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ABSTRACT

Programming heterogeneous systems such as the System-on-chip (SoC) processors in mod-

ern mobile devices can be extremely complex because a single system may include multiple

different parallelism models, instruction sets, memory hierarchies, and systems use differ-

ent combinations of these features. This is further complicated by software and hardware

approximate computing optimizations. Different compute units on an SoC use different ap-

proximate computing methods and an application would usually be composed of multiple

compute kernels, each one specialized to run on a different hardware. Determining how best

to map such an application to a modern heterogeneous system is an open research problem.

First, we propose a parallel abstraction of heterogeneous hardware that is a carefully

chosen combination of well-known parallel models and is able to capture the parallelism in a

wide range of popular parallel hardware. This abstraction uses a hierarchical dataflow graph

with side effects and vector SIMD instructions. We use this abstraction to define a parallel

program representation called HPVM that aims to address both functional portability and

performance portability across heterogeneous systems.

Second, we further extend HPVM representation to enable accuracy-aware performance

and energy tuning on heterogeneous systems with multiple compute units and approxi-

mation methods. We call it ApproxHPVM, and it automatically translates end-to-end

application-level accuracy constraints into accuracy requirements for individual operations.

ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation, which

greatly speeds up the analysis, enables greater portability, and enables future capabilities

like accuracy-aware dynamic scheduling and design space exploration.

We have implemented a prototype HPVM system, defining the HPVM IR as an extension

of the LLVM compiler IR, compiler optimizations that operate directly on HPVM graphs,

and code generators that translate the virtual ISA to NVIDIA GPUs, Intel’s AVX vector

units, and to multicore X86-64 processors. Experimental results show that HPVM optimiza-

tions achieve significant performance improvements, HPVM translators achieve performance

competitive with manually developed OpenCL code for both GPUs and vector hardware, and

that runtime scheduling policies can make use of both program and runtime information to

exploit the flexible compilation capabilities. Furthermore, our evaluation of ApproxHPVM

shows that our framework can offload chunks of approximable computations to special-

purpose accelerators that provide significant gains in performance and energy, while staying

within a user-specified application-level accuracy constraint with high probability.
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CHAPTER 1: INTRODUCTION

1.1 HETEROGENEOUS SYSTEMS: CURRENT TRENDS AND FUTURE

Earlier Moore’s Law and Dernard’s scaling allowed computer architects to design single

core processors with smaller transistors that were faster than their predecessors because

smaller transistors can switch at higher speeds with power density remaining constant [1].

However, the end of Dernard’s scaling around 2006 meant that as transistors became smaller,

the power density increases. In other words, architects can no longer design smaller and

faster single core processors with same power density. As a result, the computer architects

turned to multicore processors and parallelism [2]. This allowed manufacturers to double the

number of transistors every 2 years according to Moore’s Law but this approach is limited

by power constraints [3]. Thus, the design of energy efficient processors became a major

goal for the computer architecture community. Heterogeneous Computing has emerged as

a promising approach to pursue this goal as specialized compute units can be orders of

magnitude more energy efficient than general purpose processing.

Heterogeneous computing systems are becoming increasingly popular in systems ranging

from portable mobile devices to high-end supercomputers to data centers [3]. Such systems

are attractive because they use specialized computing elements, including GPUs, vector hard-

ware, FPGAs, and domain-specific accelerators, that can greatly improve energy efficiency,

performance, or both, compared with traditional homogeneous systems [4]. Two studies

[5, 6] of a media encoder and TCP offload engine illustrate the large energy-efficiency im-

provement that is possible. They achieve these goals through specialized computing which

includes exploiting parallelism, data access patterns, and other forms of domain specific

knowledge [7, 8]. Also, domains such as machine learning are inherently tolerant to impre-

cision which is effectively exploited by specialized accelerators [9, 10].

The term “heterogeneous systems” is very broad in its scope and depending on the context

and current trends could mean anything from single ISA heterogeneous systems such as

ARM’s big.LITTLE [11] chip to a system composed of compute units that differ not only in

microarchitecture but have different instruction-set architectures (ISAs), many of them could

be highly specialized domain-specific accelerators. At the time of writing this thesis, the term

“heterogeneous systems” typically refers to systems with general purpose CPUs and GPUs,

usually on the same integrated circuit. CPUs can run the operating system and traditional

serial tasks, while GPUs and CPU vector instructions can be used to exploit data parallelism

in applications. It is also fairly common to have some domain-specific accelerators on the
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same integrated chip which may or may not support limited programmability. For example,

Qualcomm’s Snapdragon [12] system-on-a-chip (SoC) has accelerators such as audio/video

encoders/decoders, programmable Hexagon [13] DSP integrated on the chip, apart from Kryo

CPU [12] and Adreno GPU [14]. In May’2018 Intel released the Xeon Gold 6138P product

which includes a FPGA along with the Intel Xeon processor. The CPU and the FPGA talk

with one another over the Ultra Path Interconnect (UPI) bus, providing a cache-coherent

coupling between the two.

We expect this trend of increasing diversity in heterogeneous systems to continue [15]. The

computation requirements of applications is increasing, specially for domains which rely on

processing large amounts of data [16]. Application specific hardware have been shown to

be orders of magnitude more energy efficient than general purpose processors [5, 6]. To

meet the power and energy constraints, it is expected that the level of heterogeneity in

modern computing systems would keep increasing gradually, as further scaling of fabrication

technologies allows for formerly discrete components to become integrated parts of a SoC [3].

This heterogeneity is not limited to different ISAs, memory hierarchies and parallelism

models. Approximate computing has been shown to be viable in multiple domains [17]

and provides throughput and energy benefits in these domains. Researchers and engineers

have successfully exploited applications’ tolerance to imprecision using a diverse range of

approximate computing techniques, both in software and hardware [18, 19, 20, 21, 22, 23].

1.2 PROGRAMMABILITY CHALLENGES

Heterogeneous parallel computing systems, including both mobile System-on-Chip (SoC)

designs such as Qualcomm’s Snapdragon and nVidia’s Tesla, or high-end supercomputers

like Cray’s BlueWaters (which has many GPU coprocessors) or Convey’s FPGA-based HC-

1, raise numerous difficult programming challenges. We believe these challenges arise from

four fundamental root causes and we first discuss these root causes and then outline the

challenges they engender.

1.2.1 Root Causes of Programmability Challenges

(1) Diverse models of parallelism: Different hardware components in heterogeneous

systems support different models of parallelism. We tentatively identify five broad classes of

programmable hardware that have qualitatively different models of parallelism:
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1. General purpose cores Flexible multithreading

2. Vector hardware Vector parallelism

3. GPUs Restrictive data parallelism

4. FPGAs Customized dataflow

5. Custom accelerators Various forms

In addition, applications running on multiple such components may exhibit asynchronous

or synchronous parallelism relative to each other. OpenCL [24] and OpenMP [25] are efforts

to achieve portability at source language level. They follow a similar programming model

where a single-threaded kernel function is replicated across a large number of cores. This

maps well to GPUs and vector parallelism. Also, they have been used to compile to FPGAs.

However, they make it difficult to express important kinds of parallelism, like pipelined

parallelism useful for custom accelerators.

(2) Diverse memory architectures: With the different parallel models come deep dif-

ferences in the memory system. Common choices in the various components above include

cache-coherent memory hierarchies, vector register files, private or “scratchpad” memory,

stream buffers, and custom memory designs used in custom accelerators. These differences

in memory architectures strongly influence both algorithm design and application program-

ming. Moreover, the performance tradeoffs are becoming even more complex as new ar-

chitectures provide more options, e.g., nVidia’s Fermi architecture allows a 64 KB block of

SRAM to be partitioned flexibly into part L1 cache and part private scratchpad memory.

(3) Diverse hardware-level instruction sets and execution semantics: Finally,

the various hardware components have very different instruction sets, register architectures,

performance characteristics, and execution semantics. These differences have an especially

profound effect on object-code portability. They also have other negative effects, described

below.

(4) Diverse approximate computing methods: Software and hardware techniques

that exploit application’s tolerance to approximation further exacerbate the problem. Dif-

ferent compute units on an SoC use different software and hardware methods to trade-off

energy and performance for accuracy using approximate computing. Application developers

and end users cannot be expected to specify error tolerances in terms of the system-level

parameters required by the various approximation techniques, or even know about many of

them: we require automated mapping strategies that can translate application-level specifi-

cations (e.g., tolerable classification error in a machine learning application) to system-level

parameters (e.g., neural network parameter precision or voltage swings).
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1.2.2 Major Programmability Challenges

These fundamental forms of diversity create deep programmability challenges for hetero-

geneous systems. First, it is extremely difficult to design a single algorithm for a given

problem that works well across a range of such different models of parallelism, with such

different memory systems, as previous work has shown [26, 27]. We envisage two options to

address this problem: design algorithms that achieve good, but not optimal, performance

across the targeted range of hardware, or use multiple algorithms for a given problem and

select among them when the actual hardware configuration is known (e.g., at install time,

load time, or run time) [28, 27]. In practice, both approaches will likely be necessary.

Second, it is much more difficult to design effective source-level programming languages

for heterogeneous systems. A single programming language or library typically supports

only one or two models of parallelism. For example, CUDA, OpenCL and AMP naturally

support fine-grain data parallelism, with a macro function replicated across a large number

of threads, but other parallelism models (like more flexible dataflow) are not specifically

addressed. Similarly, BlueSpec [29] and Lime [30], which have proved successful for FPGAs,

are both dataflow models but it is not clear whether these can be mapped effectively to

GPUs. The consequence today is that, a programmer must program each hardware compo-

nent differently, which creates a huge barrier to entry for widespread use of heterogeneous

hardware.

A third challenge is source code portability. Heterogeneous systems can provide different

combinations of hardware, both within a single manufacturer’s family of devices and across

different manufacturers’ devices. This makes source-code level portability difficult, in two

ways. First, each component must solve the algorithm portability problem (above). Second,

compilers must map source code embodying one or more algorithms for each component

down to the various hardware components on which those algorithms must run. This task

is greatly complicated by all three forms of diversity.

Fourth, performance tuning for heterogeneous systems will also be significantly more com-

plex. The disparate parallelism models, memory architectures, and lower-level performance

details require significantly different performance models and tuning strategies. Because

of these disparities, the programmer training, software tools, and application libraries all

become prohibitively expensive as the number of different hardware components grows.

Finally, object-code portability across the same and different manufacturers’ devices is

essential as well. An application vendor must be able to ship a single software version

for a broad range of devices – it is impractical to create, test, market and support different

versions of an application package for all the different devices running a single platform, e.g.,
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all the smartphones running Android. Today, Android solves this problem by using Java

bytecode, but only for CPU application code: few application components take advantage of

the on-phone GPU or DSPs, and those are usually native libraries. Moreover, the debuggers,

profilers and performance tools for a family of heterogeneous systems must support the full

range of available hardware, both within a single system and also across different system

configurations. Because both tuning and debugging often need to go down to the level

of object code, these tools become expensive to develop, learn and use for each family of

hardware.

1.2.3 Scope of Heterogeneous Systems for this Thesis

Our aim, in this thesis, is to address these programmability and portability challenges.

Thus, it is also important to define the scope of heterogeneous systems for this thesis. For this

work, we envision a SoC similar to Qualcomm’s Snapdragon SoC. It has multicore CPUs

(with SIMD instruction support), GPUs, DSPs, programmable accelerators and possibly

FPGAs. An example of the programmable accelerator would be PROMISE [18], a mixed

signal accelerator for machine learning designed as part of this thesis.

1.3 SUMMARY OF RELATED WORK

Virtual Instruction Sets (virtual ISAs). An approach to solving these programmabil-

ity challenges is by eliminating all the root causes. This can be achieved by abstracting

away the differences in heterogeneous hardware, and presenting a more uniform hardware

abstraction across devices to software. More specifically, a virtual instruction set (virtual

ISA) can encapsulate all the relevant programmable hardware components on target sys-

tems. In this instruction set, source-level applications are compiled, optimized, and shipped

as virtual object code and then translated down to a specific hardware configuration, usually

at install time, using system- specific compiler back ends (translators). Some widely used

heterogeneous devices, such as GPUs, define a virtual instruction set (ISA) spanning one

or more families of devices, e.g., PTX for NVIDIA GPUs, HSAIL for GPUs from several

vendors and SPIR for devices running OpenCL. Except for SPIR, which is essentially a

lower-level representation of the OpenCL language, these virtual ISAs are primarily focused

on GPUs and do not specifically address other hardware classes, like vector hardware or

FPGAs. Moreover, none of these virtual ISAs aim to address the other challenges, such as

algorithm design, language design, support for approximation and compiler optimizations,

across diverse heterogeneous devices.
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Compiler IRs. Previous parallel compiler IRs we know of (for example, [31, 32, 33, 34, 35])

use hierarchical task dependence graph as parallel program representation. None of them

can be used as a parallel program representation for runtime scheduling (because they are

not retained after static translation to native code, which is a non-trivial design challenge).

Framework for Approximate Computing. To deal with heterogeneity of approxima-

tion methods, existing systems for accuracy-aware optimizations do not provide a fully au-

tomated framework that is able to target multiple heterogeneous devices without requiring

programmer-guided annotations. The ACCEPT [36] framework uses a programmer-guided

approach with source-level approximation annotations. It targets accelerators using a combi-

nation of static analysis and autotuning to choose between multiple approximation options.

However, ACCEPT cannot support systems with diverse compute units which is a key goal

of our work. Also, it composes errors linearly which is quite arbitrary because how errors

compose would depend on the functions involved. Valid configurations where after linearly

composing errors, the end-to-end constraints are not met would be discarded. Our approach

detailed in Chapter 5 does not assume that errors compose linearly and executes the pro-

gram to see if the end-to-end accuracy threshold is met and thus, does not unnecessarily

discard valid configurations. Moreover, ACCEPT does not decouple hardware-independent

accuracy constraints from hardware-specific knobs, thereby reducing the extensibility of the

technique to multiple kinds of hardware devices. EnerJ [37] presents a type system that

separates approximate and precise data. Chisel [38] and Rely [39] programming languages

introduced the idea of quantifiable reliability and accuracy at the program level. Introducing

approximation metrics as part of a new programming language hurts program portability

since applications need to be ported at the source-level.

1.4 CONTRIBUTIONS

Our contributions in this work can be broken down into three logical components, which

also follows the chronological order in which we broke down and devised solution for the

programmability and portability challenges of heterogeneous systems.

First, we aim to address the programmability challenges of heterogeneous systems where

underlying compute units have different ISAs, different memory hierarchy and exploit dif-

ferent parallelism models. Section 1.4.1 summarizes our approach and contributions in ad-

dressing the diversity in parallelism in heterogeneous systems. This work was done jointly

(and equally) with Maria Kotsifakou (kotsifa2@illinois.edu) and would appear in both of our

theses.
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Second, we did a joint project with Professor Naresh Shanbhag’s research group [40]

(especially his student Mingu Kang) to design a programmable mixed signal accelerator

for machine learning algorithms. This project described in Section 1.4.2 helped in getting

useful insight into the diversity of new accelerators that can be part of a heterogeneous

SoC in future. There were three logical components to this projects: (1) modifications to

the existing hardware which was led by Mingu Kang, (2) designing the analog ISA for the

accelerator which was done jointly by Mingu and I, and (3) the compiler for this accelerator

which I designed and implemented.

Lastly, we extend our work to tackle the heterogeneity of approximation techniques in

heterogeneous systems. We summarize our approach in Section 1.4.3. Hashim Sharif

(hsharif3@illinois.edu) contributed equally to this project and this would appear in his thesis

as well.

1.4.1 Heterogeneous Parallel Systems

We believe that the programmability and portability challenges can be best addressed by

developing a single parallel program representation flexible enough to support at least three

different purposes : (1) A compiler intermediate representation, for compiler optimizations

and code generation for diverse heterogeneous hardware. Such a compiler IR must be able

to implement a wide range of different parallel languages, including general-purpose ones

like OpenMP, CUDA and OpenCL, and domain-specific ones like Halide and TensorFlow.

(2) A virtual ISA, to allow virtual object code to be shipped and then translated down to

native code for different heterogeneous system configurations. This requirement is essen-

tial to enable application teams to develop and ship application code for multiple devices

within a family. (3) A representation for runtime scheduling, to enable flexible mapping and

load-balancing policies, in order to accommodate static variations among different compute

kernels and dynamic variations due to external effects like energy fluctuations or job arrivals

and departures. We believe that a representation that can support all these three capa-

bilities could (in future) also simplify parallel algorithm development and influence parallel

language design, although we do not explore those in this work.

In this work, we propose such a parallel program representation, Heterogeneous Parallel

Virtual Machine (HPVM), and evaluate it for three classes of parallel hardware: GPUs,

SIMD vector instructions, and multicore CPUs. Our evaluation shows that HPVM can serve

all three purposes listed above: a compiler IR, a virtual ISA, and a scheduling representation,

as described below.

The parallel program representation we propose is a hierarchical dataflow graph with shared
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memory. The graph nodes can represent either coarse-grain or fine-grain computational

tasks, although we focus on moderately coarse-grain tasks (such as an entire inner-loop

iteration) in this work. The dataflow graph edges capture explicit data transfers between

nodes, while ordinary load and store instructions express implicit communication via shared

memory. The graph is hierarchical because a node may contain another dataflow graph.

The leaf nodes can contain both scalar and vector computations. A graph node represents

a static computation, and any such node can be “instantiated” in a rectangular grid of

dynamic node instances, representing independent parallel instances of the computation (in

which case, the incident edges are instantiated as well, as described later).

The hierarchical dataflow graphs naturally capture all the important kinds of coarse- and

fine-grain data and task parallelism in heterogeneous systems. In particular, the graph

structure captures coarse-grain task parallelism (including pipelined parallelism in stream-

ing computations); the graph hierarchy captures multiple levels and granularities of nested

parallelism; the node instantiation mechanism captures either coarse- or fine-grain SPMD-

style data parallelism; and explicit vector instructions within leaf nodes capture fine-grain

vector parallelism (this can also be generated by automatic vectorization across independent

node instances).

We describe a prototype system (also called HPVM) that supports all three capabilities

listed earlier. The system defines a compiler IR as an extension of the LLVM IR [41] by

adding HPVM abstractions as a higher-level layer describing the parallel structure of a

program.

As examples of the use of HPVM as a compiler IR, we have implemented two illustrative

compiler optimizations, graph node fusion and tiling, both of which operate directly on the

HPVM dataflow graphs. Node fusion achieves “kernel fusion”, and the graph structure makes

it explicit when it is safe to fuse two or more nodes. Similarly (and somewhat surprisingly),

we find that the graph hierarchy is also an effective and portable method to capture tiling of

computations, which can be mapped either to a cache hierarchy or to explicit local memories

such as the scratchpads in a GPU.

To show the use of HPVM as a virtual ISA, we implemented translators for NVIDIA

GPUs (using PTX), Intel’s AVX vector instructions, and multicore X86-64 host processors

using Posix threads. The system can translate each HPVM graph node to one or more of

these distinct target architectures (e.g., a 6-node pipeline can generate 36 = 729 distinct

code configurations from a single HPVM version). Experimental comparisons against hand-

coded OpenCL programs compiled with native (commercial) OpenCL compilers show that

the code generated by HPVM is within 22% of hand-tuned OpenCL on a GPU (in fact,

nearly identical in all but one case), and within 7% of the hand-tuned OpenCL in all but
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one case on AVX. We expect the results to improve considerably by further implementation

effort and tuning.

Finally, to show the use of HPVM as a basis for runtime scheduling, we developed a graph-

based scheduling framework that can apply a wide range of static and dynamic scheduling

policies that take full advantage of the ability to generate different versions of code for each

node. Although developing effective scheduling policies is outside the scope of this work, our

experiments show that HPVM enables flexible scheduling policies that can take advantage

of a wide range of static and dynamic information, and these policies are easy to implement

directly on the HPVM representation.

1.4.2 Programmable Machine Learning Accelerator: PROMISE

The goal of this project in the context of this thesis was to gain necessary insights into

the diversity of programmable accelerators that can be part of a heterogeneous SoC in fu-

ture. The project itself was motivated by the computation and large data processing needs of

machine learning (ML) algorithms as they begin to perform better than humans [42] in cogni-

tive and decision-making tasks [43]. We closely collaborated with the team behind Compute

Memory [10] to work on a programmable mixed signal accelerator for ML algorithms based

on deep in-memory computing.

We proposed PROMISE, the first end-to-end design of a programmable mixed-signal ac-

celerator for diverse ML algorithms PROMISE can accomplish a high level of programma-

bility without noticeably losing the efficiency of mixed-signal accelerators for specific ML

algorithms. PROMISE exposes instruction set mechanisms that allow software control over

energy-vs-accuracy tradeoffs, and supports compilation of high-level languages down to the

hardware. Specifically, we make following key contributions.

PROMISE Architecture and ISA: First, we identify prevalent operations in widely-

used ML algorithms and key constraints in supporting these operations for a programmable

mixed-signal accelerator. These include (C1) intrinsic sequentiality imposed on operations

and (C2) high variations in delay across different types of operations. C1 limits the number

of possible programmable operations and C2 significantly affects performance and energy

efficiency of mixed-signal accelerators. Second, we explore PROMISE Instruction Set Ar-

chitecture (ISA), which can expose these operations and constraints to a compiler, with a

programmable mixed-signal accelerator architecture built with silicon-proven components

for mixed-signal operations [10]. The hardware design and ISA include mechanisms to con-

trol the accuracy-vs-energy tradeoff by varying swing voltages, which can be controlled by

compiler-generated code.
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Compiler for PROMISE: First, we discuss design goals for a compiler when PROMISE

aims to maximize energy efficiency while delivering a desired accuracy for a given ML algo-

rithm. Particularly, the following two aspects of PROMISE explode the solution space to

explore when generating code. (A1) PROMISE demands software to determine the accuracy

of each mixed-signal instruction in given code, while a complex interplay among accuracy of

instructions strongly affects energy efficiency and overall final accuracy of the code. (A2)

PROMISE provides many possible compositions of mixed-signal operations even under the

(C1) and (C2) constraints. Considering the large solution space, we reason that it is inher-

ently impractical for users to manually generate code for a complex ML algorithm. Second,

we develop a code generator that translates machine learning kernels down to sequences of

mixed-signal operations. Third, for neural network algorithms in particular, we show how

to automatically map programmer-specified end-to-end accuracy error tolerances down to

hardware-level swing voltage parameter values for individual PROMISE instruction (called

PROMISE Task). A direct mapping is difficult, but we show how to break down the problem

into two steps: (i) mapping error tolerance to computational bit precision (using an existing

analysis [44]), and (ii) mapping bit precision to voltage swings (using simulation-based pro-

filing). Putting these together, we develop a compiler which can take a broad range of ML

algorithms described in a high-level programming language (Julia) and compile it to native

PROMISE code. For neural network algorithms, we can translate a specified end-to-end

error tolerance and compile it to PROMISE code that satisfies the error tolerance while

approximately minimizing voltage swings (within available quantization levels).

