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Abstract

Efficient Data Dissemination in Wireless Ad Hoc Networks

Louisa Harutyunyan, Ph.D.

Concordia University, 2014

In this thesis, we study the problem of efficient data dissemination in wireless sensor

and mobile ad hoc networks. In wireless sensor networks we study two problems:

(1) construction of virtual backbones and clustering hierarchies to achieve efficient

routing, and (2) placement of multiple sinks, where each sensor is at a bounded

distance to several sinks, to analyze and process data before sending it to a central

unit. Often connected dominating sets have been used for such purposes. However, a

connected dominating set is often vulnerable due to frequent node failures in wireless

sensor networks. Hence, to provide a degree of fault-tolerance we consider in problem

(1) a 2-connected (k, r)-dominating set, denoted D(2,k,r), to act as a virtual backbone

or a clustering hierarchy, and in problem (2) a total (k, r)-dominating set to act as

sinks in wireless sensor networks.

Ideally, the backbone or the number of sinks in the network should constitute the

smallest percentage of nodes in the network. We model the wireless sensor network

as a graph. The total (k, r)-dominating set and the 2-connected (k, r)-dominating set

have not been studied in the literature. Thus, we propose two centralized approxima-

tion algorithms to construct a D(2,k,r) in unit disk graphs and in general graphs. We

also derive upper bounds on the total (k, r)-domination number in graphs of girth at

least 2k + 1 as well as in random graphs with non-fixed probability p.

In mobile ad hoc networks we propose a hexagonal based beacon-less flooding

algorithm, HBLF, to efficiently flood the network. We give sufficient condition that

even in the presence of holes in the network, HBLF achieves full delivery. Lower and

upper bounds are given on the number of forwarding nodes returned by HBLF in a

network with or without holes. When there are no holes in the network, we show

that the ratio of the shortest path returned by HBLF to the shortest path in the

network is constant. We also present upper bounds on the broadcast time of HBLF

in a network with or without holes.
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Chapter 1

Introduction

Wireless networks emerged into the computing industry in the 1970s and since then

have been widely used in practical applications. There are two variations of wireless

networks. The first is known as infrastructure network, a network with fixed and

wired gateways. The bridges of an infrastructured network are known as base stations.

Mobile units within the network connect to and communicate with the nearest base

station within their communication radius. The mobile host may travel out of the

range of one base station and into the range of another. In such a case a handoff occurs

from the old base station to the new, and the mobile unit continues its communication

throughout the network. Application of an infrastructured network includes office

wireless local area networks (WLANs). [76]

The work considered in this thesis is for the second type of wireless networks, which

are infrastructure-less. These networks are commonly known as ad hoc networks. Ad

hoc networks do not rely on a preexisting infrastructure and have no fixed routers or

base stations. All nodes function as routers that participate in routing to other nodes

in the network. Some applications of ad hoc networks are emergency search-and-

rescue operations, natural disasters and military conflicts. Wireless ad hoc networks

can further be classified by their application into wireless sensor networks (WSNs)

and mobile ad hoc networks (MANETs). A wireless sensor network is a large number

of sensors spatially distributed over a geographical region to cooperatively collect data

for monitoring physical or environmental conditions. The data collected may be of

physical nature such as light intensity, temperature, sound, or proximity to objects. A

mobile ad hoc network is a collection of autonomous mobile hosts that communicate
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over a relatively bandwidth constrained wireless links. [76]

Sensors and mobile nodes in wireless ad hoc networks communicate among them-

selves using radio transceivers. Each node has a transmission range, the maximum

distance it can transmit data. A single radio transmission of a node can be received by

all of its neighbours within that range. Two nodes can communicate directly if they

are within each others’ transmission ranges. Nodes that are further away from each

other may communicate by sending messages through intermediate nodes. [1, 76, 153]

There are several main differences between wireless sensor networks and mobile

ad hoc networks. We give a brief overview of these differences below [76].

Equipment: The equipment used by wireless sensor networks are sensor nodes,

which are typically small and simple. Hence, these devices do not need to be as pow-

erful as the nodes in mobile ad hoc networks. Mobile ad hoc networks are associated

with applications such as voice communication between two peers, which requires

powerful equipment for multicasting in order to attain efficient group communication

for both data and real time traffic. Therefore, the battery of terminals in mobile ad

hoc networks are much larger than that of in wireless sensor networks. Also, it should

be noted that mobile ad hoc networks mostly involve heterogeneous nodes (with dif-

ferent form, energy, transmission range and bandwidth factors) and heterogeneous

traffic (voice, data and multimedia). Sensor nodes in wireless sensor networks most

of the time are homogeneous since they are being deployed in large numbers. [76]

Application/Environment Specific: Wireless sensor networks are mostly

used to interact in the environment and hence, their traffic characteristics are expected

to be different from those in mobile ad hoc networks. In wireless sensor networks it is

likely to exhibit very low data rates over a large timescale, but can have very bursty

traffic when something happens in the network. At the application level, mobile ad

hoc network users typically communicate and collaborate as teams. Therefore, mobile

ad hoc networks are used to support more conventional applications such as web and

voice communication, which do not have this diversity in traffic rate. [76]

Energy and Resource Scarceness: Both in wireless sensor networks and

mobile ad hoc networks, energy is a scarce resource. Wireless sensor networks have

a much higher requirements on the network lifetime since sensor nodes are simple

devices compared to the nodes in mobile ad hoc networks. Recharging and replacing

batteries of sensor nodes may not be feasible since sensors may be deployed in areas
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that are unreachable. For both types of networks memory is important for routing

protocols. However, it is not largely available for wireless sensor networks as it is

for mobile ad hoc networks. Hence, requiring scalable, resource-efficient solutions for

wireless sensor networks is necessary. [76]

Mobility: Nodes in mobile ad hoc networks are mobile unlike in wireless sensor

networks. Therefore, the network topology of mobile ad hoc networks may change

rapidly and unpredictably over time affecting communication between nodes in the

network. Wireless ad hoc networks are decentralized and all the network activity,

such as discovering the network topology and delivering messages, must be executed

by the nodes themselves. [76]

Communication in wireless ad hoc networks is affected by the network connec-

tivity. A connected network is determined by the transmission range, the network

density, and the physical location of each node. A wireless ad hoc network is connected

if there is a path between any two nodes either directly or through other intermediate

nodes. It is crucial for some applications that the network is not partitioned into

disjoint connected components. A connected network facilitates the development of

guidelines regarding the design and operation of wireless ad hoc networks, such as

communication protocols and methods for data gathering. Sensor nodes and mobile

nodes in wireless ad hoc networks may be constrained in processing ability, storage

capacity and energy for communication. Over time, the network may become discon-

nected due to mobility of nodes, battery failures of nodes, or even due to software

bugs. Hence, to communicate data within wireless ad hoc networks it is desirable to

use as less of the network resources as possible. [1, 76, 153]

Routing and flooding in wireless ad hoc networks are important communication

primitives. Flooding is the mechanism by which information needed by all nodes in

the network is received at each node. Uncontrolled flooding, without any limitation on

rebroadcasting at each node may result in an excess of redundancy, channel contention

and collision. This phenomenon is called the Broadcast Storm Problem [113]. Hence,

it is desirable to construct a flooding scheme with minimum overhead, bandwidth

consumption and small number of forwarding nodes. Thus, to address redundancy,

the decision whether to rebroadcast the message must be controlled at each node

when receiving the message. Since the topology of a mobile ad hoc network changes

frequently, communication in such networks is a challenging task.
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One way to do routing, multi-hop communication, is to select some wireless nodes

to form a virtual backbone of the network. Constructing virtual backbones reduces

the route searching space. Nodes that are not on the backbone and wish to send

a packet to another node in the network simply forward the packet to the nearest

backbone node. The backbone nodes then are responsible for delivering the packet

to the destination. Virtual backbones allow an increase in the number of nodes that

can be inactive while still preserving the ability of the network to forward messages

[11, 26, 42, 147, 150]. Hence, they play an important role in power management of

wireless sensor networks by preserving energy among nodes and as a result increasing

the network lifetime.

Efficient routing in wireless ad hoc networks can also be achieved through cluster-

based hierarchical structures. Clustering builds a hierarchy among nodes [3]. Sub-

structures collapsed in higher levels are called clusters. In each cluster at least one

node may represent the cluster, and is usually called a cluster-head. Each cluster-

head is responsible to maintain connectivity of all nodes within its cluster. Nodes

in a cluster are either directly connected to the cluster-head or within a few hops

of the cluster-head. Thus, different mechanisms can be used for intra-cluster rout-

ing (routing within a cluster) and inter-cluster routing (routing between clusters)

[69, 100]. Clusters themselves can be grouped into super-clusters to built an m-level

hierarchical clustering structure for m ≥ 1 [86].

In this thesis it is of our interest to design algorithms for data communication in

wireless sensor networks and in mobile ad hoc networks. In Sections 1.1 and 1.2 we

present the problems considered in WSNs and in MANETs respectively. Section 1.3

outlines the contributions of this thesis.

1.1 WSNs - Network Model and Definitions

One way to do multi-hop communication in wireless sensor networks is via a virtual

backbone or a cluster-based hierarchical structure, where designated sensors act as

backbone nodes or cluster-heads. One of the two problems in WSNs that we consider

in this thesis is to find a group of sensors to act as a backbone of the network or form

a clustering hierarchy. Further details regarding this problem are discussed in Section

1.1.1.
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In wireless sensor networks, some sensor nodes may be designated as sink nodes

to which other sensors send their data. That is, sinks act as data collection points in

wireless sensor networks. A wireless sensor network may have one or more sink nodes.

In general sinks do much more computation and manipulate the collected data (e.g.

aggregating similar data or filtering redundant information) and communicate it to a

central unit for processing. A network with only one sink is prone to failure. Hence,

we consider multiple sinks in wireless sensor networks. Thus, the second problem in

WSNs that we consider is to determine an upper bound on the number of sinks that

can be uniformly distributed in the network as data collection points to aggregate

and remove redundant data before sending it to a central unit for processing. Further

details regarding this problem are discussed in Section 1.1.2.

We represent a wireless sensor network by a graph G = (V,E), where V is the

vertex set consisting of sensor nodes and E is the edge set of communication links

between sensor nodes. Throughout this thesis, we also use the notation V (G) and

E(G) to denote the vertex set and the edge set of graph G respectively. We denote

an edge between two vertices u and v as (u, v). For any (u, v) ∈ E, we say u and v

are adjacent. The minimum number of transmissions required to send a message from

a sensor node u to a sensor node v is the distance from u to v, denoted d(u, v). To

address the two problems in WSNs mentioned above formally, we first present some

necessary definitions. All definitions are obtained from two books on domination in

graphs by Haynes, Hedetniemi and Slater [62, 63].

An undirected graph G on at least k + 1 vertices is k-vertex connected or k-

connected if every subgraph of G obtained by removing at most k − 1 vertices is

connected.

The open neighbourhood N(v) of the vertex v consists of the set of vertices adjacent

to v, that is, N(v) = {w ∈ V |(v, w) ∈ E}. The closed neighbourhood of v is the set

N [v] = N(v) ∪ {v}.
The open-k neighbourhood of a vertex v ∈ V , denoted Nk(v), is the set Nk(v) =

{u|u 6= v and d(u, v) ≤ k}. The set Nk[v] = Nk(v) ∪ {v} is called the closed k-

neighbourhood of v. Every vertex w ∈ Nk[v] is said to be k-adjacent to v.

A set S ⊆ V is a dominating set of G if every vertex u ∈ V \ S is adjacent to

a vertex v ∈ S. We say vertices of the dominating set S dominate the entire vertex
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set V , where each vertex u ∈ S dominates its closed neighbourhood. A minimum

dominating set of graph G is a dominating set of G such that its cardinality is the

smallest among all dominating sets ofG. A minimum dominating set is not necessarily

unique for a given graph. The minimum cardinality of a dominating set in G is called

the domination number of G, denoted γ(G). A connected dominating set (CDS) S

is a dominating set of G, whose induced subgraph is connected. There are different

variations of the dominating set, some of which we define here. For all these variations

we are interested in finding sets of minimum cardinality.

For a fixed positive integer k, a set S ⊆ V is a distance-k dominating set of G if

every vertex u ∈ V \S is within distance k of a vertex v ∈ S. The minimum cardinality

of a distance-k dominating set inG is the distance-k domination number ofG, denoted

γk(G). Note that a distance-1 dominating set is equivalent to a dominating set.

For a fixed positive integer r, a set S ⊆ V is a r-dominating set of G if every

vertex u ∈ V \ S has at least r adjacent vertices in S. The minimum cardinality of a

r-dominating set in G is the r-domination number of G, denoted γ(×r)(G). Note that

1-dominating set is equivalent to a dominating set.

A variation of the r-dominating set is the r-tuple dominating set. For a fixed

integer r, a set S ⊆ V is a r-tuple dominating set of G if for every vertex v ∈ V ,

|N [v] ∩ S| ≥ r. The minimum cardinality of a r-tuple dominating set in G is the

r-tuple domination number of G, denoted γ×r(G).

A set S ⊆ V is a total r-dominating set of G if for every vertex v ∈ V , |N(v)∩S| ≥
r. The minimum cardinality of a total r-dominating set in G is the total r-domination

number of G, denoted γt×r(G). Note that in a r-tuple dominating set, each vertex

dominates its closed neighbourhood, while in a total r-dominating set, each vertex

dominates its open neighbourhood. Note that a total 1-dominating set is a dominating

set. However, the inverse is not necessarily true.

A (k, r)-dominating set is a combination of two previously defined problems,

distance-k dominating set and r-dominating set for some positive integers k and r.

For fixed positive integers k and r, a set S ⊆ V is a (k, r)-dominating set of G if every

vertex v ∈ V \ S is within distance k of r vertices in S. The minimum cardinality of

a (k, r)-dominating set in G is the (k, r)-domination number of G, denoted γ(k,r)(G).

Note that when k and r are both 1, then (1, 1)-dominating set is simply a dominating

set.
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For fixed positive integers k and r, a set S ⊆ V is a total (k, r)-dominating set

of G if every vertex v ∈ V is within distance k of r vertices in S. The minimum

cardinality of a total (k, r)-dominating set in G is the total (k, r)-domination number

of G, denoted γt(k,r)(G).

A related concept to a dominating set is an independent set. A set S ⊆ V is an

independent set of G if for any pair of vertices u, v ∈ S, (u, v) /∈ E. A maximal

independent set of G is an independent set S ⊆ V such that S is not a subset of any

other independent set of G. A maximum independent set of G is an independent set

of G such that its cardinality is largest among all independent sets of G. Note that

a maximal independent set of graph G is also a dominating set of G.

A generalization of the independent set is the distance-k independent set. For a

positive integer k, a subset of vertices S ⊆ V of a graph G is called a distance-k

independent set if for any pair of vertices u, v ∈ S, d(u, v) ≥ k + 1. A set S is a

maximal distance-k independent set of G, denoted MISk, if S is not a subset of any

other distance-k independent set of G. Note that a maximal distance-k independent

set is also a distance-k dominating set. However, when considering a distance-k

dominating set, it is desirable to obtain a set of minimum cardinality, while when

considering a distance-k independent set it is desirable to obtain a set of maximum

cardinality. Hence, obtaining a maximal distance-k independent set of a graph G does

guarantee a distance-k dominating set of G, but it may not be the best approximation

for a distance-k dominating set in terms of its size.

1.1.1 Backbones and Clustering in WSNs

In the literature, connected dominating sets have been proposed to construct back-

bones in WSNs as well as maintaining cluster-based hierarchical structures, where

the cluster-heads are the nodes in the connected dominating set. Efficient routing is

achieved via the nodes on the connected dominating set, which are used to propa-

gate the message from a source node to a destination node. However, a connected

dominating set is often vulnerable due to frequent node and/or link failures, which

are inherent to wireless sensor networks. Thus, in case of node failures, the backbone

is disconnected and the network may cease to function properly. Also, in cluster-

based hierarchies, instead of having one cluster-head representing a group of nodes,

hierarchies could account for node failures by deploying multiple cluster-heads within
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each cluster. In such a case, nodes within the same cluster can have alternate access

points when accessing nodes outside their own cluster, and adjacent clusters could

be connected among each other through alternate paths. Thus, to construct a fault

tolerant virtual backbone and a clustering hierarchy that functions after the failure

of nodes and/or links is an important problem. At the same time, it is generally also

considered important to keep the size of the backbone as small as possible to reduce

energy consumption in the network. [126]

Instead of considering a connected dominating set for a backbone or a clustering

hierarchy in WSNs, we consider a 2-connected (k, r)-dominating set, denoted D(2,k,r).

By allowing for a distance-k dominating set, the distance parameter k allows increas-

ing local availability by reducing the distance to the dominators. On the other hand,

since every node not in the D(2,k,r) set is dominated by at least r dominators, we

improve the robustness and fault-tolerance of the backbone. Finally, a 2-connected

backbone is resilient to a single node or link failure. That is, if a node on the backbone

fails, the backbone is still connected.

A network where all nodes have the same transmission range, can be modelled

as a unit disk graph. A unit disk graph is a graph G, where there exists an edge

between two nodes if their Euclidean distance is less than or equal to one unit. The

complexity of 2-connected (k, r)-dominating set has not yet been studied. We propose

a centralized algorithm to construct a 2-connected (k, r)-dominating set in unit disk

graphs and in general graphs.

1.1.2 Multiple Sinks in WSNs

In sensor networks, communication is limited in energy and bandwidth and is non-

trivial in terms of routing. Each data transmission by a sensor node consumes energy.

In a sensor network with only one sink node, all sensors transmit their data to the

sink. Sensors that are not direct neighbours of the sink send their data through other

neighbouring nodes. Hence, energy is depleted at all of the intermediate nodes on the

path to the sink. Sensors that are direct neighbours of the sink deplete their energy

by forwarding data to the sink on behalf of other nodes. Thus, they are likely to run

out of energy sooner than other nodes. [1]

A network with only one sink is prone to failure. In case of sink failure, the

network ceases to function. To address the problem of sink failure, we consider
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multiple sinks in the network. However, sinks should not be clustered in one area

of the network. Therefore, we limit the distance each piece of data travels to get

to a sink, which results in significant savings in energy and hence, in an increase of

the network lifetime. Sinks may also die due to attacks. By sneakily dismantling a

few sinks, the functionality of the network is affected significantly. Since sinks are

important and critical objects in the network, they need to be monitored as well.

Therefore, this suggests the problem of finding a group of sinks such that every

node is within distance k of r sinks, which may allow the network to continue to

function even after some node or link failures. This problem is equivalent to finding

a total (k, r)-dominating set for a graph G = (V,E), where k and r are fixed positive

integers. To save energy and network resource one would like the number of sinks in

the network to be as small as possible and hence, deriving upper bounds on γt(k,r)(G)

is an important problem.

In WSNs there is no pre-configured network infrastructure or centralized control

and due to generally large number of sensors in such networks or unreachable terrain,

arranging sensors manually is unrealistic. Consequently, sensors may be arranged in

a stochastic manner. Hence, before the network is established, location of sensors

and information of their neighbours are unknown, which introduces uncertainty and

randomness into the network structure. Hence, the network can be modelled as a

random graph, G(n, p). A random graph G(n, p) consists of n vertices with each of

the potential
(
n
2

)
edges being inserted independently with probability p. Thus, it is

of interest to derive upper bounds on γt(k,r)(G(n, p)) in random graphs as well as on

γt(k,r)(G) in graphs with large girth.

1.2 MANETs - Network Model and Definitions

Communication in MANETs can be done through topology-based or position-based

protocols. Topology-based protocols use the information about the links that exist in

the network to perform packet forwarding. Position-based protocols eliminate some

of the limitations of the topology-based protocols by using additional information on

the position of nodes. Position-based protocols require that each node is aware of

its physical position. Nodes may also be aware of the positions of their neighbouring

nodes depending on the assumptions of the protocol used. Nodes can determine their
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positions via GPS or position service. At each node the decision to forward the packet

is then based on the position of the forwarding node’s neighbours and the information

contained in the packet header. [64, 101]

In this research, we consider a position-based algorithm to flood a message through-

out a MANET. Before defining our problem, we first distinguish between different

kinds of position-based protocols. Position-based flooding algorithms proposed in the

literature thus far can be classified into two categories: beacon-based and beacon-less

algorithms. [143]

Beacon-based Protocols

Beacon-based algorithms make use of neighborhood tables obtained by beacon mes-

sages. Beacon messages are periodically broadcast by each node to account for topol-

ogy changes in the network and/or node failures. That is, nodes in beacon-based

protocols use beacon messages to find the positions of neighbouring nodes and use

this location information if necessary. In such protocols data packets are forwarded

via unicast to one or several known neighbours. An important issue in beacon-based

algorithms is how to select a subset of neighbours of a forwarding node v, which

will continue flooding the message throughout the network. Two strategies are used:

sender-based and receiver-based [101]. In sender-based algorithms each forwarding

node nominates a subset of its neighbours to be the next hop forwarding nodes. In

receiver-based algorithms each node that receives a message makes its own decision

whether it should forward the message or not based on the local information available

to it. [101, 143]

Beacon-less Protocols

Beacon-less algorithms work without any beacon messages [64]. That is, there are

no periodic messages sent to account for topology changes. Nodes that receive a

data packet decide on their own whether they forward the data using geographical

constraints and contention timers without any additional communication with neigh-

bours. This is a preferable solution over beacon-based algorithms for several reasons:

(1) periodically sent beacon messages cause communication overhead and are subject
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to collision, (2) unicasts may fail and due to node movements, nodes may not be

reachable even though listed in neighbourhood tables. [143]

Nodes in a typical beacon-less protocol are not aware of the positions of their

neighbours and a forwarding node v does not decide the next set of forwarders as may

be done in beacon-based algorithms. The next set of forwarders in v’s neighbourhood

are decided locally by the neighbours of v themselves after receiving the packet. A

disadvantage of beacon-less algorithms is when each node receives a message there

is a delay before the message is rebroadcast due to contention timers. However, the

advantage is that the next hop is determined without any additional communication

via beacon messages. [64, 101, 143]

In this work, it is of our interest to efficiently flood a data packet throughout a

network, where nodes do not use any beacon message to obtain topological updates

of the network. We assume that each node in the network has the same transmission

range and two nodes can communicate with each other if they are within each others’

transmission range. Hence, the network can be represented as a unit disk graph. We

propose a Hexagonal Beacon-Less Flooding algorithm, HBLF, in networks modelled

as unit disk graphs, where each node dynamically determines whether to forward the

message or not. It is of interest to limit the number of forwarding nodes to preserve

the network resources, but at the same time it is desirable to have every node in the

network receive the message. We present theoretical analysis, where we show that

every node in the network receives the data packet as well as give lower and upper

bounds on the number of forwarding nodes and an upper bound on the broadcast

time of the algorithm.

1.3 Thesis Contributions and Outline

Chapter 2 presents a survey of several results in the literature concerning algorithmic

solutions to dominating sets and its variations, upper bounds on the domination

number and its variants, and flooding algorithms in MANETs.

In Chapter 3, we address the problem of finding a group of sensors in WSNs to act

as a virtual backbone or a clustering hierarchy. This problem is equivalent to finding

a 2-connected (k, r)-dominating set in graphs. We give two centralized algorithms to
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find a 2-connected (k, r)-dominating set in unit disk graphs and in general graphs.

We show that our algorithm in unit disk graphs returns a size of 2-connected (k, r)-

dominating set 2Dβ|OPT |, where D is the diameter of the graph, β is O(k) and OPT

is the optimum solution to the 2-connected (k, r)-dominating set. In general graphs

our proposed algorithm returns a solution of size 2D ln ∆k|OPT |, where ∆k is the

largest cardinality among all k-neighbourhoods in the graph.

Chapter 4 considers upper bounds on the minimum number of sinks necessary in a

wireless sensor network such that every sensor is within distance k of r sinks. This is

equivalent to giving upper bounds on the total (k, r)-domination number. Bounds on

the total (k, r)-domination number in graphs have not been studied in the literature.

Thus, we present an upper bound on γt(k,r)(G) in general graphs. We also give an

upper bound on γt(2,r)(G(n, p)) with p ≥ c
√

logn
n

with c > 1. This result is generalized

to obtain an upper bound on γt(k,r)(G(n, p)) with p ≥ k k

√
logn
nk−1 for k ≥ 3.

In Chapter 5, we propose a beacon-less flooding algorithm, HBLF, for MANETs.

We also present theoretical analysis of the algorithm. We give a sufficient condition

for HBLF to achieve full delivery even in the presence of holes in the network. Lower

and upper bounds are given on the number of forwarding nodes returned by HBLF

in a network with or without holes. When there are no holes in the network, we show

that the ratio of the shortest path returned by HBLF to the shortest path in the

network is constant. We also present upper bounds on the broadcast time of HBLF

in a network with or without holes. Chapter 5 concludes with briefly discussing how

HBLF may be used for routing purposes if the approximate area of a destination node

is known.

Finally, in Chapter 6, we conclude this thesis and discuss possible future work.
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Chapter 2

Related Work

In this chapter we present related work in the literature regarding algorithmic so-

lutions to domination problems and its variants, upper bounds on the domination

number and its variants (Section 2.1); and flooding algorithms in MANETs (Section

2.2).

2.1 Domination in Graphs

The study of dominating sets dates back to 1862 when de Jaenisch [73] studied the

problem of determining the minimum number of queens, which are necessary to cover

(or dominate) an n × n chess board. The mathematical study of dominating sets

began around 1960. The concept of the domination number of a graph was defined

by Berge in the book Theory of Graphs and its Applications, published in 1958, where

he called the domination number as the coefficient of external stability [8]. The terms

dominating set and domination number were used for the first time by Ore in the

book Theory of Graphs published in 1962 [115]. Cockayne and Hedetniemi in 1977

published a survey of known results about dominating sets in graphs [34]. The decision

problem for dominating sets can be stated as follows.

DOMINATING SET

INSTANCE: A graph G and a positive integer k

QUESTION: Does G have a dominating set of size less than or equal to k?

Garey and Johnson showed that DOMINATING SET is NP-complete for arbitrary
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graphs [54]. However, it is solvable in polynomial time in trees [33]. Garey and

Johnson also show that the connected dominating set is NP-complete [54]. Clark et

al. have shown that the dominating set and the connected dominating set are NP-

complete in unit disk graphs [32]. The research area of dominating sets has vastly

grown during the last few decades and several different variations of dominating

sets are being considered today. Giving upper bounds on the domination number

and developing heuristics that can give a bound on the size of dominating sets are

important problems. We will discuss some of this work regarding the algorithmic

problems of variations of dominating sets as well as upper bounds of domination

numbers in graphs.

2.1.1 Algorithms for Variations of Dominating Sets

There are many papers in the literature for finding (connected/total) dominating sets

in wireless sensor networks modelled as unit disk graphs as well as general graphs

[30, 39, 41, 48, 55, 80, 81, 96, 97, 107, 114, 116, 123, 136, 139].

The idea of dominating each vertex in a graph multiple times originated with

Fink and Jacobson [45]. It was shown by Jacobson and Peters that the problem of

finding a minimum r-dominating set is NP-hard [72]. A variation of r-dominating set

is the r-tuple dominating set, introduced by Harary and Haynes in [57], and the total

(open) r-dominating set defined by Kulli [91].

An incremental algorithm constructing an r-dominating set in unit disk graphs is

given in [36]. The algorithm iteratively constructs a monotone family of dominating

sets D1 ⊆ D2 ⊆ · · · ⊆ Dr such that each Di is an i-dominating set. For unit disk

graphs, the size of each of the resulting i-dominating sets is at most six times the

optimal solution.

Wang et al. gave centralized and distributed approximation algorithms to con-

struct a total r-dominating set in unit disk graphs [141]. The centralized algorithm is

an extension of the algorithm given by Marathe et al. in [107] for finding a total dom-

inating set. Both the centralized and distributed algorithms give a 10-approximation

for unit disk graphs.

Dai and Wu propose three localized algorithms to construct a r-connected r-

dominating set [40]. For two positive integers m and r, an m-connected r-dominating

set is a subset S ⊆ V such that every vertex u ∈ V \ S is adjacent to at least r
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vertices in S and the subgraph induced S is m-connected. The two of the algorithms,

r-gossip and colour based (r, r)-CDS, introduced by Dai and Wu are probabilistic.

In the r-gossip algorithm, each vertex decides to be in the dominating set with a

probability based on the network size, deploying area size, transmission range, and r.

In the colour-based (r, r)-CDS algorithm, each vertex randomly selects one of the r

colours such that the network is divided into r disjoint subsets based on the colours

of vertices. For each subset of vertices, a connected dominating set is constructed

and (r, r)-CDS is the union of the r connected dominating sets. The third algorithm,

r-coverage algorithm, is deterministic, which only works in very dense networks and

no upper bound on the size of the resulting dominating set is analyzed. Li et al.

further extend this work to construct m-connected r-dominating sets for general m

and r [98].

