61 research outputs found

    Kolmogorov's spline network

    Full text link

    Neural Networks in Nonlinear Aircraft Control

    Get PDF
    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law

    A Theory of Networks for Appxoimation and Learning

    Get PDF
    Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data

    Bibliographie

    Get PDF

    Identification of robotic manipulators' inverse dynamics coefficients via model-based adaptive networks

    Get PDF
    The values of a given manipulator's dynamics coefficients need to be accurately identified in order to employ model-based algorithms in the control of its motion. This thesis details the development of a novel form of adaptive network which is capable of accurately learning the coefficients of systems, such as manipulator inverse dynamics, where the algebraic form is known but the coefficients' values are not. Empirical motion data from a pair of PUMA 560s has been processed by the Context-Sensitive Linear Combiner (CSLC) network developed, and the coefficients of their inverse dynamics identified. The resultant precision of control is shown to be superior to that achieved from employing dynamics coefficients derived from direct measurement. As part of the development of the CSLC network, the process of network learning is examined. This analysis reveals that current network architectures for processing analogue output systems with high input order are highly unlikely to produce solutions that are good estimates throughout the entire problem space. In contrast, the CSLC network is shown to generalise intrinsically as a result of its structure, whilst its training is greatly simplified by the presence of only one minima in the network's error hypersurface. Furthermore, a fine-tuning algorithm for network training is presented which takes advantage of the CSLC network's single adaptive layer structure and does not rely upon gradient descent of the network error hypersurface, which commonly slows the later stages of network training

    Наукова робота за темою магістерської дисертації

    Get PDF
    Викладаються основні поняття сучасного підходу до основ наукових досліджень інтегрованих систем та технологій. Надаються базові положення поняттєво-категоріального апарату науки, відомості про види та методи наукових досліджень, організацію, планування, виконання та звітування про результати науково-дослідних робіт. Матеріал викладається з метою покращення розуміння етапів проведення наукової роботи та типових вимог до основних елементів, структури та змісту магістерських дисертацій. Посібник рекомендований для студентів, які навчаються за спеціальністю 126 «Інформаційні системи та технології», буде корисний аспірантам, викладачам та спеціалістам, які працюють у різних галузях науки і техніки.The main concepts of the modern approach to the fundamentals of scientific research of integrated systems and technologies are taught. The main provisions of the conceptual and categorical apparatus of science, information on the types and methods of scientific research, organization, planning, execution and reporting on the results of scientific research are presented. The material is taught in order to improve the understanding of the stages of scientific work and typical requirements for the main elements, structure and content of master's theses. The manual is recommended for students studying in the specialty 126 "Information systems and technologies", it will be useful for graduate students, teachers and specialists working in various fields of science and technology

    Nuevo enfoque en el diseño y entrenamiento de redes neuronales para la clasificación

    Get PDF
    Tesis (Doctor en Ingeniería con Especialidad en Ingeniería de Sistemas) UANL, 2001.UANLhttp://www.uanl.mx

    Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse Approximations

    Get PDF
    Non-parametric models and techniques enjoy a growing popularity in the field of machine learning, and among these Bayesian inference for Gaussian process (GP) models has recently received significant attention. We feel that GP priors should be part of the standard toolbox for constructing models relevant to machine learning in the same way as parametric linear models are, and the results in this thesis help to remove some obstacles on the way towards this goal. In the first main chapter, we provide a distribution-free finite sample bound on the difference between generalisation and empirical (training) error for GP classification methods. While the general theorem (the PAC-Bayesian bound) is not new, we give a much simplified and somewhat generalised derivation and point out the underlying core technique (convex duality) explicitly. Furthermore, the application to GP models is novel (to our knowledge). A central feature of this bound is that its quality depends crucially on task knowledge being encoded faithfully in the model and prior distributions, so there is a mutual benefit between a sharp theoretical guarantee and empirically well-established statistical practices. Extensive simulations on real-world classification tasks indicate an impressive tightness of the bound, in spite of the fact that many previous bounds for related kernel machines fail to give non-trivial guarantees in this practically relevant regime. In the second main chapter, sparse approximations are developed to address the problem of the unfavourable scaling of most GP techniques with large training sets. Due to its high importance in practice, this problem has received a lot of attention recently. We demonstrate the tractability and usefulness of simple greedy forward selection with information-theoretic criteria previously used in active learning (or sequential design) and develop generic schemes for automatic model selection with many (hyper)parameters. We suggest two new generic schemes and evaluate some of their variants on large real-world classification and regression tasks. These schemes and their underlying principles (which are clearly stated and analysed) can be applied to obtain sparse approximations for a wide regime of GP models far beyond the special cases we studied here
    corecore