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ABSTRACT

Unlike message RNAs (mRNAs) whose information is encoded in the primary sequences, the

cellular roles of non-coding RNAs (ncRNAs) originate from the structures. Therefore study-

ing the structural conservation in ncRNAs is important to yield an in-depth understanding of

their functionalities. In the past years, many computational methods have been proposed to

analyze the common structural patterns in ncRNAs using comparative methods. However,

the RNA structural comparison is not a trivial task, and the existing approaches still have

numerous issues in efficiency and accuracy. In this dissertation, we will introduce a suite of

novel computational tools that extend the classic models for ncRNA secondary and tertiary

structure comparisons.

For RNA secondary structure analysis, we first developed a computational tool, named Phy-

loRNAalifold, to integrate the phylogenetic information into the consensus structural folding.

The underlying idea of this algorithm is that the importance of a co-varying mutation should

be determined by its position on the phylogenetic tree. By assigning high scores to the crit-

ical covariances, the prediction of RNA secondary structure can be more accurate. Besides

structure prediction, we also developed a computational tool, named ProbeAlign, to improve

the efficiency of genome-wide ncRNA screening by using high-throughput RNA structural

probing data. It treats the chemical reactivities embedded in the probing information as

pairing attributes of the searching targets. This approach can avoid the time-consuming
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base pair matching in the secondary structure alignment. The application of ProbeAlign to

the FragSeq datasets shows its capability of genome-wide ncRNAs analysis.

For RNA tertiary structure analysis, we first developed a computational tool, named STAR3D,

to find the global conservation in RNA 3D structures. STAR3D aims at finding the consen-

sus of stacks by using 2D topology and 3D geometry together. Then, the loop regions can

be ordered and aligned according to their relative positions in the consensus. This stack-

guided alignment method adopts the divide-and-conquer strategy into RNA 3D structural

alignment, which has improved its efficiency dramatically. Furthermore, we also have clus-

tered all loop regions in non-redundant RNA 3D structures to de novo detect plausible RNA

structural motifs. The computational pipeline, named RNAMSC, was extended to handle

large-scale PDB datasets, and solid downstream analysis was performed to ensure the clus-

tering results are valid and easily to be applied to further research. The final results contain

many interesting variations of known motifs, such as GNAA tetraloop, kink-turn, sarcin-

ricin and t-loops. We also discovered novel functional motifs that conserved in a wide range

of ncRNAs, including ribosomal RNA, sgRNA, SRP RNA, GlmS riboswitch and twister

ribozyme.
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CHAPTER 1: INTRODUCTION

The classic central dogma of molecular biology explains that the genetic information encoded

in deoxyribonucleic acid (DNA) flows in the biological system by transcribing to messenger

ribonucleic acid (mRNA), and then translating into protein. This important mechanism

ensures the building of body structure and the heredity to offspring. As a result, mRNAs,

as well as proteins, attract most of the focus in the study of molecular biology. Recently,

more and more research indicates that the non-coding RNAs (ncRNAs) are also important

participators in the biological system [38, 110, 147]. One of the most well-known ncRNAs is

the transfer RNA (tRNA), which helps to decode the codons of mRNAs in ribosome [127].

MicroRNA (miRNA) is another important type of ncRNA found in plant, animals and viruses

[22]. It forms RNA-induced silencing complex to conduct the post-transcriptional regulation

of gene expression by binding to the reverse complementary in untranslated regions (UTRs)

of mRNAs. Long non-coding RNA (lncRNA) refers to the non-protein-coding transcripts

larger than 200 nucleotides. Recent studies show that the mutations and the dysregulations

of lncRNAs are closely related to many human diseases [43, 59, 120]. What’s more, with

the rapid development of next generation sequencing technique, substantial genome-wide

datasets have been analyzed to annotate the transcriptomes. The results show that actually

only a small fraction of transcripts are protein-coding, while most of the non-protein-coding

transcripts are functional [153, 154]. Therefore, fully understanding any biological system is

impossible without the thorough research on the ncRNAs in it.
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Unlike mRNAs whose primary sequences contain all codes for protein synthesis and thus

can be applied for function prediction directly, the functions of ncRNAs are determined

by their high-order structures, including the secondary structures and tertiary structures

(three-dimensional structures). Some well-known instances are the cloverleaf-like structure

of tRNAs and the kink-turn structural motifs which serve as important sites for protein

recognition. This specific feature posts challenges for the computational methods designed

for the function inference of ncRNAs. Generally, there are two major issues: first, we need

to predict the plausible secondary structures of ncRNAs; second, the comparison among

ncRNAs must be primarily based on their structures, which may increase running time

greatly.

Many computational methods have been proposed to solve the RNA structure folding prob-

lem. One type of algorithms makes use of Minimal Free Energy (MFE) model on a single

sequence [74, 126, 191]. The negative stabilizing base stacking energies and the positive

destabilizing loop energies for each possible secondary structure are computed and then

summed up based on the experimentally measured parameters. By using dynamic program-

ming, the most stable structure with the minimum free energy is chosen. However, the

prediction accuracy of this approach is limited, especially for long ncRNA sequences [63].

What’s more, single sequence folding can not be applied to discover new ncRNA families,

because the statistical signals in the secondary structure of a ncRNA are not strong enough

to distinguish itself from the stable structures folding from random sequences [128, 176]. To

solve the problem, comparative methods are incorporated into the folding algorithms. The

basic idea is that the secondary structures of ncRNAs are conserved through the evolution,

and thus the consensus structure of RNA sequences in one family should be more accurate

and significant. The first consensus folding algorithm was proposed by Sankoff [133]. It
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computes the alignment of two RNAs and their consensus structure simultaneously, since

constructing a precise structural alignment for folding is also a challenging problem. Exces-

sive computational resources are required by this algorithm [O(n6)]. Many other structural

alignment methods try to limit the search space of the Sankoff algorithm [65, 68, 168], but

they are still too computationally expensive to be applied to genome-wide datasets [O(n4)].

