency of 150 MHz on the FPGA, while the CPU at 1.5 GHz, 10 times faster. Not
supporting AXI4-Stream interfaces (where data is transferred per clock cycle) in
the current design is also a big limitation for this kind of kernels where data is fed in/out
continuously. Adding AXI4-Stream is left as future work.

123

CHAPTER 6. EXPERIMENTS AND RESULTS

6.3 Test load div int8 kernel
This kernel tries to take advantage of the vectorization support (as explained before,
only with external memories), by using 8-bit integers. In particular, it loads int8_ts
from memory, divides them by 3, and stores them back to memory to an output buffer:

Halide::ImageParam in(Halide::type_of<int8_t>(), 1);
Halide::Func func;
Halide::Var x;

func(x) = in(x) / 3;

func.vectorize(x, VECTORIZATION_FACTOR);

Just as with the previous kernel, different vectorization factors, in this case, all powers
of two from 4 to 128 which corresponds to bus widths of 32 to 1024, will be tested. Also,
for each vectorization factor, an AXI data bus width of 1024 bits will also be tested.

6.3.1 Resource utilization

A similar behavior as the previous kernel regarding CLB Logic utilization can be seen
in the next figure. There is a substantial increase in the logic used when comparing a
given vectorization size and its native vector size width with the maximum AXI data
bus size. When increasing the vectorization factor and using its native vector size as
the AXI data bus width, we can see an increase mostly in CLB LUT usage, going from
39.33% to 62.14%.

Vectorization factor
4 8 16 32 64 128

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
CLB LUTs 39.33 51.47 39.77 53.16 39.60 53.73 43.47 55.35 49.68 58.11 62.14

LUT as Logic 35.69 47.80 36.13 49.50 36.02 50.06 39.82 51.69 46.01 54.44 58.48
LUT as Memory 8.92 8.98 8.92 8.98 8.76 8.98 8.93 8.98 8.98 8.98 8.98

CLB Registers 28.81 39.36 29.43 39.41 29.99 39.49 32.07 39.66 34.95 40.00 40.69
Register as FF 28.79 39.34 29.40 39.38 29.97 39.47 32.05 39.64 34.92 39.98 40.66
Register as Latch 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03

Table 6.6: Test load div int8 kernel evaluation: CLB Logic resource utilization (in
percentage).

Even though it might seem that it is a coincidence that the BRAM usage for this kernel
(shown in the next table) is exactly the same as the previous one (Table 6.4), there
is an explanation: the total vector width of each of the columns shown on the next
table corresponds to the same total vector width of the columns of the previous kernel,
therefore the storage requirements are the same. For example, the first column is with a

124

CHAPTER 6. EXPERIMENTS AND RESULTS

vectorization factor of 4, and since each element is 8 bits in size, it makes a 32-bit total
vector size, which is the same size as the scalars on the previous kernel (32-bit integers).

Vectorization factor
4 8 16 32 64 128

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
Block RAM Tile 8.56 46.76 8.56 46.76 9.49 46.76 15.05 46.76 25.46 46.76 46.76

RAMB36/FIFO 7.41 45.37 7.41 45.37 8.80 45.37 14.35 45.37 24.07 45.37 45.37
RAMB18 1.16 1.39 1.16 1.39 0.69 1.39 0.69 1.39 1.39 1.39 1.39

Table 6.7: Test load div int8 kernel evaluation: BLOCKRAM resource utilization (in
percentage).

In this kernel, the compiler’s implementation step also decided not to use any of the
DSPs to implement the arithmetic/logic operations. There are still plenty of CLBs
available and the main operation of the kernel is just the division of an 8-bit integer
with a constant.

Vectorization factor
4 8 16 32 64 128

AXI data bus size (bits) 32 1024 64 1024 128 1024 256 1024 512 1024 1024
DSPs 0 0 0 0 0 0 0 0 0 0 0

Table 6.8: Test load div int8 kernel evaluation: ARITHMETIC resource utilization
(in number of resources).

6.3.2 Execution time

The host code for this kernel also takes an argument corresponding to the buffer size, in
the number of elements.

For the timing analysis, a buffer with 32×1024×1024 8-bit integer elements (32 MB
in total) will be used. When running the kernel on the host, the default Halide scheduling
will be used.

The following plot shows the execution times when running the kernel on the FPGA
(in blue) and the host (in red).

125

CHAPTER 6. EXPERIMENTS AND RESULTS

4 8 16 32 64 1280
500

1000
1409.968994

2000

4000

8000
8,104.27

4,072.07

2,223.74

1,215.61
711.63 542.91

FPGA vectorization factor

Ex
ec

ut
io

n
tim

e
(m

s)

Test load div int8 kernel execution time

FPGA
Host

We can see a very similar tendency as the previous kernel (Test load): the execution
time gets reduced by half as the vectorization doubles, until around a vectorization factor
of 64, which corresponds to an AXI access size of 512 bits. After a vectorization factor
of 32 elements (256-bit AXI accesses), this kernel runs faster on the FPGA than on the
CPU, and with a vectorization factor of 128 elements (1024-bit AXI accesses), it is ×2.6
faster.

126

CHAPTER 6. EXPERIMENTS AND RESULTS

6.4 Test blur3x3 sliding window kernel
This kernel performs a 3x3 blur filter on a 2D array of 32-bit integers and tries to exploit
most of the FPGA characteristics and supported features implemented in this thesis for
the Halide to RTL generation.