Wang et al. propose a centralized algorithm to construct a 2-connected dominating

set as a virtual backbone in wireless networks [140]. The algorithm first constructs a

connected dominating set and then computes all blocks and adds intermediate nodes

to make all the backbone nodes in the same block. Thai et al. study the m-connected

r-dominating set problem and propose two approximation algorithms for m-connected

r-dominating sets and r-connected r-dominating sets [130].

Shang et al. gave a centralized algorithm for finding a connected r-dominating set

in unit disk graphs [124]. They proved an approximation ratio of
(
5 + 5

r

)
for r ≤ 5

and a 7-approximation for r > 5. They also propose an algorithm to construct a

2-connected r-dominating set with an approximation ratio of
(
5 + 25

r

)
for 2 ≤ r ≤ 5

and an 11-approximation for r > 5. They present a third algorithm for m-connected

r-dominating sets. The algorithm first constructs a r-connected r-dominating set and

then for 3 ≤ r ≤ m sequentially constructs a maximal independent set to obtain an

m-connected set.

Wu et al. give a centralized algorithm that constructs anm-connected r-dominating

set [149]. In the first phase, a r-dominating set is constructed. In the second phase,

this set is augmented to obtain an m-connected r-dominating set by adding enough

number of connectors. Wu and Li further extend this algorithm to obtain an m-

connected r-dominating set [148]. The construction of their algorithm is similar to

that of Wu et al [149]. Li et al. propose centralized as well as distributed methods,

deterministic and probabilistic, to construct an m-connected r-dominating set for
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general m and r [98].

In wireless sensor networks distance-k dominating sets have been used to imple-

ment cluster-based hierarchical structures to achieve efficient routing. The network

is divided into several clusters, where each cluster contains a cluster-head responsible

for maintaining the routing information. The distance-k dominating set, sometimes

referred to as k-dominating set or a k-hop dominating set, was first introduced by

Henning [65]. Distance-k dominating set and connected distance-k dominating set

are proved in [4] and [111] to be NP-complete in unit disk graphs. Gao et al. give an

approximation algorithm that computes a connected distance-k dominating set with

size at most O(k3) [53].

Li and Zhang give two algorithms for minimum 2-connected distance-k dominating

sets [95]. The first algorithm is based on a greedy heuristic in general graphs and uses

the concept of ear decomposition of 2-connected graphs [95]. Given a graph G, let S

be a subgraph of G. An ear of S in G is a non-trivial path in G whose ends lie in

S, but the internal vertices do not. The second algorithm is only applicable to unit

disk graphs. The algorithm first constructs a distance-k maximal independent set,

MISk, and by iteratively adding vertices on the shortest path between the vertices

in the MISk obtains a connected distance-k dominating set denoted D. In the next

step, to make D 2-connected, the authors use the notion of blocks of a graph. A block

of a graph G is a maximal connected subgraph B of G such that B \ u is connected

for any u ∈ V (B). A cut-vertex of a connected graph G is a vertex u such that the

graph G\u is disconnected. A leaf-block of G is a block of G which contains only one

cut-vertex of G. Thus, in the last step of the algorithm to make D a 2-connected set,

the block structure of D is computed. For every block of D the algorithm iteratively

finds a path P of G, which connects a leaf block of D to another part of D. Vertices of

P are added to D to obtain a 2-connected set. The approximation ratio obtained for

this algorithm is (2k+2β+1)(k+1)|OPT |−2(k+β)(k+1)−k, where β is O(k) and

|OPT | is the optimal solution to the 2-connected distance-k dominating set in unit

disk graphs. Chan et al. extend this result to a distributed scenario in [23]. Other

work in the literature for distance-k dominating sets applicable for wireless networks

can be found in [28, 29, 52, 112].
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A combination of distance and multiple domination gives rise to the (k, r)-domina-

ting set problem. (k, r)-domination was first introduced by Joshi et al. as r-neighbour

k-domination and proved it to be NP-complete on interval graphs [74, 75]. (k, r)-

dominating sets also have been used for clustering techniques in wireless sensor net-

works. Spohn et al. construct a (k, r)-dominating set to address redundancy for

bounded distance clusters in wireless networks [126]. They present centralized and

distributed algorithms for arbitrary network topologies. The centralized algorithm is

a greedy based approximation algorithm. The algorithm iteratively chooses a vertex

u to be part of the (k, r)-dominating set that has the largest number of dominators

needed to dominate Nk(u). They give a r ln ∆-approximation ratio, where ∆ is the

largest cardinality among all distance-k neighbourhoods in the network.

Li et al. proposed two centralized approximation algorithms for minimum con-

nected (k, r)-dominating set in unit disk graphs [93]. The first algorithm is in unit

disk graphs, which yields an approximation ratio of (2k + 1)3 if r ≤ (2k + 1)3 and

(2k+ 1)((2k+ 1)2 + 1) for r > (2k+ 1)2. Zhang et al. further improve this result and

give an approximation algorithm with a performance ratio of (k + 1)β − k if r ≤ β

and (k + 1)(β + 1) − k if r > β, where β is at most O(k) instead of O(k2) in the

results of Li et al. [156]. The second algorithm by Li et al. is an extension of the

centralized algorithm presented in [126]. In the first step, the algorithm constructs

a (k, r)-dominating set S as in [126] and in the second step S is made connected

by adding extra vertices on the shortest path between the vertices in S. Li et al.

showed that in the first step of the algorithm, the approximation ratio in [126] can be

improved to ln ∆ instead of r ln ∆, where ∆ is the cardinality among all distance-k

neighbourhoods in the network. Li et al. further show that their algorithm has an

approximation ratio of (2k + 1) ln ∆ for any undirected graph.

2.1.2 Upper Bounds on γt(k,r)

In the literature, there are extensive number of works regarding bounds on the dom-

ination number and its variants in graphs. We present some the fundamental results

here. We first present the upper bounds on the domination number and its variants

in general graphs, then we present the known results in random graphs.

Given a graph G = (V,E), let n = |V |, δ denote the minimum degree of G and

let ∆ denote the maximum degree of G.
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Several upper bounds on the domination number in general graphs can be found

in [9, 47, 117]. A fundamental result on the upper bound of the domination number

was proved by many authors.

Theorem 2.1.1. ([5, 2, 106, 117]) For any graph G of minimum degree δ, γ(G) ≤
ln(δ+1)+1

δ+1
n.

This is an excellent upper bound when δ is large enough. For small values of δ better

results can be found in [108, 115, 122].

Distance domination has been studied extensively by several authors [66, 94, 131,

56, 120, 132]. Meir and Moon gave an upper bound on γk(G).

Theorem 2.1.2. ([109]) For any connected graph G of order n with n ≥ k + 1,

γk(G) ≤
⌊

n
k+1

⌋
.

Sridharan et al. considered the special case of k = 2, independently, and obtained

γ2(G) ≤
⌊n

3

⌋
for n ≥ 3 [127]. Tian and Xu show that for a connected graph G

γk(G) ≤ n
ln[m(δ + 1) + 2− t]
m(δ + 1) + 2− t , where m =

⌈
k
3

⌉
and t = 3

⌈
k
3

⌉
− k [132]. Liu et

al. in [104], give an upper bound on the 2-connected distance-k domination number,

denoted γ2
k(G).

Theorem 2.1.3. ([104]) Let G be a 2-connected graph with order n and minimum

degree δ. Then γ2
k(G) ≤ (1 + oδ(1))n ln[m(δ+1)+1−t]

m(δ+1)+1−t , where m =
⌈
k
3

⌉
, t = 3

⌈
k
3

⌉
− k and

oδ(1) denotes a function in δ that tends to 0 as δ tends to ∞.

The first upper bound for r-domination number is due to Cockayne et al. in [35],

where they prove that with δ ≥ r, γ(r)(G) ≤ r
r+1

n. This bound has been further

improved in [18, 19]. The results in [19] improve the bound in [35] for larger values

of δ, that is for δ > er
2
. Rautenbach and Volkmann extended the result in [19] for

smaller values of δ in [121].

Theorem 2.1.4. ([121]) In a graph G of order n, where δ ≥ 2r ln(δ + 1) − 1,

then γ(r)(G) ≤ n
δ+1

(
r ln(δ + 1) +

∑r−1
i=1

1
i!(δ+1)r−1−i

)
and γ×r(G) ≤ n

δ+1
(r ln(δ + 1)+∑r−1

i=1
r−i

i!(δ+1)r−1−i

)
.
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In [51] Gagarin and Zverovich presented a generalized upper bound for the r-tuple

domination number. Chang [24] further improved their result for any positive in-

teger r and for any graph of n vertices with minimum degree δ, where γ×r(G) ≤
ln(δ − r + 2) + ln d̃r−1 + 1

δ − r + 2
n, where d̃m =

1

n

n∑
i=1

(
di + 1

m

)
with di being the degree of

the ith vertex of G.

Caro and Yuster in [19] show that for δ > er
2
, γt×r(G) ≤ ln δ

δ
n(1 +oδ(1)). For large

values of δ, this result implies an upper bound on the r-tuple and total r-domination

numbers [19].

Theorem 2.1.5. ([19]) In a graph G of order n and minimum degree δ, if δ > er
2

and r ∈ N, then γ×r(G) ≤ γt×r(G) < ln δ+
√

ln δ+2
δ

n.

Zhao et al. [157] study the total r-domination number in graphs, where they give an

upper bound for γt×r.

Theorem 2.1.6. ([157]) In a graph G of order n and minimum degree δ ≥ r, where

r ∈ N, if δ
ln δ
≥ 2r, then γt×r(G) ≤ n

δ

(
r ln δ +

∑r−1
i=0

r−i
i!δr−1−i

)
.

There are some research in the literature that study upper bounds for the com-

bination of distance and multiple domination. In [6] Bean et al. posed the following

conjecture.

Conjecture 2.1.1. ([6]) Let G be a graph of order n and let δk denote the smallest

cardinality among all k-neighbourhoods of G, where δk ≥ k+ r− 1. Then for positive

integers k and r γ(k,r)(G) ≤ r
r+k

n.

Fischermann and Volkmann confirmed that the conjecture is valid for all integers k

and r, where r is a multiple of k [46]. In [87] Korneffel et al. show that γ2,2(G) ≤
n(G)+1

2
.

During the last decade, bounds on the domination number and its variants have

started to be studied in random graphs. Recall that a random graph G(n, p) consists

of n vertices with each of the potential
(
n
2

)
edges being inserted independently with

probability p. We say p is non-fixed if p is a function of n. Otherwise, we say p is fixed.

We say that an event holds asymptotically almost surely (a.a.s) if the probability that

it holds tends to 1 as n tends to infinity.
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Dreyer [43] in his dissertation studied the question of domination in random

graphs. Wieland and Godbole proved that γ(G(n, p)) has a two point concentra-

tion [142].

Theorem 2.1.7. ([142]) For p ∈ (0, 1) fixed, a.a.s γ(G(n, p)) equals

bLn− L ((Ln)(log n))c+ 1 or bLn− L ((Ln)(log n))c+ 2, where Ln = log1/(1−p) n.

Wang and Xiang [137] extend this result for 2-tuple domination number of G(n, p).

Theorem 2.1.8. ([137]) For p ∈ (0, 1) fixed, a.a.s γ×2(G(n, p)) equals⌊
Ln− L(log n) + L

(
p

1−p

)⌋
+ 1 or

⌊
Ln− L(log n) + L

(
p

1−p

)⌋
+ 2, where

Ln = log1/(1−p) n.

Bonato and Wang [13] study the total domination number and the independent

domination number in random graphs. For a graph G = (V,E), a set S ⊆ V is an

independent dominating set of G if S is both an independent set and a dominating

set of G. The independent domination number of G, denoted γi(G), is the minimum

order of an independent dominating set of G.

Theorem 2.1.9. ([13]) For p ∈ (0, 1) fixed, a.a.s γt(G(n, p)) equals

bLn− L((Ln)(log n))c+ 1 or bLn− L((Ln)(log n))c+ 2, where Ln = log1/(1−p) n.

Theorem 2.1.10. ([13]) For p ∈ (0, 1) fixed, a.a.s bLn− L((Ln)(log n))c + 1 ≤
γi(G(n, p)) ≤ bLnc, where Ln = log1/(1−p) n.

Wang further studied the independent domination number of random graphs [138].

Theorem 2.1.11. ([138]) Let p ∈ (0, 1) and ε ∈
(
0, 1

2

)
be two real numbers. Let

k = k(p, ε) ≥ 1 be the smallest integer satisfying (1−p)k < 1
2
−ε. A.a.s. γ(G(n, p)) ≤

γi(G(n, p)) ≤ bLn− L((Ln)(log n))c+ k + 1, where Ln = log1/(1−p) n.

If p > 1
2
, then for ε ∈

(
0, p− 1

2

)
⊂
(
0, 1

2

)
, by Theorems 2.1.7 and 2.1.11, the following

concentration result follows.

Corollary 2.1.1. ([138]) For p ∈
(

1
2
, 1
)

fixed, a.a.s. γ(G(n, p)) ≤ γi(G(n, p)) ≤
bLn− L((Ln)(log n))c+ 2, where Ln = log1/(1−p) n.

To the best of our knowledge, there are no works in the literature that study the

upper bounds on the total (k, r)-domination number in general graphs or in random

graphs.
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2.2 Flooding in MANETs

In this section we present some of the work in the literature regarding efficient flood-

ing problems in MANETs. One simple solution to sending a message throughout a

network and ensuring full coverage of the network is blind flooding, where each node

forwards the message when it receives the message for the first time [67]. To alleviate

inefficiencies of blind flooding other methods have been suggested in the literature.

We present some of these algorithms here. Section 2.2.1 presents beacon-based

flooding algorithms in the literature, which assume that each node keeps location in-

formation of its 1-hop or 2-hop neighbours. Section 2.2.2 presents beacon-less flooding

algorithms in the literature and Section 2.2.3 presents beacon-less routing algorithms

in the literature.

2.2.1 Beacon-based Flooding Algorithms

In beacon-based algorithms each node keeps 1-hop or 2-hop information by exchanging

HELLO messages. A major issue in such algorithms presented in the literature is the

selection of subset of neighbours for forwarding the message.

Lim and Kim introduce two flooding algorithms in wireless ad hoc networks to

reduce redundant transmissions [99]. They first introduce the optimal flooding tree

problem in wireless ad-hoc networks. A flooding tree is a tree that covers all nodes

in a graph. An optimal flooding tree is a flooding tree with minimum cost, where

the cost of a flooding tree in a wireless ad hoc network is defined as the number of

broadcasts to deliver a packet to all nodes. They show that the optimal flooding tree is

similar to a minimum connected dominating set and prove its NP-completeness. Since

finding an optimal flooding tree is difficult, Lim and Kim give two heuristics, self-

pruning and dominant pruning, that obtain a flooding tree to flood a given network.

Both methods reduce redundant broadcasts by using the neighbourhood information

exchanged between mobile nodes. We give brief overview of both algorithms.

Self-pruning is a receiver-based algorithm that uses direct neighbourhood infor-

mation where each node exchanges HELLO messages to obtain a list of its adjacent

neighbours. The algorithm operates as follows. A node v that wishes to send a packet,

attaches the list of nodes in N(v) in the header of the packet and broadcasts it. A

node u that receives the packet from v checks if N(u)−N(v)− {v} is empty. If so,
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then u knows that all of its neighbours received the packet from v and thus, it stays

silent. Otherwise, it forwards the packet, after attaching to its header N(u).

Self-pruning uses only 1-hop neighbourhood information, while dominant-pruning

uses 2-hop neighbourhood information, which can be obtained by exchanging the

list of adjacent nodes with neighbours. Another difference is that dominant-pruning

is a sender-based algorithm. That is, a forwarding node v decides the next set of

forwarders from N(v). The forwarding set chosen by a forwarding node v is as follows.

Let v be a forwarding node that has received the packet from a node w. Node

v must decide on a forwarding list so that all nodes within 2-hops of v receive the

packet, i.e. all nodes in N2(v)−N(w)−N(v) must receive the packet. In the algorithm

proposed, Lim and Kim repeatedly select a vertex u ∈ N(v), where the number of

neighbouring nodes of u not covered yet is maximum. Their simulation results show

that dominant pruning performs better than self-pruning due to extra neighbourhood

knowledge.

A noteworthy result in the literature is the flooding algorithm proposed by Liu

et al. [101]. Their algorithm requires each node to keep 1-hop neighbour informa-

tion. They prove that their flooding scheme achieves full delivery as well as local

optimality in terms of number of forwarding nodes. The network is assumed to be

connected and modelled as a unit disk graph, where each node is assigned a distinct

ID. Neighbourhood information is obtained via HELLO beacon messages periodically

broadcast by each node.

The idea of the algorithm is as follows. Each time a node forwards a packet, it

attaches to the header of the packet the list of the next forwarding nodes. A node

upon receiving a packet, discards the packet if it has received it before. Otherwise, if

it is in the list of forwarders it will compute the next set of forwarders and forward

the packet. The set of next forwarding nodes of a node v is chosen from N(v) so that

N2(v) is completely covered. Liu et al. present an algorithm with time complexity

of O(n log n) to find such a set, where n is the number of neighbours of a forwarding

node v [101]. The idea of the algorithm is as follows. For each forwarding node

v, initially each node in N(v) is arbitrarily paired together to merge their coverage

boundaries. Then the merged pair’s boundary is further merged with another pair’s

boundary. This merge operation is repeated until eventually there is only one big

merged boundary, which covers all nodes in N2(v). Note that, during the merging
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process boundaries of nodes that do not contribute additional coverage of nodes in

N2(v), are not considered in the forwarding set.

An improvement on the algorithm by Liu et al. was proposed by Khabbazian

et al. in networks modelled as unit disk graphs [84]. Khabbazian et al. propose a

sender-based algorithm and a receiver-based algorithm, where they assume knowledge

of 1-hop neighbourhood via HELLO messages periodically broadcast by each node.

Both algorithms guarantee full delivery of the message. Simulation results show that

both algorithms perform better than the algorithm proposed by Liu et al. in [101].

The sender-based algorithm even computes the next set of forwarders in O(n) time,

where n is the number of neighbours of a forwarding node v. This lowering of the time

complexity to O(n) compared to the O(n log n) proposed by Liu et al. is achieved at

the cost of an increased end-to-end delay.

Yang et al. introduce a hybrid 1-hop neighbour information based flooding algo-

rithm [151]. To integrate together the advantages of sender-based and receiver-based

algorithms, their proposed algorithm consists of two phases: the sender-phase and

the receiver-phase.

The sender-phase scheme allows a node to select a subset of its 1-hop neighbours

to forward the flooding message. Given two adjacent nodes v and s, the extended

broadcasting area of v with respect to s, denoted EBAs(v), is defined as part of v’s

coverage area not covered by s. Clearly, the size of EBAs(v) is proportional to the

distance between v and s. If s is a forwarding node and selects v as part of the next

set of forwarding nodes, then each node in EBAs(v) receives a new message, while

the overlapping area between v and s receive a redundant message. Thus, to decrease

the number of repeated receptions Yang et al. propose that each forwarding node

s compute a convex-hull to find the smallest convex polygon containing all nodes in

N(s) and select this list of convex-hull nodes as the next set of forwarding nodes.

Yang et al. use Chan’s algorithm in [22] to compute a convex-hull in O(n log h) time,

where n is the number of nodes in the network and h is the number of forwarding

nodes (which is significantly lower than n in most cases).

The receiver-based scheme operates as follows. A node v that receives a packet

from a node s, checks if it is in the set of forwarding nodes in the header of the

packet. If so, then it forwards the packet. Otherwise, it checks if EBAs(v) is not

23



completely covered by the forwarding nodes in the header of the packet and v has a

2-hop neighbour only covered by v, then v will forward the packet. Yang et al. show

that the complexity of this procedure is at most O(n). Through extensive simulations

they show that their algorithm performs better than that of Liu et al. in [101] and

the two algorithms of Khabbazian et al. in [84].

Another algorithm to note is proposed by Liu et al. in [103]. Their algorithm as-

sumes knowledge of 1-hop neighbourhood and is called vertex forwarding. It operates

as if there existed a hexagonal grid in the field of the network to guide the flooding

procedure. The vertices in the hexagonal grid are the centres of each hexagon and

the radius of each hexagon is equivalent to the transmission range of each node. A

forwarding node v chooses the next set of forwarding nodes based on the location

of its neighbours with respect to the vertices of the hexagonal grid. Nodes located

nearest to the vertices of the hexagonal grid are chosen to be in the forwarding set to

continue forwarding the message throughout the network.

There are several other algorithms in the literature that assume knowledge of 1-

hop or 2-hop neighbourhood that are proposed in [17, 25, 38, 79, 85, 92, 105, 118,

125, 128, 144, 145, 146, 152, 154]. Hereafter, we present some of the beacon-less

algorithms in the literature.

2.2.2 Beacon-less Flooding Algorithms

Tseng et al. propose probabilistic based schemes to reduce number of rebroadcasts

[113, 133]. They propose four schemes: probabilistic, counter-based, distance-based,

and location-based schemes. These four schemes differ in how a node estimates re-

dundancy and how it accumulates knowledge to assist in making its decision. All

schemes operate in a fully distributed manner. We present an overview of all the

schemes in [133].

The probabilistic scheme operates as follows. A node that receives a message for

the first time will rebroadcast it with probability P . Clearly, when P = 1, this scheme

is equivalent to pure flooding. To differentiate the timing of rebroadcasting between

nodes, a small random delay is added.

The counter-based scheme takes into account that a given node may repeatedly
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hear the same message multiple times before it starts transmitting the message. The

idea of the counter-based scheme is that when a node v hears the same message

multiple times, the expected additional area covered by v is reduced. Thus, a counter

c is used to keep track of the number of times a node v receives the same message.

A counter threshold C is chosen. Whenever c ≥ C, the rebroadcast at v is inhibited.

The distance-based scheme makes use of the Euclidean distance between nodes

to decide whether to drop a rebroadcast or not. Suppose a node v has heard the

message from a node s. If the Euclidean distance between v and s is very small, then

the additional area covered by v in the case of rebroadcasting the message is very

little. Thus, a distance threshold D is chosen. If the distance between v and s is less

than D, then the rebroadcast transmission of v is cancelled. Otherwise, v transmits

the message.

Both the counter-based and distance-based schemes have no need of GPS since

estimation of distances can be extracted from signal strength. The location-based

scheme, however, assumes each node is aware of its exact geographical location. When

a node rebroadcasts a packet it adds its own location in the header of the packet. If

the receiving node based on location information covers an additional area greater

than a given threshold, then it rebroadcasts the message.

Simulation results show that a simple counter-based scheme can eliminate many

redundant rebroadcasts in dense neighbourhoods. The distance-based scheme has

higher reachability, but among all location-based scheme performs best in sparse as

well as dense neighbourhoods of a node.

These probabilistic schemes were further investigated in [67]. The results showed

that in these schemes, a non-redundant transmission might be dropped out without

being forwarded further. Thus, some nodes in the network may not receive the

message. A critical question in these schemes is how to set the right threshold value

in various network situations. To alleviate these concerns to some degree various other

probabilistic schemes have been introduced in the literature that we briefly discuss

below.

Cartigny et al. proposed an adaptive probabilistic scheme [20]. Each node deter-

mines to rebroadcast a packet with probability p and a fixed value k, where k is the

efficiency parameter to achieve the reachability of the broadcast. The value of p is

based on the local node density. However, a critical question in this work is how to
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optimally select k, since k is independent of the network topology.

Zhang et al. describe a dynamic probabilistic broadcast scheme, which is a com-

bination of the probabilistic and counter based approaches [155]. The probability

value of p for each node v is dynamically adjusted according to the number of times

v has received the packet. Thus, in case of node movements the value of p changes.

To control the effect of the packet counter at each node as a density estimate, two

constants d and d1 are used to increment and decrement the rebroadcast probability.

However, a question in this work is how to determine optimal values of d and d1.

Pleisch et al. propose an algorithm in [119] to address the problem of nodes

failing to receive the message due to dropped packets in the probabilistic scheme.

The algorithm they propose starts with the probabilistic scheme but compensates

for dropped data packets by periodically broadcasting compensation packets. Every

compensation packet encodes a set of packets that have been dropped by the sender.

Thus, each node that does not rebroadcast a packet, adds the packet to the current

compensation packet. When the number of packets in a compensation packet reaches

a certain threshold, the compensation packet is broadcast. Simulation results show

that their algorithm improves the node coverage by 20% than the pure probabilistic

scheme.

Tseng et al. propose adaptive counter-based scheme and an adaptive location-based

scheme in [134] to address the problem of constant threshold in the counter-based and

location-based schemes. They extend the fixed threshold value C to a function C(n),

where n is the number of neighbours of a potentially forwarding node. However, they

do not discuss how to determine the value of n.

Mohammed et al. in [110] propose an efficient counter-based scheme (ECS) that

allows nodes to make localized rebroadcast decisions on whether or not to rebroadcast

a message based on both a counter threshold and a forwarding probability value. A

node v that receives a message for the first time initiates a counter c, which will

record how many times v will receive the same message. After waiting for a random

assessment delay, if c is greater than a defined threshold value, then v stays silent.

Otherwise, v rebroadcasts the message with probability p. The simulation results

show that an optimal value of p is 0.65. The simulations also show that ECS performs

better in sparse and dense networks than the counter-based scheme, however, it still

does not achieve full delivery of the message.
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In contrast to a counter-based scheme, a colour-based scheme is introduced in

[83]. The colour-based scheme uses η colours denoted C1, C2, · · · , Cη. Each node that

broadcasts the message select a colour which it writes to a colour field present in

the broadcast message. A node v that receives a message will start a random timer,

upon the expiration of which it will rebroadcast the message unless it has heard all η

colours. Simulation results show that the color-based scheme and the counter-based

scheme in general return similar results in terms of reachability. The color-based

scheme outperforms the counter-based scheme for threshold value 2 ≤ η ≤ 3.

Liu proposed distributed intelligent broadcasting protocol (DIBP) in [102]. Their

algorithm is an extension of the counter-based scheme, where each node maintains an

additional timer, called an aging timer. The purpose of the aging timer is to control

the lifetime of the built broadcast topology. The initial aging timer is set by the

originating node, denoted s, and is attached to the broadcast message. A forwarding

node v updates the aging timer by reducing its value by the round-trip propagation

time between node v and the node from which v has received the message. This new

timer value is attached to the message and v forwards the message. Once, the aging

timer times out, the built broadcast topology is terminated. However, a question not

discussed in the paper, is how to initially determine the value of the aging timer.

2.2.3 Beacon-less Routing Algorithms

In this section we present an overview of some of the beacon-less routing algorithms

in the literature. Noteworthy beacon-less routing algorithms in the literature are

the Beacon-Less Routing Protocol (BLR) [64] and Blind Geographic Routing (BGR)

[143]. We present an overview of them here.

The Beacon-Less routing Protocol (BLR) in [64] makes the following assumptions.

Each node has a maximum transmission range r and hence, the wireless network is

modelled as a unit disk graph. Each node is aware of their own position by means of

GPS and the source node knows the ID and position of the destination node.

The BLR Protocol operates in the following manner. The source node before

broadcasting the packet stores the position of the destination node, its own current

position, and the forwarding area defined by geometric constraints in the header of

the packet. As each node decides to forward the packet, it replaces the previous
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node’s current position with its own before broadcasting it. A node v that receives a

packet from a node u, based on the information in the header of the packet can derive

if it is in u’s forwarding area. If v is outside of u’s forwarding area, then it drops

the packet. Otherwise, v computes a Dynamic Forwarding Delay (DFD) based on its

position relative to the position of u and the destination node. Thus, if v is located

at the position closest to the destination, it will compute the shortest DFD and as

a result will transmit the packet first. All other nodes in u’s forwarding area will

drop the packet upon hearing this transmission. Note that the forwarding area can

be of any shape provided that all nodes in the forwarding area are within each others’

transmission range. Thus, BLR takes care that only one node in the forwarding area

will forward the packet. Node u also hears the transmission from v and concludes

that the packet was received successfully and thus, acknowledgements can be avoided.

The algorithm continues until the destination receives the packet. The destination

node is the only node that sends an acknowledgement since it does not continue to

forward the packet.

Witt and Turau introduce a beacon-less routing algorithm called Blind Geographic

Routing (BGR) [143]. BGR is designed to support different delivery semantics. In the

literature geographic routing algorithms assume that the location of the destination

is known to the sender. This is the case if data packets are only routed to pre-defined

locations. However, in some ad hoc networks it may be necessary to send packets to

arbitrary locations. Thus, it is desired that the network protocol supports destination

locations without the exact location information of the nodes in the vicinity of the

network. A node that receives the message near the destination location has to decide

if it is a suitable destination for that message.