Efficacy of PROMISE End-to-End Design: To demonstrate the efficacy of PROMISE,

we first build energy and throughput models of PROMISE based on silicon-validated energy,

delay and behavioral models of mixed-signal blocks. Second, we take nine popular ML

algorithms, describe them in Julia, and generate the code with the PROMISE compiler. Our

evaluation shows that PROMISE can offer 3.4 − 5.5× lower energy and 1.4 − 3.4× higher

throughput than algorithm-specific digital accelerators at comparable inference accuracy.

Lastly, the swing voltage optimized code by the PROMISE compiler further provides 4%−
20% (geometric mean: 15%) lower energy than the unoptimized code for complex ML kernels.

1.4.3 Portable Approximate Computing

We propose ApproxHPVM (an extension of HPVM) a unified compiler IR and frame-

work that enables a program with application-level end-to-end error tolerance constraints to

be optimized and scheduled on a heterogeneous system containing multiple approximation

techniques. The ApproxHPVM system takes as input a program compiled to ApproxH-
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PVM, and end-to-end constraints that quantify the acceptable difference between outputs

with no approximation and approximate results. It generates final code that maps individ-

ual approximable computations within the program to specific hardware components and

specific chosen approximation techniques, while satisfying end-to-end constraints with high

probability and attempting to minimize execution time and maximize energy savings under

those constraints. To our knowledge, no previous system achieves all these capabilities, es-

pecially full automation and support for multiple heterogeneous compute units. Specifically,

ApproxHPVM makes the following contributions:

Decompose end-to-end error specification: For applications with multiple approx-

imable computations, it translates end-to-end (application-level) error specifications to indi-

vidual error specifications and bounds per approximable computation. For instance, a user

may specify an acceptable classification accuracy degradation of 2%, allowing the tuner to

reduce the accuracy requirements for an individual matrix add operation by up to 20%. In

this way, the tuner facilitates the hardware scheduler in mapping error-tolerant operations to

approximate hardware that provides improved performance while satisfying the end-to-end

accuracy requirement.

Mapping to heterogeneous hardware with multiple approximate computing meth-

ods: It automatically determines how to map approximable computations to a variety of

compute units and multiple approximation mechanisms, including efficient special-purpose

accelerators designed to provide improved performance with lower accuracy guarantees.

Decouple autotuning into hardware-agnostic and hardware dependent stage: It

greatly reduces the cost of mapping to a given heterogeneous system providing multiple

approximation techniques by decoupling the mapping problem into a somewhat expensive

development-time hardware-independent autotuning stage and a fast hardware-dependent

stage. Such a strategy provides multiple benefits including a) shipping portable code that

can be mapped to different heterogeneous hardware configurations, b) ability to dynamically

schedule operations based on hardware-independent accuracy constraints, c) enabling hard-

ware design space exploration to incorporate approximation information via fast decision

algorithms.

Evaluation on Target Platform: To show the efficacy of ApproxHPVM, we envision a

mobile SoC with CPUs, a GPU, and an analog accelerator called PROMISE [18] using a

hybrid hardware simulator-real hardware approach. PROMISE is a mixed-signal machine

learning accelerator which employs imprecise analog computation to get orders of magni-

tude energy and throughput benefits for large-vector reduction operations. PROMISE is

particularly well-suited for large matrix multiplications, which are commonly-used kernels
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in deep learning applications. Our system is built as an extension of a mobile SoC plat-

form, NVIDIA Jetson TX2 [45], which has 8 GB shared memory between ARM cores and

an NVIDIA Pascal GPU. We extend the platform by adding a PROMISE timing simulator

connected to the same physical shared memory. The platform provides 9 hardware settings

to trade-off energy and accuracy. The GPU provides two settings (32-bit and 16-bit floating

point computation) and PROMISE provides seven more settings. We evaluate four different

deep neural networks (DNNs) on our platform. Our results show that by smart scheduling

of DNN operations, ApproxHPVM provides performance speedups ranging from 2.8x to 20x

and energy reduction ranging from 1.9x to 7.1x for an accuracy loss of 1%.

1.5 THESIS ORGANIZATION

The remaining chapters are organized as follows. Chapter 2 gives more details on the state

of the art for each of the projects part of this thesis and compares our approach to them.

Chapter 3 gives details of the HPVM IR and how it address the source code portability, object

code portability and performance portability for current and future heterogeneous systems.

It presents the design of HPVM IR and evaluates it to show how it can serve as a virtual

ISA, compiler IR and a runtime representation that facilitates flexible scheduling. Chapter 4

presents the design and evaluation of PROMISE accelerator, the design of PROMISE ISA

and compiler for PROMISE. Chapter 5 proposes extensions to HPVM that help address the

challenges due to heterogeneity in approximation methods. Finally, Chapter 6 summarizes

the contributions and discusses some directions for future work.
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CHAPTER 2: RELATED WORK

This chapter gives context to this thesis by giving a literature review of state of the art

work in programming languages, compiler infrastructures, and runtimes aimed at addressing

the programmability challenges of heterogeneous computing. Apart from these, I have also

added the state of the art work in programmable mixed signal accelerators. This would give

context to our machine learning accelerator PROMISE.

2.1 HPVM

There is a long history of work on dataflow execution models, programming languages, and

compiler systems for homogeneous parallel systems [46, 47, 48, 49, 35, 50, 51, 52]. HPVM

aims to adapt the dataflow model to modern heterogeneous parallel hardware. We focus

below on programming technologies for heterogeneous systems.

Virtual ISAs: NVIDIA’s PTX virtual ISA provides portability across NVIDIA GPUs of

different sizes and generations. HSAIL [53] and SPIR [54] both provide a portable object

code distribution format for a wider class of heterogeneous systems, including GPUs, vectors

and CPUs. All these systems implement a model that can be described as a “grid of kernel

functions,” which captures individual parallel loop nests well, but more complex parallel

structures (such as the 6-node pipeline DAG used in our Edge Detection example) are only

expressed via explicit, low-level data movement and kernel coordination. This makes the

underlying model unsuitable for use as a retargetable compiler IR, or for flexible runtime

scheduling. Finally, it is difficult, at best, to express some important kinds of parallelism,

such as pipelined parallelism (important for streaming applications) : they must be written

explicitly using programmer-defined buffer management and enqueuing an explicit “event”

for synchronizing every data transfer between every pair of pipeline stages. An event rep-

resents a single dependency between two operations, thus a different event would need to

be used per stage per data item. and expressing the dependency between pipeline stages.

This detailed low-level operations for expressing pipelined parallelism in PTX or HSAIL or

SPIR are highly prescriptive and remove flexibility for optimizations from the compiler and

run-time, whereas HPVM allows the programmer to simply express the goal (pipelining)

and leave the details of implementation to the system. In contrast, HPVM allows the pro-

grammer to simply express the goal (pipelining) and leave the details of implementation to

the system.

Compiler IRs with Explicit Parallel Representations: We focus on parallel compil-
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ers for heterogeneous systems. The closest relevant compiler work is OSCAR [31, 55, 32],

which uses a hierarchical task dependence graph as a parallel program representation for

their compiler IR. They do not use this representation as a virtual ISA, which means they

cannot provide object code portability. Their graph edges represent data and control de-

pendences, not dataflow (despite the name), which is well suited to shared memory systems

but not as informative for non-shared memory. In particular, for explicit data transfers, the

compiler must infer automatically what data must be moved (e.g., host memory to accel-

erator memory). They use hierarchical graphs only for the (homogeneous) host processors,

not for accelerators, because they do not aim to perform parallel compiler transformations

for code running within an accelerator nor runtime scheduling choices for such code. KIM-

BLE [56, 33] adds a hierarchical parallel program representation to GCC, while SPIRE [34]

defines a methodology for sequential to parallel IR extension. Neither KIMBLE nor SPIRE

make any claim to, or give evidence of, performance portability or parallel object code

portability.

Runtime Libraries for Heterogeneous Systems: Parallel Virtual Machine (PVM) [57]

enables a network of diverse machines to be used cooperatively for parallel computation.

An application in the PVM model is a collection of tasks (akin to a Unix process) that use

an explicit, highly portable message passing library for communication. Despite the simi-

larity in the names, the systems have different goals. What is virtualized in PVM are the

application programming interfaces for task management and communication across diverse

operating systems, to achieve portability and performance across homogeneous parallel sys-

tems. HPVM virtualizes the parallel execution behavior and the parallel hardware ISAs, to

enable portability and performance across heterogeneous parallel hardware, including GPUs,

vector hardware, FPGAs 1 and potentially domain-specific accelerators.

Several other runtime systems [58, 59, 60, 61] support scheduling and executing parallel

programs on heterogeneous parallel systems.

Programming Languages: Source-level languages such as CUDA, [62] OpenCL, [63]

OpenACC, [64] and OpenMP [25], all support a similar programming model that maps

well to GPUs and vector parallelism. None of them, however, address object code portability

and none can serve as a parallel compiler IR. They also make it difficult to express important

kinds of parallelism, like pipelined parallelism as explained earlier for PTX, SPIR and HSAIL.

PENCIL [65] is a programming language defined as a restricted subset of C99, intended

as an implementation language for libraries and a compilation target for DSLs. Its compiler

1My colleague Adel Ejjeh (aejjeh@illinois.edu) is working on efficient code generation on FPGAs using
HPVM
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uses the polyhedral model to optimize code and is combined with an auto-tuning framework.

It shares the goals of source code portability and performance portability with HPVM.

However, it is designed as a readable language with high-level optimization directives rather

than as a compiler IR, per se, and it also does not address object code portability.

StreamIt [66] and CnC [67] are programming languages with a somewhat more general

representation for streaming pipelines. StreamIt streams are more general, for example,

allowing cycles via its FeedbackLoop mechanism, whereas HPVM does not. In future, it can

be explored how to map StreamIt to HPVM. Most other key StreamIt features such as filters,

SplitJoin and Pipeline can be naturally expressed in HPVM. They, however, focus on stream

parallelism, whereas HPVM supports both streaming and non-streaming parallelism. This

is crucial when defining a compiler IR or a virtual ISA for parallel systems (of any kind),

because most parallel languages (e.g., OpenMP, OpenCL, CUDA, Chapel, etc.) are used for

non-streaming parallel programs.

Frameworks: Habanero-Java [68] and Habanero-C [69], provide an abstraction of heteroge-

neous systems called Hierarchical Place Trees (HPT), that supports co-location of data and

computation at multiple levels of a memory hierarchy to support different communication

mechanisms across memory hierarchies. HPT is aimed at handling the challenge of diversity

of memory hierarchies in heterogeneous systems. However, the challenges of diversity in

instruction sets of compute units are not addressed and thus do not provide object code

portability.

Legion [70, 71] is a programming model and runtime system for writing high performance

applications for distributed heterogeneous architectures. It focuses on the placement and

partitioning of program data in the complex memory hierarchies of such systems where cost

of data movement dominates the cost of computation. It provides abstractions for describing

the structure of program data in a machine independent way including organization, parti-

tioning, privileges, and coherence. In the Legion programming model, every Legion program

executes as a tree of tasks with a top-level task spawning sub-tasks which can recursively

spawn further sub-tasks. All tasks in Legion must specify the logical regions they will access

as well as the privileges and coherence for each logical region. However, broadly it focuses on

addressing the challenge of data layout for heterogeneous architectures with deep memory

hierarchies and not on different parallelism models or object code portability. It does not

address the portability of leaf tasks and relies on the programmer to provide multiple version

of leaf tasks for each processor kind. Also, it does not support partitioning or fusion of tasks

to adapt to different type of compute units. Lastly, in its current form, it focuses on systems

built using CPUs and GPUs, and not DSPs, or semi-custom programmable accelerators.
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Similar to Legion, Sequoia [72] provides rich memory abstractions to enable explicit control

over movement and placement of data at all levels of a heterogeneous memory hierarchy.

HPVM lacks these memory related features, but does express tiling effectively and portably

using the hierarchical graphs. In future, we aim to add richer memory abstractions to HPVM.

Petabricks [27] explores the search space of different algorithm choices and how they map

to CPU and GPU processors. In Tangram [73], a program is written in interchangeable,

composable building blocks, enabling architecture-specific algorithm and implementation

selection. Exploring algorithm choices is orthogonal to, and can be combined with, our

approach.

Delite [74] is a framework for developing compiled, embedded DSLs inside the program-

ming language Scala. The Delite execution graph encodes the dependencies between compu-

tations. One important characteristic of Delite is that IR nodes are simultaneously viewed

in multiple ways: a generic layer, a parallel layer, called Delite ops, and a domain-specific

layer, which is the actual operation, for example, vector reduction. The IR can be optimized

by viewing nodes at any layer, enabling both generic and domain-specific optimizations to

be expressed on the same IR. To provide flexibility to run new ops on different hardware

devices, Delite relies on the DSL developers to provide Scala, CUDA, OpenCL implementa-

tions of these computations as necessary for efficiency. HPVM on the other hand relies on the

hardware vendors to provide platform specific implementation of new ops/parallel patterns

in HPVM IR. The broader Delite approach can be combined with HPVM approach to ease

burden on the DSL developers. The feature of simultaneous multi-level view of Delite IR

helps it perform both generic and domain specific optimizations on the same IR. We think

something similar can benefit HPVM as well, in future.

2.2 APPROXHPVM

Software Approximations: Many studies have introduced novel software techniques for

approximation that reduce execution time and/or energy. The transformations include

task skipping [75, 76, 77], loop perforation [78, 21, 79], approximate function substitu-

tion [80, 81, 23, 82], dynamic knobs [83] (dynamically changing function version), reduction

sampling [84, 82], tuning floating-point operations [85, 86], and approximate paralleliza-

tion [87, 88, 82, 89]. These techniques have been shown to work well across a variety of

application domains resilient to small errors. We envision that ApproxHPVM will provide a

general framework for expressing and developing as many of these optimizations as possible

(we leave the goal of covering all software or hardware approximation methods as future

work), leveraging the ability of the underlying IR to explicitly specify parallelism and data
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dependency. In conjunction, our IR allows a developer to explicitly specify approximation

metrics and the error tolerance allowing the compiler to apply more flexible approximations.

Approximation-Aware Languages: EnerJ [37] presents a type system that separates

approximate and precise data. Chisel [38] and Rely [39] introduced the idea of quantifi-

able reliability and accuracy at the program level. Specifically, Rely enables an application

developer to manually identify unreliable instructions and variables that can be stored in

unreliable memories. In other words, the developer can specify what instructions are ap-

proximable and which variables are approximable. The developer also provides a reliability

specification, which identifies the minimum required probability with which the kernel must

produce a correct result. Given this specification and the exact kernel computation, the

Chisel analysis then automatically navigates the trade-off space between energy savings and

reliability and provides an approximate computation that minimizes the energy savings while

satisfying the reliability and accuracy specification.

ApproxHPVM introduces the concept of quantifiable reliability at the IR level. Incorpo-

rating approximation metrics at the IR level provides a more portable alternative, since the

metrics are preserved even after compiling the program and the approximation becomes a

first-class citizen in a compiler workflow, which is able to interact with various front-end

languages and hardware-specific features. Also, the accuracy specification we use is user

defined end-to-end application accuracy. It is flexible and can be different for different ap-

plications. For the machine learning classification benchmarks we use in this thesis, we use

the degradation in the classification accuracy of the benchmark on a dataset as the metric.

In ApproxHPVM the frontend or developer would specify which IR nodes (macro compu-

tations) are approximable. Our hardware agnostic analysis only adds errors to the outputs

of such nodes. Other details such as approximable instructions, variables and memories, are

specific to the underlying approximation method and hardware and have been abstracted

away in ApproxHPVM IR for portability. Lastly, ApproxHPVM decouples autotuning into

hardware-agnostic and hardware dependent stages unlike any other work that we know of

in this field.

Approximate Hardware Accelerators: Recently there have been many proposals for

machine learning accelerators [90, 91, 92, 93, 94, 19], some of which explicitly incorporate

approximations. Although we have chosen PROMISE and GPUs as the accelerators in our

evaluations, our approach of decoupling autotuning into hardware-agnostic and hardware

dependent approach makes ApproxHPVM easily extensible to adapt to these accelerators as

well. The hardware-independent metrics would remain the same. Similar to how we created

a look-up table to map L-norm metrics to PROMISE and GPU configurations, we would
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need to create a mapping for these accelerators as well.

Systems for Automated Accuracy-tuning: ACCEPT [36] used source-level approxima-

tion annotations for automatically offloading computations to approximate hardware. Like

our work, they target accelerators, they use a combination of static and dynamic analysis,

and they use autotuning to choose between multiple approximation options. We differ from

ACCEPT in several ways. They require programmer involvement in an interactive optimiza-

tion loop for greater programmer control, whereas ApproxHPVM is fully automatic. They

cannot support systems with multiple compute units, which is a key goal of our work (in

addition to multiple approximation techniques). ACCEPT composes errors linearly which

is quite arbitrary because how errors compose depends on the functions involved. This

would lead to valid configurations being discarded where after linearly composing errors,

the end-to-end constraints are not met. Our approach does not assume that errors com-

pose linearly and executes the program to see if the end-to-end accuracy threshold is met

and thus, does not unnecessarily discard valid configurations. Lastly, they do not decouple

hardware-independent from hardware-dependent tuning, which enables us to achieve much

faster target-specific tuning times and portable object code, and enables future uses like

dynamic scheduling and design space exploration.

The Petabricks programming language automatically autotunes the choice of an algorithm

among multiple user-provided choices with varying accuracy and performance characteris-

tics [95, 81]. Autotuning algorithmic choice could be incorporated in ApproxHPVM as

simply another approximation mechanism. For example, different algorithms for specific

IR-level operations could be mapped to different accuracy levels in the back end.

Approximation techniques for deep neural networks, e.g., fixed point quantization of pre-

trained neural networks [96] or layer-grained analytical models for bit-widths of weights

and activations [97], are done using highly domain-specific algorithmic knowledge. In con-

trast, our accuracy-tuning does not require any domain-specific knowledge, instead using

an efficient search-based approach for determining the accuracy requirements for different

operations.

Existing general tools, e.g. [85] tune the floating point precision of numerical computations

by using a domain-neutral search derivations. While these systems are only concerned with

tuning computational precision, ApproxHPVM includes more generic domain-neutral search

with approximation metrics tune floating point precision together with other transformations

provided by software or hardware.
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2.3 HARDWARE ACCELERATORS FOR MACHINE LEARNING

Here we discuss related work in relation to the programmable analog accelerator project,

PROMISE. As mentioned in Section 1.4.2 and discussed in detail in Chapter 4 the accelerator

brings the benefits of deep in-memory computing and analog computing to a wide range of

machine learning algorithms through PROMISE and PROMISE ISA. Here we compare it

against other recent Machine Learning accelerators with/without instruction set (ISA).

2.3.1 Accelerators without ISA

The bandwidth of processor-memory interfaces is a longstanding problem in high-performance

computing. Machine learning applications have greatly aggravated the problem, where mem-

ory access has begun to dominate the overall energy consumption. There have been proposal

for digital ML accelerators such as Eyeriss [8] to reduce memory access energy and latency

by exploiting the dataflow of convolution neural networks. Such accelerators give signifi-

cant benefits over more general purpose processors like CPUs and GPUs, but are algorithm

specific (Eyeriss is specific to convolution neural networks).

Many analog accelerators have also been proposed. RedEye [98] performs the initial

convolution layer computations in analog domain before going to digital domain. RedEye [98]

performs the initial convolution layer computations in analog domain before going to digital

domain. [99, 100] employed Adaptive Boosting algorithm for image recognition processing

raw analog signals from sensors. [101] suggested mixed-signal matrix multiplier via switched-

capacitor. Such papers exploit the efficient analog calculation for large data processing at

slightly compromised accuracy. However, they are not programmable and do not cover

diverse ML algorithms in general.

There have also been efforts to integrate computation near memory with emerging tech-

nologies such as resistive RAM (RRAM) [102], and a Memristor crossbar based CNN accel-

erator [103]. These accelerators too are not programmable and limited to neural network

algorithm.

2.3.2 Accelerators with ISA

Cambricon [104] and PuDianNao [105] aim to cater to a wider range of ML algorithms

and have a instruction set (ISA) for the digital ML accelerator they propose. The Dian-Nao

family of deep learning processors demonstrate approximately 100× improvement in both

energy and speed-up compared to a GPU. PROMISE [18] employs an alternate approach of
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using Compute Memory (CM) [106] technology to get even more energy benefits while at

the same time keeping it programmable and applicable to wider set of ML algorithms.
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CHAPTER 3: HPVM: HETEROGENEOUS PARALLEL VIRTUAL
MACHINE

We1 studied the programmability and portability challenges of heterogeneous systems and

proposed a parallel program representation designed to enable performance portability across

a wide range of popular hardware, including GPUs, vector instruction sets, multicore CPUs

and potentially FPGAs. The representation, which we call HPVM, is a hierarchical dataflow

graph with shared memory and vector instructions. HPVM supports three important ca-

pabilities for programming heterogeneous systems: a compiler intermediate representation

(IR), a virtual instruction set (ISA), and a basis for runtime scheduling; previous systems fo-

cus on only one of these capabilities. As a compiler IR, HPVM aims to enable effective code

generation and optimization for heterogeneous systems. As a virtual ISA, it can be used to

ship executable programs, in order to achieve both functional portability and performance

portability across such systems. At runtime, HPVM enables flexible scheduling policies,

both through the graph structure and the ability to compile individual nodes in a program

to any of the target devices on a system. We have implemented a prototype HPVM system,

defining the HPVM IR as an extension of the LLVM compiler IR, compiler optimizations

that operate directly on HPVM graphs, and code generators that translate the virtual ISA to

NVIDIA GPUs, Intel’s AVX vector units, and to multicore X86-64 processors. Experimen-

tal results show that HPVM optimizations achieve significant performance improvements,

HPVM translators achieve performance competitive with manually developed OpenCL code

for both GPUs and vector hardware, and that runtime scheduling policies can make use

of both program and runtime information to exploit the flexible compilation capabilities.

Overall, we conclude that the HPVM representation is a promising basis for achieving per-

formance portability and for implementing parallelizing compilers for heterogeneous parallel

systems.