Since parallel Halide loops are not supported, we can exploit the device locality and
minimize re-computation by dividing the iteration space into tiles of fixed size in which
sliding-windows using device-local buffers can be used. Given an N ×M input image, the
objective is to minimize loads from external memory and only read the bare minimum
times required, N × M times, by using sliding windows. To do that, the algorithm is
decomposed into three stages:

1. tmp: just retrieves values from the input. It is scheduled to compute (i.e. to
have its value available) on each x iteration of blur_x and the contents of it are
scheduled to be stored at an outer loop nest, on each y iteration of blur_x. Since
each value of blur_x takes 3 consecutive inputs from tmp, Halide generates a
sliding window (implemented as a circular buffer) of 4 elements which will store
the values loaded from memory: allocate f3[int32 * 4]. This avoids performing
loads from external memory to the same input more than once.

2. blur_x: calculates the horizontal blur for the image by reading the values from
tmp. Since tmp is a sliding window, the offsets in which tmp is accessed are constant.
To implement a sliding window, the output iteration space of blur_y is tiled and
blur_x is scheduled to be computed on each inner vertical iteration of the tiles (yi)
where it is needed but stored outside the tiling inner loop nests (x). Halide then
generates a sliding window which gets stored in a local buffer with as many columns
as the tile size and 4 rows (since 3 vertical elements are needed to compute the
filter). For a tiling of 32×32, Halide generates the following local buffer allocation
to store the sliding window values: allocate f1[int32 * 32 * 4].

3. blur_y: the output stage which is fed from blur_x. Its iteration space is tiled so
that blur_x can implement a sliding window.

127

CHAPTER 6. EXPERIMENTS AND RESULTS

Halide::ImageParam input(Halide::type_of<int32_t>(), 2);
Halide::Func blur_x, blur_y, tmp;
Halide::Var x, y, xi, yi;

// Algorithm
tmp(x, y) = input(x, y);
blur_x(x, y) = (tmp(x-1, y) + tmp(x, y) + tmp(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

// Schedule
blur_y.tile(x, y, xi, yi, TILE_SIZE, TILE_SIZE);

blur_x.store_at(blur_y, x)
.compute_at(blur_y, yi);

tmp.store_at(blur_x, y)
.compute_at(blur_x, x);

Note that since unfortunately vector accesses to local memories were not implemented
for this thesis, vectorization can not be used. Different tile sizes will be evaluated: 8×8,
16 × 16 and 32 × 32.

6.4.1 Resource utilization

Since vectorization is not supported, the AXI data bus width was set to the element size
(32 bits). The following table shows the CLB utilization. It is interesting to so how the
CLB utilization barely changes with respect to the tile size. This makes sense since from
a control point of view, the only change needed when changing the tile size are the loop
boundaries, which are constants.

Tile size
8x8 16x16 32x32

CLB LUTs 41.75 41.75 41.82
LUT as Logic 38.06 38.04 38.07
LUT as Memory 9.03 9.09 9.20

CLB Registers 29.41 29.41 29.40
Register as FF 29.35 29.35 29.35
Register as Latch 0.05 0.05 0.05

Table 6.9: Test blur3x3 sliding window kernel evaluation: CLB Logic resource utiliza-
tion (in percentage).

As seen during the explanation of this kernel, two device-local buffers are allocated: the
one for tmp, which always contains 4 32-bit integers, no matter the tile size, and the
one for the sliding window at blur_x, which contains 4 rows of tile-size columns each.
therefore, the local memory requirements for each tile size are as follows:

128

CHAPTER 6. EXPERIMENTS AND RESULTS

Tile size
8x8 16x16 32x32

tmp 4 × 32 4 × 32 4 × 32
blur_x 8 × 4 × 32 16 × 4 × 32 32 × 4 × 32
Total 1152 bits 2176 bits 4224 bits

Table 6.10: Test blur3x3 sliding window kernel: local memory requirements.

The following table shows the BRAM resources used after synthesis. They remain
the same for each tile size.

Tile size
8x8 16x16 32x32

Block RAM Tile 8.56 8.56 8.56
RAMB36/FIFO 7.41 7.41 7.41
RAMB18 1.16 1.16 1.16

Table 6.11: Test blur3x3 sliding window kernel evaluation: BLOCKRAM resource
utilization (in percentage).

While it might be possible that all of the local buffers needed to implement the
sliding windows for each tile size were allocated in BRAM (since as seen before, even for
the largest tile size, 32 × 32, only 4224 bits are needed), if we check the memory-related
primitive usage (two following table), we can see how it is more likely that the sliding
buffers were allocated as distributed memories in the CLBs (as SRAMs).

Going from 8 × 8 to 16 × 16 tile sizes we see an increase of 1668 − 1652 = 16 CLB
LUTs being used as distributed RAM, while at the same time, we see a decrease of
32 RAMS32 but an increase of 32 RAMS64E. It seems that each CLB LUT can fit two
RAMS32 or one RAMS64E. Note that 32 is exactly the number of elements of the blur_x
sliding window for the 8 × 8 tile size.

When going from 16 × 16 to 32 × 32 tile sizes we see an increase of 32 RAMS64E,
which can store exactly the same number of elements as the blur_x sliding window needs:
16 × 4 = 64 elements for a 16 × 16 tile size, and 32 × 4 = 128 elements for a 32 × 32 tile
size.

Tile size
8x8 16x16 32x32 Available

LUT as Distributed RAM 1652 1668 1700 28800

Table 6.12: Test blur3x3 sliding window kernel evaluation: CLB LUTs as Distributed
RAM resource utilization (in number of resources).

129

CHAPTER 6. EXPERIMENTS AND RESULTS

Tile size
Category 8x8 16x16 32x32

RAMS32 CLB 462 430 430
RAMS64E CLB 0 32 64
RAMB18E2 BLOCKRAM 5 5 5
RAMB36E2 BLOCKRAM 16 16 16

Table 6.13: Test blur3x3 sliding window kernel evaluation: Primitives resource utiliza-
tion (in number of resources).

