12,560 research outputs found

    L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

    Full text link
    L-selectin mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163: 649-659, 2003) which supports the interpretation that L-selectin mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the timescale of 10110^{-1} seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10410^4 Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include

    Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody.

    Get PDF
    L-selectin is a lectin-like receptor that mediates the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes during the process of lymphocyte recirculation. Two sulfated, mucin-like glycoproteins known as Sgp50/GlyCAM-1 and Sgp90/CD34 have previously been identified as HEV-associated ligands for L-selectin. These proteins were originally detected with an L-selectin/Ig chimera called LEC-IgG. GlyCAM-1 and CD34 are also recognized by an antiperipheral node addressin (PNAd) mAb called MECA 79, which blocks L-selectin-dependent adhesion and selectively stains lymph node HEV. The present study compares the requirements for the binding of MECA 79 and LEC-IgG to HEV-ligands. Whereas desialylation of GlyCAM-1 and CD34 drastically reduced binding to LEC-IgG, this treatment enhanced the binding of GlyCAM-1 to MECA 79. In contrast, the binding of both MECA 79 and LEC-IgG to GlyCAM-1 and CD34 was greatly decreased when the sulfation of these ligands was reduced with chlorate, a metabolic inhibitor of sulfation. Because MECA 79 stains HEV-like vessels at various sites of inflammation, recognition by L-selectin of ligands outside of secondary lymphoid organs may depend on sulfation. In addition to their reactivity with GlyCAM-1 and CD34, both MECA 79 and LEC-IgG recognize an independent molecule of approximately 200 kD in a sulfate-dependent manner. Thus, this molecule, which we designate Sgp200, is an additional ligand for L-selectin

    ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells

    Get PDF
    L-selectin on T-cells is best known as an adhesion molecule that supports recruitment of blood-borne naïve and central memory cells into lymph nodes. Proteolytic shedding of the ectodomain is thought to redirect activated T-cells from lymph nodes to sites of infection. However, we have shown that activated T-cells re-express L-selectin before lymph node egress and use L-selectin to locate to virus-infected tissues. Therefore, we considered other roles for L-selectin proteolysis during T cell activation. In this study, we used T cells expressing cleavable or non-cleavable L-selectin and determined the impact of L-selectin proteolysis on T cell activation in virus-infected mice. We confirm an essential and non-redundant role for ADAM17 in TCR-induced proteolysis of L-selectin in mouse and human T cells and show that L-selectin cleavage does not regulate T cell activation measured by CD69 or TCR internalisation. Following virus infection of mice, L-selectin proteolysis promoted early clonal expansion of cytotoxic T cells resulting in an 8-fold increase over T cells unable to cleave L-selectin. T cells unable to cleave L-selectin showed delayed proliferation in vitro which correlated with lower CD25 expression. Based on these results, we propose that ADAM17-dependent proteolysis of L-selectin should be considered a regulator of T-cell activation at sites of immune activity

    Evaluation of L-selectin expression and assessment of protein tyrosine phosphorylation in bovine polymorphonuclear neutrophil leukocytes around parturition.