3.1 HPVM PARALLELISM ABSTRACTIONS

This section describes the Heterogeneous Parallel Virtual Machine parallel program repre-

sentation. The next section describes a specific realization of Heterogeneous Parallel Virtual

Machine on top of the LLVM compiler IR.

1This work was done jointly (and equally) with Maria Kotsifakou (kotsifa2@illinois.edu)
and would appear in both of our theses.
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Figure 3.1: Non-linear Laplacian computation in HPVM

3.1.1 Dataflow Graph

In HPVM, a program is represented as a host program plus a set of one or more distinct

dataflow graphs. Each dataflow graph (DFG) is a hierarchical graph with side effects. Nodes

represent units of execution, and edges between nodes describe the explicit data transfer

requirements. A node can begin execution once it receives a data item on every one of its

input edges. Thus, repeated transfer of data items between nodes (if overlapped) yields a

pipelined execution of different nodes in the graph. The execution of the pipeline is initiated

and terminated by host code that launches the graph. For example, this mechanism can

be used for streaming computations on data streams, e.g., processing successive frames in a

video stream.
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Nodes may access globally shared memory through load and store instructions (“side-

effects”), since hardware shared memory is increasingly common across heterogeneous sys-

tems. These operations may result in implicit data transfers, depending on the mapping of

nodes to hardware compute units and on the underlying memory system. Because of these

side effects, HPVM is not a “pure dataflow” model. Figure 3.1 shows the HPVM version of a

Laplacian estimate computation of a greyscale image, used as part of image processing filters.

This will be used as a running example. The figure shows the components of the Laplacian

as separate dataflow nodes – Dilation Filter (DF), Erosion Filter (EF) and Linear

Combination (LC) – connected by edges. The figure also shows the code for node LC, which

is standard LLVM IR except for the new intrinsic functions named Load/store instructions

access shared memory, using pointers that must be received explicitly from preceding nodes.

Dynamic Instances of Nodes and Edges: The dataflow graphs in HPVM can describe

varying (data-dependent) degrees of parallelism at each node. In particular, a single static

dataflow node or edge represents multiple dynamic instances of the node or edge, each

executing the same code with different index values. The dynamic instances of a node are

required to be independent of each other, so that each time a (static) node is executed

on receiving a new set of data items, all dynamic instances of the node may execute in

parallel, similar to invoking a parallel loop. The dynamic instances form an n-dimensional

grid, with integer indexes in functions. Our implementation allows up to three dimensions.

For example, the LC node in the example is replicated to have dimX × dimY instances,

where dimX and dimY are computed at runtime. Similarly, a static edge between two static

nodes may represent multiple dynamic edges between dynamic instances of the two nodes,

as explained further in Section 3.1.1.

Dataflow Node Hierarchy: Each dataflow node in a DFG can either be a leaf node or an

internal node. An internal node contains a complete dataflow graph, called a child graph,

and the child graph itself can have internal nodes and leaf nodes. In Figure 3.1, the node

Laplacian Estimate is an internal node, and its child graph comprises the leaf nodes DF,

EF, and LC.

A leaf node contains scalar and/or vector code, expressing actual computations. Dynamic

instances of a leaf node capture independent computations, and a single instance of a leaf

node can contain fine-grain vector parallelism. Leaf nodes may contain instructions to query

the structure of the underlying dataflow graph, as described in Section 3.2.

Internal nodes describe the structure of the child graph. The internal nodes are traversed

by the translators to construct a static graph and generate code for the leaf nodes and edges

(Section 3.3). One restriction of this model is that the dataflow graph cannot be modified
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at runtime, e.g., by data-dependent code, dynamically spawning new nodes; this enables

fully-static optimization and code generation at the cost of some expressivity.

The grouping and hierarchy of parallelism has several advantages. It helps express sev-

eral different kinds of parallelism in a compact and intuitive manner: coarse-grain task

(i.e., pipelined) parallelism via top-level nodes connected using dataflow edges; independent

coarse- or fine-grained data parallelism via dynamic instances of a single static node; and

fine-grained data parallelism via vector instructions within single instances of leaf nodes.

It provides a flexible and powerful mechanism to express tiling of computations for mem-

ory hierarchy in a portable manner (Section 3.5.3). It enables efficient scheduling of the

execution of the dataflow graph by grouping together appropriate sets of dataflow nodes.

For example, a runtime scheduler could choose to map a single top-level (internal) node to

a GPU or to one core of a multicore CPU, instead of having to manage potentially large

numbers of finer-grain nodes. Finally, it supports a high-degree of modularity by allowing

separate compilation of parallel components, represented as individual dataflow graphs that

can be composed into larger programs.

Hardware feature Typical HPVM representation
Heterogeneous multiprocessor system
Major hardware compute units, e.g.,
CPU cores, GPUs

Top-level nodes in the DFG and edges between them

GPUs
GPU Threads DFG leaf nodes

GPU Thread Blocks Parent nodes of DFG leaf nodes

Grid of Thread Blocks (SMs) Either same as GPU Thread Blocks or parent node of DFGs rep-
resenting thread blocks

GPU registers, private memory Virtual registers in LLVM code for leaf nodes

GPU Scratch-pad Memory Memory allocated in DFG internal nodes representing thread
blocks

GPU Global Memory and GPU Con-
stant Memory

Other memory accessed via loads and stores in DFG leaf nodes

Short-vector SIMD instructions

Vector instructions with independent
operations

Dynamic instances of first-level internal nodes, and/or Vector code
in leaf nodes

Vector instructions with cross-lane de-
pendences

Vector code in leaf nodes

Vector registers Virtual registers in LLVM code for leaf nodes

Homogeneous host multiprocessor

CPU threads in a shared-memory mul-
tiprocessor

One or more nodes in one or more DFGs

Shared memory Memory accessed via loads and stores in DFG leaf nodes. HPVM
intrinsics for synchronization.

Table 3.1: How HPVM represents major parallel hardware features
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Dataflow Edges and Bindings: Explicit data movement between nodes is expressed with

dataflow edges. A dataflow edge has the semantics of copying specified data from the source

to the sink dataflow node, after the source node has completed execution. Depending on

where the source and sink nodes are mapped, the dataflow edge may be translated down

to an explicit copy between compute units, or communication through shared memory, or

simply a local pointer-passing operation.

As with dataflow nodes, static dataflow edges also represent multiple dynamic instances of

dataflow edges between the dynamic instances of the source and the sink dataflow nodes. An

edge can be instantiated at runtime using one of two simple replication mechanisms: “all-to-

all”, where all dynamic instances of the source node are connected with all dynamic instances

of the sink node, thus expressing a synchronization barrier between the two groups of nodes,

or “one-to-one” where each dynamic instance of the source dataflow node is connected with

a single corresponding instance of the sink node. One-to-one replication requires that the

grid structure (number of dimensions and the extents in each dimension) of the source and

sink nodes be identical.

Figure 3.1 shows the dataflow edges describing the data movement of input image I, dilated

image Id, eroded image Ie, and matrix B between dataflow nodes. Some edges (e.g., input

B to node Laplacian Estimate) are “fixed” edges: their semantics is as if they repeatedly

transfer the same data for each node execution. In practice, they are treated as a constant

across node executions, which avoids unnecessary data transfers (after the first execution on

a device).

In an internal node, the incoming edges may provide the inputs to one or more nodes of

the child graph, and conversely with the outgoing edges, such as the inputs I and B and

output L of node Laplacian Estimate. Semantically, these represent bindings of input and

output values and not data movement. We show these as undirected edges.

3.1.2 Vector Instructions

The leaf nodes of a dataflow graph can contain explicit vector instructions, in addition to

scalar code. We allow parametric vector lengths to enable better performance portability,

i.e., more efficient execution of the same HPVM code on various vector hardware. The vector

length for a relevant vector type need not be a fixed constant in the HPVM code, but it

must be a translation-time constant for a given vector hardware target. This means that

the parametric vector types simply get lowered to regular, fixed-size vector types during

native code generation. Figure 3.1 shows an example of parametric vector length (%vl)

computation and use.
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Evaluating the effect of parametric vector lengths on performance is out of the scope of this

work because we only support one vector target (Intel AVX) for now. Moreover, in all the

benchmarks we evaluate, we find that vectorizing across dynamic instances of a leaf node is

more effective than using explicit vector code, as explained in Sections 3.3.2 and 3.6.2. More

complex vector benchmarks, however, may benefit from the explicit vector instructions.

3.1.3 Integration with Host Code

Each HPVM dataflow graph is “launched” by a host program, which can use launch and

wait operations to initiate execution and block for completion of a dataflow graph. The

graph execution is asynchronous, allowing the host program to run concurrently and also

allowing multiple independent dataflow graphs to be launched concurrently. The host code

initiates graph execution by passing initial data during the launch operation. It can then

sustain a streaming graph computation by sending data to input graph nodes and receiving

data from output nodes. The details are straightforward and are omitted here.

3.1.4 Discussion

An important consideration in the design of HPVM is to enable efficient mapping of code

to key features of various target hardware. We focus on three kinds of parallel hardware in

this work: GPUs, vectors, and multithreaded CPUs. Table 3.1 describes which HPVM code

constructs are mapped to the key features of these three hardware families. This mapping

is the role of the translators described in Section 3.3. The table is a fairly comprehensive

list of the major hardware features used by parallel computations, showing that HPVM is

effective at capturing different kinds of hardware.

3.2 HPVM VIRTUAL ISA AND COMPILER IR

We have developed a prototype system, also called HPVM, including a Compiler IR, a

Virtual ISA, an optimizing compiler, and a runtime scheduler, all based on the HPVM

representation The compiler IR is an extension of the LLVM IR, defined via LLVM intrinsic

functions, and supports both code generation (Section 3.3) and optimization (Section 3.5)

for heterogeneous parallel systems. The virtual ISA is essentially just an external, fully

executable, assembly language representation of the compiler IR.

We define new instructions for describing and querying the structure of the dataflow graph,

for memory management and synchronization, as well as for initiating and terminating
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Intrinsics for Describing Graphs
i8* llvm.hpvm.createNode1D(Function* F, i32 n) Create node with n dynamic instances executing node

function F (similarly llvm.hpvm.createNode2D/3D)
void llvm.hpvm.createEdge(i8* Src, i8* Dst, i32
sp, i32 dp, i1 ReplType, i1 Stream)

Create edge from output sp of node Src to input dp of
node Dst

void llvm.hpvm.bind.input(i8* N, i32 ip, i32 ic,
i1 Stream)

Bind input ip of current node to input ic of child node
N

void llvm.hpvm.bind.output(i8* N, i32 op, i32
oc, i1 Stream)

Bind output oc of child node N to output op of the current
node

Intrinsics for Querying Graphs
i8* llvm.hpvm.getNode() Return a handle to the current dataflow node
i8* llvm.hpvm.getParentNode(i8* N) Return a handle to the parent of node N
i32 llvm.hpvm.getNodeInstanceID.[xyz](i8*

N)

Get index of current dynamic node instance of node N
in dimension x, y or z

i32 llvm.hpvm.getNumNodeInstances.[xyz](i8*

N)

Get number of dynamic instances of node N in dimension
x, y or z

i32 llvm.hpvm.getVectorLength(i32 typeSz) Get vector length in target compute unit for type size
typeSz

Intrinsics for Memory Allocation and Synchronization
i8* llvm.hpvm.malloc(i32 nBytes) Allocate a block of memory of size nBytes and return

pointer to it
i32 llvm.hpvm.xchg(i32, i32), i32

llvm.hpvm.atomic.add(i32*, i32), . . .
Atomic-swap, atomic-fetch-and-add, etc., on shared
memory locations

void llvm.hpvm.barrier() Local synchronization barrier across dynamic instances
of current leaf node

Table 3.2: Intrinsic functions used to implement the HPVM internal representation. iN is
the N -bit integer type in LLVM.

execution of a graph. We express the new instructions as function calls to newly defined

LLVM “intrinsic functions.” These appear to existing LLVM passes simply as calls to

unknown external functions, so no changes to existing passes are needed.

The intrinsic functions used to define the HPVM compiler IR and virtual ISA are shown in

Table 3.2 (except host intrinsics for initiating and terminating graph execution). The code

for each dataflow node is given as a separate LLVM function called the “node function,”

specified as function pointer F for intrinsics llvm.hpvm.createNode[1D,2D,3D]. The node

function may call additional, “auxiliary” functions. The incoming dataflow edges and their

data types are denoted by the parameters to the node function. The outgoing dataflow

edges are represented by the return type of the node function, which must be an LLVM

struct type with zero or more fields (one per outgoing edge). In order to manipulate or

query information about graph nodes and edges, we represent nodes with opaque handles

(pointers of LLVM type i8*) and represent input and output edges of a node as integer

indices into the list of function arguments and into the return struct type.

The intrinsics for describing graphs can only be “executed” by internal nodes; all these
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intrinsics are interpreted by the compiler at code generation time and erased, effectively

fixing the graph structure. (Only the number of dynamic instances of a node can be varied

at runtime.) All other intrinsics are executable at run-time, and can only be used by leaf

nodes or by host code.

Most of the intrinsic functions are fairly self-explanatory and their details are omit-

ted here for lack of space. A few less obvious features are briefly explained here. The

llvm.hpvm.createEdge intrinsic takes a one bit argument, ReplType, to choose a 1-1 or

all-to-all edge, and another, Stream to choose an ordinary or an invariant edge. The Stream

argument to each of the bind intrinsics is similar. The intrinsics for querying graphs can be

used by a leaf node to get information about the structure of the graph hierarchy and the

current node’s position within it, including its indices within the grid of dynamic instances.

llvm.hpvm.malloc allocates an object in global memory, shared by all nodes, although

the pointer returned must somehow be communicated explicitly for use by other nodes.

llvm.hpvm.barrier only synchronizes the dynamic instances of the node that executes it,

and not all other concurrent nodes. In particular, there is no global barrier operation in

HPVM, but the same effect can be achieved by merging dataflow edges from all concurrent

nodes.

Finally, using LLVM functions for node code makes HPVM an “outlined” representation,

and the function calls interfere with existing intraprocedural optimizations at node bound-

aries. We are working on adding HPVM information within LLVM IR without outlining,

using a new LLVM extension mechanism.

3.3 COMPILATION STRATEGY

We describe the key aspects of the compilation strategy here.

3.3.1 Background

We begin with some background on how code generation works for a virtual instruction

set, shown for HPVM in Figure 3.2. At the developer site, front-ends for one or more

source languages lower source code into the HPVM IR. One or more optimizations may

be optionally applied on this IR, to improve program performance, while retaining the IR

structure and semantics. The possibly optimized code is written out in an object code or

assembly language format, using the IR as a virtual ISA, and shipped to the user site (or

associated server). A key property of HPVM (like LLVM [107]) is that the compiler IR and

the virtual ISA are essentially identical. Once the target hardware becomes known (e.g.,
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at the user site or server), the compiler backend is invoked. The backend traverses the

Virtual ISA and uses one or more target-ISA-specific code generators to lower the program

to executable native code.

Hardware vendors provide high-quality back ends for individual target ISAs, which we can

often leverage for our system, instead of building a complete native back-end from scratch

for each target. We do this for the PTX ISA on NVIDIA GPUs, AVX vector ISA for Intel

processors, and X86-64 ISA for individual threads on Intel host processors.

In this work, we focus on using HPVM for efficient code generation (this section) and

optimizations (section 3.5). We leave front ends for source languages for future work. Note

that we do rely on a good dataflow graph (representing parallelism, not too fine-grained

nodes, good memory organization) for good code generation. This need can be met with a

combination of parallelism information from suitable parallel programming languages (such

as OpenMP or OpenCL), combined with the graph optimizations at the HPVM level, de-

scribed in Section 3.5. We do not rely on precise static data dependence analysis or precise

knowledge of data transfers or memory accesses, which is important because it means that

we can support irregular or data-dependent parallelism and access patterns effectively.

3.3.2 HPVM Compilation Flow

The HPVM compilation flow follows the structure shown in Figure 3.2. The compiler

invokes separate back-ends, one for each target ISA. Each back end performs a depth-first

traversal of the dataflow graph, maintaining the invariant that code generation is complete

for all children in the graph hierarchy of a node, N , before performing code generation for

N . Each back end performs native code generation for selected nodes, and associates each

translated node with a host function that implements the node’s functionality on the target

device.

We have implemented back ends for three target ISAs: PTX (GPU), AVX (Vector), and

X86-64 (CPU). Each backend emits a device-specific native code file that includes a device

specific function per translated node. For now, we use simple annotations on the node

functions to specify the target compute unit manually, where the annotation may specify

one or more of GPU,Vector,CPU, defaulting to CPU. The following subsections describe each

back end briefly.

Code Generation for PTX: The PTX [108] backend builds on the existing NVPTX back-

end in LLVM. This back end translates an extended version of the LLVM IR called NVVM

(containing PTX-specific intrinsic functions) [109] into PTX assembly.

A node annotated for GPU will usually contain a two-level or three-level DFG, depending
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Figure 3.2: Overview of compilation flow for HPVM.

on whether or not the computation must be tiled, as shown in Table 3.1 and explained in

Section 3.5.3. Our translator for PTX takes as input the internal node containing this DFG.

It generates an NVVM kernel function for each leaf node, which will execute the dynamic

instances of the leaf node. If the DFG is a three-level graph, and the second (thread block)

level node contains an allocation node (defined as a leaf node that allocates memory using

the llvm.hpvm.malloc intrinsic), the allocated memory is assigned to scratchpad memory,

as explained in Section 3.5.3. All other memory is allocated by the translator to GPU global

memory or GPU constant memory. The generated NVVM kernel is translated to PTX by

the NVPTX back-end. Our translator also generates code to use the NVIDIA OpenCL

runtime to load and run the PTX assembly of the leaf node on the GPU. This code is the

host function associated with the input dataflow node on the GPU.

Code Generation for AVX: Dynamic instances of leaf nodes are independent, making it

possible to vectorize across node instances. We leverage Intel’s translator from SPIR [54]

to AVX, which is part of Intel’s OpenCL runtime system, for two reasons: it recognizes and

utilizes the independence of SPIR work items to produce vector parallelism, and it is well

tuned to produce efficient code for the AVX instruction set. Instead of writing our own
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AVX code-generator directly from HPVM with these sophisticated capabilities, we instead

wrote a translator that converts HPVM code to SPIR, in which the dynamic instances of

leaf nodes become SPIR work items. The SPIR code is then vectorized for AVX by Intel’s

translator. Our translator also creates the necessary host function to initiate the execution

of the SPIR kernel.

Host Code Generation: The x86 backend is invoked last, and generates the following:

• Native code for all nodes annotated as CPU nodes. We build upon the LLVM X86

backend for regular LLVM IR, adding support for HPVM query intrinsics. We translate

createNode operations to loops enumerating the dynamic instances, and dataflow

edges to appropriate data transfers (section 3.3.2).

• For nodes with multiple native versions, i.e. annotated with more than one target, a

wrapper function that invokes the HPVM runtime scheduler (section 3.4) to choose

which target function to execute on every invocation.

• Host-side coordination code, enforcing the order of execution dictated by the dataflow

graph.

• Code to initiate and terminate execution of each dataflow graph.

Data Movement: Code generation for dataflow edges is performed as part of translating

the internal dataflow node containing the edge. When the source and sink node execute on

the same compute unit, or if they execute on two different compute units that share memory,

passing a pointer between the nodes is enough. Such pointer passing is safe even with copy

semantics: a dataflow edge implies that the source node must have completed execution

before the sink node can begin, so the data will not be overwritten once the sink begins

execution. (Pointer passing may in fact not be the optimal strategy, e.g., on NVIDIA’s

Unified Virtual Memory. We are developing a more effective optimization strategy for such

systems.)

Some accelerators including many GPUs and FPGAs, only have private address spaces

and data needs to be explicitly transferred to or from the accelerator memory. In such

cases, we generate explicit data copy instructions using the accelerator API, e.g., OpenCL

for GPUs.

It is important to avoid unnecessary data copies between devices for good performance.

To that end, we allow explicit attributes in, out, and inout on node arguments, and only

generate the specified data movement. Achieving the same effect without annotations would

31



require an interprocedural May-Mod analysis [110] for pointer arguments, which we aim to

avoid as a requirement for such a key optimization.

3.4 HPVM RUNTIME AND SCHEDULING FRAMEWORK

Some features of our translators require runtime support. First, when global memory must

be shared across nodes mapped to devices with separate address spaces, the translator inserts

calls to the appropriate accelerator runtime API (e.g., the OpenCL runtime) to perform the

copies. Such copies are sometimes redundant, e.g., if the data has already been copied to the

device by a previous node execution. The HPVM runtime includes a conceptually simple

“memory tracker” to record the locations of the latest copy of data arrays, and thus avoid

unnecessary copies.

Second, streaming edges are implemented using buffering and different threads are used

to perform the computation of each pipeline stage. The required buffers, threads, and data

copying are managed by the runtime.

Finally, the runtime is invoked when a runtime decision is required about where to schedule

the execution of a dataflow node with multiple translations. We use a run-time policy to

choose a target device, based on the dataflow node identifier, the data item number for

streaming computations, and any performance information available to the runtime. (Data

item numbers are counted on the host: 0 or higher in a streaming graph, −1 in a non-

streaming graph.) This basic framework allows a wide range of scheduling policies. We have

implemented a few simple static and dynamic policies:

1. Static Node Assignment : Always schedule a dataflow node on a fixed, manually spec-

ified target, so the target depends only on the node identifier.

2. Static Data Item Assignment : Schedule all nodes of a graph for a particular input data

item on a single target, so the target depends only on the data item number.

3. Dynamic: A dynamic policy that uses the node identifier as in policy #1 above, plus

instantaneous availability of each device: when a specified device is unavailable, it uses

the CPU instead.

We leave it to future work to experiment with more sophisticated scheduling policies within

the framework. In this work, we simply aim to show that we offer the flexibility to support

flexible runtime scheduling decisions. For example, the second and third policies above could

use a wide range of algorithms to select the target device per data item among all available
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devices. The key to the flexibility is that HPVM allows individual dataflow graph nodes to

be compiled to any of the targets.

3.5 COMPILER OPTIMIZATION

An important capability of a compiler IR is to support effective compiler optimizations.

The hierarchical dataflow graph abstraction enables optimizations of explicitly parallel pro-

grams at a higher (more informative) level of abstraction than a traditional IR (such as

LLVM and many others), that lacks explicitly parallel abstractions; i.e., the basic intrinsics,

createNode*, createEdge*, bind.input, bind.output, getNodeInstanceID.*, etc., are

directly useful for many graph analyses and transformations. In this section, we describe a

few optimizations enabled by the HPVM representation. Our long term goal is to develop

a full-fledged parallel compiler infrastructure that leverages the parallelism abstractions in

HPVM.

