19,196 research outputs found

    Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs

    Full text link
    [EN] Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energyefficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy-efficient multi-level and distance-aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop-count-based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches.This work has been partially supported by the 'Ministerio de Ciencia e Innovacion', through the 'Plan Nacional de I+D+i 2008-2011' in the 'Subprograma de Proyectos de Investigacion Fundamental', project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-15-11 multidisciplinary projectsMehmood, A.; Khan, S.; Shams, B.; Lloret, J. (2015). Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs. International Journal of Communication Systems. 28(5):972-989. https://doi.org/10.1002/dac.2720S972989285Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Bri D Garcia M Lloret J Dini P Real deployments of wireless sensor networks Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) 2009 8 23GUI, L., VAL, T., & WEI, A. (2011). A Novel Two-Class Localization Algorithm in Wireless Sensor Networks. Network Protocols and Algorithms, 3(3). doi:10.5296/npa.v3i3.863Rajeswari, A., & P.T, K. (2011). A Novel Energy Efficient Routing Protocols for Wireless Sensor Networks Using Spatial Correlation Based Collaborative Medium Access Control Combined with Hybrid MAC. Network Protocols and Algorithms, 3(4). doi:10.5296/npa.v3i4.1296Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Liu, G., Xu, B., & Chen, H. (2011). Decentralized estimation over noisy channels in cluster-based wireless sensor networks. International Journal of Communication Systems, 25(10), 1313-1329. doi:10.1002/dac.1308Cheng, L., Chen, C., Ma, J., & Shu, L. (2011). Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. International Journal of Communication Systems, 25(12), 1585-1602. doi:10.1002/dac.1325Wang, X., & Qian, H. (2011). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513-1529. doi:10.1002/dac.1318Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An Energy-Efficient Routing Protocol Using Movement Trends in Vehicular Ad hoc Networks. The Computer Journal, 56(8), 938-946. doi:10.1093/comjnl/bxt028Chen, J.-S., Hong, Z.-W., Wang, N.-C., & Jhuang, S.-H. (2010). Efficient Cluster Head Selection Methods for Wireless Sensor Networks. Journal of Networks, 5(8). doi:10.4304/jnw.5.8.964-970Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2011). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126. doi:10.1002/dac.1336Zeynali, M., Mollanejad, A., & Khanli, L. M. (2011). Novel hierarchical routing protocol in wireless sensor network. Procedia Computer Science, 3, 292-300. doi:10.1016/j.procs.2010.12.050Heinzelman W Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks 33rd Hawaii International Conference on System Sciences (HICSS) 2000 3005 3014Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering, 38(3), 662-671. doi:10.1016/j.compeleceng.2011.11.017Gou H Yoo Y An energy balancing LEACH algorithm for wireless sensor networks Proceedings of the 7th International Conference on Information Technology: New Generations (ITNG) 2010Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. Lecture Notes in Computer Science, 322-339. doi:10.1007/11502593_25Bandyopadhyay S Coyle E An energy-efficient hierarchical clustering algorithm for wireless sensor networks The 32nd IEEE International Conference on Computer Communication (INFOCOM 2003) 2003Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036-1048. doi:10.1016/j.adhoc.2010.11.003Zhu, Y., Wu, W., Pan, J., & Tang, Y. (2010). An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33(5), 639-647. doi:10.1016/j.comcom.2009.11.008Khamfroush H Saadat R Khademzadeh A Khamfroush K Lifetime increase for wireless sensor networks using cluster-based routing International Association of Computer Science and Information Technology-Spring Conference (IACSIT-SC 2009) 2009Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256-268. doi:10.1016/j.comcom.2012.10.006Aslam N Phillips W Robertson W Sivakumar S A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks 4th IEEE Consumer Communications and Networking Conference, (CCNC 2007) 2007 650 654Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14-15), 2842-2852. doi:10.1016/j.comcom.2007.05.034Yong, Z., & Pei, Q. (2012). A Energy-Efficient Clustering Routing Algorithm Based on Distance and Residual Energy for Wireless Sensor Networks. Procedia Engineering, 29, 1882-1888. doi:10.1016/j.proeng.2012.01.231Chuan-Chi W A minimum transmission energy consumption routing protocol for user-centric wireless networks 2011 1143 1148Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662-667. doi:10.1016/j.comcom.2008.11.025Kim KT Moon SS Tree-Based Clustering (TBC) for energy efficient wireless sensor networks IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA) 2010 680 685Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU - International Journal of Electronics and Communications, 66(1), 54-61. doi:10.1016/j.aeue.2011.05.002Ye M Li C Wu J EECS: an Energy Efficient Clustering Scheme in wireless sensor networks 24th IEEE International Performance on Computing, and Communications Conference 2005 535 540Gautama N Lee W Pyun J Dynamic clustering and distance aware routing protocol for wireless sensor networks PE-WASUN'09 2009Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117-131. doi:10.1016/j.ins.2011.08.029Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Networks, 7(2), 322-343. doi:10.1016/j.adhoc.2008.03.006OMNeT++ Community Documentation and Tutorials of omnet++ http://www.omnetpp.org/Castallia Documentation and Tutorials of Castalia Simulator for WSN and BAN http://castalia.research.nicta.com.au/index.php/en/Research Group on Computer Networks and Multimedia Communication UFPA - Brazil Download-Leach-v2-for-Castalia http://www.gercom.ufpa.br/index.php?option=com_filecabinet&view=files&id=1&Itemid=31&lang=p

    MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Get PDF
    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. Scientific World Journal. 2014. doi:10.1155/2014/913046S2014Lacuesta, R., Lloret, J., Garcia, M., & Peñalver, L. (2010). A Spontaneous Ad Hoc Network to Share WWW Access. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/232083Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32-48. doi:10.1109/comst.2005.1423333Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Zhou, C., & Maxemchuk, N. (2011). Distributed Bottleneck Flow Control in Mobile Ad Hoc Networks. Network Protocols and Algorithms, 3(1). doi:10.5296/npa.v3i1.576Zhang, R., Cai, L., Pan, J., & Shen, X. (Sherman). (2011). Resource management for video streaming in ad hoc networks. Ad Hoc Networks, 9(4), 623-634. doi:10.1016/j.adhoc.2010.08.012Tarique, M. (2010). ISSUES OF LONG-HOP AND SHORT-HOP ROUTING IN MOBILE AD HOC NETWORKS: A COMPREHENSIVE STUDY. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.430Abdrabou, A., & Zhuang, W. (2009). Statistical QoS routing for IEEE 802.11 multihop ad hoc networks. IEEE Transactions on Wireless Communications, 8(3), 1542-1552. doi:10.1109/twc.2008.080573Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., & Kotsopoulos, S. (2011). Energy efficient and perceived QoS aware video routing over Wireless Multimedia Sensor Networks. Ad Hoc Networks, 9(4), 591-607. doi:10.1016/j.adhoc.2010.09.00