Much like the Beacon-Less Routing Protocol described previously the forwarding

node decides on a forwarding area and broadcasts the message. The width of the

forwarding area is chosen such that nodes within the forwarding area can mutually

communicate with each other. BGR does not assume a constant transmission range

for all nodes. However, it uses a parameter r, the estimation of the transmission

range, which is needed for constructing the forwarding areas. An accurate estimation

of r results in a better performance of the algorithm.

The algorithm is as follows. The source node S stores the position of the des-

tination and a unique packet ID in the packet header. The packet ID consists of
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the source node’s destination and a time stamp. A forwarding node broadcasts the

packet using a sector as the forwarding area. If nodes outside of the forwarding area

hear the broadcast, they ignore it. If the sector is empty no node will respond. After

the recovery timer of the forwarding node expires, the node will turn the forwarding

area by 60 ◦ to the right or left randomly and broadcast the message again. Nodes in

the forwarding area that receive the message will start a contention timer based on

their distance to the destination. The node whose contention timer expires first will

forward the message. Other nodes that hear the message will cancel their respective

timers. Once nodes in the destination area receive the message they start destination

timers. The timer of the nodes closest to the destination will expire first, it will

broadcast a CANCEL packet and start a new, very short destination timer. Nodes

that receive a CANCEL packet, cancel their timers and the algorithm is completed.

Among other several beacon-less geographic routing algorithms are Contention-

Based Forwarding (CBF) [50], State-free Implicit Forwarding (SIF) [27], Geographic

Random Forwarding (GeRaF) [158] and an enhanced version of GeRaF, ALBA-R [21].

All theses algorithms use different forwarding areas, timer functions, and recovery

strategies. These protocols have some drawbacks. For example, CBF, SIF and GeRaF

require a very high network density. They also produce additional communication

overhead for selecting neighbours.

There are many other beacon-based routing protocols proposed in the current

literature. Some of these results can be found in [14, 15, 16, 44, 49, 71, 77, 78, 88,

89, 90, 129].
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Chapter 3

Algorithms for 2-connected

(k, r)-dominating sets

In this chapter we consider the algorithmic problem of finding a 2-connected (k, r)-

dominating set in graphs. Recall that given an undirected graph G = (V,E), a

2-connected (k, r)-dominating set, denoted D(2,k,r), is a subset S ⊆ V such that every

vertex u ∈ V \S is within distance k of r vertices of S and the subgraph induced by S

is 2-connected. Dominating sets are applicable in wireless sensor networks as virtual

backbones or as cluster-based hierarchical structures to achieve efficient routing. In

a 2-connected (k, r)-dominating set the distance parameter k allows local availability

to dominators, every node not in the D(2,k,r) is dominated by at least r dominators

improving the robustness and fault-tolerance of the D(2,k,r) set, and a 2-connected

backbone is resilient to a single node or link failure in the network.

The complexity to find a D(2,k,r) in unit disk graphs as well as in general graphs is

unknown. Hence, we propose two centralized approximation algorithms to construct

a D(2,k,r). The first algorithm is considered in unit disk graphs, presented in Section

3.1. The second algorithm is considered in general graphs, presented in Section 3.2.

For both algorithms we assume that for a given graph G for which we compute a

D(2,k,r), G is 2-vertex connected and every vertex has at least r k-adjacent vertices.

That is, a D(2,k,r) exists in G.

30



3.1 D(2,k,r) in Unit Disk Graphs

In this section we present our algorithm in Algorithm 2 to construct a 2-connected

(k, r)-dominating set in unit disk graphs. We also present theoretic analysis of our

algorithm. We give an approximation ratio of Algorithm 2 with respect to the optimal

solution and show that if in a graph G a 2-connected (k, r)-dominating set exists, then

Algorithm 2 returns such a set.

Algorithm 2 that constructs a D(2,k,r) in unit disk graphs first constructs a (k, r)-

dominating set S, after which S is made into a 2-connected (k, r)-dominating set.

The construction of a (k, r)-dominating set in Algorithm 2 is dependent on the con-

struction of a distance-k maximal independent set, denoted MISk. The construction

of an MISk is given in Algorithm 1 [156]. For every vertex v ∈ V that is added to

S0, all vertices u ∈ Nk[v] are not in S0 (Algorithm 1, Steps 3− 5). This process is re-

peated until for every vertex w1 /∈ S0 there is a vertex w2 ∈ S0 such that w1 ∈ Nk[w2].

Hence, the returned set S0 by Algorithm 1 is an MISk.

Algorithm 1 Maximal Distance-k Independent Set

Input: G = (V,E), k ≥ 1.
Output: A maximal distance-k independent set S0.

1: S0 = ∅, D = V .
2: Choose an arbitrary vertex v ∈ D.
3: Add v to S0 (i.e. S0 = S0 ∪ {v}).
4: Delete v and Nk(v) from D (i.e. D = D \Nk[v]).
5: while D 6= ∅ do
6: Choose the next vertex v ∈ D.
7: Add v to S0 (i.e. S0 = S0 ∪ {v}).
8: Delete v and Nk(v) from D (i.e. D = D \Nk[v]).
9: end while

In Algorithm 2, in round i = 1 an MISk set I1 for graph G is constructed (Step

3). In the next round i = 2, another MISk set I2 of G is constructed that does not

use any of the same vertices in I1 (Steps 2 -5). The sets I1 and I2 are disjoint MISk

sets for G. Since a maximal distance-k independent set is a distance-k dominating

set, this process is repeated r times to obtain a D(0,k,r) set S = I1∪ I2∪· · ·∪ Ir (Steps

2-6). Note that each vertex v /∈ S in each round i, where 1 ≤ i ≤ r, is dominated

by a vertex u ∈ Ii. Hence, each v /∈ S is dominated by r vertices in S. Each vertex
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v ∈ S, where v ∈ Ij for 1 ≤ j ≤ r, in each round i 6= j, for 1 ≤ i ≤ r, is dominated by

a vertex u ∈ Ii. Hence, each v ∈ S is dominated by r − 1 vertices in S and satisfies

r-tuple domination.

Once a D(0,k,r) set S is obtained, vertices are added to S such that the result is

a 2-connected set. The general idea is as follows. We enumerate all vertices in S

by v1, v2, · · · , vl and find two vertex disjoint paths from vi to vi+1. A disjoint path

can be found between two vertices by the O(n2) time algorithm for the disjoint path

problem given in [82].

In the vertex-disjoint paths problem, for a given graph G and set of k pairs of

vertices (s1, t1), · · · , (sk, tk) in G (which are sometimes called terminals), it must be

decided whether or not G has k vertex-disjoint paths P1, · · · , Pk in G such that Pi

joins si and ti for i = 1, 2, · · · k [82]. If a set of such paths exist, then the algorithm

presented in [82] finds such paths in O(n2) time.

We apply the algorithm in [82] to the set of vertices obtained in S. The vertices in

set S found in Step 6 of Algorithm 2 are enumerated as v1, · · · , vl (Step 8 of Algorithm

2). Denote the vertices in S as terminal vertices. There are l consecutive pairs of

terminal vertices in S, namely (v1, v2), (v2, v3), · · · , (vl−1, vl), (vl, v1). Since between

each pair we would like to find two disjoint paths, then we essentially have 2l pairs of

terminal vertices, where we apply the disjoint path algorithm in [82] to find 2l disjoint

paths.

We now show that for a 2-connected graphG, where a 2-connected (k, r)-dominating

set exits, the set returned by Algorithm 2 is a D(2,k,r).

Theorem 3.1.1. For a given graph G, if a 2-connected (k, r)-dominating set exists

then the set of vertices H produced by Algorithm 2 is a 2-connected (k, r)-dominating

set.

Proof. Algorithm 2 constructs a D(0,k,r), where each round i produces a new MISk

set Ii (Algorithm 2, Steps 1-6). An MISk is a distance-k dominating set. The set

S produced by Algorithm 2 is a union of r distance-k dominating sets (Algorithm 2,

Step 6). For each vertex u /∈ S, u has at least r k-adjacent vertices in S, since in each

round i an Ii is constructed, where there is at least one vertex in Ii that dominates u.

Vertices selected to be in Ii during round i are not selected during the previous i− 1

rounds since each new Ii is constructed from the vertex set V \ (I1 ∪ I2 ∪ · · · ∪ Ii−1).

Each vertex u ∈ S, where u is selected to be in Ij in round j, is dominated by a
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Algorithm 2 Centralized Algorithm for D(2,k,r)

Input: G = (V,E), k ≥ 1, r ≥ 1.
Output: A 2-connected (k, r)-dominating set H.

1: Let S = ∅ and i = 1.
2: while i ≤ r do
3: Construct an MISk Ii for G using only the vertices in

the set V \ (I1 ∪ I2 ∪ · · · ∪ Ii−1).
4: i = i+ 1.
5: end while
6: Let S = I1 ∪ I2 ∪ · · · ∪ Ir.
7: Let H = ∅.
8: Enumerate all the vertices in S by v1, v2, · · · , vl.
9: for i← 1 to l − 1 do
10: Find two disjoint paths Pi and Qi from vi to vi+1.
11: For all vertices u on the paths Pi and Qi, where u /∈ S, add u to H.
12: end for
13: Find two disjoint paths Pl and Ql from vl to v1.
14: For all vertices u on the paths Pl and Ql, where u /∈ S, add u to H.
15: Output H, which is H = S ∪ {⋃l

i=1(Pi ∪Qi)}.

vertex v ∈ Ii in round i 6= j. Hence, for each u ∈ S, u has at least (r− 1) k-adjacent

vertices in S. Therefore, Part 1 of Algorithm 2 produces a (k, r)-dominating set, i.e.

D(0,k,r).

Step 8 of Algorithm 2 takes a D(0,k,r) set S and enumerates all the vertices in S by

v1, v2, · · · , vl. Denote all vertices in S obtained by Algorithm 2 (Step 8) as terminal

vertices. For each 1 ≤ i ≤ l, let Pi and Qi be two vertex disjoint paths from vi to vi+1

(note that addition of indices is modulo l). We claim that H = S ∪
{⋃l

i=1(Pi ∪Qi)
}

obtained in Step 15 of Algorithm 2 induces a 2-connected subgraph of G. Let Gv be

the graph induced by the vertex set H − v. We will show that Gv is connected for all

v ∈ H.

We consider two cases. In case one we assume vertex v, which is removed from

the set H, is a terminal vertex. In case two, we assume vertex v removed from H is

not a terminal vertex, i.e. v was added to H in Step 11 of Algorithm 2.

Case 1: v ∈ S.

Without loss of generality, we may assume that v = v1. We first show that there is

a path from vi to vj in Gv for all 1 < i < j ≤ l. Note that since Pi and Qi are disjoint,
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after the removal of vertex v at least one of them does not contain v. Similarly, for

every i < k < j, since Pk and Qk are disjoint, after the removal of vertex v one of

the paths Pk and Qk is still a path from vk to vk+1 (see Figure 3.1.1). If Pk does not

contain v, then let Rk = Pk, otherwise let Rk = Qk. Clearly Rk does not contain the

vertex v. Then the path viRivi+1Ri+1 · · ·Rj−1vj is a path from vi to vj that does not

contain vertex v and is therefore, a path in Gv.

vk

vi+1

vi u

v = v1

vj+1

vj

w

Ri = Qi
Pi

Qi+1

Ri+1 = Pi+1

Rk = Pk

Qk

Qj

Pj

Figure 3.1.1: Removal of terminal vertex v. Circles indicate terminal vertices and

squares indicate non-terminal vertices. Dashed lines indicate deleted edges that are

incident to v.

Now, let u and w be arbitrary vertices in Gv. We will assume that u and w are

non-terminal vertices in Gv (see Figure 3.1.1). In this subcase we show that there is

a path from u to w. The case where u is a terminal vertex and w is a non-terminal

vertex is similar. Assume without loss of generality that u is on the path Pi from vi

to vi+1 and w is on the path Pj from vj to vj+1 for some i < j. Before the removal of

vertex v, Pi ∪Qi is a cycle containing vi and vi+1. Thus, there must be a path from

u to either vi or vi+1 in Gv. Similarly, there is a path from w to vj or to vj+1 in Gv.

Note that if i = 1 or if j = l, then there is a path in Gv from u to v2 and from w to

vl respectively. Since vi, vi+1, vj, vj+1 are all terminal vertices, there is always a path

between any two of them by the previous subcase. Therefore, there is a path from u

to w in Gv.

Case 2: v /∈ S.
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Next we consider Gv, where v is not a terminal vertex (see Figure 3.1.2). We first

show that there is a path between two terminal vertices vi and vj for 1 ≤ i < j ≤ l.

For all i ≤ k < j, we observe that at least one of Pk and Qk does not contain v, since

Pk and Qk were chosen to be disjoint. Therefore, there exists a path from vk to vk+1

in Gv for all k such that i ≤ k < j. Concatenating these paths gives us a path from

vi to vj in Gv.

vk

vi+1

vi

u

v1

vj+1

vj

w

Qi

Pi

Pk

Qk

Qj

Pj

v

Figure 3.1.2: Removal of non-terminal vertex v. Circles indicate terminal vertices
and squares indicate non-terminal vertices. Dashed lines indicate deleted edges that
are incident to v.

Now let u and w be non-terminal vertices in Gv (see Figure 3.1.2). We will show

that there is a path in Gv from u to w. The case where u is a terminal vertex and

w a non-terminal vertex is similar. Assume u is on some path Pi and w is on some

path Pj. Since Pi ∪Qi is a cycle containing u and vi before the removal of vertex v,

there is a path from u to vi+1 in Gv. Similarly, there is a path from w to vj in Gv.

Since vi+1 and vj are both terminal vertices, there is a path between them in Gv by

the previous subcase. Therefore, there is a path from u to w in Gv.

We now present our approximation ratio of Algorithm 2. Zhang et al. showed

in [156] that in a unit disk graph, the number of independent vertices in the k-

neighbourhood of a vertex is upper bounded by β as is given in Lemma 3.1.1. We

use this result to give an approximation ratio of Algorithm 2.
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Lemma 3.1.1. [156] Let G be a unit disk graph and I be a distance-k independent

set of G. Then for any vertex u in G, Nk(u) contains at most β vertices from I,

where

β =


5, if k = 1,

21, if k = 2,

5 + 4k(k+1)

d 12b k−1
2 ce if k ≥ 3.

Theorem 3.1.2. For a unit disk graph G = (V,E), if a 2-connected (k, r)-dominating

set exists, Algorithm 2 returns a 2-connected (k, r)-dominating set with approximation

ratio of 2Dβ, where D is the diameter of graph G and β is at most O(k).

Proof. From Steps 1-6 of Algorithm 2 where a D(0,k,r) is constructed, we know that

for each vertex v at most β vertices k-adjacent to v are chosen to be in S in each

round i of Ii (Lemma 3.1.1). Thus, for each vertex, there are at most βr k-adjacent

vertices in S. For the optimum solution of D(0,k,r), for each vertex there are at least

r k-adjacent vertices in S. Therefore, the number of vertices in S is at most β times

of the optimum solution of D(0,k,r).

Vertices in S are denoted as terminal vertices and for two consecutive terminal

vertices in an enumeration we find two vertex disjoint paths to connect them. The

length of each path is at most size of the diameter of graph G. Hence, at most 2D|S|
vertices are added to produce a 2-connected (k, r)-dominating set. Therefore, the

number of vertices in H is at most 2Dβ times of the solution of D(2,k,r).

Theorem 3.1.3. Algorithm 2 computes a 2-connected (k, r)-dominating set for a unit

disk graph in O(n3) time.

Proof. Consider an arbitrary unit disk graph G = (V,E), where n = |V |. Algorithm 1

returns a maximal distance-k independent set in O(n2) time. Steps 1-6 of Algorithm

2 takes at most rn2 operations. To find two disjoint paths between any two vertices

in graph G (Algorithm 2, Step 10) takes O(n2) time. Hence, for l pairs such vertices,

the computation time of finding disjoint paths between l pairs of vertices is lO(n2).

Since l = |S| and |S| can be at most be n, in the worst case it takes O(n3) time to

find 2 disjoint paths between l pairs of terminal vertices (Algorithm 2, Steps 9-14).

Hence, Algorithm 2 requires O(n3) computation time.
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3.2 D(2,k,r) in General Graphs

In this section we present a centralized algorithm to construct a 2-connected (k, r)-

dominating set in general graphs. Our method of finding a D(2,k,r) in general graphs

consists of two parts. In part one of our method, we use the algorithm introduced by

Spohn et al. [126] to construct a (k, r)-dominating set S of graph G. In part two of our

method, we use Steps 7-15 of Algorithm 2 and obtain a 2-connected (k, r)-dominating

set H of G.

The algorithm introduced by Spohn et al. is a greedy based heuristic [126]. Before

presenting an overview of the algorithm, we first introduce some needed notation.

Consider a graph G = (V,E) and let S ⊆ V be a (k, r)-dominating set for G.

• Let ∆k denote the largest cardinality among all k-neighbourhoods in G. i.e.

∆k = max
{
|Nk[u]|

∣∣u ∈ V }.

• For every non r-dominated vertex u, let f(u) be the number of vertices in S

that are k-adjacent to u. Let D(u) denote the number of vertices needed to

dominate u. i.e. D(u) = r − f(u).

• Let T (u) =
∑

v∈Nk[u] D(v).

A (k, r)-dominating set S is constructed as follows. A vertex v with the maximum

T value is repeatedly selected to be a dominator in S until every vertex is r-dominated.

That is, T values of all vertices are updated until each vertex is either in the (k, r)-

dominating set S or is dominated by a vertex in S (i.e. the D values of all vertices

become 0) [126].

Li et al. show that this method returns a (k, r)-dominating set of size at most

ln ∆k|OPT | for any undirected graph, where OPT is an optimum solution for the

minimum (k, r)-dominating set [93]. As we use Steps 7-15 of Algorithm 2 on this

set S, then by Theorem 3.1.1 the result returned by Algorithm 2 is a 2-connected

(k, r)-dominating set.

Theorem 3.2.1. For an undirected graph G = (V,E), if a 2-connected (k, r)-dominating

set exists, the set of vertices H produced by the above procedure returns a 2-connected

(k, r)-dominating set and has size at most 2D ln ∆k times the optimum solution of

the minimum 2-connected (k, r)-dominating set, where D is the diameter of G and

∆k is the largest cardinality among all k-neighbourhoods in G.
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Proof. The method introduced by Spohn et al. determines a (k, r)-dominating set

of G [126] with ln ∆k-approximation [93]. A minimum 2-connected (k, r)-dominating

set will not be smaller than a minimum (k, r)-dominating set. Hence, by Theorem

3.1.1 and by finding two disjoint paths between any two consecutive terminal vertices

in an enumeration defined in Step 8 of Algorithm 2, where each path is of length at

most diameter D, will result in a 2-connected (k, r)-dominating set with 2D ln ∆k-

approximation algorithm.

Theorem 3.2.2. Algorithm 2 computes a 2-connected (k, r)-dominating set for gen-

eral graphs in O(n3) time.

Proof. Consider an arbitrary graph G = (V,E), where n = |V |. Spohn et al. show

that for ∆k ≤ n (i.e. ∆k increases as k approaches the network diameter, and is

at most n when k is equal to the diameter), their algorithm that returns a (k, r)-

dominating set runs in O(n3) time [126].

To find two disjoint paths between any two vertices in graph G takes O(n2) time.

Hence, for l pairs such vertices, the computation time is in lO(n2) time. Since l = |S|
and |S| can be at most be n, in the worst case to find two disjoint paths between l

pairs of vertices takes O(n3) time (Algorithm 2, Steps 9-14). Hence, considering Part

1 and Part 2 together, we conclude that the method of constructing a 2-connected

(k, r)-dominating set in general graphs requires O(n3) computation time.

3.3 Summary

In this chapter we presented two centralized algorithms to find a 2-connected (k, r)-

dominating set in unit disk graphs and in general graphs, where k and r are fixed

positive integers. For both algorithms it was showed that if for a given graph G such

a set exists then both algorithms returns such a set.

The first algorithm in unit disk graphs has an approximation ratio of 2Dβ of the

optimal solution, where D is the diameter of the graph and β is O(k). The complexity

of the algorithm is O(n3), where n = |V (G)|. The algorithm in general graphs has

an approximation ratio of 2D ln ∆k, where D is the diameter of the graph and ∆k

is the largest cardinality among all k-neighbourhoods in G. The complexity of this

algorithm is O(n3), where n = |V (G)|.
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Chapter 4

On the total (k, r)-domination

number of the random graphs

In this chapter we consider upper bounds on the size of the total (k, r)-dominating

set in graphs. We study this problem in connection to deriving upper bounds on

the number of sinks in a wireless sensor network. Recall that a set S ⊆ V is a total

(k, r)-dominating set of a graph G, if every vertex v ∈ V is within distance k of

r vertices in S. The minimum cardinality of a total (k, r)-dominating set G is the

total (k, r)-domination number of G, denoted γt(k,r)(G). In this chapter we consider

upper bounds on the total (k, r)-domination number in general graphs and in random

graphs. Recall that a random graph G(n, p) consists of n vertices with each of the

potential
(
n
2

)
edges being inserted independently with probability p.

In Section 4.2 we derive an upper bound on γt(k,r)(G) in graphs with large girth. In

Section 4.3 we derive upper bounds on total (k, r)-domination number of the random

graphs, where we consider the cases k = 2, k = 3 and k > 3. Before we present our

results we first present preliminary notations and definitions in Section 4.1.

4.1 Notation and Basic Facts

A probability space is a triple
(
Ω,Σ, P

)
, where Ω is a finite set, Σ is P(Ω), the set

of all subsets of Ω, P is a non-negative measure on Σ and P (Ω) = 1. Then P is

determined by the function Ω→ [0, 1], ω → P ({ω}), namely

P (A) =
∑
ω∈A

P ({ω}) , where A ⊂ Ω.
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Thus, Ω is the sample space that represents all outcomes. Σ is a collection of subsets

of Ω, called the event space. P is the probability function that assigns probabilities

to the events in Σ. [12]

All the definitions that follow and in Section 4.1.1 are taken from [135].

For any event A in the probability space Ω, we write P[A] for the probability of A in

the space.

For two disjoint subsets A and B of Ω, A and B are called disjoint events. For disjoint

events A and B, P[A ∪B] = P[A] + P[B].

Two events A and B are independent if and only if P[A ∩B] = P[A] · P[B].

If A, B are events in the probability space Ω and A ⊂ B then P[A] ≤ P[B].

4.1.1 Linearity of Expectation

For a given (discrete) probability space Ω any mapping X : Ω→ Z is called a random

variable.

The expected value of a random variable X, denoted E[X], is defined as

E[X] =
∑
ω∈Ω

X(ω)P[ω] =
∑
x∈Z

xP[X = x]

given that
∑
x∈Z
|x|P[X = x] converges.

An indicator random variable (or a Bernoulli random variable) is a random variable

Xi such that

Xi =

{
1 with some probability p

0 with probability 1− p.
The expected value of a sum of random variables is the sum of the expected values

of the variables. More formally, Linearity of Expectation states the following.

For any random variables X and Y that may not necessarily be independent

E[X + Y ] = E[X] + E[Y ].

For any random variable X and a constant c ∈ R, E[cX] = cE[X]. Thus, for random
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variables X and Y and constants c1, c2 ∈ R, E[c1X + c2Y ] = c1E[X] + c2E[Y ]. Thus,

expectation is a linear function and is applicable to more than two random variables.

For any random variables X1, · · · , Xn and constants c1, · · · , cn ∈ R,

E

[
n∑
i=1

ciXi

]
=

n∑
i=1

ciE [Xi] .

X is a binomial random variable, denoted X ∼ B(n, p), if over total n trials the

probability each trial yields a success is p. Note that, the Bernoulli distribution is a

special case of the Binomial distribution with n = 1.

If X ∼ B(n, p) is the random variable and X = X1 + · · · + Xn, where each Xi is

an indicative random variable with probability p then

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi]

=
n∑
i=1

(1 · p+ 0(1− p)) =
n∑
i=1

p

= np

4.2 Total (k, r)-domination number in graphs of

large girth

In this section we derive an upper bound on the total (k, r)-domination number in

graphs. For a given graphG, the girth ofG is the length of the shortest cycle contained

in G. Theorem 4.2.1 presents our result in graphs of girth at least 2k + 1. Although

our result is not tight, we do obtain a bound with a relatively simple expression.

Theorem 4.2.1. Consider a graph G, where n = |V (G)|. Let G be of minimum

degree at least d, and of girth at least 2k+ 1. Then for any positive integers k and r,

γt(k,r)(G) ≤ 2nr

(d− 1)k
+ nre−

r
4 .

Proof. Let us pick, randomly and independently, each vertex v ∈ V (G) with proba-

bility p to be defined later. Let S ⊂ V (G) be the set of vertices picked. S is a random

set and is part of the total (k, r)-dominating set that we would like to obtain.
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For every vertex v ∈ V (G), let Xv denote the number of vertices in Nk(v) that

are also in S. Let Y be the set such that Y = {v ∈ V (G)|Xv ≤ r − 1}. Note that S

is a random set and E
[
|S|
]

= np. We now estimate P
[
Xv < r

]
.

For a given vertex v ∈ Y , let m = |Nk(v)|. Since by assumption graph G has girth

at least 2k + 1 then it follows that m ≥ (d− 1)k. We show this by contradiction.

Assume that m < (d − 1)k. Then there exist vertices u1, u2 ∈ Nk(v) such that

there is a vertex w ∈ Nk(v) and w ∈ (Nk(u1) ∩Nk(u2)). Vertex w is at most distance

k from v. Thus, the distance from w to v through the path containing u1 is at most

k. Similarly, the distance from w to v through the path containing u2 is also at most

k. Thus, making a cycle of length at most 2k, which is a contradiction. Therefore,

by the assumption that G has girth at least 2k + 1, it follows that m ≥ (d− 1)k.

It can be seen that Xv is a B(m, p) random variable. We use the well known

Chernoff Bound [10, 37, 31, 7, 68, 2] to bound P
[
Xv < r

]
.

The Chernoff Bound states: for any a > 0 and random variable X that has binomial

distribution with probability p and mean pn,

P
[
X − pn < −a

]
< e−a

2/2pn. (1)

We set a = εpm, where we let ε = 1 − r

pm
. Hence, a = pm − r, which results in

r = pm− a. Then, by the Chernoff Bound given in Eq. 1 we have,

P
[
Xv < r

]
= P

[
Xv < pm− a

]
< e−

a2

2pm = e−
ε2(pm)2

2pm = e−
ε2pm

2

≤ e−
ε2p(d−1)k

2 . (2)

Chernoff’s bound holds whenever ε > 0, that is when 1 − r

pm
> 0. Thus, it holds

when p >
r

(d− 1)k
. By setting p =

2r

(d− 1)k
, from Eq. 2 we obtain

P
[
Xv < r

]
< e
−ε2

(
2r

(d−1)k

)
(d−1)k

2 = e−ε
2r.
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For each vertex v ∈ Y , where Xv ≤ r − 1, we pick a set Av of r vertices in Nk(v)

arbitrarily. For vertices v that satisfy Xv ≥ r, Av = ∅. Let A =
n⋃
v=1

Av. Clearly, S∪A

is a total (k, r)-dominating set. We now estimate E
[
|A|
]
.

By linearity of expectation, we obtain

E
[
|A|
]

= E

[∣∣∣∣∣
n⋃
v=1

Av

∣∣∣∣∣
]
≤ E

[
n∑
v=1

|Av|
]

=
n∑
v=1

E
[
|Av|

]
≤ nre−ε

2r.

Again by the linearity of expectation, we now estimate E
[
|S ∪ A|

]
.

E
[
|S ∪ A|

]
= E

[
|S|
]

+ E
[
|A|
]

≤ np+ nre−ε
2r

=
2nr

(d− 1)k
+ nre−ε

2r.

Therefore, we have shown that there exists a total (k, r)-dominating set in G, where

γt(k,r)(G) ≤ 2nr

(d− 1)k
+ nre−ε

2r

≤ 2nr

(d− 1)k
+ nre−

r
4

since ε > 1/2.

4.3 Total (k, r)-domination number in random

graphs

In this section we derive upper bounds for the total (k, r)-domination number in

random graphs. Note that by definition the size of any total (k, r)-dominating set

must be at least r+ 1. In Section 4.3.1 we give upper bounds on γt(2,r) (G(n, p)) with

p ∈ (0, 1) non-fixed. In Section 4.3.2 we present an upper bound on γt(k,r) (G(n, p))

with p ∈ (0, 1) non-fixed. We first present some facts and definitions needed in

Sections 4.3.1 and 4.3.2.
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Recall that an event holds asymptotically almost surely (a.a.s.) if the probability it

holds tends to 1 as n tends to infinity [2].

If X is a non-negative random variable with finite mean and a > 0, then

P
[
X ≥ a

]
≤ E

[
X
]

a
.

This is known as Markov’s Inequality [12].