This kernel performs the multiplication of input 9 elements for each output element (blur
3x3). The following table shows the DSP usage for the kernel. We can see that exactly
9 DSP48E2 were allocated, one for each multiplication. While the kernel also performs
two divisions, they are by a constant number (3), so it is likely that the synthesizer
decided to use some division optimization using logic instead of DSPs.

Tile size
Used (count) Utilization (%)

8x8 16x16 32x32 8x8 16x16 32x32
DSP48E2 9 9 9 2.50 2.50 2.50

Table 6.14: Test blur3x3 sliding window kernel evaluation: ARITHMETIC resource
utilization.

6.4.2 Execution time

This host code for this kernel takes two arguments as parameters: the horizontal and
vertical sizes of the input buffer/image.

For the timing analysis, the sizes used will be 4096 × 4096, which amounts to 64 MB
in total. When running the kernel on the host, the default Halide scheduling will be
used.

The following plot shows the execution times when running the kernel on the FPGA
(in blue) and the host (in red).

130

CHAPTER 6. EXPERIMENTS AND RESULTS

8 × 8 16 × 16 32 × 32
1000

2238.187012

10000

20000

23,764.53

20,740.19
19,227.53

FPGA tile size

Ex
ec

ut
io

n
tim

e
(m

s)

Test blur3x3 sliding window kernel execution time

FPGA
Host

As explained before, this kernel uses local buffers and vectorization is currently
unsupported, therefore not only the kernel code was not vectorized, but also accesses
to external memory are being limited to scalar accesses of 32 bits. This results
in an execution time on the FPGA 10 times slower than on the CPU. Implementing
vectorization with local buffers support was left as future work.

If we focus on the execution time when increasing the tile size, we can see some signif-
icant reduction. This is thanks to the reduction of computation of tile boundaries
as the tile size increases.

131

Chapter 7

Conclusions and future work

132

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
FPGAs are highly flexible devices that enable developers to harness the power of reconfig-
urable hardware when implementing a wide range of applications. However, developing
FPGA applications remains a complex task, requiring a deep understanding of both
hardware and software design flows. Domain-specific languages (DSLs) have emerged
to help simplify the development process by providing higher levels of abstraction and
focusing on specific problem domains.

Halide is a popular DSL designed for expressing image and array processing and com-
putational photography algorithms. In this thesis, we have developed a new backend
for Halide that targets FPGAs. Instead of directly generating Register Transfer Level
(RTL) or human-readable High-Level Synthesis (HLS) code, and given the limitations
of those approaches, this novel approach first generates generic MLIR code which can
target a wide range of devices, ranging from acceleration APIs on CPUs to GPUs, to
name a few. The MLIR code is then transformed into the hardware-related dialects that
CIRCT provides prior to RTL emission. As an intermediate step to convert from the
high-level MLIR dialects to the hardware-related dialects of CIRCT, Calyx is employed.
Finally, Xilinx-specific wrappers are generated on top of the RTL code, enabling seam-
less integration with Xilinx FPGA platforms. A Xilinx runtime backend has also been
implemented within Halide, enabling the execution of generated code on Xilinx FPGAs.
This runtime backend manages the necessary steps for communication and data transfer
between the host system and the FPGA, including the configuration of the FPGA de-
vice, allocating and transferring data between the host memory and FPGA memory, and
launching the FPGA kernel. By integrating this runtime backend into Halide, kernels
can be executed on Xilinx FPGA platforms seamlessly.

This approach leverages the flexibility and extensibility of MLIR and CIRCT projects
to streamline the process of targeting FPGAs with Halide. Employing a generic inter-
mediate representation enables future optimizations and transformations to be applied
more easily, while the modularity of the generated RTL simplifies targeting other FPGA
devices.

While there is still work to do and features to be added to improve the generated
code, the results presented in this thesis show that the approach is viable and can be
used to generate efficient FPGA code from Halide programs.

This work allows developers using Halide to target FPGA devices without (or mini-
mal changes on the algorithm’s schedule to optimize for FPGAs) changes on their code,
which will make it far easier for them to deliver the FPGA-enabled Halide kernels to
end users.

133

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future work
Developing the thesis has brought the need for some features that are not officially part
of the standard of the tools used, therefore I think before continuing to develop the new
ideas proposed for future work, it is necessary to review with the developers involved
with those tools and standardize the existing implementation to make them part of
the standard so that they can also benefit other projects. A clear example of that is
the changes needed to the calyx::AssignOp of the Calyx dialect in CIRCT to support
vectorization.

Given the novelty of the approach presented in this thesis, numerous ideas for future
work that hold promise for further enhancing the capabilities of the proposed flow to
generate RTL code from Halide have been identified and briefly discussed. In this section,
those ideas will be further elaborated and a possible implementation discussed.

7.2.1 Support vectorized accesses to local memory

While support for allocating local memories was added by implementing a lowering of
calyx::MemoryOp into seq::HLMemOp, support for vectorized memory accesses to local
memories could not be implemented in time.

Local memories created by seq::HLMemOp are not addressed by an address correspond-
ing to the byte within the memory but instead, the basic addressable unit is of a given
element type the memory is composed of.

If all accesses to a particular local memory are of the same type, the implementation is
straightforward and care only needs to be taken to pass the proper index when accessing
the memory (since the code might be generating accesses to the memory with a byte
index instead of an element index).

But instead, if memory accesses of different types are performed to the same memory,
such as the native vector type of the memory and also a scalar type (corresponding to
the scalar element of the vector type), then the implementation gets more complex.