3.5.1 Node Fusion

One optimization we have implemented as a graph transformation is Node Fusion. It can

lead to more effective redundancy elimination and improved temporal locality across func-

tions, reduced kernel launch overhead on GPUs, and sometimes reduced barrier synchro-

nization overhead. Fusing nodes, however, can hurt performance on some devices because of

resource constraints or functional limitations. For example, each streaming multiprocessor

(SM) in a GPU has limited scratchpad memory and registers, and fusing two nodes into one

could force the use of fewer thread blocks, reducing parallelism and increasing pressure on

resources. We use a simple policy to decide when to fuse two nodes; for our experiments,

we provide the node identifiers of nodes to be fused as inputs to the node fusion pass. We

leave it to future work to develop a more sophisticated node fusion policy, perhaps guided

by profile information or autotuning.

Two nodes N1 and N2 are valid node fusion candidates if: (1) they both are (a) leafs,

or (b) internal nodes containing an optional allocation node (see Section 3.3.2) and a single

other leaf node (which we call the compute node); (2) they have the same parent, target,

dimensions and size in each dimension, and, if they are internal nodes, so do their compute

nodes and their optional allocation nodes; and (3) they are either concurrent (no path of

edges connects them), or they are connected directly by 1-1 edges and there is no data

transfer between N1’s compute and N2’s allocation node, if any.
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The result is a fused node with the same internal graph structure, and with all incoming

(similarly, outgoing) edges of N1 and N2, except that edges connecting N1 and N2 are

replaced by variable assignments.

Note that fusing nodes may reduce parallelism, or may worsen performance due to greater

peak resource usage. Nodes that have been fused may need to be split again due to changes

in program behavior or resource availability, but fusing nodes loses information about the

two original dataflow nodes. More generally, node splitting is best performed as a first-class

graph transformation, that determines what splitting choices are legal and profitable. We

leave this transformation to future work.

3.5.2 Mapping Data to GPU Constant Memory

GPU global memory is highly optimized (in NVIDIA GPUs) for coalescing of consecutive

accesses by threads in a thread block: irregular accesses can have orders-of-magnitude lower

performance. In contrast, constant memory is optimized for read-only data that is invariant

across threads and is much more efficient for thread-independent data.

The HPVM translator for GPUs automatically identifies data that should be mapped

to constant memory. The analysis is trivial for scalars, but also simple for array accesses

because of the HPVM intrinsics: for array index calculations, we identify whether they

depend on (1) the getNodeInstanceId.* intrinsics, which is the sole mechanism to express

thread-dependent accesses, or (2) memory accesses. Those without such dependencies are

uniform and are mapped to constant memory, and the rest to GPU global memory. The

HPVM translator identified such candidates in 3 (spmv, tpacf, cutcp) out of 7 benchmarks

, resulting in 34% performance improvement in tpacf and no effect on performance of the

other two benchmarks.

3.5.3 Memory Tiling

The programmer, an optimization pass or a language front-end can “tile” the computation

by introducing an additional level in the dataflow graph hierarchy. The (1D, 2D or 3D)

instances of a leaf node would become a single (1D, 2D or 3D) tile of the computation. The

(1D, 2D or 3D) instances of the parent node of the leaf node would become the (1D, 2D or

3D) blocks of tiles.

Memory can be allocated for each tile using the llvm.hpvm.malloc intrinsic in a single

allocation node (see Section 3.3.2), which passes the resulting pointer to all instances of the

leaf node representing the tile. This memory would be assigned to scratchpad memory on a
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GPU or left in global memory and get transparently cached on the CPU.

In this manner, a single mechanism, an extra level in the hierarchical dataflow graph, rep-

resents both tiling for scratchpad memory on the GPU and tiling for cache on the CPU, while

still allowing device-specific code generators or autotuners to optimize tile sizes separately.

On a GPU, the leaf node becomes a thread block and we create as many thread blocks as

the dimensions of the parent node. On a CPU or AVX target, the code results in a loop nest

with as many blocks as the dimensions of the parent node, of tiles as large as the dimensions

of the leaf node.

We have used this mechanism to create tiled versions of four of the seven Parboil bench-

marks evaluated in Section 3.6. The tile sizes are determined by the programmer in our

experiments. For the three benchmarks (sgemm, tpacf, bfs) for which non-tiled versions

were available, the tiled versions achieved a mean speedup of 19x on GPU and 10x on AVX,

with sgemm getting as high as 31x speedup on AVX.

3.6 EVALUATION

We evaluate the HPVM virtual ISA and compiler IR by examining several questions: (1)

Is HPVM performance-portable: can we use the same virtual object code to get “good”

speedups on different compute units, and how close is the performance achieved by HPVM

compared with hand-written OpenCL programs? (2) Does HPVM enable flexible scheduling

of the execution of target programs? (3) Does HPVM enable effective optimizations of target

programs?

3.6.1 Experimental Setup and Benchmarks

We define a set of C functions corresponding to the HPVM intrinsics and use them to

write parallel HPVM applications. We modified the Clang compiler to generate the virtual

ISA from this representation. We translated the same HPVM code to two different target

units: the AVX instruction set in an Intel Xeon E5 core i7 and a discrete NVIDIA GeForce

GTX 680 GPU card with 2GB of memory. The Intel Xeon also served as the host processor,

running at 3.6 GHz, with 8 cores and 16 GB RAM.

For the performance portability and hand-coded comparisons, we used 7 OpenCL appli-

cations from the Parboil benchmark suite [111]: Sparse Matrix Vector Multiplication (spmv),

Single-precision Matrix Multiplication (sgemm), Stencil PDE solver (stencil), Lattice-Boltzmann

(lbm), Breadth-first search (bfs), Two Point Angular Correlation Function (tpacf), and

Distance-cutoff Coulombic Potential (cutcp).
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In the GPU experiments, our baseline for comparison is the best available OpenCL im-

plementation. For spvm, sgemm, stencil, lbm, bfs and cutcp, that is the Parboil version

labeled opencl nvidia, which has been hand-tuned for the Tesla NVIDIA GPUs [112]. For

tpacf, the best is the generic Parboil version labeled opencl base. We further optimized

the codes by removing unnecessary data copies (bfs) and global barriers (tpacf, cutcp). All

the applications are compiled using NVIDIA’s proprietary OpenCL compiler.

In the vector experiments, with the exception of stencil and bfs, our baseline is the same

OpenCL implementations we chose as GPU baselines, but compiled using the Intel OpenCL

compiler, because these achieved the best vector performance as well. For stencil, we used

opencl base instead, as it outperformed opencl nvidia. For bfs, we also used opencl base,

as opencl nvidia failed the correctness test. The HPVM versions were generated to match

the algorithms used in the OpenCL versions, and that was used for both vector and GPU

experiments.

We use the largest available input for each benchmark, and each data point we report is

an average of ten runs.

3.6.2 Portability and Comparison with Hand Tuning

Figures 3.3 and 3.4 show the execution time of these applications on GPU and vector

hardware respectively, normalized to the baselines mentioned above. Each bar shows seg-

ments for the time spent in the compute kernel (Kernel), copying data (Copy) and remaining

time on the host. The total execution time for the baseline is shown above the bar.

Compared to the GPU baseline, HPVM achieves near hand-tuned OpenCL performance

for all benchmark except bfs, where HPVM takes 22% longer. The overhead is because our

translator is not mature enough to generate global barriers on GPU, and thus HPVM version

is based on a less optimized algorithm that issues more kernels than the opencl nvidia

version, incurring significant overhead. In the vector case, HPVM achieves performance

close to the hand-tuned baseline in all benchmarks except lbm. In this case, the vector code

generated from the Intel OpenCL compiler after our SPIR backend is significantly worse

that the one generated directly from OpenCL - we are looking into the cause of this.

Note that although HPVM is a low-level representation, it requires less information to

achieve performance on par with OpenCL, e.g., details of data movement need not be spec-

ified, nor distinct command queues for independent kernels. The omitted details can be

decided by the compiler, scheduler, and runtime instead of the programmer.
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Figure 3.3: GPU Experiments - Normalized Execution Time. For each benchmark, left bar
is HPVM and right bar is OpenCL.

Figure 3.4: Vector Experiments - Normalized Execution Time. For each benchmark, left bar
is HPVM and right bar is OpenCL.

3.6.3 Evaluation of Flexible Scheduling

We used a six-stage image processing pipeline, Edge Detection in grey scale images, to

evaluate the flexibility that HPVM provides in scheduling the execution of programs con-

sisting of many dataflow nodes. The application accepts a stream of grey scale images, I,

and a fixed mask B and computes a stream of binary images, E, that represent the edges of

I. We feed 1280x1280 pixel frames from a video as the input and measure the frame rate at

the output. This pipeline is natural to express in HPVM. The streaming edges and pipeline

stages simply map to key features of HPVM, and the representation is similar to the code

presented in Figure 3.1. In contrast, expressing pipelined streaming parallelism in OpenCL,

PTX, SPIR or HSAIL, although possible, is extremely awkward.

Expressing this example in HPVM allows for flexibly mapping each stage to one of three

targets (GPU, vector or a CPU thread), for a total of 36 = 729 configurations, all generated

from a single HPVM code. Figure 3.5 shows the frame rate of 7 such configurations. The
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Figure 3.5: Frame rates of different configurations of Edge Detection six stage pipeline
through single HPVM object code.

figure shows that HPVM can capture pipelined, streaming computations effectively with

good speedups. More importantly, however, the experiment shows that HPVM is flexible

enough to allow a wide range of static mapping configurations with very different perfor-

mance characteristics from a single code.

To show the flexibility for dynamic scheduling, we emulate a situation where the GPU

becomes temporarily unavailable, by using a thread to toggle a boolean variable indicating

availability. This can arise, e.g., for energy conservation in mobile devices, or if a rendering

task arrives with higher priority. When the GPU becomes unavailable, kernels that have

already been issued will run to completion but no new jobs can be submitted to it. We

choose to have the GPU available for intervals of 2 seconds out of every 8 seconds, because

the GPU in our system is far faster than the CPU.

In this environment, we execute the Edge Detection pipeline using the three different

scheduling policies described in Section 3.4. Figure 3.6 shows the instantaneous frame rate for

each policy. Green and red sections show when the GPU is available or not respectively. We

truncate the Y-axis because the interesting behavior is at lower frame rates; the suppressed

peak rates are about 64 frame/s.

Static node assignment policy makes no progress during the intervals when the GPU is

not available. The other two policies are able to adapt and make progress even when the

GPU is unavailable, though neither is perfect. Static data item assignment policy may or

may not continue executing when the GPU is unavailable, depending on when the data

items that will be issued to the GPU are processed. Also, it may have low frame rate when

the GPU is available, if data items that should be processed by the CPU execute while the
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Figure 3.6: Edge Detection Frame rate with different scheduling policies. The green and red
band in the graph indicates when the GPU is available or not respectively.

GPU is available. Dynamic policy will not start using the GPU to execute a dataflow node

for a data item until the node is done for the previous data item. That is why the frame

rate does not immediately increase to the maximum when the GPU becomes available. The

experiment shows HPVM enables flexible scheduling policies that can take advantage of

static and dynamic information, and these policies are easy to implement directly on the

HPVM graph representation.

We also used the Edge Detection code to evaluate the overhead of the scheduling mech-

anism. We compared the static node assignment policy using the runtime mechanism with

the same node assignment using only compiler hints. The overheads were negligible.

Overall, these experiments show that HPVM enables flexible scheduling policies directly

using the dataflow graphs.
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CHAPTER 4: PROMISE: AN END-TO-END DESIGN OF
PROGRAMMABLE MIXED-SIGNAL ACCELERATOR FOR MACHINE

LEARNING ALGORITHMS

In this chapter we1 describe our experience in designing a novel programmable accelerator

for machine learning. The underlying technology is called Compute Memory [10] and it

performs computation in the SRAM memory bit-cell array in analog. This project provided

us necessary lessons into how diverse the programmable accelerators can be from conventional

general purpose digital processors.

4.1 MOTIVATION

Current and emerging applications are increasingly relying on the ability to extract pat-

terns from large data sets to support inference and decision making with Machine Learning

(ML) algorithms. Such ML inference algorithms (or simply ML algorithms in this thesis)

have begun to offer higher performance than humans [42] in cognitive and decision-making

tasks [43], but they have demanded more computing capability as they have gotten com-

putationally more complex and required to process larger amounts of data. This coincides

with the decline of Moore’s Law, and thus it becomes far more challenging to meet such

demands than ever. To close the gap between the demand and the offering from traditional

general-purpose processors, researchers have begun to explore specialized processors (or ac-

celerators) for ML algorithms [113, 8, 104, 114, 115]. These ML accelerators can offer orders

of magnitude higher energy efficiency than general-purpose processors, but most of them are

based on digital circuits and/or implement a specific ML algorithm.

In order to further improve energy efficiency of digital ML accelerators, researchers have

proposed analog or mixed-signal accelerators [106, 10, 116, 117, 118, 119, 103, 98, 120, 121].

These analog and mixed-signal accelerators rely on small-signal computation which is less

precise but more energy efficient than traditional large-signal computation in the digital

domain. Therefore, they are suitable for acceleration of ML inference algorithms where the

application domain itself is tolerant to such imprecision. However, these accelerators lack a

programmable architecture, instruction sets, or compiler support necessary for supporting

application software. These capabilities are essential to support high-level programming

languages like Python [122] and Julia [123], which implement popular ML libraries such as

1This work was done jointly and equally with Mingu Kang and appears in both of our
theses. Mingu led the modifications to Compute Memory chip to make it programmable,
and I led the compiler design and implementation for PROMISE. We both worked in equal
measure to design the PROMISE ISA
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TensorFlow [124], and MXNet [125].

Moreover, the algorithmic error tolerance that allows hardware-level small-signal computa-

tions creates energy vs. accuracy tradeoffs that must be controlled from the application level

in order to ensure that application-domain accuracy or precision goals are met. Translat-

ing these application-level metrics down to suitable hardware-level control knobs for energy

and accuracy without requiring application programmers to understand hardware design

concepts requires careful hardware, ISA and compiler design.

We propose PROMISE, the first end-to-end design of a programmable mixed-signal accel-

erator for diverse ML algorithms, which tackles all these challenges. PROMISE can accom-

plish a high level of programmability without noticeably losing the efficiency of mixed-signal

accelerators for specific ML algorithms. PROMISE exposes instruction set mechanisms that

allow software control over energy-vs-accuracy tradeoffs, and supports compilation of high-

level languages down to the hardware.

4.2 BACKGROUND

In this section, we first analyze a variety of ML inference algorithms in order to identify

commonalities in their data flow, and then we describe a circuit of a programmable mixed-

signal accelerator which is well suited for ML algorithms and we build an ISA (Section 4.2.2)

and a compiler (Section 4.3) on.

4.2.1 ML Algorithms

The ML algorithms involve repeated Vector Distance (VD) computations denoted by

D(Wj, X) between N -dimensional input vector X and weight vector W as depicted in [105].

Commonly used VD computations include the dot product, L1 distance (Manhattan dis-

tance), L2 distance (Euclidean distance), and Hamming distance for the ML algorithms

including the Support Vector Machine (SVM), template matching, Deep Neural Network

(DNN), k-Nearest Neighbor (k-NN), and matched filter as listed in Table 4.1.

These ML algorithms have the following three data-flow properties in common. (P1)

A single VD is obtained by first computing N element-wise Scalar Distances (SDs)

(d(w[j][i], x[i])) followed by an aggregation step such as a sum or average generating the

final scalar VD D(W,X) =
∑N

i=1 d(w[j][i], x[i]). (P2) The VD between a single query vec-

tor X and multiple (say No) weight vectors Wjs (j = 1, 2, ...No) needs to be computed. (P3)

The VD goes through a simple decision function f() such as sigmoid or ReLu to generate
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f(D(W,X))
Inner loop kernel

f( )
D(W,X)

=
∑N

i=1 d(w[i], x[i])

SVM
∑N

i=1 w[i]x[i] sign

Temp. Match. (L1)
∑N

i=1 |w[i]− x[i]| min

Temp. Match. (L2)
∑N

i=1(w[i]− x[i])2 min

DNN
∑N

i=1 w[i]x[i] sigmoid

Feature extraction (PCA)
∑N

i=1 w[i]x[i] −−
k-NN (L1)

∑N
i=1 |w[i]− x[i]| majority vote

k-NN (L2)
∑N

i=1(w[i]− x[i])2 majority vote

Matched filter
∑N

i=1 w[i]x[i] min

Linear Regression

∑N
i=1 w[i] accumulate∑N
i=1 w[i]2 accumulate∑N

i=1 w[i]x[i] accumulate

Table 4.1: Machine learning (ML) algorithms.

the decision yj. Especially, the VD computation tends to dominate the execution time and

energy consumption of ML algorithms for practical problems.

4.2.2 Mixed-Signal ML Accelerator

Recently proposed compute memory [106, 126, 10, 127, 117] deeply embeds energy-efficient

analog computations into the periphery circuit of a memory array consisting of conventional

bit-cells. As an innovative feature, compute memory can offer seamless interface between

digital- and anlog-domain computations. More specifically, compute memory stores a Bw-

bit word in a column-major format (i.e., a word is stored in Bw bit-cells connected to

the same Bit-Line (BL) across Bw rows), as shown in the yellow box of Figure 4.1(b))

whereas conventional memory does in a row-major format (Figure 4.1(a)). After BLs are

pre-charged for a read cycle, compute memory simultaneously asserts Bw Word-Lines (WLs).

The durations of these asserted WLs are proportional to the binary weight values of the

corresponding bit positions in a given Bw-bit word with a binary Pulse-Width Modulated

(PWM) Word-Line (WL) signaling scheme (Figure 4.1(b)). Subsequently, each BL develops

a voltage drop (∆VBL) proportional to a binary weighted sum of Bw bits in the corresponding

column [106], which constitutes the first processing stage of compute memory: (S1) analog

Read (aREAD). aREAD can not only seamlessly convert digital values stored in memory into

analog values for subsequent analog computation stages, but also fetches highly condensed

Bw-bit information per BL, significantly improving energy efficiency and throughput.

For ML algorithms, compute memory can store pre-trained Wj in its bit-cells, then it can
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Figure 4.1: Block diagrams and read operations with bitline swing (∆VBL): (a) conventional
system, (b) Compute Memory, with bit precision of scalar weight w, Bw = 4 and column
mux ratio L = 4, analog domain in red.

serve as a very energy-efficient mixed-signal ML accelerator with the following three sub-

sequent analog processing stages: (S2) analog Scalar Distance (aSD) implementing scalar

distance computations right next to the bit-cell array; (S3) analog Vector Distance (aVD) per-

forming the aggregation (
∑N

i=1 in Table 4.1) by simply charge-sharing all the analog outputs

from aSD blocks in one shot; and (S4) Analog-to-Digital Conversion (ADC) and ThresHold

(TH) converting the analog output of aVD into a digital word and subsequently generating a

final decision from the digital word based on a given decision function f() in Table 4.1. Note

that the aSD stage can support scalar comparison, multiplication, subtraction, addition, and

absolute computation in bitcell pitch-matched analog circuitry [106, 126], while the ADC and

TH stages consume negligible portion of total energy as they operate infrequently (once after

> 128 aSD operations).
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It has been shown that the compute memory can offer significantly lower energy con-

sumption and higher throughput than digital ML accelerators, but it supports only limited

reconfigurability [10], as described in this section. Furthermore, the absence of an instruction

set for the compute memory limits the use for a short sequence of operations with single

computation kernel, single memory bank, and fixed parameters such as a vector length.

In this section, we present PROMISE architecture as a substrate to explore ISA, discuss

various challenges in developing ISA, and then propose ISA for a programmable mixed-signal

accelerator.

4.2.3 PROMISE Architecture

Single Bank Architecture: PROMISE is built on compute memory as shown in Fig-

ure 4.2(a), where the standard SRAM read and write functionalities are preserved (at the

bottom) for additional flexibility. Along with (S1) aREAD, (S2) aSD, (S3) aVD, and (S4) ADC

and TH described in Section 4.2, PROMISE comprises X-REG and CTRL to transform com-

pute memory into a programmable mixed-signal accelerator. The more detailed architectural

specification of PROMISE is as follows.

A PROMISE bank consists of 256 (= NCOL) columns. An 8-bit (= Bw) word is distributed

across four consecutive rows constituting a word row and two neighboring columns which

store 4-bit MSB and 4-bit LSB to enhances linearity through a sub-ranged read technique

[10]. That is, aREAD can read out a 128-element vector of digital values and seamlessly

converts it to that of analog values. Furthermore, aREAD can simultaneously perform element-

wise addition or subtraction with X, a 128-element vector representing the input operand

for inference in Table 4.1. aSD and aVD are architected to perform operations on 128 analog

values. ADC consists of eight 8-bit ADCs which operate in parallel and convert 32×26 analog

values to digital values per second. Note that the aVD output of each bank is digitized by

these ADCs to prevent the noise from analog operations accumulating over the iterations.

This digitization also enables a multiple-bank architecture, where reliable data transfers

between banks are required. TH implements non-linear operations such as sigmoid via piece-

wise linear approximation [128] not only to compute the decision functions f() in Table 4.1

but also to aggregate intermediate computed values when the vector length N is larger than

128.

Lastly, X-REG is a digital block similar to a vector register file in a SIMD processor, holding

eight 128-element vectors representing eight X values. CTRL is a controller to generate enable

signals for the aforementioned components based on a given instruction and make compute

memory function as a programmable mixed-signal accelerator.

44



aSD

aVD

P
W

M
 W

L 
d

ri
ve

r

512 X 256
6T SRAM

Bitcell Array

Bitcell

Bitcell

Read/Write path

X

aSD

C
TR

L

Ta
sk

1
Ta

sk
2

Ta
sk

3
Ta

sk
4

Bitcell

Bitcell

X-REG [7:0][255:0]

decision

C
la

ss
 2

(a
SD

, a
V

D
)

C
la

ss
 1

 (
aR

EA
D

)

ADC

C
la

ss
 4

 (
TH

)

Write data buffer Binary Inst.

current
TP

P
W

M
 W

L 
d

ri
ve

r

mean
thres

sigmoid
ReLu

min
max

acc

C
o

n
tr

o
l s

ig
n

al
s

C
la

ss
 3

 (
A

D
C

)

W

(a)

G
lo

b
al

C
TR

L

W, X

PAGE0

DMA

control

PAGE1

Lo
ca

l 
C

TR
L

TH
A

D
CBANK0

Lo
ca

l 
C

TR
L

TH
A

D
CBANK1

Lo
ca

l 
C

TR
L

TH
A

D
C

BANK2

Lo
ca

l 
C

TR
L

TH
A

D
C

BANK3

cross-bank rail

(b)

Figure 4.2: The PROMISE architecture: (a) a single-bank architecture with NROW = 512,
NCOL = 256, analog processing marked in red, and (b) a multi-bank architecture.