4.3.1 Upper bounds on γt(2,r)(G(n, p))

We first present an upper bound on γt(2,r)(G(n, p)) in Theorem 4.3.2. It is well known

that for fixed p < 1, the diameter of G(n, p) is two (see Theorem 4.3.1).

Theorem 4.3.1. [70] Let p = c
√

lnn
n

. For c >
√

2, G(n, p) almost surely has diameter

less than or equal to two.

From Theorem 4.3.1, for p ≥
√

2
√

lnn
n

, a.a.s. γt(2,r)(G(n, p)) = r + 1 directly

follows. For a weaker value of p, we can still have a.a.s. γt(2,r)(G(n, p)) = r + 1. In

Theorem 4.3.1, we weaken the minimum value of p from
√

2
√

lnn
n

=
√

2
log e

√
logn
n

to

p ≥ c
√

logn
n

, for a fixed constant c > 1.

Theorem 4.3.2. Let c > 1 be a fixed constant. Then for any positive integer r, in a

random graph G(n, p) with p ≥ c

√
log n

n
, a.a.s. γt(2,r) (G(n, p)) = r + 1.

Proof. Let D ⊆ V (G(n, p)) be a total (2, r)-dominating set and let the vertices in D

be labelled as v1, v2, · · · , vi, · · · , vr+1, where 1 ≤ i ≤ r + 1. The probability that a

vertex u ∈ V (G(n, p)) is not within distance-2 from a vertex vi ∈ D is given by

P[vi /∈ N2(u)] ≤ (1− p2)n−2. (3)

Let X be a random variable that denotes the number of vertices u ∈ V (G(n, p)),

where the number of 2-adjacent vertices of u in D is less than r. We would like to

show that as n tends to infinity, the number of vertices in V (G(n, p)) with less than

r dominators tends to 0. That is, P
[
X > 0

]
→ 0 as n→∞.

44



A fixed vertex u is defined bad, if u in its 2-neighbourhood has less than r domi-

nators in D. By linearity of expectation we have

E[X] = n · P[fixed u is bad]. (4)

Let Xu be the random variable that denotes the number of non-dominators of u.

We note that u itself may be an element of D. Then

E[Xu] ≤ r (1− p2)n−2

≤ r e−p
2(n−2)

(
by 1− x ≤ e−x

)
.

By Markov’s Inequality we have P[Xu > 0] ≤ E[Xu] ≤ r e−p
2(n−2). Thus,

P[fixed u is bad] ≤ P[Xu > 0]

≤ r e−p
2(n−2). (5)

By Eq. 4 and Eq. 5 we have E[X] ≤ n r e−p
2(n−2). By Markov’s Inequality it

follows,

P[X > 0] ≤ E[X] ≤ n r e−p
2(n−2) (6)

From Eq. 6, as n→∞ the value of p follows.

ep
2(n−2) > r · n =⇒ ep

2(n−2) > n

=⇒ p2(n− 2) > log n

=⇒ p >

√
log n

n− 2

=⇒ p ≥
√

log n

n
.

Let p ≥ c

√
log n

n
, where c > 1 is a constant. We now determine the value of ep

2(n−2).

ep
2(n−2) ≥

(
elogn

)c2(n−2
n )

= nc
2(1− 2

n) (7)

From Eq. 6 and Eq. 7, we have

n r e−p
2(n−2) ≤ n r

nc
2(1− 2

n)
=

r

nc
2(1− 2

n)−1
. (8)
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Since c2 > 1 and as n→∞, c2

(
1− 2

n

)
> 1 and hence, c2

(
1− 2

n

)
− 1 > 0.

Thus, as n → ∞,
r

nc
2(1− 2

n)−1
→ 0. Therefore, From Eq. 6 and Eq. 8 we have

P[X > 0]→ 0 as n→∞.

Next we present an upper bound on γt(k,r)(G(n, p)) in Theorem 4.3.5. We first

present a needed result in Theorem 4.3.3 on random graphs of diameter greater than

two.

Theorem 4.3.3. [12] Let c be a positive constant, d = d(n) ≥ 2 a natural number,

and define p = p(n, c, d), 0 < p < 1, by

pdnd−1 = log(n2/c).

Suppose that pn/(log n)3 →∞. Then in G(n, p) we have

lim
n→∞

P(diam G = d) = e−c/2 and lim
n→∞

P(diam G = d+ 1) = 1− e−c/2.

For a random graph of diameter at most d, from Theorem 4.3.3, p =
d−1

√
log(n2/c)

nd−2
.

In Section 4.3.2, we weaken the value of p and give an upper bound on the total

(k, r)-domination number in random graphs.

4.3.2 Upper bound on the γt(k,r)(G(n, p))

In this section we present an upper bound on γt(k,r)(G(n, p)) for fixed positive integers k

and r. In Theorem 4.3.2, we proved that in a random graph G(n, p) with p ≥ c

√
log n

n
and fixed constant c > 1, a.a.s. γt(2,r)(G(n, p)) = r + 1. Note that in the proof of

Theorem 4.3.2, to determine the probability that a vertex u is not within distance-2

from a dominator vertex vi (given by Eq. 3) uses the fact that the connecting vertex

wi chosen to connect u to vi (to obtain a path of length 2) cannot be chosen again

to connect u and vi via a different path (since the two paths would be the same).

Hence, the probability of connecting u to vi through different paths of length 2 are

independent of each other.
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The above holds true when we consider an upper bound for the total (2, r)-

domination number and makes calculations relatively easy. However, once we gen-

eralize to give an upper bound for the total (k, r)-domination number, we cannot

easily obtain this independence when considering paths of length greater than 2 from

u to vi. When considering paths of length k from u to vi for the general case of

total (k, r)-domination number it becomes more difficult to calculate the probability

that there is a path of length k from u to vi via k − 1 vertices. There may be two

different paths P1 and P2 from u to vi that may share some edges between any of the

connecting k − 1 vertices and hence, are not independent anymore as they were in

the case of total (3, r)-domination number (see Figure 4.3.1).

u

vi

a1

a2

b1

bk−1ak−1

a3

ak−2 bk−2

b2

Figure 4.3.1: P1 = u a1 a2 a3 · · · ak−2 ak−1 vi and P2 = u b1 a2 a3 b2 · · · bk−2 bk−1 vi are
two paths between u and vi that share an edge, namely (a2, a3).

In Theorem 4.3.5, we generalize the upper bound on γt(2,r)(G(n, p)) presented by

Theorem 4.3.2 to give an upper bound on γt(k,r)(G(n, p)). Note that from Theorem

4.3.3, the diameter of G(n, p) is at most d for p =
d−1

√
log(n2/c)

nd−2
. In Theorem

4.3.5, we weaken the value of p to p′ ≥ d
d

√
log n

nd−1
. Easy calculation shows that

d
d

√
log n

nd−1
<

d−1

√
log(n2/c)

nd−2
for d ≤ (log n)ε for a constant ε < 1

2
. In particular p′ < p

holds when d is constant. Our proof of Theorem 4.3.5 uses Janson’s Inequality, which

we present here first [2].

Let Ω be a finite universal set and let R be a random subset of Ω given by

P[r ∈ R] = pr, (9)

these events mutually independent over r ∈ Ω. Let {Ai}i∈I be subsets of Ω, where I
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is a finite index set. Let Bi be the event that Ai ⊆ R. Let Xi be the indicator random

variable for Bi and X =
∑
i∈I
Xi the number of Ai ⊆ R. Hence, P[X = 0] = P

[⋂
i∈I
Bi

]
.

For i, j ∈ I we write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. Thus, define ∆ =
∑
i∼j

P[Bi ∩Bj].

Set µ = E[X] =
∑
i∈I

P[Bi]. In Theorem 4.3.4 we state Janson’s Inequality. [2]

Theorem 4.3.4. [2] Let {Bi}i∈I , ∆, µ be as above. Then P
[⋂
i∈I
Bi

]
≤ e−µ+∆/2.

Theorem 4.3.5. For any positive integers k ≥ 3 and r, in a random graph G(n, p)

with p ≥ k
k

√
log n

nk−1
, a.a.s. γt(k,r) (G(n, p)) = r + 1.

Proof. Let D ⊆ V (G(n, p)) be a total (k, r)-dominating set and let the vertices in D

be labelled as v1, v2, · · · , vi, · · · , vr+1, where 1 ≤ i ≤ r + 1. The probability that a

vertex u ∈ V (G(n, p)) is not within distance-k from a vertex vi ∈ D is denoted by

P[vi /∈ Nk(u)].

Let X be a random variable that denotes the number of vertices u ∈ V (G(n, p)),

where the number of k-adjacent vertices of u in D is less than r. We would like to

show that the number of vertices in V (G(n, p)) with less than r dominators tends to

0. That is, P[X > 0]→ 0 as n→∞.

We define a fixed vertex u as bad, if u in its k-neighborhood has less than r

dominators in D. By linearity of expectation we have

E[X] = n · P[fixed u is bad]. (10)

There are n−2 vertices aside from u and vi to connect u to vi via a path of length

k. To connect u to vi such that d(u, vi) = k, additional k − 1 connecting vertices are

necessary to create a path of length k from u to vi. There are
(
n−2
k−1

)
possible ways

to choose these k − 1 vertices. Hence, we have
(
n−2
k−1

)
such sets that consist of k − 1

vertices. We denote these sets by S1, S2, · · · , S(n−2
k−1)

.

We would like to show that P[vi /∈ Nk(u)] → 0 as n → ∞. This is equivalent to

showing that the probability one of Si connects u to vi via a path of length k tends

to 1 as n→∞.

Let Si = {ai1 , ai2 , · · · , aik−1
}. For any pair u and vi that are fixed, we number

all other n− 2 vertices and assume that all vertices in Si are connected in ascending
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order of the vertex number. Note that some edges in Si and Sj, where i 6= j are the

same. To calculate the probability of the appearance of the k − 2 edges in each Si

we must consider the dependencies between any two sets Si and Sj for i 6= j. To do

this, we use Janson’s inequality from Theorem 4.3.4.

Let R be the set E(G(n, p)) and let Ai be the set of edges such that Ai =

{uai1 , ai1ai2 , · · · , aik−2
aik−1

, aik−1
vi}. Let Bi be the event that Ai ⊆ R. So, P[Ai ∈

R] = P[Bi]. Let Xi be the indicator random variable for Bi and XB =

(n−2
k−1)∑
i=1

Xi be the

number of Ai ⊆ R. Hence, P[XB = 0] = P

(n−2
k−1)⋂
i=1

Bi

. For 1 ≤ i, j ≤
(
n−2
k−1

)
we write

i ∼ j if i 6= j and Ai ∩Aj 6= ∅. ∆ is defined as
∑
i∼j

P[Bi ∩Bj]. We would like to show

that P[XB = 0]→ 0 as n→∞.

First we determine µ = E[XB] =

(n−2
k−1)∑
i=1

P[Bi].

E[XB] = E

(n−2
k−1)∑
i=1

Xi

 =

(n−2
k−1)∑
i=1

E[Xi] =

(n−2
k−1)∑
i=1

E[Bi]

=

(
n− 2

k − 1

)
pk ≥

(
n− 2

k − 1

)k−1

pk
(

by

(
n

k

)
≥
(n
k

)k)
≥ (n− 2)k−1

(k − 1)k−1

(
k

k

√
log n

nk−1

)k

=
(n− 2)k−1

(k − 1)k−1
kk

log n

nk−1
=

(
kk

(k − 1)k−1

)(
n− 2

n

)k−1

log n

= k

(
k

k − 1

)k−1(
1− 2

n

)k−1

log n

≥ k

(
1− 2

n

)k−1

log n

≥ 0.9k log n (11)

for n large enough. Thus, from Janson’s Inequality let µ = 0.9k log n.
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Now we determine ∆. Assume that the number of edges shared between any given

Ai and Aj is given by t and hence, Aj shares at least t vertices with Ai. There are(
n−2
k−1

)
such Ai sets. We fix one such set Ai and determine the dependencies between

Ai and all other sets Aj, where j 6= i. Thus, we have

∆ =

(n−2
k−1)∑
i=1

P[Bi ∩Bj]

≤
(
n− 2

k − 1

) (n−2
k−1)∑
i fixed
j∼i

P[Bj ∩Bi]

≤
(
n− 2

k − 1

) k−1∑
t=1

(
k

t

)(
n− 2

k − 1− t

)
p2k−t. (12)

In Equation 12, the probability that a fixed Ai intersects (i.e. shares) at t edges

with a set Aj for i 6= j, is pkpk−t = p2k−t. When calculating this probability we

are interested in counting the number of edges t that are shared between Ai and Aj.

That is, between which vertices t edges are shared is not of interest. Between any

two vertices u and vi there are k edges and hence, the number of ways to determine

the t shared edges is
(
k
t

)
. For any Aj, the two vertices u and vi are fixed. From the

k−1 other vertices on the path from u to vi, t are shared with Ai. Thus, to complete

Aj that share t edges with Ai, there are
(
n−2
k−1−t

)
possible ways to add the remaining

vertices. Thus, for a given value t,
(
k
t

)(
n−2
k−1−t

)
determine how many sets Aj share

precisely t edges with Ai. Thus, from Equation 12 we have

∆ ≤
(
n− 2

k − 1

) k−1∑
t=1

(
k

t

)(
n− 2

k − 1− t

)
p2k−t

≤ nk−1

(k − 1)!
2k

k−1∑
t=1

(
n− 2

k − 1− t

)
p2k−t

(
by

(
n

k

)
≤ nk

k!
and

(
n

k

)
≤ 2n

)

≤ nk−1

(k − 1)!
2k

k−1∑
t=1

(n− 2)k−1−t

(k − 1− t)! p
2k−t

(
by

(
n

k

)
≤ nk

k!

)

≤ nk−1

(k − 1)!
2k

k−1∑
t=1

nk−1−tp2k−t (13)
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We now calculate nk−1−tp2k−t.

nk−1−tp2k−t =
nk−t

n
pkpk−t =

nk−tpk−t

n
pk

=
nk−tpk−t

n

(
k

k

√
log n

nk−1

)k

=
nk−tpk−t

n
kk

log n

nk−1

=
nk−tpk−t

nk
kk log n = n−tpk−tkk log n

= (np)−t
(
pkkk log n

)
=

(
nk

k

√
log n

nk−1

)−t (
pkkk log n

)
=
(
n1−(k−1)/k k k

√
log n

)−t (
pkkk log n

)
=
(
n1/k k k

√
log n

)−t (
pkkk log n

)
=

(
pkkk log n

)(
kn1/k k

√
log n

)t
≤
(
pkkk log n

)
kn1/k k

√
log n

(14)

From Equations 13 and 14 we have

∆ ≤ nk−1

(k − 1)!
2k

k−1∑
t=1

nk−1−tp2k−t

≤ nk−1

(k − 1)!
2k

k−1∑
t=1

pkkk log n

kn1/k k
√

log n

≤ nk−1

(k − 1)!
2k k

pkkk log n

kn1/k k
√

log n

≤ 2k
nk−1

(k − 1)!

(
k

k

√
log n

nk−1

)k
kk log n

n1/k k
√

log n

≤ 2k

(k − 1)!
k2k nk−1 log2 n

nk−1n1/k k
√

log n

≤ O(k)
log2 n

n1/k k
√

log n

≤ O(k)
log2 n

n1/k
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Thus, ∆→ 0 as n→∞. Since ∆ < µ by Janson’s Inequality we have

P[XB = 0] = P

(n−2
k−1)⋂
i=1

Bi


≤ e−µ/2 ≤ e−

0.9k logn
2

≤ e−
9
20
k logn

Thus, the probability that a vertex u is not within distance-k from a dominator

vertex vi is given by

P [vi /∈ Nk(u)] ≤ P

(n−2
k−1)⋂
i=1

Bi


≤ e−

9
20
k logn. (15)

Let Xu be the random variable that denotes the number of non-dominators of u.

We note that u may be a dominating vertex. Then

E[Xu] ≤ r e−
9
20
k logn.

By Markovs’s Inequality we have P[Xu > 0] ≤ E[Xu] ≤ r e−
9
20
k logn. Thus,

P[fixed u is bad] ≤ P[Xu > 0] ≤ r e−
9
20
k logn. (16)

By Eq. 10 and Eq. 16 we have E[X] ≤ n r e−
9
20
k logn and by Markov’s Inequality

it follows,

P[X > 0] ≤ E[X] ≤ n r e−
9
20
k logn. (17)

From Eq. 17, we determine the value of e−
9
20
k logn to be

e−
9
20
k logn ≥

(
elogn

)− 9
20
k

= n−
9
20
k.

Thus, we have

nre−
9
20
k logn ≤ nr

n
9
20
k
≤ r

n
9
20
k−1

.

For k ≥ 3,
r

n
9
20
k−1
→ 0 as n→∞.

Therefore, P[X > 0]→ 0 as n→∞.
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4.4 Summary

In this chapter we considered upper bounds on the total (k, r)-domination number

to bound the number of sinks in WSNs. Theorem 4.2.1 gives an upper bound on the

total (k, r)-domination number in graphs of girth at least 2k + 1. We show that in a

graph G of girth at least 2k + 1, γt(k,r)(G) ≤ 2nr
(d−1)k

+ nre−
r
4 , where n = |V (G)| and d

is the minimum degree.

Theorem 4.3.2 gives an upper bound on the total (2, r)-domination number in ran-

dom graphs. For a fixed constant c > 1 and any positive integer r, in a random graph

G(n, p) with p ≥ c
√

logn
n

, a.a.s. γt(2,r)(G(n, p)) = r + 1. Theorem 4.3.5 generalizes

this result for positive integers k ≥ 3 and r. That is, for any positive integers k ≥ 3

and r, in a random graph G(n, p) with p ≥ k k

√
logn
nk−1 , a.a.s. γt(k,r) (G(n, p)) = r+ 1.
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Chapter 5

Hexagonal Virtual Network based

Beacon-less Flooding in MANETs

In this chapter, we consider the problem of efficiently flooding a data packet P in

a wireless mobile ad hoc network. Flooding is an important primitive in MANETs.

Due to mobile nodes and possible change of location information of nodes, it is of

importance for a flooded packet P to be received by every node, but at the same

time to limit the number of forwarding nodes. Thus, in this chapter we present a

beacon-less flooding algorithm (HBLF), which is based on an overlayed hexagonal

virtual network. An overlayed hexagonal virtual network allows us to depict a mobile

network in a static manner. HBLF achieves full delivery even in the presence of holes

in the network. We give further theoretic analysis of HBLF in regards to lower and

upper bounds on the number of forwarders, dilation factor as well as the broadcast

time of HBLF.

Before presenting the HBLF algorithm, we first present the network model in

Section 5.1. The algorithm is presented in Section 5.2 and Section 5.3 presents the

theoretic analysis.

5.1 Definitions and Network Model

We consider a wireless mobile ad hoc network modelled as a unit disk graph. Each

node at a given time is aware of its position and the position of any node from which

it receives a data packet, since this information can be stored in the header of the
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packet. In a similar manner each node is also aware of the position of the source node

that generated the packet. However, nodes are mobile and over time the location

information of nodes may change and as a result the topology of the network may

change. Thus, to depict a mobile network in a static manner and to achieve small

number of forwarders, we introduce a virtual layer of hexagon tiles over the network,

where we limit at most one forwarding node per hexagon. Hence, over time with

the possible change of the network topology the hexagonal virtual network stays the

same.

At a given time each node belongs to a specific hexagon. In a hexagon, we assume

that its left hand side boundary, starting from the top left apex of the hexagon up to

the bottom right apex of the hexagon, belongs to the hexagon. Thus, only the top

left apex and the two left lower apexes are considered to belong to the hexagon (see

Figure 5.1.1).

Definition 5.1.1. Two hexagons Hi and Hj are adjacent if Hi and Hj share one of

their six sides.

The size of each hexagon is chosen small enough so that when a node v in hexagon

Hi forwards a message, all nodes in Hi and in hexagons adjacent to Hi will hear the

message. The radius of each hexagon is denoted as r and the transmission range of

each node as R. We let R = 2
√

7r as shown in Figure 5.1.1. Given three hexagons in a

row (see Figure 5.1.1), the longest distance spanning all three hexagons is R = 2
√

7r.

Hence, all nodes within all three hexagons can communicate with each other.

r

R = 2
√
7 r

C

B

A

Figure 5.1.1: The transmission range of each node is R so that all nodes within
hexagons A, B, and C can communicate with each other. Bold line illustrates the
boundary that belongs to the hexagon C.

We assume one of the hexagons of the virtual layer is centred at [0, 0] of the

plane and all others are positioned accordingly. Note that a graph of hexagons is
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3-colourable. Hence, we consider a virtual layer of hexagon tiles coloured one of three

different colours: blue, yellow or pink. Given hexagons in a column, the colouring

scheme from top to bottom is as follows. A blue hexagon always follows a pink

hexagon and a yellow hexagon always follows a blue hexagon. By requiring that any

two adjacent hexagons are of different colours, the above colouring scheme determines

the colours of all other hexagons. It is easy to see that each node which knows its

own position, the starting point of the hexagonal tiling and the colouring scheme of

the virtual layer, it can calculate the position of its own hexagon and its colour in

constant time.

Definition 5.1.2. Given a hexagon Hi, the inner neighbourhood of Hi, denoted

N1(Hi), consists of all six hexagons adjacent to Hi. The outer neighbourhood of

Hi, denoted N2(Hi), consists of all hexagons adjacent to those in N1(Hi), but not

in N1(Hi). A hexagon in N1(Hi) is referred to an inner hexagon and a hexagon in

N2(Hi) is referred to an outer hexagon (see Figure 5.1.2).

Definition 5.1.3. The coverage area of a hexagon Hi, denoted C(Hi), consists of Hi

and all hexagons in N1(Hi) ∪N2(Hi) (see Figure 5.1.2).

Hi

v

R

outer hexagon

inner hexagon

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

H17

H18

Figure 5.1.2: The circular disk of radius R is the transmission range of node v.

Hexagons in N1(Hi) are light yellow and hexagons in N2(Hi) are shaded. N1(Hi) ∪
N2(Hi) make C(Hi) shown by the bold boundary. Note that hexagons H1, · · · , H18

that partially fall into the circular disk of v are not included in C(Hi).
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For easier readability, in the text that follows, a node u in a hexagon Hu is denoted

as u ∈ Hu and a node u in C(Hu) is denoted as u ∈ C(Hu). Similarly, any hexagon

Hu in C(Hv) is denoted as Hu ⊆ C(Hv). In the text that follows a hexagon that

contains a forwarding node is referred to a forwarding hexagon. Also, a node u ∈ Hu

that has received the packet P from a node v ∈ Hv may be referred to as Hu has

received P from Hv, or Hv covers Hu.

5.2 Beacon-less Flooding Algorithm

This section presents our beacon-less flooding algorithm HBLF based on a hexagonal

virtual network in MANETs. In Section 5.2.1 we give an informal overview of the

HBLF algorithm and present the algorithm in details in Algorithm 3. We first present

some definitions that are needed.

Definition 5.2.1. For any two hexagons Hu and Hv, if Hu ⊂ C(Hv) or Hv ⊂ C(Hu)

then we say Hu and Hv are neighbouring hexagons.

Definition 5.2.2. If two hexagons Hi and Hj (i 6= j) are of the same colour and Hi,

Hj are neighbouring hexagons, then we say Hi and Hj are separated by a single hop

and are called bridged hexagons, denoted (Hi, Hj).

Definition 5.2.3. Given a hexagon Hi, a level 0 of Hi, denoted L0(Hi), is the set of

all hexagons adjacent and bridged with Hi. Level k of Hi, denoted Lk(Hi), is the set

of all hexagons that are bridged with the hexagons in Lk−1(Hi), but not in Lk−1(Hi)

(see Figure 5.2.3).

Definition 5.2.4. On a given level i, the hexagons on the six corners of level i are

called corner hexagons. The outer most hexagons of level i in between and of the

same colour of corner hexagons are called side hexagons (see Figure 5.2.4).

Definition 5.2.5. From a given side hexagon Hs, the corresponding corner hexagon

on the same side as Hs encountered first in a clockwise direction is called a left

corner hexagon (LCH) and the corresponding corner hexagon on the same side as Hs

encountered last is called a right corner hexagon (RCH) (see Figure 5.2.4).
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Hi

Level 0 of Hi

Level 1 of Hi

Level k of Hi

Figure 5.2.3: L0(Hi) is designated by hexagons in the lightest shade surrounding Hi.
L1(Hi), · · · , Lk(Hi) are designated by hexagons in different shades from light to dark.

Hi

corner hexagons

side hexagons
Hs LCHRCH

Figure 5.2.4: On a given level k of hexagon Hi, corner and side hexagons are of the

same colour as Hi. LCH is the left corner hexagon of the side hexagon Hs and RCH

is the right corner hexagon of side hexagon Hs.

Let h denote the number of side hexagons on a single side of a given level i ≥ 0.

Definition 5.2.6. A hexagon Hi among the h side hexagons is a Type A hexagon,
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if Hi is even number of hops from LCH when h is odd; or Hi is odd number of hops

from LCH when h is even.

Definition 5.2.7. A hexagon Hi among the h side hexagons is a Type B hexagon,

if Hi is odd number of hops from LCH when h is odd; or Hi is even number of hops

from LCH when h is even.

The reason for this multiple categorization is to reduce the number of forwarding

nodes in the network. This is further discussed in details in Section 5.2.2.

yellow

blue

pink

A

B

A

B

A
B

outer hexagon

inner hexagon

corner hexagon

Type A side hexagonA

Type B side hexagonB

Figure 5.2.5: Cyclic order of colour priorities.

Let the source node be in hexagon Ho. The HBLF algorithm presented in Al-

gorithm 3 makes use of the overlay network of hexagon tiles. That is, it uses an

ordering of the colours, which depends on the colour of Ho. The priority of colours

is cyclic, where the highest priority is always given to the colour of Ho. Without loss

of generality, assume the colour of Ho is blue. Thus, the highest priority is given

to hexagons of colour blue. The second priority we assume is given to hexagons of

colour yellow and the third priority is given to hexagons of colour pink. Note that

since Ho is of colour blue, it follows that on a given level i constructed around Hi

the corner and side hexagons are of colour blue. Thus, blue hexagons are further

prioritized into corner hexagons, Type A side hexagons and Type B side hexagons.

Corner hexagons have higher priority than Types A and B side hexagons, and Type

A side hexagons have higher priority than Type B side hexagons. Yellow and pink

hexagons are further prioritized into outer and inner hexagons. Outer hexagons have

higher priority than inner hexagons. As mentioned previously, the priority of colours
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is cyclic. That is, if the originator falls within a yellow hexagon, the first priority will

be given to yellow hexagons, the second priority to pink hexagons and the third to

blue hexagons and so on. The cyclic order of colours is demonstrated in Figure 5.2.5.

5.2.1 Overview of HBLF

Let S denote the source node in hexagon Ho, k denote the level number to be covered,

and vp denote the forwarding node that was an immediate predecessor to the current

forwarding node. Let Hp denote the hexagon that contains the node vp. Throughout

this work the following notation is used.

• ID(v) = ID of a node v.

• ID(P) = ID of a data packet P .

• location(H) = location of a hexagon H defined by its centre.

• colour(H) = colour of a hexagon H.

The algorithm starts as follows. An originating node S in hexagon Ho sends a

data packet P . The header of P contains the following information:[
ID(P), ID(S), location(Ho), colour(Ho), level k

ID(vp), location(Hp), colour(Hp)

]
.

Initially S sends P with the following header[
ID(P), ID(S), location(Ho), colour(Ho), k = 0, ID(vp) = ID(S),

location(Hp) = location(Ho), colour(Hp) = colour(Ho)

]
.

The idea of the algorithm is to progress the forwarding of P in a controlled manner.

Initially S sets k = 0 and broadcasts P , where all hexagons in C(Ho) receive P , and

from the value of k can determine the next level to be covered is level 1. Forwarding

nodes from C(Ho) set k = 1 in the header of P and forward P in the aim to cover

level 1.

A node v in a hexagon Hv can deduce the following information.

1. v knows if a node v′ ∈ Hv has forwarded P , since the radius of any hexagon is

smaller than the transmission range of any node.

2. v knows the colours of all hexagons in C(Hv), since v knows the colour of Hv

and the colouring scheme of the overlayed hexagonal virtual network.
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3. v that receives P from a node u ∈ Hu, where Hv 6= Hu, can deduce the colours

of all hexagons in C(Hu), since v knows the colours of Hv, Hu and the colouring

scheme of the overlayed hexagonal virtual network.

4. v that receives P knows which level Hv is on with respect to Ho since the

location of Ho is stored in the header of P .

5. If Hv is of colour blue then v knows (a) the level which Hv is on with respect to

Ho and hence, also knows h; (b) if Hv is a corner, Type A or Type B hexagon,

and (c) the hop distance between Hv and LCH (if Hv is not LCH).