A possible implementation for memory loads would be to check for all the memory
accesses to a given memory and obtain which is the largest vector access being performed.
Then, the memory should be allocated as the largest vector type and when a memory
load access is being performed with a smaller type (either a compatible scalar or smaller
vector), then a memory load of the vector type of the memory would be performed and
after that, an “extract” operation should be inserted to extract the needed (sub-)element
from the loaded vector.

For memory stores, things get more complex and unless masked writes were sup-
ported, a load-update-store sequence would be needed to only update the part of the
vector element being written.

7.2.2 Improved support for MLIR’s arith min and max operations

For this thesis, out of all the min/max operations in MLIR’s airht dialect, only
arith::MinSIOp was found to be generated and thus implemented.

134

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Nonetheless, the implementation done was not optimal from a resource point of view
and to improve that new operands would have to be added as part of the Calyx standard.

One way would be to add direct support for min and max operations directly into
the Calyx language.

Another more generic approach would be to add compare and select operation pairs
that would allow implementing this and more cases. The compare operation would take
two arguments and a predicate and output a 1-bit value indicating if the comparison
ruled by the predicate is true or false. Then, the select operation would take three
arguments, a 1-bit selector and two values and output the first value if the predicate is
true or the second value if the predicate is false (acting as a multiplexer).

7.2.3 Generalize MemRefType lowering

Currently, Halide buffer kernel arguments are converted into two MLIR function argu-
ments: a MemRefType that is a handle to a buffer, and a 64-bit value that contains the
base address of that given buffer within the AXI interface. When there is a memory
load/store to that buffer, MLIR code is generated such that the buffer is accessed using
the base address (kernel argument) plus the offset of the access. This makes the MLIR
code less generic since it is adding the notion of a global memory/AXI interface to the
generated MLIR. Instead, only the MemRefType for the buffer should be passed to the
kernel and memory access would only use the offset of the memory load/store to access
the buffer, and externally, outside of the generic MLIR kernel as a wrapper, is where
the addition of the base address of that buffer in global memory/AXI should be done
for platforms that require it (such as embedded Xilinx FPGAs).

7.2.4 Proper support for scf::IfOp in CIRCT’s SCFToCalyx pass

Since CIRCT’s SCFToCalyx pass support for scf::IfOp is not yet implemented, a
workaround was implemented to support it in the generated code. The workaround
consists of converting the scf::IfOp into a for loop in a way that the loop only does
one iteration if the condition is true, and none if false. Since all Halide IR IfThenElse
nodes found had only the then branch, the else branch was not implemented.

Instead of using this workaround, proper support for lowering scf::IfOp should be
implemented in SCFToCalyx. Since this pass already supports lowering scf::WhileOp, it
should be possible to implement scf::IfOp lowering similarly and sharing most of the
implementation. After implementing such support, the workaround in IfThenElse can
be changed to generate a scf::IfOp instead of a for loop.

7.2.5 Implement lowering of calyx::ParOp in CalyxToHW

While the SCFToCalyx pass emits calyx::ParOp as part of the lowering of scf::WhileOp
(to put together in the same group all the calyx::WhileOp initialization args), Halide
For loops only have a single simple initialization expression which makes all calyx::ParOp

135

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

being generated to only enable a single group, which gets converted into a calyx::SeqOp
by the canonicalization pass.

Therefore, as far as implemented in this thesis, no calyx::ParOp operations reach
the CalyxToHW pass. The only support would be for human-readable emission of Calyx
code to be used with the native Calyx compiler. However, as future work, it might be
interesting to implement Halide For types other than serial, such as the parallel For
type, which could be implemented using calyx::ParOp operations and would bring the
necessity to implement lowering support for this operation in CalyxToHW.

7.2.6 Add floating-point support in the MLIR to RTL lowering

While the generated MLIR code has support for integers and floating point values of
different sizes (including bfloat), which can be used to target other devices, lowering
to RTL only supports integers.

The problem is that RTL code has no native support for floating-point operations.
Either the programmer has to implement such code by themselves, or vendor-specific IP
has to be instantiated.

Since Calyx already provides a standard library for arithmetic and logic operations,
in a similar approach, floating point operations could be added to Calyx.

Then, the SCFToCalyx pass could emit Calyx floating-point operations when lowering
MLIR arith floating-point operations.

However, the lowering of those Calyx floating-point operations down to RTL would
face the challenges explained before: either some kind of floating-point operator library
would have to be written or depending on the FPGA vendor being targeted, the floating-
point IP of that vendor would have to be instantiated.

7.2.7 Avoid useless pipeline stages after comb canonicalization of low-
ered pipeliend Calyx operations

Long latency operations such as mul, div and mod are considered as pipelined in Calyx
and therefore their lowering to the hardware dialects of CIRCT emit pipeline registers.
However, it is after lowering to the hardware dialects that the comb canonicalization
pass (which also performs strength reduction optimizations) runs and the simplification
of those operations (such as converting multiplications of powers of two into left shifts)
is performed, which can lead to simple combinational logic that does not require pipeline
registers.

An option would be to perform the strength reduction optimizations at the Calyx
level, before lowering to the hardware dialects.

7.2.8 Emit loops and memory accesses using MLIR’s affine dialect

While one of MLIR’s main attractive points is support for polyhedral optimization, ma-
nipulation and transformation techniques of loops, emitting loops and memory accesses

136

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

using the affine dialect is required. However, the current implementation of the MLIR
code generator in Halide uses the more generic scf and memref dialects instead.

Therefore, to experiment with this MLIR feature, the current implementation of the
For and memory Load and Store Halide IR nodes should be changed to emit MLIR
affine operations.

