1,208 research outputs found

    Joint Loop End Modeling Improves Covariance Model Based Non-coding RNA Gene Search

    Get PDF
    The effect of more detailed modeling of the interface between stem and loop in non-coding RNA hairpin structures on efficacy of covariance-model-based non-coding RNA gene search is examined. Currently, the prior probabilities of the two stem nucleotides and two loop-end nucleotides at the interface are treated the same as any other stem and loop nucleotides respectively. Laboratory thermodynamic studies show that hairpin stability is dependent on the identities of these four nucleotides, but this is not taken into account in current covariance models. It is shown that separate estimation of emission priors for these nucleotides and joint treatment of substitution probabilities for the two loop-end nucleotides leads to improved non-coding RNA gene search

    From Structure Prediction to Genomic Screens for Novel Non-Coding RNAs

    Get PDF
    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other

    Big data analytics in computational biology and bioinformatics

    Get PDF
    Big data analytics in computational biology and bioinformatics refers to an array of operations including biological pattern discovery, classification, prediction, inference, clustering as well as data mining in the cloud, among others. This dissertation addresses big data analytics by investigating two important operations, namely pattern discovery and network inference. The dissertation starts by focusing on biological pattern discovery at a genomic scale. Research reveals that the secondary structure in non-coding RNA (ncRNA) is more conserved during evolution than its primary nucleotide sequence. Using a covariance model approach, the stems and loops of an ncRNA secondary structure are represented as a statistical image against which an entire genome can be efficiently scanned for matching patterns. The covariance model approach is then further extended, in combination with a structural clustering algorithm and a random forests classifier, to perform genome-wide search for similarities in ncRNA tertiary structures. The dissertation then presents methods for gene network inference. Vast bodies of genomic data containing gene and protein expression patterns are now available for analysis. One challenge is to apply efficient methodologies to uncover more knowledge about the cellular functions. Very little is known concerning how genes regulate cellular activities. A gene regulatory network (GRN) can be represented by a directed graph in which each node is a gene and each edge or link is a regulatory effect that one gene has on another gene. By evaluating gene expression patterns, researchers perform in silico data analyses in systems biology, in particular GRN inference, where the “reverse engineering” is involved in predicting how a system works by looking at the system output alone. Many algorithmic and statistical approaches have been developed to computationally reverse engineer biological systems. However, there are no known bioin-formatics tools capable of performing perfect GRN inference. Here, extensive experiments are conducted to evaluate and compare recent bioinformatics tools for inferring GRNs from time-series gene expression data. Standard performance metrics for these tools based on both simulated and real data sets are generally low, suggesting that further efforts are needed to develop more reliable GRN inference tools. It is also observed that using multiple tools together can help identify true regulatory interactions between genes, a finding consistent with those reported in the literature. Finally, the dissertation discusses and presents a framework for parallelizing GRN inference methods using Apache Hadoop in a cloud environment

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Computational Methods for Comparative Non-coding RNA Analysis: from Secondary Structures to Tertiary Structures

    Get PDF
    Unlike message RNAs (mRNAs) whose information is encoded in the primary sequences, the cellular roles of non-coding RNAs (ncRNAs) originate from the structures. Therefore studying the structural conservation in ncRNAs is important to yield an in-depth understanding of their functionalities. In the past years, many computational methods have been proposed to analyze the common structural patterns in ncRNAs using comparative methods. However, the RNA structural comparison is not a trivial task, and the existing approaches still have numerous issues in efficiency and accuracy. In this dissertation, we will introduce a suite of novel computational tools that extend the classic models for ncRNA secondary and tertiary structure comparisons. For RNA secondary structure analysis, we first developed a computational tool, named PhyloRNAalifold, to integrate the phylogenetic information into the consensus structural folding. The underlying idea of this algorithm is that the importance of a co-varying mutation should be determined by its position on the phylogenetic tree. By assigning high scores to the critical covariances, the prediction of RNA secondary structure can be more accurate. Besides structure prediction, we also developed a computational tool, named ProbeAlign, to improve the efficiency of genome-wide ncRNA screening by using high-throughput RNA structural probing data. It treats the chemical reactivities embedded in the probing information as pairing attributes of the searching targets. This approach can avoid the time-consuming base pair matching in the secondary structure alignment. The application of ProbeAlign to the FragSeq datasets shows its capability of genome-wide ncRNAs analysis. For RNA tertiary structure analysis, we first developed a computational tool, named STAR3D, to find the global conservation in RNA 3D structures. STAR3D aims at finding the consensus of stacks by using 2D topology and 3D geometry together. Then, the loop regions can be ordered and aligned according to their relative positions in the consensus. This stack-guided alignment method adopts the divide-and-conquer strategy into RNA 3D structural alignment, which has improved its efficiency dramatically. Furthermore, we also have clustered all loop regions in non-redundant RNA 3D structures to de novo detect plausible RNA structural motifs. The computational pipeline, named RNAMSC, was extended to handle large-scale PDB datasets, and solid downstream analysis was performed to ensure the clustering results are valid and easily to be applied to further research. The final results contain many interesting variations of known motifs, such as GNAA tetraloop, kink-turn, sarcin-ricin and t-loops. We also discovered novel functional motifs that conserved in a wide range of ncRNAs, including ribosomal RNA, sgRNA, SRP RNA, GlmS riboswitch and twister ribozyme