Multiple bank architecture: PROMISE can be extended to a multi-bank structure (Fig-

ure 4.2(b)), which has multiple (up to eight in this work) PAGEs, each of which includes four

banks. Thus, long (¿ 128) vectors can be distributed across multiple banks for parallel pro-

cessing. PROMISE does not have the scalability limitation by the analog operations as the

partial results from each bank are always converted to digital values by the ADCs. Then, the

partial sums can be aggregated across different banks via cross-bank rail, similar to H-Tree

in [118]. The data transfer of 8-bit ADC output from each bank to the other through the

cross-bank rail takes only 0.5 pJ with activity factor of 0.5 from post-layout simulations.

This is negligible (¡ 1%) as a aREAD consumes only 61 pJ/bank as listed in Figure 4.5(b).

The control of multi-bank by the instruction is discussed in Section 4.2.5.
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Analog pipeline architecture: To achieve higher throughput than the original compute

memory [10], PROMISE adopts analog pipelining as shown in Figure 4.3. This requires

analog Flip-Flops (FFs) to hold the output of each stage. The first pipelined stage (aREAD)

needs NCOL analog FFs whereas the second pipelined stage consisting of aSD and aVD

needs only one analog FF to store the aggregated scalar output. Thus, we propose to reuse

a pre-existing capacitor, which is a part of the analog multiplier [10] in the aSD block, as an

analog FF for the aREAD stage to minimize the hardware overhead.

4.2.4 Challenges in Using Programmable Mixed-Signal Accelerator

The combination of algorithmic diversity and mixed-signal operations in PROMISE cre-

ates many challenges that we should consider when exploring ISA for a programmable mixed-

signal accelerator. To support a broad range of ML algorithms, each stage needs to support

diverse programmable operations. However, we identify some challenges in supporting (too)

many diverse programmable operations which can significantly degrade both throughput

and accuracy.

Higher Impact of Delay Variation across Operations: Analog operations often ex-

hibit a wide range of delays depending on operation types [10], while each stage must ac-

commodate the worst case delay out of all the operations for the stage. Furthermore, as

all the stage of a pipelined mixed-signal accelerator need to operate at the same clock pe-

riod TP , TP needs to accommodate the worst case delay across all the stages, i.e., TP =

max(TS1 max, TS2 max, TS3 max, TS4 max), as illustrated in Figure 4.4). That is, supporting

more programmable operations increases longer idle time for some stages. As a result, we

observe up to 2× throughput degradation when designing for the 9 ML benchmarks eval-

uated in this work. Furthermore, such long idle time negatively affects accuracy at the

algorithm level because analog values are typically stored on (area-constrained) capacitors
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Figure 4.4: 4-stage processing in PROMISE with operational diversity per stage.

and thus degrade over time due to various leakage mechanisms. Especially, this problem is

worst for the S1 stage (aREAD) as each BL is subject to the leakage contributions from all

the bit-cells in the column (upto 0.04%/ns).

More Limit in Sequence of Operations: We also recognize some other challenges specific

to analog processing, which further limits the number of possible programmable operations.

Specifically, a chain of analog processing stages imposes intrinsic sequentiality of operations.

Furthermore, two consecutive processing stages need to be physically closely placed to shun

substantial degradation in analog voltage from one stage to the next. Lastly, large capacitor

ratio between consecutive stages (input-output 20:1 to maintain the voltage drop ¡ 5%)

is required to transfer the signal via charge-transfer mechanism without additional analog

buffer.

4.2.5 PROMISE Instruction Set

We explore an ISA suitable for a programmable mixed-signal accelerator, considering the

constraints described above.

Instruction Format: We propose a wide-word macro instruction format, which is referred

to as Task. Akin to a Very-Large Instruction Word (VLIW), a single Task consists of

multiple operations, except that the operations are sequential and not parallel like VLIW

architectures. As depicted in Figure 4.5(a), the four Class fields specify four operations

for 4 pipelined stages of PROMISE, while the three other fields, OP PARAM, RPT NUM and

MULTI BANK configure all or specific Class operations. More specific descriptions of these

seven fields are as follows.

Operating Parameter Field: OP PARAM comprises 33 bits and configures operating param-

eters of Class operations in a given Task, facilitating flexible programmability. As shown in

Figure 4.5(b), W ADDR specifies a compute memory address for a Class-1 operation. X ADDR1
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Task
OP_PARAM
(28	bits)

RPT_NUM
(7	bits)

MULTIBANK
(2	bits)

Class-1
(3	bits)

Class-2
(4	bits)

Class-3
(1	bits)

Class-4
(3	bits)

(a)

Contents Bits Description
SWING [27:25] ∆VBL swing code – 000:min(5mV/LSB), 111:max(30mV/LSB)
ACC NUM [24:23] # of operands to be accumulated for accumulate opcode in Class-4

W ADDR [22:14] Bitcell array address of W in Class-1

X ADDR1 [13:11] Bitcell array address of X in Class-1

X ADDR2 [10:8] X-REG array address of X in Class-2

X PRD [7:6] X ADDR1 & 2 circulate from 0 to “X PRD - 1”
DES [5:4] Class-4 output destination - 00: ACC input, 01: output buffer, 10: X-REG, 11:Write

data buffer
THRES VAL [3:0] Thresholding reference value for threshold opcode in Class-4

(b)

Class Operation	[operand] Bit	length OP
CODE Option

1

none

3	bits
(OPCODE)

000

X_PRD:	X_ADDR1 circulates
from	0	to	“X_PRD-1”

write[W_ADDR] 001
read[W_ADDR] 010
aREAD[W_ADDR] 011

aSUBT[W_ADDR,	X_ADDR1]	 100
aADD[W_ADDR,	X_ADDR1] 101

2

none

4	bits
(OPCODE
+	aVD)

000 aVD bit:
0:	no aggregation
1:	aggregation

X_PRD:	X_ADDR2 circulates
from	0	to	“X_PRD-1”

compare 001
absolute 010
square 011

sign_mult[X_ADDR2] 100
unsign_mult[X_ADDR2] 101

3 none 1	bit
(OPCODE)

0
ADC 1

4

accumulation

3	bits
(OPCODE)

000 DES,	ACC_NUM
mean 001 DES

threshold 010 DES,	THRES_VAL
max 011 DES
min 100 DES

sigmoid 101 DES
ReLu 111 DES

(c)

Figure 4.5: Instruction set of PROMISE: (a) instruction format, (b) operation parameters
(OP PARAM) (c) operations in each Class.

and X ADDR2 designate X-REG addresses for Class-1 and Class-2, respectively. SWING con-

trols BL swing ∆VBL, e.g., 111 allows 30 mV/LSB whereas 001 allows 5 mV/LSB. This

parameter is a key knob to control the trade-off between energy and accuracy under soft-

ware control; Section 5.4 evaluates this accuracy-energy trade-off for further energy savings.

Refer to Figure 4.5(c) for descriptions of the remaining parameters and their assignments of

bit fields.

Class Fields: Class-1 is composed of 3-bit opcode and defines six possible memory oper-

ations. READ, WRITE, or aREAD makes compute memory perform a digital read, digital write,

or analog read operation to a compute-memory address specified by OP PARAM (W ADDR).
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aADD or aSUB fuses an analog read and an element-wise analog addition or subtraction into a

single operation where two vector operands come from compute-memory addresses specified

by OP PARAM (W ADDR and X ADDR1), respectively.

Class-2 consists of 4-bit opcode and specifies a composition of one of six possible aSD

operations with one of two possible aVD operations. Specifically, aSD operating on a computed

value from Class-1 supports three unary operations: compare, absolute, and square and

two binary operations: sign mult and unsign mult where the other operand comes from

an X-REG address specified by OP PARAM (X ADDR2). aVD specifies whether an aggregation

should be performed or not after an aSD operation.

Class-3 and Class-4 comprise 1- and 3-bit opcode and control whether an ADC should

be performed or not and specify one of seven possible TH operations, respectively. The seven

possible TH operations are as follows: accumulation, mean, threshold, max, min, sigmoid,

and ReLu.

In summary, Class-1, Class-2, and Class-3 define a distance computation, D(Wj, X)

in Table 4.1 in the analog domain, while Class-4 specifies f(D(Wj, X)) in the digital do-

main. Operations such as element-wise write back ([129]), or shuffle and compare operation

([130]) were omitted to keep Tp small. These operations are required to efficiently implement

algorithms such as k-means and random forest.

Loop Control Field: RPT NUM comprises 7 bits and specifies how many times the Task

should be executed to process multiple Wjs. The compute memory and X-REG addresses

(W ADDR, X ADDR1 and X ADDR2) are incremented sequentially every iteration. Although un-

conventional for modern RISC architectures, this is a natural choice for typical ML inference

algorithms, which iterate sequentially through data Wjs in memory for the computation

D(Wj, X).

Multiple Bank Control Field: MULTI BANK comprises 2 bits and specifies the number

of banks used to distribute long (> 128) vectors for parallel processing. The intermediate

results from banks 1, 2,..., and 2MULTI BANK − 1 are transferred to bank 0 through the

cross-bank rail in Figure 4.2(b) to be aggregated by digital TH accumulation operation.

The long vector needs to be distributed to the same row of each bank to support the parallel

processing across multiple banks. The instruction is shared by 2MULTI BANK banks as those

banks process the same operation. The output of a Class-4 operation can be transferred to

the X-REG of a specific bank in any PAGE by defining DES ADD in OP PARAM.

Extension to Large Scale Applications: PROMISE is well suited to process 128 di-

mensional vector processing. Longer vectors (> 128) can be processed by repeating the 128

dimensional vector processing sequentially by setting RPT NUM = (W.size() / 128) and
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other parameters. A word row of compute memory stores 128 words, and thus two word

rows are used to store 256 dimension vector. Two consecutive iterations complete a vector

processing. The address W ADDR and X ADDR1 (or X ADDR2) are incremented as the Task

iterates to process the next 128 words. However, the X is re-used to compute the distances

to many Ws as explained in Section 4.2. Thus, the X ADDR1 and X ADDR2 circulates from 0 to

X PRD-1. For example, X PRD = 2 to process 256 element vector X.

4.2.6 Algorithm Mapping and Compiler Need

A given ML inference algorithm sometimes requires several Tasks for different distance

metrics. That is, it can be described by one or more Tasks. We present an example of

template matching with L1 distance kernel to find the closest 512-pixel image out of 127

candidate images (Wj) to input query image (X) by processing across four banks in parallel.

The template matching is mathematically defined as:

jopt = arg min
j

512∑
i=1

|x[i]− w[j, i]| (4.1)

The corresponding Task instruction consists of: RPT NUM = 127 specifying the number of

candidate images; MULTI BANK = 4 to distribute 512 pixels into four banks (128 pixels per

bank) for parallel processing; Class-1 aSUBT to perform element-wise subtraction of X with

Wj; Class-2 absolute with aggregation; and Class-3 ADC followed by a digital-domain

Class-4 min to compute f() = arg minj.

Although each Class offers a limited number of operations (6, 12, 2 and 7, respectively),

PROMISE can perform more than 1000 compositions of operations for a given X value.

Furthermore, we observe that the order of Task instructions in a complex ML inference

algorithm and the accuracy setting of each Task through the SWING parameter significantly

affect the accuracy at the algorithm level, exploding the solution space for code generation.

Hence, it is not efficient and inherently sub-optimal to manually generate code for a complex

ML inference algorithm. This in turn gives a compiler an opportunity to generate and

optimize code implementing a given ML inference algorithm, which will be explored in the

subsequent section.
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4.3 COMPILER

In this section, we discuss the goals of a compiler for PROMISE, describe how PROMISE

compiler design meets these goals while translating a given ML algorithm described in a high-

level language into the PROMISE ISA, and how the compiler addresses the programmability

challenges mentioned in Section 4.2.4.

Julia 
App

Julia 
Frontend

LLVM
PROMISE Pass

Energy 
Optimization

PROMISE 
Code Gen

LLVM IR
(FP)

LLVM IR (FP)
with calls to

PROMISE Runtime

Backprop statistics

LLVM IR
(8-bit)

(BA, BW)

PROMISE         
Binary

Frontend Energy Optimization Backend

Figure 4.6: Compiler Pipeline. LLVM(FP) implies that data arrays are in floating point.
8-bit implies fixed point data arrays

4.3.1 Goals

Hardware Abstraction: The compiler intermediate representation (IR) should abstract

away low-level details of the hardware, so that front ends don’t have to be concerned about

hardware details like Class-1 vs. Class-2 vector operations, or the specifics of the OP PARAM

parameters. At the same time, the IR should enable compilers to perform optimizations,

and should capture essential information for generating efficient code on PROMISE. This

is similar to how mid-level compiler IRs abstract away details like finite register files and

different register classes from front ends, while enabling sophisticated register allocation

algorithms to manage these details [131].

Accuracy-Energy Tradeoff: As explained in Section 4.2.2 the PROMISE ISA allows

the compiler to use the SWING parameter as a knob to tune ∆VBL to exploit the tradeoff

between energy and accuracy. However, it is very hard to go from a high level description

of “accuracy” that programmer understands in the context of her algorithm, to hardware

specific parameter such as the voltage swing. This is especially true for applications which

would have several smaller computations to offload (for example, DNNs can offload each

layer computation) to a hardware accelerator such as PROMISE. It is unclear how the error

in a single computation would affect the overall accuracy of the application. Towards this

end, the PROMISE compiler must provide a compiler optimization to find the optimal SWING

parameter for each Task.
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Hardware Specific Optimizations: Furthermore, for applications where data does not

fit into PROMISE memory, the compiler needs to find efficient dataflow pattern based on

the size of data arrays.

Easily Extensible to ML Domain Specific Languages: Domain specific languages

(DSLs) and libraries for ML are evolving fast: there are already a wide range of popular

DSLs such as Torch, Theano, Tensorflow, MXNet, Keras, and others [132, 133, 124, 125, 134],

implemented on top of dynamic programming languages such as Python, Julia, R, Scala,

Perl, etc. Thus, a desirable goal of the PROMISE compiler is to be easily extendable to

new DSLs. To achieve this, we must provide a language-neutral IR as an interface for the

compiler/programmer to reason about operations on PROMISE.

4.3.2 AbstractTask and PROMISE Compiler IR

In this section we first define an AbstractTask which is an abstraction of a PROMISE

Task described in Section 4.2.5. AbstractTask is based on our observation that a vector

operation can be either a Class-1 (addition/subtraction) or a Class-2 (signed/unsigned

multiplication) operation, but that distinction is only relevant for late stage code generation,

not front ends and other compiler optimizations. AbstractTask is also oblivious to hardware-

specific parameters such as the number of elements in a vector (i.e., the length of the bitcell

array in PROMISE), size of the bitcell array, etc.

An AbstractTask has the following seven fields: (F1) W: address of a 2D data array;

(F2) X: address of a 1D data array; (F3) output: address of the output 1D data array;

(F4) vecOp: element-wise vector operation between a row of W and X; (F5) redOp: reduc-

tion operation on the output of vecOp; (F6) digitalOp: unary operation on the output

of redOp; (F7) vectorLen: number of elements in X; (F8) loopIterations: number of

iterations of the loop; (F9) threshold: threshold value for Class-4 threshold operation

of PROMISE Task; and (F10) swing: swing parameter corresponding to a voltage swing

at which this should run on PROMISE. The swing field is initialized to the value 0b111

(maximum accuracy) by the frontend, and is fine-tuned later by energy optimization pass

as described in Section 4.3.4.

The PROMISE compiler IR is a directed acyclic graph (DAG) of such AbstractTasks,

where each node represents an AbstractTask, and a directed edge between two nodes P and

C represents the dataflow from the output of P to the input (W or X) of C. For example, for

a DNN inference algorithm of fully connected layers, the compiler IR would be a sequential

pipeline of AbstractTasks. Each AbstractTask would represent the computation of the

corresponding fully connected layer of DNN.
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The IR is acyclic even though a task is always an iterative computation because the loop

count is simply represented as the RPT NUM field of a task (Figure 4.5(a)). Loops surrounding

a sequence of one or more tasks are always executed on the host processor and not on the

PROMISE accelerator.

4.3.3 Code Generation

Figure 4.6 shows the PROMISE compiler pipeline for Julia. There are three parts: (1)

a front end to map Julia applications to the IR, (2) energy optimizations on the IR, and

(3) a back end to translate the IR to the PROMISE ISA. The IR, energy optimizations and

back end are all designed to be independent of the source-level language, to make it easily

extendable to other languages or DSLs.

Frontend (Julia program to PROMISE compiler IR): We chose Julia as the source

language because such a high-level language enables us to easily identify patterns of com-

putations that can be offloaded to PROMISE. The ML kernels are built using high-level

library calls to matrix/vector operations, and so we do not need to use sophisticated com-

piler analysis to identify these operations. Julia also supports several ML libraries such as

MXNet [135], Flux [136], and others and is already used to develop ML applications. (Julia

also has a working open-source LLVM front-end. Other choices like TensorFlow didn’t have

one available at the time we started.)

The Julia frontend translates applications to LLVM IR. The PROMISE pass runs over each

LLVM function and uses pattern matching to identify computations that can be offloaded to

PROMISE, translates it into an AbstractTask, and replaces the computations with a call

to the PROMISE runtime to pass the parameters of the AbstractTask.

The LLVM IR [107] representation is a collection of Single Static Assignment (SSA) [137]

graphs, one graph per function in a program. Each node in an SSA graph corresponds to

an LLVM IR instruction. In each function, the PROMISE pass looks for matrix-matrix

operations with a reduction component (e.g., matrix-matrix multiplication, which uses the

dot product). When it finds one, it also looks for a single basic block “natural loop” [131]

enclosing it. If such a loop is found, the compiler pass identifies the induction variable of the

loop and checks if the SSA graph of the basic block matches with the SSA graph pattern

shown in Figure 4.7, and explained below. If matched, the single basic block loop can be

offloaded to PROMISE. Since the pattern matching can be fragile to minor variations in

generated LLVM IR, e.g., the loop index variable being incremented instead of decremented

in each loop iteration, the compiler converts all single basic block loops into canonical loops

before pattern matching.
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Figure 4.7: SSA Pattern for single basic block loops. The shaded nodes are calls to Julia
library. The part enclosed in square brackets is optional for pattern matching.

Starting from the bottom left of the SSA graph, library call getindex is used to get the

IVth vector of matrix W . Vector X which is a loop invariant (i.e., its definition must be

outside the loop), is used to perform an element-wise vector operation with vector WIV . X

being loop invariant is essential for the computation to be efficient on PROMISE: X gets

stored in the buffer X REG which is designed to hold a vector with temporal locality and is

constant throughout the execution of a Task. The output of the vector operation undergoes

reduction operation using a Julia library function call. The right child of the store SSA

node uses the getelementptr instruction in LLVM to compute the address where computed

value needs to be stored in the vector Output.

This pattern captures many widely used ML inference kernels, like template matching,

support vector machines, k-nearest neighbor, matched filtering, matrix-vector multiplication,

etc., and is used as a canonical form which can be mapped to an AbstractTask.

Translation of the SSA graph to a AbstractTask is straightforward. The SSA nodes

Matrix W, Vector X and Vector Output map to the W, X, and Output fields of a AbstractTask,

respectively. loopIterations can be computed at run-time from the induction variable IV

and corresponding conditional branch at the end of the basic block. VectorLen can be ob-

tained from X. The swing field is initially set to maximum value of 0b111 corresponding to

the maximum ∆VBL for aREAD operation, and optimized later as described in Section 4.3.4.

After mapping to an AbstractTask, we replace the loop from the LLVM IR representation

with a call to PROMISE runtime, passing it the fields of AbstractTask.

Backend (compiler IR to PROMISE ISA): The backend of the compiler maps the

compiler IR to ISA by mapping each AbstractTask to Task. This involves two parts: (1)
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compile time code generation for Class 1-4, and (2) computing the OP PARAM, RPT NUM,

MULTI BANK fields at runtime and passing them to the PROMISE run-time, which launches

the task.

Code generation for Class 1-4 is relatively straightforward: most fields have a one-to-one

mapping to the corresponding field of the ISA. For example, the digital operation directly

maps to the Class-4 field, and the Class-3 operation is always ADC. Primarily, the backend

identifies where the vecOp of AbstractTask would execute - Class-1 or Class-2. If the

vecOp is element-wise addition or subtraction, Class-1 operation is set to aADD or aSUB

respectively, and Class-2 performs just the reduction of the resulting values according

to redOp field of AbstractTask. Otherwise, for signed/unsigned multiplication, Class-1

performs the aREAD operation and Class-2 performs the element-wise vector multiplication

with X operand from X REG and performs the aggregation as well.

The OP PARAM, RPT NUM and MULTI BANK fields require runtime information and are com-

puted on the host before task launch. For vector lengths > 128, X PRD is set to the number

of rows required to fit one vector, i.e., vectorLen/128. RPT NUM is set to the product of the

number of loop iterations and the number of rows per vector, i.e., X PRD * loopIterations.

Setting other fields such as W ADDR in OP PARAM is straightforward and we skip those for lack

of space.

4.3.4 Energy Optimization

In the ML domain, classification accuracy of a model is an important metric. For instance,

neural networks for a handwritten digit recognition can achieve classification accuracy of

pmodel = 98% on the MNIST [138] dataset running on floating point architectures such

as GPUs. Often, the broader application context that uses the results of the classifier

can tolerate lower accuracy, but that is application-specific. In our work, we allow the

programmer to express the additional error they can tolerate when running their model on

PROMISE, which we call the mismatch probability (pm). Formally, mismatch probability

(pm) is the upper bound on difference between the classification accuracy of an algorithm

running on PROMISE (pPROMISE) and the classification accuracy of the ML model (pmodel),

i.e., pmodel − pPROMISE ≤ pm

The energy optimization in the compiler pipeline in Figure 4.6 takes the mismatch prob-

ability pm from a programmer and determines the swing field of each AbstractTask in the

application that would ensure that error tolerance is met. Mapping a high-level parameter

like pm directly to a suitable swing voltage is difficult, and is even more challenging for algo-

rithms such as neural networks that have multiple tasks. We solve this problem by breaking
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it down into two parts, taking advantage of prior work [44]: (a) determining a minimum

bit precision required to achieve the given mismatch probability, using the results of [44];

and (b) modeling the accuracy of AbstractTask in terms of equivalent bit precision, as a

function of the swing voltage. These are explained briefly below, second one first.