7.2.9 Use CIRCT’s static scheduling infrastructure to lower MLIR to
Calyx

Right now, the SCFToCalyx pass is used to lower generic MLIR down to Calyx. This
pass lowers and emits one after the other each higher-level MLIR operation in program
order, waiting for the first one to finish before the next one can start (Calyx sequential
execution).

As explained during the introduction, another benefit of using MLIR’s affine di-
alect is that CIRCT also has support to schedule hardware operations using scheduling
techniques such as modulo scheduling, which can be used to reduce the initiation inter-
val of loops, thus speeding up the execution of the code. This is enabled by CIRCT’s
AffineToLoopSchedule pass.

For the scheduling, CIRCT needs the latency information for each of the operations
to be able to calculate if the target initiation interval can be satisfied or not. For that,
it uses hard-coded and not-so-much realistic latency values for each Calyx operation
(which can change depending on the vendor and the FPGA family). To improve that,
an option would be to add support to pass latency and resource dependencies and conflict
information to CIRCT so that the scheduling infrastructure can realize more suitable
scheduling of the operations that can perform better on the targeted hardware.

7.2.10 Add AXI-Stream support

Currently, the Calyx external memory to AXI interface implements the conversion
from/to regular AXI-Manager and AXI-Subordinate memory-mapped interfaces.

However, this interface is not the most optimal when accesses are done to consecutive
memory addresses since for each transaction, multiple transfers are currently done (first
transfer the address and then data, which takes multiple cycles). In that case, using the
AXI-Stream interface would provide greater performance since data can be transferred
per cycle.

7.2.11 Coalescing buffer to implement write-combining

For kernels that access memory with a certain spatial locality but in a random fashion,
a coalescing buffer that implements write-combining could be implemented to improve
performance by grouping multiple nearby accesses into a single memory transaction.
This could be especially beneficial for kernels that can not be fully vectorized to take
advantage of the AXI data bus width but yet manifest some spatial locality in their
memory accesses.

137

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2.12 Generate HLS code from MLIR

Since the generated MLIR code is generic, it would be theoretically possible to generate
HLS code from it. This would allow using vendor tools that could perform further
optimizations and generate more efficient code for the targeted FPGA, rather than
generating and synthesizing RTL directly. At least, it would provide ground for more
interesting performance comparisons and experiments.

For that, the ScaleHLS [70] project could be used, which adds HLS-related dialects
and transformations on top of MLIR and CIRCT to generate HLS code that can target
different FPGA vendors such as Xilinx Vitis HLS. During the development of this thesis,
ScaleHLS was tried to be used to generate HLS code from the generated MLIR code,
but since it depends on an old LLVM version, it was not possible to get it to compile.
Some time was spent porting it to the latest LLVM version but tests were failing so it
was decided to not continue with that approach. The developer of ScaleHLS mentioned
that they were also in the process of upgrading the code to the latest LLVM version,
but it is not clear when that will be finished.

Another option would be to use the HeteroCL project to generate HLS. This project
has also been integrated into using MLIR by adding an out-of-tree MLIR dialect1, mak-
ing the generation of HeteroCL from MLIR seamless. This approach would be similar
HeteroHalide mentioned during the introduction, but using MLIR as an intermediate
step (which adds the benefit of targeting virtually any device) when converting Halide
IR into HeteroCL, instead of generating HeteroCL directly.

7.2.13 Halide autoschedulers for FPGA targets

Autoschedulers which automatically try to create a schedule for Halide algorithms trying
to achieve the best performance possible have been researched [71, 72], and some of their
implementations are already part of Halide’s code. Autoschedulers for GPU targets
[73] have also been researched and implemented, which opens the door to research if
those schedulers could be adapted and what are the requirements and metrics (such
as operator latency and available resources) needed to implement an autoscheduler for
FPGA targets.

1https://github.com/cornell-zhang/hcl-dialect

138

https://github.com/cornell-zhang/hcl-dialect

Bibliography

[1] M. Steuwer, T. Remmelg, and C. Dubach, “LIFT: A functional data-parallel IR
for high-performance GPU code generation,” in 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pp. 74–85, 2017.

[2] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. Inoue, T. Grosser, G. Kou-
veli, A. Kravets, A. Lokhmotov, C. Nugteren, F. Waters, and A. F. Donaldson,
“PENCIL: Towards a Platform-Neutral Compute Intermediate Language for DSLs,”
CoRR, vol. abs/1302.5586, 2013.

[3] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea, “Futhark:
purely functional GPU-programming with nested parallelism and in-place array
updates,” Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2017.

[4] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, “Halide @ CVPR2015.”
https://halide-lang.org/cvpr2015.html. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[5] S. Paris, S. W. Hasinoff, and J. Kautz, “Local Laplacian Filters: Edge-Aware Image
Processing with a Laplacian Pyramid,” in ACM SIGGRAPH 2011 Papers, SIG-
GRAPH ’11, (New York, NY, USA), Association for Computing Machinery, 2011.

[6] Adobe, “Adobe Photoshop Lightroom.” https://www.adobe.com/products/
photoshop-lightroom.html. Accessed: 2023-04-08.

[7] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the
Obvious,” SIGARCH Comput. Archit. News, vol. 23, p. 20–24, mar 1995.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quan-
titative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
6th ed., 2017.

[9] “Halide, a language for fast, portable computation on images and tensors.” https:
//halide-lang.org/. Accessed: 2023-04-08.

[10] “[vulkan phase2] Vulkan Runtime.” https://github.com/halide/Halide/pull/
6924. Accessed: 2023-04-08.

https://halide-lang.org/cvpr2015.html
https://www.adobe.com/products/photoshop-lightroom.html
https://www.adobe.com/products/photoshop-lightroom.html
https://halide-lang.org/
https://halide-lang.org/
https://github.com/halide/Halide/pull/6924
https://github.com/halide/Halide/pull/6924

[11] D. Huff, S. Dai, and P. Hanrahan, “Clockwork: Resource-Efficient Static Scheduling
for Multi-Rate Image Processing Applications on FPGAs,” in 29th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
FCCM 2021, Orlando, FL, USA, May 9-12, 2021, pp. 186–194, IEEE, 2021.

