
PERFORMANCE OPTIMISATIONS
FOR

HETEROGENEOUS MANAGED
RUNTIME SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

Michail Papadimitriou

Department of Computer Science

Contents

Abstract 12

Declaration 14

Copyright 15

Acknowledgments 16

List of Abbreviations 18

1 Introduction 19
1.1 The Advent of Heterogeneous Managed Runtimes 21
1.2 Challenges in Heterogeneous Managed Runtimes 22
1.3 Research Objectives . 24
1.4 Contributions . 25
1.5 Thesis Structure . 26
1.6 Publications . 27
1.7 Summary . 29

2 Background 30
2.1 Heterogeneous Platforms . 30

2.1.1 Heterogeneous Architectures 31
2.1.1.1 Multi-Core Central Processing Units (CPUs) 31
2.1.1.2 Graphics Processing Units (GPUs) 32
2.1.1.3 Field Programmable Gate Arrays (FPGAs) 33

2.1.2 Parallel Programming Models 33
2.1.2.1 OpenCL . 34

2.2 Managed Runtime Systems . 38
2.2.1 Java . 38

2

2.2.2 Java Virtual Machine (JVM) 38
2.2.3 Optimising Compilers . 40

2.2.3.1 Graal Compiler 41
2.3 Heterogeneous Managed Runtimes 45

2.3.1 TornadoVM . 45
2.4 Machine Learning Modelling . 49

2.4.1 Supervised vs Unsupervised Learning 50
2.4.2 Classification Problems . 51

2.5 Summary . 52

3 Related Work 53
3.1 Introduction . 53
3.2 FPGA Execution of Managed Languages 53

3.2.1 Interfacing with static FPGA designs 54
3.2.2 Dynamic FPGA code generation 55
3.2.3 Java Execution on FPGAs: Spotting the Gap 56

3.3 Optimising Compilers for GPU Code generation 57
3.3.1 Exposing GPU Features into Programming Languages 57
3.3.2 Compiler Techniques for Memory Transformations 58

3.4 Dynamic Application Scheduling on Heterogenous Hardware 59
3.4.1 Non-Machine Learning Multi-Task Scheduling 60
3.4.2 Machine Learning-based Multi-Task Scheduling 61
3.4.3 Single Task Scheduling on Multiple-Devices 61

3.5 Summary . 62

4 FPGA Aware JIT Compilation for Managed Runtime Programming Lan-
guages 63
4.1 Motivation: FPGA Performance for Unoptimised Auto-Generated

OpenCL Kernels . 65
4.2 FPGA Acceleration of Managed Languages 66

4.2.1 Extensions to the JIT Compiler 68
4.2.2 Runtime Extensions . 69
4.2.3 Memory Management . 71

4.3 Compiler Optimisations Targeting FPGAs 73
4.3.1 Extensions to the JIT Compiler 73
4.3.2 Generated FPGA-Optimised OpenCL C code 76

3

4.4 Evaluation . 77
4.4.1 Experimental Setup and Methodology 77

4.4.1.1 Benchmarks . 78
4.4.1.2 Experimental Setup 78

4.4.2 Performance Analysis . 79
4.4.2.1 Runtime Overhead Analysis 81
4.4.2.2 Optimisation Phases Breakdown 82

4.4.3 HLS Compilation & Binary Loading 84
4.4.4 Resource Utilisation . 85
4.4.5 Discussion . 85

4.5 Summary . 86

5 Exploiting the Memory Hierarchy of GPUs via JIT Compilation 88
5.1 Motivation: Tier-Memory for Locality in GPUs 90
5.2 GPU Memory-Aware JIT Compilation 92
5.3 Compositional Compiler Intrinsics (CCIs) 94
5.4 Exploiting Local Memory . 97

5.4.1 Parallel Reductions . 97
5.4.2 Matrix Operations . 102

5.5 Evaluation . 105
5.5.1 Experimental Setup and Methodology 105

5.5.1.1 Experimental Methodology 105
5.5.1.2 Benchmarks and Input Sizes 106

5.5.2 Performance Evaluation . 108
5.5.2.1 Performance Comparison against TornadoVM . . . 108
5.5.2.2 Performance Comparison against Hand-Written OpenCL110

5.5.3 Compilation Overhead . 110
5.6 Summary . 111

6 Intelligent Scheduling of Multiple-Tasks on Multiple-Devices (MTMD) 113
6.1 Motivation: Beyond Single Device Performance 115

6.1.1 An OpenCL Review on Multiple Devices 115
6.1.2 The TornadoVM Perspective 116

6.2 Multiple-Tasks on Multiple-Devices 117
6.2.1 Task Dataflow Analyser . 119
6.2.2 Context Allocator and Scheduler 120

4

6.2.3 Multi-Context Bytecode Generator 121
6.2.4 Thread Pool of Execution Engines 122
6.2.5 Discussion . 123

6.3 Prediction-based Scheduling for MTMD 124
6.3.1 Feature Extraction . 125
6.3.2 Feature Selection & Engineering 127
6.3.3 Training Dataset . 129
6.3.4 Machine Learning Architecture 131
6.3.5 On-line Scheduling Process 132

6.4 Evaluation . 134
6.4.1 Experimental Setup and Methodology 134

6.4.1.1 Applications and Input sizes 134
6.4.1.2 Scheduling Strategies 137

6.4.2 Performance Evaluation of MTMD 138
6.4.2.1 Relative Performance versus Best Consecutive . . . 138
6.4.2.2 Relative Performance versus Best Concurrent . . . 140

6.4.3 Analysis of the ML Model used MTMD Scheduling 141
6.5 Summary . 143

7 Conclusions and Future Research Directions 144
7.1 Summary . 144
7.2 Future Research Directions . 146

Bibliography 148

Word Count: 35471

5

List of Tables

2.1 Overview of the allocation and access support for the different OpenCL
memory regions from the device and host perspectives. 37

2.2 List of the TornadoVM bytecodes along with a description. 48

3.1 Taxonomy of the state-of-the-art frameworks that target heterogeneous
execution from Java . 56

4.1 Input and data sizes for the given set of benchmarks. Input size corre-
sponds to the number of parallel iterations while the data sizes corre-
spond to the in/out data transfers. 78

4.2 Experimental Platform for FPGA Experimentation. 79
4.3 The impact of each optimisation phase in performance. The first op-

timisation phase includes Thread-Scheduling (TS), the second phase
applies Loop Unrolling (LU) along with scheduling with 64 threads
(TS_64). The final phase includes all previous optimisations and Loop
Flattening (LF). 83

4.4 Bitstream size, time for loading onto the FPGA, and HLS bitstream
generation time. 84

4.5 Resource utilisation as reported by the Intel High Level Synthesis
Compiler (AOC). 85

5.1 Experimental setup and configuration. 106
5.2 GPU configuration: Device, memory, work-item and driver specification.106
5.3 List of benchmarks used for the evaluation of the extensions to the JIT

compiler. 107
5.4 Compilation times per compilation stage in the two stage compilation

process. 111

6

6.1 List of raw features captured from early stage of the compilation from
the IR graph. 126

6.2 Truth table to perform the final device selection and scheduling. . . . 133
6.3 Experimental Setup. 135
6.4 The input applications written in Java with the TornadoVM API and

divided into three distinct groups for the evaluation. 136
6.5 The input data sizes for each application (task) in three different ranges:

small, medium, and large. 136
6.6 Confusion Matrix for Classifier One. 142
6.7 Confusion Matrix for Classifier Two. 142
6.8 Confusion Matrix for Classifier Three. 142

7

List of Figures

2.1 Overview of the OpenCL host-device relations. 35
2.2 Overview of the OpenCL execution model. NDRange index space

showing work-items, their global IDs and their mapping onto the pair
of work-group and local IDs. 36

2.3 Overview of the OpenCL memory model. Consistency within work–group
for global and local memory: Only at synchronization points within
work–group and Consistency between work–groups for global memory:
Only at synchronization points at the host level. 37

2.4 Java Virtual Machine (JVM) architecture. 39
2.5 Graal IR for the Fibonacci sequence of method in Listing 2.1 obtained

through the Graal graph builder of the bytecodes displayed in Listing 2.2. 43
2.6 High-level overview of the snippets lowering process. 44
2.7 A high-level overview of the TornadoVM API, runtime and JIT compiler. 46
2.8 Overview of the TornadoVM heterogeneous programming framework. 47
2.9 TornadoVM Memory Management Scheme. 48

3.1 Classification of the state-of-the-art frameworks that target FPGA hard-
ware from managed languages. 54

4.1 Initial results of TornadoVM generated OpenCL code a DFT applica-
tion running on an FPGA: a) un-optimised (left), and b) with manual
optimisations (right). 66

4.2 TornadoVM Overview: The existing components are illustrated with
blue while the FPGA extensions are depicted in pink. 67

4.3 Two stage compilation: 1) from Java to OpenCL C, and 2) from OpenCL
C to FPGA Bitstream. 69

4.4 An overview of the execution modes. The extensions are illustrated in
pink. 70

8

4.5 Abstract overview of the FPGA memory management scheme. 72
4.6 IR compiler transformations that are automatically performed by the

implemented extensions to the JIT compiler. 75
4.7 Sketch of the generated OpenCL code specialised for FPGAs (LHS:

Original TornadoVM generated for GPUs and RHS: TornadoVM code
generated for FPGAs). 77

4.8 Speedup of Intel Arria 10 FPGA against sequential Java for small,
medium and large data sizes. 80

4.9 Speedup of Intel Arria 10 FPGA against multithreaded Java (8 threads)
for small, medium and large data sizes. 80

4.10 Speedup of Intel Arria 10 FPGA against Intel HD Graphics 630 for
small, medium and large data sizes. 81

4.11 Breakdown of the total execution time of each benchmark. 82

5.1 Overview of the Just-in-Time compilation flow for automatically ex-
ploiting the GPU memory hierarchy. 93

5.2 IR transformations for the compiler intrinsics of local memory alloca-
tion and data copies. 95

5.3 GPU-targeted reduce operation with explicit global memory allocation. 98
5.4 GPU-targeted reduce operation with local memory allocation. 98
5.5 IR transformations for the compiler intrinsics of loop tiling, local mem-

ory allocation, and data copies. 99
5.6 Node replacements during the lowering phase for the reduction compiler

intrinsic. 101
5.7 IR nodes from the compiler intrinsic in Listing 5.5. 103
5.8 IR node replacements during the memory transformation phase for the

Matrix Multiplication application. 104
5.9 Performance comparison against vanilla TornadoVM (x-axis: Input

sizes in powers of 2, y-axis: Achieved speedup). 109
5.10 Relative performance of the code generated through the extended JIT

compiler against hand-written optimised OpenCL implementation (the
higher, the better). 110

6.1 Overview of OpenCL execution modes (Out-of-order on Single Device
vs In-order on Multiple Devices). 116

9

6.2 Attainable performance speedups against sequential Java for a CPU, an
integrated GPU and a discrete GPU. 118

6.3 High-level overview of the components added and modified to the
original TornadoVM to enable the concurrent MTMD execution. . . . 119

6.4 Concurrency limits: Achieved speedups against sequential Java for a
CPU, an integrated GPU, Discrete GPU, in-order on multiple devices,
concurrent into three devices and concurrent into two devices. 124

6.5 A heat map of all the feature variables along with their relation to
the target variable (i.e, device speedup). The scale highlights with
light color the highly correlated features and with dark color the least
correlated features. 128

6.6 Feature importance for classifiers: 1) IGPU vs GPU, 2) GPU vs CPU
and 3) GPU vs IGPU. Squares are representing the impact of the feature
in the final decision (larger squares have more influence). 129

6.7 An overview of the offline training process of Java programs supported
by TornadoVM. 130

6.8 Online scheduling based on task-features, available devices and trained
model. 133

6.9 Achieved speedups for each group of applications and size configu-
rations against the baseline Dynamic Reconfiguration (DynRec) for
consecutive execution. Each bar presents the following policies: ML-
based MTMD (mtmd-ml), First-Come-First-Served (fcfs), GPU Priority
(gpuprio), and CPU Exclusion (cpuex). 139

6.10 Comparison of the MTMD scheduling policies against the Oracle (peak
performance). 140

6.11 Offline training process and Online device allocation based on pre-
trained model. 142

10

List of Listings

2.1 Example of Java method recursively calculaing a Fibonacci Sequence. 42
2.2 Java bytecodes for the method fib presented in Listing 2.1 42
2.3 Example of AArch64 integer division Snippet in GraalVM 44
2.4 Example of the TornadoVM API to accelerate a simple Vector Addition

between two primitive arrays. 46
4.1 Example of Java code snippet for the dft method. 73
5.1 Example of an OpenCL kernel computing a Matrix Multiplication

optimised to use local memory and loop tiling. 91
5.2 Example code of a Java method computing a naive implementation of a

Matrix Multiplication written with the TornadoVM API. 92
5.3 Example code of a Java reduction written with the TornadoVM API. . 99
5.4 Example code of a compiler intrinsic to utilise the GPUs local memory

for reductions. 100
5.5 Example code of a compositional compiler intrinsic for processing loop

tiling using local memory. 102
6.1 Example of the TornadoVM Task-based Parallel API with multiple Tasks.117
6.2 Example of TaskSchedule with multiple independent tasks. 121
6.3 TornadoVM bytecodes for task: t0 (DFT). 122
6.4 TornadoVM bytecodes for task: t1 (BlackScholes). 122
6.5 TornadoVM bytecodes for task: t2 (Matrix Multiplication). 122
6.6 Example of static feature extractor output in JSON format for the N-

Body simulation method. 127

11

Abstract

High demand for increased computational capabilities and power efficiency has re-
sulted in making commodity devices integrating diverse hardware resources. Desktops,
laptops, and smartphones have embraced heterogeneity through multi-core Central Pro-
cessing Units (CPUs), energy-efficient integrated Graphics Processing Units (GPUs),
Field-Programmable Gate Arrays (FPGAs), powerful discrete GPUs, and Tensor Pro-
cessing Units (TPUs). To ease the programmability of these heterogeneous hardware
accelerators, several parallel programming frameworks, such as OpenCL and CUDA,
have been introduced, to support the new diverse computing paradigm.

In order to utilise heterogeneous hardware accelerators, software engineers shall
divert from the conventional software engineering practices that until now regarded
CPU-only execution. To manage this transition, a deep understanding of the underlying
hardware architecture and parallel programming principles is required. To this end, sev-
eral frameworks (e.g., Lift, TVM, Halide, Lime, Aparapi, Dandelion, Marawacc) made
heterogeneous hardware accessible from high-level languages. Yet, these frameworks
tend either to be tailored to a domain (e.g., machine learning, computer vision) or to
expose hardware particularities to the developer. In addition, little work has been done
on making niche aspects of heterogeneous hardware a natural extension to languages
running on top of conventional managed runtimes, such as the Java Virtual Machine
(JVM).

This thesis presents novel performance-oriented, architecture-dependent, compiler
and runtime optimisations to enable Java applications to benefit from heterogeneous
execution seamlessly. As a foundation, it uses TornadoVM, an open-source general-
purpose programming framework that accommodates the execution of Java programs
on heterogeneous hardware. The key objective is to bridge the performance gap
between managed runtime systems and heterogeneous hardware, leading to efficient
heterogeneous managed runtimes. This objective is fulfilled by the following three
distinct contributions:

12

The first contribution regards the performance improvements and portability of
FPGA execution. FPGAs can provide high-performance execution along with power
efficiency; however, they rely on a complex process dependent on High-Level Synthe-
sis (HLS) software. This work describes a novel approach to integrate FPGAs into
high-level managed programming languages by introducing a series of runtime code
specialisation techniques for seamless and execution of Java programs on FPGAs. The
experimental evaluation of the FPGA execution against sequential and multithreaded
Java implementations showcases a geometric mean of 1.2× with a maximum of 224×
and a geometric mean of 0.14× with a maximum of 19.8× performance speedups,
respectively. Furthermore, it exhibits a geometric mean for speedups of 0.32× with a
maximum of 13.82× compared to TornadoVM running on an Intel integrated GPU.

The second contribution regards the automatic exploitation of the memory hierarchy
of GPUs in order to increase performance. The memory hierarchy of heterogeneous
hardware is a key factor for performance, yet it is complicated to exploit it, even by
expert programmers. This work provides an extensible and parameterisable collection of
compiler optimisations to automatically exploit data locality and the memory hierarchy
for GPUs. These optimisations are implemented on top of the industrial-strength Graal
compiler and enable Java programs to utilise the local memory on GPUs without
explicit programming. A selection of benchmarks and GPU architectures was used to
demonstrate the performance improvements. The experimental evaluation against the
baseline implementations of generated parallel code, without the advantages of data
locality, showcases speedups of up to 2.5×. Moreover, the new technique reached up to
97% of the performance of the native code, highlighting the efficiency of the generated
code.

The third and final contribution regards the concurrent exploitation of multiple het-
erogeneous hardware accelerators. Heterogeneous managed runtimes need to consider
application and device characteristics to perform an efficient allocation. This work
addresses the seamless concurrent execution of multiple tasks on multiple devices by ex-
tending the virtualization layer of TornadoVM to execute multiple bytecode interpreters
in parallel. Furthermore, the concurrent execution was combined with a machine learn-
ing model, based on a multiple-classification architecture of Extra-Trees-Classifiers,
to perform efficient device-task allocation. The experimental results showcase perfor-
mance improvements (up to 83%) compared to all tasks running on the best single
device, while attaining up to 91% of the highest achievable performance.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.
This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may
be described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not
be made available for use without the prior written permission of the owner(s) of
the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgments

First of all, I would like to express my gratitude to my supervisor Christos Kotselidis

for his guidance and support throughout the whole PhD. For the past four years, he
provided me with encouragement and space to pursue my own ideas and directions. He
made an already stressful experience, such as pursuing a PhD, viable while gaining
valuable experiences.

Further, I would like to thank Juan Fumero who shared his knowledge on compilers
with me, and assist me to shape my research focus. He was always willing to answer my
questions and to pointed me towards the right directions. I would like to thank Thano

Stratikopoulo for his encouragement and support during the PhD process. Also, for the
effort he put to improve the quality of this thesis by patiently reviewing it.

Moreover, I would like to thank Mary Xekalaki, Florin Blanaru, Niko Foutri and

Foivo Zakkak with who I had the opportunity to collaborate and have meaningful
discussions through these years. Also, I would like to thank James Clarkson with whom
I never worked directly, but he provided the very first version of TornadoVM.

In addition, I would like to thank Dr. Jeremy Singer and Dr. Pavlos Petoumenos

who agreed to review my PhD and participate in my examination committee.
I would like to thank all the people I met in Manchester, especially, those from the

APT group with which I had the opportunity to have a lot of interesting discussions,
especially in pre-Covid times. In addition, I would like to thank the University of

Manchester, the E2Data project and HiPEAC for providing the necessary means to
support this PhD.

In addition, I would like to acknowledge all my friends back home (and abroad) that
were "forcefully" stayed up-to-date with the progress of my research. A big thank is not
enough to express my gratitude for their support and their comforting words all these
years.

I would like to thank my mother Alexandra, my brother Leonidas, my uncle Kostas,

and my grandmother Nana for all the love and support. I hope to be able to return even

16

a small portion of what they generously offered me through the years.
Also, I am grateful to Eleni for her support and understanding. Especially for her

patience during the stressful period of putting this thesis together during Covid-19.
Last but not least, this thesis is dedicated to my grandfather Leonidas, who did not

stay on board until the very end. I am so grateful for his unconditional love, support and
understanding through the years that without it would not be possible to be here today.
Among many things, not only he supported me to move abroad, but he also encouraged
me to pursue this PhD from the very beginning. Thank you.

17

List of Abbreviations

AI Artificial Intelligence
ALU Arithmetic Logic Unit
AUC Area Under the Curve
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DL Deep Learning
DMA Direct Memory Access
DSP Digital Signal Processors
FLOPS Floating Point Operations Per Second
FPGA Field Programmable Gate Arrays
GB Giga Bytes
GPU Graphics Processing Unit
I/O Input/Output
IR Intermediate Representation
ISA Instruction Set Architecture
JIT Just In Time
JVM Java Virtual Machine
LLC Last Level Cache
LOC Lines of Code
LUT Look-Up Table
MIMD Multiple Instruction Multiple Data
ML Machine Learning
MTMD Multiple Tasks Multiple Devices
OOP Object Oriented Programming
OpenCL Open Compute Language
PCIe Peripheral Component Interconnect Express
ROC Reicever Operation Curve
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Threads
SSA Single Static Assignment
SoC System-on-Chip
TPU Tensor Processing Unit
VM Virtual Machine

18

Chapter 1

Introduction

Through the last two decades both the end of Moore’s law [Moo65] and Dennard
scaling [DGY+74] have resulted in novel approaches for addressing the high demand
for increased computational capabilities and the need for energy efficient execution.
Amongst many solutions, the integration of heterogeneous hardware accelerators has
become the norm across commodity computing systems with the premise of accelerat-
ing specific workloads or parts of applications, thereby resulting in high performance
and energy efficiency compared to CPUs. These computing systems with diverse
characteristics span from smartphones, tablets, personal computers, and smart home
devices to servers and distributed data centres. For example, nowadays, a personal
computer can be equipped with a combination of multi-core Central Processing Units
(CPUs), low-power integrated Graphics Processing Units (GPUs), and powerful GPUs
for compute-intensive applications. In addition, large organisations seem to move
away from an on-premises server infrastructures to cloud providers. This migration
towards cloud-based data centres makes more niche accelerators, such as Field Pro-
grammable Gate Arrays (FPGAs) and Tensor Processing Units (TPUs), widely available.
Therefore, modern developers have access to an ever increasing and diverse variety of
heterogeneous hardware with an assortment of performance characteristics.

To benefit from the capabilities of this hardware, developers are required to use a
mixture of parallel programming particularities along with a deep understanding of
the underlying hardware architecture. Therefore, hardware expertise and knowledge
of parallel programming models become the new norm, while programming practices
move away from legacy CPU-oriented applications and single-core performance. For
instance, Nvidia offers CUDA [NVF20], its own C-based parallel programming model
to target GPU computing. In contrast, the Khronos group introduced the OpenCL

19

(Open Computing Language) [SGS10], a C-based framework for writing programs that
execute across different heterogeneous platforms. However, most of the developers tend
to prefer programming models that hide architecture-related details from them. For
instance, according to the TIOBE1 ranking system, the top three programming languages
are C, Java, and Python. In addition, as in today, the top three programming languages
on GitHub2 repositories are JavaScript [Fla06], Python [VRDJ95] and Java [GJS96].
Besides, based on the IEEE Spectrum Ranking3, the top three languages are Python,
Java, and C with scores of 100, 95.3, and 94.6, respectively.

A potential reason for developers favouring programming languages, such as
JavaScript, Python, and Java could be attributed to a number of shared characteris-
tics between such languages. For example, they share several characteristics to provide
easy accessibility by providing a high-level abstraction to interact with the hardware.
These managed and interpreted languages often provide a common ground for platform
portability and complete agnostic usages of low-level programming aspects, such as
caching or typecasting. Therefore, managed runtime systems provide an isolated envi-
ronment to handle complex aspects, such as security, class loading, garbage collection,
and memory allocation seamlessly. However, these managed runtime systems focus on
single or multi-core scalable performance and a high-level hardware abstraction without
exploit modern heterogeneous hardware. Thus, the true benefits of heterogeneous
performance remain underutilised.

Developers are willing to use heterogeneous hardware only if current programming
practices do not change drastically. Moreover, conventional managed runtimes in order
to adapt to this new programming environment need to evolve in a way that heteroge-
neous hardware becomes deeply integrated with their complete software stack. There-
fore, one can strive towards Heterogenous Managed Runtimes Systems (HMRS) to
see an intersection between conventional programming and heterogeneous hardware.

The rest of this chapter is organised as follows: Section 1.1 gives an overview
of heterogeneous managed runtimes along with their adaption into several research
fields. Section 1.2 outlines the key challenges of unifying heterogeneous hardware
and high-level languages. Section 1.3 enumerates the three main research objectives
of this thesis. Section 1.4 outlines the contributions of this thesis, while Section 1.5
presents the structure of this thesis. Finally, Section 1.6 summarises the publications
that emerged from this work.

1https://www.tiobe.com/tiobe-index/
2https://tinyurl.com/yzmd28vn
3https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

20

https://www.tiobe.com/tiobe-index/
https://tinyurl.com/yzmd28vn
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

1.1 The Advent of Heterogeneous Managed Runtimes

Heterogenous managed runtimes [CFP+18a] are an emerging paradigm that bridges
the gap between conventional virtual machines, such as the JVM and heterogeneous
hardware, such as GPUs and FPGAs. These new heterogeneous managed runtimes can
be successfully used across a broad range of fields, as many applications written in
high-level languages can benefit from heterogeneous hardware. There are three pillars
of moving away from the conventional managed runtimes: a) the large amounts of data
that needs to be processed, b) the availability of hardware with diverse characteristics,
and c) the need for real-time processing. However, one needs to guarantee not only
seamless execution, like in conventional homogeneous systems, but also high utilisation
of the underlying hardware.

Researchers and industry practitioners innovated on systems capable of mitigat-
ing the challenges of the transition to high-level abstractions of heterogeneous hard-
ware for domain-specific acceleration. Apache TVM [CMJ+18] is a solution that
enables heterogeneous execution for deep learning frameworks, such as Keras [C+15],
MXNet [CLL+15], PyTorch [PGM+19], Tensorflow [AAB+15], CoreML [Tha19] and
DarkNet [Red16] with a single-entry point for compilation and execution to different
backends, including browsers, microcontrollers, FPGAs and GPUs. In addition, it
provides support for all the popular front-ends of the deep learning frameworks, such
as Python, C++, Rust, Go, Java, and JavaScript. In same direction, another domain
with a high demand for computational power, the image processing domain benefits
from the Halide [RKBA+13] programming language. Halide targets high-performance
image and array processing through execution with CUDA [NVF20], OpenCL [SGS10],
OpenGL Compute Shaders [WNDS99] and Apple Metal [App]. Recently, the Big Data
analytics domain try to mitigate the challenges and strive towards exploiting hetero-
geneous hardware [XFK18, KDA+20]. In more detail, the Apache Spark [ZXW+16]
merit from heterogeneous hardware and execution with the ShadowVM [LHWW21].
ShadowVM allows the JVM to be augmented with a minimal runtime to support
concurrent CPU/GPU execution for Resilient Distributed Datasets (RDDs) in Spark.

On the contrary, several frameworks provide high level languages with accessi-
bility to general purpose acceleration through heterogeneous hardware. To achieve
this seamless execution and parallelisation they employ multiple different approaches
to exploit parallelism. These approaches vary from exposing low level parallel com-
puting primitives to the language semantics to loop parallelism for for loops, while
loops, and lambda expressions with the parallel streams. For instance, Sumatra [Orab],

21

IBM J9 [IHKS15], Aparapi [SCN+15], Lime [DCR+12, ABB+12], Jacc [CKBL15],
Marawacc [FRSD15, Fum17] and TornadoVM [CFP+18b, FPZ+19] target heteroge-
neous execution for applications written in Java. In addition, other frameworks, such
as Hot&Spicy [SMSF18] and ALPyNA [JS19, JTS19a] allow Python programs to be
executed on GPUs and/or FPGAs. Furthermore, for C#, frameworks, such as Hy-
bridizer [Alt] provide support for advanced features, such as Parallel.For, generics
or virtual functions while targeting only Nvidia GPUs. On the downside, these frame-
works tend to narrow down the scope either of the language support or of the device
support. For example, they can either target execution on GPUs or FPGAs due to the
differences in terms of programmability and software requirements (i.e., High Level
Synthesis (HLS)).

Domain-specific heterogeneous programming frameworks, such as TVM 4 and
Halide 5 gain a lot of traction. However, general-purpose approaches, such as Tor-
nadoVM, remain primarily an academic pursuit. The key challenge of making hetero-
geneous managed runtimes accessible for general-purpose acceleration is the need of
making hardware as transparent as possible through compiler and runtime optimisa-
tions. The following section summarises three key outstanding problems in making
high-performing hardware acceleration accessible from high level languages through
heterogeneous managed runtimes.

1.2 Challenges in Heterogeneous Managed Runtimes

As previously stated, the rapid advance of heterogeneous hardware unveiled an exten-
sive gap between widely adopted programming languages and heterogeneous parallel
programming constructs. Heterogeneous managed runtimes attempt to mitigate this tran-
sition towards heterogeneous hardware. However, this process imposes the following
challenges:

Runtime Support for Niche Accelerators

The advent of heterogeneous computing led to a plethora of hardware devices. For
instance, CPUs, GPUs, FPGAs, TPUs and ASICs are all available as standalone compute
units or combined. CPUs and GPUs have a predefined ISA, TPUs and ASICs a
predefined functionality for domain-specific purposes, and FPGAs lie in the middle.

4≈ 6.700 stars in Github: https://github.com/apache/tvm
5≈ 4.300 stars in Github: https://github.com/halide/Halide

22

https://github.com/apache/tvm
https://github.com/halide/Halide

FPGAs can provide the high-performance of ASICs along with a multiple programming
choices similar to GPUs. However, they are typically requiring deep understanding of
the HLS software along with the particularities of each of the hardware vendors.

In order for FPGAs to be accessible from managed runtimes, there is a need mitigate
the programmability overhead of the HLS software. In prior work [CDL13, KPZ+16,
KFP+18, MCC18, RKBA+13, BRR+19, SG08, SMSF18, DBAS18, RYC+13], sys-
tems, in order to enable FPGA execution for high-level languages either provide support
for specific operations through pre-compilied binaries or through domain-specific lan-
guages (DSLs). Therefore, the lack of support for dynamic compilation and an easy way
to integrate with managed runtimes, prevents FPGAs to be used for general-purpose
acceleration.

Compiler Support for High Performance Code Generation

Being able to generate efficient and high-performance heterogeneous code from high-
level languages imposes significant challenges. For instance, conventional CPU archi-
tectures rely on managed runtimes, such as the Common Language Runtime (CLR)
and the JVM for automatic memory management. However, for hardware architectures,
such as GPUs where memory allocation is explicit, exploiting the memory hierarchy is
crucial. Hence, this process becomes more complex when one tries to target GPUs from
high-level languages in which memory allocation is being managed by the runtime.

A trade-off exists between programmability, compilation time, and the attainable
performance. For example, iterative compilation processes can generate high-quality
code, but with prolonged combination times. On the contrary, the exposure of hardware
particularities to the developer can mitigate the prolonged compilation times, while
sacrificing programmability. As a result, there is a compromise between programma-
bility and performance. Hence, there is a need to provide compiler support for high
performance code generation from high-level languages.

Beyond Single Device Execution

Given the large variety of hardware devices, many researchers invested in making a
single heterogeneous device accessible from a high-level language. However, little
research has been done in the area of automatic utilisation of more than one hetero-
geneous device concurrently. Since generating high-performance parallel code is a
challenging task for compilers, handling the execution and compilation for multiple

23

devices also requires runtime support.
Novel software techniques must be developed to allow heterogeneous managed

runtimes to run applications on multiple devices concurrently. However, regardless
the invested effort on the compilers of these systems, not all applications are mapped
efficiently to all devices due to the diverse computational requirements and architectures.
Therefore, performing the device allocation intelligently is crucial to achieve high
performance through multi-device execution.

1.3 Research Objectives

The general aim of this thesis is to conduct research on novel techniques and optimisa-
tions to enable existing managed runtimes to achieve high performance, while executing
on heterogeneous hardware. As the research space spans into a broad multidisciplinary
area (compilers, runtime, programming languages, hardware), the general aim has been
narrowed down to three sub-aims covering different areas, and addressing the challenges
highlighted in Section 1.2. In detail, the research objectives of this thesis are:

1. Explore the opportunities for increased performance while leveraging FPGAs
through a managed language, such as Java, without sacrificing programmability.
This work mitigates the complexity associated with FPGA execution due to
High-Level Synthesis (HLS) software that requires understanding specifics of the
underlying hardware. The practical goal of this research is to allow Java programs
to be executed on FPGAs without requiring from end-users to program FPGA
specific code. This work provides a natural integration with the Java ecosystem
and provide an easy approach for deployment.

2. Investigate how a combination of optimisations during Just-in-Time (JIT) compi-
lation and at run-time can lead to high-performing GPU-targeted code generation
by exploiting the memory hierarchy GPUs. The main target is a managed runtime
language, such as Java, without sacrificing programmability. These optimisation
techniques allow usability and integration with industrial quality compilers, such
as Graal [DWS+13]. The practical goal of this work is to provide an infrastructure
yet sufficient to cater multiple GPU-oriented optimisations.

3. Provide a single heterogeneous managed runtime environment capable of schedul-
ing tasks on multiple heterogeneous devices concurrently. Having a system

24

capable to perform such execution allow the exploitation of different scheduling
approaches and modelling techniques based on precise device characteristics.
The practical goal of this research is to provide enough and detailed information
on the merits of heterogeneous concurrency while documenting the potential
performance gains against single device execution and different multiple device
allocations.

1.4 Contributions

This thesis presents several novel approaches to bridge the performance gap between
current managed runtime systems (in particular the JVM) and heterogeneous hardware
accelerators. The main goal is to leverage existing techniques and introduce novel ones
to showcase the performance benefits of applications written in a managed programming
language, such as Java, from heterogeneous hardware. Hence, this thesis aims to make
heterogeneous hardware widely accessible without relying on a deep understanding of
the underlying hardware architecture. This thesis makes the following contributions:

• It introduces an open-source end-to-end toolchain designed to transparently
compile and run Java code on FPGAs through the introduction of a set of execution
modes from the Java Virtual Machine (JVM). This approach enables developers
without FPGA expertise to harness the execution capabilities of FPGAs. This
toolchain also provides seamless integration with emulation tools provided by
the HLS vendors to enable fast prototyping. It combines a compiler extension
that automatically exploits parallelism from sequential code at the IR level and
specialises the IR for OpenCL code generation targeting FPGAs. This is achieved
by introducing compiler phases able to augment and transform the IR with FPGA-
specific pragmas. Finally, it showcases end-to-end speedups of up to 19.8× and
224× over multi-threaded and sequential Java code, respectively.

• It presents a new optimisation scheme integrated with a widely adopted industrial
JIT compiler to perform automatic local memory allocation on GPUs. This capa-
bility is enabled by introducing the notion of compositional compiler intrinsics on
top of Java snippets to perform parametrised data locality optimisations targeting
GPU code generation. Results showcase performance improvements of up to
2.5× versus the original code produced by TornadoVM; while also reaching up

25

to 97% of the performance of the manually optimised code across three different
GPU vendors.

• It presents a novel mechanism to enable Multiple-Tasks Multiple-Devices (MTMD)
execution for Java programs by utilising the available OpenCL-compatible devices
in a system, while running a standard JVM.

• It presents a new open-source static feature extraction tool capable of obtaining
specific performance metrics from standardised Graal IR.

• It presents a machine learning system based on a multiple classifier model capable
of performing high-performing task allocation onto a device selected among
CPUs, integrated GPUs, and discrete GPUs. Moreover, it presents an experimental
evaluation of this approach, showcasing the benefits of concurrent execution and
prediction-based allocation. Finally, the system achieved up to 83% performance
improvements against the best single device and up to 91% of the best concurrent
configuration.

1.5 Thesis Structure

The remainder of the thesis is organised as follows:

• Chapter 2 provides background information on the main concepts, techniques,
technologies, and platforms used in this thesis. Besides, it explains the terminol-
ogy required to discuss the current state-of-the-art research in the scope of this
thesis.

• Chapter 3 reviews the state-of-the-art work relevant to the contributions of this
thesis. It analyses approaches that focus on making FPGA execution feasible for
high-level managed languages. Also, it analyses compilation techniques that aim
to improve data locality on GPUs. Finally, it discusses several approaches that
investigate multi-device execution of parallel workloads.

• Chapter 4 describes how a heterogeneous managed runtime system is augmented
to support FPGA execution for Java programs. It details how the proposed
platform integrates several techniques, such as two-stage JIT compilation and
compiler optimisations.

26

• Chapter 5 presents a novel combination of JIT compilation optimisation tech-
niques to exploit data-locality for GPU code generation efficiently. It describes
how various levels of the GPU memory hierarchy can be utilised seamlessly
through the introduced optimisations. Finally, it evaluates the proposed optimisa-
tions against hand-written optimised code.

• Chapter 6 presents a novel mechanism to enable the execution of multiple tasks
on multiple devices for Java applications, concurrently. It illustrates in detail
the performance shortcomings of statically allocating tasks to devices without
exploiting intelligent allocation strategies. Also, it outlines the implementation of
a static feature extractor tool from a Java compiler graph and machine learning
architecture to perform the near-optimal device-task allocation. Finally, it presents
an evaluation of the complete system against several scheduling approaches.

• Chapter 7 summarises the contributions of this thesis and discusses opportunities
for future work and research directions.

1.6 Publications

Parts of the work in Chapter 4 were used in the following publications:

1 Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, Christos Kot-
selidis. Transparent Compiler and Runtime Specialisations for Accelerating

Managed Languages on FPGAs. In The Art, Science, and Engineering of Pro-
gramming, 2021, Vol. 5, Issue 2, Article 8, 2020 (Programming’21) [PFS+20].

2 Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, Christos Kot-
selidis. Enabling Prototyping and Acceleration of Java Programs onto In-

tel FPGAs. In Proceedings of the IEEE International Symposium On Field-
Programmable Custom Computing Machines, 2019. (FCCM’19) [PFSK19].

3 Michail Papadimitriou, Juan Fumero, Christos Kotselidis. Exploiting Pro-

grammability of FPGAs Through Managed Runtime Systems. In Proceedings of
the International Summer School on Advanced Computer Architecture and Com-
pilation for High-Performance and Embedded Systems, (ACACES’18) [PFK18].

4 Juan Fumero, Michail Papadimitriou, Foivos Zakkak, Maria Xekalaki, James

27

Clarkson, Christos Kotselidis.Dynamic Application Reconfiguration on Heteroge-

neous Hardware. In Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. 2019. (VEE’19) [FPZ+19].

Also, part of the work presented in Chapter 5 was used in the following publication:

5 Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, Christos Kot-
selidis. Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-

Time Compilation. In Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. 2021. (VEE’21) [PFSK21].

Part of the work used in Chapter 6 was used in the following publication:

6 Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios Stratikopoulos,
Florin Blanaru, Christos Kotselidis. Multiple-Tasks on Multiple-Devices (MTMD):

Exploiting Concurrency in Heterogeneous Managed Runtimes. In Proceedings
of the ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. 2021. (VEE’21) [PMF+21].