To achieve B-bit precision in the final output, the error introduced must be less than

1/2B+1. The major source of error in PROMISE due to lowering the swing voltage is from

aREAD operations (see Section 4.2.2). The output of aREAD follows normal distribution

Ŵ ∼ N (W,σ2
W ), where σW = |W | · f(SWING) and f(SWING) is a function of the SWING

parameter and ranges from 0.08 ˜ 0.75. The SWING parameter and f(SWING) are inversely

proportional, and hence, the σW is minimized with higher SWING parameter. After the

aggregation of N such vector elements through charge-sharing, the standard deviation of

the aggregated value (σagg) of output is σW/
√
N . Since W is in range [-1, 1], we assume

|W | = 1 for all values to maximize σW and σagg. In this work, we choose a confidence level

of 99%, which corresponds to 2.6 × σagg. To guarantee B-bit precision at the output of

aggregation, this yields:

2.6σagg = 2.6
f(SWING)√

N
<

1

2B+1
(4.2)

If we can estimate the required bit precision for a given pm (part (a), above), we can use

(2) to compute the minimum swing voltage. To achieve (a), we leverage prior work [44].

In that work, Sakr et al. analyze the quantization (floating-point to fixed-point conversion)

tolerance of neural network and give a relationship between the accuracy degradation and

the bit precisions used to store the activation and weights of a neural network model. Math-

ematically, it says that given the bit precision of weights and activations (BW and BA), they

can provide a bound on the mismatch probability pfl − pfp, where pfl is the accuracy of the

floating-point model, and pfp is the accuracy of the same model quantized to fixed-precision

representation for weights and activations. The analysis bounds the mismatch probability

by

pm ≤ ∆2
AEA + ∆2

WEW ,

where EA and EW are statistics of the model obtained while training the model, and ∆A =

2−(BA−1),∆W = 2−(BW−1).

Since, neural network inference is simply a series of repeated vector distance computations

described in Section 4.2, computation of activations in each layer can be described as a

PROMISE AbstractTask with W equal to a weight matrix, and vector X equal to the

activations of the previous layer. The vector operation is element-wise multiplication and
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Figure 4.8: PROMISE validation methodology.

the reduction operation is the sum of all the values in the result. The activation function

such as sigmoid/ReLu/tanh are supported as Class-4 operations in PROMISE. Thus, a

neural network inference is a sequence of AbstractTasks.

In the context of PROMISE, we can use Sakr’s model to calculate the bit precision BX

for X in each AbstractTask given the mismatch probability pm for the model (sequence of

AbstractTasks), weight precision BW = 7 since the PROMISE bitcell array uses 8-bits to

store a value, including one sign bit.

Putting it all together, we use the back propagation statistics, EA and EW of the trained

application model, along with the desired pm, as input to analysis of [44] to estimate BA and

BW . We then use BX and vectorLength as input to (2) to estimate the minimum swing

voltage, which we pass as the Class-0 SWING parameter to the PROMISE run-time when

launching the task.

The analysis above – like that of [44] – has focused on neural networks. For other combi-

nations of Class-1 and Class-2 operations, we would have to extend Sakr’s analysis [44].

Doing so is straightforward, but is outside the scope of this work. We can still optimize

kernels with only a single task by using a brute-force sweep through all 8 swing voltage

levels to look for the optimal value.
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4.4 VALIDATION METHODOLOGY

This section describes our methodology for validating PROMISE’s energy, delay, and ac-

curacy benefits as well as the benefits of the compiler generated code. Figure 4.8 summarizes

our validation methodology. Specifically, we (1) develop energy, delay, and behavioral mod-

els of PROMISE components in TSMC 65 nm GP process including analog non-idealities;

(2) incorporate these component-level analog models (in Verilog-A) with PROMISE Verilog

model the digital CTRL to ensure correct functionality and estimate accuracy over small

data sets; and (4) develop a PROMISE C++ model with component level behavioral models

for verifying accuracy over large data sets of compiler generated code.

Component-level Models: The entire mixed-signal chain was post-layout simulated in

SPICE in TSMC 65 nm GP process to obtain the energy and delay numbers listed in Ta-

ble 4.3. The total energy and delay for the mixed-signal blocks were compared with the

measured results reported in [10] and the differences were found to be within 10% and 9%,

respectively. We conducted Monte-Carlo SPICE simulations of all the analog components

to capture their behavior in the presence of analog non-idealities,. Behavioral models in-

corporating these non-ideal analog effects were extracted from SPICE data in the form of

look-up tables (LUTs). These behavioral LUTs and delays were then incorporated into

component-level Verilog-A models for analog blocks. Verilog models of all the digital com-

ponents including CTRL and TH block were developed and synthesized with TSMC 65 nm GP

library via Synopsys Design Compiler.

Application-level Validation: Verilog and Verilog-A models described in Section 4.4 were

integrated to obtain a cycle and functionally accurate PROMISE Verilog model. The digital

blocks was verified by generating the correct control signals at the right time in the pres-

ence of post-layout parasitics when presented with the appropriate PROMISE instruction

word. In addition, a functional PROMISE C++ model incorporating the LUT-based analog

behavioral models described in earlier in Section 4.4 was also developed. This C++ model

was run on large data sets to obtain PROMISE’s application-level accuracy. The compiler

generated code was verified with the Verilog models of the digital components along with

the Verilog-A models to evaluate energy and accuracy of PROMISE.

Benchmarks: The commonly employed ML algorithms listed in Table 4.2 were mapped

to PROMISE. As PROMISE is programmable, it employs 8-bit data to cover diverse ap-

plications and algorithms as shown in many other implementations [115, 139, 140, 42]. For

application level energy optimization analysis we also choose 3 variants of DNN of different

complexity to demonstrate the architecture. These benchmarks give us diversity in com-

plexity and allows us to explore the energy accuracy trade-offs.
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Baseline Architectures: It is well known that ASICs are order-of-magnitude more energy

and delay-efficient compared to general-purpose processors (CPU/GPU) [143]. Therefore,

we choose the following four ASICs as our comparison baselines for the conservative evalua-

tion of PROMISE: (a) CM : The programmability overhead is estimated via the comparison

with CM. (b) State-of-arts: We also compare PROMISE with the recent prior arts with

silicon IC prototypes [115, 114], which implement similar algorithms as PROMISE. The

DNN is compared with [114] and k-NN and template matching with L1 and L2 distances are

compared with [115]. (c) CONV-8b: We build the baseline digital architecture (Fig. 4.9),

which consists of the computational logic synthesized for the specific algorithm + conven-

tional SRAM. (d) CONV-OPT: This is the same as CONV-8b but with minimum bit

precision required per benchmark.

Even though prior arts exist for some of benchmarks many of them do not have a relevant

previous ASIC. Furthermore, configurations such as process technology and on-chip memory

capacity are not perfectly identical to PROMISE. In order to perform a conservative com-

parison, the CONV-8b/CONV-OPT (CONV) is chosen to operate at maximum speed while

only restricting the number of SRAM banks are employed to be same as PROMISE. The
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Algorithm Application Database	 Data
size	(N)

Number	of
Categories

Problem
size

#	of	
AbstractTasks AbstractTask 𝑾 𝑿 Comments Opt.	swing		

(pm=1%)

DNN
(Multilayer
Perceptron)

Hand-written
character
recognition

MNIST (8-bit)
22×23 10

10	categories,	60000	
training samples,	
10000	test	samples

4 vecOp: multiplication
redOp:	sum Weights Test

samples

5-layer	DNN	with	nodes	as	
follows:

784-512-256-128-10
3,2,3,3

Matched
filtering

Event	(gun-
shot)

Detection

Gun-shot	
Mono
sound

(8-bit)
256, 512,
1024

2 100	test	vectors 1 vecOp: multiplication
redOp:	sum

Filter
weights

Test
samples 1

Template	
matching
(w/	L1	&	

L2)

Face
Recognition MIT-CBCL

(8-bit)
16×16
22×23
32×33

64 256
Candidates 1

vecOp:	subtraction
redOp:		L1:	absolute	

L2:	square

Candidate
faces

Test
samples

Nearest	candidate
based	on	either
L1	or	L2	distance

2

Linear	
SVM

Face
Detection MIT-CBCL (8-bit)

16×16 2
2 categories, 2000	

training	samples,	 858
test	samples

1 vecOp: multiplication
redOp:	sum Weights Test

samples

Face data	converted	into	a
vector,	linear	SVM

applied	 on	it
6

k-NN
(w/	L1	&	

L2)

Hand-written
character
recognition

MNIST

(8-bit)
16×16
22×23
32×33

10
10	categories,	54210
training samples,	 200	

test	samples
1

vecOp:	subtraction
redOp:		L1:	absolute	

L2:	square

Training	
samples

Test
samples

Sorting	is	done	in external	
processor	 after	

processing	 on	MATI
1

Feature	
extraction	
(PCA)

Face
Detection MIT-CBCL	 (8-bit)

16×16 — 2000	samples 1 vecOp: multiplication
redOp:	sum Weights Samples Four	features	used	for

face detection	based	on	PCA —

Linear	
regression

Modeling
linear

predictor

Synthetic
data

(8-bit)
2	dim. — 8192 samples 4

vecOp:	None
redOp:	AT1,AT2:	mean

AT3:	square,	
AT4:	sign_mult

AT1:	𝑈
AT2:	𝑉
AT3:	𝑈
AT4:	𝑈

T4:	𝑉

2-D	linear	regression	:	
𝑠𝑙𝑜𝑝𝑒 = +,-.+,/-0

	+,2.+,/2
𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = �̅� − 𝑠𝑙𝑜𝑝𝑒 < 𝑢0

—

Table 4.2: Benchmarks for PROMISE Simulations [141, 142, 138].

SRAM fetches NCOL/(LBw) words per single read access of bank.Therefore, CONV operates

with maximum achievable throughput of :

fCONV =

(
NCOL/L

Bw

)(
1

TSRAM

)
(4.3)

The CONV (Fig. 4.9) consists of computation logic synthesized for each specific benchmark

therefore it only incurs the energy costs of that specific benchmark and additional routing,

dataflow and control energy are neglected. Additionally, CONV-OPT has the minimum

precision for each benchmark thereby making it the most conservative baseline to compare

with PROMISE in terms of accuracy, energy and throughput.

4.5 EVALUATION

In this section we present evaluation of PROMISE. We estimate the energy and delay for

each operation using the methodology presented in Section 4.4. We present the gains of

the compiler-based energy optimization, compared with the maximum (unoptimized) swing

voltages, and then compare PROMISE (with the maximum swing voltages) against the

baselines described in Section 4.4.

PROMISE executes 128-element vector operation per bank within TP , i.e., its throughput

in terms of ”number of OPs per bank per unit time” can be expressed by fPROMISE = 128/TP
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Figure 4.10: PROMISE (with SWING = 111) compared to CONV in terms of (a) speed-up
and (b) energy savings.

per bank, where OP includes the SRAM access and MAC (multiply + accumulation) for

single word. The energy consumption of PROMISE can be divided as:

EPROMISE =
4∑

i=1

EClass,i + ELEAK + ECTRL, (4.4)

where EClass,i is the energy consumed by Class,i instruction, ECTRL and ELEAK are the

CTRL block and leakage energies, respectively. Table 4.3 shows the energy consumed for

each operation at SWING = 111.

4.5.1 Effectiveness of Compiler

Code Generation: The benchmarks for evaluation are listed in Table 4.2. The benchmarks

use a wide variety of combination of operations in different Classes. Encoding these diverse

algorithms by hand or using a library is not feasible. Coding these algorithms in Julia,

and using the compiler to generate PROMISE ISA was both more efficient and error free.

Moreover, it is also suboptimal to find the SWING parameter for benchmarks which use

more than one Tasks. For example, for DNN benchmark with 3 hidden layers, the number

of SWING combinations is 84 = 4096. Inter Task compiler analysis is required to find the

optimal SWING parameter for such algorithms as shown in later sections. Lastly, the compiler

also handles different vector sizes for these benchmarks.

Energy Optimization: We evaluate the energy benefits on PROMISE by choosing the
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Figure 4.11: Energy breakdown (normalized to SVM with CONV-8b)

optimal swing values obtained via compiler directed energy optimization. Figure 4.12 shows

the energy benefits for energy optimized code generated for PROMISE. The figure contains

the energy estimates of PROMISE for the benchmarks under test for two cases: (1) Full

Precision - all Tasks use maximum SWING, and (2) Optimized - Tasks use the optimized

SWING set by the energy optimization pass. We limit the degradation in accuracy to 1%

(pm = 1%). Feature Extraction and Linear Regression are omitted from this evaluation

as they are not classification kernels, and mismatch probability is defined for classification

algorithms only.

The first six benchmarks in Figure 4.12 compile down to a single AbstractTask in

PROMISE compiler IR, and the optimal swing is obtained by doing a sweep over all the 8

values of swing. The last three benchmarks, DNN-N1, DNN-N2, and DNN-N3 are variants

of the multilayer perceptron algorithm shown in Table 4.2. The three DNNs have 3, 4, and 5

layers respectively and translate to 2, 3, and 4 AbstractTasks. The search space for optimal

swing for the three DNNs increases exponentially with increase of each layer. We use the

energy optimization analysis to obtain the swing values for these DNNs. The optimal swing

for the AbstractTasks in DNN-1 is (3, 6), for DNN-2 is (5, 7, 7), and for DNN-3 is (3, 3, 4,

6). The maximum energy savings come from the lower layers of each DNN, which are wider

and also more tolerant to imprecision. Overall the benefits of the optimization range from

4% for Linear SVM to about 25% for the two k-NN versions (geometric mean: 17%).
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Figure 4.12: Energy gains by compiler directed energy optimization. DNN-(1, 2, 3) are
trained on MNIST dataset. Their structures are: DNN-1(784-128-10), DNN-2(784-256-128-
10), and DNN-3(784-512-256-128-10).

4.5.2 Performance and Energy

Comparison with State-of-Arts: The k-NN accelerator [115] with L1 and L2-distances is

implemented in a 14 nm FinFET process, where 8-bit 128-dimension X is processed with 128

Wjs. The k-NN accelerator demonstrates 3.37 (3.84) nJ/decision (processing single input X)

with 21.5M (20.3M) decisions/s with L1 (L2) distance. PROMISE achieves 18 (22.9) nJ/de-

cision with 1.12M (0.98M) decisions/s with L1 (L2) distance for the same benchmark with

single bank. Though PROMISE achieves lower energy efficiency and throughput, PROMISE

is implemented in a 65 nm process (vs. 14 nm FinFET in [115]). If the energy and delay

numbers in [115] are scaled to a 65 nm process based on ITRS roadmap [144], PROMISE

achieves 4.1× (3.7×) smaller energy and 3.1× (3.4×) lower throughput, achieving 1.3×
(1.1×) energy-delay product (EDP) reduction with L1 (L2) distance.

The DNN accelerator [114] was implemented in a 28 nm process for 8-bit 5-layer DNN

with a network size of 784-256-256-256-10. The accelerator employs total 1 MB SRAM

(to test up to 16-bit case), zero-skipping, and RAZOR technique [145], demonstrating 0.57

uJ/decision and 28K decisions/s. On the other hand, PROMISE enables 8-bit 5-layer DNN

with a size of 784-512-256-128-10 in 36 banks (= 576 KB). The network size is not identical,

but comparable (PROMISE’s network is slightly larger, requiring 69% higher number of

coefficients Wjs and MAC operations). PROMISE achieves 0.49 uJ/decision and 558K

decisions/s, achieving 1.15× energy saving and 19.9× throughput improvement with 22×
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Class Operation Delay
Energy/

Bank (pJ)
Operation Delay

Energy/
Bank (pJ)

1
write 2 73 aSUBT 7 103
read 2 33 aADD 7 103
aREAD 5 61 −

2
compare 6 5 sign mult 14 16
absolute 6 12 unsign mult 14 16
square 8 38 −

3 ADC 138 6 −

4

mean 3 ≈ 0 accumulation 4 ≈ 0
min 4 ≈ 0 threshold 2 ≈ 0
max 4 ≈ 0 sigmoid 3 ≈ 0
ReLu 3 ≈ 0 −

Leakage energy per cycle 0.6 CTRLer energy per cycle 5.4

Table 4.3: Energy and Delay (# of cycles). 1 cycle = 1ns.

EDP reduction though PROMISE was implemented in a 65 nm process (vs. 28 nm in [114]).

Comparison with CONV: Figure 4.10(a) shows that PROMISE provides a speed-up

of 1.4 − 3.4× compared to CONV-OPT across the benchmarks. PROMISE’s speed-up is

the least for linear regression because it needs to re-access the same SRAM data every Task

because analog data cannot be stored due to leakage whereas CONV stores the data in a local

register (pipeline FF in Fig. 4.9) and reuse it. Figure 4.10(b) shows that PROMISE achieves

a 3.4 − 5.5× energy savings compared to CONV-OPT leading to an EDP improvements

of 4.7− 12.6× compared to CONV-OPT. The key reason for PROMISE’s energy efficiency

is due to its aREAD (Class-1) and aSD/aVD (Class-2) being executed with low-voltage

swing mixed signal computation block (See Figure 4.11).

The programability overhead of PROMISE is minimal, rather our estimates show the

concepts introduced in this work actually can improve over CM. Our results show that

PROMISE achieves up to 1.9× speed-up over CM due to the analog pipeline in spite of

its operational diversity. In spite of the increased complexity of CTRL to support the

programmability, PROMISE was found to achieve 5.5% energy savings over CM due to

reduced leakage as PROMISE can go to sleep mode quicker after completing the given

Tasks due to the throughput gain.
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CHAPTER 5: APPROXHPVM

With the end in Moore’s Law and Denard scaling, the gap between hardware performance

and the ever-increasing requirements of modern applications continues to widen [19]. Re-

cent paradigms such as approximate computing attempt to bridge the gap by introducing

novel hardware architectures and software optimizations that trade-off accuracy for gains

in performance and energy. Approximate computing is particularly relevant for application

domains that can tolerate small errors with acceptable loss in the final output. Examples

of such domains include signal processing, speech recognition, sensor networks, information

retrieval, data mining, video decoding, game engines, and machine learning [146].

Approximate computing techniques span many architectural components: floating-point

units, caches, DRAM, and analog and digital accelerators [18, 19, 20]. Software techniques

are similarly diverse, including loop perforation [21], barrier elision [22], reduction sampling,

and function substitution [23]. A given computational algorithm or kernel may benefit

from multiple different approximation techniques, and moreover, a realistic application will

contain several (or many) distinct kernels. Determining how best to map such an application

to a modern heterogeneous system is an open research problem.

Moreover, application developers and end users cannot be expected to specify error toler-

ances in terms of the system-level parameters required by the various approximation tech-

niques, or even know about many of them: we require automated mapping strategies that

can translate application-level specifications (e.g., tolerable classification error in a machine

learning application) to system-level parameters (e.g., neural network parameter precision

or voltage swings).

Existing systems for accuracy-aware optimizations do not provide a fully automated frame-

work that is able to target multiple heterogeneous devices without requiring programmer-

guided annotations. The ACCEPT [36] framework uses a programmer-guided approach with

source-level approximation annotations. It targets accelerators using a combination of static

analysis and autotuning to choose between multiple approximation options. However, AC-

CEPT cannot support systems with multiple compute units and multiple approximation

techniques, which is a key goal of our work. Moreover, it does not decouple hardware-

independent accuracy constraints from hardware-specific knobs, thereby reducing the exten-

sibility of the technique to multiple kinds of hardware devices. EnerJ [37] presents a type

system that separates approximate and precise data. Chisel [38] and Rely [39] programming

languages introduced the idea of quantifiable reliability and accuracy at the program level.

Introducing approximation metrics as part of a new programming language hurts program
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portability since applications need to be ported at the source-level.

We1 propose ApproxHPVM, a compiler IR and system designed to enable accuracy-aware

performance and energy tuning on heterogeneous systems with multiple compute units and

approximation methods. ApproxHPVM automatically translates end-to-end application-

level accuracy constraints into accuracy requirements for individual operations. ApproxH-

PVM uses a hardware-agnostic accuracy-tuning phase to do this translation, which greatly

speeds up the analysis, enables greater portability, and enables future capabilities like

accuracy-aware dynamic scheduling and design space exploration.

ApproxHPVM incorporates three main components: (a) a compiler IR with hardware-

agnostic approximation metrics, (b) a hardware-agnostic accuracy-tuning phase to identify

error-tolerant computations, and (c) an accuracy-aware hardware scheduler that maps error-

tolerant computations to approximate hardware components. As ApproxHPVM does not

incorporate any hardware-specific knowledge as part of the IR, it can serve as a portable

virtual ISA that can be shipped to all kinds of hardware platforms.

We evaluate our framework on four benchmarks from the deep learning domain. Our

results show that our framework can offload chunks of approximable computations to special-

purpose accelerators that provide significant gains in performance and energy, while staying

within a user-specified application-level accuracy constraint with high probability. Across

four benchmarks, we observe performance speedups ranging from 2.8x to 20x and energy

reduction ranging from 1.9x to 7.1x for an accuracy loss of 1%.

5.1 THE HPVM INTERNAL REPRESENTATION

ApproxHPVM is inspired by and builds on HPVM [147], a dataflow graph compiler IR

for heterogeneous parallel hardware. We extend the HPVM IR to support execution of basic

linear algebra tensor computations and approximate computing metrics. In this section we

first briefly discuss the HPVM IR and then describe our extensions to it.

5.1.1 Background: HPVM dataflow graph

HPVM [147] is a framework designed to address the performance and portability challenges

of heterogeneous parallel systems. At its core is the HPVM IR which is a parallel program

representation that uses hierarchical dataflow graphs to capture a diverse range of coarse- and

fine-grain data and task parallelism including pipeline parallelism. It can also capture nested

1This project was done jointly and equally with Hashim Sharif (hsharif3@illinois.edu) and
it would appear in both of our theses.
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Tensor Intrinsic Description
i8* @hpvm.tensor.mul(i8* lhs, i8* rhs) Performs a matrix multiply operation on the

input tensors.
i8* @hpvm.tensor.conv(i8* input, i8*
filter, i32 stride, i32 padding)

Applies a convolution filter on input tensor
with given stride and padding.

i8* @hpvm.tensor.add(i8* lhs, i8* rhs) Element-wise addition on input tensors.
i8* @hpvm.tensor.reduce window(i8*
input, i32 reduction type, i32 win-
dow size)

Performs a (configurable) reduction opera-
tion over a specified window size on the input
tensor.

i8* @hpvm.tensor.relu(i8* input) Element-wise relu activation function.
i8* @hpvm.tensor.clipped.relu(i8* in-
put)

Element-wise clipped relu activation func-
tion.

i8* @hpvm.tensor.tanh(i8* input) Element-wise tanh activation function.