[12] L. Kalms, A. Podlubne, and D. Göhringer, “HiFlipVX: An Open Source High-
Level Synthesis FPGA Library for Image Processing,” in International Workshop
on Applied Reconfigurable Computing, 2019.

[13] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz,
“Programming Heterogeneous Systems from an Image Processing DSL,” ACM
Trans. Archit. Code Optim., vol. 14, August 2017.

[14] J. Li, Y. Chi, and J. Cong, “HeteroHalide: From Image Processing DSL to Efficient
FPGA Acceleration,” in Proceedings of the 2020 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’20, (New York, NY, USA),
p. 51–57, Association for Computing Machinery, 2020.

[15] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang,
“HeteroCL: A Multi-Paradigm Programming Infrastructure for Software-Defined
Reconfigurable Computing,” in Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’19, (New York, NY, USA),
p. 242–251, Association for Computing Machinery, 2019.

[16] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,”
IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, 1967.

[17] A. Peleg and U. Weiser, “Mmx technology extension to the intel architecture,” IEEE
Micro, vol. 16, no. 4, pp. 42–50, 1996.

[18] “Intel® Intrinsics Guide.” https://www.intel.com/content/www/us/en/docs/
intrinsics-guide/index.html. Accessed: 2023-04-09.

[19] “Arm Neon.” https://www.arm.com/en/technologies/neon. Accessed: 2023-04-
09.

[20] “arm developer, Learn the architecture - Introducing SVE2.” https://developer.
arm.com/documentation/102340/0100/Introducing-SVE2. Accessed: 2023-04-
09.

[21] “RISC-V, Vector Extension 1.0, frozen for public review..” https://github.com/
riscv/riscv-v-spec/releases/tag/v1.0. Accessed: 2023-04-09.

[22] “The OpenMP API specification for parallel programming.” https://www.openmp.
org/specifications/. Accessed: 2023-04-09.

[23] “MPI: A Message-Passing Interface Standard.” https://www.mcs.anl.gov/
research/projects/mpi/mpi-standard/mpi-report-1.1/mpi-report.htm. Ac-
cessed: 2023-04-09.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.arm.com/en/technologies/neon
https://developer.arm.com/documentation/102340/0100/Introducing-SVE2
https://developer.arm.com/documentation/102340/0100/Introducing-SVE2
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-1.1/mpi-report.htm
https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-1.1/mpi-report.htm

[24] “OpenCL™, Open standard for parallel programming of heterogeneous systems.”
https://www.khronos.org/api/opencl. Accessed: 2023-04-09.

[25] K. Seto, “Scalar Replacement with Polyhedral Model,” IPSJ Trans. Syst. LSI Des.
Methodol., vol. 11, pp. 46–56, 2018.

[26] M. S. Lam, “Software pipelining: an effective scheduling technique for VLIW ma-
chines,” in ACM-SIGPLAN Symposium on Programming Language Design and Im-
plementation, 1988.

[27] J. Sanchez and A. González, “The effectiveness of loop unrolling for modulo schedul-
ing in clustered VLIW architectures,” in Proceedings 2000 International Conference
on Parallel Processing, pp. 555–562, 2000.

[28] P. B. Gibbons and S. S. Muchnick, “Efficient instruction scheduling for a pipelined
architecture,” SIGPLAN Not., vol. 21, p. 11–16, jul 1986.

[29] B. R. Rau and C. D. Glaeser, “Some Scheduling Techniques and an Easily Schedu-
lable Horizontal Architecture for High Performance Scientific Computing,” SIGMI-
CRO Newsl., vol. 12, p. 183–198, dec 1981.

[30] B. R. Rau, “Iterative modulo Scheduling: An Algorithm for Software Pipelining
Loops,” in Proceedings of the 27th Annual International Symposium on Microarchi-
tecture, MICRO 27, (New York, NY, USA), p. 63–74, Association for Computing
Machinery, 1994.

[31] J. Llosa, M. Valero, E. Ayguadé, and A. González, “Hypernode Reduction modulo
Scheduling,” in Proceedings of the 28th Annual International Symposium on Mi-
croarchitecture, MICRO 28, (Washington, DC, USA), p. 350–360, IEEE Computer
Society Press, 1995.

[32] J. Llosa, M. Valero, E. Agyuade, and A. González, “Modulo scheduling with reduced
register pressure,” IEEE Transactions on Computers, vol. 47, no. 6, pp. 625–638,
1998.

[33] J. Llosa, E. Ayguade, A. González, M. Valero, and J. Eckhardt, “Lifetime-sensitive
modulo scheduling in a production environment,” IEEE Transactions on Comput-
ers, vol. 50, no. 3, pp. 234–249, 2001.

[34] “CUDA Toolkit, Develop, Optimize and Deploy GPU-Accelerated Apps.” https:
//developer.nvidia.com/cuda-toolkit. Accessed: 2023-04-10.

[35] “Altera SDK for OpenCL is First in Industry to Achieve Khronos Confor-
mance for FPGAs.” https://www.khronos.org/news/permalink/altera-sdk-
for-opencl-is-first-in-industry-to-achieve-khronos-conformance-f. Ac-
cessed: 2023-04-10.

https://www.khronos.org/api/opencl
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/news/permalink/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-f
https://www.khronos.org/news/permalink/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-f

[36] “Vulkan, a low-overhead, cross-platform API, open standard for 3D graphics and
computing..” https://vulkan.org/. Accessed: 2023-04-08.

