

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Ge
	Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	83
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposh The methoo magnetic fi	nikov, V. Astakhov I of ortogonal projections in problems of the stationary eld computation	165
J. Naumenk The compu bounded co	o ting of sinusoidal magnetic fields in presence of the surface with onductivity	167
K. Bayramk The methoo stationary f	ulov, V. Astakhov I of the boundary equations in problems of computing static and ields on the topological graph	169
T. Kochube The compu- using the Ir	y, V. Astakhov tation of magnetic field in the presence of ideal conductors ntegral-differential equation of the first kind	171
M. Schneide U. Stark, J. Artificial ne	er, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, Schrickel ural network for product-accompanied analysis and control	173
I. Jawish The Improv Fuzzy Logic	ement of Traveling Responses of a Subway Train using Techniques	179
Y. Gu, H. Su An Approac Neural Netv	ı, J. Chu ch for Transforming Nonlinear System Modeled by the Feedforward vorks to Discrete Uncertain Linear System	185
3 Opt and	imisation and Management of Complex Systems Networked Systems	
R. Franke, J Advanced r	. Doppelhammer nodel based control in the Industrial IT System 800xA	193
H. Gerbrach An efficient	nt, P. Li, W. Hong optimization approach to optimal control of large-scale processes	199
T. N. Pham, Modifying t multi-criteri	B. Wutke he Bellman's dynamic programming to the solution of the discrete a optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Optimale Pl liberalisierte	Bretschneider anung und Betriebsführung der Energieversorgung im en Energiemarkt	211
P. Bretschne Intelligente	eider, D. Westermann Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	371
M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real constraints	377
A. Zangrilli, A. Picini Unmanned Marine Vehicles working in cooperation: market trends and technological requirements	383
T. Glotzbach, P. Otto, M. Schneider, M. Marinov A Concept for Team-Orientated Mission Planning and Formal Language Verification for Heterogeneous Unmanned Vehicles	389

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	395
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	437
5 Robotics and Motion Systems	
Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters	445
St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking	451
A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot	457
A. Ahranovich, S. Karpovich, K. Zimmermann Multicoordinate Positioning System Design and Simulation	463
A. Balkovoy, V. Cacenkin, G. Slivinskaia Statical and dynamical accuracy of direct drive servo systems	469
Y. Litvinov, S. Karpovich, A. Ahranovich The 6-DOF Spatial Parallel Mechanism Control System Computer Simulation	477

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

Ye. Bodyanskiy / Ye. Gorshkov / V .Kolodyazhniy / P. Otto

Evolving Network Based on Double Neo-Fuzzy Neurons

INTRODUCTION

Hybrid computational intelligence systems, and mainly adaptive neuro-fuzzy systems, are widely used in the problems of analysis and processing of non-stationary signals of arbitrary nature under the uncertainty conditions. In most cases these systems have comparatively complex architecture (e.g. 5-layer ANFIS and the like) [1] which results in a complication and deceleration of the learning process in the problems that need to be solved in real-time.

To overcome these difficulties, a new approach called neo-fuzzy neuron (NFN) was proposed in [2–4]. The NFN architecture is quite similar to a conventional *n*-input formal neuron. However, instead of regular synaptic weights it contains nonlinear synapses NS_i , i = 1, 2, ..., n, which are formed by a set of membership functions μ_{ji} , $j = 1, 2, ..., h_i$ with tunable weight w_{ii} on each function.

The response of the NFN to the input signal vector $x(k) = (x_1(k), x_2(k), ..., x_n(k))^T$ (here k = 1, 2, ... is the discrete time) is

$$y(k) = \sum_{i=1}^{n} f_i(x_i(k)) = \sum_{i=1}^{n} \sum_{j=1}^{h_i} \mu_{ji}(x_i(k)) w_{ji}(k),$$
(1)

where $w_{ji}(k)$ is the current value of the tunable weights at the time step k on a j-th membership function of i-th input signal component. As the error criterion for the learning of NFN a local quadratic error function is usually used

$$E(k) = \frac{1}{2}(d(k) - y(k))^2 = \frac{1}{2}e^2(k) = \frac{1}{2}\left(d(k) - \sum_{i=1}^n \sum_{j=1}^{h_i} \mu_{ji}(x_i(k))w_{ji}\right)^2$$
(2)

and the learning process itself is the minimization of this criterion using the gradientbased procedure

$$w_{ji}(k+1) = w_{ji}(k) + \eta e(k)\mu_{ji}(x_i(k)),$$
(3)

where d(k) is the reference learning value, and η is the learning rate parameter which is usually chosen empirically and fully determines the speed of the learning process. The membership functions of the NFN are formed as an array of triangular functions satisfying the following criterion

$$\sum_{j=1}^{n_i} \mu_{ji}(x_i(k)) = 1, \quad i = 1, 2, \dots, n$$
(4)

(the so called Ruspini partitioning). Thus, the network does not require a normalization layer.