In addition, parts of this work have been published to the following research papers:

7 James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S Zakkak, Maria
Xekalaki, Christos Kotselidis, Mikel Luján. Exploiting High-Performance Het-

erogeneous Hardware for Java Programs using Graal. In Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Managed Languages and
Runtimes (ManLang). 2019. (ManLang’19) [CFP+18b].

8 James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S Zakkak, Maria
Xekalaki, Christos Kotselidis, Mikel Luján. Towards practical heterogeneous

virtual machines. MoreVMs 2018, (MoreVMs’18) [CFP+18a].

Moreover, the work of this thesis has been put forward into two research competi-
tions:

• Michail Papadimitriou. Towards Multi-Device Concurrent Heterogeneous Exe-

cution. MICRO 2020 ACM Student Research6 Competition.

• Michail Papadimitriou. Exploiting Reconfigurable Hardware from Managed

Languages. (One of the winning submissions) ACCELCLOUD: International
Contest on Accelerated Heterogeneous Cloud Computing, HiPEAC, 2019.

6https://www.microarch.org/micro53/program/src.php

28

https://www.microarch.org/micro53/program/src.php

1.7 Summary

This chapter provided a brief introduction to the research domain of this thesis. Also, it
outlined the challenges, research aims, contributions and publications that appearing
in this work. The next two chapters discuss the background knowledge required to
comprehend the content of this thesis and the state-of-the-art work. The subsequent
chapters describe novel techniques which address the three challenges of runtime
support for niche accelerators, compiler support for high performance code generation
and beyond single device execution.

29

Chapter 2

Background

This chapter provides the required background knowledge for the reader to comprehend
the material discussed in the following chapters of this thesis. Section 2.1 gives
an overview of the available heterogeneous platforms in modern computer systems,
along with the respective programming models. In more detail, Section 2.1.1 provides
information about the hardware aspects of CPUs, GPUs, and FPGAs, while Section 2.1.2
outlines the main heterogeneous programming aspects. As this work highly depends on
Managed Runtimes and Java, Section 2.2 explains their primary software components.
Finally, Section 2.3 outlines the new trend of Heterogeneous Virtual Machines, and in
more detail, the concept of TornadoVM, the experimental research platform used in this
thesis.

2.1 Heterogeneous Platforms

Dennard’s scaling [Boh07] and the abrupt end of Moore’s Law [TW17] led to the com-
bination of parallel architectures with different performance and power characteristics to
be a necessity in order to attain higher performance and energy efficiency. The advent of
a new computing paradigm has emerged through this new era, known as heterogeneous
computing. In this new computing paradigm, system design and implementation move
away from scaling to multiple unified cores to combine several specialised ones for
specific tasks. For instance, hardware vendors, such as Intel, ARM, Nvidia and Xilinx
have recently shipped powerful CPUs with low-power integrated GPUs and FPGAs on
the same die [Int21]. These platforms can yield high performance and power efficiency
as all devices can operate simultaneously and accelerate various compute-intensive
applications or different parts of the same applications. However, these heterogeneous

30

platforms require an application to be written through heterogeneous programming
languages to achieve performance improvements.

Programmers carry the burden of explicitly exploiting the available parallelism to
harness the potential capabilities of the parallel hardware. The existence of this plethora
of diverse architectures with a variety of characteristics in terms of performance or
power consumption led to several parallel programming models. Each of the different
architectures has several parallel programming models available. For instance, multicore
CPUs can be programmed with OpenMP, while Nvidia GPUs can be targeted with
CUDA. Also, more niche accelerators, like FPGAs require programs to be written with
low-level hardware description languages, such as Verilog [STDP19].

2.1.1 Heterogeneous Architectures

2.1.1.1 Multi-Core Central Processing Units (CPUs)

Modern CPU architectures have adopted multicore designs. A single die contains
up to several physical cores capable of performing independent computations simul-
taneously. These physical cores embed several processing units tightly or loosely
with shared-memory inter-core communication protocols, such as the Intel QuickPath
Interconnect [ZBMS10].

Multicore CPUs designs have been augmented with unique Single Instruction
Multiple Data (SIMD) instruction sets, such as AVX [Lom11], or SSE [Intd] to increase
the Instruction Level Parallelism (ILP). Besides, each core contains several levels of
caches for data and instructions, along with vector floating-point units (VPUs) and
Fused Multiply-Add (FMA) operations to optimise performance. Therefore, modern
CPUs have been widely adopted by different computing domains for modern computing
due to the extensive availability of tools, programming languages, and educational
resources.

However, lately, even the multicore CPU architectures have been shifting towards
heterogeneity to create a multicore processor that can adapt quickly between high
performance and low power profiles. A prime example is the ARM big.LITTLE
architecture [ARM21], featuring "big" cores for high-performance and "LITTLE" cores
for low power consumption.

31

2.1.1.2 Graphics Processing Units (GPUs)

Graphics Processor Units (GPUs) are devices with a unique architecture capable of
achieving high computational throughput, while utilising their highly parallel structures.
The modern GPU architectures contain thousands of homogenous cores capable of
deploying thousands of threads. The Nvidia GPU architecture is one of the most
dominant 1 in the current computing era. It targets a broad range of applications varying
from personal computers for gaming and rendering up to server solutions for specialised
computations, such as machine learning modelling. However, other vendors like AMD,
and lately, Intel with the Intel Iris Xe [Inta] discrete GPU, offer hardware with different
compute capabilities. Regarding the NVIDIA GPU model, it leverages the Single
Instruction Multiple Threads (SIMT) execution model. This architectural model uses
Streaming Multiprocessors (SMs), each of them equipped with multiple threads. In
the NVIDIA context, these multiple threads are grouped in packs of 32, also known
as warps. Warps implement the SIMT model, so the same instruction is executed by
multiple threads on multiple data.

GPUs also provide their memory hierarchy model compared to normal CPU archi-
tectures. GPUs are usually equipped with three different levels of memory of diverse
sizes and access speeds. Off-chip memory is the one that provides available capacities
up to several Gigabytes (GBs) of DRAM accessible by all threads. However, perfor-
mance can be significantly impacted when all threads require simultaneous access to
the DRAM. To improve performance through data locality, GPUs also employ a smaller
size fast cache shared among the same SM threads. However, this needs to exploit by
the software developer explicitly (unlike their implicit use in CPUs). Finally, the fastest
memory is available in the register files. Each thread has its register file that can store
temporary data used by every single thread.

Driven by the need for low-power devices, integrated low-power GPUs have been
adopted in several computing systems; albeit with, lower performance compared to the
discrete GPUs. Integrated GPUs tend to be fabricated on the same die with CPUs and
share the main memory (RAM) of the system. This design increases the heterogeneity
factor available in widely available computing devices. Some noticeable integrated GPU
micro-architectures are the Intel HD graphics series [Intb], the ARM Mali GPUs [Ltd].

1As in today: https://www.t4.ai/industry/gpu-market-share

32

https://www.t4.ai/industry/gpu-market-share

2.1.1.3 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGA) are special-purpose reconfigurable circuits
that the end-user can program for specific operations under demand. FPGAs can be
reconfigured during run-time in contrast to more specialised architectures, like ASICs.
In addition, FPGAs provide higher energy efficiency than general-purpose cores but
lower than ASICs for specific workloads [BTL10]. On-device resources are limited, and
one needs to achieve high hardware utilisation to achieve high performance. However,
this is a challenging process as it requires advanced knowledge of underlying circuitry
and the use of hardware description languages, like VHDL [Per93] and Verilog [TM96].
Also, the compilation (i.e., bitstream generation) process is a bottleneck, as the creation
of the executables can take up to hours.

FPGAs consist of a large number of configurable logic blocks (CLBs) and look-up
tables (LUTs). Each CLB contains a set of LUTs, a configurable switch matrix, a
selection circuit (MUX), registers, and flip-flops. All these resources are connected
via programmable interconnects. LUTs are large hardcoded truth tables and often are
used as small memory components through high-speed indexing. SRAM blocks are
interspersed in the fabric and can be chained together to build deeper, wider memories
or RAMs. FPGA vendors offer suites with highly optimised circuitry components (i.e.,
IPs), such as DSPs and filters, to speed up the design process. Modern FPGAs target
low latency (e.g., high-frequency trading) applications using multi-gigabit transceivers
(MGTs) [STDP19].

Moreover, following the trend of heterogeneity, FPGAs lately integrated into various
setups, such as embedded systems and servers. In the embedded systems market,
vendors have shipped FPGAs in the same chip combined with low-power CPUs, known
as System-on-Chip (SoC). Also, FPGAs have been added into servers via the high-
speed PCIe Interconnect for high-performance computing. For instance, examples such
heterogeneous platform are the Xilinx Zynq-7000 [RBD+11] and the Xeon CPU-Arria
10 FPGA [Int20] hybrid chip from Intel.

2.1.2 Parallel Programming Models

To be able to utilise efficiently the plethora of the heterogeneous architectures, as well
as their unique performance features, developers employ parallel programming models.
These parallel programming models allow developers to write parallel software with
exposure to low-level architectural primitives. Currently, various parallel programming

33

frameworks exist, offering different levels of exposure to the underlying architecture.
For instance, at a binary-level with the SPIR-V [Gro] which is a modern cross-platform
low-level intermediate language and at source-level with the OpenCL programming
language. In addition, approaches at the source-level often complement widely adopted
programming languages, such as C++ while offering an abstraction from the low-level
primitives. For example, Nvidia GPUs can be programmed with CUDA [NVF20],
while the OpenCL model can target a variety of devices, like CPUs, GPUs, and FPGAs.
Finally, the OpenMP [CDK+01] model that allows scaling to thousands of uniform
cores through multi-platform shared-memory parallel programming.

This thesis investigates how managed runtimes can use various heterogeneous
architectures and it uses the OpenCL parallel programming model as it provides platform
portability. Therefore, the following section briefly exploits its characteristics.

2.1.2.1 OpenCL

The Open Computing Language (OpenCL) [SGS10] is an open standard managed by
the Khronos 2 group. Briefly, OpenCL provides a system for expressing parallelism
and portability of computation workloads across several heterogeneous devices, such as
GPUs, CPUs and FPGAs. At the conceptual level, the OpenCL architecture is divided
into the following four distinct models [RBD+11]:

• Platform Model: How the compute devices are internally organised, and how
they connect to a host.

• Execution Model: How the workloads are being executed on the device.

• Memory Model: How the data is stored and organised between the device and
the host, and it provides a standardised convention for the memory hierarchy.

• Programming Model: The data-parallel and task-parallel programming ap-
proaches that the underlying execution model supports.

Platform Model: The OpenCL platform model provides a host that is able to
connect to one or more OpenCL-compatible devices. The same model provides an
abstract definition for how these devices are organised internally. Figure 2.1 depicts a
rough overview of the platform model. The host is connected with several Compute

Devices. Each device consists of many Compute Units (CU) that are mapped to the

2https://www.khronos.org/

34

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

Compute
Device #N

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

Compute
Device #2

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE
Compute
Device #1

Processing
Element (PE)

Compute
Device #0

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

...PE

Compute Unit (CU)

PE PE PE

Host

Figure 2.1: Overview of the OpenCL host-device relations.

physical cores of the device. Additionally, each of these Compute Units can contain
several Processing Elements (PEs) mapped into threads.

Execution Model: The OpenCL execution model consists of two parts, the host

program and the kernel. The host programs are executed by the main system, while
at least one OpenCL-compatible device execute the kernel. The host program is used
to orchestrate the data transfers to/from the device along with the kernel configuration
and execution. In OpenCL, the kernel is a C-based function stored in a separate source
file (i.e., with .cl extension), and it expresses a segment of parallel code that targets a
heterogeneous device. However, a key difference with standard C code is that OpenCL
introduces several parallel intrinsics to organise operations that are performed in parallel.

Figure 2.2 illustrates how the available compute items are organised through the
execution model. Each device has a limit on the available threads, the so-called work-

items, configured into a three-dimensional layout. The index space of these work-items

reflects to the NDRange. NDRange is defined as an N-dimensional integer array with
each of its entries corresponding to a GlobalID of each distinctive work-item. These
work-items are grouped into work-groups, with each of the work-groups preserving a
unique ID. Also, work-items that live in a specific work-group have also a local ID.

Additionally, on the host side, the application needs to define a context of orches-
trating the execution of the kernels. The OpenCL execution context focuses on four
distinct components:

35

NDRange

Work-itemWork-item

Work-itemWork-item ...

... ...

...

...
Work-group

Work-group size x

W
or

k-
gr

ou
p

si
ze

 y

get_global_size(0)

get_global_size(1)

Figure 2.2: Overview of the OpenCL execution model. NDRange index space showing
work-items, their global IDs and their mapping onto the pair of work-group and local

IDs.

• Devices: The OpenCL-compatible devices to be available from the host. Fig-
ure 2.1 showcases a host system with access to multiple OpenCL-compatible
devices from different hardware vendors.

• Kernels: A selection of C-based function written explicitly with the OpenCL
API.

• Program Objects: The source code or the machine code in a binary format that
implement the functions mentioned above. OpenCL kernels rely on program
objects as the source code is compiled through vendor-specific compilers.

• Memory Objects: These objects store the values and host pointers of the data
needed to perform the computation encapsulated in the kernel.

The host preserves a command-queue of the kernels waiting to be executed. These
command-queues are responsible for the kernel execution, memory, and synchronisation
commands. Moreover, these commands can be invoked in an in-order or an out-of-order

sequence.
Memory Model: The OpenCL memory hierarchy is similar to the memory hier-

archy of conventional CPU architectures. Figure 2.3 displays the OpenCL memory
hierarchy that is organised in four distinct levels; 1) Global Memory, 2) Constant

Memory, 3) Local Memory, and 4) Private Memory. Global Memory provides a space
that allows read/write access to all work-items running in parallel. Also, the Global

36

Kernel
Global Memory
(GB) Constant Memory

Workgroup

Workgroup

Workgroup

Local Memory (KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work-item
Scope

Global
Workgroup
Size
Scope

Workgroup
Scope

Figure 2.3: Overview of the OpenCL memory model. Consistency within work–group
for global and local memory: Only at synchronization points within work–group and
Consistency between work–groups for global memory: Only at synchronization points

at the host level.

Memory has a special region called Constant Memory, which can be allocated for
read-only data. The next memory tier is the Local Memory, which can be accessed
(read/write) by all work-items in the same work-group with explicit synchronisation
through barriers [FSV14]. Finally, the last memory tier is the Private Memory which
belongs exclusively to a single work-item for storing data to a number of registers.

Table 2.1 showcases the access status of each memory region. The Global Memory

(in the range of GBs) corresponds to the main memory, while Lobal Memory (up to
hundreds of KBs) corresponds to the L2 cache. Finally, Private Memory (up to tens
of KBs) is exclusive to each work-item, and it is therefore equivalent to the L1 cache
of a standard CPU. However, unlike conventional CPUs, which have hardware cache
coherency support, the OpenCL memory model requires communication barriers for

Table 2.1: Overview of the allocation and access support for the different OpenCL
memory regions from the device and host perspectives.

Side Specs
Memory Region

Global Constant Local Private

Host Allocation Dynamic Dynamic Dynamic Not-accesible
Access Read/Write Read/Write No access No access

Kernel Allocation Not-accesible Static Static Static
Access Read/Write Read-only Read/Write Read/Write

37

coherency. In addition, the access latency to each region varies in the range from ~40 to
~450 cycles for local and global memory, respectively [WPSM10].

Programming Model: The open standard allows the user to have access to both
data-parallel and task-parallel programming models. However, the primary focus of
OpenCL is on data parallelism.

2.2 Managed Runtime Systems

This thesis focuses on using the Java programming language, the Java Virtual Machine
(JVM), and its optimising compiler. This section explains the main concepts related
to the JVM and how it works. Also, it presents Graal, an aggressive JIT compiler
framework for the JVM, along with a discussion of specific optimisation utilities, such
as the compiler Snippets [SWU+15].

2.2.1 Java

Java [AGH05] is a general-purpose, object-oriented programming language developed
by Sun Microsystems, released in 1995. Through the years, Java has gained a lot of
traction and has become dominant among other programming languages, and according
to the TIOBE ranking system, it was ranked 2nd by the July of 20213. Today, a large
number of devices, such as personal computers, gaming consoles, smartphones, and
Internet applications, use Java.

2.2.2 Java Virtual Machine (JVM)

Originally, the main goal of Java was to introduce a "write once, run anywhere" approach
to allow programs to execute onto a broad range of hardware and operating systems. To
achieve this functionality, the Java Virtual Machine (JVM) platform emerged. The JVM
guarantees the interoperability of Java programs across different operating systems and
computer architectures.

Briefly, developers provide their applications written in a structured way with Java.
This source code is written in an architecture-independent manner. The Java Compiler
(javac) compiles the Java source code into class files that hold the corresponding
Java bytecodes [Oraa]. In addition, multiple class files can be combined and packaged
together in a Java Archive (a so-called jar-file). These bytecodes, once are loaded

3https://www.tiobe.com/tiobe-index/

38

https://www.tiobe.com/tiobe-index/

JIT
Compiler

Garbage
Collector

Bytecode
Interpreter

Execution
Engine

Native Method
Interface (JNI)

Method
Area Heap

Thread #1

Stack

Thread #N

...

Thread #1

PC
Register

Thread #N

...

Runtime Data Area

Native Method
Stack

Bootstrap Class Loader
Loading

Extension Class Loader

Application Class Loader

Class Loader Subsystem

Initialization

Verify
Linking

Prepare

Resolve

Java Virtual Machine

Bytecode
(.class)

Figure 2.4: Java Virtual Machine (JVM) architecture.

on the JVM, the interpretation starts. During interpretation, the interpreter executes
the bytecodes in deterministic order without applying any optimisations. However,
during the execution, bytecodes corresponding to methods that are called repeatedly
(i.e., known as a hot methods) can be Just in Time (JIT) compiled.

Figure 2.4 depicts an abstract overview for the architecture of the Java Virtual
Machine. This architecture consists of three main components: 1) Class Loader, 2)
Runtime, and 3) Execution Engine.

Class Loader: The class loading process has three different types of loaders:

1. Bootstrap Class Loader: Loads core and Java Development Kit (JDK) classes.

2. Extension Class Loader: Loads classes from the JDK extensions directory.

3. System Class Loader: Loads classes from the system class path.

Then there is a Linking process for classes or interfaces. When class loading is
finished, there is a verification and preparation process for these classes or interfaces. If
needed, the direct superclasses and superinterfaces are also being prepared. Linking
ensures that each class or interface is completely loaded, verified, and prepared before
initialisation occurs.

The rest of the components can be described briefly by the following:

• The Runtime Data Area that defines various run-time data areas that are used
during the execution of a program. These are the class area, the Java Heap, the

39

stack and PC registers. All the above store information regarding object states, as
well as the state of the JVM during execution.

• The Execution Engine that executes the bytecodes produced by the Runtime
Data Area. Three main components orchestrate the bytecode execution at this
stage. The Interpreter, the JIT compiler, and the Garbage Collector.

• The Interpreter that interprets the bytecodes fast, but the execution is slow.

• The JIT compiler that complements the interpreter. For methods calls that
occur repeatedly, the JIT compiler is going to identify and specialise these calls.
Then native code is going to be produced and used directly to lower the cost of
continuous interpretation.

• The Garbage Collection that is performed through the GC. The Garbage Collec-
tion keeps track of all objects in the Java heap and safely removes unreferenced
objects.

The JVM specification allows several different JVM implementations to exist for
both open-source and proprietary purposes. Until today, the most popular implemen-
tation is the OpenJDK HotSpot JVM, and the vast majority of JVM implementations
originate from it. The most notable alternatives to HotSpot are GraalVM [WWW+13],
Eclipse OpenJ9 [Ecl] and MaxineVM [Mat08].

2.2.3 Optimising Compilers

JVM relies on high-performance application virtualisation to ensure cross-platform
portability. Therefore, it employs optimising compilers to move slow architecture-
independent bytecode interpretation to fast specialised architecture-dependent executa-
bles. For instance, the Java HotSpot VM has employed a tiered compilation approach
that uses one of the two just-in-time (JIT) compilers, the client compiler [KWM+08]
and the server compiler [PVC01a], also called C1 and C2, respectively. However, the
state-of-the-art JIT compiler is Graal [ZSC13], an aggressive metacircular Java JIT
compiler written purely in Java. This optimising compiler uses profiling information
to guide speculative optimisations that yield better performance when speculative as-
sumptions are correct. Although, if these become invalid under some circumstances,
a deoptimisation occurs to ensure the continuation of the execution by migrating the
execution to the interpreter from a specific stack pointer and bytecode index.

40

2.2.3.1 Graal Compiler

Graal [WWS10, WWW+13] is a high-performance optimising JIT compiler for the
JVM platform implemented in Java to complement the existing JIT compilers (i.e.,
C1 and C2) in the HotSpotVM. The JVM bytecodes are passed to the Graal compiler,
which builds its intermediate representation, the so-called Graal-IR [DWS+13]. The
graph is then optimised through a tiered-compilation process, resulting in the generation
of the architecture-specific code at the end.

Graal provides a seamless way of integration with the JVM through the JVM
compiler interface (JVMCI) [Ros]. Through JVMCI the process of interchanging
compilers in the HotSpotVM is more straight forward. Therefore, the standardised
tiered compilation of the HotSpotVM C++ based compilers, the C1 and C2, can be
replaced with the Graal compiler. JVMCI installs the final and optimised machine code
in the VM’s code cache. Therefore, other components and features of the HotspotVM,
such as the bytecode interpreter and the garbage collector, can work uninterrupted.

Graal IR: Graal IR [DWS+13] is the an intermediate representation for a Java just
in time (JIT) compiler written in Java. It uses nodes representing control-flow and data-
flow dependencies in a Sea of Nodes [CP95] style. This intermediate representation is
a directed graph with nodes based in the single static assignment (SSA) form [LG99].
SSA form guarantees that each variable is assigned only once across the graph, and
therefore, numerous dynamic optimisations, such as canonicalisation and constant
propagation, can leverage the single assigned variables.

Graal IR uses two types of nodes, for both control-flow and data-flow, floating
and fixed nodes. Fixed nodes are associated with control flow nodes. Control flow
nodes are always connected with their successors. For instance, nodes for preserving
the structure of the graph, such as LoopBegin, IFNode and InvokeNode. In contrast
to the control-flow nodes, floating nodes can be data flow nodes connected with their
inputs, and there is no strict schedule for them. Therefore, during optimisation, dynamic
optimisations can be performed while nodes associated with specific operations, such as
memory accesses, can be scheduled into different basic blocks of the graph. For example,
ParameterNode, IndexedStoreNode and IndexLoadNode along their corrensponding
inputs.

The front-end of the compiler is responsible for turning the source representation,
e.g., bytecode, into the Graal IR. The component repsponsible for this tasks is the
Graphbuilder. It parses the bytecodes, as well as profiling feedback gathered by the
interpreter into an IR graph.

41

Listing 2.1 showcases a Java method calculating the Fibonacci sequence up to an
input upper bound by recursively calling the same method. Compiling the above code
with the javac compiler results to the bytecodes in Listing 2.2. For the same example,
the IR graph corresponds to a Control Flow Graph (CFG) as illustrated in Figure 2.5.

Listing 2.1: Example of Java method recursively calculaing a Fibonacci Sequence.

1 public static int fib(int number) {

2 if (number <= 1) {

3 return number;

4 } else {

5 return fib(number - 1) + fib(number - 2);

6 }

7 }

Listing 2.2: Java bytecodes for the method fib presented in Listing 2.1

1 public static int fib(int);

2 Code:

3 0: iload_0

4 1: iconst_1

5 2: if_icmpgt 7

6 5: iload_0

7 6: ireturn

8 7: iload_0

9 8: iconst_1

10 9: isub

11 10: invokestatic #3 // Method fib:(I)I

12 13: iload_0

13 14: iconst_2

14 15: isub

15 16: invokestatic #3 // Method fib:(I)I

16 19: iadd

17 20: ireturn

As shown in Figure 2.5, a Graal IR graph always starts with a Start node. Then,
depending on the structure of the input code, different node types can be attached to the
graph, while keeping different associations between them. For instance, in the above
example, control flow nodes, such as an If node are always succeeded by two Begin

nodes to represent the true and false paths on this branch. The same control flow node

42

Figure 2.5: Graal IR for the Fibonacci sequence of method in Listing 2.1 obtained
through the Graal graph builder of the bytecodes displayed in Listing 2.2.

has as an input the result of "less than" comparison between a constant (i.e., (C(2))) and
an input object to a method, namely as a Parameter node. Also, in this example there
are three instances of Add nodes; two for the values dynamically returned through the
invocation of the same method during run-time.

Snippets: Graal also provides a utility to ease the implementation and lowering
of architecture-dependent optimisations into the IR. The lowering process enables
the compiler graph that still preserves a structure, offered through a high-level lan-
guage, to be lowered to a representation that encapsulates architecture characteristics.
This utility called Snippets [SWU+15] and is a improvement of C1X’s templating
mechanism, XIR[TWSC10]. Snippets provide an infrastructure to express low-level
machine-oriented optimisations with a high-level structure. Optimisations are written
as static Java methods, compiled into Graal IR during run-time, and then injected
into the original compiler graph at the corresponding basic blocks. This process of
inserting low-level semantics into the graph early on allows the exploitation of further
optimisations, such as canonicalisation or virtualised memory accesses.

As shown in Figure 2.6, snippets are getting inserted into the graph during the
lowering process from the high compilation tier to the mid compilation tier. During this
process, the lifecycle of a snippet consists of three steps: Preparation, Specialisation,

43

Java Bytecode
Parser

Code Cache

Class Metadata

High Tier

Low Tier

Snippet

Mid Tier

Lowering

Lowering

Code Generation

High-Level
IR High-Level

Optimizations

Mid-Level
Optimizations

Low-Level
Optimizations

Machine
Code

Bytecodes

Graph High-Level
Node is replaced

with Snippets
method nodes

Figure 2.6: High-level overview of the snippets lowering process.

and Instantiation. Preparation processes a snippet like a regular Java method with its
bytecodes parsed into an IR followed by several transformations through optimisation
phases. Specialisation aims to reduce the graph size by eliminating source code guarded
by constant parameters. The specialisation step is ensured by applying various opti-
misation phases into the newly created IR. Finally, during instantiation, the original
high-level target code is replaced by the specialised snippet graphs.

Listing 2.3: Example of AArch64 integer division Snippet in GraalVM

1 @Snippet

2 static int idivSnippet(int x, int y,

3 @ConstantParameter boolean needsZeroCheck) {

4 if (needsZeroCheck) {

5 zeroCheck(y);

6 }

7 if (x == Integer.MIN_VALUE && y == -1) {

8 return Integer.MIN_VALUE;

9 }

10 return safeDiv(x, y);

11 }

44

As listed in 2.3, snippets can be used to address the integer division in a 64-bit
ARM architecture (i.e., AArch64). Therefore, this infrastructure allows architecture-
dependent operations to be expressed, specialised, and inserted to the original compiler
graph without the need to use low-level primitives, such as inline assembly.

2.3 Heterogeneous Managed Runtimes

The advent of heterogeneous computing allowed modern computing systems to achieve
high performance and moderate power consumption. Through this new computing
norm, programming models have emerged while sacrificing simplicity. Hardware
features are exposed to the user space to allow high performance. For instance, the
OpenCL and CUDA parallel programming models previously discussed (Section 2.1.2)
highly depend on features, such as managed memory allocations and dynamic typing.
Thus, non-expert developers familiar with languages managed by the JVM cannot adapt
heterogeneity in their programming routines.

Developers are willing to use heterogeneous hardware only if current program-
ming practices do not change drastically. Managed runtimes to integrate this kind of
programming environment need to evolve to provide the means to express heterogene-
ity. Therefore, one can strive towards Heterogeneous Managed Runtimes to see an
intersection between conventional programming and heterogeneous hardware.

Clarkson et al. [CFP+18a, KCR+17a], state that in order for Heterogeneous Man-
aged Runtimes to be practical they need to address several requirements. These re-
quirements are: Programmability, Transparency, Adaptability, Device Portability and
Performance Portability.

In this thesis, an experimental platform that satisfies the criteria mentioned above
is needed. Therefore, it uses, the TornadoVM [FPZ+19, CFP+18c] framework as an
experimental platform.

2.3.1 TornadoVM

TornadoVM [FPZ+19, CFP+18c, Cla19] is an extension to GraalVM that allows pro-
grammers to run Java programs on heterogeneous hardware automatically. Figure 2.7
illustrates a high-level overview of the TornadoVM framework that consists of three
individual components:

TornadoVM API: The API exploits loop-parallelism, and it targets data-parallel

45

Task APITornadoVM API

TornadoVM
Runtime

TornadoVM JIT
Compiler

Taskschedule API

Code CacheJIT Code Gen

Graph
Optimizer

Execution
Engine

Figure 2.7: A high-level overview of the TornadoVM API, runtime and JIT compiler.

1 public class VectoAdd {
2 public void add(int[] a, int[] b, int[] c) {
3 for (@Parallel int i = 0; i < c.length; i++) {
4 c[i] = a[i] + b[i];
5 }
6 }
7 public void computeVadd(int[] a, int[] b, int[] c) {
8 TaskSchedule ts = new TaskSchedule ("s0")
9 .task("t0", this::add, a, b, c)

10 .streamOut(c)
11 .execute();
12 }
13 }

Listing 2.4: Example of the TornadoVM API to accelerate a simple Vector Addition
between two primitive arrays.

workloads with minor modifications to an existing program. Developers do not need to
take into account fine-grained architectural features neither to re-write their existing
Java code from scratch.

Listing 2.4 showcases a simple vector addition written in Java with the TornadoVM
API. In line 2, there is a method called add, which takes two primitive integer arrays and
stores their sum into a third integer array. The only modification lies in line 3, where this
loop is marked as parallel with the @Parallel annotation. Note that TornadoVM uses
loose parallel schematics. Thus, in cases that the annotated loop propagates or carries
dependencies, then the compiler will try to compile it, it will fail, and the execution will
divert to normal JVM execution.

In addition, apart from the modification required to the target method, one needs
to propagate this method into the TornadoVM framework explicitly. This is done by

46

Standard
Compiler

Standard
Runtime

Assembler

Standard JVM

x86,
ARM

TornadoVM

OpenCL JIT Compiler

OpenCL
compatible
devices

CPUs

Intergrated
GPUs GPUs FPGAs

Compiler Data Flow
Analyzer

Graph Optimizer

Bytecode Generator

Bytecode

Execution Engine

Interpeter
Device

Manager

Figure 2.8: Overview of the TornadoVM heterogeneous programming framework.

instansiating a TaskSchedule. In line 8 there is a declaration for a TaskSchedule

associated with the above created Task for the add method. The TaskSchedule

can have an arbitrary number of tasks with-or-without dependencies between them.
Each task declaration has an internal identifier (i.e., t0), the method handle, and the
arguments needed for the given method. The TaskSchedule API offers an explicit
streamOut call to indicate a variable that needs to be returned from the device to the
host after execution. Finally, the execute() call corresponds to the beginning of the
offloading process, including the compilation of the task into OpenCL code.

TornadoVM Runtime: Figure 2.8 showcases how the TornadoVM runs inside a
standard JVM (e.g., the HotSpot JVM [PVC01b]). The TornadoVM runtime is respon-
sible for orchestrating execution in a managed manner by analysing the dependencies
between tasks of a TaskSchedule, to minimise the overhead of data transfers. Besides,
TornadoVM implements and uses its own interpreter along with a set of specialised byte-
codes dedicated for heterogeneous execution. These specialised TornadoVM bytecodes,
along with a brief description of their purpose, are outlined in Table 2.2. Note that Tor-
nadoVM treats execution at a TaskSchedule granularity. Therefore, TaskSchedules
having single or multiple tasks can only target a single device for execution even when
systems are equipped with several heterogeneous devices.

TornadoVM provides a memory management scheme to explicitly control data

47

Figure 2.9: TornadoVM Memory Management Scheme.

allocation and movement between the host JVM and the target device. The memory
manager is responsible for maintaining consistency of variable references between the
host JVM and the device. Figure 2.9 depicts a high-level overview of this scheme.
The allocation is performed through Java Native Interface (JNI) calls to the OpenCL
functions for allocating buffers onto the device. Also, the memory management scheme
pre-allocates a memory region on the global memory of the accelerator. The size of
this allocation reflects the maximum memory capacity of the device, or the maximum
size allowed by the OpenCL standard. Therefore, the memory manager becomes solely
responsible for transferring data between the host and the target memory regions while
ensuring memory consistency at run-time.

TornadoVM JIT Compiler: The JIT compiler uses and extends the Graal compiler
and the Graal IR. The JIT compiler is responsible to handling the generation of OpenCL

Table 2.2: List of the TornadoVM bytecodes along with a description.

Bytecode Operands Description

BEGIN <context> Creates a new parallel execution context.
ALLOC <context, BytecodeIndex, object> Allocates a buffer on the target device.
STREAM_IN <context, BytecodeIndex, object> Copies an object from host to device.
COPY_IN <context, BytecodeIndex, object> Alloc & copies an object from host to device.
STREAM_OUT <context, BytecodeIndex, object> Copies an object from device to host.
COPY_OUT <context, BytecodeIndex, object> Alloc & copies an object from device to host.
COPY_OUT_BLK <context, BytecodeIndex, object> A blocking COPY_OUT operation.
LAUNCH <context, BytecodeIndex, task, Args> Executes a task, compiling it if needed.
ADD_DEP <context, BytecodeIndices> Adds a dependency between labels.
BARRIER <context> Waits for all previous bytecodes.
END <context> Ends the parallel execution context.

48

code for the input methods annotated with the @Parallel for a given TaskSchedule.
These methods are compiled into Java bytecodes through javac, and then into Graal
IR with the Graal’s graph builder. In addition, from this early graph, the TornadoVM
compiler evaluates the parallel dimensions of a given task by analyzing the induction
variables and loop bound of the annotated methods.

TornadoVM augments the tiered compilation of Graal with several optimising
phases to specialise the IR to target heterogeneous code generation. For instance, an IR
optimisation phase, such as Parallel Scheduling aims to transform the loop induction
variables to use OpenCL thread identifiers, such as the getGlobalID by inserting new
graph nodes into the IR. Therefore, through this process and entirely seamlessly from
the user, the @Parallel annotation hints the compiler to exploit loop parallelism for
Java applications.

Finally, the JIT compiler, instead of machine code, generates OpenCL or PTX code
directly from the optimised graph. However, the final executable in a binary format is
obtained by compiling the generated code with the compiler that each device vendor
provides. Therefore, in this way, more device-specific optimisation can be effortlessly
achieved. Then, the execution engine that lies in the runtime of TornadoVM directly
handles the executable through JNI calls to the corresponding OpenCL function, such
as clCreateProgramWithBinary.

Dynamic Reconfiguration [FPZ+19]: TornadoVM offers an infrastructure to max-
imise the potential single device performance. To do so, a dynamic reconfiguration
feature is provided, along with some execution plan policies. Through exhaustive
exploitation of all the available devices, depending on the selected policy, TornadoVM
decides and reuses the best device, until the input method is altered. The different
policies can influence the device selection based on criteria, such as minimal latency or
peak end-to-end performance.

2.4 Machine Learning Modelling

Machine learning (ML) is the research area that focuses on developing algorithms
capable of automating specific processes and tasks. In more detail, a machine learning
algorithm can learn how to perform a given task by iterating through sample data fed to
it as input. This sample data is usually called a training set, and every single observation
in the training set is called a data point.

Formally, a machine learning algorithm can be described as follows: A computer

49

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E [Mit97]. Depending on the type of the training set fed to or equivalently
experienced by the ML system, the learning process can be divided into four differ-
ent types: Supervised, Unsupervised, Semi-supervised, and Reinforcement learning.
Among these types, supervised and unsupervised learning are the most commonly used
and they will be further explained in Section 2.4.1.

The problems that can be solved using ML are usually highly complex for humans to
process or are repeated with some variations. Depending on how the machine learning
system is expected to process a given training set, the tasks can be further divided
into subcategories. Among these categories, some of the most common are regression,
classification and clustering tasks that will be presented in more detail in Section 2.4.2.
This thesis uses classification to address the performance challenge which is presented
in Chapter 6.

The quality of a given ML model is evaluated through specific performance metrics.
Such performance metrics are evaluated by using data unseen by the algorithm, usually
called a test set. In contrast to the training set, assessing the performance on the test set
reflects the objective performance of the model in real-world scenarios.

2.4.1 Supervised vs Unsupervised Learning

Supervised learning requires a dataset containing several data points and various fea-
tures [Kot07]. These features are several variables that can influence a specific outcome
or behaviour. Also, each data point is accompanied by a target value or label. The
training set format can be represented as a set of pairs consisting of an input object.
Usually, a vector containing the feature values for the specific data points and the
associated output values is also called a supervision signal. It must be noted that the
desired output values can be either numerical or they can fall into specific categories.

In supervised learning, the goal of the algorithms is to learn to associate the input
training set with the given target value or label. In other words, it aims to identify
a mapping function between the input features and the target variable. This inferred
function should also perform adequately to previously unobserved data, i.e., to have
generalisation ability.

For an algorithm to generalise beyond the examples that were explicitly trained
with, it is required that specific conditions hold. One requirement for the algorithm is to
model only the significant underlying patterns in the data and not the noise. Otherwise,

50

it would memorise the training set, leading to a poor generalisation to any unseen data.
This problem is called overfitting [BA10]. However, the model to be able to capture
the given data structure, despite its potentially high mathematical complexity, without
oversimplifying, it has the same importance. Otherwise, its overall performance will be
rely on both the training and test sets withoun be adapting to unobserved data.

On the other hand, unsupervised learning requires some unlabelled data points and
various features [HS99]. In these cases, the usual goal is to reveal any useful proper-
ties of the dataset’s underlying structure without human intervention. Unsupervised
algorithms are usually employed for tasks, such as clustering and principal component
analysis (PCA) [Jol86].

2.4.2 Classification Problems

Classification tasks are commonly solved while using supervised learning. The goal,
in this case, is to associate a given data point with a class label. In more detail, the
algorithm learns to associate any given an example from the training set X with a specific
category, described by the target variable y. Formally, this is achieved by producing
a function f : Rn → 1, . . . , k, where k is the number of available classes. However,
instead of directly outputting class labels, in many cases, the inferred function f outputs
a probability distribution over the available classes. The assigned probabilities can
be then turned into class labels using a process named threshold-moving or threshold
selection [HM13].

Threshold selection is the process of defining the most suitable decision threshold,
also called decision boundary, that will govern the conversion of the predicted probabil-
ity into class labels. A common case is this of a binary classification problem, i.e., a
classification with only two target classes. In this case, the default threshold is set at
0.5 so that output probabilities less than 0.5 are mapped to class 0 while those greater
than 0.5 are mapped to class 1. However, under certain circumstances, this default
threshold may not reflect the optimal interpretation of the output probabilities. This
can be the case for many reasons, including skewed class distribution and increased
misclassification cost of one type over another. To handle these cases, one can adjust the
threshold based on domain expertise or by optimising for specific evaluation metrics,
such as F1-score, which will be further analysed in Section 6.3.4.