Table 5.1: Tensor intrinsics in the HPVM representation.

parallelism, and SPMD style data parallelism exploited in GPUs. The authors showed that

these abstractions allow HPVM to compile from a single program representation in HPVM

IR to diverse parallel hardware targets such as multicore CPUs, vector instructions, and

GPUs. Thus, we leverage the existing infrastructure of HPVM and extend it to compile to

our heterogeneous approximate computing platform.

The following HPVM details are relevant for this work. In HPVM, a program is repre-

sented as a host program plus a set of one or more distinct dataflow graphs, which describe

the computationally heavy part of the program that is to be mapped to accelerators. Nodes

in the HPVM dataflow graph (DFG) represent units of execution, and edges between nodes

describe explicit data transfer requirements. Different nodes can access the same shared

memory locations by passing pointers along edges, which is important for modern heteroge-

neous systems that support cache-coherent global and partial shared memory. A node can

begin execution once it receives a data item on every one of its input edges. The execution

of the DFG is initiated and terminated by host code.

Lastly, the HPVM DFG is hierarchical which allows a node in HPVM DFG to be a leaf

node describing the computation or an internal node describing a HPVM DFG itself. Com-

putations in leaf nodes are represented by ordinary LLVM scalar and vector instructions,

and can include loops, function calls, and memory accesses. The @hpvm.createNode in-

struction is used to create a node in the HPVM DFG, and the @hpvm.createEdge is used to

connect an output of a node to an input of another node in HPVM. The @hpvm.bind.input

instruction is used to map an incoming edge in an internal node to the input of a node in

the internal DFG of this node. @hpvm.bind.output instructions serve a similar purpose for
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outgoing edges.

5.1.2 Tensor operations in HPVM

Domain-specific languages such as Tensorflow and Pytorch allow for improved programmer

productivity and are thus gaining wide-spread adoption. Accordingly, compilers are begin-

ning to support efficient mapping of high-level domain-specific abstractions to heterogeneous

parallel compute units including CPUs, GPUs, FPGAs, and special-purpose accelerators.

Recently, Google’s Tensorflow infrastructure introduced XLA [148], a compiler framework

that lowers Tensorflow programs to linear algebra operations and efficiently calls existing

GPU and CPU backends such as Eigen and cuDNN.

A general-purpose parallel IR such as HPVM translates high-level operations into generic

low-level LLVM instructions. However, such early lowering of domain-specific operations can

result in loss of important semantic information that may be used by a target backend or

runtime. Reconstructing the higher-level semantics after lowering is generally very difficult

and sometimes infeasible.

Instead, we choose to incorporate high-level but broadly applicable operations into HPVM

IR directly. In this work, we extend the HPVM IR representation with linear algebra tensor

operations that allow for naturally expressing tensor-based applications. Tensors are used

in a wide range of important domains, including mechanics, electromagnetics, theoretical

physics, quantum computing, and machine learning. For instance, convolutional neural net-

works may be expressed using generic linear-algebra operations. This design choice provides

two essential benefits: a) It enables efficient mapping of tensor operations to special purpose

hardware and highly optimized target-specific runtime libraries, such as cuDNN for GPUs.

b) It allows approximation analyses to leverage domain-specific information, because the

approximation properties, parameters, and analysis techniques usually are determined by

properties of the domain.

The tensor operations in HPVM are represented as calls to intrinsic functions. The in-

trinsic calls appear to existing LLVM passes as calls to unknown external functions, so no

changes to existing passes are needed. For applications where all data-parallelism occurs via

the tensor operations, the dataflow graph is only used to capture pipelined and task par-

allelism across nodes, while data-parallelism is captured by the tensor operation(s) within

individual nodes. The list of tensor intrinsics introduced in HPVM are listed in Table 5.1.

Figure 5.1 shows a single-layer fully connected neural network represented in HPVM using

tensor intrinsics. The DFG root function is the root of the dataflow graph, and would be

invoked by host code. The root node is an internal graph node, which creates the leaf
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nodes tensorMulNode, tensorAddNode and tensorTanhNode (using hpvm.createNode calls)

and connects the nodes through dataflow edges (using hpvm.createEdge calls). The leaf

nodes invoke the tensor intrinsics to perform tensor computations on the input tensors. The

output of the last node in the dataflow graph is connected to the output of the root node

and is returned back to the caller.

5.1.3 Approximation Metrics in the IR

The core feature we add to HPVM design is the introduction of hardware-independent

approximation metrics that quantify the accuracy of unreliable and approximate computa-

tions. We attach error metrics, defined below, as additional arguments to high-level tensor

operations. Our design allows the specifications to be added to generic low-level instruc-

tions, but we do not use that in this work. To express the (allowable) difference between

approximate and exact tensor outputs, we use vector distance metrics:

• L1 error:

Le
1 =

L1(A−G)

L1(G)
(5.1)

The numerator captures the sum of absolute differences between the approximate

tensor output A and the golden tensor output G. The denominator is the L1 norm

of the golden output tensor, so that the ratio is the relative error.

• L2 error:

Le
2 =

L2(A−G)

L2(G)
(5.2)

This is similar to the Le
1 norm, except that the numerator represents the Euclidean

distance and the denominator uses the L2 norm.

Figure 5.2 shows how the approximation metrics are represented in the compiler IR. The

approximation parameters for each tensor operation are attached as additional arguments

to the respective intrinsic functions. While our current system only uses the two metrics

described, our implementation and analyses can be easily extended to include additional

approximation metrics.
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define i8* @tensorMulNode(i8* %t1, i8* %t2) {

%result = call i8* @hpvm.tensor.mul(i8* %t1, i8* %t2)

return i8* %result

}

define i8* @tensorAddNode(i8* %t1, i8* %t2) {

%result = call i8* @hpvm.tensor.add(i8* %t1, i8* %t2)

return i8* %result

}

define i8* @tensorTanhNode(i8* %t) {

%result = call i8* @hpvm.tensor.tanh(i8* %t)

return i8* %result

}

; Root node of the Dataflow Graph

define void @DFG_root(i8* %W, i8* %X) {

; Creating DFG nodes

%nodeMul = call i8* @hpvm.createNode(i8* @tensorMulNode)

%nodeAdd = call i8* @hpvm.createNode(i8* @tensorAddNode)

%nodeTanh = call i8* @hpvm.createNode(i8* @tensorTanhNode)

; Creating data-flow edges between different DFG nodes

call void @hpvm.createEdge(i8* %nodeMul, i8* %nodeAdd, 1, 0, 0, 0)

call void @hpvm.createEdge(i8* %nodeAdd, i8* %nodeTanh, 1, 0, 0, 0)

; Binding the parent input to inputs of the leaf nodes

call void @hpvm.bind.input(i8* %nodeMul, 0, 0, 0)

call void @hpvm.bind.input(i8* %nodeMul, 1, 1, 0)

call void @hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)

; Binding final DFG node output to parent node output

call void @hpvm.bind.output(i8* %nodeTanh, 0, 0, 0)

}

Figure 5.1: Single layer fully connected DNN in ApproxHPVM

define i8* @tensorMulNode(i8* %t1, i8* %t2) {

%result = call i8* @hpvm.tensor.mul(i8* %t1, i8* %t2, float %relative_l1, float %relative_l2)

return i8* %result

}

define i8* @tensorAddNode(i8* %t1, i8* %t2) {

%result = call i8* @hpvm.tensor.add(i8* %t1, i8* %t2, float %relative_l1, float %relative_l2)

return i8* %result

}

define i8* @tensorTanhNode(i8* %t) {

%result = call i8* @hpvm.tensor.tanh(i8* %t, float %relative_l1, float %relative_l2)

return i8* %result

}

Figure 5.2: Tensor intrinsics annotated with accuracy metrics. The accuracy metrics are
stored in LLVM metadata associated with the tensor intrinsic call
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Figure 5.3: ApproxHPVM System Workflow

5.2 SYSTEM WORKFLOW

Figure 5.3 shows the overall ApproxHPVM workflow, which extends the HPVM infras-

tructure developed by Kotsifakou et. al. [147]. The primary input is a program written in

C/C++ with HPVM intrinsics for representing data-flow and ApproxHPVM intrinsics for

the tensor operations. We modified the Clang compiler to generate ApproxHPVM, which

feeds into the later passes. A second input is the desired end-to-end accuracy requirement, a

domain-dependent parameter. For the neural network domain, we use the final classification

accuracy as the parameter.

The overall goal is to map the computations of the program to the compute units on a

target system, along with selected approximation parameter values on each compute unit,

so that the program outputs satisfy the specified accuracy. We decompose this mapping

problem into a hardware-agnostic first stage and a hardware-specific second stage, for several

reasons: (1) The end-to-end accuracy must be decomposed into separate accuracy constraints

for each tensor operation, but this is generally a very expensive step, as described next: in

fact, it proved impractical to do directly for our hardware. The decomposition allows us

to perform this step without considering the specific mapping choices and approximation

decisions, which greatly speeds up the analysis and also allows it to be done once ahead of

time. (2) The decomposition generates hardware-agnostic ApproxHPVM code with accuracy

constraints, which enables portability of the ApproxHPVM virtual object code. (3) The

second stage is extremely fast, enabling techniques like dynamic accuracy-aware scheduling

and rapid accuracy-aware hardware design space exploration, which would be impractical if
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the expensive first stage were needed (both of these are key goals of our ongoing research,

although out of scope for this paper).

We therefore use a hardware-agnostic accuracy-tuning phase that takes an end-to-end

accuracy requirement and computes the accuracy requirements for individual ApproxHPVM

operations, adding these requirements in the IR. The output of this stage is hardware-

agnostic ApproxHPVM code, which is legal LLVM and can optionally be used as a virtual

instruction set to ship the code as “virtual object code” to one or more targets [107]. For each

target, a (static) accuracy-aware hardware scheduling phase chooses which compute units

should execute each tensor operation, and optimizes any approximation parameters available

on each compute unit to minimize energy and/or maximize performance, while satisfying

the individual accuracy constraints on each operation. Finally, the code generation phase

leverages the hardware-specific backends to generate code for each compute unit. In our

work, we build a) GPU backend that targets the cuDNN and cuBLAS libraries that are

optimized for high-level tensor operations, and b) a PROMISE backend that targets the

library that performs optimized tensor computations on the PROMISE hardware simulator.

The GPU can use FP32 (golden) or FP16 values for the network weights and bias values.

PROMISE can only use 8-bit integers, and offers a choice of seven voltage values to further

trade-off accuracy for energy (see Section 5.2.2).

5.2.1 Hardware-Agnostic Accuracy Tuning

The goal of hardware-independent accuracy tuning is to compute the accuracy require-

ments (represented by the Le
1 and Le

2 defined earlier) for each operation so that, if the

individual requirements are satisfied, the user-provided end-to-end accuracy constraint is

met. For instance, a user may specify an acceptable classification accuracy degradation of

1%, allowing the tuner to lower the accuracy constraints on a tensor multiply operation

by 10%. By computing the individual accuracy constraints, the tuner enables the hard-

ware scheduler to map individual tensor operations to approximate hardware independently.

This independence goal is a compromise: better energy efficiency or performance or both

might be achieved if two or more operations were considered together in the second stage,

but that would require a combinatorial optimization problem across all operations, compute

units, and approximation choices. Using independent decisions allows a much faster decision

problem in the second stage.

Figure 5.4 describes the overall workflow of the accuracy-tuning phase. The heart of the

accuracy-tuner is an autotuning search that uses statistical error injection to model potential

run-time errors and directly executes the program on a standard CPU to measure the end-
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Figure 5.4: Hardware-agnostic accuracy-tuning workflow.

to-end accuracy vs. the expected (“golden”) output. If the hardware target was known,

the autotuner could skip the (artificial) error injection and instead execute the program

on the target with a selected mapping and selected approximation settings to estimate the

error. Instead, the autotuner uses a hardware-agnostic error model and objective function to

perform the search. Since our tuner uses statistical error injection to validate the accuracy

constraints, the autotuner enforces the accuracy threshold to be met with a certain tunable

success rate (fixed at 95% in our experiments).

Autotuning framework. Considering realistic applications with multiple tunable oper-

ations, the size of the search space makes exhaustive search intractable. To enable efficient

search, we use OpenTuner [149], an extensible framework for building domain-specific au-

totuners. OpenTuner allows users to configure a domain-specific search space and specify

a custom objective function. Prior work has shown that OpenTuner provides promising

results with enormous search spaces, exceeding 103600 possible configurations. Leveraging

Opentuner, we build our custom accuracy tuner that tunes the error knob for each ten-

sor operation while minimizing an objective function. The objective functions we use are

described below. In our experiments, we are able to extract high-quality configurations

while searching through only a small subset of the full search space. For our experiments,

we run OpenTuner for a total of 5000 iterations, where each iteration generates a unique

configuration; the longest runs took about 2 hours.

Inputs. The accuracy-tuner takes as input an end-to-end accuracy threshold T, and the
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target program compiled to ApproxHPVM, and generates a set of configurations, defined

below.

Error Injection. The accuracy tuner works by injecting errors into the outputs of in-

dividual tensor operations and predicting their impact on end-to-end accuracy. The key

to making our decomposed strategy work is to do this analysis in a hardware-independent

manner. We achieve this by using a simple, hardware-agnostic error model, where errors

in the outputs of tensor values X[i] are injected as: X[i] = X[i] × (1 + E × N (0, 1)). The

parameter E provides a simple, linear error model optimized by the autotuner, producing

hardware-agnostic error values that can be mapped by the back-ends to hardware-specific

approximation choices.

In our analysis, we choose the value of E from 1 to 15, increasing linearly, thereby linearly

increasing the Le
1 and Le

2 metrics. In our experiments, we tune the values of the L1 error

norm ranging from 0.5% to 40%.

Search Space and Configurations. A configuration in the autotuning search consists

of a value of the error parameter E assigned to each of the tensor operations in the target

program. By selecting this value at each operation, the autotuner controls the magnitude

of error injected into each tensor operation. For instance, one configuration for the code in

example 5.1 may look like:

Configuration: {

hpvm.tensor.mul: 5,

hpvm.tensor.add: 6,

hpvm.tensor.tanh: 4

}

For every configuration generated by the accuracy tuner, the final accuracy is empirically

evaluated by running the program with the tuned level of error injection. If the measured

end-to-end accuracy is below the pre-defined threshold, the configuration is rejected. Oth-

erwise, the configuration is saved as a candidate configuration.

Measuring Success Rate. Since we used statistical error injection to evaluate candi-

date configurations, our end-to-end “guarantee” can be probabilistic, at best. Consistent

with prior work in optimistic parallelization [87], we use statistical testing to determine the

probabilistic guarantee provided by each candidate configuration. The statistical accuracy

test runs each candidate configuration with additional random error injection trials, where

the magnitude of error is determined by the selected error knobs. We treat each run as a

Bernoulli trial which succeeds if the execution satisfies the user-defined accuracy threshold

T and fails otherwise. For measuring the success rate Rsuccess, we execute each configuration
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for 100 runs and accept a configuration if the statistical accuracy test has a minimum success

rate of 95%.

Hardware-independent objective functions. All remaining candidate configurations

satisfy the end-to-end accuracy threshold with a minimum success rate Rmin, and can be

ranked to achieve our goal of maximizing energy efficiency and performance. We use a

hardware-independent objective function to do so, using operation count as a proxy for

execution time, and assuming that higher allowable errors yield better energy efficiency.

Thus, we heuristically compute a cost function CTotal of a candidate configuration as:

CTotal(config) =
N∑
i=0

C(op(i), E(i)) (5.3)

The total cost of a configuration is defined as the sum of the cost of each operation at

the selected error knob. The individual operation costs must increase with execution time

and decrease as allowable error increases. We include three alternative objective functions,

where we use the error knob E as a proxy for error:

C1(op, E) =
Nc(op)

logE
(5.4)

C2(op, E) =
Nc(op)

E
(5.5)

C3(op, E) =
Nc(op)

E2
(5.6)

Here, Nc(op) computes the total count of multiplication and add operations performed

as part of the higher-level tensor operation, op. Note that the more expensive operations

(higher Nc(op)) are likely to prefer a higher error value, which prefers scheduling these

operations for more approximate hardware, in the hope of achieving higher overall benefits.

The autotuner generates configurations once for each of the objective functions. We ship

the IR with the top 10 configurations for each of the three objective functions, allowing the

hardware scheduler to select the best performing configuration for the specific deployment.

5.2.2 Accuracy-Aware Scheduling

Given an application in ApproxHPVM along with error norms Le
1 and Le

2 for each tensor

operation in the ApproxHPVM dataflow graph, the goal is to choose the right hardware

setting for each operation. We envision that multiple software and hardware approximate
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computing techniques will be available as a choice for each operation. The scheduler attempts

to find a configuration that maximizes energy efficiency and performance while meeting the

individual accuracy constraints per operation.

Accuracy-aware scheduling presents these challenges: (C1) given error metrics, selecting

a hardware knob corresponding to each operation. (C2) Maximizing energy and/or perfor-

mance based on an objective function. (C3) Incurring low runtime cost, thereby enabling

dynamic scheduling.

Approximate Computing Hardware: In this work, we map and compile tensor opera-

tions onto two hardware compute units: an NVIDIA GPU and a programmable mixed-signal

accelerator for machine learning called PROMISE [18]. The computations are offloaded to

an NVIDIA Pascal GPU using the cuDNN library which supports both 32-bit (FP32) and

16-bit floating point (FP16) operations. Prior work has shown that FP16 computation re-

duces execution time and energy by 1.5-4x compared to FP32 [150, 151], at the cost of

reduced accuracy.

The PROMISE accelerator employs in-memory, low signal-to-noise ratio (SNR) analog

computation on the bit lines of an SRAM array to perform faster and energy efficient ma-

trix operations, including convolutions, dot-products, vector adds, and others. As shown

in [18], PROMISE consumes 3.4-5.5x lower energy and has 1.4-3.4x higher throughput than

application-specific custom digital accelerators, which are themselves known to be orders of

magnitude better in terms of energy-delay product than NVIDIA GPUs. The PROMISE

accelerator instruction set has a parameter swing voltage, which controls the bit-line volt-

age swing in the accelerator and allows a trade-off between accuracy and energy. The swing

parameter can take up to seven different values giving us seven choices for the PROMISE

hardware, denoted in this paper as P1, P2, . . . , P7, in increasing order of voltage and

decreasing error.

Thus, in total we have 9 different choices (FP16, FP32 on GPU and P1, P2, . . . , P7

on PROMISE) for mapping each tensor operation. Figure 5.5 shows the speedup, energy

reduction, and accuracy of 3 hardware settings – P1, P7, and FP16. These are measured

for a matrix multiplication of matrix M1 of size 5000 ×K and matrix M2 of size K × 256,

where K ∈ {28, 29, . . . , 215}. The matrices are initialized with random values from uniform

distribution U(0, 1). For readability, we do not show curves for P2-P6, which follow the same

trends as P1 and P7. The left Y-axis shows speedup and energy reduction over FP32. The

right Y-axis depicts error in the computation by showing Le
1 of the matrix multiplication for

each hardware setting.

The graph shows that the Le
1 of different hardware settings remains constant for different

76



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

6

7

8

L1
 E

rr
o

r

Ti
m

e
 a

n
d

 E
n

e
rg

y 
Im

p
ro

ve
m

e
n

t

K

FP16 Time

P7 Time

P1 Time

FP16 Energy

P7 Energy

P1 Energy

FP16 L1 Error

P7 L1 Error

P1 L1 Error

Figure 5.5: Time and energy improvement, and Le
1 for the following hardware knobs: FP16,

P7, and P1. It can be seen that PROMISE is faster and less accurate than FP16, which is
faster and less accurate than FP32.

values of K. FP16 is most accurate followed by P7 and P1 in that order. FP16 is also

faster than P7 and P1 for all K and consumes more energy than P7 and P1, except for an

anomaly for K = 256, 512. P7 and P1 curves for execution time overlap i.e., they execution

time is same for different hardware settings for PROMISE. P1 however, is more imprecise

and consumes less energy than P7. The hardware settings P2-P6 follow the same pattern.

Mapping Le
1 and Le

2 metrics to Hardware Setting: We generated similar graphs (similar

to Figure 5.5) for all ApproxHPVM tensor operations for each hardware setting FP16, P7,

P6, . . . P1. These operations include tensor multiplication, addition, convolution, activations

(tanh sigmoid,relu), and max-pooling. We used this data to find the maximum Le
1 and Le

2

constraints tolerable by each hardware setting for each operation. We observed that the

Le
1 and Le

2 metrics for each hardware setting had very little variation across different tensor

sizes. Thus, our backend maps a tensor operation to the least accurate hardware setting

that meets the Le
1 and Le

2 constraints of the operation. This makes our hardware specific

mapper very lightweight, which in future can be used for dynamic scheduling or for SoC

design space exploration.

5.2.3 Code Generation

In its final phase, the ApproxHPVM compiler generates code for each operation corre-

sponding to the selected compute unit. We added new backends for PROMISE and for

an optimized cuDNN and cuBLAS based library runtime for GPU. Since the support for

backends is flexible, the backend support can be extended to other approximate computing
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hardware platforms. The back-end code generators translate dataflow graph nodes (contain-

ing tensor intrinsics such as @hpvm.tensor.mul) to functions that invoke the corresponding

DNN operations for GPU or PROMISE.

Code generation for PROMISE requires an extra pattern-driven fusion operation because

the hardware can perform an entire layer operation as a single PROMISE instruction (called

a “task”). A layer operation in a DNN usually maps to the following common patterns for

fully-connected and convolution layers respectively:

YFC = f(X ·W +B) YConv = f(X ~W +B)

where W , X and B are the weight tensor, input tensor, and bias tensor, and f(·) is

the activation function (sigmoid, relu, tanh, etc.). PROMISE can perform the entire layer

computation as one PROMISE instruction [18]. We implement a pattern-driven Node Fusion

transformation that identifies sequences of nodes performing these operations and fuses the

nodes into a single ApproxHPVM dataflow node if they are all mapped to PROMISE.