    Get PDF
    Impaired polymorphonuclear neutrophil leukocyte (PMN) function around parturition has been associated with increased clinical mastitis in dairy cows. Rolling and attachment of PMN to the endothelium is the first step in the recruitment process and is accomplished by interaction between L-selectin on PMN and its ligand on endothelial cells. Furthermore, tyrosine phosphorylation is involved in the initiation of many PMN functions. The objective of this work was to determine changes in expression of L-selectin and tyrosine phosphorylation in the perinatal period. Eight clinically healthy Holstein cows were used as PMN donors at d-21, -14, -7,0 (calving), +1, +2, +7, +14, +28. Evaluation of L-selectin expression was carried out on activated and resting PMN. Anti-bovine L-selectin monoclonal antibody (MAB) and flow cytometric analysis were used to measure the percentage of PMN fluorescing and receptor expression (log mean fluorescent channel, LMFC). Activated and resting PMN showed similar trends in % PMN fluorescence and LMFC. The percentage of PMN fluorescing tended to decrease at parturition, followed by a significant increase at d +14 and +28 (P <0.02). For LMFC a decrease was observed on d +1 followed by an increase through d +28 (P < 0.01). Protein tyrosine phosphorylation of lysates prepared from PMN isolated throughout the study was detected by electrophoresis and western blotting using anti-phosphotyrosine MAB. Several protein bands were tyrosine phosphorylated. Two of these bands (42-44 kDa and 90 kDa) varied in intensity over time. The intensity of the 42-44 kDa band gradually increased from d -7, peaked at d +7 (P < 0.03), and steadily decreased to d +28 (P < 0.02). Antibody to activated mitogen protein kinase reacted with the 42-44 kDa band. Reduced PMN function during the periparturient period could be related to reduced L-selectin adhesion molecules on the cell surface, and to modulation in the phosphorylation of functionally important molecules

    Monocyte Adhesion to Activated Aortic Endothelium: Role of L-Selectin and Heparan Sulfate Proteoglycans

    Get PDF
    This study examines the role of L-selectin in monocyte adhesion to arterial endothelium, a key pathogenic event of atherosclerosis. Using a nonstatic (rotation) adhesion assay, we observed that monocyte binding to bovine aortic endothelium at 4°C increased four to nine times upon endothelium activation with tumor necrosis factor (TNF)-α. mAb-blocking experiments demonstrated that L-selectin mediates a major part (64 ± 18%) of monocyte attachment. Videomicroscopy experiments performed under flow indicated that monocytes abruptly halted on 8-h TNF-α–activated aortic endothelium, ∼80% of monocyte attachment being mediated by L-selectin. Flow cytometric studies with a L-selectin/IgM heavy chain chimeric protein showed calcium-dependent L-selectin binding to cytokine-activated and, unexpectedly, unactivated aortic cells. Soluble L-selectin binding was completely inhibited by anti–L-selectin mAb or by aortic cell exposure to trypsin. Experiments with cycloheximide, chlorate, or neuraminidase showed that protein synthesis and sulfate groups, but not sialic acid residues, were essential for L-selectin counterreceptor function. Moreover, heparin lyases partially inhibited soluble L-selectin binding to cytokine-activated aortic cells, whereas a stronger inhibition was seen with unstimulated endothelial cells, suggesting that cytokine activation could induce the expression of additional ligand(s) for L-selectin, distinct from heparan sulfate proteoglycans. Under flow, endothelial cell treatment with heparinase inhibited by ∼80% monocyte attachment to TNF-α–activated aortic endothelium, indicating a major role for heparan sulfate proteoglycans in monocyte–endothelial interactions. Thus, L-selectin mediates monocyte attachment to activated aortic endothelium, and heparan sulfate proteoglycans serve as arterial ligands for monocyte L-selectin

    Chemoattractant Receptor-Induced Phosphorylation of L-Selectin

    Get PDF
    The selectin adhesion molecules and chemoattractant receptors synergistically regulate leukocyte migration into lymphoid tissues and sites of inflammation, but little is known about how these families of receptors modulate each other\u27s function. In this study, L-selectin was found to be phosphorylated in lymphoblastoid cell lines, and phosphorylation was enhanced by phorbol ester (phorbol 12-myristate 13-acetate (PMA)) treatment. Interactions between L-selectin and chemoattractant receptors were therefore examined using transfected rat basophilic leukemia cell lines (RBL-2H3) that expressed human L-selectin along with human leukocyte chemoattractant receptors. L-selectin was rapidly phosphorylated in cells treated with chemoattractants, thrombin, IgE receptor agonists, or PMA. Pertussis toxin or the protein kinase C inhibitor, staurosporine, completely blocked chemoattractant receptor-induced phosphorylation of L-selectin. PMA-induced phosphorylation was on serine residues within the cytoplasmic tail of L- selectin that have been well conserved during recent evolution. Although L- selectin phosphorylation was not essential for basal levels of adhesion through L-selectin in transformed cell lines, the rapid increase in ligand binding activity of L-selectin that occurs following leukocyte activation was blocked by staurosporine. These results demonstrate that L-selectin can be phosphorylated following engagement of chemoattractant receptors and suggest that this may be a physiologically relevant mechanism for the synergistic regulation of these receptors during leukocyte migration