51

2.5 Summary

This chapter presented the terminology needed for understanding the rest of this thesis.
Briefly, it presented the computer architecture of the Graphics Processor Units (GPUs),
the Field Programmable Gate Arrays (FPGAs), Multicore Central Processing Units
(CPUs), as well as the OpenCL parallel programming model. Also, it outlined the key
concepts to understand managed languages and their runtimes with particular attention
to the Java language and the JVM. It focused on the workflow of a metacircular
JIT compiler, such as the Graal compiler, along with techniques to compile the Java
bytecodes to efficient machine code at run-time. In addition, this chapter introduced
TornadoVM, a heterogeneous managed runtime that is extensively used in the scope of
this thesis. Finally, the last section briefly explained the fundamental concepts required
to model and solve a problem by employing machine learning techniques.

The following chapter presents the state-of-the-art research work that is associated
with the scope of this thesis.

52

Chapter 3

Related Work

3.1 Introduction

The previous chapter has introduced the hardware and software concepts necessary in
order to understand the ideas realised through this thesis. This work spans vertically
into several research directions. Therefore, this chapter narrows down the scope of the
related state-of-the-art work. It analyses techniques, technologies, and approaches that
raise the level of abstraction for heterogeneous hardware to make it accessible from
high-level languages. This analysis highlights the gaps in the current state-of-the-art
that the contributions of this thesis aim to fulfil.

Section 3.2 discusses various approaches for integrating FPGA execution in high-
level languages. Section 3.3 highlights the related work on compiler optimisations and
techniques to automatically exploit data locality for GPU code generation. Finally, Sec-
tion 3.4 presents several research contributions aiming to utilise multiple heterogeneous
devices by scheduling single or multiple applications onto them.

3.2 FPGA Execution of Managed Languages

FPGA acceleration of managed languages is a well-studied research topic with a broad
range of approaches widely available. In the scope of this thesis, the prior work of
managed languages (e.g., Java, Python, C#) that utilise FPGA hardware can be classified
into the two categories illustrated in Figure 3.1. The first category targets programming
languages that interface statically with pre-compiled FPGA designs, while the second
category includes languages that generate FPGA code dynamically.

53

our work

Interface of Statically
Compiled FPGA Designs

JHDL, JBits, TVM, TAPAS

Dynamic FPGA Code
Generation

to HDL, O
penCL

to FPGAbinary

Hot&Spicy

us
er

dir
ec

tiv
es

compiler

directivesPyRTL, APARAPI, TornadoVM,
Kiwi, Caldeira et al., Lime,

LINQits, DHDL, Spatial

Frameworks targeting FPGAs from Managed Languages

Figure 3.1: Classification of the state-of-the-art frameworks that target FPGA hardware
from managed languages.

3.2.1 Interfacing with static FPGA designs

Bellows and Hutchings [BH98] introduced the JHDL framework, which describes how
a Java interface should be constructed for accessing the FPGA hardware by calling
existing bitstreams. Guccione et al. [GLS99] presented the JBits API that requires
hardware knowledge to use hardware accelerators. The API is purely written in Java;
however, one can only interact and construct designs for which circuitry components
are already available in the software development environment.

Additionally, several frameworks target applications written with domain specific
languages (DSLs) that provide bindings to or are built on top of other managed lan-
guages. These frameworks compile the application written with a DSL into hardware
units that can be accelerated at run-time onto FPGAs. Moreau et al. [MCC18] ex-
tended the TVM [CMJ+18], an optimising compiler for deep learning applications, to
utilise FPGAs. This framework targets multiple models from Python-based machine
learning frameworks, such as TensorFlow [AAB+15] and Keras [C+15]. Margerm
et al. [MSG+18] presented the TAPAS framework that analyses task dependencies
in the compiler graph and generates a data-flow processing unit transparently to be
executed on the FPGA.

54

3.2.2 Dynamic FPGA code generation

Several frameworks that enable FPGA-based acceleration of managed languages through
dynamic code generation exist. Clow et al. [CTD+17] presented the PyRTL framework
which compiles Python programs into Verilog. However, it requires programmers to be
familiar with specific design practices and hardware primitives. Segal et al. [SMCW]
extended the GPU capabilities of a Java-based framework, APARAPI [AMD16], to run
on OpenCL-compatible FPGAs. However, the proposed framework did not support any
automatic optimisation phases and several kernels required manual intervention to be
synthesised for FPGA boards. Greaves and Singh [SG08] presented the Kiwi library
that exposes various custom attributes to the programmers and generates Verilog from
the input applications written in C#. Caldeira et al. [CPB+18] proposed a framework
that compiles Java programs into Verilog. However, further work is required to imprint
the resulting Verilog code into the FPGA available on the Intel HARP platform. Also,
Skalicky et al. [SMSF18] proposed Hot&Spicy to compile code written in a subset
of Python into HLS C code and transparently invoke the Xilinx SDSoC HLS tool to
produce the FPGA binary. In this case, the user needs to annotate the input program
with several vendor-specific pragmas to trigger FPGA optimisations by the HLS tool.

Furthermore, several approaches have proposed other DSLs (e.g., Lime [ABCR10],
Language Integrated Query (LINQ) [CDL13], Delite Hardware Definition Language
(DHDL) [KPZ+16], Spatial [KFP+18]) to generate code for various FPGA hardware
description languages [KB16]. Auerbach et al. [ABCR10] presented the Lime language
and framework within the streaming domain that compiles Java programs to C and
Verilog. Chung et al. [CDL13] proposed the LINQits framework that allows various Big
Data workloads to be compiled by the Dandelion [RYC+13] compiler and accelerated on
FPGA hardware. However, LINQits does not support automatic HLS compilation and
requires programmers to introduce the HLS directives. Koeplinger et al. [KPZ+16] also
required users to write their program into the DHDL language, which then compiled into
MaxJ. MaxJ is a low-level Java-based language that allows the generation of hardware
for the Maxeler platform using the MaxCompiler. Besides, Koeplinger et al. [KFP+18]
proposed the Spatial language as a compiler extension to the DHDL, thereby allowing
developers to gain more control over the memory hierarchy from the programming
language.

Moreover, some frameworks use the abstraction that compiler intermediate repre-
sentations (IRs) provide to dynamically generate HLS-compatible source code. Del
Sozzo et al. [DBAS18] introduced FROST, a unified backend for targeting FPGAs

55

Table 3.1: Taxonomy of the state-of-the-art frameworks that target heterogeneous
execution from Java

Frameworks Code
Generation

Run-time
Optim.

HLS Comp.
Mode

Hardware
Platforms

TVM [MCC18] static No No FPGA Pynq SoC
MaxCompiler [Max11] dynamic No online Maxeler Platform
Aparapi [SMCW] dynamic No offline AMD GPUs, FPGAs
Caldeira et al. [CPB+18] dynamic Yes online Intel Harp FPGAs
JOCL [FPZ+19] dynamic No offline GPUs
TornadoVM [FPZ+19] dynamic No offline CPUs, GPUs, FPGAs

TornadoVM +
FPGA extensions dynamic Yes

online,
offline,

emulation
CPUs, GPUs, FPGAs

through DSLs, such as Halide [RKBA+13] and Tiramisu [BRR+19]. FROST provides
its own IR, graph optimiser with FPGA-oriented passes, and a scheduling co-language
to allow users to specify optimisations. Izraelevitz et al. [IKL+17] presented FIRRTL, a
Flexible Intermediate Representation for register-transfer level (RTL) code. FIRRTL is
integrated with Chisel [BVR+12], a hardware design language that facilitates advanced
circuit generation and design reuse for ASIC and FPGA digital logic designs. Also, it
transforms target-independent RTL into design-specific RTL through several optimisa-
tion steps, such as simplifying transformations, analyses, optimisations, instrumentation,
and specialisations.

3.2.3 Java Execution on FPGAs: Spotting the Gap

Table 3.1 summarises the currently available frameworks that enable FPGA acceleration
of Java programs or Java-based DSLs. The selection of frameworks is analysed based
on the following four criteria:

1. Code Generation: The ability to generate parallel code at compile-time (stati-
cally) or during runtime (dynamically). For example, the code generation from
Java to OpenCL or Verilog during run-time is classified as dynamic.

2. Run-time optimisations: The ability to automatically specialise code for the
target device at runtime without user intervention (including code annotations).

3. HLS Compiler Mode: The ability to perform an online or offline compilation
from the generated code to the final FPGA bitstream via the HLS compilers.

56

4. Hardware Platforms: The supported hardware platforms for FPGA acceleration.

Beyond the state-of-the-art: The novel FPGA-aware JIT compilation system
integrated with a heterogeneous managed runtime that is presented in this thesis in
Chapter 4 advances the related work in the following aspects:

• It automatically and dynamically compiles Java programs onto optimised FPGA-
compatible code.

• It completely omits the need to use hardware-specific directives from program-
mers. Instead, this functionality is transparently enabled by augmenting the Graal
IR and the existing optimising compiler.

3.3 Optimising Compilers for GPU Code generation

Another essential aspect of bridging the performance gap between heterogeneous hard-
ware and managed languages is optimising the compiler for GPU code generation. In
this section, the related work that targets GPU memory optimisations is presented. The
related work is classified into two distinct groups. The first group in Section 3.3.1
describes approaches that exposing GPU features to a wide range of high-level program-
ming languages while preserving the need for hardware understanding. The second
group in Section 3.3.2 focuses on various memory transformations at the compiler level
to omit any necessary understanding of the underlying hardware from the developer.

3.3.1 Exposing GPU Features into Programming Languages

Dynamic compilation allows a broad range of applications to attain high performance
during execution by integrating profiling information during compilation. Thus, seam-
less GPU execution in the context of dynamically compiled languages, such as Java,
is a well-researched topic. Several frameworks [AMD16, FPZ+19] provide solutions
to exploit GPU acceleration. Aparapi [AMD16] and TornadoVM [FPZ+19] are Java-
based frameworks that dynamically compile Java bytecodes to OpenCL and PTX code.
Aparapi provides direct integration and native Java code execution on GPUs. However,
its programming aspects preserve the need for a hardware-oriented approach as it is
imitating the OpenCL programming approach. Therefore, it exposes specific language
constructs for memory allocation (i.e., local memory) and memory synchronisation (i.e.,
barriers) that programmers must explicitly use [AMD16]. On the contrary, TornadoVM

57

generates high-level bytecodes to abstract programmers from the GPU programming
model. However, it does not automatically exploit fine-grain memory, but it exposes
low-level features to developers. Moreover, IBM J9 [IHKS15] is another example of a
JIT compiler for GPU offloading, but it exclusively compiles Java streams to CUDA-
PTX code. The only memory optimisation supported by the IBM J9 is the placement of
read-only data to read-only caches. The most recent framework is the grCUDA [RM20]
which provides a polyglot framework on top of the GraalVM [WWW+13] and Truf-
fle [GSS+15] that enables GPUs acceleration.

Additionally, several parallel programming frameworks exist [SRD16, JTS19b,
RLSD16, SBL+14, FRSD15, DCR+12, SKG11, CMJ+18, KFP+18] that enable the
compilation of domain-specific languages on GPUs. Lift [SRD17, HSS+18] extended
its original data-parallel primitive types to accommodate loop tiling (e.g., slide, pad)
and its low-level OpenCL with local memory (e.g., toLocal) allocation to generate
high performance code for stencil computations. Ragan-Kelley et al. [RKBA+13,
RKAS+17a, RKAS+17b] introduced Halide, a domain-specific language (based on
C++) for executing high-performance image processing code on GPUs. Halide has
its own IR and an optimising compiler, both of which are highly tailored to perform
optimisations for domain-specific applications. The main domain that it targets is image
processing applications.

Beyond the state-of-the-art: The key differentiation of this thesis with prior work
is the approach that Chapter 5 presents. This approach automatically exploits the GPU
memory hierarchy without exposing any specific language primitives to the developers.
In addition, it targets GPU architectures from various hardware vendors while using
information during run-time to customise optimisations and code generation.

3.3.2 Compiler Techniques for Memory Transformations

Verdoolaege et al. [VCJC+13] used polyhedral models to automatically transform C
code to CUDA while utilising shared memory and loop tiling. Similarly, Bondhugula
et al. [BRS07] proposed PLUTO, an automatic loop nest paralleliser to exploit data
locality via allocation in the shared memory of GPUs. Also, Grosser et al. [GCK+13]
have extended the polyhedral models available in PLUTO with support for loop split-
ting targeting stencil workloads. PolyJIT proposed by Simburger et al. [SAGL18]
combines polyhedral optimisations with multiple kernel versions available at run-
time; a technique that poses significant overhead during code generation. Some re-
search studies [BBK+08, BRR+19, KKRS14, RKH+11] target loop tiling optimisations

58

and code generation for affine loops targeting GPU code generation. Moreover, Di
et al. [DYS+12] proposed an algorithm to improve tiling hyperplanes by using depen-
dency analysis, while Cohen et al. [CGK+13] developed a polyhedral-based parametric
scheme that uses run-time exploration of partitioning parameters.

Moreover, several non-polyhedral-based compiler approaches address the same
issue. Kim et al. [KSRT+19] presented an approach to map tensor contractions directly
to GPUs. This is achieved with the use of shared memory through a parametric code gen-
eration strategy that leverages a cost model to perform efficient data movements. Yang
et al. [YXKZ10] introduced an optimising source to source compiler for C programs
that exploits many memory optimisations, such as converting non-coalesced accesses to
coalesced for reducing memory aliasing, vectorisation of memory accesses, and tiling
with shared memory. Additionally, Hagedorn et al. [HLK+20] proposed Elevate, a new
functional language to express various optimisations, such as vectorization, loop tiling,
and loop splitting.

Beyond the state-of-the-art: The approach proposed in Chapter 5 in this thesis
differs from the prior work presented above as it highlights a practical trade-off between
compilation time and achieved performance. Therefore, this alternative approach is
more suitable for interpreted and dynamically compiled programming languages. In
addition, it presents its practical capability by displaying how it can be integrated into a
production-ready compiler, such as the Graal [DWS+13] compiler.

3.4 Dynamic Application Scheduling on Heterogenous
Hardware

Orthogonally to the challenges of generating code for heterogeneous hardware is to
supply the means needed for efficient device scheduling. Therefore, the following
related work focuses on multi-device utilisation through various scheduling techniques.
The available research work that is closely aligned with the scope of the work that
Chapter 6 presents has been classified into three groups. Section 3.4.1 discusses the
first group of approaches that rely on non-machine learning techniques to perform
task scheduling. On the contrary, Section 3.4.2 discusses approaches that use machine
learning to improve the efficiency of the task scheduling process in systems with multiple
devices. Also, Section 3.4.3 presents a third group that elaborates on approaches that
allow single tasks to be executed on multiple devices while using machine learning.

59

3.4.1 Non-Machine Learning Multi-Task Scheduling

There have been many frameworks focusing on single or multi-task scheduling for stan-
dalone or partitioned applications purely written in OpenCL, such as VirtCL [YWTC15],
SnuCL [KSL+12], PySchedCL [GSK+20], FluidiCL [PG14], MultiCL [APBcF16],
EngineCL [NBB19] and SOCL [HBD+13]. However, all the aforementioned frame-
works still rely on hardware understanding and applications written in unmanaged
programming languages.

Beyond the state-of-the-art: The approach proposed in Chapter 6 in this thesis
differs from the above mentioned work as it enables concurrent execution and scheduling
on heterogeneous hardware for Java applications. Also, the proposed approach does not
expose hardware specifics to the user.

The only work that differs Parravicini et al. [PDAS20] use the grCUDA [RM20]
polyglot API and employ a custom scheduling approach to allow multiple polyglot
tasks to be scheduled on a single GPU at run-time. This work exploits pace-sharing
and overlaps the time spent in transferring data with the execution, if possible. Also,
this work relies on expressing computational kernels in a way to be interpreted into
a directed acyclic graph (DAG) by the scheduler, thus it is shifting away from the
programming model that they are expressed into.

Beyond the state-of-the-art: Although the above work can target the same pro-
gramming language, Java, due to Truffle [GSS+15] interoperability provided by Gr-
CUDA it differs from the work presented in Chapter 6. This thesis focuses on using
existing Java methods using the TornadoVM API to execute on multiple devices from
different vendors offering diverse performance and power characteristics.

In addition, similar scheduling techniques have been used for heterogeneous task
graph/multi-thread scheduling on asymmetric multicore processors [JCBM16]. In this
work, JVMs, such as Jikes RVM and HotSpot can be augmented with the ability to
identify and schedule critical threads to small or big cores based on their requirements.
Managed applications can be dynamically analysed as single threaded, non-scalable
multi-threaded, scalable multi-threaded, and get scheduled accordingly.

Beyond the state-of-the-art: Although the above work can target the JVM and
managed applications that require more efficient scheduling, it only targets single-ISA
asymmetric multicore processors. This thesis differs by augmenting the JVM with the
ability to strive for performance on heterogeneous devices with different ISAs, such as
GPUs, low-power GPUs and FPGAs.

60

3.4.2 Machine Learning-based Multi-Task Scheduling

Troodon [KAA+19] is a load-balancing scheduling heuristic that classifies OpenCL
applications as suitable for CPU or GPU execution, based on a speedup predictor. The
Qilin [LHK09] compiler uses offline profiling to create a regression model for predicting
the execution time of a selection of input applications taken from the CUDA Software
Development Kit. Ogilvie et al. [OPWL15] introduced a low-cost predictive model for
the automatic construction of heuristics that reduce the training overhead for execut-
ing on platforms that utilise CPUs and GPUs. Furthermore, Grewe et al. [GWO13]
leveraged predictive modelling to influence the OpenCL code generation from OpenMP
programs when speedups are predicted. Additionally, Chen et al. [CMJ+18] combined
generic search with learning and benchmarking to find appropriate scheduling meth-
ods for execution on heterogeneous hardware, including CPUs, server GPUs, mobile
GPUs, and FPGA-based accelerators. However, the supported scheduling mechanism is
semi-automated, as the search space must be manually defined by a programmer for
each algorithm like a template. Wen et al. [WWO14] demonstrated that the concurrent
execution of OpenCL kernels can increase GPU utilisation and improve performance.
To enable such performance improvement, they applied a decision tree-based prediction
model to decide whether an application kernel should be scheduled individually or
alongside other kernels. Baldini et al. [BFA14] use existing OpenMP applications and
supervised learning to predict the potential GPU execution speedup among vendors.
Brown et al. [BNS+21] presented a model that allows accurate predictions of speedups
using a small set of features, while also being portable across Nvidia GPUs with differ-
ent capabilities. Adams et al. [AMA+19] proposed a novel scheduling algorithm for
the Halide programming language that targets image processing pipelines. Their model
combines symbolic analysis with machine learning to predict performance.

Beyond the state-of-the-art: The contribution described in Chapter 6 of this thesis
provides similar functionality with the above work. However, it differentiates from the
above as it extends a standard JVM and allows applications written in Java to exploit
concurrent execution on multiple heterogeneous devices.

3.4.3 Single Task Scheduling on Multiple-Devices

Other studies have combined predictive modelling with scheduling to allow a sin-
gle task or application to be partitioned, and execute onto multiple devices. Kofler
et al. [KGCF13] employed an Artificial Neural Network to dynamically partition a

61

given task into two parts, one that runs on a CPU and a second that runs on a GPU.
This partitioning is achieved through the Insieme compiler [JPT+13] that transforms
the code from a single kernel into multiple kernels. Grewe et al. [GO11] presented
a system that combines a two-level predictor with supervised learning models (i.e.,
Support Vector Machines) to partition tasks into percentages of the input application
for hybrid CPU-GPU execution. The model uses features extracted statically from
the abstract syntax tree (AST) that LLVM [LA04] generates, and then these features
were normalised to the specific data requirements of each input program. Also, Singh
et al. [SPB+17] presented a runtime system that performed energy-efficient mapping
and repartitioning of threads for each application between CPU and GPU cores of an
multiprocessor system on a chip (MPSoC) while considering the applications execution
time.

Beyond the state-of-the-art: Chapter 6 presents a contribution that differs from
the afforementioned work as the prime focus is to provide the tools and techniques to
enable the seamless and intelligent mapping of multiple applications instead of a single
to be able to execute onto multiple devices.

3.5 Summary

The content of this thesis extends across several multidisciplinary research domains.
This chapter outlined the state-of-the-art regarding the research areas that are intersect
with this work. To achieve this, this chapter provided a classification of the related work
in three distinct areas of interest: (i) approaches that raise the level of abstraction for
FPGA execution, (ii) compilers that exploit memory optimisations for GPU code
generation, and (iii) novel frameworks and approaches that enable multi-device
execution on heterogeneous systems.

The following chapters discuss how this thesis augments the existing state-of-the-art
of the aforementioned research domains. In particular, Chapter 4 explains in detail
how FPGA execution can be integrated with heterogeneous managed runtimes, and
yield higher performance against various platforms. Furthermore, it gives a detailed
description of the key challenges when enabling such functionality, while providing a
combination of runtime and compiler optimisations.

62

Chapter 4

FPGA Aware JIT Compilation for
Managed Runtime Programming
Languages

Modern computing systems integrate various hardware devices, such as CPUs, GPUs,
and FPGAs, to offer high performance and energy efficiency. However, achieving
high performance in such systems is considered a challenging task even for expert
programmers. Programming FPGA devices requires a deep understanding of the
computing hardware (e.g., reconfigurability) and familiarity with low-level Hardware
Description Languages (HDL), such as Verilog [TM96] and VHDL [Ash08, Per93].

Several researchers from industry and academia have been trying to mitigate the
steep learning curve of programming an FPGA by providing High-Level Synthesis
(HLS) [IKL+17] and heterogeneous programming frameworks (e.g., OpenCL). These
tools aim to facilitate and simplify the development on FPGAs, especially nowadays
where they can be found on off-the-shelf Systems on Chip (SoCs) [CHL+17] and
in data centres or cloud deployments [PCC+14]. However, in the computing world
where the adoption of managed languages is dominant, their current support for FPGA
execution is minimal. Even though several JIT compilers that target GPUs have recently
emerged [FRSD15, PSFW12, ZLG12, FSSD17, AAA16], in the FPGA domain, such
approaches cannot be directly applied due to lack of performance portability [ZSC13].
Therefore, it has become a necessity to expose low-level hardware primitives to the
high-level programming model [SMSF18].

The focus of this chapter is to present a novel and practical approach that explores
how to automatically specialise FPGA code and transparently integrate state-of-the-art

63

HLS tools into managed languages. The outlined solution is developed and evaluated
in the context of TornadoVM [FPZ+19] (previously discussed in Section 2.3.1). The
original framework has been extended by enabling it to generate and handle FPGA
bitstreams automatically. This process eliminates the necessity of external invocation of
HLS tools and manual binding of the executed FPGA code with the current execution
flow of TornadoVM. The primary objective is to enhance managed languages with
automatic FPGA code specialisation and execution without requiring the programmers
to explicitly add any hardware-related code annotations.

Briefly, this chapter makes the following contributions:

1. It details the design of an open-source end-to-end toolchain capable of trans-
parently compiling and running Java code on an FPGA by introducing a set of
execution modes to the Java Virtual Machine (JVM). This approach enables de-
velopers with no FPGA expertise to harness the execution capabilities of FPGAs.
This toolchain also provides seamless integration with emulation tools provided
by the HLS vendors to enable fast prototyping through standard IDEs, such as
the IntelliJ.

2. It presents the implementation of a compiler-based approach to automatically
exploit parallelism in the IR-level and specialise the IR for OpenCL code genera-
tion targeting FPGAs. The introduction of new compiler phases augments and
transforms the IR with FPGA-specific pragmas.

3. It presents the evaluation of the complete framework against Java benchmarks
running on FPGAs, showcasing end-to-end speedups of up to 19.8× and 224×
over multithreaded and sequential Java code, respectively. The implemented
end-to-end framework results up to 13.82× faster execution compared to the
execution on an integrated GPU through TornadoVM. Finally, it classifies the
given selection of benchmarks based on their applicability for FPGA acceleration
from managed runtime languages.

The rest of this chapter is organised as follows: Section 4.1 it tries to motivate
the FPGA execution of Java programs. Then, Section 4.2 presents how functional
integration of a heterogeneous managed runtime and an FPGA can be achieved through
seamless integration with HLS. Moreover, Section 4.3 extends beyond the seamless
integration and targets to address any performance issues by augmenting an industrial
standard JIT compiler with FPGA-oriented optimisations. Finally, Section 4.4 discusses

64

the obtained performance gains, along with the produced compilation overheads and
the applicability of the given benchmarks for FPGA execution.

4.1 Motivation: FPGA Performance for Unoptimised
Auto-Generated OpenCL Kernels

As presented in Section 2.3.1, TornadoVM enables Java developers to write task-based
programs that are automatically compiled and executed on heterogeneous hardware.
Prior to this work, the original framework supported the execution mentioned above only
for GPUs and CPUs. This limitation resulted from a different compilation and execution
flow required for FPGAs compared to the devices stated above. One needs to manually
compile the auto-generated OpenCL code through a vendor-specific HLS software,
deploy the generated FPGA bitstream, and redirect the execution from TornadoVM to
the FPGA. Also, the original framework did not perform any compiler optimisations
specifically for FPGAs. The particularities of the aforementioned process prohibited
the seamless FPGA execution from within TornadoVM.

Initial Support with Manual Intervention: To assess the potential performance
benefits of executing Java programs on FPGAs through TornadoVM the following
process took place. During this process, a DFT computation application was used. The
reason for using this application as a use case is the fact that it exhibits data parallelism
workload which is heavily relies on using function invoked directly from the Java Math
collection. Initially, bitstreams for three different workload sizes, small, medium, and
large were obtained. In all cases, the attained performance was slower than the single-
threaded Java execution on CPUs. Figure 4.1 (left) illustrates the relative performance
of FPGA execution compared to sequential CPU Java execution1 when running the
Discrete Fourier Transform (DFT) application. As shown in Figure 4.1 the DFT original
implementation for the FPGA execution performs up to 17% slower (for small datasets)
than CPUs.

After thoroughly inspecting the generated code, the main reason behind this perfor-
mance degradation is that TornadoVM was tuned and optimised for CPU and GPU accel-
eration rather than FPGAs. Unlike CPUs and GPUs, FPGAs require hardware-specific
annotations to be passed along with the generated OpenCL code to the underlying HLS
tools. These annotations will hint the HLS to produce an optimal hardware design by

1See 4.4 for a detailed discussion on the experimental setup.

65

0.83

1.07

0.94

15.88

0.87

218

0.5

5

DFT - Original DFT - Manual Optimizations

Sp
ee

d
u

p
 A

ga
in

st
 J

av
a

 S
eq

u
e

n
ti

al

Small Size Medium Size Large Size

Figure 4.1: Initial results of TornadoVM generated OpenCL code a DFT application
running on an FPGA: a) un-optimised (left), and b) with manual optimisations (right).

triggering optimisations, such as loop pipelining. To assess the impact of these annota-
tions, the exploitation of the optimisation space through adding OpenCL pragmas (i.e.,
pragma unroll, thread attribute) to the auto-generated OpenCL kernel was performed.
The performance results achieved through this activity are depicted in Figure 4.1 (right).
As shown, the manually optimised DFT application outperformed the sequential vanilla
Java code executed on the CPU by up to 218×. These results were in line with the
well-documented performance portability [CC19] challenges of OpenCL across dif-
ferent hardware accelerators. Based on these findings, the TornadoVM compiler was
augmented to automate the above mentioned process.

4.2 FPGA Acceleration of Managed Languages

To address the integration and performance portability challenges mentioned in Sec-
tion 3.2.3, the original TornadoVM framework has been augmented to provide the
following:

(a) Support for JIT compilation and emulation mode for seamless execution of Java
applications on FPGAs

(b) A set of compiler extensions to enable optimisations which aim to replace the
manual code interventions initially performed on the OpenCL generated kernels
(Section 4.3).

(c) A complete tools chain that enables users to write a program "once" and "run it

66

Data Flow Analyzer

FPGA
Specific IR

Nodes

Memory Management

FPGA Execution Modes
Execution Engine

Runtime
Bitstream &

Binary Cache

Vendor-dependent HLS OpenCL
Compiler

TornadoVM
IR CPU/GPU FPGA

OpenCL Code Generation

CPU/GPU FPGA

Optimization Phases
JIT Compiler

 GPUCPU
OpenCL

Compatible
Devices

FPGA

OpenCL
Code
(.cl)

bitstream

Task

TaskSchedule parallelFilter=new TaskSchedule("blur")
 .task("red", BlurFilterImage::compute,redChannel,
 redFilter, w, h, filter, FILTER_WIDTH)
 .task("green",BlurFilterImage::compute,greenChannel,
 greenFilter, w, h, filter, FILTER_WIDTH)
 .task("blue", BlurFilterImage::compute,blueChannel,
 blueFilter, w, h, filter3, FILTER_WIDTH)
 .streamOut(redFilter, greenFilter, blueFilter);
parallelFilter.execute();

TornadoVM API

Task

Task

TaskSchedule

Input Code

TornadoVM
Java Bytecodes

Figure 4.2: TornadoVM Overview: The existing components are illustrated with blue
while the FPGA extensions are depicted in pink.

anywhere", even on FPGAs, while taking advantage of hardware acceleration to
achieve better performance.

Figure 4.2 presents the extensions made to TornadoVM, showcasing how the new
approach can be practical for harnessing the FPGA technology within the Java language.
The existing components of TornadoVM are illustrated with blue, while the applied
extensions are depicted in pink.

To generate FPGA-compatible code, the TornadoVM OpenCL backend has been
extended instead of implementing a new backend for generating HDL similarly to other
approaches [ABCR10, KPZ+16]. The extension of the current OpenCL backend to

67

support seamless FPGA execution has the following advantages: a) increasing industrial
support and maturity of OpenCL compilers and hence constantly improved performance
on FPGAs, b) plug-and-play of customised and proprietary bitstream kernels that follow
OpenCL semantics in cases that there is no access to the source code (legacy or licensed
code), and c) it is consistent with the rest of the TornadoVM framework, thereby
increasing maintainability.

The remaining of this section describes the individual changes made to the Tor-
nadoVM compiler (Section 4.2.1), runtime (Section 4.2.2), and memory management
(Section 4.2.3).

4.2.1 Extensions to the JIT Compiler

As shown in the work-flow presented in Figure 4.2, the input Java code is compiled
to Java bytecodes using the standard Java compiler (javac). Then, the TornadoVM

Data Flow analyser [CFP+18c] exploits the data dependencies and builds an initial
Intermediate Representation (IR) graph of the input program. The generated IR graph is
compiled down to the target architecture following the two-stage compilation approach
illustrated in Figure 4.3. At the first stage, Java bytecodes are JIT-compiled to OpenCL
C, while at the second stage, the OpenCL C code is compiled to FPGA bitstream by the
external toolchains of the FPGA vendors.

During the first-stage compilation, the input IR graph is optimised and specialised
through the TornadoVM JIT compiler before the final OpenCL C code emission.
Since the TornadoVM JIT compiler is a superset of the Graal compiler [WWW+13,
DSW+13], it inherits both its existing set of optimisations and its IR representation.
Hence, it employs not only device-specific optimisations and specialisations (e.g., for
GPUs, multicore CPUs) but also standard compiler optimisations (e.g., loop unrolling,
global value numbering, common subexpression elimination, etc.) derived from the
Graal compiler.

Integration with HLS Software: After completing the first-stage compilation, the
generated OpenCL C code is automatically forwarded to the HLS compilers (e.g., Intel
aoc); which subsequently performs the second-stage compilation from OpenCL C
into the FPGA bitstream. Once the FPGA bitstream is generated, it is stored into the
bitstream cache inside TornadoVM. This facilitates the reuse of the bitstreams based
on the requirements of the Java programs. Although the current state of the toolchain
integrates Intel FPGAs, this system has been designed and implemented in a modular

68

Bitstream & Binary Cache

TornadoVM JIT Compiler

Intel (aoc) Xilinx (xocc)

1st stage compilation
from Java to OpenCL C

OpenCL C (.cl)

FPGA Bitstream

FPGA-specific IR graph

2nd stage compilation
from OpenCL C to Bitstream

HLS OpenCL Compilers

Java Bytecodes

OpenCL Code Generation
Intel

Backend
Xilinx

Backend

Optimization Phases

Figure 4.3: Two stage compilation: 1) from Java to OpenCL C, and 2) from OpenCL C
to FPGA Bitstream.

way to support multiple HLS-specific backends. This was the springboard that allowed
the easy expansion of the toolchain for hosting multiple state-of-the-art HLS compilers,
such as Vivado [Cha16] HLS from Xilinx, and therefore target cloud-native solutions,
such as the AWS cloud.

4.2.2 Runtime Extensions

The initial investigation presented in Section 4.1 illustrated how ahead-of-time FPGA
compilation can be achieved through manual intervention. However, ahead-of-time
FPGA compilation requires users to perform the HLS compilation stage manually.
This section presents the various execution modes added to the runtime that allow
programmers to adapt code execution based on their requirements. These execution
modes aim to compensate for the long design cycle that is the aftermath of the ample
time that the bitstream generation takes. In addition, Section 4.4 further analyses the

69

OpenCL
C Code

 Bitstream &
Binary
Cache

Ahead of Time
Mode

Emulation Mode

Full JIT Mode
Online

Online

Offline

2nd Stage Compilation
From OpenCL C to Bitstream

1st Stage Compilation
From Java to OpenCL C

TornadoVM
Compiler

Figure 4.4: An overview of the execution modes. The extensions are illustrated in pink.

overheads of the compilation process.
The execution modes illustrated in Figure 4.4 are namely the following: the Full

JIT mode, the Ahead of Time Mode and the Emulation Mode. The provision of these
execution modes allows Java applications to be automatically adapted based on their
requirements.

Ahead-of-Time mode: This mode alleviates the overhead of FPGA synthesis by
allowing the plugin of precompiled bitstreams to TornadoVM during execution. The
omission of the latency of the second compilation stage (from OpenCL C to bitstream)
makes this mode suitable for applications that are sensitive to JIT compilation times
(e.g., fast start-up applications or low energy requirements). In addition, since this mode
allows users to plug in their bitstream implementations, disaggregated machines can be
used for FPGA bitstream generation without any limitations, such as system resource
utilisation or licensing issues.

Full JIT mode: This mode enables the end-to-end JIT compilation and execution
of Java code onto FPGAs. This is achieved by creating a separate Java thread that makes
direct calls to the HLS compilers for OpenCL (e.g., Intel aoc compiler for FPGAs). The
HLS compilers for OpenCL follow the traditional process for compiling the OpenCL
code into the FPGA bitstream [NSP+16]. Once the bitstream is generated, the runtime
system stores it into the bitstream cache and marks the Java method ready to be executed
on the FPGA. Finally, the runtime system loads the generated binary onto the FPGA
device, creates the OpenCL context for a given program, and copies all data required
to launch the kernel. The Full JIT compilation from the original Java source code to
a fully functional hardware design is enabled through this mode. However, this JIT
compilation process typically requires up to two hours (see Section 4.4) due to a timing
consuming stage of the HLS compilation pipelined called placement and routing. Thus,
the Full JIT mode is suitable for long running and server applications, in which the

70

compilation time is offset by the speedups achieved from FPGA acceleration.
Emulation mode: FPGA vendors provide tooling for FPGA emulation to reduce

the overhead that is associated with the bitstream generation process. Through this
emulation process the code intended for FPGA execution is compiled to the CPU. This
compilation process generates optimization and resource utilization reports to identify
potential bottlenecks before the bitstream generation takes place.

The emulation mode is used for fast prototyping, initial debugging, and functional
validation of the generated FPGA kernels. This mode is not intended for any perfor-
mance evaluation, as the emulated kernel code runs on a CPU thread and not on the
physical FPGA device. This mode is added to aid developers at the initial development
stage or debugging, since it avoids the HLS compilation overheads. Furthermore, it
can provide an estimated view of the resource utilisation and any compiler warnings
associated with the Java code. More importantly, widely available Java Integrated
Development Environments (IDEs) (e.g., Eclipse, IntelliJ, NetBeans) can be used to
develop software and test Java applications on FPGAs. Hence, developers with no HLS
background can experiment by writing pure Java code using standard IDEs and assess
whether their code can functionally run on an emulated FPGA. The use of standard
IDEs in the development process is also applicable to the other two execution modes.

4.2.3 Memory Management

Figure 4.5 provides a high-level overview of how variables stored on the host side in
the Java heap can be allocated to the device through JNI calls to OpenCL functions.
The memory management between the host and the FPGA works as follows: the first
time TornadoVM utilises an FPGA, it allocates a large amount of global memory
on the device that acts as a managed heap (similarly to a Java heap). The rationale
behind this managed on-device heap is to minimise the allocation times on the target
device. TornadoVM performs only a single allocation while performing all data transfers
between the host and the FPGA transparently to the user. This memory management
system is adopted from the original framework. However, the OpenCL specification
imposes a limiting factor regarding the maximum single buffer size. OpenCL does
not allow single arrays larger than 1GB to be copied to a device at once [WPHZ17].
Furthermore, the proposed toolchain increases the bandwidth between the CPU and the
FPGA by using page-locked (or pinned) memory. This enables OpenCL programs to
use Direct Memory Accesses (DMA), thereby enhancing the performance of memory
transfers. To use pinned memory on the FPGA, the TornadoVM runtime is required to

71

Global Memory

Host: JVM

Java Heap

// Task
 public void compute(
 float[] a,
 float[] b) {}

clEnqueueWriteBuffer
JNI

FPGA Device

Figure 4.5: Abstract overview of the FPGA memory management scheme.

allocate memory using the OpenCL flag CL_MEM_ALLOC_HOST_PTR2. The Java stack-
frames (memory regions that include the return address and addresses of all input/output
buffers on the Java heap) and all Java arrays required for the kernel execution are copied
to this allocated region.

The extended TornadoVM memory manager copies all data to the FPGA’s global
memory, and it keeps track of all host variables that have been copied to the FPGA. The
toolchain classifies all arrays copied to the FPGA as read-only, write-only, or read-write
during the runtime data analysis. Read-only Java arrays are persisted in the global
memory of the device without copying them back to the host memory. On the contrary,
write-only and read-write Java arrays are copied back to the host memory to make their
updated values visible to the Java applications. Since TornadoVM dispatches and runs
OpenCL code on the FPGA, all operations are, by default, non-blocking. This means
that the operations regarding data transfers for the OpenCL kernel are non-blocking
between the FPGA and the main host. Therefore, an extra barrier is added at the
TornadoVM bytecode level to wait for the last kernel to be finished before performing
the final copy from the device (FPGA) to the host to obtain the results.