    Computational representation and discovery of transcription factor binding sites

    Get PDF
    Tesi per compendi de publicacions.The information about how, when, and where are produced the proteins has been one of the major challenge in molecular biology. The studies about the control of the gene expression are essential in order to have a better knowledge about the protein synthesis. The gene regulation is a highly controlled process that starts with the DNA transcription. This process operates at the gene level, hereditary basic units, which will be copied into primary ribonucleic acid (RNA). This first step is controlled by the binding of specific proteins, called as Transcription Factors (TF), with a sequence of the DNA (Deoxyribonucleic Acid) in the regulatory region of the gene. These DNA sequences are known as binding sites (BS). The binding sites motifs are usually very short (5 to 20 bp long) and highly degenerate. These sequences are expected to occur at random every few hundred base pairs. Besides, a TF can bind among different sites. Due to its highly variability, it is difficult to establish a consensus sequence. The study and identification binding sites is important to clarify the control of the gene expression. Due to the importance of identifying binding sites sequences, projects such as ENCODE (Encyclopedia of DNA elements), have dedicated efforts to map binding sites for large set of transcription factor to identify regulatory regions. In this thesis, we have approached the problem of the binding site detection from another angle. We have developed a set of toolkit for motif binding detection based on linear and non-linear models. First of all, we have been able to characterize binding sites using different approaches. The first one is based on the information that there is in each binding sites position. The second one is based on the covariance model of an aligned set of binding sites sequences. From these motif characterizations, we have proposed a new set of computational methods to detect binding sites. First, it was developed a new method based on parametric uncertainty measurement (Rényi entropy). This detection algorithm evaluates the variation on the total Rényi entropy of a set of sequences when a candidate sequence is assumed to be a true binding site belonging to the set. This method was found to perform especially well on transcription factors that the correlation among binding sites was null. The correlation among binding sites positions was considered through linear, Q-residuals, and non-linear models, alpha-Divergence and SIGMA. Q-residuals is a novel motif finding method which constructs a subspace based on the covariance of numerical DNA sequences. When the number of available sequences was small, The Q-residuals performance was significantly better and faster than all the others methodologies. Alpha-Divergence was based on the variation of the total parametric divergence in a set of aligned sequenced with binding evidence when a candidate sequence is added. Given an optimal q-value, the alpha-Divergence performance had a better behavior than the others methodologies in most of the studied transcription factor binding sites. And finally, a new computational tool, SIGMA, was developed as a trade-off between the good generalisation properties of pure entropy methods and the ability of position-dependency metrics to improve detection power. In approximately 70% of the cases considered, SIGMA exhibited better performance properties, at comparable levels of computational resources, than the methods which it was compared. This set of toolkits and the models for the detection of a set of transcription factor binding sites (TFBS) has been included in an R-package called MEET.La informació sobre com, quan i on es produeixen les proteïnes ha estat un dels majors reptes en la biologia molecular. Els