    Suppression of tumor formation in lymph nodes by L-selectin–mediated natural killer cell recruitment

    Get PDF
    Natural killer (NK) cells are known to reject certain tumors in vivo; however, the ability of NK cells to prevent metastasis of tumors into secondary lymphoid organs has not been addressed. Here, we report that in tumor-bearing hosts, NK cells are recruited to regional lymph nodes in wild-type mice, but not in mice deficient for L-selectin or L-selectin ligands. By adoptive transfer and complete Freund's adjuvant stimulation experiments, we demonstrated that L-selectin on NK cells and L-selectin ligands on endothelial cells are essential for NK cell recruitment to lymph nodes. Furthermore, freshly isolated resident lymph node NK cells lysed tumors efficiently, and metastasis of B16 melanoma cells to draining lymph nodes was suppressed in wild-type or Rag-1–deficient mice, but not when NK cells were depleted. Although L-selectin–deficient NK cells efficiently lysed tumor cells in vitro, NK cell–dependent suppression of tumor metastasis was diminished in mice deficient for L-selectin or L-selectin ligands because of insufficient NK cell recruitment to lymph nodes. Moreover, tumor metastasis was substantially inhibited in L-selectin–deficient mice reconstituted with wild-type NK cells. These findings indicate that L-selectin–mediated NK cell recruitment plays a crucial role in the control of tumor metastasis into secondary lymphoid organs