Thus, when a node v ∈ Hv receives P from a node u, v will act differently based

on the local information available to it. If u ∈ Hv, then v will ignore P . However,

if u /∈ Hv, then without loss of generality, let u ∈ Hu. Then, if Hv 6⊂ C(Hu), v will

ignore P . Otherwise, where Hv ⊂ C(Hu), v will start a contention timer th + tc.

The th component is set to determine which hexagons amongst C(Hu) contain a

forwarding node. The tc component is set to determine a forwarding node within a

given hexagon Hi. When all nodes in a given hexagon Hi start respective contention

timers th + tc upon receival of P from a node v ∈ Hj, for all j ≥ 0 and j 6= i, the

th component for all nodes u ∈ Hi is the same. The value of th for all nodes u ∈ Hi

is determined by the colour of Hi ⊂ C(Hj). As mentioned earlier, one colour has

priority over another and the priorities of colours depend on the colour of Ho. The

higher the priority of the colour of Hi ⊂ C(Hj), the smaller will be the value of th.

If Hi is blue and a corner hexagon, then the value of th will be smaller than if Hi

was either a blue Type A/B hexagon or a yellow/pink hexagon. Similarly, if Hi is an

outer yellow hexagon in C(Hj), then the value of th for all nodes in Hi will be smaller

than if Hi was an inner yellow hexagon or a pink hexagon in C(Hj). The value of th

for all nodes in a hexagon Hi can be set similarly, depending on the colour priority

of Hi.

For a given hexagon Hi ⊂ C(Hj) that has received a message from Hj for i 6= j,
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we define th = m
2
q, where q ∈ R+ and

m = 2
3

if Hi is a corner blue hexagon

m = 4
3

if Hi is a Type A blue hexagon

m = 2 if Hi is a Type B blue hexagon

m = 3 if Hi is an outer yellow hexagon

m = 4 if Hi is an inner yellow hexagon

m = 5 if Hi is an outer pink hexagon

m = 6 if Hi is an inner pink hexagon.

The value of tc can be chosen many ways. We choose the value of tc of each node

v ∈ Hi to be determined by the distance between the centre of Hi and v, denoted

as d(v, Ci), where Ci is the centre of Hi. Define tc = αi d(v, Ci) +
m

2
q, where αi is a

random number in the interval [0, 1]. The closer the distance between node v ∈ Hi

and Ci, the smaller will be the value of tc for node v. Thus, from the definitions of th

and tc, th + tc = αi d(v, Ci) +mq.

Upon the expiration of th + tc, if Hv is a corner or a Type A blue hexagon, then

v will forward P if it has not received P from any node v′ ∈ Hv. Otherwise, if Hv

is a blue hexagon of Type B, or a yellow/pink hexagon and v covers hexagons on

level k not already covered by hexagons in C(Hv), then v will forward P . There may

arise a case when v ∈ Hv receives P from u ∈ Hu such that Hv ⊂ C(Hu) and upon

the expiration of th + tc v does not cover any additional hexagons on level k, but

may cover hexagons in C(Hv) not yet covered on levels greater than k or less than

k. In this case, v will start a contention timer th + tc for the second time. Upon the

expiration of this second timer th + tc, if v still covers any hexagons in C(Hv) not

already covered, then v will forward P .

5.2.2 Motivation of Blue Hexagon Categorization

We assumed previously that the source node is in the hexagon Ho and Ho is of colour

blue. The first colour priority is given to blue hexagons and hence, blue hexagons are

further categorized into corner, Type A and Type B blue hexagons. From Lemma

5.3.1 in Section 5.3 it can be seen that if there is at least one node in every blue

hexagon, then the corner and Type A blue hexagons cover the entire network and

Type B blue hexagons do not need to forward P . If the categorization of blue hexagons
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Algorithm 3 HBLF

Input: A network overlayed with hexagon tiles, source node S ∈ Ho, location(Ho),
colour(Ho) = blue.

Output: Every node in the network receives the message.

1: S sends P with header
[
ID(P ), ID(vp) = ID(S), location(Hp) = location(Ho),
colour(Hp) = colour(Ho), k = 0

]
.

. Case 1: Node v ∈ Hv has received P from node u ∈ Hv to cover level k.
2: if v has a contention timer running for P then
3: v cancels its timer and ignores P .
4: end if

. Case 2: Node v ∈ Hv has received P from node u ∈ Hu to cover level k.
5: if Hv 6⊂ C(Hu) then
6: Node v ignores the data packet P .
7: else if v or any v′ ∈ Hv has already forwarded P then
8: v ignores the data packet P .
9: else
10: Node v starts a contention timer th + tc.

. Upon the expiration of th + tc
11: if colour(Hv) is blue then
12: Blue Fwd(v, P )
13: end if
14: if colour(Hv) is yellow or pink then
15: NonBlue Fwd(v, P )
16: end if
17: end if

was not present, then all blue hexagons will forward P and cover the entire network.

Thus, the reason for this categorization is to reduce the number of forwarding nodes in

the network. However, note that the disadvantage of this improvement in the number

of forwarding nodes is that it increases the delay of the network. Thus, if we want

improvement in the number of forwarding nodes, we use the categorization of blue

hexagons into corner, Types A and B hexagons. Otherwise, to have improvement in

the overall delay, we do not use any categorization of the blue hexagons at all and

have all blue hexagons forward P .
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Algorithm 4 Blue Fwd(v, P )

1: Let v ∈ Hv

2: if v has not heard P from any other w ∈ Hv then
3: if

(
Hv is a corner or Type A hexagon

)
or
(
Hv is a Type B hexagon and

v covers additional hexagons on level k not yet covered
)

then
4: update(v, P )
5: v forwards the data packet P
6: else if Hv is a Type B hexagon and v covers additional hexagons

in C(Hv) not on level then
7: v starts a contention timer th + tc
8: if upon the expiration of th + tc v has not heard P from any other

w ∈ Hv and v covers additional hexagons in C(Hv) then
9: update(v, P )
10: v forwards the data packet P
11: end if
12: end if
13: end if

Algorithm 5 update(v, P )

1: v sets k = k + 1 in header of P
2: v sets ID(vp) = ID(v) in header of P
3: v sets location(Hp) = location(Hv) in header of P
4: v sets colour(Hp) = colour(Hv) in header of P

Algorithm 6 NonBlue Fwd(v, P )

1: Let v ∈ Hv

2: if v has not heard P from any other w ∈ Hv and v covers any additional hexagons
on level k not yet covered then

3: update(v, P )
4: v forwards the data packet P
5: else if v covers additional hexagons in C(Hv) not on level k then
6: v starts a contention timer th + tc.
7: if upon the expiration of th + tc v has not heard P from any other

w ∈ Hv and v covers additional hexagons in C(Hv) then
8: update(v, P )
9: v forwards the data packet P
10: end if
11: end if
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5.3 Theoretical Analysis

In this section we analyze the performance of HBLF. In a network data packets can

collide with one another when being sent on a shared medium. In our analysis we

consider a collision-free network, which is connected (i.e. there is a path from any

node u to a node v). The next results that follow are concerning the full delivery of

a data packet P in a network, where there are no holes as well as in networks that

may contain holes. By hole we mean a region that does not contain any nodes, but

may contain nodes around its perimeter. We also consider the number of rounds it

takes for the algorithm to terminate. We define the term round as the time interval

(0, αid(v, Ci) + 6q] for q ∈ R, where this interval is bounded by the worst possible

value of the contention timer th + tc described in the previous section. Section 5.3.1

presents a lower bound as well as upper bounds in networks with or without holes.

The results in Section 5.3.2 are regarding the dilation factor of the shortest hexagonal

path by HBLF, between the originator s and a node v, to the shortest path of the

network between s and v. Section 5.3.2 also presents results on the broadcast time

of HBLF.

Lemma 5.3.1. Let the originator in the network be in a blue hexagon tile. If all blue

hexagon tiles are not empty, then by Algorithm 3 every node in the network receives

the message and Algorithm 3 terminates in at most k + 2 rounds, where k is the

outermost level number with respect to the originating hexagon.

Proof. The originator is in a blue hexagon Ho and hence, blue hexagons have highest

priority. Each level is in the shape of a hexagon and all six sides are symmetric. By

assumption there is at least one node in each blue hexagon and thus, it is enough to

show that every other blue hexagon that forwards the message on level i− 1 cover all

hexagons on level i.

The construction of each level is such that every yellow and pink hexagon on level

i is within the coverage area of three blue hexagons on level i− 1. Also, every corner

blue hexagon on level i is bridged with a corner blue hexagon on level i−1, and every

side blue hexagon on level i is bridged with two blue hexagons on level i− 1. Hence,

by Algorithm 3 when all corner blue hexagons and every other side blue hexagon on

level i − 1 forward the message, all hexagons on level i receive the message. Thus,

blue hexagons on levels (i− 1) ≥ 0 cover all hexagons on level i.
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After Algorithm 3 terminates k is the outermost level number with respect to Ho.

Note that when Algorithm 3 starts, the first level with respect to Ho is numbered 0.

Thus, in the first round of HBLF, Ho forwards the message. In the second round,

blue hexagons in C(Ho), which are on level 0 still, forward the message. Thus, after

Algorithm 3 terminates the length of the longest path returned by HBLF from Ho to

the farthest blue hexagon on level k is k + 1 hops. Thus, Algorithm 3 terminates in

at most k + 2 rounds.

Lemma 5.3.2. Let the originator in the network be in a blue hexagon tile. If all

other blue hexagon tiles are empty and all yellow hexagon tiles are not empty, then

by Algorithm 3 every node in the network receives the message and Algorithm 3 ter-

minates in at most k + 3 rounds, where k is the outermost level number with respect

to the originating hexagon.

Proof. Let the originator be in the hexagon Ho. By assumption Ho is of colour blue

and hence, blue hexagons have the highest priority. However, since all blue hexagons,

except Ho, are empty the next highest priority is that of yellow hexagons. Each level

is in the shape of a hexagon and all six sides are symmetric. By assumption there

is at least one node in each yellow hexagon. Since, blue hexagons are empty and

yellow hexagons have the highest priority, when their timers expire, they forward the

message.

It is enough to show that all hexagons on level i are collectively covered by yellow

hexagons on levels i− 1 and i. Note that the construction of each level is such that a

blue and pink hexagon on level i has at least 2 yellow hexagons in their coverage area

on levels i and i− 1. Also note that for each yellow hexagon Hy on level i− 1, there

is a blue and/or pink hexagon that is reachable only from Hy and its adjacent pink

hexagons. Since yellow hexagons have higher priority, Hy will forward the message

first before the pink hexagons’ timers expire. This is the case for all other yellow

hexagons. As a result all yellow hexagons will forward the message. Since all yellow

hexagons are bridged together in the hexagonal graph and each yellow hexagon is

adjacent to three pink and three blue hexagons due to the colouring scheme of the

hexagonal graph, then when yellow hexagons on levels i−1 and i forward the message

every pink and blue hexagon on level i will receive the message. Thus, every node in

the network will receive the message.

After Algorithm 3 terminates k is the outermost level number with respect to
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Ho. From Lemma 5.3.1 when the blue hexagons forward the message Algorithm 3

terminates in at most k + 2 rounds. Since yellow hexagons on level i are adjacent to

blue hexagons on level i, then there are yellow hexagons on level k that will forward

the message in the (k+2)-th round. Note that the outermost hexagons on level k (i.e.

hexagons adjacent to the boundary line of level k) are blue hexagons. The colouring

scheme of the hexagonal graph and the construction of each level is such that in the

three alternating sides of the total six sides of level k, yellow hexagons are adjacent

to the boundary of level k; and on the remaining three alternating sides of the total

six sides of level k, pink hexagons are adjacent to the boundary of level k. Hence, the

pink hexagons adjacent to the boundary of level k potentially cover hexagons outside

of the network region that could not be covered by their adjacent yellow hexagons

on level k. Thus, the pink hexagons adjacent to the boundary of level k will forward

the message after the yellow hexagons on level k have forwarded the message in the

(k+ 2)-th round. Therefore, Algorithm 3 will terminate in at most k+ 3 rounds.

Lemma 5.3.3. Let the originator in the network be in a blue hexagon tile. If all

other blue and yellow hexagons are empty and all pink hexagons are not empty, then

by Algorithm 3 every node in the network receives the message and Algorithm 3 ter-

minates in at most k + 2 rounds, where k is the outermost level number with respect

to the originating hexagon.

The proof of Lemma 5.3.3 is similar to that of Lemma 5.3.2.

We assume that the network is connected, i.e. there is a path from any node u to

node v. To achieve full delivery by Algorithm 3 in presence of holes in the network

that are larger than a hexagon, we must make a stronger assumption that the network

is hexagon connected as defined below (see Figure 5.3.6).

Definition 5.3.1. Let PH = H1, H2, · · · , Hn be a sequence of hexagons such that

each Hi for 1 ≤ i ≤ n is non-empty and Hi+1 ⊂ C(Hi) for 1 ≤ i ≤ n − 1, then we

say that PH is a hexagonal path from H1 to Hn.

Definition 5.3.2. A network is hexagon connected if for any two nodes u ∈ Hu and

v ∈ Hv there is a hexagonal path from Hu to Hv (see Figure 5.3.6).

Theorem 5.3.1. In a wireless mobile ad-hoc network, where the network is hexagon

connected, Algorithm 3 terminates and achieves full delivery.
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(a) The network is connected as well as
hexagon connected since between any two
noes there exists a path and a hexagonal
path.

v1

v2

H1

H2

v7

H7

v6

H6

v5

H5
v4

H4

v3H3

(b) The network is connected since there
is a path between any two nodes, but it
is not hexagon connected since there is no
path from v1 to any other node.

Figure 5.3.6: Dashed lines represent edges that are in the original graph but not in
the hexagonal graph. Solid lines represent edges that are both in the original graph
and in the hexagonal graph.

Proof. Without loss of generality assume that the originator is in a blue hexagon tile.

By the algorithm only one node from each hexagon forwards the message and each

hexagon broadcasts the message at most once. Thus, broadcasting will eventually

terminate.

By contradiction, assume after the termination of the algorithm there is at least

one node v that has not received the message. Let v be in a hexagon denoted Hv.

Hv can be of colour blue, yellow or pink. Let Hs be the hexagon that has started

the broadcast. The network is hexagon connected and thus, there exists a hexagonal

path from Hs to Hv. Clearly, there are two neighbouring hexagons HA and HB such

that HB has not received the message and HA has received the message, but has not

forwarded it. Since HA ⊂ C(HB) has not forwarded the message, then HA is either a

blue side hexagon of Type B or of colour yellow or pink. HA cannot be a corner blue

hexagon or a side blue hexagon of Type A, since corner blue hexagons and side blue

hexagons of Type A broadcast the message immediately upon the expiration of their

timers.

HA, upon receiving the message starts a contention timer th+ tc. From the packet

header information and the network colouring scheme HA can deduce if there are
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any hexagons in C(HA) that have not been covered. Upon the expiration of th + tc,

HA may restart its contention timer if there are hexagons in C(HA) not covered.

Since HA has not broadcast the message after the expiration of any of its contention

timers, then there must be hexagons {H1, H2, · · · , Hj} ⊂ (C(HA) ∩ C(HB)), for

j = 1, 2, · · · , l and integer l, that have forwarded the message and HA does not

cover any more additional hexagons in C(HA). Thus, HB must be reachable from

{H1, H2, · · · , Hj}, otherwise, HA would broadcast the message. This contradicts our

assumption that HB has not received the message.

5.3.1 Lower and Upper Bounds

We now study the number of forwarders necessary to flood the network by the HBLF

algorithm. The analysis that follows determines lower and upper bounds on the

number of forwarding nodes, denoted β. Since we consider an overlay network of

hexagons, it is natural to give an upper bound on β on a hexagonal shape network.

Thus, in all the results that follow we assume that the wireless ad hoc network,

denoted as G, is of hexagonal shape and H(G) denotes the network G with the

overlay hexagonal network.

Definition 5.3.3. Consider a network G, where H(G) is the overlay hexagonal net-

work of G. Let Hc be the central hexagon of H(G) and let Hb be the outermost corner

hexagon of H(G). Let d denote the Euclidean distance between the centres of Hc and

Hb. Then the radius of H(G) is given by d
3r

, where r is the radius of each hexagon in

H(G) and 3r is the Euclidean distance between the centres of two bridged hexagons.

Theorem 5.3.2. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where k is the radius of H(G). The number of forwarders β in G is at least β ≥⌈
9
√

3(9k2+3k+1)−168π

28(2π+3
√

3)

⌉
+ 1.

Proof. To determine a lower bound on the number of forwarders in G, we give an

area argument. That is, dividing the area spanned by G by the area covered by a

transmitting node, we will obtain the minimum number of forwarders needed to flood

the network.

Each node has the same transmission range. Hence, the circular region that is

covered independently by each node is the same and is given by AR = πR2. Let
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the originator be denoted as v. The area covered by v is Av = AR = πR2. After

the originator sends the data packet P , some or all neighbours of v must continue to

forward P . At this step the best possible coverage by any neighbour of v will occur if

it is on the boundary of the circular transmission disk of v (see Figure 5.3.7). Hence,

any neighbour u of v on the boundary of the transmission disk of v will cover an area

that is less than Av, since the transmission disks of u and v intersect.

vuAM

Figure 5.3.7: Node v is the originator. The most area that can be covered by a
neighbouring node u of v is denoted as AM .

The area covered by any neighbour u of v is in a moon shape and is denoted AM

(see Figure 5.3.7). The originator covers an area Av and every other node covers at

most an area AM . Thus, knowing the area spanned by G, denoted AG, a lower bound

on the number of forwarders can be given by⌈
(AG − Av)

AM

⌉
+ 1. (1)

We first calculate the area AG, where the radius of H(G) is k. Since the radius of

H(G) is k, then from the centre of H(G) the maximum level of H(G) is k − 1. On a

given level i, the number of blue hexagons on each of the six sides of H(G) is i + 2.

Hence, there are 6(i + 2) − 6 = 6(i + 1) blue hexagons on level i, since the corner

hexagons are shared by consecutive sides. On each of the six sides of level i, there

are 2i + 1 non-blue hexagons. Hence, on each level i of H(G), there are 6(2i + 1)

non-blue hexagons. Thus, on each level i ≥ 0 there are 6(i+ 1) + 6(2i+ 1) = 18i+ 12

hexagons (excluding the originating hexagon). Since the maximum level from the
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centre of H(G) is k − 1, then the number of hexagon tiles in H(G) is given by

1 + (18 · 0 + 12) + (18 · 1 + 12) + · · ·+ (18i+ 12) + · · ·+ (18k + 12)

= 1 + 12k + 18
[
1 + 2 + · · ·+ (k − 1)

]
= 1 + 12k + 18

(k − 1)(k)

2
= 1 + 12k + 9k(k − 1)

= 9k2 + 3k + 1. (2)

The area of each hexagon tile in the network with radius r is given by

ASH =
3
√

3

2
r2. (3)

Thus, from Equations 2, 3 and r =
R

2
√

7
we have

AG =
3
√

3

2
r2
[
9k2 + 3k + 1

]
=

3
√

3

56
R2
[
9k2 + 3k + 1

]
. (4)

To calculate AM we use the areas shown in Figure 5.3.8. The area As denotes the area

of the four segments made by the points xy, xw, yz and zw. The area AT denotes

the area of the two triangles made by the points xyz and xzw. The area Ac denotes

the area of the sector made by the points xyw. Thus, the moon shape area is given

by

AM = πR2 − (Ac + 2As). (5)

The area Ac, is given by Ac = θ
2π
πR2, where θ = ∠yxw = 2α. Since, 4xzw is an

equilateral triangle, then α = π
3
. Thus,

Ac =
2π

3

1

2π
πR2 =

πR2

3
(6)

The area 2As, is given by

2As = Ac − 2AT . (7)

The area AT = Rh
2

, where h = R sin π
3

=
√

3
2
R. Thus,

2AT = Rh = R

(√
3

2
R

)
=

√
3

2
R2. (8)
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R
AM

AT
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Figure 5.3.8: The area of intersection between the transmission disk of z and x is
Ac + 2As.

From Eqs. 6, 8 and 7 we have

2As = Ac − 2AT

=
πR2

3
−
√

3

2
R2 = R2

(
π

3
−
√

3

2

)

= R2

(
2π − 3

√
3

6

)
(9)

From Eqs. 6, 9 and 5 we obtain the moon shape area to be

AM = πR2 − (Ac + 2As)

= πR2 − πR2

3
−R2

(
π

3
−
√

3

2

)

=
2πR2

3
− πR2

3
+

√
3R2

2

=
π

3
R2 +

√
3

2
R2 = R2

(
π

3
+

√
3

2

)

= R2

(
2π + 3

√
3

6

)
(10)
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From Equations 1, 4 and 10, we have

β ≥
⌈
AG − Av
AM

⌉
+ 1

=

⌈(
3
√

3

56
R2
(
9k2 + 3k + 1

)
− πR2

)
6

R2
(
2π + 3

√
3
)⌉+ 1

=

⌈
6(

2π + 3
√

3
) (3

√
3

56

(
9k2 + 3k + 1

)
− π

)⌉
+ 1

=

⌈
6

(
3
√

3 (9k2 + 3k + 1)− 56π

56
(
2π + 3

√
3
) )⌉

+ 1

=

⌈
9
√

3 (9k2 + 3k + 1)− 168π

28
(
2π + 3

√
3
) ⌉

+ 1.

Lemma 5.3.4. Let G denote the wireless mobile ad hoc network of hexagonal shape

and H(G) is centred at a blue hexagon. Let k be the radius of H(G). If the origi-

nator is in a blue hexagon and all blue hexagons are not empty, then the number of

forwarders β in G is at most β ≤ 3
2
k2 + 3k + 45

2
.

Proof. Since the central hexagon ofH(G) is blue andG is of hexagonal shape, then the

outermost hexagons of H(G) must be blue to keep the symmetry of the hexagonal

shape of G. Determining β in G is equivalent to determining the number of blue

hexagons in H(G) that contain forwarding nodes. Since not all blue hexagons forward

the packet P (i.e. Type B blue hexagons stay silent), we cannot simply calculate the

number of blue hexagons defined by the region H(G).

Let Ho denote the originating hexagon and hence, it is of colour blue. Note that

Ho can be anywhere in H(G). Let Hc denote the central hexagon of H(G). Since

by HBLF every other blue hexagon forwards P , depending on where the algorithm

starts in H(G), the number of forwarders may vary. Thus, we must consider the shift

of Ho from Hc.

There are two possible shifts: a shift on one of the six axis, denoted sa and an

angular vertical shift, denoted sv. Figure 5.3.9 depicts the two possible shifts of Ho

from Hc in a hexagonal shape network G. Let the total shift be denoted by s = sa+sv.

By the HBLF algorithm, the construction of each level is centred at Ho. Thus, to

calculate the number of forwarding hexagons in H(G), we must calculate the most
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number of forwarding hexagons in each shifted sector centred at Ho (see Figure 5.3.9).

sa

sv

H(G)

k

S1

S2S6

S3S4S5

sa × sa

sv × sv

(sa + sv)× (sa + sv)(sa + sv)× (sa + sv)

sa × sa
sv × sv

Hc

Ho

Figure 5.3.9: Each node represents a blue hexagon in H(G). The 6 black bold lines
are the six axis of H(G) centred at Hc. The 6 blue bold lines are the six shifted axis
centred at Ho.

A shifted sector can cover an area that is outside of the boundary region of H(G).

For example, sector S1 in Figure 5.3.9 contains a triangular region with dimensions

sa×sa on the left and a triangular region with dimensions sv×sv on the right that are

not inH(G). Thus, when calculating number of forwarding nodes in S1, the number of

forwarding hexagons that fall within sa×sa and sv×sv must be subtracted. However,

note that those hexagons that are on the base of sa × sa and on the base of sv × sv
share a boundary with H(G), and hence, may be forwarding hexagons. Thus, these

hexagons should not be subtracted.
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The dimensions of each of the shifted sectors and the additional triangular regions

not in H(G) (labelled A.T.R.) are as follows.

S1: (k − sa + 2sa + sv)× (k − sa + 2sa + sv) ≡ (k + sa + sv)× (k + sa + sv)

A.T.R.: sa × sa; sv × sv

S2: (k − sv + sa + sv)× (k − sv + sa + sv) ≡ (k + sa)× (k + sa)

A.T.R.: (sa + sv)× (sa + sv)

S3: (k − sa − sv + sa)× (k − sa − sv + sa) ≡ (k − sv)× (k − sv)
A.T.R.: sa × sa

S4: (k − sa − sv)× (k − sa − sv)

S5: (k − sa − sv + sv)× (k − sa − sv + sv) ≡ (k − sa)× (k − sa)
A.T.R.: sv × sv

S6: (k − sa + sa + sv)× (k − sa + sa + sv) ≡ (k + sv)× (k + sv)

A.T.R.: (sa + sv)× (sa + sv)

On each level i = k−1, there are i+2 blue hexagons and hence, by HBLF
⌊
i+2

2

⌋
+1

forwarding blue hexagons. Thus, the number of forwarding hexagons in a sector of

dimension (k+ s)× (k+ s) excluding the originator (i.e. the hexagon on the apex of

the sector) is given by

TS =

(⌊
0 + 2

2

⌋
+ 1

)
+

(⌊
1 + 2

2

⌋
+ 1

)
+ · · ·+

(⌊
k + s− 1 + 2

2

⌋
+ 1

)
= k + s+ 1 +

(⌊
2

2

⌋
+

⌊
3

2

⌋
+ · · ·+

⌊
k + s+ 1

2

⌋)
If k + s is even

TS = (k + s+ 1) + 1 + 1 + 2 + 2 + · · ·+ k + s

2
+
k + s

2

= (k + s+ 1) + 2

(
1 + 2 + · · ·+ k + s

2

)
= (k + s+ 1) + 2

(k + s)

2

(
k + s

2
+ 1

)
1

2

=
1

4
k2 +

1

2
ks+

3

2
k +

1

4
s2 +

3

2
s+ 1
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If k + s is odd

TS = (k + s+ 1) + 1 + 1 + 2 + 2 + · · ·+ k + s− 1

2
+
k + s− 1

2
+
k + s+ 1

2

= (k + s+ 1) + 2

(
1 + 2 + · · ·+ k + s− 1

2

)
+
k + s+ 1

2

= (k + s+ 1) + 2
(k + s− 1)

2

(
k + s− 1

2
+ 1

)
1

2
+
k + s+ 1

2

= (k + s+ 1) +
(k + s− 1)

2

(k + s+ 1)

2
+

(k + s+ 1)

2

= (k + s+ 1) +
(k + s+ 1)

2

(k + s+ 1)

2
= (k + s+ 1) +

1

4
(k + s+ 1)2

=
1

4
k2 +

1

2
ks+

3

2
k +

1

4
s2 +

3

2
s+

5

4

In a s× s sector there are (s + 1) + s + · · · + 1 = (s+1)(s+2)
2

hexagons. The s + 1

hexagons on the base of the s × s sector that share a boundary with H(G), in the

worst case will forward P . Thus, the number of hexagons not in H(G) defined by

the s × s sector is given by TD = (s+1)(s+2)
2

− (s + 1) = 1
2
s2 + 1

2
s. Thus, the number

of forwarding hexagons in a sector with dimensions (k + s)× (k + s) that are also in

H(G), excluding Ho, is given by TFj
≤ TSj

− 1
2
s2− 1

2
s+ (s+ 1) = TSj

− 1
2
s2 + 1

2
s+ 1.

Therefore, the number of forwarding hexagons in H(G) is the sum of all the TFj
sums

of each of the six shifted sectors. Note that this sum counts the hexagons that fall on

the axis twice, hence, it must be subtracted. Now, we present this calculation. There

are two cases to consider: (a) k + s is even and (b) k + s is odd.

(a) If k + s is even =⇒ TS = 1
4
k2 + 1

2
ks+ 3

2
k + 1

4
s2 + 3

2
s+ 1.

S1 : (k + sa + sv)× (k + sa + sv); A.T.R.: sa × sa; sv × sv.

TF1 ≤
1

4
k2 +

1

2
k(sa + sv) +

3

2
k +

1

4
(sa + sv)

2 +
3

2
(sa + sv) + 1− 1

2
s2
a +

1

2
sa + 1

− 1

2
s2
v +

1

2
sv + 1

=
1

4
k2 +

1

2
ksa +

1

2
ksv +

3

2
k − 1

4
s2
a −

1

4
s2
v +

1

2
sasv2sa + 2sv + 3

S2 : (k + sa)× (k + sa); A.T.R.: (sa + sv)× (sa + sv).

TF2 ≤
1

4
k2 +

1

2
ksa +

3

2
k +

1

4
s2
a +

3

2
sa + 1− 1

2
(sa + sv)

2 +
1

2
(sa + sv) + 1

=
1

4
k2 +

1

2
ksa +

3

2
k − 1

4
s2
a −

1

2
s2
v − sasv + 2sa +

1

2
sv + 2
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S3 : (k − sv)× (k − sv); A.T.R.: sa × sa.