A functional solution by enabling a two-stage compilation process does not guaran-
tee high-performance without manual code-tunning, as it was highlighted in Section 4.1.
Therefore, to run efficiently on FPGAs, there is a need to augment the compiler with
FPGA awareness during compilation.

2https://intel.ly/2J0mQFj

72

https://intel.ly/2J0mQFj

Listing 4.1: Example of Java code snippet for the dft method.
1 void dft(float[] inreal ,float[] inimag ,float[] outreal ,
2 float[] outimag , int[] inputSize) {
3 for (@Parallel int k = 0; k < n; k++) {
4 float sumreal = 0;
5 float sumimag = 0;
6 for (int t = 0; t < n; t++) {
7 float angle = ((2 * Math.PI() * t * k) / (float) n);
8 sumreal += (inreal[t] * (Math.cos(angle)) + inimag[t]
9 * (Math.sin(angle)));

10 sumimag += -(inreal[t] * (Math.sin(angle)) + inimag[t]
11 * (Math.cos(angle)));
12 }
13 outreal[k] = sumreal;
14 outimag[k] = sumimag;
15 }
16 }

4.3 Compiler Optimisations Targeting FPGAs

As discussed in Section 4.1, although the initial OpenCL-generated code was function-
ally correct, its performance was not portable on FPGAs. Therefore, the code must be
specialised to exploit the features available on each hardware accelerator. In the case of
FPGAs, this thesis proposes a set of compiler optimisations to automatically optimise
Java programs for FPGAs without modifying the source code provided by the user.

4.3.1 Extensions to the JIT Compiler

To enable FPGA-specific optimisations, extensions to the IR of the JIT compiler with
FPGA-related nodes were made. Briefly, the FPGA compilation flow works as follows:
first, the TornadoVM runtime invokes the compiler to build the IR graph that represents
the input Java method to be compiled. Consequently, the extended compiler specialises
the IR graph for FPGAs by introducing new nodes and optimisation phases. After the
code is optimised and specialised for FPGAs, the final OpenCL C code is generated
(Figure 4.4, 1st stage compilation). Finally, the generated code is handled by the
extended runtime system, which drives the 2nd stage compilation (Figure 4.4) based on
the corresponding execution modes.

The introduced FPGA compiler optimisations are a) thread-scheduling attributes,
b) loop unrolling, and c) loop flattening. Listing 4.1 shows a Java code snippet for the

73

Discrete Fourier Transform (DFT) method that will hereafter be used to describe the
optimisations above. The listed code contains a method with two nested for loops
(lines 3 and 6) with the computation residing inside the nested loop. Note that the first
loop is annotated with the @Parallel annotation, previously discussed in Section 2.3.1.
Figure 4.6 illustrates how this work extended the original TornadoVM compiler. As
shown, several compiler transformations are automatically applied to the IR of the code
in Listing 4.1.

Figure 4.6(a) shows the IR graph that corresponds to the code after initially invoking
the TornadoVM compiler. As shown, there are two groups of nodes: data-flow nodes
connected by black dashed arrows and control-flow nodes connected by red arrows.
Furthermore, each method begins with the Start node. The graph in Figure 4.6(a)
shows two LoopBegin nodes that correspond to the two loops from the input Java code.
To compute the bounds for each loop, a phi node along with an if condition is added
in the IR. Since the compiler extensions are implemented in TornadoVM, they reuse
two new nodes for computing the corresponding indices in OpenCL; namely GlobalID

and GlobalSize.
Attributes for Thread-Scheduling: Initially, for kernels targeting OpenCL compat-

ible GPUs, the IR information containing the global indices was sufficient for thread
indexing. However, by keeping only the default OpenCL global indices, the generated
kernel was designed for single-threaded FPGA execution. Consequently, when launch-
ing multiple threads on the FPGA, they pointed to wrong memory locations and thus
generated erroneous results. To address this problem, the IR is extended with a new
node to generate OpenCL C attributes before the function header of the kernel. These
attributes specify the thread selection (number of threads per block for each dimension
— 1D, 2D, or 3D) with which the kernel should be executed. This compiler optimisation
is presented in Figure 4.6(b). A new node called NDRange is inserted right after the
Start node. This node points to an additional data-flow node that indicates the values
for the thread-blocks in 1D, 2D, and 3D (x, y, z), respectively. These values depend on
the global size of the compute kernel.

Loop Unrolling: The second FPGA optimisation applied is explicit loop-unrolling,
a widely used optimisation for improving OpenCL performance on FPGAs [WHU17].
Initial investigation of the optimisation space showcased that improved performance
can be achieved through pragmas rather than apply loop unrolling before generating
the OpenCL kernels. The inner loop analysis is performed by inspecting the loop
bounds. The inspection aim to detect bounds assigned with constants values instead

74

LoopBegin

GlobalID

GlobalSize

+

Phi

Value<

If

LoopBegin

LoopEnd

Start

...

(a) Original IR Graph.

LoopBegin

GlobalID
GlobalSize

+

Phi

Value<

If
LoopBegin

LoopEnd

Start

...

NDRange

X,Y,Z

(b) Thread-scheduling attributes.

LoopBegin

GlobalID
GlobalSize

+

Phi

Value<

If LoopBegin

LoopEnd

Start

...

NDRange

X,Y,Z

Unroll

(c) Loop unrolling.

LoopBegin

GlobalID

GlobalSize

LoopEnd

Start

...

NDRange

X,Y,Z

Unroll

Value

(d) Loop flattening.

Figure 4.6: IR compiler transformations that are automatically performed by the
implemented extensions to the JIT compiler.

of being dynamically assigned. For cases where the input code can contain several
nested loops, the compiler always tries to perform loop unrolling to the innermost loop.
For example, assuming that a loop is a candidate to be unrolled, the newly introduced
phases in the TornadoVM compiler insert a new control-flow node (i.e., Unroll) in
the IR before the LoopBegin node of the corresponding candidate loop for unrolling.
Figure 4.6(c) highlights the optimisation in which the inner unrolled loop is annotated
with the Unroll node. The loop unrolling phase uses as a basis the default unroll phase
of Graal, which means it considers only loops with up to 128 dependency-free iterations
as unrollable. Consequently, the OpenCL code generator reads the new Unroll node.
This node triggers the emission a pragma unroll in the OpenCL C code, leaving the
underneath HLS compiler to decide the unrolling factor.

Loop Flattening: The final compiler optimisation that is applied is loop-flattening.

75

The original compiler performs node replacement to substitute for loops with the
OpenCL indexing primitives (e.g., get_global_id). However, it maintains the for

loops in the OpenCL C code if the kernel processes more elements than the available
threads on the target device. Since the extensions made to the TornadoVM compiler spe-
cialise the IR for FPGA execution, they also specialise the input index space. Therefore,
loop nodes can be safely replaced by the OpenCL indexing primitives. It is important
to note that the compiler extensions only flatten the parallelised loops by replacing the
loops with the OpenCL indexing primitives. If a loop is computed sequentially, the
compiler will preserve the loop nodes. The loop flattening optimisation is highlighted in
Figure 4.6(d), in which the outermost loop is removed along with every data dependency
associated with it.

4.3.2 Generated FPGA-Optimised OpenCL C code

Figure 4.7 provides a sketch of the generated OpenCL code for FPGAs reflecting all
described optimisations for the input Java code of Listing 4.1. This Java code contains
the user-defined annotation (@Parallel) that indicates that a loop in the program can
be transformed for parallel execution. The left side of Figure 4.7 shows the generated
OpenCL code without automatically applying the implemented compiler optimisations.
In contrast, the right side shows the generated code highlighting the outcomes of the
compiler optimisations. The yellow block on the right side highlights the attribute
for determining the number of work-items (threads) used for thread scheduling on the
FPGA. In this case, it is set to 64 elements, as this number has been shown to offer
maximum performance on Intel FPGAs [SEEZ19, WOL+17]. The red block highlights
the outer loop which is targeted to be flattened. On the right-hand side the green block
showcases how during its post-optimisation phase the loop is only indexed by the
get_global_id OpenCL intrinsic. This optimisation simplifies the generated hardware
circuits on the FPGA and, therefore, increases performance. Finally, the blue block
highlights the loop unrolling for the FPGA with a factor of two through the pragma

unroll OpenCL Intel FPGA directive before the innermost loop.
Once the OpenCL FPGA code is generated, a call to the underlying OpenCL

compiler (e.g., the Intel aoc compiler) is required to compile the OpenCL C source
code to the FPGA bitstream as explained in Section 4.2.1.

76

__kernel void compute(__global uchar *_heap_base,
 ulong _frame_base, …) {
// variable declaration
...
__global ulong *_frame=(__global ulong*)
&_heap_base[frame_base];

base0 = (ulong) _frame[6];
base1 = (ulong) _frame[7];
base2 = (ulong) _frame[7];
tid = get_global_id(0);
...
i8 = *((__global int *) &_heap_base[base0]);
for(;tid < maxElements) {
 ...
 f10 = 0.0F;
 i11 = 0;
 for(;i11 < i8;) {
 ...
 }
 ul_38 = base1 + index;
 *((__global float *) &_heap_base[ul_38]) =
 ul_37 = base2 + index;
 *((__global float *) &_heap_base[ul_39]) =
 i_40 = get_global_size(0);
 i_41 = i_40 + tid;
 tid = i_41;
}

// Scheduling attributes
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void compute(__global uchar *_heap_base,
 ulong _frame_base, …) {
// variable declaration
...
__global ulong *_frame = (__global ulong *)
&_heap_base[_frame_base];

base0 = (ulong) _frame[6];
base1 = (ulong) _frame[7];
base2 = (ulong) _frame[7];
tid = get_global_id(0); // Loop flattening
...
i8 = *((__global int *) &_heap_base[base0]);
...
f10 = 0.0F;
i11 = 0;
#pragma unroll 2 // Loop unrolling with factor 2
for(;i11 < i8;) {
 …
}
ul_38 = base1 + index;
*((__global float *) &_heap_base[ul_38]) = result1;
ul_37 = base2 + index;
*((__global float *) &_heap_base[ul_39]) = result2;
}

Figure 4.7: Sketch of the generated OpenCL code specialised for FPGAs (LHS:
Original TornadoVM generated for GPUs and RHS: TornadoVM code generated for

FPGAs).

4.4 Evaluation

This section presents an analysis of the various performance aspects of the complete
toolchain. Section 4.4.1 outlines the experimental methodology, benchmarks and hard-
ware configuration used. Section 4.4.2 presents the attained performance improvements
against various baselines. Section 4.4.2.1 and 4.4.2.2 presents the runtime overhead
analysis and effect of the compiler optimisations respectively. In addition, Section 4.4.3
outlines the HLS compilation overheads and Section 4.4.4 presents the resource utilisa-
tion on the FPGA device.

4.4.1 Experimental Setup and Methodology

The performance of the FPGA executed code for the end-to-end toolchain is evaluated
against the peak performance of single and multithreaded Java implementations com-
piled with the server compiler (C2) of OpenJDK [PVC01b]. Also, to guarantee that the
JVM has been warmed up, up to 150 iterations per benchmark were performed and the
mean of the consecutive ten runs is reported. To ensure the functional correctness of
the generated FPGA code (Section 4.2.2), the validation has been performed through
execution in emulation mode. After that, all FPGA bitstreams were generated while
using the full JIT mode for each benchmark.

77

Table 4.1: Input and data sizes for the given set of benchmarks. Input size corresponds
to the number of parallel iterations while the data sizes correspond to the in/out data

transfers.

Benchmark Input size Data-In
(MB)

Data-Out
(MB)

small medium large max max
VectorAdd 32768 1048576 67108864 540 268
Grayscale 256 4096 32768 540 268
BlackScholes 256 65536 33554432 268 536
RenderTrack 64 1024 8192 268 200
N-Body 256 8192 32768 6 3
DFT 64 65536 262144 2 1

The execution time of the FPGA code is also reported using the arithmetic mean of
ten consecutive runs, similarly to the CPU-executed code. Furthermore, all reported
numbers correspond to end-to-end executions, which include the times (i) for loading
the bitstreams into the FPGA, (ii) executing the kernels, (iii) copying the data from the
host to the FPGA memory, and (iv) copying back the data from the FPGA memory
to the host (CPU). Finally, each benchmark has been evaluated against three different
workloads –small, medium, and large– with data sizes (Table 4.1) increasing by orders of
magnitude, varying from 1MB to 540MB. The large size corresponds to the maximum
size permitted by the HLS compiler for mapping each generated circuit on the available
FPGA device.

4.4.1.1 Benchmarks

Regarding the performance evaluation, two standard applications (Vector-Add and
BlackScholes), two variations of computational dwarfs [KFAB16] (NBody and DFT),
and two computationally intensive kernels for image processing (RenderTrack and
Grayscale) were used. For all benchmarks, both sequential and multithreaded Java
implementations have been ported, verified and evaluated.

4.4.1.2 Experimental Setup

Table 4.2 outlines the experimental hardware platform to evaluate and validate the
performance gains of the proposed toolchain. The accelerator card is an Intel Arria
10 FPGA (10AX115N3F40E2SG). Also, the Arria 10 FPGA offers native IEEE 754

single-precision floating-point operations through its DSP blocks [Intc]. The FPGA

78

Table 4.2: Experimental Platform for FPGA Experimentation.

Hardware

Processor Intel Core i7-7700 @ 4.2GHz
Cores 4 (8 HyperThreads)
RAM 64GB
IGPU Intel HD Graphics 630

FPGA
Nallatech 385A, Intel Arria 10 FPGA,
Two banks of 4GB DDR3 SDRAM each

Software

OS CentOS 7.4 (Linux Kernel 3.10.0-693)
OpenCL (CPU) 2.0 (Intel)
OpenCL (GPU) 1.2 19.43.14583 Intel OpenCL

OpenCL (FPGA)
1.0 (Intel), Intel FPGA SDK 17.1,
HPC Board Support Package (BSP) by Nallatech

JVM Java SE 1.8.0_131 64-Bit JVMCI VM 3

Java Heap 16GB

frequency for all the kernels is automatically determined by the Intel OpenCL compiler
and ranges from 176 to 218 MHz.

4.4.2 Performance Analysis

To conduct the performance evaluation three different configurations against various
baselines have been used. The first two concern the performance improvements over
sequential and multithreaded Java execution, while the last one assess the acceleration
performance over an Intel Integrated GPU.

FPGA versus sequential Java code: Figure 4.8 shows the performance of the FPGA
executed code against the sequential Java code. As shown, FPGA execution for small
workloads exhibits performance slowdowns across all benchmarks except for DFT. This
is due to the time spent in data transfers which is significantly higher than the FPGA com-
putation time. In the case of memory-bound benchmarks, such as VectorAdd, the per-
formance slowdown can reach up to 0.002× . Regarding Grayscale, BlackScholes
and RenderTrack, although they perform worse compared to sequential Java for small
workloads. On the contrary, they show performance scalability while increasing data
sizes, with peak speedups of 11×, 15× and 30×. Moreover, NBody shows a similar

79

0.002 0.59 0.68
0.01 0.03

1.91

0.002

3.64 2.62 8.84 25.42 25.82

0.071

11.08 15.06 30.52 83.35 224.32

0.1

1

10

100

VectorAdd Grayscale BlackScholes RenderTrack NBody DFT

S
p

e
e

d
u

p
 A

g
a

in
st

 J
a

v
a

S

e
q

u
e

n
ti

a
l

Small Size Medium Size Large Size

Figure 4.8: Speedup of Intel Arria 10 FPGA against sequential Java for small, medium
and large data sizes.

0.001 0.092 0.111 0.007 0.016 0.016 0.001 0.56 0.38

2.42

0.66 0.16 0.001

1.62 2.05 11.07 2.69 19.82

0.1

1

10

VectorAdd Grayscale BlackScholes RenderTrack NBody DFT

S
p

e
e

d
u

p
 A

g
a

in
st

 J
a

v
a

 M

u
lt

i-
th

re
a

d
e

d

Small Size Medium Size Large Size

Figure 4.9: Speedup of Intel Arria 10 FPGA against multithreaded Java (8 threads) for
small, medium and large data sizes.

performance trend with a peak speedup of 83×. Finally, for highly computational
benchmarks, such as DFT, the FPGA outperforms the CPU-executed sequential Java
code for all input sizes by up to 224× .

FPGA versus multithreaded Java code: Figure 4.9 shows the performance of the
FPGA executed code against the multithreaded Java code. All benchmarks utilise
the maximum number of available threads in the system (eight), except RenderTrack
for which Hyper-Threading was deactivated since it was resulting in performance
degradation. As shown in Figure 4.9, for large data sizes, FPGA execution outperforms
the multithreaded Java implementations from 1.62× up to 19.82×. However, for small
and medium input data sizes, the multithreaded Java code outperforms the FPGA
executed code except for the RenderTrack benchmark. This a performance pattern is
associated with the overhead of copying data to/from the FPGA.

FPGA versus an Intel HD Graphics 630 GPU: Figure 4.10 shows the perfor-
mance of the FPGA executed code against TornadoVM running on an Intel HD
Graphics 630 integrated GPU. The configuration of the local- work-group size

80

1.38
0.66

2.03 4.19 3.5

0.32 0.27

12.65 13.82 11.85

0.64

2.11

0.1

1

10

VectorAdd Grayscale BlackScholes RenderTrack NBody DFT

S
p

e
e

d
u

p
 A

g
a

in
st

 I
n

te
l

H
D

G

ra
p

h
ic

s

Small Size Medium Size Large Size

0.01 0.01 0.001 0.0010.07 0.02

Figure 4.10: Speedup of Intel Arria 10 FPGA against Intel HD Graphics 630 for small,
medium and large data sizes.

is not manually tuned, instead the local_ work_size attribute is left empty for the
clEnqueueNDRangeKernel. Therefore, the Intel driver and its OpenCL implementa-
tion will automatically determine how to distribute the global work-items. As shown
in Figure 4.10, for all benchmarks except NBody and Black-Scholes for large data
sizes, FPGA execution outperforms the Intel Graphics up to 13.82×. The performance
for medium workloads performance varies depending on the workload. For instance,
workloads that make use specialised math operations exhibit better performance over the
integrated GPU. However, the FPGA always performs worse for small sizes compared
to the Intel HD Graphics card due to the overheads for copying the data to/from the
device. This behaviour is expected, and for that reason, the FPGAs are recommended
to be targeted in cases of computationally intensive workloads.

4.4.2.1 Runtime Overhead Analysis

To further understand the overall performance of the system, a break-down analysis
of the end-to-end execution times of all benchmarks is presented in Figure 4.11. The
analysis of the execution times is conducted only for the largest input data sizes. This
decision was made as this data size highlights the impact of the data transfers between
the host and the device memories. Each bar has four parts corresponding to: a) kernel
execution time on the FPGA (Kernel), b) data transfers from host to device (H2D), c)
data transfers from device to host (D2H), and d) the (Rest). The Rest includes the time
for loading the binary on the FPGA and initialising low-level OpenCL data structures,
such as the OpenCL context of each kernel.

Figure 4.11 shows that up to 18% of time is spent in transferring data from the
host to the FPGA device (H2D) and backwards (D2H). In particular, VectorAdd,
BlackScholes and Grayscale spent up to 10%, and RenderTrack up to 18% of their

81

VectorAdd BlackSchol Grayscal RenderTrack NBody DFT
Benchmark

0

20

40

60

80

100

%
 th

e
to

ta
l t

im
e

Kernel H2D D2H Rest

Figure 4.11: Breakdown of the total execution time of each benchmark.

total time in data transfers. On the contrary, the Kernel execution time is up to 99.9%
for both computationally intensive benchmarks; NBody and DFT.

The VectorAdd benchmark is a particular case because it exhibits slowdowns, as
illustrated in Figure 4.8, even though the kernel execution percentage is large enough to
anticipate performance improvements. The reason is that this benchmark is memory
intensive, and the current version of the toolchain does not support memory-specific
optimisations, such as local or constant memory (Section 5). Hence, there is significant
memory traffic in the global memory (DRAM). However, in TornadoVM all data is
stored in a single buffer which does not support anti-aliasing and coaleched accesses.
Therefore, when a task has minimal compute operations while operates heavily on
read/write from global memory, the performance can be penalised significantly. One
potential optimisation would be to automatically vectorise load and store operations
with OpenCL by specialising the kernel. Finally, the time for loading the binary and
initialising OpenCL contexts (Rest) across all benchmarks is negligible.

4.4.2.2 Optimisation Phases Breakdown

The data obtained from exploiting the optimisation space, and reported in Table 4.3
shows the contribution of each phase to the overall performance shown in Figure 4.8.

The first phase includes only the Thread Scheduling (TS) optimisation and shows
two different thread-block configurations; one with 32 threads and one 64 threads.
These numbers suggested by the available technical report on the Intel FPGA. Note
that during experimentation any thread configuration of more than 128 caused errors
on the HLS software side. In this work, the main observation is that the thread-block
that offers the best performance for the specific FPGA board is the 64 thread-block in

82

Table 4.3: The impact of each optimisation phase in performance. The first
optimisation phase includes Thread-Scheduling (TS), the second phase applies Loop

Unrolling (LU) along with scheduling with 64 threads (TS_64). The final phase
includes all previous optimisations and Loop Flattening (LF).

Benchmark Thread Scheduling (TS) TS_64 + LU TS_64 + LU + LF
TS_32 TS_64

VectorAdd 0.00002× 0.0001× N/A 0.071×
Grayscale 9.42× 10.01× N/A 11.08×
Black-Scholes 15.85× 15.97× N/A 15.06×
RenderTrack 21.23× 28.16× N/A 30.52×
NBody 11.04× 31.20× 66.75× 83.35×
DFT 35.44× 56.31× 214.64× 224.32×

OpenCL. This configuration is achieved a maximum performance improvement of up to
56× over the Java sequential code compared to 35.44× for the 32 thread configuration.
Besides, as the Thread Scheduling column of Table 4.3 shows, all benchmarks showcase
the best performance at the 64 thread configuration. Thus, 64 threads were used in the
experiments shown in Figures 4.8, 4.9 and 4.10.

The second phase applies the loop unrolling (LU) optimisation on top of the first
phase. Note that this optimisation is only applicable for applications in which an
inner unrollable loop exists. Therefore, N/A reflects to non-applicable applications. In
this benchmark selection only DFT and NBody are applicable. For DFT applying this
optimisation phase (TS_64 + LU), the overall performance can be improved up to 214×
(3.8× improvement). In addition, NBody reaches a performance improvement up to
66.75× (2.13× improvement).

The final phase is applicable to all benchmarks regardless of the structure of the
kernel. This phase combines the previous optimisations with loop flattening (TS 64 + LU
+ LF). The maximum performance is achieved in the DFT with the overall performance
to reach up to 224× compared to sequential Java. Moreover, the performance of the
generated FPGA code is improved by 1.24× compared to the previous optimisation state
of NBody. It can be noted that only BlackScholes showcases performance degradation
due to this optimisation.

Optimising the unrolling factor mentioned above, as well as the work-group config-
urations can improve the overall performance of the generated kernel. However, this
suggests optimisation iterations per use case or the extensive use for a performance
modelling approach. Chapter 5 investigates alternative approaches to improve the
efficiency of the generated code.

83

4.4.3 HLS Compilation & Binary Loading

Table 4.4 shows the HLS compilation times, binary loading times, and the sizes of the
generated FPGA bitstreams for each benchmark. The HLS compilation time regards
the 2nd stage compilation (Section 4.2.2), and it is the time spent for compiling the
specialised generated OpenCL C code to a bitstream. The binary loading time is the
time required to load the bitstreams and initialise low-level OpenCL primitives on the
FPGA on behalf of the running program. As shown, while the binary loading time is
in the range of milliseconds, the HLS compilation time can take up to 114 minutes
(about 2 hours) to complete. Furthermore, the HLS compilation time includes the
time for placement and routing, which is strongly related to the vendor tools and the
complexity of the generated kernels. For instance, the NBody kernel reports the longest
compilation time as it includes the loop unrolling optimisation, which utilises more
private memory on the FPGA, and thus higher BRAM resources (Table 4.5). The
increased latency in the HLS compilation times was the motivation for providing a
set of execution modes in TornadoVM that can either perform a whole compilation
for FPGAs at runtime (Full JIT) or load the bitstream of precompiled kernels (AOT)
(discussed in Section 4.2.2). Nevertheless, OpenCL drivers for Xilinx and Intel are
evolving quickly, thereby reducing compilation times and making JIT compilation more
affordable [Int19]. Finally, Table 4.4 illustrated that both binary loading times and
bitstream sizes are in the same range for all the benchmarks.

Table 4.4: Bitstream size, time for loading onto the FPGA, and HLS bitstream
generation time.

Benchmark Bitstream Size
(MB)

Load
Bitstream

(ms)

HLS
Compilation

(minutes)
VectorAdd 172 22 48
Grayscale 173 23 52
BlackScholes 174 24 54
RenderTrack 173 23 44
NBody 173 24 114
DFT 173 22 68

84

Table 4.5: Resource utilisation as reported by the Intel High Level Synthesis Compiler
(AOC).

Benchmark LUTs FFs DSPs BRAM
VectorAdd 145535 (19.5%) 275521 (18.4%) 72 (3%) 570 (39.4%)
Grayscale 117928 (15.7%) 230040 (15.4%) 72 (3%) 494 (34.0%)
Black-Scholes 186348 (24.9%) 306361(20.5%) 490 (20.7%) 935 (64.7%)
RenderTrack 118582 (15.9%) 238742 (16%) 72 (3%) 514 (35.5%)
NBody 174036 (23.3%) 329764 (22.1%) 120 (5.1%) 1291 (89.3%)
DFT 146418 (19.6%) 264652 (17.7%) 109 (4.6%) 748 (51.7%)
Resources 747080 1494160 2367 1446

4.4.4 Resource Utilisation

Table 4.5 shows the FPGA resource utilisation of four different hardware components
– Look Up Tables (LUTs), Flip Flops (FFs), Digital Signal Processing (DSPs), and
Memory Blocks (BRAM) – for each benchmark. As shown, the utilisation of the
LUTs varies between 15.9% and 24.9% of the total capacity of the FPGA. In particular,
BlackScholes utilises more LUTs and DSPs than the rest of the benchmarks, as the
generated OpenCL C code of BlackScholes contains 216 lines of code with complex
control flow. The utilisation of DSPs is between 3 and 5.1% for all benchmarks, except
BlackScholes which is at 20.7% due to its code complexity. Regarding the BRAM
utilisation, NBody is a particular case occupying up to 89.3% of the available resources
BRAM resources. This high utilization is a result of the extensions to the TornadoVM
JIT compiler that unroll two of the innermost loops.

Overall, these results indicate that the current set of benchmarks utilises roughly
one-fourth of the FPGA available resources, except BRAMs. BRAMs show higher
utilisation due to loop unrolling, which duplicates memory access and the intermediate
stored values. Finally, the low utilisation of FPGA resources could provide enough
space to accommodate multiple compute kernels per hardware design, resulting in
higher performance.

4.4.5 Discussion

By carefully analysing the benchmarks and the obtained results of FPGA execution, a
set of technical guidelines to can be obtained. These guidelines aim to highlight when
FPGA acceleration is suitable for application written in Java.

85

Applications not suitable for FPGAs: VectorAdd is a case in which during runtime
there is a need to copy a significant amount of data. However, this data only aims to
compute just a few operations, thus this is not suitable for FPGA execution. This is
attributed to modern CPUs, which operate at a much higher frequency than FPGAs
(GHz versus MHz), can perform a larger number of such operations in less time. Also,
the Java Hotspot compiler [AAZ+18, Ora14, PVC01b] can utilise high-performance
special vector instructions and operations (e.g., fused multiply-add (FMA)).

Applications suitable for FPGAs: Applications, such as BlackScholes, Grayscale,
NBody, DFT and RenderTrack exhibit significant speedups when operating over large
data sizes. These applications use the specialised hardware on the FPGA to accelerate
the abundance of math operations they contain (e.g., sine and cosine). This is because
FPGAs can perform these operations in few clock cycles. This class of applications
exhibits speedups for all inputs corresponding to large input sizes.

Overall, based on the above findings, Java applications can merit FPGA execution.
In more detail, libraries such as Deep Netts [SOV+20], in which heavy and repeated
mathematical computations occur can be suitable for acceleration. Therefore, calls to
specific libraries can be diverted for FPGA co-execution.

4.5 Summary

This chapter outlined and discusses a novel and practical approach that allows managed
languages to achieve seamless and efficient FPGA code execution. This work extends
beyond the prior work discussed in Section 3.2 on high-level language execution for
FPGAs and the gap outlined in Section 3.2.3 for Java execution on FPGAs. The key
difference is that it allows automatically and transparently the generation of specialised
FPGA code without explicitly requiring any hardware-related annotations in the source
code. Section 4.2.2 presented the required modifications to enable seamless integration
with HLS software, as well as memory management features for catering to FPGA
execution particularities. Moreover, Section 4.3 illustrated how a minimal set of
compiler optimisations enabled performant code generation targeting FPGAs. The
proposed toolchain is designed to adapt to the requirements of a software developer.
Therefore, it is compliant with high-level Java IDEs and debuggers while offering
three execution modes based on the given requirements. Finally, Section 4.4 presented
the performance evaluation of the complete toolchain. For this purpose, several Java

86

benchmarks using the original TornadoVM API were tested.
The toolchain, which used an Intel Arria 10 FPGA, showcased speedups up to

19.8× and 224× over multithreaded and sequential Java code, respectively. Besides, it
also achieved speedups up to 13.82× over parallel execution on an integrated GPU (i.e.,
Intel HD Graphics 630) using TornadoVM.

While FPGAs can yield high-performance, HLS compilation times can impose
a key challenge for their integration with commodity computing systems. The next
chapter investigates how a heterogeneous managed runtime in combination with a
state-of-the-art JIT compiler, can exploit the memory hierarchy of GPUs seamlessly. It
outlines several techniques to exploit the memory hierarchy of GPUs through explicit
memory allocation on private or local memory or loop transformations, such as
tiling and partial unrolling.

87

Chapter 5

Exploiting the Memory Hierarchy of
GPUs via JIT Compilation

The previous chapter presented a novel mechanism for enabling seamless integration of
FPGAs into managed runtimes. However, since FPGAs do not have a specific instruction
set architecture (ISA), code generation heavily depends on the manufacturer’s HLS,
thus compilation times can be prolonged. Also, other common optimisations, such as
local memory allocation on FPGAs are not only user-managed, but also an explicit
cache hierarchy does not exist [Zoh18, HHA+18]. As a result, the benefits of JIT
compilation techniques at run-time can be limited as they need to consider hardware and
HLS particularities. On the contrary, generating code for other heterogeneous devices
with pre-defined ISAs, such as GPUs, can showcase performance improvements, while
using a combination of JIT compilation techniques.

Most of the programming languages used for programming GPUs (e.g., OpenCL,
CUDA, OpenACC) expose to their APIs language constructs. Hence, developers must
explicitly use them to optimise and tune their applications to harness the underlying
hardware. This trade-off between GPU programmability and performance has been
an active research topic. Section 3.3 discussed in detail work that revolves around
polyhedral models [DYS+12, VCJC+13] or enhanced compilers for domain-specific
languages (DSLs), such as Lift [SRD17] and Halide [RKBA+13]. These approaches
either have high compilation overheads [BPCB10], which makes them unsuitable for
dynamically compiled languages, or they still require developer’s intervention to exploit
the memory hierarchy of GPUs (through explicit constructs or annotations available in
the parallel programming languages).

Optimising code written in a high-level languages for low-level GPU execution is a

88

challenging problem. However, JVM-based aggressive compilers have been address-
ing similar challenges for two decades. For instance, many aggressive optimisation
techniques applied to Java, like escape analysis [Bla03], partial escape analysis, and
scalar replacement work towards minimising the memory footprint, and thus Garbage
Collection (GC) overheads. Moreover, being able to express low-level optimisations
from a high-level programming abstraction is part of this process. JikesRVM [AAC+99]
supported intrinsic functions, while Frampton et al. [FBC+09] extended these concepts
by proposing metacircular intrinsics. Both of the above provide an experimented pro-
grammer with a utility to express architecture-specific optimisations. In addition, JIT
compilers, such as the Hotspot C2 compiler [PVC01a], Mozilla IonMonkey [Moza],
SpiderMonkey [Mozb] and Google TurboFan [Gooa] for v8 [Goob] use similar tech-
niques. Finally, modern aggressive compilers, like Graal [DWS+13], offer a state-of-art
infrastructure, like Snippets [SWU+15], to express low-level optimisations in Java.

This chapter presents an alternative approach for automatically exploiting the mem-
ory hierarchy of GPUs completely transparently to the users. The main approach is
based on Just-In-Time (JIT) compilation and abstracts away low-level architectural in-
tricacies from the user programs, while making its application suitable for dynamically
compiled languages. The compiler extensions are implemented in the form of enhance-
ments to the Intermediate Representation (IR) and numerous associated optimisation
phases that can automatically exploit local memory allocations and data locality on
GPUs.

The compiler optimisations for exploiting and optimising local memory have been
evaluated against a set of reduction and matrix operations across three different GPU
architectures. To showcase the performance benefits of this technique, two different
baseline implementations were used; (i) the original code generated by TornadoVM that
does not exploit GPU local memory, and (ii) the hand-written optimised OpenCL code.

Briefly, this chapter presents the following contributions:

• A novel JIT compilation approach for automatically exploiting local memory of
GPUs without requiring manual intervention.

• An analysis on how compiler snippets can be used to express local memory
optimisations by introducing compositional compiler intrinsics, that can be pa-
rameterised and reused for different compiler optimisations.

• A detailed evaluation across a variety of GPU architectures (i.e., AMD, Intel, and
Nvidia GPUs), against the functionally equivalent auto-generated unoptimised

89

and the hand-written OpenCL code with the same optimisations. The experimen-
tal results showcase performance speedup of up to 2.5x versus the original code
generated by TornadoVM, while reaching up to 97% of the performance of the
manually optimised code.

The rest of this chapter is organised as follows: Section 5.1 outlines the JIT compila-
tion process for exploiting local memory for reduce and matrix operations. Section 5.3
presents how Graal Snippets combined with runtime information regarding the available
memory on the GPU introduce the Compositional Compiler Intrinsic (CCI). Section
5.4 explains in detail how the optimisation process is used for reduction and matrix
operations. Section 5.5 showcases the performance benefits that the above process can
yield without modifying the user code. Finally, Section 5.6 summarises the findings of
this chapter.

5.1 Motivation: Tier-Memory for Locality in GPUs

Previously, Section 2.1.1.2 presented the characteristics of GPUs and Section 2.1.2.1
outlined the OpenCL memory hierarchy in Figure 2.3. However, efficient data locality
on GPUs is crucial to achieve high-performance and avoid performance bottlenecks,
such as memory aliasing [BAM13]. Section 3.3 outlined several state-of-art techniques
and approaches that attempt to mitigate the complexity of data locality in GPUs with
optimising compilers.

Exploiting the GPU Tier-Memory: Listing 5.1 outlines an OpenCL kernel for
computing a Matrix Multiplication workload. This kernel utilises the global, local, and
private memories of the GPUs. Additionally, it also showcases how to increase the
efficacy of data locality by applying a common loop transformation, such as loop tiling.
Loop tiling for GPUs can improve coalesced global-memory accesses, data reuse in
local memory, and reduce the effect of thread divergence [GCH+14].

Manually tuning a kernel to apply these optimisations is a complicated process
and it requires additional modifications when the input program changes. Lines 8
and 9 of Listing 5.1 highlight the need for explicitly allocating arrays into the local
memory region of the GPU with a statically defined size. This size is a key factor
for performance as it needs to match the work-items defined in each work-group (i.e.,
local workgroup size). Moreover, lines 15-19 illustrate how data is being copied from
the global memory into smaller chucks into the local memory. This process requires
complex indexing usage through explicit attributes (e.g., get_group_id()). Lines

90

1 __kernel void GEMM(int M, int N, int K, _global float* A,
2 __global float* B,_global float* C) {
3 int row = get_local_id (0);
4 int col = get_local_id (1);
5 int globalRow = TileSize*get_group_id(0) + row;
6 int globalCol = TileSize*get_group_id(1) + col;
7
8 __local float Asub[TileSize][TileSize];
9 __local float Bsub[TileSize][TileSize];
10
11 float acc = 0.0f;
12
13 const int numTiles = K/TileSize;
14 for (int t=0; t<numTiles; t++) {
15 int tiledRow = TileSize*t + row;
16 int tiledCol = TileSize*t + col;
17
18 Asub[col][row] = A[tiledCol*M + globalRow];
19 Bsub[col][row] = B[globalCol*K + tiledRow];
20
21 barrier(CLK_LOCAL_MEM_FENCE);
22
23 for (int k=0; k<TileSize; k++) {
24 acc += Asub[k][row] * Bsub[col][k];
25 }
26
27 barrier(CLK_LOCAL_MEM_FENCE);
28 }
29
30 C[globalCol*M + globalRow] = acc;
31 }

Listing 5.1: Example of an OpenCL kernel computing a Matrix Multiplication
optimised to use local memory and loop tiling.

23-25 showcase how the computation is performed in the newly introduced tiled loop.
This computation iterates over a loop of a specific size (i.e., tile size) which needs
to be tuned for the data to fit in the local memory. Also, this tiled loop needs to be
explicitly synchronised with the communication barriers highlighted in lines 21 and 27.
Therefore, the process outlined above highlights the need for in-depth understanding of
the underlying GPU architecture, as well as the OpenCL programming model to exploit
the memory hierarchy of GPUs.

Listing 5.2 showcases a Matrix Multiplication method written in Java with the

91

1 private static void matrixMultiplication(final float[] A,
2 final float[] B, final float[] C,
3 final int size) {
4 for (@Parallel int i = 0; i < size; i++) {
5 for (@Parallel int j = 0; j < size; j++) {
6 float sum = 0.0f;
7 for (int k = 0; k < size; k++) {
8 sum += A[(i * size) + k] * B[(k * size) + j];
9 }
10 C[(i * size) + j] = sum;
11 }
12 }
13 }

Listing 5.2: Example code of a Java method computing a naive implementation of a
Matrix Multiplication written with the TornadoVM API.

TornadoVM API. This example highlights that the developer is only required to use the
@Parallel annotation to mark the parallel dimensions of a loop in a given method. In
addition, the underlying complexity is being handled by the TornadoVM JIT compiler.

The original TornadoVM framework did not utilise local memory. Prior to this
work, for Java applications to merit from local memory in GPUs typically relied on
exposing low-level programming primitives [SCN+15] to the API. The goal of the work
presented in this Chapter is to preserve intact the minimal API of TornadoVM, and
exploit the optimisations mentioned above seamlessly during JIT compilation.