    TWO PATHWAYS OF SHEDDING OF L-SELECTIN AND CD23 FROM HUMAN B-LYMPHOCYTES

    Get PDF
    Lymphocytes from patients with B-chronic lymphocytic leukemia (B-CLL) express large numbers of P2X7 receptors for extracellular adenosine triphosphate (ATP). Activation of P2X7 receptors induces multiple downstream effects, of which the best documented is the opening of an ionic channel that is selective for divalent cations. Another effect of ATP is to induce the shedding of L-selectin (CD62L), a molecule which is involved in the adhesive interactions of lymphocytes on endothelial cells. High levels of soluble L-selectin and CD23 are found in the serum of patients with B-CLL, although the mechanisms involved in their production are poorly characterized. Because extracellular ATP causes shedding of L-selectin, we studied the effect of ATP on shedding of CD23, an adhesion molecule expressed on the surface of B-CLL lymphocytes. ATP induced the shedding of CD23 at an initial rate of 12% of that for L-selectin, while the EC50 of ATP (35 uM) and BzATP (10 uM) was identical for shedding of both molecules. Inactivation of the P2X7 receptor by pre-incubation with OxATP, an irreversible inhibitor of P2X7 purinoceptor, abolished ATP-induced shedding of both molecules. Moreover, KN-62, the most potent inhibitor for the P2X7 receptor inhibited ATP-induced shedding of both CD23 and L-selectin with the same IC50 (12 nM). Ro 31-9790, a membrane permeant zinc chelator which inhibits the phorbol-ester stimulated shedding of L-selectin also inhibited shedding of CD23 from B-CLL lymphocytes, but the IC50 was different for the two shed molecules (25 versus 1 ug/ml respectively). Although L-selectin was completely shed by incubation of cells with phorbol-ester no CD23 was lost under these conditions. Also, Ca2+ inhibits ATP-induced CD23 shedding but not L-selectin shedding. Since soluble CD23 and L-selectin are found in the serum of normal subjects and B-CLL patients, the expression of these two adhesion molecules on lymphocytes before and after transendothelial migration was studied in an in vitro model of this process. In normal and B-CLL subjects, 71±5% of L-selectin from both T and B cells and 90% of CD23 from B cells was lost following transmigration, while the expression of a range of other adhesion molecules such as VLA-4, ICAM-1, LFA-1 and CD44 was unchanged. Lymphocytes incubated with OxATP retained their capacity for transendothelial migration and showed the same loss of L-selectin as control leukaemic lymphocytes. Ro 31-9790, which can protect ATP-induced both L-selectin and CD23 shedding, had no effect on inhibiting L-selectin and CD23 lost during transmigration. These data show the presence of a second pathway for the downregulation of L-selectin and CD23 from the lymphocyte surface. Data in vivo from 'knock-out' mice show that L-selectin is essential for the emigration of lymphocytes through high endothelial venules into lymph nodes. The migration of normal and B-CLL lymphocytes across confluent human umbilical vein endothelial monolayers was studied in an in vitro model of this process. Lymphocytes treated with ATP or BzATP showed 56±25% or 67±16% loss of L-selectin on the surface and 36±24% or 64±19% decrease of transmigration, respectively, while OxATP, which does not alter the L-selectin level, had no effect on lymphocyte transmigration. Further experiments examined this correlation between L-selectin expression and lymphocyte transendothelial migration in this model system. A quantitative assay for cell surface L-selectin showed that expression of L-selectin was lower on B-CLL lymphocytes (8,880±5,700 molecules/cell) than on normal lymphocytes (29,500±7,500 molecules/cell, p less than 0.001). Also the rate of transmigration of B-CLL lymphocytes (1.5±0.9 migrated cells/HUVEC) was lower than normal peripheral lymphocytes (2.4±0.9 migrated cells/HUVEC, p=0.04). Incubation of lymphocytes in complete medium for 24 hrs increased the expression of L-selectin on B-CLL lymphocytes by 1.5 to 2 fold while the normal lymphocyte L-selectin remained at the initial level. This upregulation of B-CLL L-selectin correlated with a 2 fold increased rate of transendothelial migration. A correlation was found between L-selectin expression on lymphocytes and their ability for transendothelial migration (r^2=0.6). This study shows that the adhesion molecules L-selectin and CD23 can be lost from lymphocytes by two different physiological pathways. One is by P2X7 receptor activation by extracellular ATP while the second is activated by transendothelial migration of these cells. A second finding is that B-CLL lymphocytes have lower level of L-selectin expression and an impaired ability for transendothelial migration compared with normal peripheral blood lymphocytes. Do these results explain the high serum levels of soluble L-selectin and CD23 observed in B-CLL? Although B-CLL lymphocytes do not recirculate as rapidly as normal peripheral blood lymphocytes, the greatly increased number of leukaemic cells in B-CLL ensures that much more soluble L-selectin and CD23 is generated during the recirculation of these cells through the body