TF3 ≤
1

4
k2 − 1

2
ksv +

3

2
k +

1

4
s2
v −

3

2
sv + 1− 1

2
s2
a +

1

2
sa + 1

=
1

4
k2 − 1

2
ksv +

3

2
k − 1

2
s2
a +

1

4
s2
v −

3

2
sv +

1

2
sa + 2

S4 : (k − sa − sv)× (k − sa − sv).

TF4 ≤
1

4
k2 +

1

2
k(−sa − sv) +

3

2
k +

1

4
(−sa − sv)2 +

3

2
(−sa − sv) + 1

=
1

4
k2 − 1

2
ksa −

1

2
ksv +

3

2
k +

1

4
s2
a +

1

4
s2
v +

1

2
sasv −

3

2
sa −

3

2
sv + 1

S5 : (k − sa)× (k − sa); A.T.R.: sv × sv.

TF5 ≤
1

4
k2 − 1

2
ksa +

3

2
k +

1

4
s2
a −

3

2
sa + 1− 1

2
s2
v +

1

2
sv + 1

=
1

4
k2 − 1

2
ksa +

3

2
k +

1

4
s2
a −

1

2
s2
v −

3

2
sa +

1

2
sv + 2

S6 : (k + sv)× (k + sv); A.T.R.: (sa + sv)× (sa + sv).

TF6 ≤
1

4
k2 +

1

2
ksv +

3

2
k +

1

4
s2
v +

3

2
sv + 1− 1

2
(sa + sv)

2 +
1

2
(sa + sv) + 1

=
1

4
k2 +

1

2
ksv +

3

2
k − 1

4
s2
v −

1

2
s2
a − sasv +

1

2
sa + 2sv + 2

The number of nodes on the six shifted axis, excluding the originator, is given by

(k+ sv) + (k+ sa) + (k− sv) + (k− sa− sv) + (k− sa− sv) + (k− sa) = 6k−2sa−2sv.

Thus, the number of forwarding nodes in H(G) is given by

TF ≤ TF1 + TF2 + TF3 + TF4 + TF5 + TF6 − 6k + 2sa + 2sv

=
3

2
k2 + 3k − sasv − s2

a + 4sa − s2
v + 4sv + 13

=

[
3

2
k2 + 3k + 13− sasv

]
+
[
−s2

a + 4sa
]

+
[
−s2

v + 4sv
]
,

where 0 ≤ sa ≤ k; 0 ≤ sv < k; 0 ≤ sa + sv ≤ k; and if sa = 0 =⇒ sv = 0.

Note that 3
2
k2 + 3k + 13 − sasv is maximized when sasv = 0. The maximum of

the parabolic function −s2
a + 4sa occurs when sa = 2 and hence, −s2

a + 4sa = 4.

Similarly, the maximum of the parabolic function −s2
v + 4sv occurs when sv = 2

and hence, −s2
v + 4sv = 4. Thus, the maximum possible value of TF is given by

TF ≤ 3
2
k2 + 3k + 13 + 4 + 4 = 3

2
k2 + 3k + 21 for k ≥ 4.
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Now, consider when k ≤ 3. Note that k + sa + sv must be even. Thus, for k = 1,

k = 2, and k = 3 the shifts sa and sv take on the following values and the answer for

TF follows.

k = 1: sa = 1 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 16 ≤ 3

2
k2 + 3k + 21

k = 2: (a) sa = 0 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 13 ≤ 3

2
k2 + 3k + 21

(b) sa = 1 and sv = 1 =⇒ TF ≤ 3
2
k2 + 3k + 18 ≤ 3

2
k2 + 3k + 21

(c) sa = 2 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 17 ≤ 3

2
k2 + 3k + 21

k = 3: (a) sa = 1 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 16 ≤ 3

2
k2 + 3k + 21

(b) sa = 1 and sv = 2 =⇒ TF ≤ 3
2
k2 + 3k + 18 ≤ 3

2
k2 + 3k + 21

(c) sa = 2 and sv = 1 =⇒ TF ≤ 3
2
k2 + 3k + 18 ≤ 3

2
k2 + 3k + 21

(d) sa = 3 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 16 ≤ 3

2
k2 + 3k + 21

Thus, for all k ≥ 1, when k + sa + sv is even β ≤ 3
2
k2 + 3k + 21.

(b) If k + s is odd =⇒ TS = 1
4
k2 + 1

2
ks+ 3

2
k + 1

4
s2 + 3

2
s+ 5

4
.

S1 : (k + sa + sv)× (k + sa + sv); A.T.R.: sa × sa; sv × sv.

TF1 ≤
1

4
k2 +

1

2
k(sa + sv) +

3

2
k +

1

4
(sa + sv)

2 +
3

2
(sa + sv) +

5

4

− 1

2
s2
a +

1

2
sa + 1− 1

2
s2
v +

1

2
sv + 1

=
1

4
k2 +

1

2
ksa +

1

2
ksv +

3

2
k − 1

4
s2
a −

1

4
s2
v +

1

2
sasv + 2sa + 2sv +

13

4

S2 : (k + sa)× (k + sa); A.T.R.: (sa + sv)× (sa + sv).

TF2 ≤
1

4
k2 +

1

2
ksa +

3

2
k +

1

4
s2
a +

3

2
sa +

5

4
− 1

2
(sa + sv)

2 +
1

2
(sa + sv) + 1

=
1

4
k2 +

1

2
ksa +

3

2
k − 1

4
s2
a −

1

2
s2
v − sasv + 2sa +

1

2
sv +

9

4

S3 : (k − sv)× (k − sv); A.T.R.: sa × sa.

TF3 ≤
1

4
k2 − 1

2
ksv +

3

2
k +

1

4
s2
v −

3

2
sv +

5

4
− 1

2
s2
a +

1

2
sa + 1

=
1

4
k2 − 1

2
ksv +

3

2
k +

1

4
s2
v −

1

2
s2
a −

3

2
sv +

1

2
sa +

9

4
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S4 : (k − sa − sv)× (k − sa − sv).

TF4 ≤
1

4
k2 +

1

2
k(−sa − sv) +

3

2
k +

1

4
(−sa − sv)2 +

3

2
(−sa − sv) +

5

4

=
1

4
k2 − 1

2
ksa −

1

2
ksv +

3

2
k +

1

4
s2
a +

1

2
sasv +

1

4
s2
v −

3

2
sa −

3

2
sv +

5

4

S5 : (k − sa)× (k − sa); A.T.R.: sv × sv.

TF5 ≤
1

4
k2 − 1

2
ksa +

3

2
k +

1

4
s2
a −

3

2
sa +

5

4
− 1

2
s2
v +

1

2
sv + 1

=
1

4
k2 − 1

2
ksa +

3

2
k +

1

4
s2
a −

1

2
s2
v −

3

2
sa +

1

2
sv +

9

4

S6 : (k + sv)× (k + sv); A.T.R.: (sa + sv)× (sa + sv).

TF6 ≤
1

4
k2 +

1

2
ksv +

3

2
k +

1

4
s2
v +

3

2
sv +

5

4
− 1

2
(sa + sv)

2 +
1

2
(sa + sv) + 1

=
1

4
k2 +

1

2
ksv +

3

2
k − 1

4
s2
v −

1

2
s2
a − sasv + 2sv +

1

2
sa +

9

4

The number of nodes on the six shifted axis, excluding the originator, is given by

(k+ sv) + (k+ sa) + (k− sv) + (k− sa− sv) + (k− sa− sv) + (k− sa) = 6k−2sa−2sv.

Thus, the number of forwarding nodes in H(G) is given by

TF ≤ TF1 + TF2 + TF3 + TF4 + TF5 + TF6 − 6k + 2sa + 2sv

=
3

2
k2 + 3k − sasv − s2

a + 4sa − s2
v + 4sv +

29

2

=

[
3

2
k2 + 3k +

29

2
− sasv

]
+
[
−s2

a + 4sa
]

+
[
−s2

v + 4sv
]
,

where 0 ≤ sa ≤ k; 0 ≤ sv < k; 0 ≤ sa + sv ≤ k; and if sa = 0 =⇒ sv = 0.

Note that 3
2
k2 + 3k + 29

2
− sasv is maximized when sasv = 0. The maximum of

the parabolic function −s2
a + 4sa occurs when sa = 2 and hence, −s2

a + 4sa = 4.

Similarly, the maximum of the parabolic function −s2
v + 4sv occurs when sv = 2

and hence, −s2
v + 4sv = 4. Thus, the maximum possible value of TF is given by

TF ≤ 3
2
k2 + 3k + 29

2
+ 4 + 4 = 3

2
k2 + 3k + 45

2
for k ≥ 4.

Now, consider when k ≤ 3. Note that k + sa + sv must be odd. Thus, for k = 1,

k = 2, and k = 3 the shifts sa and sv take on the following values and the answer for

TF follows.

k = 1: sa = 1 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 29

2
≤ 3

2
k2 + 3k + 45

2
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k = 2: sa = 1 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 35

2
≤ 3

2
k2 + 3k + 45

2

k = 3: (a) sa = 1 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 29

2
≤ 3

2
k2 + 3k + 45

2

(b) sa = 1 and sv = 1 =⇒ TF ≤ 3
2
k2 + 3k + 39

2
≤ 3

2
k2 + 3k + 45

2

(c) sa = 2 and sv = 0 =⇒ TF ≤ 3
2
k2 + 3k + 37

2
≤ 3

2
k2 + 3k + 45

2

Thus, for all k ≥ 1, when k + sa + sv is odd β ≤ 3
2
k2 + 3k + 45

2
. Therefore, for all

k ≥ 1, β ≤ 3
2
k2 + 3k + 45

2
.

Lemma 5.3.5. Let G denote the wireless mobile ad hoc network of hexagonal shape

and H(G) is centred at a non-blue hexagon. Let the radius of H(G) be k. If the

originator is in a blue hexagon and all blue hexagons are not empty, then the number

of forwarders β in G is at most β ≤ 3
2
k2 + 3k + 45

2
.

Proof. Let H(Gb) denote the hexagonal network with radius k centred at a blue

hexagon. The difference between H(G) and H(Gb) is a vertical shift of one hexagon

(see Figure 5.3.10). Thus, the three of the six sides of the outermost hexagons of

H(Gb) are not in H(G). Thus, it follows that the number of forwarders in H(G) is at

most β ≤ 3
2
k2 + 3k + 45

2
.

From Lemmas 5.3.4 and 5.3.5, Theorem 5.3.3 follows.

Theorem 5.3.3. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where the radius of H(G) is k. If the originator is in a blue hexagon and all blue

hexagons are not empty, then the number of forwarders β is at most β ≤ 3
2
k2+3k+ 45

2
.

The upper bound on the number of forwarders β ≤ 3
2
k2 + 3k + 45

2
in Theorem

5.3.3 considers the case when blue hexagons are further prioritized into corner, Type

A and Type B hexagons. As we noted earlier in Section 5.2.2 this incurs additional

delay. To reduce the overall delay, this categorization can be removed and as a result

all blue hexagons will forward P . Thus, Theorem 5.3.4 presents this result where blue

hexagons are not categorized at all.

Theorem 5.3.4. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where the radius of H(G) is k. Let the originator be in a blue hexagon, where blue

hexagons are not categorized. If all blue hexagons are not empty then the number of

forwarders β is at most β ≤ 3k2 + 3k + 1.
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boundary of H(G) boundary of H(Gb)

Hy

Hb

Figure 5.3.10: Black bold line represents the outside boundary of H(G), which is
centred at Hy. The red bold line represents the outside boundary of H(Gb) centred
at Hb and is of the same radius as H(G). Note that the blue hexagons are entirely
engulfed in H(Gb).

Proof. Since blue hexagons are not categorized, then all blue hexagons will forward

P . Thus, to obtain an upper bound on β we must only count the number of blue

hexagons in H(G). Since the radius of H(G) is k, then from the centre of H(G)

the maximum level of H(G) is k − 1. The central hexagon of H(G) is either a blue

hexagon or a non-blue hexagon. From Figure 5.3.10 and Lemmas 5.3.4, 5.3.5 it can

be seen that the number of blue hexagons is more when the central hexagon in H(G)

is of colour blue. Thus, without loss of generality let the central hexagon of H(G) be

blue.

On a given level i, the number of blue hexagons on each of the six sides of H(G)

is i + 2. Hence, there are 6(i + 2) − 6 = 6(i + 1) blue hexagons on level i, since the

corner hexagons are shared by consecutive sides. Since the maximum level from the

centre of H(G) is k− 1, then the number of blue hexagon tiles in H(G) including the
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central hexagon is given by

1 + 6(0 + 1) + 6(1 + 1) + 6(2 + 1) + · · ·+ 6(k − 1 + 1)

= 1 + 6
[
1 + 2 + 3 · · ·+ k

]
= 1 + 6

k(k + 1)

2
= 3k2 + 3k + 1

Thus, the number of forwarders β is at most β ≤ 3k2 + 3k + 1.

For k ≤ 3 the result in Theorem 5.3.4 is better than that of in Theorem 5.3.3.

However, for k > 3 the number of forwarders is much less when blue hexagons are

categorized; and as k becomes large enough, the number of forwarders when blue

hexagons are not categorized become almost 2 times more than if categorization of

hexagons was present.

We now determine the upper bound on the number of forwarding nodes in presence

of voids in the network. First we present some observations and definitions.

Definition 5.3.4. Two hexagons Hi and Hi+1 are called aligned hexagons if Hi and

Hi+1 are of the same colour and the Euclidean distance between their centres is 3
√

3r,

where r is the radius of a hexagonal tile (see Figure 5.3.11).

Ha

Hb

Hc
Hd

He

Hf

3
√
3r

r

Hi

Figure 5.3.11: The pairs of aligned hexagons in C(Hi) are (Ha, He), (Ha, Hc),

(Hb, Hf ), (Hb, Hd), (Hc, He), (Hd, Hf ).

Consider an empty blue hexagon denoted He. Let Hi and Hi+1 be two bridged

blue hexagons in C(He). We note the following observations on hexagons forwarding

P to cover C(He).
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Observation 5.3.1. Let Ha denote an outer yellow or pink hexagon in C(He). If Ha

is adjacent to both Hi, Hi+1 (i.e. Hi and Hi+1 are bridged hexagons) and Hi, Hi+1

have forwarded P , then Ha will stay silent (see Figure 5.3.12).

Observation 5.3.2. A non-blue hexagon in C(He) that has received P from two

aligned blue hexagons, Hi and Hi+1, will stay silent (see Figure 5.3.13).

He

Hi Hi+1

Ha

Figure 5.3.12: He is empty. Hi and Hi+1

have forwarded P . Patterned region de-
note C(He)∩C(Ha), which is covered by
Hi andHi+1. Thus, Ha that has received
P from two bridged blue hexagons Hi

and Hi+1 stays silent.

He
Hi

Hi+1

Ha

Hb

Figure 5.3.13: He is empty. Hi, Hi+1

have forwarded P . Patterned region de-
note [C(He) ∩ C(Ha)]∪ [C(He) ∩ C(Ha)],
which is covered by Hi and Hi+1. Thus,
Ha and Hb that have received P from two
aligned hexagons Hi, Hi+1 stay silent.

Definition 5.3.5. Let Hi and Hj be blue hexagons and let Hj ⊂ C(Hi). The hexagons

in [C(Hi) ∩ C(Hj)] are categorized as left neighbourhood of Hj, denoted LN(Hj),

and right neighbourhood of Hj, denoted RN(Hj). Hexagons in [C(Hi) ∩ C(Hj)]

encountered in a clockwise direction from the centre of Hj to the centre of Hi fall in

LN(Hj). All others in [C(Hi) ∩ C(Hj)] fall in RN(Hj) (see Figure 5.3.14).

Theorem 5.3.5. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where the radius of H(G) is k. If the originator is in a blue hexagon, then the number

of forwarders β is at most β ≤ 5
(

3
2
k2 + 3k + 45

2

)
.

Proof. For each empty Type A and corner hexagon, denoted He, we must determine

at most how many extra hexagons forward the packet P to cover C(He).
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Hi

Hj

LN(Hj)

RN(Hj)
a

b

c

d

e

f

g

h

Figure 5.3.14: Hexagons a, b, c, d are in LN(Hj) and hexagons e, f , g, h are in
RN(Hj).

In the proof that follows we only consider the cases, where the extra forwarding

hexagons are in C(He). Note that, there may be a hexagon Ha 6⊂ C(He) that forwards

P and all hexagons in C(Ha) ∩ C(He) receive P . If Ha is a corner or Type A blue

hexagon, then it is not considered as an extra forwarding hexagon to compensate for

the empty hexagon He. If Ha is a Type B blue hexagon or a yellow or pink hexagon,

there must be an empty Type A or corner hexagon in C(Ha) that is empty. Thus,

Ha is already counted as an extra forwarding hexagon once. Therefore, it is sufficient

to consider the number of extra forwarding hexagons in C(He).

We now determine the extra number of forwarding hexagons in C(He). Before the

details of the proof, we first present a sketch of the proof in several steps that follows.

There are 6 main cases to consider (i.e. any combination of the six blue hexagons

in C(He) may be empty). These 6 main cases are based on combinations of 4 basic

cases. There may be several Type A and corner hexagons in C(He) that may forward

P or may be empty. Due to each level construction the location orientation of Type

A and corner hexagons with respect to Type B hexagons in C(He) (denoted AC-

orientation henceforth) are specific. There are 4 such AC-orientations possible in

C(He), for any Type A or corner hexagon He. Hence, once the number of forwarding

hexagons are determined in each of the 6 main cases, the results must be mapped to

each AC-orientation of C(He) to determine the largest number of forwarding hexagons

for one empty Type A or corner hexagon. Thus, the steps of the proof are as follows:

1. 4 base cases in C(He).
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2. 6 main cases, where any combination of blue hexagons in C(He) may be empty

(based on combinations of the 4 base cases in (1)).

3. Map results from (2) to each of the 4 AC-orientations of C(He).

Base Case 1 (BC1):

Let Hi be an empty blue hexagon in C(He) and let all other five blue hexagons

forward P as shown in Figure 5.3.15. Crossed pink and yellow hexagons will stay

silent by Observations 1 and 2. Thus, instead of Hi forwarding P , a or b will forward

P , depending whose timer expires first.

He

Hi

b

a

Figure 5.3.15: Bold outlined hexagons denote empty hexagons. Crossed hexagons
denote silent hexagons by Observations 1 and 2. Circles/squares centred in hexagons
denote forwarding hexagons. Patterned region is C(He) ∩ C(Hi). a will forward P
instead of Hi.

Base Case 2 (BC2):

Let Hi and Hi+1 be empty blue hexagons in C(He) and let all other four blue hexagons

forward P as shown in Figure 5.3.16. Crossed pink and yellow hexagons stay silent by

Observations 1 and 2. We determine the largest number of extra hexagons to forward

P to cover [C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+1)] in two steps: 1) largest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi) and 2) laregest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi+1).

Step1: Determine which of a, b, c, d, e in C(He) ∩ C(Hi) forward P (Figure 5.3.16(a)).

If d or b forward P , then a, c, e hearing P from d or b will stay silent since d or b
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alone cover the non-crossed hexagons (a, c, e, Hi+1) in C(He)∩C(Hi). Hence, in this

case at most 1 hexagon is needed to forward P to compensate for the empty hexagon

Hi. However, if d and b are silent/empty, then a will forward P to cover b, and c will

forward P to cover e and Hi+1 or e will forward P to cover c and Hi+1. Thus, at most

2 hexagons will forward P to compensate for the empty hexagon Hi.

Step2: Determine which of b, c, d, e, f in C(He) ∩ C(Hi+1) forward P (Figure 5.3.16(b)).

In a similar argument as in Step1, if d or b forward P , then c, e, f will stay silent.

Thus, in this instant at most 1 hexagon will forward P instead of the empty Hi+1.

However, if d and b are silent then, f will forward P to cover b, and e will forward P

to cover c and Hi or c will forward P to cover e and Hi. Hence, at most 2 hexagons

will forward P to compensate for the empty hexagon Hi+1. However, note that one

of these two hexagons (e or c) is the same as in Step1.

Thus, for BC2 at most 3 hexagons forward P to compensate for the empty

hexagons Hi and Hi+1 in C(He).

He

Hi

b

a

Hi+1

e
c

df

(a) Step1 of BC2: the hexagons a and c
forward P to cover C(He) ∩ C(Hi).

He

Hi

b

a

Hi+1

e
c

df

(b) Step2 of BC2: the hexagons c and f
forward P to cover C(He) ∩ C(Hi+1).

Figure 5.3.16: Bold outlined hexagons denote empty hexagons. Crossed hexagons
denote silent hexagons by Observations 1 and 2. Circles/squares centred in hexagons
denote forwarding hexagons. The hexagons a, c, f collectively cover the region
[C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+1)].
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Base Case 3 (BC3):

Let Hi and Hi+2 be empty blue hexagons in C(He) and let all other four blue hexagons

forward P as shown in Figure 5.3.17. Crossed pink and yellow hexagons stay silent by

Observations 1 and 2. We determine the largest number of extra hexagons to forward

P to cover [C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+2)] in two steps: 1) largest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi) and 2) largest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi+2).

Step1 (Figure 5.3.17(a))

In C(He) ∩ C(Hi), a and b are the only non-crossed hexagons that may forward P .

a will forward P to cover b or vice versa, depending whose timer expires first. Thus,

at most 1 hexagon will forward P to compensate for the empty hexagon Hi.

Step2 (Figure 5.3.17(b))

In C(He)∩C(Hi+2), c and d are the only non-crossed hexagons that may forward P .

c will forward P to cover d or vice versa, depending whose timer expires first. Hence,

at most 1 hexagon will forward P to compensate for the empty hexagon Hi+2.

Thus, for BC3 at most 2 hexagons forward P to compensate for the empty

hexagons Hi and Hi+2 in C(He).

He

Hi

b

a

Hi+2

c

d

(a) Step1 of BC3: the hexagon a for-
wards P to cover C(He) ∩ C(Hi).

He

Hi

b

a

Hi+2

c

d

(b) Step2 of BC3: the hexagon d for-
wards P to cover C(He) ∩ C(Hi+2).

Figure 5.3.17: Bold outlined hexagons denote empty hexagons. Crossed hexagons
denote silent hexagons by Observations 1 and 2. Circles/squares centred in hexagons
denote forwarding hexagons. The hexagons a, d collectively cover the region
[C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+2)].
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Base Case 4 (BC4):

Let Hi and Hi+3 be empty blue hexagons in C(He) and let all other four blue hexagons

forward P as shown in Figure 5.3.18. Crossed pink and yellow hexagons stay silent by

Observations 1 and 2. We determine the largest number of extra hexagons to forward

P to cover [C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+3)] in two steps: 1) largest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi) and 2) largest number of

hexagons needed to forward P to cover C(He) ∩ C(Hi+3).

Step1 (Figure 5.3.18(a))

In C(He)∩C(Hi), a, b, c, d are the only non-crossed hexagons that may forward P . a

will forward P to cover b or vice versa, depending whose timer expires first. Similarly,

c will forward P to cover d or vice versa, depending whose timer expires first. Thus,

at most 2 hexagons will forward P to compensate for the empty hexagon Hi.

He

Hi

b

a

Hi+3

f

c

d

e

(a) Step1 of BC4: the hexagons a, d for-
ward P to cover C(He) ∩ C(Hi).

He

Hi

b

a

Hi+3

f

c

d

e

(b) Step2 of BC4: the hexagons d, f for-
ward P to cover C(He) ∩ C(Hi+3)

Figure 5.3.18: Bold outlined hexagons denote empty hexagons. Crossed hexagons
denote silent hexagons by Observations 1 and 2. Circles/squares centred in hexagons
denote forwarding hexagons. The hexagons a, d, f collectively cover the region
[C(He) ∩ C(Hi)] ∪ [C(He) ∩ C(Hi+3)].

Step2 (Figure 5.3.18(b))

In C(He)∩C(Hi+3), c, d, e, f are the only non-crossed hexagons that may forward P . c

will forward P to cover d or vice versa, depending whose timer expires first. Similarly,
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e will forward P to cover f or vice versa, depending whose timer expires first. Hence,

at most 2 hexagons will forward P to compensate for the empty hexagonHi+3. Note

that, either of c or d forwarding P is also considered in Step1. Thus, for BC4 at most

3 hexagons forward P to compensate for the empty hexagons Hi and Hi+3 in C(He).

We now consider the 6 main cases, where any combination of the blue hexagons

in C(He) may be empty (step 2 of proof sketch). Without loss of generality let the

6 blue hexagons in C(He) be denoted as H1, H2, H3, H4, H5, H6 as shown in Figure

5.3.19.

He

H3

H6 H1

H2H5

H4

Figure 5.3.19: C(He), where He is a Type A or corner blue hexagon that is empty.

Case 1: 1 blue hexagon in C(He) is empty

Without loss of generality, assume the empty blue hexagon in C(He) is H3. The result

of this case is exactly BC1. Hence, the number of yellow and/or pink hexagons that

forward P to compensate for the empty H3 is at most one. Thus, in C(He), where

one blue hexagon is empty 5 blue hexagons and 1 yellow or pink hexagon forward P .

Case 2: 2 blue hexagon in C(He) is empty

(a) Let the two empty blue hexagons be bridged together.

Without loss of generality (wlog), assume the empty blue hexagons in C(He) are

H3, H4. The result of this case is exactly as in BC2. Hence, the number of yellow

and/or pink hexagons that forward P to compensate for the empty H3 and H4 are

at most three. Thus, in C(He), where H3 and H4 are empty, 4 blue hexagons and 3

yellow and/or pink hexagons forward P .
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(b) Let the two empty blue hexagons be separated by 2 hops.

Wlog, assume the empty blue hexagons in C(He) are H3, H5. The result of this

case is exactly as in BC3. Hence, the number of yellow and/or pink hexagons that

forward P to compensate for the empty H3 and H5 are at most two. Thus, in C(He),

where H3 and H5 are empty, 4 blue hexagons and 2 yellow and/or pink pink hexagons

forward P .

(c) Let the two empty blue hexagons be separated by 3 hops.

Wlog, assume the empty blue hexagons in C(He) are H3, H6. The result of

this case is exactly as in BC4. Hence, the number of yellow and/or pink hexagons

that forward P to compensate for the empty H3 and H6 are at most three. Thus,

in C(He), where H3 and H6 are empty, 4 blue hexagons and 3 yellow and/or pink

hexagons forward P .

Case 3: 3 blue hexagons in C(He) are empty

(a) Let the three empty blue hexagons be separated by 2 hops from each other.

Wlog, assume the empty blue hexagons in C(He) are H3, H5 and H1. The result of

this case is the combination of BC3 applied three times, once on each of the following

pairs: (i) H3 and H5; (ii) H5 and H1; (iii) H1 and H3.

(i) From BC3 at most 2 yellow and/or pink hexagons forward P to compensate for

the empty hexagons H3 and H5. Denote these two hexagons as a and b. From BC3

one of a, b must be in C(He) ∩ C(H3) and the other in C(He) ∩ C(H5). Thus, wlog

let a ⊂ [C(He) ∩ C(H3)] and b ⊂ [C(He) ∩ C(H5)].

(ii) From BC3 at most 2 yellow and/or pink hexagons forward P to compensate for

the empty hexagons H5 and H1. From BC3 one of these two hexagons must be in

C(He) ∩ C(H5) and the other in C(He) ∩ C(H1). From (i), the forwarding yellow

or pink hexagon in C(He) ∩ C(H5) is denoted as b. Denote the forwarding yellow or

pink hexagon in C(He) ∩ C(H1) as c.

(iii) From BC3 at most 2 yellow and/or pink hexagons forward P to compensate for

the empty hexagons H1 and H3. From BC3 one of these two hexagons must be in

C(He)∩C(H1) and the other in C(He)∩C(H3). From (ii), the forwarding yellow or

pink hexagon in C(He) ∩ C(H1) is denoted as c and from (i) the forwarding yellow

or pink hexagon in C(He) ∩ C(H3) as a.
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Hence, in this instance the yellow and/or pink hexagons a, b, c forward P instead

of the empty hexagons H3, H5, H1. Thus, in this case 3 blue hexagons and 3 yellow

and/or pink hexagons in C(He) forward P .

(b) Let two of the three empty blue hexagons be bridged together and the third blue

hexagon be 2 hops from the bridged pair.

Wlog, assume the empty blue hexagons in C(He) are H3, H4 and H6. The result

of this case is the combination of BC4 applied on the pair (i) H6 and H3, BC2 applied

on the pair (ii) H3 and H4, and BC3 applied on the pair (iii) H4 and H6.