[37] “SPIR-V, Extended Instruction Set, and Extension Specifications.” https://
registry.khronos.org/SPIR-V/. Accessed: 2023-04-10.

[38] Z. Marrakchi, H. Mrabet, U. Farooq, and H. Mehrez, “FPGA Interconnect Topolo-
gies Exploration,” Int. J. Reconfig. Comput., vol. 2009, jan 2009.

[39] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progression,” IEEE
Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29, 2021.

[40] “Xilinx, Understanding FPGA Architecture, DSP48 Block.” https://www.xilinx.
com/htmldocs/xilinx2017_4/sdaccel_doc/uwa1504034294196.html. Accessed:
2023-04-12.

[41] “Vitis High-Level Synthesis 2022.2.” https://www.xilinx.com/support/
documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html. Ac-
cessed: 2023-04-11.

[42] “Intel® High Level Synthesis Compiler.” https://www.intel.es/content/www/
es/es/software/programmable/quartus-prime/hls-compiler.html. Accessed:
2023-04-11.

[43] “SmartHLS™ Compiler Software.” https://www.microchip.com/en-us/
products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler.
Accessed: 2023-04-11.

[44] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-Level Synthesis for FPGA-Based Pro-
cessor/Accelerator Systems,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11, (New York, NY, USA),
p. 33–36, Association for Computing Machinery, 2011.

[45] “Catapult High-Level Synthesis and Verification.” https://eda.sw.siemens.com/
en-US/ic/catapult-high-level-synthesis/. Accessed: 2023-04-11.

[46] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Programming for FPGAs,”
CoRR, vol. abs/1805.03648, 2018.

[47] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline synthesis,” in
2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 211–218, 2013.

[48] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based
on SDC formulation,” in 2006 43rd ACM/IEEE Design Automation Conference,
pp. 433–438, 2006.

https://vulkan.org/
https://registry.khronos.org/SPIR-V/
https://registry.khronos.org/SPIR-V/
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/uwa1504034294196.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/uwa1504034294196.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html
https://www.intel.es/content/www/es/es/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.es/content/www/es/es/software/programmable/quartus-prime/hls-compiler.html
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/

[49] P. Sittel, N. Fiege, J. Wickerson, and P. Zipf, “Optimal and Heuristic Approaches
to Modulo Scheduling With Rational Initiation Intervals in Hardware Synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 3, pp. 614–627, 2022.

[50] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of High-
Level Synthesis Codes for High-Performance Computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, p. 1014–1029, may 2021.

[51] C. Du and Y. Yamaguchi, “High-Level Synthesis Design for Stencil Computations
on FPGA with High Bandwidth Memory,” Electronics, vol. 9, no. 8, p. 1275, 2020.

[52] J. Ragan-Kelley, Decoupling algorithms from the organization of computation for
high performance image processing. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 2014.

[53] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, (New
York, NY, USA), p. 519–530, Association for Computing Machinery, 2013.

[54] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling compiler infrastruc-
ture for domain specific computation,” in 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), pp. 2–14, 2021.

[55] “TensorFlow, an end-to-end open source platform for machine learning.” https:
//www.tensorflow.org/. Accessed: 2023-04-19.

[56] S. Eldridge, P. Barua, A. Chapyzhenka, A. Izraelevitz, J. Koenig, C. Lattner,
A. Lenharth, G. Leontiev, F. Schuiki, R. Sunder, et al., “MLIR as hardware com-
piler infrastructure,”

[57] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao,
L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, “Spatial: A Language and
Compiler for Application Accelerators,” SIGPLAN Not., vol. 53, p. 296–311, jun
2018.

[58] S. Han, M. Jang, and J. Kang, “ShakeFlow: Functional Hardware Description
with Latency-Insensitive Interface Combinators,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, (New York, NY, USA), p. 702–717,
Association for Computing Machinery, 2023.

[59] D. Durst, M. Feldman, D. Huff, D. Akeley, R. Daly, G. L. Bernstein, M. Patrig-
nani, K. Fatahalian, and P. Hanrahan, “Type-Directed Scheduling of Streaming

https://www.tensorflow.org/
https://www.tensorflow.org/

Accelerators,” in Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2020, (New York, NY, USA),
p. 408–422, Association for Computing Machinery, 2020.

[60] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A Compiler Infrastructure for Ac-
celerator Generators,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’21, (New York, NY, USA), p. 804–817, Association for Computing Machinery,
2021.

[61] “Vitis Unified Software Platform.” https://www.xilinx.com/products/design-
tools/vitis/vitis-platform.html. Accessed: 2023-04-05.

[62] “Vitis Unified Software Platform Documentation: Application Acceleration De-
velopment (UG1393), v++ Command.” https://docs.xilinx.com/r/en-US/
ug1393-vitis-application-acceleration/v-Command. Accessed: 2023-04-05.

[63] “QEMU, A generic and open source machine emulator and virtualizer.” https:
//www.qemu.org/. Accessed: 2023-04-05.

[64] “Vitis Unified Software Platform Documentation: Application Acceleration Devel-
opment (UG1393), PL Kernel Properties.” https://docs.xilinx.com/r/en-US/
ug1393-vitis-application-acceleration/PL-Kernel-Properties. Accessed:
2023-04-05.

[65] “Vitis Unified Software Platform Documentation: Application Acceleration De-
velopment (UG1393), Kernel Interface Requirements.” https://docs.xilinx.
com/r/en-US/ug1393-vitis-application-acceleration/Kernel-Interface-
Requirements. Accessed: 2023-04-05.