    TWO PATHWAYS OF SHEDDING OF L-SELECTIN AND CD23 FROM HUMAN B-LYMPHOCYTES

    Get PDF
    Lymphocytes from patients with B-chronic lymphocytic leukemia (B-CLL) express large numbers of P2X7 receptors for extracellular adenosine triphosphate (ATP). Activation of P2X7 receptors induces multiple downstream effects, of which the best documented is the opening of an ionic channel that is selective for divalent cations. Another effect of ATP is to induce the shedding of L-selectin (CD62L), a molecule which is involved in the adhesive interactions of lymphocytes on endothelial cells. High levels of soluble L-selectin and CD23 are found in the serum of patients with B-CLL, although the mechanisms involved in their production are poorly characterized. Because extracellular ATP causes shedding of L-selectin, we studied the effect of ATP on shedding of CD23, an adhesion molecule expressed on the surface of B-CLL lymphocytes. ATP induced the shedding of CD23 at an initial rate of 12% of that for L-selectin, while the EC50 of ATP (35 uM) and BzATP (10 uM) was identical for shedding of both molecules. Inactivation of the P2X7 receptor by pre-incubation with OxATP, an irreversible inhibitor of P2X7 purinoceptor, abolished ATP-induced shedding of both molecules. Moreover, KN-62, the most potent inhibitor for the P2X7 receptor inhibited ATP-induced shedding of both CD23 and L-selectin with the same IC50 (12 nM). Ro 31-9790, a membrane permeant zinc chelator which inhibits the phorbol-ester stimulated shedding of L-selectin also inhibited shedding of CD23 from B-CLL lymphocytes, but the IC50 was different for the two shed molecules (25 versus 1 ug/ml respectively). Although L-selectin was completely shed by incubation of cells with phorbol-ester no CD23 was lost under these conditions. Also, Ca2+ inhibits ATP-induced CD23 shedding but not L-selectin shedding. Since soluble CD23 and L-selectin are found in the serum of normal subjects and B-CLL patients, the expression of these two adhesion molecules on lymphocytes before and after transendothelial migration was studied in an in vitro model of this process. In normal and B-CLL subjects, 71±5% of L-selectin from both T and B cells and 90% of CD23 from B cells was lost following transmigration, while the expression of a range of other adhesion molecules such as VLA-4, ICAM-1, LFA-1 and CD44 was unchanged. Lymphocytes incubated with OxATP retained their capacity for transendothelial migration and showed the same loss of L-selectin as control leukaemic lymphocytes. Ro 31-9790, which can protect ATP-induced both L-selectin and CD23 shedding, had no effect on inhibiting L-selectin and CD23 lost during transmigration. These data show the presence of a second pathway for the downregulation of L-selectin and CD23 from the lymphocyte surface. Data in vivo from 'knock-out' mice show that L-selectin is essential for the emigration of lymphocytes through high endothelial venules into lymph nodes. The migration of normal and B-CLL lymphocytes across confluent human umbilical vein endothelial monolayers was studied in an in vitro model of this process. Lymphocytes treated with ATP or BzATP showed 56±25% or 67±16% loss of L-selectin on the surface and 36±24% or 64±19% decrease of transmigration, respectively, while OxATP, which does not alter the L-selectin level, had no effect on lymphocyte transmigration. Further experiments examined this correlation between L-selectin expression and lymphocyte transendothelial migration in this model system. A quantitative assay for cell surface L-selectin showed that expression of L-selectin was lower on B-CLL lymphocytes (8,880±5,700 molecules/cell) than on normal lymphocytes (29,500±7,500 molecules/cell, p less than 0.001). Also the rate of transmigration of B-CLL lymphocytes (1.5±0.9 migrated cells/HUVEC) was lower than normal peripheral lymphocytes (2.4±0.9 migrated cells/HUVEC, p=0.04). Incubation of lymphocytes in complete medium for 24 hrs increased the expression of L-selectin on B-CLL lymphocytes by 1.5 to 2 fold while the normal lymphocyte L-selectin remained at the initial level. This upregulation of B-CLL L-selectin correlated with a 2 fold increased rate of transendothelial migration. A correlation was found between L-selectin expression on lymphocytes and their ability for transendothelial migration (r^2=0.6). This study shows that the adhesion molecules L-selectin and CD23 can be lost from lymphocytes by two different physiological pathways. One is by P2X7 receptor activation by extracellular ATP while the second is activated by transendothelial migration of these cells. A second finding is that B-CLL lymphocytes have lower level of L-selectin expression and an impaired ability for transendothelial migration compared with normal peripheral blood lymphocytes. Do these results explain the high serum levels of soluble L-selectin and CD23 observed in B-CLL? Although B-CLL lymphocytes do not recirculate as rapidly as normal peripheral blood lymphocytes, the greatly increased number of leukaemic cells in B-CLL ensures that much more soluble L-selectin and CD23 is generated during the recirculation of these cells through the body
    corecore