(i) From BC4 at most 3 yellow and/or pink hexagons forward P to compensate for

the empty hexagons H6 and H3. Denote these three hexagons as a, b and c. One of

these three hexagons is in C(He) ∩ C(H6), one in C(He) ∩ C(H3) and the third in

[C(He) ∩ C(H6)]∪[C(He) ∩ C(H3)]. Wlog, let c ⊂ C(He)∩C(H6), a ⊂ C(He)∩C(H3)

and b ⊂ [C(He) ∩ C(H6)] ∪ [C(He) ∩ C(H3)].

(ii) From BC2 at most 3 yellow and/or pink hexagons forward P to compensate for the

empty hexagons H3 and H4. Two of these three hexagons are either in C(He)∩C(H3)

or in C(He) ∩ C(H4), and the third either in C(He) ∩ C(H4) or in C(He) ∩ C(H3)

respectively. Wlog let two of these three hexagons be in C(He) ∩ C(H3) and the

third in C(He) ∩ C(H4). From (i) we know a, b ⊂ C(He) ∩ C(H3). Denote the third

forwarding yellow or pink hexagon in C(He) ∩ C(H4) as d.

(iii) From BC3 at most 2 yellow and/or pink hexagons forward P to compensate for

the empty hexagons H4 and H6. One of these two hexagons is in C(He) ∩ C(H4)

and the other in C(He)∩C(H6). From (ii) the forwarding yellow or pink hexagon in

C(He) ∩ C(H4) is denoted as d, and from (i) the forwarding yellow or pink hexagon

in C(He) ∩ C(H6) is denoted as c.

Hence, in this instance the yellow and/or pink hexagons a, b, c, d forward P

instead of the empty hexagons H3, H4, H6. Thus, in this case 3 blue hexagons and 4

yellow and/or pink hexagons in C(He) forward P .

(c) Let the three empty blue hexagons consist of 2 bridged pairs.

Wlog, assume the empty blue hexagons in C(He) are H3, H4 and H5. The result

of this case is the combination of BC2 applied twice, once on each of the following

pairs: (i) H3 and H4; (ii) H4 and H5 (see Figure 5.3.20).
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(i) From BC2 at most 3 yellow and/or pink hexagons forward p to compensate for

the empty hexagons H3 and H4. Denote these 3 hexagons as a, b, c. From BC2 one

of a, b, c is in C(He) ∩ C(H3), one in C(He) ∩ C(H4) and one in [C(He) ∩ C(H3)] ∪
[C(He) ∩ C(H4)]. Wlog, let a ⊂ C(He) ∩ C(H3), c ⊂ C(He) ∩ C(H4), and b ⊂
[C(He) ∩ C(H3)] ∪ [C(He) ∩ C(H4)].

(ii) From BC2 at most 3 hexagons forward P to compensate for empty hexagons H4

and H5. The three hexagons must be in [C(He) ∩ C(H4)]∪[C(He) ∩ C(H5)]. From (i)

a, c ⊂ C(He) ∩ C(H4). Hence, the third forwarding yellow or pink hexagon, denoted

as d, must be in C(He) ∩ C(H5).

Hence, in this instance the yellow and/or pink hexagons a, b, c, d forward P instead

of the empty hexagons H3, H4, H5. Thus, in this case at most 3 blue hexagons and

4 yellow and/or pink hexagons in C(He) forward P .

He

H3

b

a

H4 c

H5

d

Figure 5.3.20: Bold outlined hexagons denote empty hexagons. Tiled hexagons denote

the hexagons in the region [C(He) ∩ C(H3)] ∪ [C(He) ∩ C(H4)] ∪ [C(He) ∩ C(H5)].

Crossed hexgons denote silent hexagons by Observations 1 and 2. Circles/squares

centred in hexagons denote forwarding hexagons. The hexagons a, b, c, d collectively

cover the region [C(He) ∩ C(H3)] ∪ [C(He) ∩ C(H4)] ∪ [C(He) ∩ C(H5)]

Case 4: 4 blue hexagons in C(He) are empty

(a) Let the four empty blue hexagons consist of 2 bridged pairs separated by 2 hops.

Wlog, assume the empty blue hexagons in C(He) are H3, H4, H6 and H1 (see

Figure 5.3.21). The result of this case is BC2 applied together with BC4 twice, once

on each of the following pairs: (i) H3, H4 with H6; (ii) H6, H1 with H4.
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(i) From BC2 at most 3 hexagons will forward P to compensate for the empty

hexagons H3 and H4. Denote these hexagons as a, b, c. From BC2, note that two of

a, b, c must be outer hexagons and one an inner hexagon in C(He). Wlog let a and b

be outer hexagons in C(He) and hence, let a ⊂ C(He) ∩ C(H3), b ⊂ C(He) ∩ C(H4).

Wlog let c ⊂ C(He) ∩ C(H3). Note that c may also be in C(He) ∩ C(H4).

From BC4 at most 3 hexagons will forward P to compensate for the empty

hexagons H3 and H6. One of these three hexagons must be in C(He) ∩ C(H3), one

in C(He) ∩ C(H6) and the third may be in C(He) ∩ C(H3) and/or C(He) ∩ C(H6).

Denote the forwarding yellow or pink hexagon in C(He)∩C(H6) as d. Note a, c have

forwarded P and that a, c ⊂ C(He) ∩ C(H3). Since c is an inner hexagon in C(He),

no other inner hexagon in C(He) ∩ C(H6) will forward P to cover C(He) ∩ C(H6)

since they have heard P from c and d.

(ii) From BC4 at most 3 hexagons will forward P to compensate for the empty

hexagons H4 and H1. From BC4 one of these three hexagons must be in C(He) ∩
C(H4), one in C(He)∩C(H1) and one in C(He)∩C(H4) and/or C(He)∩C(H1). From

(i) b ⊂ C(He)∩C(H4). Let the forwarding yellow or pink hexagon in C(He)∩C(H1)

be denoted as e. From (i) c is an inner hexagon in C(He) and c ⊂ C(He) ∩ C(H3).

Hence, c ⊂ C(He) ∩ C(H4) and/or c ⊂ C(He) ∩ C(H1).

From BC2 at most 3 hexagons will forward P to compensate for the empty

hexagons H6 and H1. One of these three hexagons must be in C(He) ∩ C(H6),

one in C(He) ∩ C(H1) and one in C(He) ∩ C(H6) and/or C(He) ∩ C(H1). From (i)

d ⊂ C(He) ∩ C(H6). From (ii) the hexagon e forwards P in C(He) ∩ C(H1). From

(i) c is an inner hexagon and c ⊂ C(He)∩C(H3). Hence, c ⊂ C(He)∩C(H6) and/or

c ⊂ C(He) ∩ C(H1).

Hence, in this instance the yellow and/or pink hexagons a, b, c, d, e forward P

instead of the empty hexagons H3, H4, H6 and H1. Thus, in this case at most 2 blue

hexagons and 5 yellow and/or pink hexagons in C(He) forward P .

(b) Let three of the four empty blue hexagons consist of 2 bridged pairs and the

fourth empty blue hexagon is separated from the 2 bridged pairs by 2 hops.

Wlog, assume the empty blue hexagons in C(He) are H3, H4, H5 and H1 (see

Figure 5.3.22). The result of this case is the combination of (i) the results of Case

3(c), where the empty hexagons are H3, H4, H5 and (ii) BC4 applied on the pair H1

and H4.
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He

H3

b a

H4

e

c

d

H6 H1

Figure 5.3.21: Bold outlined hexagons denote empty hexagons. Tiled hexagons denote
the hexagons in the region [C(He) ∩ C(H3)] ∪ [C(He) ∩ C(H4)] ∪ [C(He) ∩ C(H6)] ∪
[C(He) ∩ C(H1)]. Circles/squares centred in hexagons denote forwarding hexagons.
The hexagons a, b, c, d, e collectively cover the region [C(He) ∩ C(H3)] ∪
[C(He) ∩ C(H4)] ∪ [C(He) ∩ C(H6)] ∪ [C(He) ∩ C(H1)].

(i) From Case 3(c) at most 4 yellow and/or pink hexagons forward P to compensate

for the empty hexagons H3, H4, H5. Denote these hexagons as a, b, c, d.

(ii) From BC4 at most 3 hexagons forward P to compensate for the empty hexagons

H1 and H4. Note that by Case 3(c) two of a, b, c, d must be in C(He)∩C(H4). Thus,

the third hexagon in C(H3) ∩ C(H1) to forward P by BC4 is denoted as e.

Hence, in this instance the yellow and/or pink hexagons a, b, c, d, e forward P to

compensate for the empty hexagons H3, H4, H5 and H1. Thus, in this case at most

2 blue hexagons and 5 yellow and/or pink hexagons in C(He) forward P .

(c) Let the four empty blue hexagons consist of 3 bridged pairs.

Wlog, assume the empty blue hexagons in C(He) are H3, H4, H5 and H6. The

result of this case is similar to that of Case 6. Thus, in this case at most 2 blue

hexagons and 5 yellow and/or pink hexagons in C(He) forward P .
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He

H3

b

a

H4

e

c

d

H5

H1

Figure 5.3.22: Bold outlined hexagons denote empty hexagons. Tiled hexagons denote
the hexagons in the region [C(He) ∩ C(H3)] ∪ [C(He) ∩ C(H4)] ∪ [C(He) ∩ C(H5)] ∪
[C(He) ∩ C(H1)]. Crossed hexgons denote silent hexagons by Observation 2. Cir-
cles/squares centred in hexagons denote forwarding hexagons. The hexagons a, b, c, d,
e collectively cover the region [C(He) ∩ C(H3)]∪[C(He) ∩ C(H4)]∪[C(He) ∩ C(H5)]∪
[C(He) ∩ C(H1)].

Case 5: 5 blue hexagons in C(He) are empty

Wlg, assume the empty blue hexagons in C(He) are H3, H4, H5, H6 and H1.

The result of this case is the result of Case 6. Thus, in this case at most 1 blue

hexagon and 5 yellow and/or pink hexagons in C(He) forward P .

Case 6: 6 blue hexagons in C(He) are empty

The empty blue hexagons in C(He) are H1, H2, H3, H4, H5 and H6 (see Figure

5.3.23).

The result of this is the combinations of BC2 applied on each of the following

pairs: (i) H3 and H4; (ii) H4 and H5; (iii) H5 and H6; (iv) H6 and H1; (v) H1 and

H2; (vi) H2 and H3.

By considering BC2 and BC4 at the same time, for a blue hexagon Hi ⊂ C(He),

the number of non-blue hexagons in LN(Hi) ∪RN(Hi) are at most 3 as was seen in

Case 4(a). To maximize the number of non-blue forwarders, two of these 3 hexagons

must be outer hexagons and as a result the third is an inner hexagon in C(He).

(i) Considering the empty pair H3 and H4.

BC2 Step 1 (covering LN(H3) ∪RN(H3))
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At most 3 non-blue hexagons forward P to cover LN(H3) ∪ RN(H3). Two of these

three hexagons are outer hexagons and the third is an inner hexagon in C(He). Denote

the outer hexagons as a, b and the inner hexagon as c. By BC2 and BC4 the hexagons

a, b cannot both be in LN(H3) or RN(H3). Hence, wlog let a ⊂ RN(H3) and b ⊂
LN(H3). The hexagon c is either in LN(H3) or in RN(H3). Wlog, let c ⊂ RN(H3).

BC2 Step 2 (covering LN(H4) ∪RN(H4))

From BC2 Step 1, b ⊂ LN(H3) =⇒ b ⊂ RN(H4). Non-blue hexagons in RN(H4)

will stay silent since they have heard P from c, a, b and do not cover any additional

hexagons in LN(H4) ∪ RN(H4). Since c is an inner hexagon it covers all inner

hexagons in C(He) and hence, inner hexagons will not forward P to cover inner

hexagons. Since a is an outer hexagon in RN(H3) it covers the outer hexagon,

namely b, in LN(H3). Since b is an outer hexagon in RN(H4) it will cover the outer

hexagon in LN(H4). Thus, out of the three non-blue hexagons in LN(H4), at most

one will forward P to completely cover LN(H4). Denote this hexagon as d.

(ii) Considering the empty pair H4 and H5.

BC2 Step 1 (covering LN(H4) ∪RN(H4))

The result is of that in BC2 Step 2 of (i).

BC2 Step 2 (covering LN(H5) ∪RN(H5))

Since d ⊂ LN(H4) =⇒ d ⊂ RN(H5) or d ⊂ LN(H5). Wlog let d ⊂ RN(H5). The

non-blue hexagons in LN(H5) ∪ RN(H5) will stay silent since they heard P from b,

c, d collectively, which cover LN(H5) ∪RN(H5) completely.

(iii) Considering the empty pair H5 and H6.

BC2 Step 1 (covering LN(H5) ∪RN(H5))

The result is of that in BC2 Step 2 of (ii).

BC2 Step 2 (covering LN(H6) ∪RN(H6))

From (i) c ⊂ RN(H3) =⇒ c ⊂ LN(H6), otherwise there would be less than

three forwarding hexagons in (i). The inner hexagons of C(He) in RN(H6) will stay

silent since they heard P from c and d, which collectively cover LN(H6) ∪ RN(H6).

The outer hexagon in RN(H6) may forward P to cover the two non-blue hexagons

in LN(H6) since it would not have heard P from c. As a result the two non-blue

hexagons in LN(H6) will stay silent. If, however, the outer hexagon in RN(H6) stays
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silent, then one of the non-blue hexagons in LN(H6) will forward P since none of

them would have heard P from d. Denote this additional forwarding hexagon in

LN(H6) ∪RN(H6) as e.

(iv) Considering the empty pair H6 and H1.

BC2 Step 1 (covering LN(H6) ∪RN(H6))

The result is of that in BC2 Step 2 of (iii).

BC2 Step 2 (covering LN(H1) ∪RN(H1))

Since c ⊂ RN(H3) =⇒ c ⊂ LN(H1) (H3 and H1 are aligned hexagons). The three

non-blue hexagons in RN(H1) will stay silent since they heard P from c and e, which

collectively cover LN(H1) ∪ RN(H1). The two non-blue hexagons in LN(H1) that

have not forwarded P will also stay silent since they heard P from c and a and do

not cover any additional hexagons in LN(H1) ∪RN(H1).

(v) Considering the empty pair H1 and H2.

BC2 Step 1 (covering LN(H1) ∪RN(H1))

The result is of that in BC2 Step 2 of (iv).

BC2 Step 2 (covering LN(H2) ∪RN(H2))

Since c ⊂ RN(H3) and is an inner hexagon =⇒ c ⊂ RN(H2). Otherwise there

would be less than three forwarding hexagons in (i). Since a ⊂ RN(H3) and is an

outer hexagon =⇒ a ⊂ LN(H2) . All other non-blue hexagons in LN(H2)∪RN(H2)

will stay silent since they heard P from a and c, which collectively cover LN(H2) ∪
RN(H2).

(vi) Considering the empty pair H2 and H3.

BC2 Step 1 (covering LN(H2) ∪RN(H2))

The result is of that in BC2 Step 2 of (v).

BC2 Step 2 (covering LN(H3) ∪RN(H3))

The result of this case is BC2 Step 1 of (i).

Hence, the non-blue forwarding hexagons are a, b, c, d, and e in C(He). Thus,

there are no blue forwarding hexagons and 5 yellow and/or pink forwarding hexagons

in C(He).
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He

H3

b

a

H4

c

H5

d

H6 H1

H2

e

Figure 5.3.23: Bold outlined hexagons denote empty hexagons. Squares centred in

hexagons denote forwarding hexagons. The hexagons a, b, c, d and e collectively cover

C(He).

In the third step of the proof we map the results of each of the 6 cases to the 4

AC -orientations of C(He). The 4 AC -orientations of C(He) are when (1) He is Type

A hexagon on an odd level, (2) He is a Type A hexagon on an even level, (3) He is a

corner hexagon on an odd level, and (4) He is a corner hexagon on an even level (see

Figure 5.3.24). Note that Type A and corner hexagons have the same function, that

is they always forward P . Thus, we see that Figures 5.3.24(b), 5.3.24(c), 5.3.24(d)

are isomorphic. Therefore, we can only consider 2 mappings of AC -orientations of

C(He).

He

A

A B

BB

B

(a) He is a Type A

hexagon on an odd

level.

He

C

A B

CB

B

(b) He is a Type A

hexagon on an even

level.

He

B

A C

BB

C

(c) He is a corner

hexagon on an odd

level.

He

B

B C

BA

C

(d) He is a corner

hexagon on an even

level.

Figure 5.3.24: The 4 AC -orientations of C(He), where He is an empty Type A or

corner hexagon.
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From each of the 6 cases it can be determined how many blue and how many

non-blue hexagons forward P . Among the blue hexagons empty in C(He), aside from

He, the empty blue hexagons may be of Type A, corner or Type B. Thus, we must

consider all cases and map them to all 4 AC -orientations to determine the largest

number of non-blue and Type B hexagons in C(He) that forward P for one empty

Type A or corner hexagon. Note that if He is the originating hexagon Ho, then all

blue hexagons in C(Ho) are corner hexagons. Hence, in this case there will be no

Type B blue hexagons that may forward P , but only non-blue hexagons. Thus, the

number of forwarding hexagons in this case cannot be more than that of the results

of any of the six cases. We present the summary of these results in a table for each

case. Bold entries in the Tables 5.1-5.6 designate the largest number of forwarding

hexagons for a corner or Type A hexagon.

Case 1: 1 blue hexagon is empty

Number of empty Type A and

Corner hexagons in C(He)

Number of Type B and non-blue

forwarding hexagons in C(He)

1 3 or 4

2 4 or 5

Table 5.1: Results of Case 1.

Thus, in this case for one empty Type A or corner hexagon at most 4 additional

hexagons forward P .
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Case 2: 2 blue hexagon are empty

Case 2 Number of empty Type A

and Corner hexagons in

C(He)

Number of Type B and non-

blue forwarding hexagons in

C(He)

(a)

1 4

2 5

3 6

(b)

1 3

1 or 2 4

2 or 3 5

(c)

1 4

1 or 2 5

3 6 or 7

Table 5.2: Results of Case 2.

Thus, in this case for one empty Type A or corner hexagon at most 5 additional

hexagons forward P .

Case 3: 3 blue hexagon are empty

Case 3 Number of empty Type A

and Corner hexagons in

C(He)

Number of Type B and non-

blue forwarding hexagons in

C(He)

(a)
2 4 or 5

3 5

(b)

1 4 or 5

2 5 or 6

3 6 or 7

(c)
2 5 or 6

3 6

Table 5.3: Results of Case 3.

Thus, in this case for one empty Type A or corner hexagon at most 5 additional
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hexagons forward P .

Case 4: 4 blue hexagon are empty

Case 4 Number of empty Type A

and Corner hexagons in

C(He)

Number of Type B and non-

blue forwarding hexagons in

C(He)

(a)

1 or 2 5

3 6 or 7

4 7

(b)

2 5 or 6

3 6

4 7

(c)

2 5 or 6

3 6 or 7

4 7

Table 5.4: Results of Case 4.

Thus, in this case for one empty Type A or corner hexagon at most 5 additional

hexagons forward P .

Case 5: 5 blue hexagon are empty

Number of empty Type A and

Corner hexagons in C(He)

Number of Type B and non-blue

forwarding hexagons in C(He)

2 5

3 5 or 6

4 6

Table 5.5: Results of Case 5.

Thus, in this case for one empty Type A or corner hexagon at most 5 additional

hexagons forward P .
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Case 6: 6 blue hexagon are empty

Number of empty Type A and

Corner hexagons in C(He)

Number of Type B and non-blue

forwarding hexagons in C(He)

3 or 4 5

Table 5.6: Results of Case 6.

Thus, in this case for one empty Type A or corner hexagon at most 5 additional

hexagons forward P .

From Theorem 5.3.3, the number of forwarding hexagons in H(G) if there are no

voids is at most 3
2
k2+3k+ 45

2
. From the results of Tables 5.1-5.6 it can be seen that the

worst ratio of the number of empty Type A and corner hexagons to the number Type

B and non-blue forwarding hexagons is 1 : 5. Thus, for one empty Type A or corner

hexagon at most 5 additional hexagons forward P . Therefore, β ≤ 5
(

3
2
k2 + 3k + 45

2

)
.

The number of forwarding nodes β, when there are no holes in the network and

blue hexagons are categorized is at most β ≤ 3
2
k2 + 3k + 45

2
(given in Theorem

5.3.3). The number of forwarders in a network that may contain holes is at most

β ≤ 5
(

3
2
k2 + 3k + 45

2

)
(given in Theorem 5.3.5). The lower bound given in Theorem

5.3.2 is not sharp. The number of forwarding nodes β is at least

β ≥
⌈

9
√

3 (9k2 + 3k + 1)− 168π

28
(
2π + 3

√
3
) ⌉

+ 1

≥ 9
√

3 (9k2 + 3k + 1)− 168π

28
(
2π + 3

√
3
) + 1

≥ 0.436k2 + 0.145k − 0.594

≥ 3

7
k2 +

1

7
k − 3

5

Thus, the upper bound with no holes in the network and where blue hexagons are

categorized (Theorem 5.3.3) approximately is 7
2

times the lower bound. The upper

bound, where there may be holes in the network (Theorem 5.3.5) is approximately

5
(

7
2

)
of the lower bound in Theorem 5.3.2.
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5.3.2 Dilation Factor and Broadcast Time

In this section, we consider the length of the shortest hexagonal path obtained by

HBLF from the originator s to a node v. We also consider the dilation factor in

networks that do not contain holes. That is, blue hexagons are not empty. Dilation

factor is defined as the ratio of the shortest hexagonal path from s to v by HBLF

to the shortest path in the network from s to v. In the analysis that follows we also

consider the broadcast time of HBLF, that is the number of time units it takes for

HBLF to complete. Let Bt(G) denote the broadcast time of HBLF in the network

G. Now we present our result on the shortest hexagonal path from the originator s

to a node v by HBLF. We only know the Euclidean distance between the two nodes

s and v, from which an upper bound on the number of hops from s to v returned by

HBLF must be determined.

Lemma 5.3.6. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where blue hexagons in H(G) are not empty. Let s be the originator in hexagon Hs

centred at cs. The length of the shortest hexagonal path from s to a node v ∈ V (G)

in hexagon Hv centred at cv is at most lHBLF ≤
⌈

2√
3

dE(cs,cv)
3r

⌉
, where dE(cs, cv) is the

Euclidean distance between cs, cv and r is the radius of each hexagon tile in H(G).

Proof. To determine the shortest hexagonal path from s to v is equivalent to deter-

mining the shortest hexagonal path from Hs to Hv. There are two cases to consider:

(1) Hv is a corner blue hexagon and (2) Hv is a Type A/B or a yellow/pink hexagon.

Case 1: Hv is a corner hexagon

Since Hs is the originating hexagon it is on level 0. Let Hv be on level i ≥ 0. The

shortest hexagonal path by HBLF from Hs to Hv is via the corner hexagons on levels

0, 1, 2, · · · , i − 2, i − 1. Thus, the length of the shortest hexagonal path is dE(cs,cv)
3r

,

where 3r is the Euclidean distance between the centres of two corner (i.e. bridged)

hexagons.

Case 2: Hv is a Type A/B or a yellow/pink hexagon

If Hv is a Type A hexagon, let Hv be on level i ≥ 2 (there are no Type A hexagons

on levels 0 and 1). Each forwarding blue hexagon (i.e. Type A or corner hexagons)

on a given level i is bridged with a forwarding blue hexagon on level i − 1. This is

due to the way categorization of blue hexagons are done.

If Hv is a Type B hexagon, let Hv be on level i ≥ 1 (there are no Type B hexagons
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on level 0). Each Type B hexagon on level i is bridged with a Type A or a corner

hexagon on level i− 1.

If Hv is a yellow or pink hexagon, let Hv be on level i ≥ 0. Each yellow or

pink hexagon on level i is in the coverage area of at least one Type A and/or corner

hexagon on level i− 1.

Since Hv on level i is in the coverage area of a Type A and/or corner hexagon on

level i − 1, then each transmitting hexagon on the shortest hexagonal path PHBLF

from Hs on level 0 to Hv on level i is on a different level than any of the other hexagons

on PHBLF . Thus, the length of the shortest hexagonal path is the same as the length

of the shortest hexagonal path from Hs to a corner hexagon Hc on level i centred at

cc. We now determine the length of the shortest hexagonal path from Hs to Hv in

terms of the Euclidean distance dE(cs, cv).

The length of the shortest hexagonal path from Hs to Hc on level i is given by
dE(cs,cv)

3r
= i + 1 (Case 1 ). For a non-corner blue hexagon on level i dE(cs, cv) <

dE(cs, cc) and hence,
⌈
dE(cs,cv)

3r

⌉
may not necessarily give a correct upper bound on

the length of the shortest hexagonal path (i.e. the path length may be less than i+ 1

depending on the value of dE(cs, cv)) as it did in Case 1. Thus, we determine an

upper bound on the length of the shortest hexagonal path from s to v returned by

HBLF.

The angle made by two consecutive corner hexagons on level i with Hs on level

0 is π
3
. The shortest Euclidean distance possible from cs to cv, denoted ds, is when

the line cscv is perpendicular to the line cvcc. Thus, the angle made by ∠cvcscc = π
6

(see Figure 5.3.25(a)). Thus, ds ≤ dE(cs, cv) ≤ dE(cs, cc). We take a tangent from

point t (see Figure 5.3.25(b)) to the circle the radius of which is dE(cs, cv). As can

be seen from Figure 5.3.25(b) the distance 2√
3
dE(cs, cv) is beyond level i. That is,

2√
3
dE(cs, cv) ≥ dE(cs, cc) and hence,

⌈
2√
3

dE(cs,cv)
3r

⌉
≥ i + 1. Thus, the length of the

shortest hexagonal path from s to v is at most
⌈

2√
3

dE(cs,cv)
3r

⌉
.

By combining Case 1 and Case 2 we have

2√
3

dE(cs, cv)

3r
>
dE(cs, cv)

3r
=⇒

⌈
2√
3

dE(cs, cv)

3r

⌉
≥ dE(cs, cv)

3r

Thus, the shortest hexagonal path from the originator s in hexagon Hs centred at

cs to a node v in hexagon Hv centred at cv is at most lHBLF ≤
⌈

2√
3

dE(cs,cv)
3r

⌉
.
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cs

cv cc

dE(cs, cv)

ds

π
6

(a) ds ≤ dE(cs, cv) ≤
dE(cs, cc).

cs

cv cc

dE(cs, cv)

ds

level i

π
6

2√
3
dE(cs, cv)

t

(b) The number of hops from cs to cv is bounded

by
⌈

2√
3

dE(cs,cv)
3r

⌉
.

Figure 5.3.25: cs is the central point of Hs that contains node s. cc is the central
point of Hc. cv is the central point of Hv that contains v. ds is the shortest possible
Euclidean distance from cs to cv.

Theorem 5.3.6. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where blue hexagons in H(G) are not empty. Let s be the originator. Let lmin be the

shortest path from s to any node v ∈ V (G) and lHBLF be the shortest hexagonal path

from s to v. Then, lHBLF

lmin
≤ 4(

√
7+2)

3
√

3
+ 2.

Proof. The shortest path between the originator s and any node v is given by
⌈
dE(s,v)

2
√

7r

⌉
,

where the transmission range of each node is R = 2
√

7r and r is the radius of each

hexagon tile inH(G). Let s be in the hexagonHs centred at cs and v be in the hexagon

Hv centred at cv. Then by Lemma 5.3.6, the length of the shortest hexagonal path

from s to v is at most
⌈

2√
3

dE(cs,cv)
3r

⌉
, where again r is the radius of hexagon tiles in

H(G). Thus,

lHBLF
lmin

≤

⌈
2√
3

dE(cs,cv)
3r

⌉
⌈
dE(s,v)

2
√

7r

⌉ ≤

(
2√
3

dE(cs,cv)
3r

+ 1
)

(
dE(s,v)

2
√

7r

) =

(
2dE(cs, cv) + 3

√
3r

3
√

3r

)(
2
√

7r

dE(s, v)

)

For nodes s and v, the range of the Euclidean distance dE(s, v) in terms of

dE(cs, cv) is given by dE(cs, cv)− 2r ≤ dE(s, v) ≤ dE(cs, cv) + 2r (see Figure 5.3.26).