    A QoS-Based Wireless Multimedia Sensor Cluster Protocol

    Full text link
    Wireless Sensor Networks (WSNs) provide a wireless network infrastructure for sensed data transport in environments where wired or satellite technologies cannot be used. Because the embedded hardware of the sensor nodes has been improved very much in the last years and the number of real deployments is increasing considerably, they have become a reliable option for the transmission of any type of sensed data, from few sensed measures to multimedia data. This paper proposes a new protocol that uses an ad hoc cluster based architecture which is able to adapt the logical sensor network topology to the delivered multimedia stream features, guaranteeing the quality of the communications. The proposed protocol uses the quality of service (QoS) parameters, such as bandwidth, delay, jitter, and packet loss, of each type of multimedia stream as a basis for the sensor clusters creation and organization inside the WSN, providing end-to-end QoS for each multimedia stream. We present real experiments that show the performance of the protocol for several video and audio cases when it is runningThis work has been partially supported by the "Ministerio de Ciencia e Innovacion," through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental," Project TEC2011-27516. This work has also been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Government of Russian Federation, Grant 074-U01, and by National Funding from the Fundacao para a Ciencia e a Tecnologia (FCT) through the PEst-OE/EEI/LA0008/2013 Project.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Rodrigues, JJPC. (2014). A QoS-Based Wireless Multimedia Sensor Cluster Protocol. International Journal of Distributed Sensor Networks. 2014:1-17. https://doi.org/10.1155/2014/480372S1172014Bri, D., Garcia, M., Lloret, J., & Dini, P. (2009). Real Deployments of Wireless Sensor Networks. 2009 Third International Conference on Sensor Technologies and Applications. doi:10.1109/sensorcomm.2009.69Karim, L., Anpalagan, A., Nasser, N., & Almhana, J. (2013). Sensor-based M2M Agriculture Monitoring Systems for Developing Countries: State and Challenges. Network Protocols and Algorithms, 5(3), 68. doi:10.5296/npa.v5i3.3787Edo, M., Canovas, A., Garcia, M., & Lloret, J. (s. f.). Providing VoIP and IPTV Services in WLANs. Handbook of Research on Mobility and Computing, 426-444. doi:10.4018/978-1-60960-042-6.ch028Diab, R., Chalhoub, G., & Misson, M. (2013). Overview on Multi-Channel Communications in Wireless Sensor Networks. Network Protocols and Algorithms, 5(3), 112. doi:10.5296/npa.v5i3.3811Khoukhi, L., & Cherkaoui, S. (2010). Intelligent QoS management for multimedia services support in wireless mobile ad hoc networks. Computer Networks, 54(10), 1692-1706. doi:10.1016/j.comnet.2010.01.014Abbas, C. J. B., Orozco, A. L. S., & Villalba, L. J. G. (2012). A distributed QoS mechanism for ad hoc network. International Journal of Ad Hoc and Ubiquitous Computing, 11(1), 25. doi:10.1504/ijahuc.2012.049282Çevik, T., & Zaim, A. H. (2013). A Multichannel Cross-Layer Architecture for Multimedia Sensor Networks. International Journal of Distributed Sensor Networks, 9(3), 457045. doi:10.1155/2013/457045Li, Z., Bi, J., & Chen, S. (2013). Traffic Prediction-Based Fast Rerouting Algorithm for Wireless Multimedia Sensor Networks. International Journal of Distributed Sensor Networks, 9(5), 176293. doi:10.1155/2013/176293Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lehsaini, M., Guyennet, H., & Feham, M. (2010). An efficient cluster-based self-organisation algorithm for wireless sensor networks. International Journal of Sensor Networks, 7(1/2), 85. doi:10.1504/ijsnet.2010.031852Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Diaz, J. R., Lloret, J., Jimenez, J. M., & Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. The Scientific World Journal, 2014, 1-14. doi:10.1155/2014/913046Wei, D., & Chan, H. (2006). Clustering Ad Hoc Networks: Schemes and Classifications. 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. doi:10.1109/sahcn.2006.288583Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32-48. doi:10.1109/comst.2005.1423333Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14-15), 2826-2841. doi:10.1016/j.comcom.2007.05.024Boyinbode, O., Le, H., & Takizawa, M. (2011). A survey on clustering algorithms for wireless sensor networks. International Journal of Space-Based and Situated Computing, 1(2/3), 130. doi:10.1504/ijssc.2011.040339Ramachandran, L., Kapoor, M., Sarkar, A., & Aggarwal, A. (2000). Clustering algorithms for wireless ad hoc networks. Proceedings of the 4th international workshop on Discrete algorithms and methods for mobile computing and communications - DIALM ’00. doi:10.1145/345848.345860Chatterjee, M., Das, S. K., & Turgut, D. (2002). Cluster Computing, 5(2), 193-204. doi:10.1023/a:1013941929408Huang, Y.-M., Hsieh, M.-Y., & Wang, M.-S. (2007). Reliable transmission of multimedia streaming using a connection prediction scheme in cluster-based ad hoc networks. Computer Communications, 30(2), 440-452. doi:10.1016/j.comcom.2006.09.012Tang, S., & Li, W. (2006). QoS supporting and optimal energy allocation for a cluster based wireless sensor network. Computer Communications, 29(13-14), 2569-2577. doi:10.1016/j.comcom.2006.02.007Rosário, D., Costa, R., Paraense, H., Machado, K., Cerqueira, E., Braun, T., & Zhao, Z. (2012). A Hierarchical Multi-hop Multimedia Routing Protocol for Wireless Multimedia Sensor Networks. Network Protocols and Algorithms, 4(4). doi:10.5296/npa.v4i4.2121Diaz, J. R., Lloret, J., Jiménez, J. M., & Hammoumi, M. (2014). A new multimedia-oriented architecture and protocol for wireless ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing, 16(1), 14. doi:10.1504/ijahuc.2014.062486Meghanathan, N., & Mumford, P. (2013). Centralized and Distributed Algorithms for Stability-based Data Gathering in Mobile Sensor Networks. Network Protocols and Algorithms, 84. doi:10.5296/npa.v5i4.420