estudis sobre el control de l'expressió gènica són essencials per conèixer millor el procés de síntesis d'una proteïna. La regulació gènica és un procés altament controlat que s'inicia amb la transcripció de l'ADN. En aquest procés, els gens, unitat bàsica d'herència, són copiats a àcid ribonucleic (RNA). El primer pas és controlat per la unió de proteïnes, anomenades factors de transcripció (TF), amb una seqüència d'ADN (àcid desoxiribonucleic) en la regió reguladora del gen. Aquestes seqüències s'anomenen punts d'unió i són específiques de cada proteïna. La unió dels factors de transcripció amb el seu corresponent punt d'unió és l'inici de la transcripció. Els punts d'unió són seqüències molt curtes (5 a 20 parells de bases de llargada) i altament degenerades. Aquestes seqüències poden succeir de forma aleatòria cada centenar de parells de bases. A més a més, un factor de transcripció pot unir-se a diferents punts. A conseqüència de l'alta variabilitat, és difícil establir una seqüència consensus. Per tant, l'estudi i la identificació del punts d'unió és important per entendre el control de l'expressió gènica. La importància d'identificar seqüències reguladores ha portat a projectes com l'ENCODE (Encyclopedia of DNA Elements) a dedicar grans esforços a mapejar les seqüències d'unió d'un gran conjunt de factors de transcripció per identificar regions reguladores. L'accés a seqüències genòmiques i els avanços en les tecnologies d'anàlisi de l'expressió gènica han permès també el desenvolupament dels mètodes computacionals per la recerca de motius. Gràcies aquests avenços, en els últims anys, un gran nombre de algorismes han sigut aplicats en la recerca de motius en organismes procariotes i eucariotes simples. Tot i la simplicitat dels organismes, l'índex de falsos positius és alt respecte als veritables positius. Per tant, per estudiar organismes més complexes és necessari mètodes amb més sensibilitat. En aquesta tesi ens hem apropat al problema de la detecció de les seqüències d'unió des de diferents angles. Concretament, hem desenvolupat un conjunt d'eines per la detecció de motius basats en models lineals i no-lineals. Les seqüències d'unió dels factors de transcripció han sigut caracteritzades mitjançant dues aproximacions. La primera està basada en la informació inherent continguda en cada posició de les seqüències d'unió. En canvi, la segona aproximació caracteritza la seqüència d'unió mitjançant un model de covariància. A partir d'ambdues caracteritzacions, hem proposat un nou conjunt de mètodes computacionals per la detecció de seqüències d'unió. Primer, es va desenvolupar un nou mètode basat en la mesura paramètrica de la incertesa (entropia de Rényi). Aquest algorisme de detecció avalua la variació total de l'entropia de Rényi d'un conjunt de seqüències d'unió quan una seqüència candidata és afegida al conjunt. Aquest mètode va obtenir un bon rendiment per aquells seqüències d'unió amb poca o nul.la correlació entre posicions. La correlació entre posicions fou considerada a través d'un model lineal, Qresiduals, i dos models no-lineals, alpha-Divergence i SIGMA. Q-residuals és una nova metodologia per la recerca de motius basada en la construcció d'un subespai a partir de la covariància de les seqüències d'ADN numèriques. Quan el nombre de seqüències disponible és petit, el rendiment de Q-residuals fou significant millor i més ràpid que en les metodologies comparades. Alpha-Divergence avalua la variació total de la divergència paramètrica en un conjunt de seqüències d'unió quan una seqüència candidata és afegida. Donat un q-valor òptim, alpha-Divergence va tenir un millor rendiment que les metodologies comparades en la majoria de seqüències d'unió dels factors de transcripció considerats. Finalment, un nou mètode computacional, SIGMA, va ser desenvolupat per tal millorar la potència de deteccióPostprint (published version