The goal of this paper is to improve the approximating capabilities of the NFN by modification of its architecture and speed-up the learning procedure by a special selection of the learning rate parameter.

DOUBLE NEO-FUZZY NEURON

Consider the architecture of the double neo-fuzzy neuron (DNFN). Its architecture in a compact form is presented in Fig. 1.

Fig. 1: Double neo-fuzzy neuron

Thus, the DNFN consists of two layers: the input layer of *n* nonlinear synapses NS_{*i*} with h_i membership functions and synaptic weights each, and the output layer formed by a nonlinear synapse NS₀ with h_0 membership functions μ_{l0} , $l = 1, 2, ..., h_0$ and synaptic weights w_{l0} .

When the vector $x(k) = (x_1(k), x_2(k), ..., x_n(k))^T$ is fed to the input of the DNFN, it produces the response in the form

$$y(k) = f_0(u(k)) = f_0\left(\sum_{i=1}^n f_i(x_i(k))\right) = \sum_{l=1}^{h_0} \mu_{l0}(u(k)) w_{l0} = \sum_{l=1}^{h_0} \mu_{l0}\left(\sum_{i=1}^n \sum_{j=1}^{h_i} \mu_{ji}(x_i(k)) w_{ji}\right) w_{l0}.$$
 (5)

The output value of the DNFN is determined by the input vector and the values of $\sum_{i=1}^{n} h_i + h_0$ membership functions and corresponding tunable synaptic weights.

As we have already mentioned, the membership functions are of triangular form providing the Ruspini partitioning:

$$\mu_{ji}(x_i) = \begin{cases} (x_i - c_{j-1,i}) / (c_{ji} - c_{j-1,i}), & x_i \in [c_{j-1,i}, c_{ji}], \\ (c_{j+1,i} - x_i) / (c_{j+1,i} - c_{ji}), & x_i \in [c_{ji}, c_{j+1,i}], \\ 0 & otherwise, \end{cases}$$
(6)

$$\mu_{l0}(u) = \begin{cases} (u - c_{l-1,0}) / (c_{l0} - c_{l-1,0}), & x_i \in [c_{l-1,0}, c_{l0}], \\ (c_{l+1,0} - u) / (c_{l+1,0} - c_{l0}), & x_i \in [c_{l0}, c_{l+1,0}], \\ 0 & otherwise, \end{cases}$$
(7)

where c_{ji} , c_{l0} are the centers of the corresponding membership functions. According to this partitioning, at each time step only two neighbouring membership functions of each nonlinear synapse are fired. Denote these functions by μ_{pi} and $\mu_{p+1,i}$ respectively. Then we can write

$$f_{i}(x_{i}(k)) = \sum_{j=1}^{h_{i}} \mu_{ji}(x_{i}(k))w_{ji} = \mu_{pi}(x_{i}(k))w_{pi} + \mu_{p+1,i}(x_{i}(k))w_{p+1,i}$$
$$= \frac{c_{p+1,i} - x_{i}(k)}{c_{p+1,i} - c_{pi}}w_{pi} + \frac{x_{i}(k) - c_{pi}}{c_{p+1,i} - c_{pi}}w_{p+1,i} = a_{i}x_{i}(k) + b_{i},$$
(8)

where
$$a_i = \frac{w_{p+1,i} - w_{pi}}{c_{p+1,i} - c_{pi}}, \quad b_i = \frac{c_{p+1,i}w_{pi} - c_{pi}w_{p+1,i}}{c_{p+1,i} - c_{pi}}, \text{ and}$$

$$u(k) = \sum_{i=1}^n a_i x_i(k) + b_i, \qquad (9)$$

$$y(k) = \sum_{l=1}^{n_0} \mu_{l0}(u(k)) w_{l0} = \mu_{l0}(u(k)) w_{p0} + \mu_{p+1,0}(u(k)) w_{p+1,0}$$
$$= \frac{c_{p+1,0} - u(k)}{c_{p+1,0} - c_{p0}} w_{p0} + \frac{u(k) - c_{p0}}{c_{p+1,0} - c_{p0}} w_{p+1,0} = a_0 u(k) + b_0,$$
(10)

where $a_0 = \frac{w_{p+1,0} - w_{p0}}{c_{p+1,0} - c_{p0}}, \quad b_0 = \frac{c_{p+1,0}w_{p0} - c_{p0}w_{p+1,0}}{c_{p+1,0} - c_{p0}}.$

Hence, the DNFN provides a piecewise linear approximation of the unknown nonlinear function d(k) = F(x(k)) in the form

$$y(k) = a_0 \left(\sum_{i=1}^n a_i x_i(k) + b_i \right) + b_0.$$
 (11)

The approximation is determined by the given set of membership functions and corresponding synaptic weights.