    K-means online-learning routing protocol (K-MORP) for unmanned aerial vehicles (UAV) adhoc networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become a hot topic due to their flexible architecture adopted in many wireless technologies. In UAV ad hoc networks, traditional routing protocols with a fixed topology are ineffective due to dynamic mobility and unstable paths. Therefore, the mobility patterns of UAVs challenge efficient and reliable routing in UAV networks. Traditional routing algorithms are often based on assumptions of static nodes and predetermined network topologies. Which are not suitable for the dynamic and unpredictable nature of UAV mobility patterns. To address this problem, this paper introduces a K-means online learning routing protocol (KMORP) scheme employing a Markov mobility model for UAV ad hoc networks. Initially, the proposed method utilizes a 3D Gauss Markov mobility model to accurately estimate UAV positions, while K-means online learning is adopted for dynamic clustering and load balancing. Designed for real-time data processing, KMORP is well suited for UAV ad hoc networks, quickly adapting to network environmental changes such as UAV mobility, interference, and signal degradation to ensure efficient data transmission and communication. This is achieved while reducing the overall communication overhead and increasing the packet delivery ratio(PDR%). In the routing phase, the proposed scheme employs inter-cluster forwarding nodes to transmit messages among different clusters. Extensive simulations demonstrate the performance of the proposed KMORP, showing a 38% better PDR compared to OLSR and over 50% less end-to-end(E2E) delay compared to typical K-Means. Furthermore, the proposed KMORP exhibited an average throughput of 955 kbps, showing a substantial improvement in network performance. The results underscore that the proposed KMORP outperforms existing techniques in terms of PDR, E2E delay, and throughput.© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Efficient Data Dissemination in Wireless Ad Hoc Networks

    Get PDF
    In this thesis, we study the problem of efficient data dissemination in wireless sensor and mobile ad hoc networks. In wireless sensor networks we study two problems: (1) construction of virtual backbones and clustering hierarchies to achieve efficient routing, and (2) placement of multiple sinks, where each sensor is at a bounded distance to several sinks, to analyze and process data before sending it to a central unit. Often connected dominating sets have been used for such purposes. However, a connected dominating set is often vulnerable due to frequent node failures in wireless sensor networks. Hence, to provide a degree of fault-tolerance we consider in problem (1) a 2-connected (k,r)-dominating set, denoted D(2,k,r), to act as a virtual backbone or a clustering hierarchy, and in problem (2) a total (k,r)-dominating set to act as sinks in wireless sensor networks. Ideally, the backbone or the number of sinks in the network should constitute the smallest percentage of nodes in the network. We model the wireless sensor network as a graph. The total (k,r)-dominating set and the 2-connected (k,r)-dominating set have not been studied in the literature. Thus, we propose two centralized approximation algorithms to construct a D(2,k,r) in unit disk graphs and in general graphs. We also derive upper bounds on the total (k,r)-domination number in graphs of girth at least 2k+1 as well as in random graphs with non-fixed probability p. In mobile ad hoc networks we propose a hexagonal based beacon-less flooding algorithm, HBLF, to efficiently flood the network. We give sufficient condition that even in the presence of holes in the network, HBLF achieves full delivery. Lower and upper bounds are given on the number of forwarding nodes returned by HBLF in a network with or without holes. When there are no holes in the network, we show that the ratio of the shortest path returned by HBLF to the shortest path in the network is constant. We also present upper bounds on the broadcast time of HBLF in a network with or without holes