5.2 GPU Memory-Aware JIT Compilation

Figure 5.1 presents an overview of the JIT compilation process for exploiting local mem-
ory. The underlying approach includes three distinct phases: detection, compositional

intrinsics, and memory transformations. All transformations are applied to the com-
mon IR of TornadoVM JIT compiler (which is a superset of the Graal IR [DSW+13]).
The TornadoVM IR uses the sea-of-nodes [CP95] common representation which en-
compasses both the control-flow and data-flow nodes. By using this representation,
TornadoVM can compile and optimise Java bytecodes to OpenCL by performing IR-
node substitutions, including the addition or deletion of nodes through the compilation
process.

The detection phase scans the IR to locate specific nodes, such as accesses to/from
arrays through read and write nodes, as well as the induction variables. To use local

92

Detection Compositional Intrinsics

Detection &
Analysis Marking Attach New

Nodes

Memory Transformations

Memory
Access Space

Loop &
Memory

Allocation

Application Dependent Application &
Architecture Dependent

Architecture Dependent

Figure 5.1: Overview of the Just-in-Time compilation flow for automatically exploiting
the GPU memory hierarchy.

memory, nodes commonly used to read and write from/to memory are first located (by
default, the JIT compiler assumes all accesses target the global memory). These array
accesses are detected via indexed read and write nodes in the IR. The detection phase is
crucial for the compilation process since:

(a) It provides the exact region in the IR to read/write from/to local, instead of global
memory.

(b) It analyses all nodes accessible from the indexed read/write nodes, such as the
induction variables and the parameters of the compiled method.

This information is accounted during the detection phase to introduce and attach a new
node. The newly introduced node encloses the read and write nodes, and it is used by
the next phases to perform aggressive optimisations regarding local memory (Sections
5.4) and loop tiling (Section 5.4.2).

The compositional intrinsics phase adds to the IR the nodes needed for performing
memory allocation, and prepares the IR for code generation. Concisely, this phase starts
by specialising the IR with GPU-oriented optimisations based on the new nodes trailing
from the detection phase. Although the previous phase was only application dependent,
from this stage and onwards application and architecture-dependent optimisations are
being applied to the IR. During this process, the high-level IR is lowered into a more
concrete lower IR (known as lowering process) which has a closer mapping to the
underlying target architecture. Since this process involves the introduction of several
new IR nodes, a key design decision was to create and utilise a set of parameterised
compiler intrinsics. In this way, complex optimisations can be decomposed (e.g., loop
tiling with local memory) into smaller graphs, and combined at runtime to form larger
graphs. These compiler intrinsics are in the form of Snippets [SWU+15] and they are
methods, completely written in Java, which represent low-level operations that are
being attached to the IR at runtime. Examples of such operations are the creation of
local memory allocation code or the combination of loop tiling with the local memory

93

allocation. Section 5.3 explains in detail, all the compiler intrinsics introduced for
automatically supporting local memory.

Finally, the memory transformations phase is an architecture dependent optimisa-
tion process. In this phase, the JIT compiler processes the new nodes introduced during
lowering, and completes the IR by adding the correct information to access local mem-
ory. This low-level information includes the base addresses and the offset arithmetic
nodes. In summary, this phase introduces new IR operations for the following:

1. Copying data from global to local memory.

2. Materialising the indices to read/write from/to local memory.

3. Copying the final data (i.e., the variable that escapes the scope of the loop) from
local to global memory upon finishing executing a kernel.

In addition, this phase invokes the OpenCL API for obtaining device-specific informa-
tion to optimise local memory sizes based on the number of work-items deployed and
the available local memory.

5.3 Compositional Compiler Intrinsics (CCIs)

Compiler intrinsics are low-level code segments typically expressed in low-level pro-
gramming languages, such as Assembly or C. They represent optimised code for
common operations, such as the use of vector operations or memory allocation. The JIT
compilers of Graal and MaxineVM [WHVDV+13, KCR+17b] introduced the concept
of compiler snippets as a high-level representation of low-level operations [SWU+15].
With snippets, low-level operations are implemented in a high-level programming lan-
guage (Java) instead of the assembly code. Since the aforementioned JIT compilers
are also implemented in Java, they do not need to cross language boundaries to imple-
ment their intrinsics. Hence, their code can be further optimised by applying common
compiler optimisations (e.g., loop unrolling, constant propagation, etc.).

Fumero et al. [FK18] extended the use of compiler snippets to express efficient
parallel skeletons for GPUs in TornadoVM. The work in this chapter extends the
capabilities of compiler snippets to express local memory optimisations by introducing
compositional compiler intrinsics, which can be parameterised and reused for different
compiler optimisations. With this approach, applications can further increase their
performance by automatically exploiting local memory.

94

LoopNode
Parameter

Parameter Index

Index

... ...

a) Detection

b) Marking
LocalArrayAlloc

LoopNode

WriteIndexedLocal

Parameter
Index

...

c) Copy
CopyToLocal

CopyToGlobal

Size

ReadIndexedNode

Parameter Index

LoopNode
Parameter Index

ReadIndexedNode

Size LocalArrayAlloc

SizeSize

ReadIndexedLocal

WriteIndexedNodeWriteIndexedNode

Figure 5.2: IR transformations for the compiler intrinsics of local memory allocation
and data copies.

Key focus of this work is to provide a set of parameterised compiler intrinsics that
gradually lower the IR, and generate efficient GPU code that uses local memory. These
compiler intrinsics are involved in two different compilation phases: the compositional

intrinsics phase (Figure 5.1), in which the actual compiler intrinsics are inserted into
the compiled graph (IR), and the memory transformations phase, in which the IR is
optimised after inlining the intrinsics into the graph. This approach offers a degree
of flexibility to the compiler to apply several optimisations and combine intrinsics to
express multiple optimisations. In detail, the following intrinsics are introduced:

• Local Memory Allocation: This intrinsic modifies the IR to emit code for allocat-
ing arrays in local memory. Input and output variables that have been detected
in the detection phase are marked as candidates for using local memory. In
this case, this compiler intrinsic introduces the logic to declare and instantiate
arrays in local memory. By design, snippets do not support dynamic memory
allocation, and consequently, the Local Memory Allocation intrinsic does not
either. Therefore, array lengths must be statically set. To address this limitation,
the lengths of the arrays are provided to be stored in local memory as a parameter
node that can be dynamically changed and updated in the memory transforma-

tions phase. The actual size depends on the amount of local memory available
on the target device and the number of threads deployed. In this way, multiple
combinations of local memory sizes can be generated during runtime. Figure 5.2
illustrates the use of this compiler intrinsic for loop tiling in the JIT compiler.
The left-hand side of Figure 5.2 shows the IR that represents an indexed read and

95

an indexed write from/to an array inside a loop. The graph is read as follows: the
control flow nodes are connected with red arrows, while the data-flow nodes are
connected with black dashed arrows. Moreover, the introduction of a compiler
intrinsic is represented by a red node, while a blue node represents a required
node to perform an optimisation. In this phase, the JIT compiler runs the detection
phase, looking for reads and writes enclosed in loops. Upon the detection of
the ReadIndexedNode/WriteIndexedNode nodes (Figure 5.2(a)), the compiler
marks them as candidates to use local memory and introduces a set of new nodes
(i.e., LocalArrayAlloc, Size) in the IR (Figure 5.2(b)).

• Copy To Local Memory/Copy To Global Memory: These compiler intrinsics
introduce a copy from global to local memory and vice versa. These memory
copies are presented in Figure 5.2(c) as two new IR intrinsics CopyToLocal and
CopyToGlobal. Both intrinsics are performed during the memory transformations

phase and accept as inputs the local array nodes and the corresponding indices
from global and local memory.

• Load/Store Operations in Local Memory: This pair of intrinsics performs load
and store operations from arrays that reside in local memory to private memory,
and vice versa. Figure 5.2(c) illustrates these operations as two new IR intrinsics
ReadIndexedLocal and WriteIndexedLocal that represent the load and store
operations, respectively. This pair of compiler intrinsics enables the JIT compiler
to access the local memory address space, as opposed to the TornadoVM IR
indices (ReadIndexed and WriteIndexed in Figure 5.2(b)) that do not support
this functionality.

• Reductions with local memory: This intrinsic improves the reduction operations
presented by Fumero et al. [FK18], by adding local memory support. Using the
same technique as described for the two previous compiler intrinsics, the GPU
local memory is utilised to increase the performance of reduction operations
on GPUs. Section 5.4 explains all the IR transformations involved to generate
efficient GPU reductions using local memory via the compiler intrinsics.

• Parameterised Loop Tiling for Local Memory: A set of compiler intrinsics that
can be combined with common loop optimisations, such as loop tiling and loop
unrolling, are introduced. Although these loop optimisations are orthogonal to
local memory, they can facilitate the use of local memory. To do so, a compiler

96

intrinsic in the JIT compiler to perform loop tiling is added. This intrinsic receives,
as parameters, all arrays references stored in local memory and all loop indices
that access local memory. Through the parameterised architectural design of
the compiler intrinsics, this optimisation can be combined with loop unrolling.
Figure 5.5 illustrates an example of this compiler intrinsic that combines local
memory allocation with loop tiling. Figure 5.5(a) shows the detection phase with
three primary nodes: a loop node and two indexed read and write nodes. During
the detection phase, the loop node is selected as a candidate node for loop-tiling.
The second graph shows the expansion of the IR through the introduction of
the compiler intrinsic for loop-tiling. This new set of nodes in the IR enables
a new marking phase to apply local memory and loop tiling (Figure 5.5(b)).
Figure 5.5(c) shows the new IR after applying local memory allocation, loop
tiling, and the copies from global to local memory (and vice versa once the loop
tiling optimisation is performed).

5.4 Exploiting Local Memory

To demonstrate the outlined technique, two different use cases were used. These use
cases showcase how compositional compiler intrinsics are introduced in the IR and
how they are optimised to efficiently utilise the GPU memory hierarchy. Although this
approach is developed in the context of the JIT compiler in TornadoVM, the technique
can be used by other compilation frameworks that provide similar features, such as
LLVM [LA04] and GCC [SD09].

5.4.1 Parallel Reductions

The first use-case that aims to showcase the optimisation process is a set of reduc-
tion operations, which are defined as the accumulation of input values from a vector
into a single scalar value. Reduction operations are widely used algorithmic parallel
skeletons [Col91]. In addition, there are a key building block for many parallel program-
ming frameworks, such as Google Map/Reduce [DG08], Apache Spark [ZXW+16],
Apache Flink [KS16], and common libraries, such as Thrust [BH12]. Therefore, opti-
mising parallel reductions has been a well-studied topic, especially regarding memory
optimisations, such as local memory [DGHGL+19, CA12].

Figure 5.3 illustrates a basic technique for a reduction operation from the OpenCL

97

…

Work group 2Work group 0 Work group 1

…

Global
Memory

Figure 5.3: GPU-targeted reduce operation with explicit global memory allocation.

…

Work group 2Work group 0 Work group 1

…

… Global
Memory

Local
Memory

Global
Memory

Figure 5.4: GPU-targeted reduce operation with local memory allocation.

perspective. On the contrary, Figure 5.4 illustrates a basic technique to use local memory
for partial copies to optimise performance for reduction operations. A key aspect of this
technique relies on making copies of data batches per work-group to perform individual
reductions and return a single reduced value. Hence, performance is significantly
improved, since accesses to the main global memory are reduced.

To perform high-performance reductions on GPUs, TornadoVM currently uses com-
piler intrinsics [SWU+15] to express parallel skeletons [FK18]. TornadoVM already
solves the problem of seamlessly expressing parallel reductions in the compiler, albeit
without exploiting data locality and GPU local memory. Each compiler phase for adding

98

LoopNode

ReadIndexed

WriteIndexed

Parameter

Parameter Index

Index

...

a) Detection LoopNode

ReadIndexed

WriteIndexed

Parameter

Parameter Index

Index

...

b) Marking

LoopTiling

ReadIndexedLocal

WriteIndexedLocal

Parameter

Index

...

c) Copy
LocalArrayAlloc

CopyToLocal

CopyToGlobal

LoopNode

LoopTiling

LocalArrayAlloc

Figure 5.5: IR transformations for the compiler intrinsics of loop tiling, local memory
allocation, and data copies.

local memory support to reduction operations is described below.

Detection To express reductions in TornadoVM, developers can use the @Reduce

annotation as demonstrated in Listing 5.3. Upon adding the annotation, the TornadoVM
JIT compiler detects the reduction pattern, which is subsequently used to add local
memory support.

Briefly, the version of TornadoVM (v0.5) used only targets the global memory
space by automatically dividing the iteration space into smaller chunks (one chunk
per work-group), and it performs a full reduction within each chunk. This strategy is
illustrated in Figure 5.3.

Lowering TornadoVM implements parallel reductions with intrinsics (further infor-
mation can be found in [FK18]). Listing 5.4 exemplifies the compiler intrinsic (snippet)
that TornadoVM uses to perform the reduction operation of Listing 5.3. As shown,
the compiler intrinsic is also written in Java, and during compilation, its generated IR
is appended to the rest of the IR graph of the original input method. Consequently,

1 public void reduce(float[] in, @Reduce float[] out) {
2 for (@Parallel int i = 0; i < n; i++) {
3 out[0] += in[i];
4 }
5 }

Listing 5.3: Example code of a Java reduction written with the TornadoVM API.

99

1 @CompilerIntrinsinc
2 void reductionIntrinsic(float[] input , float[] output){
3 int idx = OpenCL.get_local_id (0);
4 int lgs = OpenCL.get_local_size (0);
5 int gID = OpenCL.get_group_id (0);
6 float[] local = OCL.alloc(SIZE, float.class);
7 local[idx] = input[OpenCL.get_global_id(0)];
8 for(int i = (lgs/2); i > 0; i/=2) {
9 OpenCL.localBarrier();
10 if (idx < i) local[idx] += local[idx + i];
11 }
12 if (idx == 0) output[gID] = local[0];
13 }

Listing 5.4: Example code of a compiler intrinsic to utilise the GPUs local memory for
reductions.

the merged IR can be re-optimised iteratively, a key advantage compared to intrinsics
written in low-level languages that are treated as native functions by the compiler.

The existing intrinsic has been augmented in order to add local memory support
as shown in Listing 5.4 (gray colour). To achieve this, additional compiler intrinsics
have been added, to express local memory regions in a high-level manner. In this case,
the use of local memory region is explicit by allocating the corresponding arrays in the
generated OpenCL source code instead of defining a parameter to the generated OpenCL
kernel with a local memory region. Line 6 shows the allocation of the local array
in local memory. This allocation is performed via an invocation to the static method
OCL.alloc, in which the size and the type of the array are passed along. Consequently,
line 7 copies data from global memory to local memory. Then, the actual reduction is
computed using local memory (line 10). Finally, line 12 performs the final copy from
local to global memory. The JIT compiler lowers these intrinsics to generate OpenCL C
code that corresponds to the high-level Java code. By using this strategy of computing
with local memory, the execution flow of Figure 5.3 is transformed to that of Figure 5.4.

During the lowering phase, the generated compiler graph includes new nodes
associated with allocating, indexing, and storing data to the local memory region. Then,
the new nodes are inlined to the IR graph of the compiled method. Figure 5.6 depicts
the IR transformations upon replacing the IR nodes introduced by the intrinsic in
Listing 5.4 with the corresponding lowered IR nodes (via substitution) for local memory
allocation. Similarly to Figure 5.2, control-flow nodes are connected with red arrows,
while data-flow nodes are connected using black dashed arrows. The left graph in

100

OpenCL.get_local_id

OpenCL.get_local_size

OpenCL.get_group_size

Invoke#OCL.alloc

WriteIndexedNode

SizeNode

ReadIndexedNode

AddressNode

AddressNode

get_local_id(0)Node

get_local_size(0)Node

get_group_size(0)Node

LocalMemoryAlloc

WriteIndexedNode

SizeNode

ReadIndexedLocal

AddressNode

AddressNode

Figure 5.6: Node replacements during the lowering phase for the reduction compiler
intrinsic.

Figure 5.6 represents the IR when the code for the reduction intrinsic is built. This
graph includes the Invoke#OCL.alloc node representing an array allocation using
local memory. This node contains information about the size used as a data-flow node,
allowing us to dynamically change the size. Therefore, the same compiler intrinsic can
generate parameterisable code for various local memory sizes. The right graph shows
the IR graph after applying the substitution to allocate local memory. As shown, the
output array of Invoke#OCL.alloc has been replaced by a LocalMemoryAlloc node.
Since this type of nodes only appears in intrinsics related to reductions, TornadoVM
guarantees that these intrinsics only substitute local arrays.

Memory Transformations A challenge in this phase is that the decision for the
statically allocated size of local memory. This phase must consider the deployed GPU
threads (work-items) along with available local memory size to avoid memory aliasing.
However, the number of deployed threads is determined at runtime and depends on the
input data size for each application. To tackle this challenge, the sizes of the local arrays
are attached as a data-flow node (SizeNode) in the IR, as illustrated in Figure 5.6. In
this case, if the same reduction is executed, during run-time, with different input size
the generated code will be dynamically adapted by changing only the size node that is
attached to the LocalMemoryAlloc node in the IR.

101

1 @CompilerIntrinsinc
2 void tile(float sum, float[] arrA , float[] arrB , int size ,
3 ValueNode operator , ValueNode reduceOperator) {
4 OpenCL.localBarrier();
5 for (int x = 0; x < size; x++) {
6 sum = OCL.compute(arrA[x], arrB[x],
7 operator , reductionOperator);
8 OpenCL.localBarrier();
9 }

10 }

Listing 5.5: Example code of a compositional compiler intrinsic for processing loop
tiling using local memory.

5.4.2 Matrix Operations

The second use-case that illustrates the efficacy of the extensions to the JIT compiler
is an O(N3) matrix multiplication operation. Previously, in Listing 5.2 of Section 5.1
an example of a matrix multiplication written with the TornadoVM API was presented.
This code has three nested loops that can be parallelised via TornadoVM by employing
the @Parallel annotation. This section explains all the phases in the JIT compilation
flow that facilitate data locality in the local memory.

Detection The detection phase of the JIT compiler traverses the IR graph seeking
the ReadIndexed and WriteIndexed nodes, which represent the memory accesses
to the global memory. Figure 5.5(a) illustrates this process in which all the derived
information about the induction variables and the parameters of the method is combined.
This process contributes to the addition of two new nodes that apply two compiler
intrinsics; one for local memory allocation and a second for loop tiling at the innermost
loop.

Lowering The compiler marks the first loop entry for each input array to introduce
the compiler intrinsics for the local memory allocations. Additionally, the compiler
applies the loop tiling optimisation to detect the three nested loops corresponding to the
matrix multiplication application. Figure 5.5(b) presents the marking of the two nodes
that were added in the previous phase (LocalArrayAlloc and LoopTiling). During
the lowering phase, the IR nodes are replaced by the respective compiler intrinsics.
Previously, Section 5.3 discussed the local memory allocation intrinsic. Now, Listing 5.5
shows the code that implements the compiler intrinsic in the JIT compiler for loop

102

OpenCL.localBarrierNode

LoopEndNode

LoopNode
LocalArrayAlloc

ReadIndexedLocal

OCL.Compute

OpenCL.localBarrierNode

ValueNode

LocalArrayAlloc

TileSize

ReadIndexedLocal

ValueNode

Figure 5.7: IR nodes from the compiler intrinsic in Listing 5.5.

tiling. This intrinsic accepts as inputs a set of arrays, the size for the loop tiling, and the
operators to be applied inside the loop tiling. Line 5 shows the new loop that performs
the tiling, and line 6 shows a method invocation that introduces the compute logic inside
this new loop. Also, two OpenCL local barriers are required to guarantee consistency.
The first barrier in line 5 is used before loop tiling to ensure that the data has been
copied to the allocated space in local memory. Furthermore, the second barrier (line
8) synchronises the tile processing across all work-items before the final copy to the
global memory. Moreover, developers do not need to account for about maintaining
memory consistency when using local memory since the JIT compiler automatically
inserts the barriers. Figure 5.7 shows the IR representation for this compiler intrinsic.
The new loop is introduced as a control flow node (LoopNode) right after the OpenCL
local barrier node. These barrier nodes are lowered from the compiler intrinsic, and
thus it is ensured that the number will be correct. The loop body is represented by a
compiler intrinsic called OCL.Compute. This intrinsic acts as a placeholder for inserting
the IR nodes representing the core computation within the loop tiling, which, in the
case of matrix multiplication, corresponds to a multiplication followed by a sum. In
turn, all these new nodes will be replaced during the memory transformations phase.

Memory Transformations Figure 5.8 illustrates the transition of the IR from low-
ering (left graph) to the final memory transformations phase (right graph). In the
last phase before the OpenCL C code generation, a set of new compiler intrinsics

103

LoopNode

WriteIndexed

LoopNode

...

*

+

ReadIndexedLocal

LoopEndNode

LoopNode

ReadIndexedLocal

OCL.Compute

OpenCL.localBarrierNode

ValueNode

ValueNode

LocalArrayAlloc

LocalArrayAlloc

OpenCL.localBarrierNode

LoopNode

CopyToGlobal

LoopNode

...

ReadIndexedLocal

LoopEndNode

LoopNode

ReadIndexedLocal

LocalBarierNode

LocalArrayAlloc
LocalBarrierNode

CopyToLocal

LocalArrayAlloc

WriteIndexedLocal

TileSize
TileSize

LoopNode
LoopNode

NumberOfTiles
NumberOfTiles

Figure 5.8: IR node replacements during the memory transformation phase for the
Matrix Multiplication application.

(e.g., CopyToLocal, CopyToGlobal) is introduced to use local memory. The Write-

IndexedLocal intrinsic of the right graph in Figure 5.8 is used to store the result from
the sum variable (Listing 5.5 - line 7). This phase has been previously discussed in
Section 5.4.1.

Regarding the loop tiling optimisation, the left graph in Figure 5.8 shows the IR
of the loop tiling compiler intrinsic (Figure 5.7). During the memory transformations

phase, all the IR nodes of the compiler intrinsics are lowered to OpenCL instructions.
This phase inlines the call of the OCL.Compute method that it was introduced in the
previous phase into a set of nodes. In this case, the call inlines all nodes involved in the
matrix multiplication operation within the loop tiling (see right graph in Figure 5.8).

Since the loop tiling compiler intrinsic is applied to the innermost loop, three more
nodes (LoopNode) are illustrated in Figure 5.8 representing the three outermost loops.
Therefore, the lowering process of loop tiling starts by first traversing the IR graph from
the innermost loop and replacing its loop bound with a TileSize node and the bounds

104

of the third innermost loop with a NumberOfTiles node. The two outermost loops
remain the same as they represent the sizes of parallel dimensions. To decide the tile size
during JIT compilation, the OpenCL driver is invoked to provide the maximum number
of the available work-items, which is device-specific. Similarly, the number of deployed
threads (GlobalWorkItems) is obtained from the OpenCL driver as it matches the input
data size of the given application. This information is used to calculate the number of
total tiles.

Finally, due to the parameterisable compiler intrinsics, existing compiler intrinsics
can be combined with more aggressive optimisations, such as loop unrolling and partial
escape analysis.

Although compiler intrinsics, in the form of snippets, offer an expressive and
low-overhead mechanism to define memory optimisations, they generate less optimal
code compared to aggressive optimisation approaches, such as polyhedral compilation.
The key difference is that the proposed approach does not explore the optimisation
space for the best possible combination for tile sizes, amount of local memory, and
work-item sizes. However, if the methodology is combined with TornadoVM dynamic
reconfiguration mechanism [FPZ+19], a similar approach to polyhedral compilation
could be achieved dynamically at runtime. Also, other approaches, such as those
proposed by Cummins et al. [CPSL15, CPWL17] and by Wang et al. [WO18] indicate
that Machine Learning can assist to improve the quality of the generated code.

5.5 Evaluation

This section presents the performance evaluation of the proposed optimisations along
with the compilation overhead induced to the existing JIT compiler.

5.5.1 Experimental Setup and Methodology

5.5.1.1 Experimental Methodology

Table 5.1 presents the hardware specifications of the three GPU devices used in the
experimental setup. The system runs CentOS 7.4 with Linux kernel 3.10, and for all
experiments, the OpenJDK JVM 1.8 (u242) 64-Bit with 16GB of Java heap memory
was used. To ensure that the JVM has been warmed up, 100 warm-up iterations per
benchmark were performed, and only the geometric mean of the next 100 runs is
reported. Table 5.2 outlines the exact specification of GPUs used in the evaluation.

105

Table 5.1: Experimental setup and configuration.

Hardware

Processor Intel Core i7-9750H CPU @ 2.60GHz
Cores 6 (12 HyperThreads)
RAM 32GB
Integrated GPU Intel UHD Graphics 630
Discrete GPU [1] NVIDIA GeForce GTX 1650 (Turing)

4GB GDDR5, 896 CUDA Cores
Discrete GPU [2] AMD GFX900

4GB GDDR5, 896 CUDA Cores

Software

Operating System CentOS 7.4 (Kernel 3.10-generic)
OpenCL (CPU) 2.1 Device Version
OpenCL (IGPU) 2.1 Device Version
OpenCL (GPU) 1.2 Device Version
CUDA Driver 450.80.02
TornadoVM v0.7

JVM OpenJDK JVM 1.8 (u242) 64-Bit
Java Heap -Xmx16G -Xms16G

Table 5.2: GPU configuration: Device, memory, work-item and driver specification.

GPU Vendor Work-Items Global Local Driver
GFX900 AMD 1024x1024x1024 8GB 64KiB 2766.4
GeForce 1650 Nvidia 1024x1024x64 4GB 48KiB 435.21
HD Graphics Intel 256x256x256 25GB 64KiB 19.43.14

5.5.1.2 Benchmarks and Input Sizes

The baseline implementations are the following: (i) the original code produced by
TornadoVM1 that does not exploit GPU local memory, and (ii) the hand-written opti-
mised OpenCL code, of the functionally equivalent OpenCL benchmarks. The OpenCL
baseline implementation includes the same set of optimisations as the extended JIT
compiler.

In addition, the proposed technique is evaluated against three reduction operations

1The exact commit point is: https://github.com/beehive-lab/TornadoVM/commits/
81c70437800c252899a56e78ddbe80697f273973.

106

https://github.com/beehive-lab/TornadoVM/commits/81c70437800c252899a56e78ddbe80697f273973
https://github.com/beehive-lab/TornadoVM/commits/81c70437800c252899a56e78ddbe80697f273973

Table 5.3: List of benchmarks used for the evaluation of the extensions to the JIT
compiler.

Benchmark Input
Sizes

Method/Kernel LOC Optimisations
Java Gen OpenCL local Memory Loop Tiling

Reduction
(Min) 28 to 224 5 40 19 3 7

Reduction
(Add) 28 to 224 5 40 19 3 7

Reduction
(Mul) 28 to 224 5 40 19 3 7

Transpose
Matrix 28 to 224 6 77 14 3 7

Matrix
Multiplication

25x25 to
212x212 11 63 25 3 3

Matrix Vector
Multiplication

26x23 to
216x28 9 55 20 3 3

(Minimum, Addition, and Multiplication), and three matrix operations (Matrix Multi-

plication, Matrix Transpose, and Matrix Vector Multiplication). Table 5.3 presents the
various parameters used for each benchmark, including the input data size, the lines of
code (LOC), and the combination of optimisations applied per benchmark; namely Lo-
cal Memory usage and Loop Tiling. The evaluated benchmarks have been implemented
in Java for execution with TornadoVM and in OpenCL C for comparisons against
hand-written optimised native code. The third column (Java) of Table 5.3 shows the
LOC of the TornadoVM-Java implementations, while the fourth column (Gen) shows
the LOC of the auto-generated GPU code. Finally, the fifth column (OpenCL) shows
the LOC of the manually written OpenCL C codes. The LOCs of the implementations
is order to provide an insight into the complexity of the developed code with respect
to utilising the GPU memory hierarchy. In addition, the OpenCL code generation in
TornadoVM (Gen) derives from SSA (Static Single Assignment) representation (in
which each operation is assigned exactly once). Therefore, more lines of code are
generated. Regarding optimisations, all reductions exploit local memory as explained
in Section 5.4, whereas the matrix operations exploit the different combinations (local
Memory, Loop Tiling), as discussed in Section 5.4.2.

107

5.5.2 Performance Evaluation

5.5.2.1 Performance Comparison against TornadoVM

Figure 5.9 presents the performance improvements achieved by the compiler optimisa-
tions, against TornadoVM which does not support local memory. For all of the figures,
the x-axis shows the input size for each benchmark, while the y-axis shows the achieved
speedup against TornadoVM.

In general, the proposed approach outperforms TornadoVM by up to 2.5x and 1.6x
for matrix and reduction operations, respectively. Additionally, all benchmarks exhibit
performance speedups across all data sizes. For Intel and Nvidia GPUs, the reported
times include only the kernel execution on the GPUs. On the contrary, for the AMD
GPU, the reported times also include data transfers. This is due to a limitation of the
AMD OpenCL driver, which can only report kernel execution and data transfer times
combined. For this reason, the discussion regarding performance between the different
GPUs is divided into two separate paragraphs.

Performance on an AMD GPU: As illustrated in Figure 5.9, the compiler optimi-
sations yield performance speedups ranging from 1.02× to 1.58× on the AMD GPU.
Regarding all reduction operations (Figure 5.9(a-c)), one can observe that the execution
for small input data sizes yields higher performance compared to larger input sizes when
utilising local memory (up to 1.58x at 28 data elements in Figure 6.9(a)). Since the
AMD GPU reported times also include data transfers, the observed speedups degrade
as the input data sizes increase due to the costly data transfers. Nevertheless, these
overheads do not result in slowdowns. Regarding matrix operations (Figure 5.9(d-f)),
the execution on the AMD GPU obtains a maximum performance of 2.3x for ma-
trix multiplication and 1.23x for matrix transpose, following similar trends with the
reduction operations.

Performance on Nvidia and Intel GPUs: As shown in Figure 5.9, the execution
with local memory on Intel HD Graphics (second bars) performs up to 35% faster than
the baseline configuration (216 data elements in Figure 6.9(a)). Regarding the execution
on the Nvidia GPU (third bars), performance improvements of up to 48% are observed
(212 data elements in Figure 5.9(b)). As the data sizes increase, the relative performance
speedups due to the optimisations decrease. This is attributed to the additional global
barrier that had to be placed into the generated code before the final read from local
to global memory. As the number of threads increases and surpasses the number of

108

28 210 212 214 216 218 220 222 2241.0

1.2

1.4

1.6
Sp

ee
du

ps
 a

ga
in

st
 T

or
na

do
VM AMD gfx900

Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(a) Reduction Minimum.

28 210 212 214 216 218 220 222 2241.0

1.2

1.4

1.6

Sp
ee

du
ps

 a
ga

in
st

 T
or

na
do

VM AMD gfx900
Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(b) Reduction Addition.

28 210 212 214 216 218 220 222 2241.0

1.2

1.4

1.6

Sp
ee

du
ps

 a
ga

in
st

 T
or

na
do

VM AMD gfx900
Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(c) Reduction Multiplication.

210 212 214 216 218 220 222 2240.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
ps

 a
ga

in
st

 T
or

na
do

VM AMD gfx900
Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(d) Matrix Transpose.

210 212 214 216 218 220 222 2240.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
ps

 a
ga

in
st

 T
or

na
do

VM AMD gfx900
Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(e) Matrix Multiplication.

210 212 214 216 218 2200.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
ps

 a
ga

in
st

 T
or

na
do

VM AMD gfx900
Intel HD Graphics NEO
Nvidia GeForce GTX 1650

(f) Matrix Vector Multiplication.

Figure 5.9: Performance comparison against vanilla TornadoVM (x-axis: Input sizes in
powers of 2, y-axis: Achieved speedup).

physical threads that can run in parallel on the device, the overhead due to the barriers
also increases. To address the barrier overhead, node hoisting will be applied in future
work.

Concerning matrix operations (Figure 5.9(d-f)), the largest speedup (up to 2.5x) is
observed when running on the Intel HD Graphics (218 data elements in Figure 5.9(e)). In
general, the observed speedups for matrix operations are higher than those in reduction
operations, due to the combination of the applied optimisations (i.e., loop tiling and
local memory). Finally, as shown in Figure 5.9(e-f), for small data sizes, no performance
improvements were observed. This is attributed to the loop unrolling optimisation taking
place at the early stage of the optimisations, which negates the impact of allocating to

109

R_min R_Add R_Mul MT MM MVM0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Pe

rfo
rm

an
ce

 to
 N

at
iv

e
Op

en
CL

AMD gfx900 Intel HD Graphics NEO Nvidia GeForce GTX 1650

Figure 5.10: Relative performance of the code generated through the extended JIT
compiler against hand-written optimised OpenCL implementation (the higher, the

better).

data to the local memory. Nevertheless, it is possible to apply further optimisations on
unrolled loops in future work.

5.5.2.2 Performance Comparison against Hand-Written OpenCL

Figure 5.10 shows the relative performance of the code generated by the JIT compiler
against the functionally equivalent optimised (using local memory and loop tiling)
OpenCL code. Similarly, to the previous experiments, the times reported on the AMD
GPU include both kernel and data transfer times in contrary to Intel and Nvidia GPUs
that report only kernel times.

As shown in Figure 5.10, the performance of the JIT-compiled code compared to
native OpenCL C implementations for reductions, reaches up to 53% on the AMD GPU,
up to 83% on the Intel HD GPU, and up to 94% on the Nvidia GPU. Regarding matrix
operations (Figure 5.10), the JIT-compiled code performs up to 78% on the AMD GPU,
up to 92% on the Intel HD GPU, and up to 82% on the Nvidia GPU, compared to the
native OpenCL C code. These results indicate that the auto-generated code performs
competitively, if one take into account that no user intervention for performance tuning
is required.

5.5.3 Compilation Overhead

Table 5.4 presents the time spent for JIT compilation separated into two categories:
TornadoVM and driver compilation times. The compilation time in TornadoVM is the

110

Table 5.4: Compilation times per compilation stage in the two stage compilation
process.

Time in Milliseconds (ms)

Benchmark TornadoVM Nvidia
Driver

Intel
Driver

AMD
Driver

Reduction Addition 64.59 47.04 224.38 18.54
Reduction Multiplication 73.23 54.60 251.16 19.64
Reduction Minimum 81.38 57.70 258.61 18.85
Matrix Transpose 55.43 43.20 227.73 17.42
Matrix Multiplication. 62.21 48.10 250.68 21.32
Matrix-Vector Multiplication 61.31 52.40 254.68 19.32
GeoMean 65.81 50.39 239.06 19.16

time taken to JIT-compile the Java bytecodes to OpenCL code. In contrast, the driver
compilation times are the reported times for compiling the OpenCL code to machine
code.

To better understand the JIT-compilation overheads, the Matrix Multiplication

benchmark was further analysed since it combines both the local memory allocation
and loop tiling. The JIT compilation of that benchmark takes up to 63.7% of more
time than the original TornadoVM JIT compiler. From that additional compilation
time, the newly introduced optimisation phases account for up to 25%. The rest of
the overhead is distributed amongst the rest of the compilation phases, and they are
attributed to the increased size of the IR graph. The addition of local memory and loop
tiling awareness to the IR graph results in up to 50% additional nodes that are processed
by subsequent optimisation. The occurrence of extra nodes processed by the consequent
optimisation phases is translated to an approximately 35% increase of compilation time.
Nevertheless, the percentage of compilation time in the total execution time is less than
5% and, as in any other optimising JIT-compiler, this overhead is encountered only
once during execution (the initial compilation).

5.6 Summary

The work presented in this chapter enables an alternative approach to exploit local
memory allocation automatically and transparently with Just-In-Time (JIT) compilation.
A set of compiler extensions that allow arbitrary Java programs to utilise local memory
on GPUs without explicit programming has been implemented in TornadoVM and
its JIT compiler. A selection of benchmarks and different GPU architectures used to

111

evaluate the performance gains and GPU vendor portability. The results showcased
performance speedups of up to 2.5x compared to equivalent baseline implementations
that do not utilise local memory or data locality. Furthermore, the generated code was
compared against hand-written optimised OpenCL code to assess the upper bound
of performance improvements that can be transparently achieved by JIT compilation
without trading programmability. The results highlight that the complete optimisation
process can reach the efficiency of the generated code.

The following chapter aims to break the boundaries of single device performance,
and enable concurrent execution on multiple heterogeneous devices. It explains how
a heterogeneous managed runtime can enable multiple Java methods to be deployed
on multiple heterogeneous devices concurrently, while leveraging a Machine-Learning
model for an intelligent task-to-device allocation.

112

Chapter 6

Intelligent Scheduling of
Multiple-Tasks on Multiple-Devices
(MTMD)

The previous two chapters addressed the two distinct challenges of bridging the gap
between heterogeneous hardware and managed runtime systems. Chapter 4 addressed
the issue of enabling seamless integration of FPGAs into managed runtimes while
Chapter 5 improved performance of the auto-generated GPU code for Java programs.
This chapter extends beyond single device performance by presenting a mechanism to
allow multiple tasks deployed by a heterogeneous managed runtime to run onto multiple
devices along with intelligent device/task allocation.

To ease the transition towards heterogeneous parallel programming models, re-
search has focused on making high-level programming abstractions widely avail-
able [KDA+20]. For instance, TVM [CMJ+18] is a flexible machine learning com-
piler framework for CPUs, GPUs, and machine learning accelerators. Moreover,
Halide [AMA+19] is a programming language for image processing pipelines on
CPUs, GPUs, and FPGAs. In addition, approaches like IBM J9 [IHKS15] with GPU
support, StreamIT [UGT09, HHWG12], Aparapi [AMD16] and TornadoVM [FPZ+19]
allow Java programs to be executed on heterogeneous hardware. However, although the
solutions mentioned above aim at closing the programmability gap, they tend to focus
on the execution and utilisation of a single device. Since the availability of multiple de-
vices within a computing platform has become the new norm, high-level programming
frameworks also need to schedule, orchestrate, and scale up the executed programs on a
large number of diverse hardware without depending on the user’s expertise.

113

This chapter presents a novel Multiple-Tasks on Multiple-Devices (MTMD) mecha-
nism that allows seamless concurrent heterogeneous execution of Java programs. Such
functionality is achieved by a system that uses and extends the virtualisation layer of
TornadoVM. The key novelty is the decomposition of the input applications at task-
level granularity. To achieve this decomposition, the original TornadoVM system was
augmented with subsystems to automatically perform data dependency analysis and
generate a set of blocks of bytecodes for enabling concurrent execution on heteroge-
neous devices. Each available device is assigned a Java-thread that runs an instance of
the interpreter executing the generated bytecodes (discussed in Section 2.3.1).