LEARNING ALGORITHM OF THE DNFN

To develop a learning algorithm for the DNFN parameters, consider the criterion (2) and

the gradient-based optimization procedure with a variable learning rate $\eta_i(k)$. Then we can write a simple algorithm for learning in the output synapse NS₀:

$$\begin{cases} w_{l0}(k+1) = w_{l0}(k) + \eta_0(k)e(k)\mu_{l0}(u(k)), & l = p, p+1, \\ w_{l0}(k+1) = w_{l0}(k), & \forall l \neq p, l \neq p+1. \end{cases}$$
(12)

Thus, at each time step only two of the synaptic weights corresponding to the fired membership functions can be tuned.

In order to optimize the speed of the learning procedure, we propose using a one-step modification of the Levenberg-Marquardt algorithm with the Sherman-Morrison formula for inverse matrix computation as proposed in [5, 6]. This approach leads to the following procedure:

$$\begin{cases} w_{l0}(k+1) = w_{l0}(k) + r_0^{-1}(k)e(k)\mu_{l0}(u(k)), & l = p, p+1, \\ r_0(k+1) = \alpha r_0(k) + \mu_{p0}^2(u(k+1)) + \mu_{p+1,0}^2(u(k+1)), & 0 \le \alpha \le 1, \\ w_{l0}(k+1) = w_{l0}(k), & \forall l \ne p, l \ne p+1. \end{cases}$$
(13)

For a zero value of the forgetting factor α this procedure coincides with the optimal Kaczmarz-Widrow-Hoff algorithm, and with the Goodwin-Ramadge-Caines nonlinear identification algorithm possessing expressed smoothing properties for $\alpha = 1$. Varying of the parameter α provides tracking or filtering properties to the learning process.

It should be noted that if the learning data set x(k), d(k) is given a priori, the learning of the output nonlinear synapse NS₀ can be performed in a batch mode with the standard least squares method. In this case the learning process will be reduced to a single procedure. To learn the weights in the input layer nonlinear synapses, consider the criterion in the form:

$$E(k) = \frac{1}{2} (d(k) - f_0(u(k)))^2 = \frac{1}{2} (d(k) - f_0 \left(\sum_{i=1}^n \sum_{i=1}^{h_i} \mu_{ji}(x(k)) w_{ji} \right)^2.$$
(14)

Whence,

$$\frac{\partial E(k)}{\partial w_{ji}} = -e(k)\frac{\partial f_0(u(k))}{\partial u(k)}\frac{\partial u(k)}{\partial w_{ji}} = -e(k)a_0(k)\frac{\partial u(k)}{\partial w_{ji}}.$$
(15)

Taking into account (15) we can write to the following simple algorithm, which is a gradient-based optimization of the criterion (14):

$$\begin{cases} w_{ji}(k+1) = w_{ji}(k) + \eta_i(k)e(k)a_0(k)\mu_{ji}(x_i(k)), & j = p, p+1, i = 1, 2, ..., n, \\ w_{ji}(k+1) = w_{ji}(k), & \forall j \neq p, j \neq p+1. \end{cases}$$
(16)

Denote

$$a_0(k)\mu_{ii}(x_i(k)) = \mu_{ii0}(x_i(k)).$$
(17)

Applying the technique described above, we can write the algorithm for learning of the input layer synaptic weights:

$$\begin{cases} w_{ji}(k+1) = w_{ji}(k) + r_i^{-1}(k)e(k)\mu_{ji0}(x_i(k)), & j = p, p+1, i = 1, 2, ..., n, \\ r_i(k+1) = \alpha r_i(k) + \mu_{pi0}^2(x_i(k+1)) + \mu_{p+1,i0}^2(x_i(k+1)), & 0 \le \alpha \le 1, \\ w_{ji}(k+1) = w_{ji}(k), & \forall j \ne p, j \ne p+1, \end{cases}$$
(18)

which fully coincides with the procedure (13) by its structure. Thus, in fact, all the synaptic weights of the DNFN are learned using only a single algorithm.

NETWORK BASED ON DNFNs

The proposed DNFN is a basic building block of the evolving network shown in Fig. 2.

Fig. 2: Evolving network based on DNFNs

This network consists of a set of double neo-fuzzy neurons $DNFN^{g}$, g = 1, 2, ..., h combined into a layer. The network contains $(\sum_{i=1}^{n} h_i + h_0)h$ tunable weights and performs the following mapping:

$$\overline{y}(k) = \sum_{g=1}^{h} y^{g}(k) = \sum_{g=1}^{h} \sum_{l=1}^{h_{0}} \mu_{l_{0}}^{g} \left(\sum_{i=1}^{n} \sum_{j=1}^{h_{i}} \mu_{ji}^{g}(x_{i}(k)) w_{ji}^{g} \right) w_{l_{0}}^{g}$$
(19)

where g = 1, 2, ..., h; $l = 1, 2, ..., h_0$; i = 1, 2, ..., n; $j = 1, 2, ..., h_i$.