    Enhanced group-based wireless ad-hoc sensor network protocol

    Full text link
    [EN] Communication is the major energy consumption source in wireless ad-hoc sensor networks. Thus, an efficient tradeoff between the energy cost of the communication and network's performance is a key challenge in conceiving a wireless ad-hoc sensor network. In this article, we propose an improved group-based architecture for wireless ad-hoc sensor networks. An optimized group forming procedure and an efficient communication operation are introduced. In order to validate the proposed approach, we suggest a group-based strategy to monitor pharmaceutical drugs during transportation. Real measurements of temperature and vibration were performed to validate the effectiveness of our approach.Khedher, M.; Lloret, J.; Douik, A. (2016). Enhanced group-based wireless ad-hoc sensor network protocol. International Journal of Distributed Sensor Networks. 12(7):1-18. https://doi.org/10.1177/1550147716659427S118127Dargie, W., & Poellabauer, C. (2010). Fundamentals of Wireless Sensor Networks. doi:10.1002/9780470666388Singh, S. P., & Sharma, S. C. (2015). A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia Computer Science, 45, 687-695. doi:10.1016/j.procs.2015.03.133Liao, Y., Qi, H., & Li, W. (2013). Load-Balanced Clustering Algorithm With Distributed Self-Organization for Wireless Sensor Networks. IEEE Sensors Journal, 13(5), 1498-1506. doi:10.1109/jsen.2012.2227704Peng, I.-H., & Chen, Y.-W. (2013). Energy consumption bounds analysis and its applications for grid based wireless sensor networks. Journal of Network and Computer Applications, 36(1), 444-451. doi:10.1016/j.jnca.2012.04.014Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., García, M., Boronat, F., & Tomás, J. (s. f.). MANET Protocols Performance in Group-based Networks. IFIP International Federation for Information Processing, 161-172. doi:10.1007/978-0-387-84839-6_13Lloret, J., Garcia, M., & Tomas, J. (s. f.). Improving Mobile and Ad-hoc Networks performance using Group-Based Topologies. Wireless Sensor and Actor Networks II, 209-220. doi:10.1007/978-0-387-09441-0_18Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Shaikh, R. A., Jameel, H., d’ Auriol, B. J., Heejo Lee, Sungyoung Lee, & Young-Jae Song. (2009). Group-Based Trust Management Scheme for Clustered Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(11), 1698-1712. doi:10.1109/tpds.2008.258Chen, Y.-S., Hsu, C.-S., & Lee, H.-K. (2014). An Enhanced Group Mobility Protocol for 6LoWPAN-Based Wireless Body Area Networks. IEEE Sensors Journal, 14(3), 797-807. doi:10.1109/jsen.2013.2287895Yao-Chung Chang, Zhi-Sheng Lin, & Jiann-Liang Chen. (2006). Cluster based self-organization management protocols for wireless sensor networks. IEEE Transactions on Consumer Electronics, 52(1), 75-80. doi:10.1109/tce.2006.1605028Fazio, P., De Rango, F., Sottile, C., & Santamaria, A. F. (2013). Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree. International Journal of Distributed Sensor Networks, 9(11), 598675. doi:10.1155/2013/598675Saravanan, M., & Madheswaran, M. (2014). A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network. Mathematical Problems in Engineering, 2014, 1-8. doi:10.1155/2014/71342

    Mengenal pasti masalah pemahaman dan hubungannya dengan latar belakang matematik, gaya pembelajaran, motivasi dan minat pelajar terhadap bab pengawalan kos makanan di Sekolah Menengah Teknik (ert) Rembau: satu kajian kes.

    Get PDF
    Kajian ini dijalankan untuk mengkaji hubungan korelasi antara latar belakang Matematik, gaya pembelajaran, motivasi dan minat dengan pemahaman pelajar terhadap bab tersebut. Responden adalah seramai 30 orang iaitu terdiri daripada pelajar tingkatan lima kursus Katering, Sekolah Menengah Teknik (ERT) Rembau, Negeri Sembilan. Instrumen kajian adalah soal selidik dan semua data dianalisis menggunakan program SPSS versi 10.0 untuk mendapatkan nilai min dan nilai korelasi bagi memenuhi objektif yang telah ditetapkan. Hasil kajian ini menunjukkan bahawa hubungan korelasi antara gaya pembelajaran pelajar terhadap pemahaman pelajar adalah kuat. Manakala hubungan korelasi antara latar belakang Matematik, motivasi dan minat terhadap pemahaman pelajar adalah sederhana. Nilai tahap min bagi masalah pemahaman pelajar, latar belakang Matematik, gaya pembelajaran, motivasi dan minat terhadap bab Pengawalan Kos Makanan adalah sederhana. Kajian ini mencadangkan penghasilan satu Modul Pembelajaran Kendiri bagi bab Pengawalan Kos Makanan untuk membantu pelajar kursus Katering dalam proses pembelajaran mereka

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Overlapping Multi-hop Clustering for Wireless Sensor Networks

    Full text link
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load evenly over different clusters. In addition, KOCA is scalable; the clustering formation terminates in a constant time regardless of the network size
    corecore