Since concurrency does not implicitly guarantees high-performance without the
efficient allocation of tasks to devices, a Machine Learning (ML) based scheduling
approach was employed. The aim of this model is to allow the dynamic selection of the
most suitable device for each task. To achieve that, program features are extracted from
the compiler graph and passed onto a pre-trained multiple classifier system that selects
the target device among CPUs, integrated GPUs, and discrete GPUs. The combination
of parallel bytecode execution, concurrent deployment of execution contexts at task-
level granularity, and intelligent mapping of tasks onto the available devices results in
the seamless and concurrent execution.

Briefly, this chapter makes the following contributions:

• A novel mechanism for enabling Multiple-Tasks on Multiple-Devices (MTMD)
execution for Java programs by utilising the available OpenCL-compatible devices
existing on the host system.

• A static code feature extractor from the Graal compiler IR for training a Machine
Learning model for devices of specific compute capabilities.

• A multiple-classifier system capable of allocating tasks onto a suitable device
selected among the available CPUs, integrated GPUs, and discrete GPUs.

• A detailed evaluation of the proposed approach across twelve applications. Evalu-
ation of the concurrent execution showcased up to 83% performance improvement
against the highest-performing single device, and up to 91% of the performance of
the theoretical best allocation and concurrent execution of tasks to heterogeneous
devices.

The rest of this chapter is organised as follows: Section 6.1 describes the motivation
and provides the required background information, Section 6.2 outlines the architecture

114

of the MTMD mechanism with its key components, Section 6.3 describes the ML
architecture as well as the scheduling policies for the task-device selection. Finally,
Section 6.4 presents the experimental setup and performance evaluation of the MTMD.

6.1 Motivation: Beyond Single Device Performance

6.1.1 An OpenCL Review on Multiple Devices

As discussed in Section 2.1.2.1, OpenCL [SGS10] is one of the first standards for
heterogeneous programming. It offers a uniform Application Programming Interface
(API) and a device platform abstraction that allows all different types of devices to be
programmed in the same portable way. By using OpenCL, developers can enable their
programs to exploit hardware accelerators through task and instruction-level parallelism.

Throughout the years, the OpenCL standard has been extended to optimise resource
utilisation of modern heterogeneous hardware. One aspect of the OpenCL extensions
is the introduction of different execution modes for single and multiple device con-
figurations. Figure 6.1 exemplifies the three currently supported execution modes of
OpenCL: a) in-order single-device execution, b) out-of-order singe-device execution,
and c) in-order multiple-devices execution.

When utilising in-order single-device execution [MO16, MO14], as shown in Fig-
ure 6.1(a), developers can offload parts of their programs for acceleration on a single
OpenCL-compatible device. Also, in this mode, data copying between the host and
the device never overlaps with the kernel execution on the device. This results in a
strictly sequential in-order execution mode in which the device can remain idle between
the intervals of data copying and execution. To mitigate the introduction of idle cy-
cles, OpenCL introduced the out-of-order execution mode (Figure 6.1(b)) in which
developers can overlap data copying and kernel execution. Although a single device
is still utilised in this mode, the idle cycles are reduced by simultaneously copying
data between the host and device while executing code on the accelerator. Finally,
the last execution mode of OpenCL regards the multi-devices execution, as shown in
Figure 6.1(c). In this mode, developers can build multiple contexts (one per device) and
utilise more than one accelerator from within their programs. However, this mode relies
on the user to define the execution queues, as well as to encode every aspect.

To address the limitations and the idle cycles introduced by the multi-devices in-
order execution mode of OpenCL, several frameworks have been proposed to facilitate

115

Kernel
Execution

Kernel
Execution

Ti
m

e

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host (CPU)

G
PU

Devices

In-order

G
PU

(a) In-order execution.

Kernel
Execution

Kernel
Execution

Ti
m

e

Out-of-order execution

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host

G
PU

Devices

Kernel
Execution

Kernel
Execution

G
PU

G
PU

G
PU

Copy-out
data

(CPU)

(b) Out-of-order execution.

Ti
m

e

Kernel
Execution

Kernel
Execution

Copy-in
data

Copy-out
data

Copy-in
data

Copy-out
data

Host (CPU) (Multiple-OpenCL Devices) Devices
In-order execution

G
PU

C
PU

C
PU

IG
PU

IG
PU

G
PU

(c) Multi-devices execution.

Active Host

Idle Host

Idle Device

Copy-in

 Execution

Copy-out

Idle device

Active device
Active device

Figure 6.1: Overview of OpenCL execution modes (Out-of-order on Single Device vs
In-order on Multiple Devices).

programming on multiple devices. For instance, VirtCL [YWTC15], SnuCL [KSL+12],
PySchedCL [GSK+20], FluidiCL [PG14], MultiCL [APBcF16], EngineCL [NBB19]
and SOCL [HBD+13] focus on single or multi-task level scheduling for standalone or
partitioned OpenCL applications. A common denominator of all these frameworks is
that they solely emphasise on non-managed applications, thereby leaving the area of
managed languages unexplored. Exploiting multi-device concurrency and scalability
via managed programming languages poses significant challenges due to the need for
multi-level compilation. Therefore, several research directions are available due to the
dynamic nature of managed languages and heterogeneous platforms.

6.1.2 The TornadoVM Perspective

As presented in Section 2.3.1 TornadoVM allows developers to compose groups of multi-
ple tasks (called TaskSchedules) that can execute on a hardware accelerator. However,
these TaskSchedules can only target a single device without allowing different tasks
within a task-schedule to be executed concurrently on various accelerators.

To understand the performance implications of these limitation, a blur filter ap-
plication was implemented and evaluated, while using the TornadoVM framework.
Listing 6.1 outlines the application that consists of three compute kernels, each oper-
ating independently on an RGB pixel of the input image. This listing showcases three
different tasks that operate on different instances of the same method, but on different
data. Each of the tasks invokes an instance of the compute method with a read-only
instance of the image object. Moreover, each of these tasks calculates the results of the
altered pixels and stores them into a separate primitive array. Therefore, this workload
provides an interesting case of multiple methods operating on different data that can

116

execute in parallel.
The experimental setup (described in detail in Section 6.4) to evaluate the blur

filter application is a commodity laptop. This machine is equipped with three OpenCL-
compatible devices: 1) a multi-core CPU (Intel Core i7-9750H), 2) an integrated GPU
(Intel UHD Graphics 630), and 3) a discrete GPU (NVIDIA GeForce GTX 1650). The
underlying idea of using a personal computer is to highlight that Java developers and
applications can benefit if they could use heterogeneous concurrency from this type of
setups.

Since in its current state TornadoVM can only schedule all tasks to execute on
a single device, an optimisation opportunity is missed since the available device are
under-utilised due to the lack of support for concurrent execution. Figure 6.2 depicts the
evaluation results from running the blur filter with two data sizes (1K and 4K images)
across the three different devices: 1) running all tasks on the CPU, 2) running all tasks
on the integrated GPU, and 3) running all tasks on the discrete GPU.

As shown in Figure 6.2, running all tasks on the discrete GPU yields the best
performance for the blur filter application by up to 3.15x compared to a serial Java
implementation. However, since the tasks are executed in-order, both the integrated
GPU and the CPU remain idle without exploiting the potential performance through
multi-device execution. To enable concurrent execution by allowing tasks within a
TaskSchedule to execute on different devices simultaneously, a novel Multiple-Task

Multiple-Device (MTMD) execution mode has been introduced in TornadoVM.

6.2 Multiple-Tasks on Multiple-Devices

Several key components have been modified or introduced to enable the Multiple Tasks

Multiple Devices (MTMD) execution mode in TornadoVM. Figure 6.3 outlines both the
original TornadoVM software stack (at the top), as well as the required modifications for

Listing 6.1: Example of the TornadoVM Task-based Parallel API with multiple Tasks.
1 TaskSchedule filter = new TaskSchedule("blur")
2 .task("red", BlurFilter::compute , redFilter , image)
3 .task("green", BlurFilter::compute , greenFilter , image)
4 .task("blue", BlurFilter::compute , blueFilter , image)
5 .streamOut(redFilter , greenFilter , blueFilter)
6 .execute()

117

1k Image 4k Image

1

3
Sp

ee
du

ps
 a

ga
in

st
 Ja

va
Intel i7-9750H IntelHD Nvidia GTX 1650

Figure 6.2: Attainable performance speedups against sequential Java for a CPU, an
integrated GPU and a discrete GPU.

enabling MTMD execution (bottom). As shown in Figure 6.3(a), TornadoVM utilises
its own API (described in Section 2.3.1) to create TaskSchedules which are then
parsed to create dataflow graphs that contain the various input tasks. These graphs are
then analysed and optimised during runtime, and, in turn, several TornadoVM-specific
bytecodes are generated (presented in Table 2.2 of Section 2.3.1). In the original
TornadoVM, all bytecodes that correspond to all tasks of a particular TaskSchedule
are enqueued into a single context buffer and are consequently dispatched for execution
by a single instance of the execution engine. Therefore, all bytecodes, and consequently,
all tasks of a TaskSchedule can only run on a single device at a time.

As shown in Figure 6.3(b), to enable concurrent execution in TornadoVM, several
components have been modified (light blue) or introduced (dark blue):

1. The Task Dataflow Analyser and Graph Optimiser components are respon-
sible for analysing the dependencies between tasks and optimising the graph,
before scheduling them onto the devices. Both have been modified to enable
concurrent execution by detecting tasks that do not share dependencies among
them.

2. The Context Allocator component that creates groups of dependent tasks has
been introduced. This module ensures that are scheduled together.

3. The Context Scheduler component that schedules dependent task groups onto
devices has also been introduced. The prior implementation only "locked" a
single device, thus all tasks were scheduled there.

118

Merged
Tasks in 1
Bytecode

Graph

API Hardware

CPU

Runtime

Task
Dataflow
Analyzer

Graph
Optimizer

TornadoVM
Bytecode
Generator 1

Single-Context
Bytecode

Execution
Engine

Instance

iGPU

GPU1 GPU2

Exclusive
Execution

TaskSchedule
Parser &

Graph Builder

Single-Context
Dispatcher

Single
Thread

(a) The original TornadoVM software stack.

1
2

3
N

Thread Pool

Execution
Engine

Instance

Graph

API Runtime

TaskSchedule
Parser &

Graph Builder

Task
Dataflow
Analyzer

Graph
Optimizer

Multi-Context
Bytecode
Generator

Context
Allocator

Multi-Context
Dispatcher

1

...

Multi-Context
Groups of
Bytecodes

2

3

N

Context
Scheduler

Hardware

CPU iGPU

GPU1 GPU2

Inclusive
Execution

Groups of Bytecodes/Task

(b) The concurrent MTMD TornadoVM software stack.

Figure 6.3: High-level overview of the components added and modified to the original
TornadoVM to enable the concurrent MTMD execution.

4. The Multi-Context Bytecode Generator, which is an extension of the Tor-
nadoVM bytecode generator, is responsible for generating bytecodes for multiple
target devices concurrently instead of a single one.

5. The Multi-Context Dispatcher has been introduced to assign bytecodes, that
belong to a task group, to a particular execution engine instance. The execution
instances are implemented as a Java-thread-pool of execution engines that run the
TornadoVM interpreter; with each one being responsible for executing a single
context on a single device.

6.2.1 Task Dataflow Analyser

As shown in the example of Listing 6.1, a TaskSchedule in TornadoVM can be
composed of multiple tasks that may have data dependencies between them, i.e., the
output of one task can be the input to another. Since developers can compose arbitrary
TaskSchedules, the presence or the absence of dependencies between tasks is not
guaranteed. To enable concurrent execution of arbitrary tasks on different devices, the
modification of the Task Dataflow analyser and the Graph optimiser to extract inter-task
dependencies was necessary.

While analysing the tasks of a given TaskSchedule, TornadoVM generates Java
bytecodes for each task which are then transformed into a compiler graph based on the

119

Intermediate Representation (IR) [DWS+13] of the TornadoVM compiler. The dataflow
analysis phase has been implemented as a compiler phase in the JIT Compiler. This
phase detects the input and output arguments of the original TornadoVM tasks (Java
methods). After the dependencies are identified, the task dependency graph is traversed
to create a map of their accessibility within the different tasks of a TaskSchedule. Then,
each input/output argument of each task is marked as READ, WRITE or READ_WRITE and
stored as task meta-data information. This process is completed when the last task of
the input TaskSchedule has been analysed and evaluated correctly.

At the end of the dataflow analysis phase, the captured meta-data is used to create
a Direct Acyclic Graph (DAG) of the intra-TaskSchedule dependencies. This infor-
mation is stored at runtime to be later accessible for scheduling dependent tasks on the
same device to avoid costly data copying of temporary variables between devices. In
contrast, independent tasks are grouped and scheduled independently for concurrent
execution across numerous hardware accelerators.

To avoid tasks that are sharing only read-only objects to be grouped, the Graph
optimiser phase was extended with an additional optimisation phase. The proposed
optimisation tackles READ-only dependencies between tasks by duplicating the READ-
only parameters between them. However, this process also duplicates the variables
that lie in the Java-heap on the host side, and increasing the memory footprint of the
complete application. In this way, tasks become independent and can be executed
concurrently.

6.2.2 Context Allocator and Scheduler

Based on the task meta-data derived from the dataflow analysis and optimisation phases,
tasks can be grouped or remain independent. Each group consisting of one or more
tasks will be then be assigned to a device for execution via a device context. The
context defines an independent computational entity (a single task or a multiple tasks)
that can target a single device. As soon as contexts are defined, they also lock the
allocated devices.

At this point, the scheduling of tasks on devices happens statically without consid-
ering specific task characteristics, such as memory accesses, parallel dimensions, and
single or double-precision operations. Tasks are assigned onto the available devices in
a First Come First Served order, and they are parsed in the order they are attached on
the TaskSchedule. Also, devices are ordered based on their characteristics and computa-
tional capabilities. Section 6.3.4 discusses in-depth how this scheduling approach was

120

Listing 6.2: Example of TaskSchedule with multiple independent tasks.
1 TaskSchedule graph = new TaskSchedule("workload")
2 .task("t0",DFT::dft, inReal ,inImag ,outReal ,outImag)
3 .task("t1",Blackscholes::bs,input ,callPrice ,putPrice)
4 .task("t2",MM::mm, matrixA , matrixB , matrixC , mmSize)
5 .streamOut(outReal ,outImag ,callPrice ,putPrice ,matrixC)
6 .execute();

augmented by introducing predictive modelling based on features captured from any
given method.

6.2.3 Multi-Context Bytecode Generator

The previous steps reduced the computational granularity of a TaskSchedule to multi-
ple contexts consisting of single or multiple inter-dependent tasks. At this point of the
execution, TornadoVM creates internal TornadoVM-specific bytecodes [FPZ+19] that
orchestrate the execution, the synchronisation, and the data exchanges between the host
and devices. The purpose of this additional virtualisation layer is to abstract away from
the developers all the mechanics and details of hardware acceleration and kernel of-
floading to any device. In the original TornadoVM, since tasks within a TaskSchedule
can only be executed on a single device, the bytecode generator creates single context
bytecodes which are destined to be executed in-order on a particular device.

To enable concurrent execution onto the available devices, the existing virtualisation
layer was extended to embed device selection control at the task-level (rather than in
the original TaskSchedule-level).

Listing 6.2 showcases three applications grouped as independent tasks in the same
TaskSchedule. These tasks are DFT, BlackScholes and Matrix Multiplication (MM).
Initially, the dependency analysis marked them as independent and during context
allocation with First-Come First-Served (FCFS) scheduling, all tasks were assigned to
the available devices.

Since tasks are independent, the introduced multi-context bytecode generator creates
three independent sets of bytecodes. Listings 6.3, 6.4, and 6.5 correspond to the
generated multi-context bytecodes for tasks t0, t1, and t2, respectively.

The bytecodes of each context are assigned to a separate device (if three are present)
awaiting interpretation and execution by TornadoVM.

121

Listing 6.3: TornadoVM bytecodes for task: t0 (DFT).
1 BEGIN <0> //New context [device 0]
2 COPY_IN <0, bi1, in> //Copies <in>
3 COPY_IN <0, bi2, in> //Copies <in>
4 COPY_IN <0, bi3, in> //Copies <in>
5 COPY_IN <0, bi4, in> //Copies <in>
6 LAUNCH <0, bi5, @dft , in, temp >
7 COPY_OUT_BLOCK <0, bi6,out> //C-out
8 COPY_OUT_BLOCK <0, bi7,out> //C-out
9 END <0> //Ends context

Listing 6.4: TornadoVM bytecodes for task: t1 (BlackScholes).
1 BEGIN <1> //New context[device 1]
2 COPY_IN <1, bi1, in> //Copies <in>
3 ALLOC <1, bi2, out> //Allocates <out>
4 ALLOC <1, bi3, out> //Allocates <out>
5 LAUNCH <1, bi4, @bs, temp , out>
6 COPY_OUT_BLOCK <1, bi5,out> //C-out
7 COPY_OUT_BLOCK <1, bi6,out> //C-out
8 END <1> //Ends context

Listing 6.5: TornadoVM bytecodes for task: t2 (Matrix Multiplication).
1 BEGIN <2>//New context [device 2]
2 COPY_IN <2, bi1, in> //Copies <in>
3 COPY_IN <2, bi2, in> //Copies <in>
4 COPY_IN <2, bi3, in> //Copies <in>
5 LAUNCH <2, bi4, @mm, in, temp >
6 COPY_OUT_BLOCK <2, bi5,out> //C-out
7 END <2> //Ends context

6.2.4 Thread Pool of Execution Engines

To execute the multi-context bytecodes in parallel, a scalable thread-pool of execution
engines was implemented. Each of the execution engines is responsible for interpreting
the bytecodes corresponding to a context assigned to a specific device, as shown in
Figure 6.3(b). These bytecodes can correspond up to several tasks with or without
dependencies among them.

Each of the execution engines deploys an isolated instance of the interpreter per
device that executes the multi-context bytecodes assigned to it. Following the original
TornadoVM execution flow, tasks can be dynamically compiled to OpenCL, and the

122

execution engines can access binaries from a global code cache. The interpreter can be
JIT compiled by the underlying JVM (e.g., Oracle HotSpot) to improve performance.
The exact architecture has been previously explained in Section 2.2.2. Note that the
TornadoVM bytecodes only orchestrate the execution between the accelerators and
the host machine and do not perform the actual computation [FPZ+19]. The latter is
achieved by executing the generated OpenCL code via the device driver.

Another benefit of reducing the granularity of the execution from a TaskSchedule,
to smaller groups of tasks composing a context, is the ability to increase the resiliency of
the execution by enabling fault tolerance, which in turn reduces the cost of re-execution.

6.2.5 Discussion

The components described in the previous subsections, have been added or augmented
to enable concurrent execution of fine-grained tasks on multiple accelerators. The
performance benefits of enabling concurrent execution across devices within the same
computing system were assessed. To do so, the results obtained through the blur filter
application of Listing 6.1 were revised. In the revised experiments, the concurrent
execution of the original independent tasks is now enabled, while using the default
scheduling policy. Figure 6.4 adds three additional data points to Figure 6.2 which
correspond to three additional execution scenarios:

(a) In-order-execution of all tasks on the CPU, integrated GPU (IGPU), and discrete
GPU (grey bar).

(b) Concurrent-execution of all tasks across all devices (first running on the CPU,
second on the IGPU, and third on the discrete GPU - orange bar).

(c) Concurrent-execution of all tasks across two devices (first two on the discrete
GPU, and third on the IGPU - red bar).

As shown in Figure 6.4, the additional execution scenarios can influence dramati-
cally the performance, which can be up to 2× higher compared to running the whole
TaskSchedule on the same device. However, the problem of statically deciding which
policy to employ, for scheduling fine-grained tasks across the available accelerators,
is particularly challenging due to the diverse characteristics and performance of each
task. To enable efficient scheduling that considers device availability, the potential
performance benefits of concurrent execution, and code characteristics, an ML-based

123

1K Image 4K Image
1

2

3

4

5

Sp
ee

du
ps

 a
ga

in
st

 Ja
va

Intel i7-9750H
IntelHD

Nvidia GTX1650
In-order(CPU+IGPU+GPU)

Concurrent(CPU+IGPU+GPU)
Concurrent(IGPU+GPU)

Figure 6.4: Concurrency limits: Achieved speedups against sequential Java for a CPU,
an integrated GPU, Discrete GPU, in-order on multiple devices, concurrent into three

devices and concurrent into two devices.

scheduling technique was introduced. The following section presents the design, mod-
elling and implementation of a custom ML architecture that fulfills the requirements of
the system.

6.3 Prediction-based Scheduling for MTMD

Section 6.2 outlined the minimum required runtime support for a heterogeneous man-
aged runtime to efficiently handle the orchestration of dispatching multiple tasks on
multiple devices concurrently. However, to fully utilise a system with these capabilities,
being able to perform an efficient task/device allocation is required. To that end, a
Machine Learning (ML) model, trained to perform the task of device-task allocation,
governs the underlying scheduling policy.

A decisive factor for finding a suitable scheduling strategy is to detect the best
computing device for a given task in terms of attainable performance. This work
focuses on commodity personal computers due to the broad set of heterogeneous
hardware available. However, it can be extended to other computing systems equipped
with a larger number of hardware devices. The experimental platform contains a CPU,
an Integrated GPU, and a Discrete GPU. To train the ML model, a set of features
describing the application is extracted from the compiler IR (Graal IR [DWS+13])
before generating the OpenCL kernel for a given task. The specifics of the Graal IR
were presented in Section 2.2.3.1.

124

Consequently, the next step is to use a system to determine the optimal mapping.
Based on the insights presented in prior-work [GWO13, WGO15] tackling the same
problem from a pure OpenCL perspective, a solution of this mapping can be a Multiple-
Classifier-System (MCS). Each component of this system is a tree-based two-class
Binary classifier, trained to compute the probability that a specific task will exhibit
speed-up when executed on one device over another. The final decision is made through
the conjunction of the output probabilities of the learners mentioned above. The
following subsections describe in detail the components of the proposed ML-based
scheduling policy to enable efficient execution of the MTMD model.

6.3.1 Feature Extraction

Extracting meaningful characteristics from an input application is the decisive factor for
effectively predicting which task will perform better across different devices. Prior work,
discussed in detail in Section 3.4.2, proposed several methodologies for extracting code
features directly from OpenCL kernels. Such approaches are not completely aligned
with this work due to the two-stage compilation process that TornadoVM employs
(from Java to OpenCL C, and from OpenCL C to binary code). In contrast, as the given
experimental platform performs device-specific optimisations during code generation,
in this work, it is important to be able to obtain meaningful insight from the application
level instead of the generated code. Other approaches rely on extracting features from
unmanaged languages, while in this context, applications are written in Java. Also, the
given applications do not follow traditional parallel programming patterns. Hence, this
work relies on a feature extraction process from the compiler IR graph of the initial
Java method during JIT compilation. Following this approach, sufficient information is
captured for corelating the behaviour of the auto-generated OpenCL executable and the
input program written in Java.

When a task is assigned to a TaskSchedule, the graph builder constructs the
corresponding bytecodes to an IR graph. Then, the TornadoVM JIT compiler starts
optimising the graph from a high-level to a low-level. A decision was made to make
decision from an IR representation closer to the original bytecodes of the program, thus
features are extracted at the end of the sketch-tier compilation. This is achieved by
adding a Feature extraction phase to obtain the number and type of operations
(e.g., loop bounds for calculating the parallel dimensions) based on individual nodes. In
practice, this sketch-tier phase also used to populate meta-information obtained directly
from an early unoptimised compiler graph for a given method. Therefore, the design

125

Table 6.1: List of raw features captured from early stage of the compilation from the IR
graph.

Type Feature

Memory

Global Memory Reads (G/R)
Global Memory Writes (G/W)
Constant Memory Reads (L/R)
Constant Memory Writes (L/W)

Local Memory Reads (L/R)
Local Memory Writes (L/W)
Private Memory Reads (L/R)
Private Memory Writes (L/W)

Loops Parallel Loops
Total Loops

Control Flow Branches
Switch Cases

Float Comparison
Integer Comparison

If Statements
Local/Global Barriers

Operations

Boolean Operations
Cast Operations

Integer & Float Operations
Vector Operations

Optimisations Vector Types
Pragmas

choice of obtaining features at this point (before code generation) adds modularity to
the original system since it can cater other backends or pure x86 execution through Java.
Note, this approach developed on top of the version presented in Chapter 5, thus nodes
regarding memory accesses are captured effectively.

In the Graal IR graph, several nodes contribute to the structure of the same operation.
Hence, during the traversal of the graph, different node patterns capture different
operations. For instance, StoreIndexedNodes are associated with storing into arrays.
However, to make a distinction between stores to global or to the local memory one
needs to identify the origin node of the AddressNode. Table 6.1 outlines the complete
selection of operations captured by traversing the compiler graph. These features are
later combined with runtime information regarding the input/output data sizes, number
of threads (i.e., work-items) to be deployed, and inter-task dependencies.

For example, Listing 6.6 shows the generated JSON file containing all the static

126

1 "nBody": {
2 "DEVICE_ID": "0:2",
3 "DEVICE": "GeForce GTX 1650",
4 "Global Memory Loads": "15",
5 "Global Memory Stores": "6",
6 "Constant Memory Loads": "0",
7 "Constant Memory Stores": "0",
8 "Local Memory Loads": "0",
9 "Local Memory Stores": "0",

10 "Private Memory Loads": "20",
11 "Private Memory Stores": "20",
12 "Total Loops": "2",
13 "Parallel Loops": "1",
14 "If Statements": "2",
15 "Integer Comparison": "2",
16 "Float Comparison": "0",
17 "Switch Statements": "0",
18 "Switch Cases": "0",
19 "Vector Operations": "0",
20 "Integer & Float Operations": "57",
21 "Boolean Operations": "9",
22 "Cast Operations": "2",
23 "Float Math Functions": "1",
24 "Integer Math Functions": "0"
25 }

Listing 6.6: Example of static feature extractor output in JSON format for the N-Body
simulation method.

features that have been extracted from a method that computes the N-Body simulation.
This JSON file will be the input for the model during the inference process along with
the runtime information. If a TaskSchedule consists of multiple tasks, all tasks are
composed into a single JSON file.

6.3.2 Feature Selection & Engineering

Figure 6.5 displays a heat map of the features that were initially extracted from the
compiler graph and the runtime. The heat map provides a visual representation of
the correlation between the various features. The initial extraction led to 26 distinct
features which have been pre-processed and combined to construct new features. These
combined features have greater predictive ability compared to the initial ones. During
this process, the feature set is further expanded to also include interaction features,

127

Th
re

ad
s

G
lo

ba
l M

em
or

y
Lo

ad
s

G
lo

ba
l M

em
or

y
S

to
re

s

Lo
ca

l M
em

or
y

Lo
ad

s

Lo
ca

l M
em

or
y

S
to

re
s

P
riv

at
e

M
em

or
y

Lo
ad

s

P
riv

at
e

M
em

or
y

S
to

re
s

To
ta

l L
oo

ps

P
ar

al
le

l L
oo

ps

If
S

ta
te

m
en

ts

S
w

itc
h

S
ta

te
m

en
ts

S
w

itc
h

C
as

es

C
as

t O
pe

ra
tio

ns

V
ec

to
r O

pe
ra

tio
ns

To
ta

l I
nt

eg
er

 O
pe

ra
tio

ns

To
ta

l F
lo

at
 O

pe
ra

tio
ns

S
in

gl
e

P
re

ci
si

on
 F

lo
at

 O
pe

ra
tio

ns

D
ou

bl
e

P
re

ci
si

on
 F

lo
at

 O
pe

ra
tio

ns

Fl
oa

t M
at

h
Fu

nc
tio

ns

In
te

ge
r M

at
h

Fu
nc

tio
ns

In
te

ge
r C

om
pa

ris
on

Fl
oa

t C
om

pa
ris

on

Threads

Global Memory Loads

Global Memory Stores

Local Memory Loads

Local Memory Stores

Private Memory Loads

Private Memory Stores

Total Loops

Parallel Loops

If Statements

Switch Statements

Switch Cases

Cast Operations

Vector Operations

Total Integer Operations

Total Float Operations

Single Precision Float Operations

Double Precision Float Operations

Float Math Functions

Integer Math Functions

Integer Comparison

Float Comparison
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.5: A heat map of all the feature variables along with their relation to the target
variable (i.e, device speedup). The scale highlights with light color the highly

correlated features and with dark color the least correlated features.

i.e., features that are computed as the pairwise product of the existing ones. Fur-
thermore, features that are most relevant to each other (e.g., float_math_function,
integer_math_function) are grouped together.

Upon completion of the feature engineering process, the data from features is
increased considerably. In such cases, only features that are key attributes of the model
are selected. Therefore, the learning algorithm (discussed in Section 6.3.4) focuses only
on the most important variables. Also, it prevents the modelling of any underlying noise
in the data which may be induced by irrelevant features.

As the underlying approach is tree-based, one of the measures to quantify the
importance of the features for the model is the Gini importance [Far10]. This approach
calculates the importance of each feature as the sum over the number of splits (across
all trees). Based on this metric, the ten features that have the greater impact on the
outcome of each classifier are depicted in the Hinton diagram [BGD94] of Figure 6.6.

128

th
re

ad
s

gl
ob

al
_m

em
or

y_
lo

ad
s

to
ta

l_
lo

op
s

to
ta

l_
in

te
ge

r_
op

er
at

io
ns

gl
ob

al
_m

em
or

y_
st

or
es

pa
ra

lle
l_

lo
op

s

ve
ct

or
_o

pe
ra

tio
ns

lo
ca

l_
m

em
or

y_
st

or
es

lo
ca

l_
m

em
or

y_
lo

ad
s

ca
st

_o
pe

ra
tio

ns

IGPU vs CPU

GPU vs CPU

GPU vs IGPU

Figure 6.6: Feature importance for classifiers: 1) IGPU vs GPU, 2) GPU vs CPU and 3)
GPU vs IGPU. Squares are representing the impact of the feature in the final decision

(larger squares have more influence).

The sizes of the squares represent the magnitude of the values, i.e., the corresponding
Gini importance of each feature.

6.3.3 Training Dataset

The dataset consists of the static code features extracted from a series of Java applica-
tions with different compute characteristics. Each of the applications was executed with
various input sizes. Also, each entry of the dataset contains the execution times, while
running through TornadoVM on the three available devices, i.e., CPU, IGPU, GPU.
Based on these timings the following speedup ratios are computed:

IGPUexecution time

CPUexecution time
(6.1)

GPUexecution time

CPUexecution time
(6.2)

GPUexecution time

IGPUexecution time
(6.3)

These equations represent the binary target variables indicating whether the specific
task has speedup on a given device. More specifically, ratios lower than 1.0 indicate
a slowdown, and so they are mapped to 0, while ratios above the same threshold
correspond to speed up and consequently are mapped to 1. Each of these binary

129

Sketch Compilation

GPU vs CPU

IGPU vs CPU

GPU vs IGPU ExtraTreesClassifier

ExtraTreesClassifier

ExtraTreesClassifier

M
L-

Ar
ch

ite
ct

ur
e

OpenCL Devices

TornadoVM
TornadoVM

Nodes
Graal IR

Profilling Execution

IR Static Features

Model Artifact

Profiling Data

Bytecodes
Java

Figure 6.7: An overview of the offline training process of Java programs supported by
TornadoVM.

variables will serve as the target for a classifier in the complete multiple-classifier
system.

Figure 6.7 showcases the offline process for collecting the data and training the
model. Regarding the selection of the input applications, a decision was made to use
kernels from the benchmark suite and examples that already exist in the TornadoVM
repository. The system relies on a feature extraction process through the IR (generated
from the original Java methods). Therefore, the model is purely trained with Java
benchmarks compatible with TornadoVM.

Using hand-tuned OpenCL programs can also be an option; however, they capture
different performance and programming patterns compared to the OpenCL automatically
generated from Java. Previously, Section 5.5.2.2 highlighted that pure OpenCL and auto-
generated through TornadoVM have a performance gap. Therefore, extending the train-
ing set with benchmark suites purely written in OpenCL, such as Rodinia [CBM+09],
OpenDwarfs [KFAB16], Spector [GAMK16b] or PolyBench [GGXS+12] will nega-
tively influence or bias the accuracy of the predictor. This negative influence will be the
result of training the model with handwritten and hand-optimised OpenCL programs,
while the system is expected to be used with auto-generated OpenCL.

The selected programs were executed with various input configurations, depending
on their computational intensity, on an Intel CPU, an Intel HD Graphics, and an Nvidia
GTX 1650. For each data point (i.e., input size, and timing counters), the existing
profiling infrastructure is used. In more detail, all profiling-events at the OpenCL side

130

and runtime dynamic information overheads present in the Java side are obtained from
the TornadoVM profiler. Overall, the ML model used more than 200 individual data
points for training. All data points contain the following entries: method name, input
size, extracted features, speedup on CPU, speedup on IGPU, and speedup on GPU.
Thus, for each input Java application, multiple entries per input size are obtained. In
this way, the model can capture applications that showcase difference performance
behaviour on different devices and for various input sizes.

6.3.4 Machine Learning Architecture

The proposed ML architecture is a multiple classifier system consisting of three clas-
sifiers, each targeting one of the available devices. The selected algorithm for these
classifiers is tree-based and, more specifically, is the Extra Trees [GEW06]. Extra Trees
is an ensemble method that uses Bootstrap Aggregating (Bagging) [OM99]. As an
ensemble method, an Extra Trees classifier combines the decisions of multiple decision
trees. This approach combined multiple learners to lead into an improved predictive
performance compared to individual learners. Each of the grown decision trees is
trained using a different subset of the training data and the available feature set; a
process called Bootstrap Aggregating. Bootstrap Aggregating is a method specifically
designed to tackle over-fitting by reducing the variance in the predictions (these aspects
of ML modelling were discussed in Section 2.4). This is particularly important in the
context of the MTMD model, where the available dataset is limited and cannot be easily
extended. Two key factors contributed to a limited-sized training set; 1) only Java-based,
compatible with TornadoVM, benchmarks used, and 2) this work focuses only on a
system consisting of three devices. Moreover, the main advantage of the Extra Trees
method is that the training can be parallelised since each decision tree can be trained
independently. Hence, their individual decisions are combined only at the end of the
execution.

Training Model: The training model uses three Extremely Randomised Trees
(ExtraTrees) classifiers. Each classifier produces a speedup probability for each task
between the following pairs: IGPU\CPU (1st classifier), GPU\CPU (2nd classifier),
and GPU\IGPU (3d classifier). Among the available tree-based algorithms, such as
Decision Trees [Qui86], Random Forest [Ho95], and Extremely Randomised Trees, the
latter was selected due to its ability to better handle over-fitting. The hyper-parameters
of the model (e.g., estimators, maximum depth) were optimised by searching over a grid
of trials and the combination that yielded the best cross validation score (10-fold) was

131

retained. Moreover, by investigating the training dataset for each classifier, it was found
that the datasets of the first and the second classifiers were highly imbalanced. In more
detail, the target classes were unequally represented and thus the models would ignore,
and in turn, underperform on the minority class. To tackle this issue, the SMOTE
algorithm [CBHK02] was used which upsamples the minority class by synthesising
new examples.

1st Classifier: The selected ExtraTrees classifier, i.e., the one that yielded the best
cross-validation score, fits 100 estimators with maximum depth set to 50. The first
level of prediction considers only the IGPU and the CPU and attempts to determine
the most suitable device between them for a given task. The output of the model is
the probability at which the given task will have speedup when executed on the IGPU
instead of the CPU. By selecting an appropriate threshold, the probabilistic output can
then be interpreted as class labels, i.e., IGPU or CPU.

For this selection, the Receiver Operating Curve (ROC) [Bra97] and the Precision-
Recall Curve [BEP13] were plotted for various thresholds to understand the trade-off
in performance. Given the imbalanced nature of the collected dataset, the F1-score
was optimised, i.e., the harmonic mean of precision and recall, instead of accuracy,
since the former serves as a better measure for the incorrectly classified cases. For the
first classifier, the optimal threshold was determined to be around 0.2 resulting in 0.95
F1-score on the held-out dataset.

2nd Classifier: For the second classifier, the optimal performance was achieved
by fitting 500 estimators with maximum depth set to 10. In a similar way, the second
classifier is trained to distinguish between tasks based on their relative performance
on either the discrete GPU or the CPU. Again, the probabilistic output is turned into a
class label, i.e., GPU or CPU. The optimal threshold is determined to be 0.6 with a 0.96
F1-score on the held-out dataset.

3rd Classifier: Lastly, the third ExtraTrees classifier fits 50 estimators while the
maximum depth is set to 50. The third classifier aims to select between IGPU and
GPU. Following the same process as previously, the best threshold is defined around
0.6 resulting to 0.91 F1-score on the held-out dataset.

6.3.5 On-line Scheduling Process

Figure 6.8 outlines the on-line scheduling process. This process performs the inference
by using the pre-trained model. During run-time, the pre-trained ML model is invoked
along with a JSON file that contains the features of a task eligible to run on the system.

132

Sketch Compilation

P(IGPUvsCPU)

OpenCL Devices

TornadoVM TornadoVM
Nodes

Graal IR

Execution

IR Static Features

Model Artifact

Bytecodes
Java

Sc
he

du
le

r

P(GPUvsCPU)

P(GPUvsIGPU)

Figure 6.8: Online scheduling based on task-features, available devices and trained
model.

Table 6.2: Truth table to perform the final device selection and scheduling.

Classifier Target
DeviceIGPU vs CPU GPU vs CPU GPU vs IGPU

0 0 0/1 CPU
1 0 0/1 IGPU
0 1 0/1 GPU
1 1 0 IGPU
1 1 1 GPU

These features consist of inputs to the multiple-classifier-system which outputs the three
probabilities. By setting the thresholds discussed in Section 6.4.3, the probabilities are
converted into class labels, i.e., 0 for slowdown and 1 for speedup. The final decision is
taken by using the truth table presented in Table 6.2. More specifically, the following
scenarios are considered for each task:

1. Schedule on CPU: If a task is predicted to have a slowdown on both IGPU and
GPU, then regardless of the verdict of the third classifier, it will be scheduled on
the CPU.

2. Schedule on IGPU: If a task is predicted to have speedup on the IGPU but
slowdown on the GPU, then, regardless of the verdict of the third classifier, it will
be scheduled on the IGPU.

3. Schedule on GPU: If a task is predicted to have a slowdown on the IGPU but
speedup on the GPU then, regardless of the verdict of the third classifier, it will
be scheduled on the GPU.