    Tfold: efficient in silico prediction of non-coding RNA secondary structures

    Get PDF
    Predicting RNA secondary structures is a very important task, and continues to be a challenging problem, even though several methods and algorithms are proposed in the literature. In this article, we propose an algorithm called Tfold, for predicting non-coding RNA secondary structures. Tfold takes as input a RNA sequence for which the secondary structure is searched and a set of aligned homologous sequences. It combines criteria of stability, conservation and covariation in order to search for stems and pseudoknots (whatever their type). Stems are searched recursively, from the most to the least stable. Tfold uses an algorithm called SSCA for selecting the most appropriate sequences from a large set of homologous sequences (taken from a database for example) to use for the prediction. Tfold can take into account one or several stems considered by the user as belonging to the secondary structure. Tfold can return several structures (if requested by the user) when ‘rival’ stems are found. Tfold has a complexity of O(n2), with n the sequence length. The developed software, which offers several different uses, is available on the web site: http://tfold.ibisc.univ-evry.fr/TFold

    Algorithms for RNA secondary structure analysis : prediction of pseudoknots and the consensus shapes approach

    Get PDF
    Reeder J. Algorithms for RNA secondary structure analysis : prediction of pseudoknots and the consensus shapes approach. Bielefeld (Germany): Bielefeld University; 2007.Our understanding of the role of RNA has undergone a major change in the last decade. Once believed to be only a mere carrier of information and structural component of the ribosomal machinery in the advent of the genomic age, it is now clear that RNAs play a much more active role. RNAs can act as regulators and can have catalytic activity - roles previously only attributed to proteins. There is still much speculation in the scientific community as to what extent RNAs are responsible for the complexity in higher organisms which can hardly be explained with only proteins as regulators. In order to investigate the roles of RNA, it is therefore necessary to search for new classes of RNA. For those and already known classes, analyses of their presence in different species of the tree of life will provide further insight about the evolution of biomolecules and especially RNAs. Since RNA function often follows its structure, the need for computer programs for RNA structure prediction is an immanent part of this procedure. The secondary structure of RNA - the level of base pairing - strongly determines the tertiary structure. As the latter is computationally intractable and experimentally expensive to obtain, secondary structure analysis has become an accepted substitute. In this thesis, I present two new algorithms (and a few variations thereof) for the prediction of RNA secondary structures. The first algorithm addresses the problem of predicting a secondary structure from a single sequence including RNA pseudoknots. Pseudoknots have been shown to be functionally relevant in many RNA mediated processes. However, pseudoknots are excluded from considerations by state-of-the-art RNA folding programs for reasons of computational complexity. While folding a sequence of length n into unknotted structures requires O(n^3) time and O(n^2) space, finding the best structure including arbitrary pseudoknots has been proven to be NP-complete. Nevertheless, I demonstrate in this work that certain types of pseudoknots can be included in the folding process with only a moderate increase of computational cost. In analogy to protein coding RNA, where a conserved encoded protein hints at a similar metabolic function, structural conservation in RNA may give clues to RNA function and to finding of RNA genes. However, structure conservation is more complex to deal with computationally than sequence conservation. The method considered to be at least conceptually the ideal approach in this situation is the Sankoff algorithm. It simultaneously aligns two sequences and predicts a common secondary structure. Unfortunately, it is computationally rather expensive - O(n^6) time and O(n^4) space for two sequences, and for more than two sequences it becomes exponential in the number of sequences! Therefore, several heuristic implementations emerged in the last decade trying to make the Sankoff approach practical by introducing pragmatic restrictions on the search space. In this thesis, I propose to redefine the consensus structure prediction problem in a way that does not imply a multiple sequence alignment step. For a family of RNA sequences, my method explicitly and independently enumerates the near-optimal abstract shape space and predicts an abstract shape as the consensus for all sequences. For each sequence, it delivers the thermodynamically best structure which has this shape. The technique of abstract shapes analysis is employed here for a synoptic view of the suboptimal folding space. As the shape space is much smaller than the structure space, and identification of common shapes can be done in linear time (in the number of shapes considered), the method is essentially linear in the number of sequences. Evaluations show that the new method compares favorably with available alternatives

    Genomic data mining for the computational prediction of small non-coding RNA genes

    Get PDF
    The objective of this research is to develop a novel computational prediction algorithm for non-coding RNA (ncRNA) genes using features computable for any genomic sequence without the need for comparative analysis. Existing comparative-based methods require the knowledge of closely related organisms in order to search for sequence and structural similarities. This approach imposes constraints on the type of ncRNAs, the organism, and the regions where the ncRNAs can be found. We have developed a novel approach for ncRNA gene prediction without the limitations of current comparative-based methods. Our work has established a ncRNA database required for subsequent feature and genomic analysis. Furthermore, we have identified significant features from folding-, structural-, and ensemble-based statistics for use in ncRNA prediction. We have also examined higher-order gene structures, namely operons, to discover potential insights into how ncRNAs are transcribed. Being able to automatically identify ncRNAs on a genome-wide scale is immensely powerful for incorporating it into a pipeline for large-scale genome annotation. This work will contribute to a more comprehensive annotation of ncRNA genes in microbial genomes to meet the demands of functional and regulatory genomic studies.Ph.D.Committee Chair: Dr. G. Tong Zhou; Committee Member: Dr. Arthur Koblasz; Committee Member: Dr. Eberhard Voit; Committee Member: Dr. Xiaoli Ma; Committee Member: Dr. Ying X
    corecore