[66] “Vitis Unified Software Platform Documentation: Application Acceleration
Development (UG1393), Control Requirements for XRT-Managed Ker-
nels.” https://docs.xilinx.com/r/en-US/ug1393-vitis-application-
acceleration/Control-Requirements-for-XRT-Managed-Kernels. Accessed:
2023-04-05.

[67] “Xilinx Runtime Library (XRT).” https://www.xilinx.com/products/design-
tools/vitis/xrt.html. Accessed: 2023-04-05.

[68] “XRT Controlled Kernel Execution Models.” https://xilinx.github.io/XRT/
master/html/xrt_kernel_executions.html. Accessed: 2023-04-19.

[69] “AMBA AXI Protocol Specification.” https://developer.arm.com/
documentation/ihi0022/latest/. Accessed: 2023-05-02.

[70] H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, and D. Chen,
“ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level In-
termediate Representation,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022.

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/v-Command
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/v-Command
https://www.qemu.org/
https://www.qemu.org/
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/PL-Kernel-Properties
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/PL-Kernel-Properties
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Kernel-Interface-Requirements
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Kernel-Interface-Requirements
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Kernel-Interface-Requirements
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Control-Requirements-for-XRT-Managed-Kernels
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Control-Requirements-for-XRT-Managed-Kernels
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://xilinx.github.io/XRT/master/html/xrt_kernel_executions.html
https://xilinx.github.io/XRT/master/html/xrt_kernel_executions.html
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/

[71] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian, “Au-
tomatically scheduling halide image processing pipelines,” ACM Trans. Graph.,
vol. 35, jul 2016.

[72] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi, B. Steiner,
S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley, “Learning to Optimize
Halide with Tree Search and Random Programs,” ACM Trans. Graph., vol. 38, jul
2019.

[73] L. Anderson, A. Adams, K. Ma, T.-M. Li, and J. Ragan-Kelley, “Learning to Sched-
ule Halide Pipelines for the GPU,” ArXiv, vol. abs/2012.07145, 2020.

	List of Figures
	Introduction
	Introduction
	Writing and optimizing algorithms for high-performance
	Halide's answer to image and array processing acceleration
	Halide on FPGA efforts
	Generating HLS directly vs using an IR

	Goals and contributions of the thesis
	Thesis organization

	Hardware acceleration
	Accelerating CPUs
	Software pipelining and the Initiation Interval (II)

	GPUs for hardware acceleration
	General-Purpose Graphics Processing Units programming APIs

	FPGAs for hardware acceleration
	FPGA architecture overview
	Hard blocks
	FPGA programming

	Tools and components
	Halide
	Algorithm vs schedule motivation
	Language overview
	Schedules
	Compilation flow
	Implementation overview

	MLIR
	Motivation
	Dialects
	MLIR Language
	Dialect conversion
	Passes
	mlir-opt and mlir-translate tools

	CIRCT
	Dialects
	Transformation passes
	Scheduling
	SystemVerilog emission
	circt-opt and circt-translate tools

	Calyx
	Language overview
	Compilation

	Xilinx Vitis
	v++ kernel compiler
	Build targets
	Programmable-logic (PL) Kernel Properties
	Kernel Interface Requirements
	Vivado Design Suite's package_xo and the kernel.xml file

	Xilinx Runtime (XRT)
	XRT-Managed Kernel Execution Models

	Methodology
	From Halide down to RTL
	Development methodology
	MLIR generation
	Transformation to hardware dialects with CIRCT
	Adding Xilinx platform-specific wrappers
	Compiling the RTL kernel
	Running the RTL kernel and debugging it

	Implementation of the project
	Emitting MLIR
	Marking loops to be offloaded to an accelerator
	Generating the function signature
	Halide IR type to MLIR type conversion
	Halide IR to MLIR translation

	Emitting a generic RTL kernel
	Lowering MLIR to CIRCT's Calyx dialect
	Lowering CIRCT's Calyx dialect to hardware dialects

	Wrapping the generic RTL kernel for Xilinx FPGAs
	Calyx external memory to AXI converter
	Kernel control interface (AXI4-Lite subordinate)
	Top-level module
	Generating the kernel.xml
	Exporting SystemVerilog

	Halide XRT runtime backend
	Opening the device
	Loading the kernel into the device
	Allocating device memory
	Copying memory from/to the host to/from the device
	Launching the kernel
	Kernel execution sequence diagram example

	Bugs and issues
	Add support for multiple calyx::AssignOp with guards to the same destination
	Clock-enable done signal Calyx registers
	calyx::NotLibOp was lowered incorrectly
	Avoid leaving read/write-enable signals of external memories unconnected

	Experiments and results
	Setup
	Avnet Ultra96-V2 Board
	Evaluation kernels

	Test load kernel
	Resource utilization
	Execution time

	Test load div int8 kernel
	Resource utilization
	Execution time

	Test blur3x3 sliding window kernel
	Resource utilization
	Execution time

	Conclusions and future work
	Conclusions
	Future work
	Support vectorized accesses to local memory
	Improved support for MLIR's arith min and max operations
	Generalize MemRefType lowering
	Proper support for scf::IfOp in CIRCT's SCFToCalyx pass
	Implement lowering of calyx::ParOp in CalyxToHW
	Add floating-point support in the MLIR to RTL lowering
	Avoid useless pipeline stages after comb canonicalization of lowered pipeliend Calyx operations
	Emit loops and memory accesses using MLIR's affine dialect
	Use CIRCT's static scheduling infrastructure to lower MLIR to Calyx
	Add AXI-Stream support
	Coalescing buffer to implement write-combining
	Generate HLS code from MLIR
	Halide autoschedulers for FPGA targets

	Bibliography