133

4. Schedule on GPU or IGPU: If a task is predicted to have speedup on both the
IGPU and the GPU then the decision is being made based on the output of the
third classifier. If it is predicted that the task will gain speedup when executed
on the GPU versus on the IGPU, then the GPU is selected and vice versa if it is
predicted to exhibit slowdown.

6.4 Evaluation

This section presents the experimental evaluation of the proposed MTMD mechanism.
Firstly, the experimental setup and methodology are described, as well as the applica-
tions used to assess the attainable performance. Finally, this section concludes with
a presentation and a discussion of the results of the concurrent device execution and
scheduling.

6.4.1 Experimental Setup and Methodology

To assess the performance, a modern commodity computing system was used as an
experimental setup. This system was equipped with an Intel CPU, an Intel integrated
GPU and a discrete Nvidia GPU. Also, this configuration corresponds to a commodity
machine with a high compute capacity, which can be seamlessly utilised by a Java
application via the MTMD execution mode. Table 6.3 outlines the hardware and
software characteristics of the experimental setup.

Regarding the experimental methodology, this work follows the widely adopted
Java evaluation process outlined by Georges et al. [GBE07]. Initially, a warm-up phase
takes place for every application to stabilise the performance of the JVM. The warm-up
phase ensures that the Java code of each application is JIT-compiled, and in this case,
100 iterations was enough to achieve this. Once the warm-up phase is complete, each
application runs 10 consequent times and then it reports the mean of the obtained total
execution times. These timings also include the time spent for the model inference.
Warm-up in this context implies that the metacircular TornadoVM itself is also JIT
compiled.

6.4.1.1 Applications and Input sizes

The evaluation of the proposed MTMD mechanism uses twelve applications that can be
classified as compute-intensive, memory-intensive, and control-flow intensive. The goal

134

Table 6.3: Experimental Setup.

Hardware

Processor Intel Core i7-9750H CPU @ 2.60GHz
Cores 6 (12 HyperThreads)
RAM 32GB
Integrated-GPU Intel UHD Graphics 630
Discrete GPU NVIDIA GeForce GTX 1650 (Turing)

4GB GDDR5, 896 CUDA Cores

Software

Operating System Ubuntu 20.04 (Kernel 5.4.0-52-generic)
OpenCL (CPU) 2.1 Device Version
OpenCL (IGPU) 2.1 Device Version
OpenCL (GPU) 1.2 Device Version
CUDA Driver 450.80.02
TornadoVM v0.7
JVM OpenJDK 1.8.0_262 with JVMCI
Java Heap -Xmx22G -Xms22G

of this selection of applications has been to assess MTMD by running all the applications
concurrently. However, the inability of TornadoVM to support data transfers, from the
host to the various devices, of sizes over 1 GB, led this work to split the total workload
of twelve applications into three groups (Groups 1 to 3), as shown in Table 6.4. Each
group has a randomly assigned number of applications that can be concurrently executed
for different input data sizes (small, medium and large). Table 6.5 presents the input
data sizes for each application.

135

Ta
bl

e
6.

4:
T

he
in

pu
ta

pp
lic

at
io

ns
w

ri
tte

n
in

Ja
va

w
ith

th
e

To
rn

ad
oV

M
A

PI
an

d
di

vi
de

d
in

to
th

re
e

di
st

in
ct

gr
ou

ps
fo

rt
he

ev
al

ua
tio

n.

G
ro

up
A

pp
lic

at
io

n
D

es
cr

ip
tio

n
D

FT
[G

L
D
+

08
]

H
ie

ra
rc

hi
ca

lm
ix

ed
ra

di
x

FF
T

al
go

ri
th

m
s

fo
rb

ot
h

po
w

er
-o

f-
tw

o
an

d
no

n-
po

w
er

-o
f-

tw
o

si
ze

s.
1

B
la

ck
-S

ch
ol

es
[G

G
K

SC
13

]
O

pt
io

n
pr

ic
in

g
us

in
g

th
e

B
la

ck
-S

ch
ol

es
m

er
to

n
pr

oc
es

s.
M

at
ri

x
M

ul
tip

lic
at

io
n

[V
D

08
]

M
at

ri
x

m
ul

tip
lic

at
io

n
on

sq
ua

re
m

at
ri

ce
s.

N
B

od
y

[P
JH

09
]

Pa
rt

ic
le

si
m

ul
at

io
ns

.
M

on
te

C
ar

lo
[R

K
16

,P
C

V
17

,P
ap

16
]

M
on

te
C

ar
lo

si
m

ul
at

io
n

fo
ro

pt
io

n
pr

ic
in

g
m

od
el

s.
2

R
en

de
rT

ra
ck

[N
B

Z
+

15
]

Pa
ra

lle
lk

er
ne

lf
or

im
ag

e
de

co
m

po
si

tio
n

th
at

co
nt

ai
ns

m
ul

tip
le

co
nt

ro
lfl

ow
op

er
at

io
ns

.
M

an
de

lb
ro

t[
H

R
15

]
It

er
at

iv
e

fu
nc

tio
n

ap
pl

ie
d

in
a

la
rg

e
se

to
fp

oi
nt

s.
H

ilb
er

tM
at

ri
x

[O
Y

IY
18

]
D

en
se

m
at

ri
x

co
m

pu
ta

tio
n

on
a

sq
ua

re
m

at
ri

x.
M

at
ri

x
Tr

an
sp

os
e

[V
D

08
]

M
at

ri
x

tr
an

sp
os

e
op

er
at

io
n

on
a

sq
ua

re
m

at
ri

x.
B

&
W

Fi
lte

r[
Io

n1
7]

A
fil

te
rt

ha
tc

on
ve

rt
s

an
R

G
B

im
ag

e
to

G
ra

ys
ca

le
.

3
C

on
vo

lu
tio

n
[A

U
vA

S+
12

]
A

tw
o

di
m

en
si

on
al

pr
oc

es
s

of
ad

di
ng

ea
ch

el
em

en
to

fa
n

im
ag

e
to

its
lo

ca
ln

ei
gh

bo
rs

.
E

ul
er

M
et

ho
d

[G
L

C
+

11
]

A
fir

st
-o

rd
er

nu
m

er
ic

al
pr

oc
ed

ur
e

fo
rs

ol
vi

ng
or

di
na

ry
di

ff
er

en
tia

le
qu

at
io

ns
(O

D
E

s)
.

Ta
bl

e
6.

5:
T

he
in

pu
td

at
a

si
ze

s
fo

re
ac

h
ap

pl
ic

at
io

n
(t

as
k)

in
th

re
e

di
ff

er
en

tr
an

ge
s:

sm
al

l,
m

ed
iu

m
,a

nd
la

rg
e.

D
FT

B
S

M
M

N
B

od
y

M
C

R
T

M
an

de
lb

ro
t

H
ilb

er
t

M
T

B
&

W
C

on
v

E
ul

er
L

ow
10

24
65

53
6

65
53

6
10

24
65

53
6

26
21

44
26

21
44

65
53

6
65

53
6

1K
im

g
16

38
4

51
2

M
ed

iu
m

16
38

4
52

42
88

26
21

44
20

48
52

42
88

10
48

57
6

10
48

57
6

26
21

44
26

21
44

2K
im

g
26

21
44

10
24

L
ar

ge
65

53
6

10
48

57
6

10
48

57
6

81
92

10
48

57
6

16
77

72
16

41
94

30
4

10
48

57
6

10
48

57
6

4K
im

g
10

48
57

6
40

96

136

6.4.1.2 Scheduling Strategies

For full coverage of the evaluation of the MTMD mechanism, six alternative scheduling
policies were employed. Namely, these scheduling policies are the following:

1. Dynamic Reconfiguration (DynRec) [FPZ+19]: This is the official scheduling
policy supported by TornadoVM which examines all the viable configurations
exhaustively. Thus, tasks must be executed serially on all devices in order to de-
termine the highest performing one. After the exhaustive execution is performed,
TornadoVM stores the device and uses it again during further invocations of the
same code. However, slight changes to the executed code or input data sizes will
trigger the exhaustive execution again.

2. First-Come-First-Served (FCFS): Tasks are scheduled to run on devices follow-
ing the order that the TornadoVM system discovers the OpenCL device drivers.
Tasks will be allocated to devices based on the order that they arrive and based on
the hierarchy that the OpenCL device drivers appeared in the system.

3. GPU-Priority (gpuprio): Tasks are scheduled to run on devices following a score
that ranks the devices based on their compute capabilities. In the current system,
the discrete GPU is the one with the highest compute capabilities.

4. CPU-Exclusion (cpuex): Tasks are scheduled to run on devices (except CPUs)
following the order that the TornadoVM system discovers the OpenCL device
drivers.

5. ML-based MTMD (mtmd-ml): Tasks are scheduled and dispatched to run on de-
vices with respect to the proposed ML-based scheduler (discussed in Section 6.3).

6. Oracle: This scheduling strategy presents the device that offers the best perfor-
mance. This strategy is obtained by the exhaustive offline exploration of the
overall optimisation space.

The Dynamic Reconfiguration policy is the only policy that requires all tasks within
a TaskSchedule to be executed on a single device due to the Single-context Dispatcher

in the original TornadoVM system (Figure 6.3(a)). On the contrary, the remaining
scheduling policies exploit the MTMD mechanism and can operate concurrently on
multiple devices. Additionally, the Dynamic Reconfiguration and the Oracle scheduling
policies are used to define the peak performance for the serial (single context) and

137

the concurrent (multi-context) executions. Both approaches introduce a significant
overhead that makes them unsuitable for real-time execution. Furthermore, the dynamic
reconfiguration and the Oracle configurations do not consider the time taken to obtain
the best configuration as it is an unrealistic cost for a real-time system. However, these
approaches establish a theoretical peak for single and multi-concurrent execution of the
workloads that are assessed in this work.

6.4.2 Performance Evaluation of MTMD

This section is seperated into two parts. Section 6.4.2.1 discusses the performance
of all scheduling policies that operate with the MTMD execution mode against the
best consecutive execution policy, which is Dynamic Reconfiguration. Section 6.4.2.2
compares the MTMD scheduling policies against Oracle, the best concurrent execution
policy.

6.4.2.1 Relative Performance versus Best Consecutive

Figure 6.9 shows the performance comparison of the fcfs, gpuprio, cpuex and mtmd-ml

policies against DynRec for different data sizes (small, medium, large). The DynRec

policy was used as a reference for the baseline performance because it results in the best
execution plan for consecutive execution. The highest performance increase for each
data size is observed for the mtmd-ml policy at 1.83x (Figure 6.9(a) - Group-3), 1.27x (
Figure 6.9(b) - Group-2), and 1.37x (Figure 6.9(c) - Group-3) for small, medium, and
large sizes, respectively.

As shown in Figure 6.9, the mtmd-ml policy exhibits the highest performance
across all data sizes and all groups of applications. The reason is that this policy
leverages the ML-trained model to capture a large space of factors that can influence
performance. In addition, there are cases where the consecutive execution on a single
device (DynRec - baseline) results in higher performance than the concurrent execution
on multiple devices with fcfs, gpuprio, or cpuex. For instance, Figure 6.9 shows that the
applications in Group-1 can run significantly faster when they are executed consecutively
on the Nvidia GPU rather than being concurrently executed across all available devices.
The reason is that each application in Group-1 (i.e., DFT, BlackScholes, and Matrix
Multiplication) is compute intensive and performs an order of magnitude faster on
the Nvidia GPU than the other devices. Thus, the fcfs, gpuprio, or cpuex concurrent
scheduling policies fail to outperform the baseline for these cases. On the contrary,

138

Group-1 Group-2 Group-30.0

0.5

1.0

1.5

2.0

2.5
Sp

ee
du

p
Ag

ai
ns

t D
yn

Re
c

1.00
1.26

1.83

0.25
0.47

0.92

0.23 0.38

0.86

0.11

1.11
0.94

mtmd-ml
fcfs

gpuprio
cpuex

(a) Small Sizes.

Group-1 Group-2 Group-30.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Ag
ai

ns
t D

yn
Re

c

1.00
1.27

0.86

0.23

0.71 0.88

0.24 0.22 0.33
0.21

1.13

0.36

mtmd-ml
fcfs

gpuprio
cpuex

(b) Medium Sizes.

Group-1 Group-2 Group-30.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Ag
ai

ns
t D

yn
Re

c

1.00 1.14
1.37

0.10

0.71 0.82

0.39
0.63

0.99

0.11

1.02
0.99

mtmd-ml
fcfs

gpuprio
cpuex

(c) Large Sizes.

Figure 6.9: Achieved speedups for each group of applications and size configurations
against the baseline Dynamic Reconfiguration (DynRec) for consecutive execution.

Each bar presents the following policies: ML-based MTMD (mtmd-ml),
First-Come-First-Served (fcfs), GPU Priority (gpuprio), and CPU Exclusion (cpuex).

mtmd-ml can achieve the baseline performance, as it accounts for the single context
scenario during the ML model training. The only case that the mtmd-ml policy performs
lower than the baseline is the medium size for Group-3 (Figure 6.9(b)). In this case, the
trained ML model mispredicts and schedules the execution of the most of the compute-
intensive task (i.e., NBody) in the small GPU (Intel UHD Graphics 630). Section 6.4.3
discusses the performance and precision analysis of the trained model in more detail.

Additionally, the remaining policies (gpuprio, fcfs and cpuex) show a diverse perfor-
mance behaviour for the three groups of applications when running on the same data
sizes. This indicates that the diversity across the applications that belong in the same
group is high, and therefore, some of them can perform better on a GPU, while others
can perform better on a CPU. For instance, Group-1 shows that the baseline outperforms
all the remaining policies (i.e., gpuprio, fcfs and cpuex). The cause of this performance
behaviour is the characteristics of the applications grouped together. These applications

139

Small Medium Large Geomean0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p
Ag

ai
ns

t O
ra

cle

1.0
0

0.9
8

0.8
2 0.9

1

0.3
7

0.3
9

0.5
8

0.3
6

0.3
3

0.2
4

0.5
6

0.3
3

0.5
1

0.4
9 0.5

9

0.3
9

mtmd-ml fcfs gpuprio cpuex

Figure 6.10: Comparison of the MTMD scheduling policies against the Oracle (peak
performance).

are all compute-intensive and achieve high speedups when they are executed on the
discrete GPU.

Group-2 exhibits higher performance than the baseline when the applications in
this group are executed exclusively on the same GPUs (cpuex - orange bars), reaching
up to 1.13x for medium size (Figure 6.9(b)). On the other hand, the performance of
the gpuprio, fcfs and cpuex policies when running Group-3 is at the same range. A
0.08x performance difference is observed between gpuprio and cpuex for small sizes
(Figure 6.9(a)), while a 0.17x difference is displayed between fcfs and gpuprio/cpuex

for large sizes (Figure 6.9(c)). However, for medium sizes, fcfs achieves the highest
performance among the MTMD policies, indicating that the GPUs are not the most
suitable devices to execute for this range.

Finally, it is shown that the MTMD concurrent execution in conjunction with the
ML-based scheduling policy (mtmd-ml) can increase the performance by up to 83%
compared to the consecutive execution (DynRec).

6.4.2.2 Relative Performance versus Best Concurrent

To assess the performance of the MTMD scheduling policies against the maximum
performance that can be achieved, the underlying experiments are augmented with an
Oracle implementation. Therefore, the mtmd-ml, fcfs, gpuprio and cpuex policies are
evaluated against the Oracle policy. Oracle represents the peak performance that can
be achieved, as it is derived from the exhaustive exploration of all possible concurrent

140

execution plans of each group of benchmarks on the available hardware devices. Note
that the diversity across the applications, along with the various data sizes, increases the
exploration space significantly, and therefore, the decision of the Oracle policy may not
be pragmatic for real applications. In fact, the execution of the applications in Group-2
for the large sizes takes 4.5 hours. Nonetheless, Oracle is the highest performing
baseline to compare the performance of the MTMD policies in terms of concurrent
execution.

The left side of Figure 6.10 presents the comparative evaluation of the MTMD
policies against Oracle for small, medium, and large data sizes, while the right side
depicts their geometric mean. As Figure 6.10 shows, mtmd-ml is the best performing
policy reaching up to 91% of the Oracle’s performance in average, followed by cpuex

(39%) and fcfs (36%). The lowest average performance is observed for the gpuprio

policy, due to the low performance of GPUs when running for small and medium data
sizes.

6.4.3 Analysis of the ML Model used MTMD Scheduling

This section presents an analysis of the performance and successful task-device allo-
cation of the trained MTMD machine learning model. In this work the metrics for
performance evaluation are the area under the ROC curve (AUC) and the F1-score. The
AUC is calculated as the integral of the ROC concerning the false positive rate over [0,
1], where a high AUC indicates the better prediction of the model.

Figure 6.11 presents the obtained AUC for the three classifiers that are employed by
the model, as introduced in Section 6.3.4. In particular, the micro-average ROC that
classifies the execution between two different types of devices is 0.94 (Figure 6.11(a)),
0.97 (Figure 6.11(b)) and 0.82 (Figure 6.11(c)) for the first, second and third classifier,
respectively. Note1, the micro-average ROC sums the true positives and false positives
over the total target classes. Based on this metric, the second classifier (GPU-CPU) has
the best performance, followed by the first (IGPU-CPU) and the third (GPU-IGPU)
classifiers. This behaviour is also verified by investigating the confusion matrices in
Tables 6.6, 6.7 and 6.8, which show that the third classifier mispredicted the IGPU over
the GPU four out of 31 times. This is the cause of the misprediction that resulted in
the low performance of Group-3 when mtmd-ml was used (Figure 6.9(b)), as the model
decided to use the Intel Integrated GPU instead of the Nvidia GPU.

1https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

141

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

IGPU vs CPU ROC

ROC of class Slowdown (area = 0.92)
ROC of class Speedup (area = 0.92)
micro-average ROC(area = 0.94)

(a) Classifier One

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

GPU vs CPU ROC

ROC of class Slowdown (area = 0.93)
ROC of class Speedup (area = 0.93)
micro-average ROC(area = 0.97)

(b) Classifier Two

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

GPU vs IGPU ROC

ROC of class Slowdown (area = 0.59)
ROC of class Speedup (area = 0.59)
micro-average ROC(area = 0.82)

(c) Classifier Three

Figure 6.11: Offline training process and Online device allocation based on pre-trained
model.

Actual Actual
IGPU (1) CPU (0)

Predicted IGPU (1) 28 1
Predicted CPU (0) 1 6

Table 6.6: Confusion Matrix for
Classifier One.

Actual Actual
GPU (1) CPU (0)

Predicted GPU (1) 31 0
Predicted CPU (0) 2 3

Table 6.7: Confusion Matrix for
Classifier Two.

Actual Actual
GPU (1) IGPU (0)

Predicted GPU (1) 27 1
Predicted IGPU (0) 4 4

Table 6.8: Confusion Matrix for Classifier Three.

However, the overall decision is not severely influenced as the outcome on which
device to execute takes into account all combinations of the classifiers. Finally, based on

142

the confusion matrices (Tables 6.6, 6.7 and 6.8), the F1-score (i.e., the harmonic mean
of precision and recall) was computed for each classifier using the following formula:

In Equation 6.4, TP corresponds to true negative, FP to false positive and FN to
false negative outcomes. Therefore, the final F1-scores are 0.95, 0.96 and 0.91 for the
first, second and third classifier, respectively.

g(x) =
T P

T P+ 1
2(FP+FN)

(6.4)

Moreover, another aspect of this approach is the inference time for the model.
Through the results obtained during evaluation, on average, the inference time is 60ms.

6.5 Summary

In this chapter, a novel runtime augmented with an ML model that enables a het-
erogeneous managed runtime to support multiple-tasks on multiple-devices (MTMD)
execution was presented. Compared to the prior work discussed in Section 3.4, this
platform differs as to this date is the only system that targets Java applications for
multiple-device heterogeneous execution. The complete mechanism uses parallel exe-
cution of bytecode interpreters to manage and execute arbitrary tasks across multiple
OpenCL-compatible devices dynamically and concurrently. Moreover, to achieve an ef-
ficient device-task allocation, a machine learning approach with a multiple-classification
architecture of Extra-Trees-Classifiers was employed. To provide the ML architecture
with meaningful information, a feature extraction phase was designed in a way to
capture them directly from the initial compiler graph.

The capabilities and adaptability of the MTMD mechanism with an intelligent
scheduling process have undergone rigorous testing and evaluation. The complete
toolchain was evaluated with applications split into three separate groups. Experimental
results showcase performance improvements up 83% compared to all tasks running
on the single highest performing device, while reaching up to 91% of the oracle
performance.

The next chapter summarises the findings and contributions of this work. Also, it
presents several future research directions that can extend the current infrastructure and
developed concepts.

143

Chapter 7

Conclusions and Future Research
Directions

High demand for increased computational capabilities and power efficiency has resulted
in combining a plethora of heterogeneous hardware in modern computing systems. This
trend has been followed by the emergence of heterogeneous programming frameworks
that make diverse hardware more accessible to developers. To mitigate the steep
learning curve of transitioning to heterogeneous resources, developers can nowdays
utilise heterogeneous managed runtimes which abstract away the majority of required
hardware knowledge. In this direction, this thesis utilises TornadoVM to demonstrate
how a series of compiler and runtime optimisation can bridge the performance gap
between conventional and heterogeneous virtual machines. As presented in the previous
chapters, heterogeneous hardware can be accessible and achieve high performance
without exposing the user to architecture-specific particularities.

This closing chapter summarises the contributions of this work in Section 7.1.
Finally, Section 7.2 presents several future research directions that can capitalise on the
findings of this thesis.

7.1 Summary

The contributions of this thesis can be summarised as follows:
Chapter 2 outlined the key concepts required to comprehend the contents of this

thesis. In more detail, it presented information in the context of heterogeneous platforms,
managed runtime systems, heterogeneous managed runtimes, and machine learning
modelling. Chapter 3 presented and classified the state-of-art research work that is

144

aligned with the contributions of this thesis. Briefly, it summarised the work in three
distinctive research areas: i) the FPGA execution in managed languages, (ii) optimising
compilers for GPU code generation with memory hierarchy awareness, and (iii) multi-
task scheduling on heterogeneous hardware.

Chapter 4 presented a practical approach that augments managed languages with
seamless and efficient FPGA code execution. Moreover, it provided several specific
specialisations, and optimisation phases that are transparently added to an existing
open-source toolchain to increase the performance of unoptimised FPGA code. To
achieve this result, it studied and outlined the engineering challenges and trade-offs
when integrating the different toolchains with managed languages. The experimental
platform used was the TornadoVM framework augmented with a two-stage compilation
process and a set of FPGA-specific specialisation techniques. The proposed toolchain
and optimisations were evaluated against a set of Java benchmarks executed on an
Intel FPGA showcasing speedups up to 19.8×, 224×, and 3.82× over multi-threaded,
sequential, and GPU-accelerated Java code, respectively. Also, this work provided the
foundation that allowed the toolchain to host multiple state-of-the-art HLS compilers,
such as Vivado [Cha16] HLS from Xilinx, and therefore target cloud-native solutions,
such as the AWS (Amazon Web Services) cloud.

Chapter 5 presented an approach to efficiently exploit the memory hierarchy of GPUs
from dynamically compiled languages. This is achieved by extending the capabilities
of compiler snippets to express optimisations that improve data locality (e.g., local
memory, loop tiling) by introducing the compositional compiler intrinsics. These can be
parameterised and reused for different JIT compiler optimisations while having run-time
information for the target GPU architecture. This investigative work outlined how a
trade-off between compilation times and achieved performance can make it suitable for
JIT-compiled languages. The evaluation was held against three GPU architectures, and
the results indicate that it can achieve performance speedups of up to 1.58× and 2.5× for
reduce and matrix operations, respectively. Moreover, when compared with manually
written OpenCL code, the performance of the compiler extensions can achieve up to
97% of its performance while using the same set of optimisations. Most importantly,
the performance stated above increases at no programmability costs, since they are
transparently applied to unmodified user programs at compile-time without exposing
parallel programming low-level notions to the user. Although the proposed technique
has been researched in the context of TornadoVM, and inherently, the Graal compiler, it
can be applied to other JIT compilers that target heterogeneous architectures.

145

Chapter 6 presented how a Multiple-Tasks on Multiple-Devices (MTMD) mecha-
nism can provide seamless concurrent heterogeneous execution of Java programs. This
mechanism was built by extending the virtualisation layer of TornadoVM with several
novel components. In addition to a task dependency extraction, the novel components in-
clude a scalable and modular system that employs custom parallel bytecode interpreters
that can scale for heterogeneous device orchestration. Although the extensions provided
a system capable to deploy multiple tasks on multiple devices concurrently, performance
was not guaranteed as it relies on efficient task-to-device allocation. Therefore, to ensure
near-optimal device allocation, a custom ML-architecture of multiple classifiers was
employed. The ML-architecture relies on features directly extracted from the compiler
graph of a given input task. The capabilities of the ML-based allocation were showcased
against a suite of 12 applications split into three separate groups and scheduled with
various concurrent scheduling policies. Finally, the experimental evaluation showed
performance improvements of up to 83% compared to the best single device, while
reaching up to 91% of the oracle (i.e., the best task-to-device allocation) performance.

7.2 Future Research Directions

The work presented in this thesis can be used as a foundation to investigate several
research directions, such as the MTMD execution with multi-backend awareness for
languages running through Truffle [GSS+15, WWW+13]. A key aspect to assist further
investigation is that the main experimental platform, TornadoVM, is an open-source and
an actively maintained heterogeneous programming framework. The following points
summarise a number of research directions:

• Improved FPGA Utilisation: As highlighted in Chapter 4 for the given set of
benchmarks, up to one-third of the given FPGA area is utilised. Experimen-
tal investigation proved many directions towards mitigating this issue. Firstly,
porting to Java an explicitly FPGA-oriented benchmark suite, such as Spec-
tor [GAMK16a] will provide further insights on the possible uses. Besides,
the resulted resource utilisation can be improved by enabling FPGA-specific
OpenCL features in the compiler, such as channels and pipes offered by Intel
HLS [WOL+17]. Channels and pipes can allow the JIT compiler used in this
work to combine kernels that sharing dependencies into a single source.

• Adaptable Memory Tuning: Chapter 5 provides insights on how one can exploit

146

the memory hierarchy of GPUs through JIT compilation techniques. However,
one existing direction to this work is to adapt on-demand based on the input
application needs instead of relying on the schematics of the input application.
Therefore, during JIT compilation, decision making can allow the compiler IR
graph to be adapted from allocation, thereby targeting the private memory to local
or global based on specific sizes available during run-time.

• Expressing Parallel Patterns with Compositional Intrinsics: The technique
described in detail through Chapter 5 can be leveraged to express various data par-
allel patterns, while targeting low-level memory optimisations. Candidate patterns
can be various versatile groups that can merit from various levels of parallelism.
For instance, stencil computations [RYQ11] for which fine-grained memory allo-
cation due to irregular access patterns is a complex process. Besides, other data-
parallel patterns, such as scan operations [SHGO11], scatter/gather [HGLS07]
operations and parallel sorting algorithms [SJC17].

• MTMD with Intelligent Multi-Backend Awareness: The MTMD intelligent
scheduling presented in Chapter 6 can be further improved to embed more fine-
grained decision making. The ML-architecture can be extended to make decisions
among different compiler backends (e.g., PTX [Nvi17], SPIR-V [Gro], x86) to
ensure optimal device and architecture allocation for each application. There-
fore, the end goal will be for a system capable of seamlessly offload workloads
concurrently on multiple devices, while leveraging the optimal programming
construct for each architecture. As the device prediction mechanism has its basis
on features directly extracted from the Graal IR and runtime information, this
process will enable multi-backend scheduling. The dispatching mechanism that
isolates the execution in a device level-granularity can provide fine-control for
multi-backend scheduling and performance.

• MTMD with Intelligent Polyglot Awareness: The aforementioned direction
can provide the basis for multi-backend awareness; a complementary direc-
tion will provide polyglot support for MTMD. As the underlying experimental
platform is based on the GraalVM, this work can be extended to make use of
Truffle [GSS+15, WWW+13], an open-source library for building tools and pro-
gramming languages implementations. Therefore, the goal will be to have a
polyglot system with applications written in Java, Rudy, Python, and R will be
scheduled for heterogeneous execution through their corresponding IRs.

147

Bibliography

[AAA16] Alejandro Acosta, Sergio Afonso, and Francisco Almeida. Extending
paralldroid for the automatic generation of opencl code. In Proceedings

of the 4th International Workshop on OpenCL, IWOCL ’16, New York,
NY, USA, 2016.

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems, 2015.

[AAC+99] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber,
Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Jan-
ice C. Sheperd, and Mark Mergen. Implementing jalapeño in java.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA), 1999.

[AAZ+18] Qurrat Ul Ain, Saqib Ahmed, Abdullah Zafar, Muhammad Amir
Mehmood, and Abdul Waheed. Analysis of Hotspot Methods in JVM
for Best-Effort Run-Time Parallelization. In Proceedings of the 9th

International Conference on E-Education, E-Business, E-Management

and E-Learning (IC4E), 2018.

148

[ABB+12] Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng,
Stephen J. Fink, Rodric Rabbah, and Sunil Shukla. A compiler and
runtime for heterogeneous computing. In Proceedings of the 49th

Annual Design Automation Conference, DAC ’12, page 271–276, New
York, NY, USA, 2012. Association for Computing Machinery.

[ABCR10] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah.
Lime: A Java-compatible and Synthesizable Language for Heteroge-
neous Architectures. In Proceedings of the ACM International Con-

ference on Object Oriented Programming Systems Languages and

Applications (OOPSLA), 2010.

[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java program-

ming language. Addison Wesley Professional, 2005.

[Alt] Altimesh. Hybridizer essentials. http://www.altimesh.com.

[AMA+19] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-
Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon
Fatahalian, Frédo Durand, and Jonathan Ragan-Kelley. Learning to
optimize halide with tree search and random programs. ACM Trans.

Graph., 38(4), July 2019.

[AMD16] AMD. Aparapi. https://github.com/aparapi/aparapi, 2016.

[APBcF16] Ashwin M. Aji, Antonio J. Peña, Pavan Balaji, and Wu chun Feng.
Multicl: Enabling automatic scheduling for task-parallel workloads in
opencl. Parallel Computing, 58:37–55, 2016.

[App] Apple. Metal. https://developer.apple.com/metal/.

[ARM21] ARM. Arm big.little. https://www.arm.com/why-arm/

technologies/big-little, 2021.

[Ash08] Peter J. Ashenden. "The Designer’s Guide to VHDL, Volume 3, Third

Edition (Systems on Silicon)". Morgan Kaufmann Publishers Inc.,
2008.

[AUvAS+12] Shams A. H. Al Umairy, Alexander S. van Amesfoort, Irwan D. Setija,
Martijn C. van Beurden, and Henk J. Sips. On the use of small 2d
convolutions on gpus. In Computer Architecture, 2012.

149

http://www.altimesh.com
https://github.com/aparapi/aparapi
https://developer.apple.com/metal/
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little

[BA10] Kenneth P. Burnham and David Ray Anderson. Model selection and

multimodel inference: a practical information-theoretic approach.
Springer, New York, NY, 2. ed edition, 2010. OCLC: 846443242.

[BAM13] Rasmus Barringer and Tomas Akenine-Möller. A4: Asynchronous
adaptive anti-aliasing using shared memory. ACM Trans. Graph., 32(4),
July 2013.

[BBK+08] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for Gpgpus. In
Proceedings of the 22nd Annual International Conference on Super-

computing (ICS), 2008.

[BEP13] Kendrick Boyd, Kevin H. Eng, and C. David Page. Area under the
precision-recall curve: Point estimates and confidence intervals. In Pro-

ceedings of the 13th European Conference on Machine Learning and

Knowledge Discovery in Databases - Volume Part III (ECMLPKDD),
Berlin, Heidelberg, 2013.

[BFA14] Ioana Baldini, Stephen J. Fink, and Erik Altman. Predicting gpu per-
formance from cpu runs using machine learning. In Proceedings of the

2014 IEEE 26th International Symposium on Computer Architecture

and High Performance Computing, SBAC-PAD ’14, page 254–261,
USA, 2014. IEEE Computer Society.

[BGD94] Frederick J. Bremner, Stephen J. Gotts, and Dina L. Denham. Hinton
diagrams: Viewing connection strengths in neural networks. Behavior

Research Methods, Instruments, Computers, 26(2):215–218, 1994.

[BH98] P. Bellows and B. Hutchings. JHDL-an HDL for reconfigurable sys-
tems. In IEEE 6th Annual IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), 1998.

[BH12] Nathan Bell and Jared Hoberock. Thrust: Productivity-Oriented Li-
brary for CUDA. Astrophysics Source Code Library, 2012.

[Bla03] Bruno Blanchet. Escape analysis for javatm: Theory and practice.
ACM Trans. Program. Lang. Syst., 25(6):713–775, November 2003.

150

[BNS+21] Lorenz Braun, Sotirios Nikas, Chen Song, Vincent Heuveline, and
Holger Fröning. A simple model for portable and fast prediction of
execution time and power consumption of gpu kernels. ACM Trans.

Archit. Code Optim., 18(1), December 2021.

[Boh07] M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper.
IEEE Solid-State Circuits Society Newsletter, 12(1):11–13, 2007.

[BPCB10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. The Polyhedral Model Is More Widely
Applicable Than You Think. In International Conference on Compiler

Construction (CC), 2010.

[Bra97] Andrew P. Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern Recogn.,
30(7):1145–1159, July 1997.

[BRR+19] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In Proceedings of

the IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2019.

[BRS07] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A
Practical and Fully Automatic Polyhedral Parallelizer and Locality
Optimizer. Technical Report OSU-CISRC-10/07-TR70, The Ohio
State University, October 2007.

[BTL10] B. Betkaoui, D. B. Thomas, and W. Luk. Comparing performance and
energy efficiency of fpgas and gpus for high productivity computing.
In 2010 International Conference on Field-Programmable Technology,
pages 94–101, 2010.

[BVR+12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
Chisel. In Proceedings of the 49th Annual Design Automation Confer-

ence DAC. ACM Press, 2012.

151

[C+15] Francois Chollet et al. Keras. https://github.com/fchollet/

keras, 2015.

[CA12] Linchuan Chen and Gagan Agrawal. Optimizing mapreduce for gpus
with effective shared memory usage. In Proceedings of the 21st Inter-

national Symposium on High-Performance Parallel and Distributed

Computing (HPDC), 2012.

[CBHK02] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J.

Artif. Int. Res., 16(1):321–357, June 2002.

[CBM+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In 2009 IEEE International Sym-

posium on Workload Characterization (IISWC), pages 44–54, 2009.

[CC19] Anthony M. Cabrera and Roger D. Chamberlain. Exploring portability
and performance of opencl fpga kernels on intel harpv2. In Proceedings

of the International Workshop on OpenCL, IWOCL’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[CDK+01] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror May-
dan, and Jeff McDonald. Parallel programming in OpenMP. Morgan
kaufmann, 2001.

[CDL13] Eric S. Chung, John D. Davis, and Jaewon Lee. LINQits: Big Data
on Little Clients. In Proceedings of the 40th Annual International

Symposium on Computer Architecture (ISCA), 2013.

[CFP+18a] James Clarkson, Juan Fumero, Michail Papadimitriou, Maria Xekalaki,
and Christos Kotselidis. Towards practical heterogeneous virtual ma-
chines. In Conference Companion of the 2nd International Conference

on Art, Science, and Engineering of Programming, Programming’18
Companion, page 46–48, New York, NY, USA, 2018. Association for
Computing Machinery.

[CFP+18b] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Za-
kkak, Maria Xekalaki, Christos Kotselidis, and Mikel Lujan. Exploiting

152

https://github.com/fchollet/keras
https://github.com/fchollet/keras

high-performance heterogeneous hardware for java programs using
graal. In Proceedings of the 15th International Conference on Managed

Languages & Runtimes, ManLang ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[CFP+18c] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Za-
kkak, Maria Xekalaki, Christos Kotselidis, and Mikel Luján. Exploiting
High-Performance Heterogeneous Hardware for Java Programs Us-
ing Graal. In Proceedings of the 15th International Conference on

Managed Languages & Runtimes (ManLang), 2018.

[CGK+13] Albert Cohen, Tobias Grosser, Paul Kelly, J. Ramanujam, Ponnuswamy
Sadayappan, and Sven Verdoolaege. Split Tiling for GPUs: Automatic
Parallelization Using Trapezoidal Tiles to Reconcile Parallelism and
Locality, avoiding Divergence and Load Imbalance. In Proceedings

of the 6th Workshop on General Purpose Processor Using Graphics

Processing (GPGPU), 2013.

[Cha16] Sudipto Chakraborty. Vivado design tools. In Designing with Xilinx®

FPGAs, pages 17–21. Springer International Publishing, October 2016.

[CHL+17] P. Colangelo, R. Huang, E. Luebbers, M. Margala, and K. Nealis.
Fine-Grained Acceleration of Binary Neural Networks Using Intel®

Xeon® Processor with Integrated FPGA. In IEEE 25th Annual In-

ternational Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017.

[CKBL15] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján.
Boosting java performance using gpgpus, 2015.

[Cla19] James Clarkson. Compiler and Runtime Support for Heterogeneous

Programming. PhD thesis, The University of Manchester, 08 2019.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems, 2015.

153

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An au-
tomated end-to-end optimizing compiler for deep learning. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), pages 578–594, Carlsbad, CA, October 2018. USENIX
Association.

[Col91] Murray Cole. Algorithmic Skeletons: Structured Management of Par-

allel Computation. MIT Press, Cambridge, MA, USA, 1991.

[CP95] Cliff Click and Michael Paleczny. A simple graph-based intermediate
representation. In Papers from the 1995 ACM SIGPLAN Workshop

on Intermediate Representations, IR ’95, page 35–49, New York, NY,
USA, 1995. Association for Computing Machinery.

[CPB+18] P. Caldeira, J. C. Penha, L. Braganca, R. Ferreira, J. A. M. Nacif, R. Fer-
reira, and F. M. Q. Pereira. From Java to FPGA: an Experience with the
Intel HARP System. In 30th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), 2018.

[CPSL15] Chris Cummins, Pavlos Petoumenos, Michel Steuwer, and Hugh
Leather. Autotuning opencl workgroup size for stencil patterns. CoRR,
abs/1511.02490, 2015.

[CPWL17] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
End-to-end deep learning of optimization heuristics. In 2017 26th

International Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 219–232, 2017.

[CTD+17] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and
T. Sherwood. A Pythonic Approach for Rapid Hardware Prototyp-
ing and Instrumentation. In 27th International Conference on Field

Programmable Logic and Applications (FPL), 2017.

[DBAS18] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio.
A unified backend for targeting fpgas from dsls. In 2018 IEEE 29th In-

ternational Conference on Application-specific Systems, Architectures

and Processors (ASAP), 2018.