Since dE(cs, cv) ≤ dE(s, v) + 2r, then
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Hv

s

Hs

v cv

cs dE(cs, cv)

dE(s, v)

r

r

(a) dE(s, v) ≥ dE(cs, cv)− 2r

Hv

s
Hs

v
cv

cs

dE(cs, cv)

dE(s, v)

r

r

(b) dE(s, v) ≤ dE(cs, cv) + 2r

Figure 5.3.26: dE(cs, cv)− 2r ≤ dE(s, v) ≤ dE(cs, cv) + 2r

lHBLF
lmin

≤
(

2 [dE(s, v) + 2r] + 3
√

3r

3
√

3r

)(
2
√

7r

dE(s, v)

)

=
2
√

7
(
2 dE(s, v) + (4 + 3

√
3)r
)

3
√

3 dE(s, v)

=
2
√

7

3
√

3

(
2 +

(4 + 3
√

3)r

dE(s, v)

)

If Hv ⊂ C(Hs), then lHBLF = lmin and thus, lHBLF/lmin = 1. Otherwise, for

Hv 6⊂ C(Hs), the shortest Euclidean distance between s and v is dE(s, v) >
√

7r,

which is the distance from the top left apex of Hs to the bottom right apex of Hv or

the opposite (i.e from bottom left to top right), or from the top right apex of Hs to

the bottom left apex of Hv or the opposite (i.e. from bottom right to top left) (see

Figure 5.3.27).

Thus,

lHBLF
lmin

≤ 2
√

7

3
√

3

(
2 +

(4 + 3
√

3)r√
7r

)
=

2

3
√

3

(
2
√

7 + (4 + 3
√

3)
)

=
4(
√

7 + 2)

3
√

3
+ 2

Note that, when there may be holes in the network, the dilation factor is not

constant as is in the case when there are no holes in the network. The reason for this

is that, for example, the shortest path between the originator s and a node v may
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2

Figure 5.3.27: For Hv 6⊂ C(Hs), the shortest Euclidean distance between s ∈ Hs and
v ∈ Hv is dE(s, v) >

√
7r.

be 1 hop, while HBLF may return a much longer hexagonal path traversing over the

entire network.This is due to the definition of the coverage area of a given hexagon.

The shortest hexagonal path returned by HBLF in such a case depends on the radius

of the hexagonal network, denoted as k. As will be seen in the results that follow

on the broadcast time, the length of the longest shortest hexagonal path returned by

HBLF is quadratic based on k.

Lemma 5.3.7. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where the central hexagon of H(G) is blue. Let the originator be in a blue hexagon

and let k denote the radius of H(G). If all yellow and pink hexagons are empty then

Bt(G) ≤ 3
2
k2 + 3k + 4.

Proof. Let Ho be the originating hexagon and denote the hexagon farthest from Ho

as Hf . To determine Bt(G), we must determine the length of the longest hexagonal

path from Ho to Hf , denoted lmax, since Bt(G) = lmax + 1.

Let Pmax denote the longest hexagonal path from Ho to Hf . Note that all hexagons

in Pmax are of colour blue since all yellow and pink hexagons are assumed to be empty.

Since Pmax is the longest hexagonal path from Ho to Hf , for any two subsequent

segments S1 and S2 of Pmax, S1 and S2 must be separated by enough empty blue

hexagons so that from any hexagon Hi on S1 there will not be a shorter path than

Pmax to any hexagon Hj on S2. To obtain the largest number of forwarders, the
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number of blue hexagons necessary to be empty to keep the separation between any

two segments of Pmax is exactly one. That is, for any hexagon Ha on a segment Si

and a hexagon Hb on segment Si+1, Ha and Hb are separated by two hops. Using

this, we now determine the largest number of forwarding hexagons in each of the six

sectors centred at Ho from which we will determine the largest number of forwarding

nodes in G to determine lmax.

The originating hexagon Ho can be anywhere in H(G). Let Hc denote the central

hexagon of H(G). Depending from which hexagon the HBLF algorithm starts, the

number forwarders may vary. Thus, we must consider the shift from Ho to Hc as was

done in Lemma 5.3.4.

There are two possible shifts: a shift on one of the six axis, denoted sa and an

angular vertical shift, denoted sv. Figure 5.3.9 depicts the two possible shifts of

Ho from Hc in a hexagonal shape network G. Let the total shift be denoted by

s = sa + sv. By the HBLF algorithm, the construction of each level is centred at Ho.

The dimensions of each of the shifted sectors and the additional triangular regions

not in H(G) (labelled A.T.R.) are as follows.

S1: (k − sa + 2sa + sv)× (k − sa + 2sa + sv) ≡ (k + sa + sv)× (k + sa + sv)

A.T.R.: sa × sa; sv × sv

S2: (k − sv + sa + sv)× (k − sv + sa + sv) ≡ (k + sa)× (k + sa)

A.T.R.: (sa + sv)× (sa + sv)

S3: (k − sa − sv + sa)× (k − sa − sv + sa) ≡ (k − sv)× (k − sv)
A.T.R.: sa × sa

S4: (k − sa − sv)× (k − sa − sv)

S5: (k − sa − sv + sv)× (k − sa − sv + sv) ≡ (k − sa)× (k − sa)
A.T.R.: sv × sv

S6: (k − sa + sa + sv)× (k − sa + sa + sv) ≡ (k + sv)× (k + sv)

A.T.R.: (sa + sv)× (sa + sv)

Thus, for each (k + s) × (k + s) sector we calculate the largest possible number of

forwarding hexagons. On each level i = k + s − 1 (centred at Ho), there are i + 2

blue hexagons. To obtain the largest number of forwarding hexagons, where the hop
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distance between two blue hexagons on two different segments of Pmax is at least 2,

occurs when we consider the sum of hexagons on levels (k + s− 1), (k + s− 3), (k +

s− 5), · · · , 2 (if k+ s is odd) or 1 (if k+ s is even). Thus, we consider the two cases:

k + s is even and k + s is odd.

If (k + s) is even:

The largest possible number of forwarders in a sector of dimension (k + s)× (k + s)

including Ho is

TS = 1 + 3 + 5 + · · ·+ (k + s− 1) + (k + s+ 1)

=

(⌈
k + s+ 1

2

⌉)2

=

(
k + s

2
+ 1

)2

=
(k + s)2

4
+ 2

(k + s)

2
+ 1

=
1

4
k2 +

1

2
ks+ k +

1

4
s2 + s+ 1

If (k + s) is odd:

The largest possible number of forwarders in a sector of dimension (k + s)× (k + s)

excluding Ho is

TS = 2 + 4 + 6 + · · ·+ (k + s− 1) + (k + s+ 1)

=

(
k + s+ 1

2

)(
k + s+ 1

2
+ 1

)
=

(k + s+ 1) (k + s+ 3)

4

=
1

4
k2 +

1

2
ks+ k +

1

4
s2 + s+

3

4

An A.T.R. defined by a sector s × s, have a base of s + 1 hexagons that share

a boundary with H(G). Note that forwarding hexagons in TS also include hexagons

in A.T.R. defined by s × s sectors. Thus, we calculate the number of hexagons in

s× s sector that are also considered in TS and subtract it from TS. This calculation

is similar to that of TS.

If s is even, then the number of forwarding hexagons in s × s sector is given by
1
4
s2 + s+ 1. This sum includes the

(
s
2

+ 1
)

forwarding hexagons (including the apex

hexagon of s× s sector) on the boundary of H(G). Thus, the number of forwarding

hexagons in s × s sector that are not in H(G) is given by TD = 1
4
s2 + s + 1 − s

2
−

1 = 1
4
s2 + 1

2
s. Thus, the number of forwarding hexagons in a sector of dimensions

(k + s)× (k + s) and in H(G) is at most TFj
≤ TSj

+
∑
∀ s×s
−1

4
s2 − 1

2
s.

109



If s is odd, then the number of forwarding hexagons in s × s sector is given by
1
4
s2 + s + 3

4
. This sum includes the

⌈
s
2

⌉
forwarding hexagons on the boundary of

H(G). Thus, the number of forwarding hexagons in s× s sector that are not in H(G)

is given by TD = 1
4
s2 + s+ 3

4
−
⌈
s
2

⌉
= 1

4
s2 + s+ 3

4
−
(
s−1

2
+ 1
)

= 1
4
s2 + 1

2
s+ 1

4
. Thus,

the number of forwarding hexagons in a sector of dimensions (k+ s)× (k+ s) and in

H(G) is given by TFj
≤ TSj

+
∑
∀ s×s
−1

4
s2 − 1

2
s− 1

4
.

Therefore, the number of forwarding hexagons in H(G) that constitute to Pmax

is the sum of all the TFj
sums of each of the six shifted sectors. Now we present this

calculation. There are two cases to consider: (a) if (k + s) is even and (b) if (k + s)

is odd.

(a) if (k + s) is even =⇒ TS = 1
4
k2 + 1

2
ks+ k + 1

4
s2 + s+ 1.

S1 : (k + sa + sv)× (k + sa + sv); A.T.R.: sa × sa; sv × sv.

TF1 ≤
1

4
k2 +

1

2
k(sa + sv) + k +

1

4
(sa + sv)

2 + (sa + sv) + 1− 1

4
s2
a −

1

2
sa

− 1

4
s2
v −

1

2
sv

=
1

4
k2 +

1

2
ksa +

1

2
ksv + k +

1

2
sasv +

1

2
sa +

1

2
sv + 1

S2 : (k + sa)× (k + sa); A.T.R.: (sa + sv)× (sa + sv).

TF2 ≤
1

4
k2 +

1

2
ksa + k +

1

4
s2
a + sa + 1− 1

4
(sa + sv)

2 − 1

2
(sa + sv)

=
1

4
k2 +

1

2
ksa + k − 1

4
s2
v −

1

2
sasv +

1

2
sa −

1

2
sv + 1

S3 : (k − sv)× (k − sv); A.T.R.: sa × sa.

TF3 ≤
1

4
k2 − 1

2
ksv + k +

1

4
s2
v − sv + 1− 1

4
s2
a −

1

2
sa

=
1

4
k2 − 1

2
ksv + k − 1

4
s2
a +

1

4
s2
v −

1

2
sa − sv + 1

S4 : (k − sa − sv)× (k − sa − sv).

TF4 ≤
1

4
k2 +

1

2
k(−sa − sv) + k +

1

4
(−sa − sv)2 + (−sa − sv) + 1

=
1

4
k2 − 1

2
ksa −

1

2
ksv + k +

1

4
s2
a +

1

4
s2
v +

1

2
sasv − sa − sv + 1
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S5 : (k − sa)× (k − sa); A.T.R.: sv × sv.

TF5 ≤
1

4
k2 − 1

2
ksa + k +

1

4
s2
a −

1

4
s2
v − sa −

1

2
sv + 1

S6 : (k + sv)× (k + sv); A.T.R.: (sa + sv)× (sa + sv).

TF6 ≤
1

4
k2 +

1

2
ksv + k +

1

4
s2
v + sv + 1− 1

4
(sa + sv)

2 − 1

2
(sa + sv)

=
1

4
k2 +

1

2
ksv + k − 1

4
s2
a −

1

2
sasv −

1

2
sa +

1

2
sv + 1

Thus, the largest number of forwarding hexagons in H(G) centred at Hc, where

the originating hexagon in Ho, is
6∑
j=1

TFj
. Note that the result of each TFj

includes

Ho. That is, in
6∑
j=1

TFj
, Ho is counted 6 times. Also note that in

6∑
j=1

TFj
, the hexagons

that fall on the 6 shifted axis are counted twice. The number of all hexagons on the 6

shifted axis is given by (k+sv)+(k+sa)+(k−sv)+(k−sa−sv)+(k−sa−sv)+(k−sa) =

6k − 2sa − 2sv, excluding Ho. Thus, the number of forwarding hexagons on the 6

shifted axis is given by 6k−2sa−2sv
2

= 3k − sa − sv. Therefore,

TF ≤
6∑
j=1

TFj
− 5− 3k + sa + sv

=
3

2
k2 + 6k − 2sa − 2sv + 6− 5− 3k + sa + sv

=
3

2
k2 + 3k − sa − sv + 1

Henc, lmax + 1 ≤ 3
2
k2 + 3k − sa − sv + 1, which will be maximized if sa = 0 and

sv = 0. Thus, lmax + 1 ≤ 3
2
k2 + 3k + 1.

(b) if (k + s) is odd =⇒ TS = 1
4
k2 + 1

2
ks+ k + 1

4
s2 + s+ 3

4
.

Note that the difference between the TS functions when (k+s) is even and (k+s)

is odd is −1
4
. Similarly, the difference between the TD functions when s is even and

s is odd is −1
4
. Let TFj(odd)

denote the corresponding TFj
for 1 ≤ j ≤ 6 when k + s is

odd. Thus, for

S1: TF1(odd)
≤ TF1 − 1

4
− 1

4
− 1

4

S2: TF2(odd)
≤ TF2 − 1

4
− 1

4
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S3: TF3(odd)
≤ TF2 − 1

4
− 1

4

S4: TF4(odd)
≤ TF2 − 1

4

S5: TF5(odd)
≤ TF2 − 1

4
− 1

4

S6: TF6(odd)
≤ TF2 − 1

4
− 1

4
.

Thus,

6∑
j=1

TFj(odd)
≤

6∑
j=1

TFj
+ 12

(
−1

4

)
=

3

2
k2 + 6k − 2sa − 2sv + 6− 3

=
3

2
k2 + 6k − 2sa − 2sv + 3

Note that the originating hexagon Ho is not included in the count of
6∑
j=1

TFj(odd)
.

Also note that the hexagons on the 6 shifted axis are counted twice in
6∑
j=1

TFj(odd)
. The

number of forwarding hexagons on the 6 shifted axis as was previously determined

(in the case of even k + s) is given by 3k − sa − sv. Therefore,

TF ≤ TFj(odd)
+ 1− 3k + sa + sv

=
3

2
k2 + 6k − 2sa − 2sv + 3 + 1− 3k + sa + sv

=
3

2
k2 + 3k − sa − sv + 4

Hence, lmax+ 1 ≤ 3
2
k2 + 3k−sa−sv + 4, which is maximized when sa = 0 and sv = 0.

Thus, lmax + 1 ≤ 3
2
k2 + 3k + 4, when k + s is odd.

Therefore, from cases (a) and (b) we have Bt(G) ≤ 3
2
k2 + 3k + 4.

Lemma 5.3.8. Let G denote the wireless mobile ad hoc network of hexagonal shape,

where the central hexagon of H(G) is non-blue. Let the originator be in a blue hexagon

and let k be the radius of H(G). If all yellow and pink hexagons are empty then

Bt(G) ≤ 3
2
k2 + 3k + 4.
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Proof. Let H(Gb) denote the overlay hexagon network centred at a blue hexagon and

is of radius k. The difference between H(G) and H(Gb) is a vertical shift of one

hexagon. That is, H(G) includes in its region all blue hexagons of H(Gb) except

three consecutive outermost sides of blue hexagons of H(Gb) that are excluded due

to the shift (see Figure 5.3.10). From Lemma 5.3.7, Bt(Gb) ≤ 3
2
k2 + 3k + 4. Since

all yellow and pink hexagons are assumed to be empty, then it follows that Bt(G) ≤
Bt(Gb) ≤ 3

2
k2 + 3k + 4.

Theorem 5.3.7. Let G denote the wireless mobile ad hoc network of hexagonal shape.

Let the originator be in a blue hexagon and let k be the radius of H(G). For any

combination of empty hexagons of any colour in G, Bt(G) ≤ 3k2 + 6k + 8.

Proof. Let the originating hexagon be denoted as Ho and the hexagon farthest from

Ho as Hf . Let the longest hexagonal path from Ho to Hf in H(G) be denoted as

Pmax. Let H(G′) denote the same overlay network of hexagons as H(G), where all

yellow and pink hexagons are empty. To ensure the longest hexagonal path via the

blue hexagons from Ho to Hf in H(G′) some of the blue hexagons must be empty.

Let the longest hexagonal path from Ho to Hf in H(G′) be denoted as P ′max. Now,

we show that the length of Pmax, denoted lmax, in H(G) is at most two times the

length of P ′max, denoted l′max, in H(G′).

Let Si and Si+1 be two subsequent segments on Pmax for i ≥ 1. From Lemmas

5.3.7 and 5.3.8 we see that in order to maximize l′max, the width between Si and Si+1

must be large enough to fit an empty blue hexagon (i.e. a hexagon that bridges a

hexagon on Si to a hexagon on Si+1) and yellow and pink hexagons must be empty.

Note that, however, in H(G) there may be yellow, pink and/or blue hexagons in

between Si and Si+1 that are not empty. There may also be a blue hexagon on Si

that is empty in H(G). Thus, we must consider these cases and the effects of it on

lmax in comparison to l′max. There are two cases that we must consider: (a) yellow,

pink and blue hexagons within the width between Si and Si+1 may not be empty in

H(G) (as was considered in Lemmas 5.3.7 and 5.3.8), and (b) for any hexagon on

Si that is empty, we must determine at most how many extra yellow, pink and/or

blue hexagons within the width between Si and Si+1 forward the message and not

interfere with hexagons on Si+1 (i.e. create a shorter path from Si to Si+1).

For any two hexagons a and b let h(a, b) denote the length of the shortest hexagonal

path from a to b.
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Case (a): hexagons between Si and Si+1 may not be empty in H(G)

For this case we determine if yellow, pink and/or blue hexagons within the width

between Si and Si+1 are not empty, then how does lmax compare to l′max. As shown in

Figure 5.3.28, let (a, b) be part of the segment Si and (d, e) be part of the segment Si+1.

The shortest possible hexagonal path from Si to Si+1 is through the blue hexagon c

in 2 hops as shown in Figure 5.3.28.

From Figure 5.3.28 the following results can be seen.

If the blue hexagons B1 and B2 are not empty in H(G), then h(a, d) = 2 and

h(a, e) = 2 on Pmax compared to h(a, d) = 4 and h(a, e) = 5 on P ′max in H(G′). Thus,

lmax ≤ l′max. That is, to maximize lmax B1, B2 must be empty.

If any of Y1, Y2, Y3 are not empty in H(G), then h(b, e) = 2 and h(a, e) = 2 on

Pmax compared to h(b, e) = 3 and h(a, e) = 4 on P ′max in H(G′). Thus, lmax ≤ l′max.

That is, to maximize lmax Y1, Y2, Y3 must be empty.

If any of P1, P2, P3 are not empty in H(G), then h(b, e) = 2 and h(a, e) = 2 on

Pmax compared to h(b, e) = 3 and h(a, e) = 4 on P ′max. Thus, lmax ≤ l′max. That is,

to maximize lmax P1, P2, P3 must be empty.

If FY 1 is not empty and FP1 is empty in H(G), then h(a, c) = 2 on Pmax through

the hexagon FY 1. On P ′max h(a, c) = 2 as well through the hexagon b. Thus, lmax =

l′max. However, if FY 1 and FP1 are both non-empty in H(G), then h(a, e) = 3 on

Pmax compared to h(a, e) = 4 on P ′max. Thus, in this case lmax ≤ l′max. That is, to

maximize lmax one of FY 1 and FP1 must be empty.

Similarly if both FY 2 and FP2 are non-empty in H(G), then h(a, e) = 3 on Pmax

compared to h(a, e) = 4 on P ′max. Thus, lmax ≤ l′max. That is, to maximize lmax one

of FY 2 and FP2 must be empty.

The hexagons F1, F2, F3, F4 ensure a hexagonal path from b to d, and as can be

seen from Figure 5.3.28 the shortest path from b to d is through c. Thus, it is not

necessary for any of F1, F2, F3, F4 to be empty since they do not have an affect of

lmax.

Therefore, in this case for any yellow, pink and/or blue hexagon between Si and

Si+1 that is not empty in H(G) lmax is bounded by l′max.

Case (b): Any hexagon on Si may be empty

From Case (a) it can be seen that blue hexagons between Si and Si+1 must be
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ab

c

d e

FY 1 FY 2

B1 B2

P1 P2 P3

Y1 Y2 Y3

FP1 FP2F1

F2

F3

F4

Si

Si+1

Figure 5.3.28: (a, b) is part of the segment Si. (d, e) is part of the segment Si+1.
Arrowed lines denote the longest hexagonal path from Si to Si+1. Crossed hexagons
are empty hexagons to ensure the longest hexagonal path from Si to Si+1.

empty to maximize lmax. From Case (a), it can also be seen that the only case where

yellow and pink hexagons may be non-empty and not shorten the path P ′max from Si

to Si+1 are when one of FY 1, FP1 is non-empty; one of FY 2, FP2 is non-empty; and

F1, F2, F3, F4 are non-empty. As can be seen from Figure 5.3.29, for every empty

hexagon on Si on P ′max that is empty in H(G) at most 2 non-blue hexagons on Pmax

between Si and Si+1 can forward the message. Thus, lmax ≤ 2 l′max.

From Cases (a) and (b), the length of the longest hexagonal path inH(G) in terms

of the length of the longest hexagonal path in H(G′) is at most lmax ≤ 2 l′max. The

broadcast time of G is equal to lmax + 1. From Lemmas 5.3.7 and 5.3.8, Bt(G
′) =

l′max + 1 ≤ 3
2
k2 + 3k + 4. Since lmax ≤ 2 l′max, then Bt(G) ≤ 2Bt(G

′) = 3k2 + 6k + 8.

ab

c

d e

FY 1

FY 2

FP1 FP2F1

F2

F3

F4

Si

Si+1

ab

c

d e

FY 1

FY 2

FP1 FP2

F1

F2

F3

F4

Si

Si+1

Figure 5.3.29: (a, b) is part of the segment Si. (d, e) is part of the segment Si+1.

Arrowed lines denote the longest hexagonal path from Si to Si+1. Crossed hexagons

are silent hexagons to ensure the longest hexagonal path from Si to Si+1. Dashed

arrowed lines denote edges part of the longest hexagonal path from Si to Si+1 if there

were no empty hexagons on P ′max.
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5.4 Beacon-Less Routing using HBLF

In a network, there may arise the case during the lifetime of the network that a

packet is unicast from the source node to a specific destination node vd. Thus, with

unknown location information of vd, the entire network must be flooded in order for

vd to receive the packet. However, if it is known which area of the network vd is

located in, then only that area can be flooded with the packet and save some of the

network resources.

It is desirable that the shape of this area that contains vd is large enough so that

even in case of node movement, vd does not move out of this area. At the same time it

is desirable that this area be much smaller than the network size. Thus, we consider

the area that contains vd by a π
3

sector, where the apex of the sector is the source node

s. Thus, to send a a packet specifically intended for vd, with the knowledge of the π
3

sector that contains vd, only the π
3

sector is flooded instead of the entire network.

Hexagons completely outside of the sector region do not participate in the flooding

scheme, while those completely within the sector do. Hexagons that fall on the borders

of the sector and may only be partly inside the sector are considered part of the sector

and thus, participate in forwarding the message. Thus, HBLF can be used to route

data needed in a specific area of the network defined as a π
3

sector. Note that, the

theoretic results obtained in the previous sections are applicable to a π
3

sector, where

the results in a π
3

sector are roughly 1
6

times those of for the entire network.

5.5 Summary

In this chapter, we gave an efficient beacon-less algorithm, HBLF, to flood a mobile

ad hoc network. HBLF uses a virtual layer of hexagon tiles to achieve delivery of

the message. Under the assumption that the network is hexagon connected we show

that every node in the network receives the message even in the presence of voids.

We present lower and upper bounds on the number of forwarding nodes, denoted β,

in a hexagonal shape networks of radius k. That is, β ≥
⌈

9
√

3(9k2+3k+1)−168π

28(2π+3
√

3)

⌉
+ 1

(Theorem 5.3.2). When there are no voids in the network, β ≤ 3
2
k2+3k+ 45

2
(Theorem
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5.3.3). In presence of voids, we showed that β ≤ 5
(

3
2
k2 + 3k + 45

2

)
(Theorem 5.3.5).

Thus, when there are no voids in the network, the upper bound is approximately 7
2

times the lower bound. The upper bound, where there may be voids in the network,

is approximately 5
(

7
2

)
times of the lower bound.

We compare the length of the shortest hexagonal path returned by HBLF, denoted

lHBLF , to the length of the shortest path in the network, denoted lmin, between a

source node s and any node v in a hexagonal shape network. If there are no voids in

the network then we showed that lHBLF

lmin
≤ 4(

√
7+2)

3
√

3
+ 2 (Theorem 5.3.6) is constant.

Note that, however, if there are voids in the network then lHBLF

lmin
is not constant, but

rather quadratic in terms of k, the radius of the hexagonal shape network. This can

be seen from the upper bound on the broadcast time, which is at most 3k2 + 6k + 8

(Theorem 5.3.7).
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Chapter 6

Conclusion and Future Work

In this thesis we studied how to efficiently disseminate data in wireless ad hoc network.

In Chapter 3 two centralized algorithms are given to construct a 2-connected

(k, r)-dominating set as a base for hierarchical clustering or virtual backbone in order

to efficiently route data in wireless sensor networks. The network is modelled as a

graph. The first algorithm is for unit disk graphs, which returns a 2-connected (k, r)-

dominating set of size at most 2Dβ|OPT |, where D is the diameter of the graph, β is

order of O(k) and OPT is the optimum solution to the 2-connected (k, r)-dominating

set. The second algorithm is in general graphs, which returns a 2-connected (k, r)-

dominating set of size at most 2D ln ∆k|OPT |, where ∆k is the largest cardinality

among all k-neighbourhoods in the graph. The work in Chapter 3 appears in [60].

Chapter 4 considers the problem of multiple sink placement in wireless sensor

networks such that every sink is within distance k from r sinks. The network is

modelled as a graph and hence, this problem is equivalent to total (k, r)-dominating

set in graphs. Chapter 4 considers the problem of deriving upper bounds on the total

(k, r)-domination number in general graphs of girth at least 2k + 1 and in random

graphs.

For fixed positive integers k and r, in a graph of girth at least 2k+1 and minimum

degree d we showed γt(k,r)(G) ≤ 2nr

(d− 1)k
+ nre−

r
4 . This result appears in [59]. The

results in random graphs are as follows. For k = 2 and non-fixed p ≥ c

√
log n

n
, where

c > 1 is a fixed constant, a.a.s γt(2,r)(G(n, p)) = r+1. Upper bounds on γt(k,r)(G(n, p)),

where k = 2 and k = 3 appear in [58]. These results are further generalized for k ≥ 3
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and non-fixed p ≥ k
k

√
log n

nk−1
, a.a.s. γt(k,r)(G(n, p)) = r+ 1. This result appears in [59].

Chapter 5 considers the problem of constructing a beacon-less flooding algorithm,

HBLF, to efficiently flood a message in MANETs. HBLF operates based on a virtual

hexagonal graph layered over the network, which is modelled as a unit disk graph.

HBLF uses the notion that a hexagonal graph is 3-colourable based on which it

orders forwarding nodes. In the theoretic analysis, we showed that for a hexagon

connected graph HBLF achieves full delivery even in the presence of holes in the

network. Lower and upper bounds on the number of forwarding nodes are presented.

For a hexagonal shape network of radius k, where blue hexagons are not categorized

and are not empty, the number of forwarding nodes determined by HBLF is at most

β ≤ 3k2 + 3k + 1. The lower bound on the number of forwarding nodes is at least

β ≥
⌈

9
√

3(9k2+3k+1)−168π

28(2π+3
√

3)

⌉
+ 1. These results appear in [61]. In this thesis, we further

showed that in presence of blue hexagon categorization and no holes in the network,

the number of forwarding nodes is at most β ≤ 3
2
k2 + 3k + 45

2
. In presence of holes

in the network β ≤ 5
(

3
2
k2 + 3k + 45

2

)
. Note that the upper bound is not dependent

on the number of nodes in the network, but rather on the size of the network area.

Thus, HBLF is most efficient in dense networks. The theoretic analysis also present

a constant dilation factor of 4(
√

7+2)

3
√

3
in networks that do not contain holes. If there

are holes present in the network, then the dilation factor is quadratic in the network

radius k. This is seen in the upper bound of the broadcast time, Bt(G), where

Bt(G) ≤ 3k2 + 6k + 8. The results of Chapter 5 are in preparation to be submitted

to a journal.

6.1 Future Work

The two algorithms presented in Chapter 3 are centralized algorithms for wireless

sensor networks. The approximation ratios given are dependent on the diameter of

the graph. Thus, it is desirable to design approximation algorithms, which allows us

to decrease this ratio. Also, wireless sensor networks do not have centralized control.

Thus, it is of interest to extend these algorithms to distributed scenarios, where nodes

make a forwarding decision based on local information. In such a case it is also of

interest to give approximation ratios.
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In Chapter 4, the upper bound on total (k, r)-domination number in graphs of

girth at least 2k + 1 is a relatively simple expression, but it is not a tight bound.

Thus, it is desirable to tighten this bound as well as to weaken the assumption on the

girth of the graph and consider the total (k, r)-domination number in general graphs

of not necessarily large girth.

The HBLF algorithm in Chapter 5 considers a hexagon connected network in order

to achieve full delivery in presence of holes in the network. Thus, it is desirable to

relax the assumption that the network is hexagon connected as well as determine any

relationship between graph connectivity and hexagon connectivity. The underlying

network model considered is a unit disk graph. However, nodes in the network may

have different transmission ranges. Thus, it is of interest to construct a beacon-less

flooding algorithm in MANETs with heterogeneous transmission ranges.
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