An essential feature of such network is the absence of the tunable weights in the output summation element synapses. This allows changing of the number of neurons by adding or removing neurons without the impact on the learning of the existing or newly added neurons. Each neuron learns independently from another according to the algorithm (18).

It can be easily seen that (19) corresponds, in fact, to the Kolmogorov's approximation scheme of a nonlinear function [7–9]. However, in contrast to the other neuro-fuzzy Kolmogorov's networks [5, 10, 11], the proposed approach possesses more flexibility, since it allows modification of the network structure directly during the learning process.

CONCLUSION

In the paper, an evolving network architecture based on double neo-fuzzy neurons is proposed. The proposed network performs Kolmogorov's approximation of an arbitrary nonlinear function, and possesses greater flexibility for network structure modification during the learning process in comparison to the other Kolmogorov's neuro-fuzzy systems. The learning algorithm is computationally simple and possesses filtering and tracking properties, which become significant in the processing of noisy non-stationary signals.

References:

[1] J.-S. R. Jang, C.-T. Sun, and E. Mizutani. *Neuro-Fuzzy and Soft Computing -- Computational Approach to Learning and Machine Intelligence*. Prentice Hall, Upper Saddle River, 1997.

[2] Y. Yam, H. T. Nguyen, and V. Kreinovich. Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result. In *Proc. 14th IEEE Int. Symp. on Intelligent Control/Intelligent Systems and Semiotics ISIC/ISAS'99*, volume 3, pages 213–218, Cambridge, Massachusetts, September 15–17, 1999.

[3] T. Yamakawa, E. Uchino, T. Miki, and H. Kusanagi. A neo fuzzy neuron and its applications to system identification and prediction of the system behavior. In *Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks* ``*IIZUKA-92'*', pages 477–483, lizuka, Japan, 1992.

[4] T. Miki and T. Yamakawa. Analog implementation of neo-fuzzy neuron and its on-board learning. In N. E. Mastorakis, editor, *Computational Intelligence and Applications*, pages 144–149, WSES Press, Piraeus, 1999.

[5] Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy, and P. Otto. Neuro-fuzzy Kolmogorov's network for time series prediction and classification. In *Lecture Notes in Artificial Intelligence*, volume 3698, pages 191–202, Berlin-Heidelberg-New York, Springer, 2005.

[6] P. Otto, Ye. Bodyanskiy, and V. Kolodyazhniy. A new learning algorithm for a forecasting neuro-fuzzy network. *Integrated Computer-Aided Engineering*, volume 10, pages 399-409, 2003.

[7] A. N. Kolmogorov. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In *Dokl. Akad. Nauk SSSR*, volume 114, pages 953–956, 1957.

[8] V. Kůrková. Kolmogorov's theorem is relevant. In Neural Computation, volume 3, pages 617–622, 1991.

[9] B. Igelnik and N. Parikh. Kolmogorov's spline network. *IEEE Transactions on Neural Networks*, volume 14, pages 725–733, 2003.

[10] V. Kolodyazhniy and Ye. Bodyanskiy. Fuzzy Kolmogorov's network. In *Lecture Notes in Computer Science*, volume 3214, pages 765–771, Heidelberg, Springer-Verlag, 2004.

[11] Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy, and V. Poyedintseva. Neuro-fuzzy Kolmogorov's network. In *Lecture Notes in Computer Science*, volume 3697, pages 3–8, Berlin-Heidelberg, Springer-Verlag, 2005.

Authors:

Dr.-Ing. Habil. Yevgeniy Bodyanskiy M.Sc. Yevgen Gorshkov Control Systems Research Laboratory, Kharkiv National University of Radio Electronics, 14, Lenin Av., 61166, Kharkiv, Ukraine, Phone: +38 057 702 1890 E-mail: bodya@kture.kharkov.ua, ye.gorshkov@gmail.com

Dr.-Ing. Vitaliy Kolodyazhniy Institute for Psychology, University of Basel, Missionstrasse 60/62, CH-4055, Basel, Switzerland, Phone: +41 61 267 0383 E-mail: v.kolodyazhniy@unibas.ch

Dr.-Ing. Habil. Peter Otto Technical University of Ilmenau, Department of Informatics and Automation, PF 10 0565, 98684, Ilmenau, Germany Phone: +49 0 3677/69-27 73 E-mail: peter.otto@tu-ilmenau.de