5.3 METHODOLOGY

5.3.1 Platform

For our backend, we assume a modern System-on-Chip (SoC) architecture with different

system agents (CPUs, GPUs, accelerators) that communicate via main memory. While a

cycle-accurate integrated CPU-GPU-PROMISE simulator would be ideal to model such a

system, we instead opted for a split approach to model the SoC. We ran the GPU tensor

operations on a real mobile GPU and the PROMISE tensor operations on a PROMISE

simulator. Since all communication between different system agents occurs via main memory,

reads/writes to/from main memory sufficiently model communication between the CPU,

GPU, and PROMISE. For instance, if a particular layer executes on the GPU and the next

layer executes on PROMISE, we just assume that PROMISE obtains all the required data

from main memory. Therefore, this approach accurately models the behavior of a real SoC

architecture.

For our GPU experiments, we used an NVIDIA Jetson TX2 developer kit [45]. This

board contains the NVIDIA Tegra TX2 SoC [152], which has the same system architecture

as our target SoC. For our PROMISE experiments, we obtained the simulator from its

authors [18, 153] and extended it with a memory timing and energy model. Table 5.2 lists

the relevant characteristics of both Tegra TX2 and the PROMISE simulator. Finally, due to
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TX2 Parameters
CPU Cores 6
GPU Cores 2

GPU Frequency 1.12 GHz
DRAM Size 8 GB

DRAM Bandwidth 58.4 GB/s peak; 33 GB/s sustained
DRAM Energy 20 pJ/bit

PROMISE Parameters
Banks 256× 16 KB

Frequency 1 GHz

Table 5.2: System parameters for TX2 and PROMISE.

our split approach, the functional and timing aspects of our experiments were split as well.

5.3.2 Functional Experiments

To verify the functional correctness of our generated binaries and to measure the end-to-

end accuracy of each network with different configurations, we used the GPU in tandem with

PROMISE’s functional simulator. If a layer was mapped to the GPU, the corresponding

tensor operations were executed on the GPU. If a layer was mapped on PROMISE, it was

offloaded to PROMISE’s functional simulator. Consequently, the final result was the same

as it would be if these operations were all executed on a real SoC containing both a GPU and

PROMISE. We ran each configuration 200 times to obtain the mean and standard deviation

of the classification accuracy, and Rsuccess of the configuration.

5.3.3 Timing Experiments

GPU: To measure the execution time and energy of tensor operations on the GPU, we built

a performance and energy profiling tool. While a DNN is running, the tool continuously

reads GPU and DRAM power from Jetson’s voltage rails via an I2C interface [154] at 1

KHz (1 ms period). Furthermore, it associates each GPU tensor operation with a begin and

end timestamp pair. Once the DNN has finished execution, execution time is calculated by

simply taking the difference between the begin and end timestamp of the tensor operation.

Then, energy is calculated by integrating the power readings using 1 ms timesteps.

We used this tool to obtain per-tensor operation time and energy for both FP32 and

FP16 for each benchmark. To obtain reliable results for each operation, we did 100 runs

per benchmark, and used the average time and energy. The coefficient of variation was
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Network Layers Network Layers
LeNet Conv, Conv, FC, FC DNN2 FC, FC, FC
DNN1 FC, FC DNN3 FC, FC, FC, FC

Table 5.3: Four DNNs and their layers. Conv is a convolution layer. FC is a fully connected
layer.

less than 1% after 100 runs. Instead of rerunning an operation on the GPU each time we

ran a configuration, we collected these results once per benchmark and tabulated them.

Then, whenever a particular tensor operation or network layer was mapped to the GPU, we

obtained the required values from this lookup table.

PROMISE: Using the functional simulator obtained from the authors of PROMISE, we

built a timing and energy model for PROMISE. Since the compute and memory access

pattern of PROMISE is known a priori based on the operation being performed, a cycle-

accurate simulator is not required and analytically computing both time and energy is suf-

ficient. This analytical model first calculates how the input matrices will be mapped to

PROMISE’s banks, computes the time and energy of loading the data from main memory,

computes the time and energy of performing the computation, and finally calculates the

time and energy of writing data back to main memory. All memory transfers occur via

a programmable DMA engine (pDMA) [155, 156]. PROMISE operates on INT8 data and

requires a data layout transformation, both of which are handled by pDMA.

For the compute model, we used the pipeline parameters obtained from the authors of

PROMISE [153]. For the main memory model, we empirically measured peak sustained

bandwidth and energy per bit on our Jetson TX2 development board to ensure that both

PROMISE and the GPU used the same memory system. The DRAM energy reported by

PROMISE and the energy measured on Jetson TX2 was highly correlated, validating our

model.

Integration: Similar to the functional experiments, we obtained the total time and energy

for a network by summing the time and energy of each layer. If the layer was scheduled on

PROMISE, PROMISE’s timing and energy simulator was invoked to get the time and energy.

If the layer was scheduled on the GPU, a lookup was performed on the FP32/FP16 time and

energy tables that were generated after profiling. If consecutive operations required a dif-

ferent precision, quantization was performed. PROMISE performed quantization internally

while a CUDA kernel performed quantization for the GPU.
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5.3.4 Benchmarks

Our evaluations use four DNNs with structures shown in Table 5.3. Convolution layers

map to Convolution, Bias add, Pooling, and Tanh tensor operations. Fully connected layers

map to GEMM, Bias add, and Tanh tensor operations. The GPU performs one tensor

operation at a time, while PROMISE computes the entire layer together (Section 5.2.3).

For each network, we studied an accuracy loss of 1% (Loss1%) and 2% (Loss2%). For

each loss level, we evaluated the top three configurations – C1, C2, and C3 – provided by

the accuracy-aware hardware scheduler. The baseline for all experiments was everything on

FP32 with no approximation.

We used the MNIST [138] data set for all four DNNs. MNIST contains 10,000 28x28 pixel

images of handwritten digits 0 through 9. We trained our networks on 5000 images from the

data set and used the other 5000 for inference. Therefore, the input was a 5000 × 28 × 28

tensor and the output was a 1× 10 vector (one entry per digit).

5.4 EVALUATION

This section presents an evaluation of ApproxHPVM. We first present the aggregated

results for speedup, energy reduction and accuracy on all 4 networks. We then go into the

details by presenting the layer wise breakdown of LeNet in Section 5.4.2.

5.4.1 Performance and Energy Evaluation

Figures 5.6, 5.7, and 5.8 show the aggregate results for all four networks. They show

the speedup and energy reduction over baseline, of all four networks for Loss1% and Loss2%

experiments (higher is better). For each network, three configurations are shown. 5.6:

Speedup. 5.7: Energy reduction. 5.8: Mean accuracy ± standard deviation. 5.9: Hardware

knob mappings of configurations C1, C2, and C3 for each network. Hardware Settings –

FP32: 32-bit floating point on GPU; FP16: 16-bit floating point on GPU; Px: PROMISE

with swing x. Performance speedup and energy reduction are in comparison to the baseline

(no approximation, all operations run on the GPU with 32-bit FP) and higher is better.

For each network, we report mean classification accuracy with standard deviation over 200

runs of full batch of 5000 images in MNIST dataset. For each network, we show 3 bars –

C1, C2, and C3 – which correspond to the top 3 configurations given by the ApproxHPVM

framework. The specific mapping of C1, C2, and C3 to hardware settings for each network

is shown in Figure 5.9.
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The results shows that all configurations given by the ApproxHPVM framework achieve

performance speedup and energy benefits. The performance speedup ranges from 2.7x

(LeNet C3) to 20x (DNN1 C1) for Loss1% and Loss2% experiments. Similarly, we ob-

serve energy reduction of 1.8x (DNN3 C3) to 6.6x (DNN1 C1) for Loss1% experiments and

2.5x (DNN3 C3) to 8.3x (DNN1 C1) for Loss2% experiments. Figure 5.8 shows the mean

and standard deviation of the accuracy of different configurations. The final accuracy of

each configuration is within the accuracy loss threshold of 1% and 2%. We also measured

the success rate RSuccess of our configurations by measuring the number of runs where the

measured accuracy violated the accuracy loss threshold of Loss1% and Loss2%. All our con-

figurations achieved R of > 95%, with an average RSuccess of 99.39% over all configurations.

This shows that our hypothesis of decoupling accuracy, performance and energy tuning into

hardware agnostic accuracy tuning, and hardware specific mapping of individual tensor op-

erations yields configurations which benefit from approximation and yet remain within the

constraints specified by the programmer. If we compare execution times for Loss1% and

Loss2%, we observe that ApproxHPVM finds configurations that achieve higher speedup

and energy reduction for 2% accuracy loss.
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Figure 5.6: Speedup (a) Loss1%, (b) Loss2%

0

2

4

6

8

10

LeNet DNN1 DNN2 DNN3

C1 C2 C3

(a)

0

2

4

6

8

10

LeNet DNN1 DNN2 DNN3

C1 C2 C3

(b)

Figure 5.7: Energy Reduction (a) Loss1%, (b) Loss2%

LeNet DNN1 DNN2 DNN3

FP32 98.9 90.23 94.24 94.93
C1 98.83± 0.07 89.99± 0.22 94.06± 0.19 94.76± 0.22
C2 98.87± .04 90.19± 0.13 94.13± 0.17 94.90± 0.15
C3 98.87± 0.06 90.18± 0.14 94.22± 0.14 94.96± 0.10

(a)

LeNet DNN1 DNN2 DNN3

FP32 98.9 90.23 94.24 94.93
C1 98.80± 0.09 89.49± 0.46 93.14± 0.48 94.10± 0.44
C2 98.81± 0.07 89.73± 0.27 93.27± 0.42 94.26± 0.36
C3 98.87± 0.06 89.64± 0.34 93.42± 0.40 94.09± 0.58

(b)

Figure 5.8: Mean classification accuracy (a) Loss1%, (b) Loss2%
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LeNet DNN1 DNN2 DNN3

C1 FP16-P6-P6-P6 P7-P7 P7-P7-P7 P7-P7-P6-P7
C2 FP16-P6-P6-FP16 P7-FP16 P7-FP16-P7 P6-P7-P7-FP16
C3 FP16-P6-P7-FP16 P7-FP32 P7-FP32-FP32 P6-FP16-FP16-FP16

(a)

LeNet DNN1 DNN2 DNN3

C1 FP16-P4-P4-P6 P5-P6 P5-P4-P4 P4-P4-P4-P5
C2 FP16-P5-P4-P6 P5-P7 P5-P5-P4 P4-P4-P4-P6
C3 FP16-P4-P6-FP16 P6-P6 P5-P5-P5 P4-FP16-P4-P4

(b)

Figure 5.9: Configurations (a) Loss1%, (b) Loss2%

5.4.2 LeNet: Layer-wise Breakdown

Figure 5.10 shows the layer-wise breakdown of (a) performance and (b) energy benefits

on LeNet for Loss2% experiments, respectively. The layers Conv1, Conv2, FC1, and FC2

consume 28%, 58.3%, 13.4%, and 0.3% of the total execution time for baseline respectively.

In the same order, the baseline energy breakdown of these layers is 14%, 65.7%, 20.1%, and

0.2%. The three configurations of LeNet (in the three bars) are listed in Figure 5.9 (b).

All three configurations map Conv1 to FP16 as it cannot be run on PROMISE. This

is because PROMISE is highly imprecise for short vector (< 64 elements) dot products.

Mapping the Conv1 layer to FP16, however, incurs overhead of casting from float (FP32)

to half (FP16). This is the reason for the slight slowdown and energy increase in Conv1.

Conv2 is mapped to P4 for C1, C3 and P5 for C2. It gives 10.9x speedup, and 14.9x

(C1, C3) and 14.4x (C2) energy reduction. FC1 is also mapped to PROMISE (P4 for C1,

C2 and P6 for C3) and gives 8.3x speedup for all three configurations. It gets 12.9x energy
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Figure 5.10: Speedup (a) and energy reduction (b) over baseline of all four layers of LeNet
for 3 different configurations (Loss2%). Note that C3’s overall result is not affected by FC2,
as FC2 constitutes only a small fraction of the network’s computation.
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Figure 5.11: Normalized execution time and energy for LeNet with and without pDMA.
Without pDMA, PROMISE relies on the GPU to perform quantization, patching, and un-
patching, the overheads of which significantly reduce the performance and energy improve-
ment over FP32.

reduction in C3 and 15x energy reduction in C1 and C2. This shows that mapping FC1 to

P4 gets 14% further energy reduction over mapping it to P6.

The last layer FC2 is mapped to P6 for C1, C2 and to FP16 for C3. The computation

time of this layer is small and the overheads of type conversion to FP16 make it 1.7x (2.5x)

slower (higher energy consumption). Ideally FC2 should be mapped to FP32 avoiding the

unnecessary type conversion overheads. However, our model assumes that FP16 is always

faster and more energy efficient than FP32. We found this assumption largely holds except

for some very small layers like FC2. This is not a major concern as this layer is less than

0.3% of the whole network in terms of execution time and has minimal impact on total

execution time and energy. Overall, ApproxHPVM achieves a mean speedup of 2.75x and

energy reduction of 4.5x on LeNet across all three configurations.

5.4.3 Hardware Sensitivity

To validate our choice of target hardware, we study the impact of pDMA and number of

PROMISE banks on performance and energy.

pDMA: In deep learning, a convolution layer can be implemented using 4 different al-

gorithms - Direct, GEMM, FFT, and Winograd. The GEMM-based approach maps con-

volution X ~ W into a product of two matrices PX and PW , known as patch matrices.

Using GEMM for convolution is desirable because GEMM is typically a highly optimized

operation. Both NVIDIA’s cuDNN library [157] and PROMISE perform GEMM-based con-

volution (Section 5.2.3). The overhead of GEMM-based convolution consists of two data

layout transformations: “patching” to generate matrices PX and PW , and “unpatching” to
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Figure 5.12: Speedup and energy reduction over FP32, and area for DNN3 vs the number
of PROMISE banks. The SoC contains 4B transistors.

convert the GEMM’s output to the application’s desired format.

In cuDNN, patching and unpatching are done in on-chip memory to minimize this over-

head [157]. In PROMISE, we can either use the pDMA scheme described in Section 5.3.3

or rely on the GPU to perform patching and unpatching. Similarly, quantization to/from

INT8 can be performed either by pDMA or by the GPU before/after PROMISE’s execu-

tion. In order to compare these two choices, we implemented CUDA kernels for patching,

unpatching, and quantization ; and compared their performance and energy to pDMA. We

pipelined patching/unpatching with PROMISE’s execution to maximize performance.

Figure 5.11 shows execution time and energy, normalized to FP32, for LeNet configuration

FP16-P4-P6-FP16 with and without pDMA. While pipelining minimizes the time overhead,

the entire energy cost of the GPU kernels is still incurred. Moreover, the increased data

movement (the patch matrix is 25x larger than the input matrix) causes both time and

energy to increase further. Nonetheless, PROMISE without pDMA still achieves a 2.38x

speedup and 1.98x energy reduction compared to FP32. While the benefits are higher with

pDMA , these results show that our approach is effective regardless of which method is used.

#Banks: We performed a scaling study of the number of PROMISE banks to establish

the suitability of a 256 bank configuration. Figure 5.12 shows the execution time and energy

of DNN3 as the number of banks is increased, as well as the area overhead associated with

the increasing number of banks. Using 256 banks, PROMISE strikes a balance between

performance, energy, and area – it only consumes 10% of a 4B transistor SoC’s area and still

significantly outperforms FP32.
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS

6.1 CONCLUSIONS

For many years, Moore’s law and Dennard’s scaling helped architects design faster and

more energy efficient processors. With Moore’s law slowing down and end of Dennard’s

scaling the microprocessor industry and research community is betting on heterogeneous

systems with specialized compute units to meet the performance and energy efficiency re-

quirements of modern workloads. However, the diversity of underlying compute units makes

them hard to program.

In this thesis, we list what the programmability challenges are and identify four root causes

behind them: (1) diversity of parallelism models, (2) diversity of memory hierarchy, (3)

diversity of instructions sets, and (4) different software and hardware approximate computing

methods. We propose prototype systems to address these root problems. In order to better

understand the heterogeneity of future accelerators we worked on a programmable analog

machine learning accelerator, PROMISE, based on deep in-memory computing [106]. In

summary we made the following contributions.

• Efficient compilation to heterogeneous parallel hardware: We proposed HPVM,

a parallel program representation that can map down to diverse parallel hardware.

HPVM is a hierarchical dataflow graph with side effects and vector instructions. We

present a prototype system based on the HPVM parallelism model to define a com-

piler IR, a virtual instruction set, and a flexible scheduling framework. We implement

two optimizations as transforms on the HPVM IR — node fusion and tiling —, and

translators for NVIDIA’s GPUs, Intel’s AVX vector units, and multicore X86-64 pro-

cessors. Our experiments show that HPVM achieves performance portability across

these classes of hardware and significant performance gains from the optimizations,

and is able to support highly flexible scheduling policies.

• Energy efficient computation of ML inference algorithms: We presented

PROMISE, the first end-to-end design of a programmable mixed-signal accelerator for

diverse ML algorithms. PROMISE accomplishes a high level of programmability with-

out losing the efficiency of mixed-signal accelerators for specific ML algorithms. We

designed the PROMISE ISA to allow software control over energy-vs-accuracy trade-

offs, and supports compilation of high-level languages like Julia down to the hardware.

Our evaluation shows better energy efficiency than digital ASICs, despite much greater
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programmability, and significant energy savings from small programmer-specified error

tolerances.

• Portable Approximate Computing: We propose ApproxHPVM, an extension of

HPVM, a promising basis for achieving performance portability and for implementing

parallelizing compilers and schedulers for heterogeneous parallel systems. In this pa-

per, we introduced ApproxHPVM, a compiler IR that introduces hardware-agnostic

accuracy metrics that are decoupled from hardware-specific information. We augment

ApproxHPVM with a accuracy-tuning analysis that lowers the accuracy requirements

of IR operations given an end-to-end accuracy constraint, while the hardware schedul-

ing phase uses the extracted constraints to map to target hardware. Our results show

that ApproxHPVM provides promising results on a heterogeneous target platform with

multiple hardware compute units. Overall, across four benchmarks, we observe per-

formance speedups ranging from 2.8x to 20x and energy reduction ranging from 1.9x

to 7.1x for an accuracy loss of 1%. As ApproxHPVM does not include hardware-

specific information at the IR level, we envision ApproxHPVM to be extensible to

a wide range of approximate computing hardware. Moreover, we believe that the

hardware-independent accuracy constraints can be mapped to software techniques for

approximation.

Overall, this thesis makes fundamental contributions in addressing the programmability

of heterogeneous systems. Not only does it address the diversity of parallelism models,

memory hierarchies and instruction sets, but also takes a step in addressing the diversity in

approximate computing software and hardware techniques (an emerging challenge).

6.2 FUTURE DIRECTIONS

6.2.1 HPVM Compilation to FPGAs

HPVM was designed to be compiled to and generate efficient code for FPGAs as well.

However, currently the HPVM infrastructure does not have a FPGA beckend and hence

that claim has not been quantitatively evaluated in this thesis.

HPVM IR is a dataflow graph and it has been shown that dataflow representations map

well to FPGAs [158, 159]. This is how its features map well to FPGAs: (1) DAG repre-

sentation maps well to a hardware pipeline. (2) Streaming edges between HPVM IR nodes

representing explicit data transfers between kernels map well to hardware FIFOs. (3) Edges

representing data transfers between host and kernels map well to hardware load/store units.
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(4) Dynamic instances of nodes maps well to spatial replication of kernels in FPGA. (5)

Multiple independent nodes map well to different sections of the FPGA, and can therefore

run in parallel.

Since HPVM also serves as a compiler IR, future research can explore FPGA specific

optimizations given the hardware details of the target FPGA. In our research group, Adel

Ejjeh (aejjeh@illinois.edu) is working on using HPVM infrastructure to compile to FPGAs.

6.2.2 HPVM Extensions for Complex Memory Hierarhcy

HPVM abstractions are well suited to handle the diversity of parallelism models, instruc-

tion sets. It also expresses tiling effectilvely and portably using graph hierarchy. However,

there is scope for further research in the memory abstractions. Legion [70, 71] decouples

logical regions from their physical layout and mapping. It allows programmers to explic-

itly declare properties of program data including organization, partitioning, privileges, and

coherence. In HPVM we have allocate memory regions using the llvm.hpvm.malloc in-

trinsic. Adding information related to how this memory is accessed, partitioned can allow

further optimizations and is particularly useful for memory bound applications running on

distributed memory heterogeneous systems.

6.2.3 HPVM Extensions for Dynamically Varying Parallel Structure

HPVM dataflow graphs are currently static and cannot change at runtime. This is suf-

ficient for many programs, even highly irregular ones that require dynamic load balancing,

because the assignment of node instances to compute elements or threads does not change

the graph structure itself. However, programs that change parallelism structure or com-

munication patterns while they execute would require run-time modifications to the graph,

e.g., when new types of tasks are spawned or patterns of communication edges are created

during an execution in a data-dependent manner, such as in Delaunay Mesh Refinement,

where the neighbors of a vertex evolve as the computation proceeds, requiring HPVM edges

to be added or deleted at run-time. IR, code generation and run-time changes need to be

explored to support dynamic changes to HPVM graphs. Most importantly, the assignment

of graph node instances to compute elements and/or the assignment of shared memory to

compute nodes may need to be performed at runtime, which can require more sophisticated

runtime scheduling as well as more flexible communication mechanisms
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6.2.4 Efficient Scheduling Policy of HPVM Dataflow Graph

In the evaluation section in Chapter 3 we showed how HPVM IR as a flexible runtime

representation can be used to do ensure progress in the event a preferred compute unit

becomes unavailable due to load from other applications. The HPVM runtime representation

provides fine grained control to the runtime scheduler. Although we do present a scenario

showing the benefits of such flexibility, implementation of a sophisticated scheduling policy

especially in case of dynamically varying dataflow graph is an open problem to solve.

6.2.5 Aggressive Hardware Dependent Tuning in ApproxHPVM

A key feature of ApproxHPVM is that it decouples autotuning into a hardware-agnostic

stage and a hardware dependent stage. The output of the hardware agnostic stage is multiple

configurations where each configuration annotates the nodes in the ApproxHPVM dataflow

graph with the maximum error it can tolerate (in terms of the error metric). In the hardware

dependent tuning stage, we map a subgraph of ApproxHPVM IR to a compute unit. The

mapping involves choosing the right configuration on the hardware unit corresponding to the

error metric with the goal of optimizing for performance and energy efficiency. In it’s current

form, this mapping is very conservative, choosing the configuration which satisfies the error

metric of all the nodes in the subgraph. However, as the errors would compose, we can be

more aggressive in choosing the configuration at the same time satisfying the end-to-end

error of the subgraph. If one can predict how errors compose in a subgraph when mapped to

a particular hardware unit, we should be able to further improve the ApproxHPVM benefits.
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