154

[DCR+12] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. Compiling a High-Level Language for GPUs: (Via
Language Support for Architectures and Compilers). In Proceedings

of the 33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), PLDI ’12, page 1–12, New York,
NY, USA, 2012. Association for Computing Machinery.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, January
2008.

[DGHGL+19] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon
Hammond, Onur Mutlu, and Wen-mei Hwu. Automatic generation
of warp-level primitives and atomic instructions for fast and portable
parallel reduction on gpus. In Proceedings of the 2019 IEEE/ACM

International Symposium on Code Generation and Optimization (CG0),
2019.

[DGY+74] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous,
and A.R. LeBlanc. Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–
268, 1974.

[DSW+13] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and
H. Mössenböck. Graal IR: An Extensible Declarative Intermediate Rep-
resentation. In Asia-Pacific Programming Languages and Compilers

(APPLC), 2013.

[DWS+13] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. An intermediate rep-
resentation for speculative optimizations in a dynamic compiler. In
Proceedings of the 7th ACM Workshop on Virtual Machines and In-

termediate Languages, VMIL ’13, page 1–10, New York, NY, USA,
2013. Association for Computing Machinery.

[DYS+12] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue. Automatic Parallelization of
Tiled Loop Nests with Enhanced Fine-Grained Parallelism on GPUs.
In 41st International Conference on Parallel Processing (ICPP), 2012.

155

[Ecl] Eclipse. Eclipse openj9. https://www.eclipse.org/openj9/

docs/.

[Far10] Frank A. Farris. The gini index and measures of inequality. The

American Mathematical Monthly, 117(10):851–864, 2010.

[FBC+09] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner,
David Grove, J. Eliot B. Moss, and Sergey I. Salishev. Demystifying
magic: High-level low-level programming. In Proceedings of the

2009 ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’09, page 81–90, New York, NY, USA,
2009. Association for Computing Machinery.

[FK18] Juan Fumero and Christos Kotselidis. Using Compiler Snippets to
Exploit Parallelism on Heterogeneous Hardware: A Java Reduction
Case Study. In Proceedings of the 10th ACM SIGPLAN International

Workshop on Virtual Machines and Intermediate Languages (VMIL),
2018.

[Fla06] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media,
Inc.", 2006.

[FPZ+19] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria
Xekalaki, James Clarkson, and Christos Kotselidis. Dynamic appli-
cation reconfiguration on heterogeneous hardware. In Proceedings of

the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE 2019, page 165–178, New York, NY,
USA, 2019. Association for Computing Machinery.

[FRSD15] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe
Dubach. Runtime Code Generation and Data Management for Het-
erogeneous Computing in Java. In Proceedings of the Principles and

Practices of Programming on The Java Platform (PPPJ), PPPJ ’15.
Association for Computing Machinery, 2015.

[FSSD17] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach.
Just-In-Time GPU Compilation for Interpreted Languages with Partial

156

https://www.eclipse.org/openj9/docs/
https://www.eclipse.org/openj9/docs/

Evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS In-

ternational Conference on Virtual Execution Environments, VEE ’17,
2017.

[FSV14] Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. Aristotle: A per-
formance impact indicator for the opencl kernels using local memory.
Sci. Program., 22(3):239–257, July 2014.

[Fum17] Juan Fumero. Accelerating interpreted programming languages on

GPUs with just-in-time compilation and runtime optimisations. PhD
thesis, The University of Edinburgh, 11 2017.

[GAMK16a] Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner. Spector: An
OpenCL FPGA benchmark suite. In International Conference on

Field-Programmable Technology (FPT), 2016.

[GAMK16b] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner.
Spector: An opencl fpga benchmark suite. In 2016 International

Conference on Field-Programmable Technology (FPT), pages 141–
148, 2016.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically
rigorous java performance evaluation. SIGPLAN Not., 42(10):57–76,
October 2007.

[GCH+14] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. Hybrid hexagonal/classical tiling for gpus. In
Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’14, page 66–75, New York, NY,
USA, 2014. Association for Computing Machinery.

[GCK+13] Tobias Grosser, Albert Cohen, Paul H. J. Kelly, J. Ramanujam, P. Sa-
dayappan, and Sven Verdoolaege. Split Tiling for GPUs: Automatic
Parallelization Using Trapezoidal Tiles. In Proceedings of the 6th

Workshop on General Purpose Processor Using Graphics Processing

Units (GPGPU), 2013.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-
ized trees. Mach. Learn., 63(1):3–42, April 2006.

157

[GGKSC13] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos.
Accelerating financial applications on the gpu. In Proceedings of

the 6th Workshop on General Purpose Processor Using Graphics

Processing Units, GPGPU-6, page 127–136, New York, NY, USA,
2013. Association for Computing Machinery.

[GGXS+12] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula,
and John Cavazos. Auto-tuning a high-level language targeted to gpu
codes. In 2012 Innovative Parallel Computing (InPar), pages 1–10,
2012.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language

Specification. Addison-Wesley Longman Publishing Co., Inc., USA,
1st edition, 1996.

[GLC+11] V. M. Garcia, A. Liberos, A. M. Climent, A. Vidal, J. Millet, and
A. González. An adaptive step size gpu ode solver for simulating
the electric cardiac activity. In 2011 Computing in Cardiology, pages
233–236, 2011.

[GLD+08] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Man-
ferdelli. High performance discrete fourier transforms on graphics
processors. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, pages 1–12, 2008.

[GLS99] Steve Guccione, Delon Levi, and Prasanna Sundararajan. JBits: Java
based interface for reconfigurable computing. In Second Annual Mili-

tary and Aerospace Applications of Programmable Devices and Tech-

nologies Conference (MAPLD), 1999.

[GO11] Dominik Grewe and Michael F. P. O’Boyle. A static task partitioning
approach for heterogeneous systems using OpenCL. In Lecture Notes

in Computer Science, pages 286–305. Springer Berlin Heidelberg,
2011.

[Gooa] Google. Turbofan. https://v8.dev/docs/turbofan.

[Goob] Google. What is v8? https://v8.dev/.

158

https://v8.dev/docs/turbofan
https://v8.dev/

[Gro] Khronos Group. Khronos spir-v. https://www.khronos.org/

registry/spir-v/.

[GSK+20] Anirban Ghose, Siddharth Singh, Vivek Kulaharia, Lokesh Dokara,
Srijeeta Maity, and Soumyajit Dey. Pyschedcl: Leveraging concurrency
in heterogeneous data-parallel systems, 2020.

[GSS+15] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,
and Hanspeter Mössenböck. High-performance cross-language inter-
operability in a multi-language runtime. In Proceedings of the 11th

Symposium on Dynamic Languages, DLS 2015, page 78–90, New
York, NY, USA, 2015. Association for Computing Machinery.

[GWO13] D. Grewe, Z. Wang, and M. F. P. O’Boyle. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In Proceedings

of the 2013 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pages 1–10, 2013.

[HBD+13] Sylvain Henry, Denis Barthou, Alexandre Denis, Raymond Namyst,
and Marie-Christine Counilh. SOCL: An OpenCL Implementation
with Automatic Multi-Device Adaptation Support. Research Report
RR-8346, INRIA, August 2013.

[HGLS07] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient gather and
scatter operations on graphics processors. In SC ’07: Proceedings

of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–12,
2007.

[HHA+18] Mohamed W. Hassan, Ahmed E. Helal, Peter M. Athanas, Wu-Chun
Feng, and Yasser Y. Hanafy. Exploring fpga-specific optimizations
for irregular opencl applications. In 2018 International Conference

on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8,
2018.

[HHWG12] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick
Siow Mong Goh. Scalable framework for mapping streaming appli-
cations onto multi-gpu systems. In Proceedings of the 17th ACM

159

https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/

SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPoPP ’12, page 1–10, New York, NY, USA, 2012. Association
for Computing Machinery.

[HLK+20] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gor-
latch, and Michel Steuwer. A Language for Describing Optimization
Strategies, 2020.

[HM13] Haibo He and Yunqian Ma, editors. Imbalanced learning: foundations,

algorithms, and applications. John Wiley & Sons, Inc, Hoboken, New
Jersey, 2013.

[Ho95] Tin Kam Ho. Random decision forests. In Proceedings of 3rd Interna-

tional Conference on Document Analysis and Recognition, volume 1,
pages 278–282 vol.1, 1995.

[HR15] A. Huseinović and S. Ribić. Benchmark comparison of computing the
mandelbrot set in opencl. In 2015 23rd Telecommunications Forum

Telfor (TELFOR), pages 994–997, 2015.

[HS99] Geoffrey E Hinton and Terrence J Sejnowski. Unsupervised learning

foundations of neural computation. 1999. OCLC: 1227497992.

[HSS+18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. High Performance Stencil Code Generation
with Lift. In Proceedings of the International Symposium on Code

Generation and Optimization (CGO), 2018.

[IHKS15] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. Compiling and
Optimizing Java 8 Programs for GPU Execution. In International

Conference on Parallel Architecture and Compilation (PACT), 2015.

[IKL+17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach. Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations. In 2017 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2017.

[Inta] Intel. GPGPU: Intel Iris Xe MAX graphics. https://dgpu-docs.

intel.com/devices/iris-xe-max-graphics/index.html.

160

https://dgpu-docs.intel.com/devices/iris-xe-max-graphics/index.html
https://dgpu-docs.intel.com/devices/iris-xe-max-graphics/index.html

[Intb] Intel. List of HD Graphics for Intel Core i9, i7, i5, and i3. https:

//www.intel.com/content/www/us/en/support/articles/

000057924/processors/intel-core-processors.html.

[Intc] Intel. oneAPI Specification. https://spec.oneapi.com/versions/
latest/index.html.

[Intd] Intel. The Intel Intrinsics Guide. https://software.intel.com/

sites/landingpage/IntrinsicsGuide/.

[Int19] Intel FPGA SDK for OpenCL. Pro Edition. Version 19.1 Re-
lease Notes, 2019. https://www.intel.com/content/dam/

www/programmable/us/en/pdfs/literature/rn/archives/rn_

aocl-19-1.pdf.

[Int20] Intel. Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA. https://www.intel.com/content/www/us/en/

programmable/products/boards_and_kits/dev-kits/altera/

acceleration-card-arria-10-gx/documentation.html, Feb
2020.

[Int21] Intel. Introduction to the acceleration stack for Intel Xeon CPU
with FPGAs. https://www.intel.com/content/www/us/en/

programmable/support/training/course/oaccelintro.html,
Apr 2021.

[Ion17] V. M. Ionescu. Cpu and gpu gray scale image conversion on mo-
bile platforms. In 2017 9th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), pages 1–6, 2017.

[JCBM16] Ivan Jibaja, Ting Cao, Stephen M. Blackburn, and Kathryn S. McKin-
ley. Portable performance on asymmetric multicore processors. In
Proceedings of the 2016 International Symposium on Code Generation

and Optimization, CGO ’16, page 24–35, New York, NY, USA, 2016.
Association for Computing Machinery.

[Jol86] I. T. Jolliffe. Principal Component Analysis and Factor Analysis, pages
115–128. Springer New York, New York, NY, 1986.

161

https://www.intel.com/content/www/us/en/support/articles/000057924/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000057924/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000057924/processors/intel-core-processors.html
https://spec.oneapi.com/versions/latest/index.html
https://spec.oneapi.com/versions/latest/index.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn_aocl-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn_aocl-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn_aocl-19-1.pdf
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/documentation.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/documentation.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/documentation.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oaccelintro.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oaccelintro.html

[JPT+13] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and
Thomas Fahringer. Inspire: The insieme parallel intermediate repre-
sentation. In Proceedings of the 22nd International Conference on

Parallel Architectures and Compilation Techniques, PACT ’13, page
7–18. IEEE Press, 2013.

[JS19] Dejice Jacob and Jeremy Singer. Alpyna: Acceleration of loops in
python for novel architectures. In 6th ACM SIGPLAN International

Workshop on Libraries, Languages and Compilers for Array Program-

ming (ARRAY), pages 25–34. ACM Press, June 2019.

[JTS19a] Dejice Jacob, Phil Trinder, and Jeremy Singer. Python programmers
have GPUs too: Automatic Python loop parallelization with staged
dependence analysis. In Proceedings of the Dynamic Languages Sym-

posium, 2019.

[JTS19b] Dejice Jacob, Phil Trinder, and Jeremy Singer. Python programmers
have gpus too: Automatic python loop parallelization with staged
dependence analysis. In Proceedings of the 15th ACM SIGPLAN Inter-

national Symposium on Dynamic Languages, DLS 2019, page 42–54,
New York, NY, USA, 2019. Association for Computing Machinery.

[KAA+19] Yasir Noman Khalid, Muhammad Aleem, Usman Ahmed, Muham-
mad Arshad Islam, and Muhammad Azhar Iqbal. Troodon: A machine-
learning based load-balancing application scheduler for cpu–gpu sys-
tem. Journal of Parallel and Distributed Computing, 132:79 – 94,
2019.

[KB16] N. Kapre and S. Bayliss. Survey of Domain-Specific Languages for
FPGA Computing. In 26th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2016.

[KCR+17a] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Luján. Heterogeneous managed runtime sys-
tems: A computer vision case study. VEE ’17, page 74–82, New York,
NY, USA, 2017. Association for Computing Machinery.

[KCR+17b] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Luján. Heterogeneous Managed Runtime

162

Systems: A Computer Vision Case Study. In Proceedings of the

13th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE), 2017.

[KDA+20] C. Kotselidis, S. Diamantopoulos, O. Akrivopoulos, V. Rosenfeld,
K. Doka, H. Mohammed, G. Mylonas, V. Spitadakis, and W. Mor-
gan. Efficient compilation and execution of jvm-based data processing
frameworks on heterogeneous co-processors. In 2020 Design, Automa-

tion Test in Europe Conference Exhibition (DATE), pages 175–179,
2020.

[KFAB16] Konstantinos Krommydas, Wu-Chun Feng, Christos D. Antonopoulos,
and Nikolaos Bellas. Opendwarfs: Characterization of dwarf-based
benchmarks on fixed and reconfigurable architectures. J. Signal Pro-

cess. Syst., 85(3):373–392, December 2016.

[KFP+18] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and et al. Spatial: A Language and Compiler for
Application Accelerators. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI), 2018.

[KGCF13] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An
automatic input-sensitive approach for heterogeneous task partitioning.
In Proceedings of the 27th International ACM Conference on Interna-

tional Conference on Supercomputing, ICS ’13, page 149–160, New
York, NY, USA, 2013. Association for Computing Machinery.

[KKRS14] Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, and P. Sa-
dayappan. Parametric GPU Code Generation for Affine Loop Programs.
In Languages and Compilers for Parallel Computing (LCPC), 2014.

[Kot07] S B Kotsiantis. Supervised machine learning: A review of classification
techniques. Informatica, 31(3):249–268, 2007.

[KPZ+16] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis,
and K. Olukotun. Automatic Generation of Efficient Accelerators for

163

Reconfigurable Hardware. In ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), 2016.

[KS16] Asterios Katsifodimos and Sebastian Schelter. Apache flink: Stream
analytics at scale. In 2016 IEEE International Conference on Cloud

Engineering Workshop (IC2EW), pages 193–193, 2016.

[KSL+12] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and
Jaejin Lee. Snucl: An opencl framework for heterogeneous cpu/gpu
clusters. In Proceedings of the 26th ACM International Conference on

Supercomputing, ICS ’12, page 341–352, New York, NY, USA, 2012.
Association for Computing Machinery.

[KSRT+19] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram
Krishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev,
and P. Sadayappan. A Code Generator for High-Performance Tensor
Contractions on GPUs. In Proceedings of the IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), 2019.

[KWM+08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of the
java hotspot™ client compiler for java 6. ACM Trans. Archit. Code

Optim., 5(1), May 2008.

[LA04] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International Symposium on

Code Generation and Optimization (CGO). IEEE, 2004.

[LG99] Allen Leung and Lal George. Static single assignment form for machine
code. In Proceedings of the ACM SIGPLAN 1999 Conference on

Programming Language Design and Implementation, PLDI ’99, page
204–214, New York, NY, USA, 1999. Association for Computing
Machinery.

[LHK09] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin. In Pro-

ceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). ACM Press, 2009.

164

[LHWW21] Zhifang Li, Mingcong Han, Shangwei Wu, and Chuliang Weng. Shad-
owvm: Accelerating data plane for data analytics with bare metal cpus
and gpus. In Proceedings of the 26th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’21, page
147–160, New York, NY, USA, 2021. Association for Computing
Machinery.

[Lom11] Chris Lomont. Introduction to intel advanced vector extensions. intel
white paper, 2011.

[Ltd] Arm Ltd. The arm mali-g78 gpu. https://developer.arm.

com/ip-products/graphics-and-multimedia/mali-gpus/

mali-g78-gpu.

[Mat08] Bernd Mathiske. The maxine virtual machine and inspector. In Com-

panion to the 23rd ACM SIGPLAN Conference on Object-Oriented

Programming Systems Languages and Applications, OOPSLA Com-
panion ’08, page 739–740, New York, NY, USA, 2008. Association for
Computing Machinery.

[Max11] Maxeler Technologies. MaxCompiler White Pa-
per. https://www.maxeler.com/media/documents/

MaxelerWhitePaperMaxCompiler.pdf, 2011.

[MCC18] Thierry Moreau, Tianqi Chen, and Luis Ceze. Leveraging the
VTA-TVM Hardware/Software Stack for FPGA Acceleration of 8-
bit ResNet-18 Inference. In Proceedings of the 1st on Reproducible

Quality-Efficient Systems Tournament on Co-designing Pareto-efficient

Deep Learning, 2018.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1
edition, 1997.

[MO14] Christos Margiolas and Michael F. P. O’Boyle. Portable and transparent
host-device communication optimization for gpgpu environments. In
Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’14, page 55–65, New York, NY,
USA, 2014. Association for Computing Machinery.

165

https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g78-gpu
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g78-gpu
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g78-gpu
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf

[MO16] Christos Margiolas and Michael F. P. O’Boyle. Portable and trans-
parent software managed scheduling on accelerators for fair resource
sharing. In Proceedings of the 2016 International Symposium on Code

Generation and Optimization, CGO ’16, page 82–93, New York, NY,
USA, 2016. Association for Computing Machinery.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114, April 1965.

[Moza] Mozilla. Ionmonkey. https://wiki.mozilla.org/IonMonkey.

[Mozb] Mozilla. Spidermonkey. https://firefox-source-docs.mozilla.
org/js/index.html.

[MSG+18] S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam.
TAPAS: Generating Parallel Accelerators from Parallel Programs. In
51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2018.

[NBB19] R. Nozal, J. L. Bosque, and R. Beivide. Towards co-execution on com-
modity heterogeneous systems: Optimizations for time-constrained
scenarios. 2019 International Conference on High Performance Com-

puting and Simulation (HPCS), pages 628–635, 2019.

[NBZ+15] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nis-
bet, Paul H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P.
O’Boyle, Graham Riley, Nigel Topham, and Steve Furber. Introducing
SLAMBench, a performance and accuracy benchmarking methodology
for SLAM. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
May 2015. arXiv:1410.2167.

[NSP+16] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A
survey and evaluation of fpga high-level synthesis tools. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,
35(10):1591–1604, 2016.

[NVF20] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release:
10.2.89, 2020.

166

https://wiki.mozilla.org/IonMonkey
https://firefox-source-docs.mozilla.org/js/index.html
https://firefox-source-docs.mozilla.org/js/index.html

[Nvi17] Nvidia. Parallel thread execution isa. https://docs.nvidia.com/
pdf/ptx_isa_5.0.pdf, 2017.

[OM99] D. Opitz and R. Maclin. Popular ensemble methods: An empirical
study. Journal of Artificial Intelligence Research, 11:169–198, August
1999.

[OPWL15] William F. Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh
Leather. Fast automatic heuristic construction using active learning.
In Languages and Compilers for Parallel Computing (LCPC), pages
146–160. Springer International Publishing, 2015.

[Oraa] Oracle. The java virtual machine instruction set. https://docs.

oracle.com/javase/specs/jvms/se7/html/jvms-6.html.

[Orab] Oracle. Project sumatra. https://openjdk.java.net/projects/

sumatra/.

[Ora14] Oracle. Loop optimizations in Hotspot Server VM Com-
piler (C2). https://wiki.openjdk.java.net/pages/viewpage.

action?pageId=20415918, 2014.

[OYIY18] Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, and Rio Yokota.
Optimization of hierarchical matrix computation on gpu. In Supercom-

puting Frontiers. Springer International Publishing, 2018.

[Pap16] Michail Papadimitriou. Accelerating computational finance simula-
tions; with opencl. Master’s thesis, Tu Delft, 2016.

[PCC+14] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott
Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Ac-
celerating Large-scale Datacenter Services. In Proceeding of the 41st

Annual International Symposium on Computer Architecture (ISCA),
2014.

167

https://docs.nvidia.com/pdf/ptx_isa_5.0.pdf
https://docs.nvidia.com/pdf/ptx_isa_5.0.pdf
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://openjdk.java.net/projects/sumatra/
https://openjdk.java.net/projects/sumatra/
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918

[PCV17] Michail Papadimitriou, Joris Cramwinckel, and Ana Lucia Varbanescu.
Speed-up computational finance simulations with opencl on intel xeon
phi. In Euro-Par 2016: Parallel Processing Workshops, pages 199–208,
Cham, 2017. Springer International Publishing.

[PDAS20] Alberto Parravicini, Arnaud Delamare, Marco Arnaboldi, and Marco D.
Santambrogio. Dag-based scheduling with resource sharing for multi-
task applications in a polyglot gpu runtime, 2020.

[Per93] Douglas L. Perry. VHDL. McGraw-Hill, Inc., 2 edition, 1993.

[PFK18] Michail Papadimitriou, Juan Fumero, and Christos Kotselidis. Ex-
ploiting programmability of fpgas through managed runtime systems.
International Summer School on Advanced Computer Architecture

and Compilation for High-performance Embedded Systems (ACACES),
2018.

[PFS+20] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,
Foivos S. Zakkak, and Christos Kotselidis. Transparent compiler and
runtime specializations for accelerating managed languages on fpgas.
The Art, Science, and Engineering of Programming, 5(2), Oct 2020.

[PFSK19] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis.
Towards prototyping and acceleration of java programs onto intel fp-
gas. In 2019 IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2019.

[PFSK21] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and
Christos Kotselidis. Automatically exploiting the memory hierarchy
of gpus through just-in-time compilation. In Proceedings of the 17th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, VEE 2021, page 57–70, New York, NY, USA, 2021.
Association for Computing Machinery.

[PG14] Prasanna Pandit and R. Govindarajan. Fluidic kernels: Cooperative
execution of opencl programs on multiple heterogeneous devices. In
Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’14, page 273–283, New York,
NY, USA, 2014. Association for Computing Machinery.

168

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[PJH09] DP Playne, MGB Johnson, and KA Hawick. Benchmarking gpu de-
vices with n-body simulations. In Proc. 2009 International Conference

on Computer Design (CDES 09) July, Las Vegas, USA., no. CSTN-077,
2009.

[PMF+21] Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios
Stratikopoulos, Florin Blanaru, and Christos Kotselidis. Multiple-tasks
on multiple-devices (mtmd): Exploiting concurrency in heterogeneous
managed runtimes. In Proceedings of the 17th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE
2021, page 125–138, New York, NY, USA, 2021. Association for
Computing Machinery.

[PSFW12] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. Rootbeer: Seam-
lessly Using GPUs from Java. In IEEE 14th International Conference

on High Performance Computing and Communication 2012 IEEE 9th

International Conference on Embedded Software and Systems, 2012.

[PVC01a] Michael Paleczny, Christopher Vick, and Cliff Click. The java
hotspottm server compiler. In Proceedings of the 2001 Symposium

on JavaTM Virtual Machine Research and Technology Symposium -

Volume 1, JVM’01, page 1, USA, 2001. USENIX Association.

[PVC01b] Michael Paleczny, Christopher Vick, and Cliff Click. The Java
hotspotTM Server Compiler. In Proceedings of the 2001 Symposium on

JavaTM Virtual Machine Research and Technology Symposium, 2001.

[Qui86] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106,
March 1986.

169

[RBD+11] Vidya Rajagopalan, Vamsi Boppana, Sandeep Dutta, Brad Taylor,
and Ralph Wittig. Xilinx zynq-7000 EPP: An extensible processing
platform family. In 2011 IEEE Hot Chips 23 Symposium (HCS). IEEE,
August 2011.

[Red16] Joseph Redmon. Darknet: Open source neural networks in c. http:
//pjreddie.com/darknet/, 2013–2016.

[RK16] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte

Carlo Method. Wiley Publishing, 3rd edition, 2016.

[RKAS+17a] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly
Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo
Durand. Halide: Decoupling algorithms from schedules for high-
performance image processing. Commun. ACM, 61(1):106–115, De-
cember 2017.

[RKAS+17b] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly
Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo
Durand. Halide: Decoupling algorithms from schedules for high-
performance image processing. Commun. ACM, 61(1):106–115, De-
cember 2017.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: A Language
and Compiler for Optimizing Parallelism, Locality, and Recomputa-
tion in Image Processing Pipelines. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), 2013.

[RKH+11] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacque-
line Chame. A Programming Language Interface to Describe Trans-
formations and Code Generation. In Languages and Compilers for

Parallel Computing (LCPC), 2011.

[RLSD16] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe
Dubach. Performance Portable GPU Code Generation for Matrix
Multiplication. In Proceedings of the 9th Annual Workshop on General

Purpose Processing Using Graphics Processing Unit (GPGPU), 2016.

170

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[RM20] Lukas Stadler Rene Mueller. Grcuda. https://github.com/NVIDIA/
grcuda, 2020.

[Ros] John Rose. JEP 243: Java-Level JVM Compiler Interface. https:

//openjdk.java.net/jeps/243.

[RYC+13] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Mar-
tin, and Dennis Fetterly. Dandelion: A Compiler and Runtime for
Heterogeneous Systems. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, 2013.

[RYQ11] Shah M. Faizur Rahman, Qing Yi, and Apan Qasem. Understanding
stencil code performance on multicore architectures. In Proceedings of

the 8th ACM International Conference on Computing Frontiers, CF ’11,
New York, NY, USA, 2011. Association for Computing Machinery.

[SAGL18] Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian
Lengauer. PolyJIT: Polyhedral optimization just in time. Interna-

tional Journal of Parallel Programming, 47(5-6):874–906, August
2018.

[SBL+14] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. Delite: A
Compiler Architecture for Performance-Oriented Embedded Domain-
Specific Languages. ACM Transactions on Embedded Computing

Systems (TECS), 2014.

[SCN+15] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala. Aparapi-
UCores: A High Level Programming Framework for Unconventional
Cores. In IEEE High Performance Extreme Computing Conference

(HPEC), 2015.

[SD09] Richard M. Stallman and GCC DeveloperCommunity. Using The Gnu

Compiler Collection: A Gnu Manual For Gcc Version 4.3.3. CreateS-
pace, Scotts Valley, CA, 2009.

[SEEZ19] Kholoud Shata, Marwa K. Elteir, and Adel A. EL-Zoghabi. Optimized
implementation of OpenCL kernels on FPGAs. Journal of Systems

Architecture, 97:491–505, August 2019.

171

https://github.com/NVIDIA/grcuda
https://github.com/NVIDIA/grcuda
https://openjdk.java.net/jeps/243
https://openjdk.java.net/jeps/243

[SG08] Satnam Singh and David J. Greaves. Kiwi: Synthesis of FPGA circuits
from parallel programs. In 2008 16th International Symposium on

Field-Programmable Custom Computing Machines. IEEE, April 2008.

[SGS10] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel
programming standard for heterogeneous computing systems. Comput-

ing in Science & Engineering, 12(3):66–73, May 2010.

[SHGO11] Shubhabrata Sengupta, Mark Harris, Michael Garland, and John
Owens. Efficient Parallel Scan Algorithms for GPUs, pages 413–442.
CRC Press, 01 2011.

[SJC17] Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey
of GPU based sorting algorithms. International Journal of Parallel

Programming, 46(6):1017–1034, April 2017.

[SKG11] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable Skeleton
Library for High-Level GPU Programming. In IEEE International

Symposium on Parallel and Distributed Processing Workshops and

Phd Forum, 2011.

[SMCW] Oren Segal, Martin Margala, Sai Rahul Chalamalasetti, and Mitch
Wright. High Level Programming for Heterogeneous Architectures.
In 1st International Workshop on FPGAs for Software Programmers

(FSP 2014).

[SMSF18] S. Skalicky, J. Monson, A. Schmidt, and M. French. Hot&Spicy:
Improving Productivity with Python and HLS for FPGAs. In IEEE

26th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2018.

[SOV+20] Athanasios Stratikopoulos, Mihai-Cristian Olteanu, Ian Vaughan, Zo-
ran Sevarac, Nikos Foutris, Juan Fumero, and Christos Kotselidis.
Transparent acceleration of java-based deep learning engines. In Pro-

ceedings of the 17th International Conference on Managed Program-

ming Languages and Runtimes, MPLR 2020, page 73–79, New York,
NY, USA, 2020. Association for Computing Machinery.

172

[SPB+17] Amit Kumar Singh, Alok Prakash, Karunakar Reddy Basireddy, Ge-
off V. Merrett, and Bashir M. Al-Hashimi. Energy-efficient run-time
mapping and thread partitioning of concurrent opencl applications on
cpu-gpu mpsocs. ACM Trans. Embed. Comput. Syst., 16(5s), Septem-
ber 2017.

[SRD16] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Matrix
multiplication beyond auto-tuning. In Proceedings of the International

Conference on Compilers, Architectures and Synthesis for Embedded

Systems - CASES '16. ACM Press, 2016.

[SRD17] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. LIFT: A
functional data-parallel IR for high-performance GPU code generation.
In 2017 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). IEEE, February 2017.

[STDP19] Alberto Scionti, Olivier Terzo, Karim Djemame, and Clara Pezuela.
Heterogeneous Computing Architecture - Challenges and Vision. CRC
Press, 09 2019.

[SWU+15] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq,
Lukas Stadler, and Thomas Würthinger. Snippets: Taking the High
Road to a Low Level. ACM Transactions on Architecture and Code

Optimization (TACO), 2015.

[Tha19] Mohit Thakkar. Beginning Machine Learning in IOS: CoreML Frame-

work. APress, 1st edition, 2019.

[TM96] Donald E. Thomas and Philip R. Moorby. The Verilog® Hardware

Description Language. Springer US, 1996.

[TW17] T. N. Theis and H. . P. Wong. The end of moore’s law: A new begin-
ning for information technology. Computing in Science Engineering,
19(2):41–50, 2017.

[TWSC10] Ben L. Titzer, Thomas Wurthinger, Doug Simon, and Marcelo Cintra.
Improving compiler-runtime separation with xir. In Proceedings of

the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’10, page 39–50, New York, NY, USA,
2010. Association for Computing Machinery.

173

[UGT09] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
pipelined execution of stream programs on gpus. In 2009 International

Symposium on Code Generation and Optimization, CGO ’09, pages
200–209, 2009.

[VCJC+13] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. Polyhedral
Parallel Code Generation for CUDA. ACM Transactions on Architec-

ture and Code Optimization (TACO), 2013.

[VD08] V. Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In 2008 SC - International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, November 2008.

[VRDJ95] Guido Van Rossum and Fred L Drake Jr. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[WGO15] Zheng Wang, Dominik Grewe, and Michael F. P. O’boyle. Automatic
and portable mapping of data parallel programs to OpenCL for GPU-
based heterogeneous systems. ACM Transactions on Architecture and

Code Optimization (TACO), 11(4):1–26, January 2015.

[WHU17] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Kunio
Uchiyama. Design of FPGA-Based Computing Systems with OpenCL.
Springer Publishing Company, Incorporated, 1 edition, 2017.

[WHVDV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. Maxine: An Approach-
able Virtual Machine for, and in, Java. ACM Transactions on Architec-

ture and Code Optimization (TACO), 2013.

[WNDS99] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL

programming guide: the official guide to learning OpenGL, version

1.2. Addison-Wesley Longman Publishing Co., Inc., 1999.

[WO18] Zheng Wang and Michael O’Boyle. Machine learning in compiler
optimization. Proceedings of the IEEE, 106(11):1879–1901, 2018.

174

[WOL+17] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen Becker, and
Mehdi Tahoori. Energy efficient scientific computing on fpgas us-
ing opencl. In Proceedings of the 2017 International Symposium on

Field-Programmable Gate Arrays (FPGA), New York, NY, USA, 2017.
Association for Computing Machinery.

[WPHZ17] Zeke Wang, Johns Paul, Bingsheng He, and Wei Zhang. Multikernel
data partitioning with channel on opencl-based fpgas. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 25(6):1906–
1918, 2017.

[WPSM10] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
Demystifying GPU Microarchitecture Through Microbenchmarking.
In 2010 IEEE International Symposium on Performance Analysis of

Systems Software (ISPASS), 2010.

[WWO14] Yuan Wen, Zheng Wang, and Michael F. P. O'Boyle. Smart multi-
task scheduling for OpenCL programs on CPU/GPU heterogeneous
platforms. In 2014 21st International Conference on High Performance

Computing (HiPC). IEEE, December 2014.

[WWS10] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic
code evolution for java. In Proceedings of the 8th International Confer-

ence on the Principles and Practice of Programming in Java, PPPJ ’10,
page 10–19, New York, NY, USA, 2010. Association for Computing
Machinery.

[WWW+13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One VM to rule them all. In Proceedings of the 2013

ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software, Onward! ’13, page 187–204,
New York, NY, USA, 2013. ACM.

[XFK18] Maria Xekalaki, Juan Fumero, and Christos Kotselidis. Challenges
and proposals for enabling dynamic heterogeneous execution of big
data frameworks. In 2018 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). IEEE, December
2018.

175

[YWTC15] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. Virtcl:
A framework for opencl device abstraction and management. In Pro-

ceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP 2015, page 161–172, New
York, NY, USA, 2015. Association for Computing Machinery.

[YXKZ10] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU
Compiler for Memory Optimization and Parallelism Management. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2010.

[ZBMS10] Dimitrios Ziakas, Allen Baum, Robert A. Maddox, and Robert J.
Safranek. Intel quickpath interconnect architectural features supporting
scalable system architectures. In Proceedings of the 2010 18th IEEE

Symposium on High Performance Interconnects (HOTI), USA, 2010.
IEEE Computer Society.

[ZLG12] Wojciech Zaremba, Yuan Lin, and Vinod Grover. JaBEE: Frame-
work for Object-oriented Java Bytecode Compilation and Execution on
Graphics Processor Units. In Proceedings of the 5th Annual Workshop

on General Purpose Processing with Graphics Processing Units, 2012.

[Zoh18] Hamid Reza Zohouri. High performance computing with fpgas and
opencl. CoRR, abs/1810.09773, 2018.

[ZSC13] Yao Zhang, Mark Sinclair, and Andrew A. Chien. Improving perfor-
mance portability in OpenCL programs. In Lecture Notes in Computer

Science, pages 136–150. Springer Berlin Heidelberg, 2013.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big
data processing. Commun. ACM, 59(11):56–65, October 2016.

176

	Abstract
	Declaration
	Copyright
	Acknowledgments
	List of Abbreviations
	Introduction
	The Advent of Heterogeneous Managed Runtimes
	Challenges in Heterogeneous Managed Runtimes
	Research Objectives
	Contributions
	Thesis Structure
	Publications
	Summary

	Background
	Heterogeneous Platforms
	Heterogeneous Architectures
	Multi-Core Central Processing Units (CPUs)
	Graphics Processing Units (GPUs)
	Field Programmable Gate Arrays (FPGAs)

	Parallel Programming Models
	OpenCL

	Managed Runtime Systems
	Java
	Java Virtual Machine (JVM)
	Optimising Compilers
	Graal Compiler

	Heterogeneous Managed Runtimes
	TornadoVM

	Machine Learning Modelling
	Supervised vs Unsupervised Learning
	Classification Problems

	Summary

	Related Work
	Introduction
	FPGA Execution of Managed Languages
	Interfacing with static FPGA designs
	Dynamic FPGA code generation
	Java Execution on FPGAs: Spotting the Gap

	Optimising Compilers for GPU Code generation
	Exposing GPU Features into Programming Languages
	Compiler Techniques for Memory Transformations

	Dynamic Application Scheduling on Heterogenous Hardware
	Non-Machine Learning Multi-Task Scheduling
	Machine Learning-based Multi-Task Scheduling
	Single Task Scheduling on Multiple-Devices

	Summary

	FPGA Aware JIT Compilation for Managed Runtime Programming Languages
	Motivation: FPGA Performance for Unoptimised Auto-Generated OpenCL Kernels
	FPGA Acceleration of Managed Languages
	Extensions to the JIT Compiler
	Runtime Extensions
	Memory Management

	Compiler Optimisations Targeting FPGAs
	Extensions to the JIT Compiler
	Generated FPGA-Optimised OpenCL C code

	Evaluation
	Experimental Setup and Methodology
	Benchmarks
	Experimental Setup

	Performance Analysis
	Runtime Overhead Analysis
	Optimisation Phases Breakdown

	HLS Compilation & Binary Loading
	Resource Utilisation
	Discussion

	Summary

	Exploiting the Memory Hierarchy of GPUs via JIT Compilation
	Motivation: Tier-Memory for Locality in GPUs
	GPU Memory-Aware JIT Compilation
	Compositional Compiler Intrinsics (CCIs)
	Exploiting Local Memory
	Parallel Reductions
	Matrix Operations

	Evaluation
	Experimental Setup and Methodology
	Experimental Methodology
	Benchmarks and Input Sizes

	Performance Evaluation
	Performance Comparison against TornadoVM
	Performance Comparison against Hand-Written OpenCL

	Compilation Overhead

	Summary

	Intelligent Scheduling of Multiple-Tasks on Multiple-Devices (MTMD)
	Motivation: Beyond Single Device Performance
	An OpenCL Review on Multiple Devices
	The TornadoVM Perspective

	Multiple-Tasks on Multiple-Devices
	Task Dataflow Analyser
	Context Allocator and Scheduler
	Multi-Context Bytecode Generator
	Thread Pool of Execution Engines
	Discussion

	Prediction-based Scheduling for MTMD
	Feature Extraction
	Feature Selection & Engineering
	Training Dataset
	Machine Learning Architecture
	On-line Scheduling Process

	Evaluation
	Experimental Setup and Methodology
	Applications and Input sizes
	Scheduling Strategies

	Performance Evaluation of MTMD
	Relative Performance versus Best Consecutive
	Relative Performance versus Best Concurrent

	Analysis of the ML Model used MTMD Scheduling

	Summary

	Conclusions and Future Research Directions
	Summary
	Future Research Directions

	Bibliography