Now, the most widely used consensus folding methods align the RNA sequences without con-

sidering their secondary structures, and then detect the conserved signals in the sequence

alignment to infer the consensus secondary structure [73, 88].

On the other hand, comparing ncRNAs and their structures is the prerequisite for the func-

tional annotation. However, as we have discussed, the existing structural alignment ap-

proaches are not efficient enough for the genome-wide annotation of known ncRNA families.

Some approaches incorporate filters into homology search to remove the transcripts that

lack strong sequence conservation with the query before the structural alignment [7, 49, 87].

For example, the most recent release of the widely used software package CMsearch adopts

a pipeline consisting of five different filters which have significantly improved the compu-

tational efficiency of its previous version [112]. However, it still would take about 3 hours

to annotate the 1Gbp chicken genome with known Rfam [19] families on a 100-CPU clus-

ter with all filters and MPI applied. The sensitivity of CMsearch reaches a plateau about

87% without filters, indicating intrinsic difficulty in genome-wide ncRNA detection. What’s

more, ncRNAs in cells may fold significantly differently in vivo from their unconstrained in

silico predictions.

Although the computational methods of RNA secondary structural alignment provide excel-

lent starting point for the analysis of functional conservation, they are incapable of identifying

the tertiary motifs and homologous 3D structures. To study the tertiary structures of ncR-
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NAs, 3D structural alignment, which can take into full account the tertiary interactions, have

been proposed. Traditionally, the alignment of 3D coordinates, including in proteins and in

RNAs, is formulated as finding a rigid transformation that superimposes the largest number

of atoms in one structure onto the atoms of the other structure with a predefined distance

error [3]. The exact solution for this problem is impractical since the time complexity is

O(n32.5) [4]. Some approximate algorithms have been proposed [2, 55]. However, considering

that the lengths of ncRNAs can be thousands of nucleotides, those methods are still not

efficient enough for real applications. Therefore, most of the RNA 3D structural alignment

methods simplify the model by combining the local similarity or integrating specific features

of RNAs. For examples, R3D Align [124] assembles the alignments of local neighbor atoms

and ARTS [35] uses base pairs as seeds for the global alignment. Although an increasing

number of tools have been developed for the alignments of RNA 3D structures [75, 91, 161],

there is still lacking an efficient and accurate solution for the problem.

What’s more, the RNA 3D structures are actually interlinked by recurrent subcomponents,

named RNA structural motifs, which may play important functional roles. Based on the

existing knowledge about some motifs, many computational tools have been designed to

search their homologies by using comparative approaches. However, in recent years, the

traditional biological methods of detecting novel structural motifs can not keep the pace

with rapidly increasing number of resolved RNA 3D structures. Therefore, it is an urgency

to de novo discover new RNA structural motifs with computational tools directly. Several

clustering pipelines, such as COMPADRES [160], LENCS [30] and RNA 3D Motif Atlas [122],

have been proposed to categorize the conserved structural elements together. Although they

have successfully suggested many potential novel motifs, the restriction of finding rigid 3D

geometric similarity makes them impossible to consider complex structural motifs with base

4



pairing variations. Unlike these methods, RNAMSC evaluates the alignment of two motifs

by using their base pairing patterns. Although the advantage of this strategy has already

been demonstrated by clustering three rRNAs, it still needs to be extended to handle the

large-scale dataset in the PDB database.

We are particularly interested in these existing problems of comparative methods for RNA

structure analysis, such as consensus folding, secondary structural alignment, tertiary struc-

tural alignment, and the discovery of RNA structural motifs. The major issue of consensus

folding comes from the underlying multiple sequence alignments, which treat all inputs

equally. For secondary and tertiary structural alignments, the difficulty is the complicated

comparison among the base pairs in RNAs. The existing approaches to improving their

efficiency always result in the loss of accuracy. Last but not least, a clustering pipeline for

detecting RNA structural motifs in the PDB database is required to study the relationship

between RNA structures and their functionalities.

1.1 PhyloRNAalifold

RNAalifold is a popular computational method for RNA consensus structure prediction

which incorporates covarying mutations into a thermodynamic model to fold the aligned

RNA sequences. When quantifying covariance, it evaluates conserved signals of two aligned

columns with base-pairing rules. This scoring scheme performs better than some other

approaches, such as mutual information. However it ignores the phylogenetic history of

the aligned sequences, which is an important criterion to evaluate the level of sequence

covariance.
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In order to improve the accuracy of consensus structure folding, we propose a novel ap-

proach named PhyloRNAalifold. It incorporates the number of covarying mutations on the

phylogenetic tree of the aligned sequences into the covariance scoring of RNAalifold. The

benchmarking results show that the new scoring scheme of PhyloRNAalifold can improve

the consensus structure detection of RNAalifold.

In conclusion, incorporating additional phylogenetic information of aligned sequences into

the covariance scoring of RNAalifold can improve its performance of consensus structures

folding. This improvement is correlated with alignment characteristics, such as pair-wise

identity and the number of sequences in the alignment.

1.2 ProbeAlign

Recent advances in RNA structure probing technologies, including the ones based on high-

throughput sequencing, have improved the accuracy of thermodynamic folding with quantita-

tive nucleotide-resolution structural information. We present a novel approach, ProbeAlign,

to incorporate the reactivities from high-throughput RNA structure probing into ncRNA

homology search for functional annotation. To reduce the overhead of structure alignment

on large-scale data, the specific pairing patterns in the query sequences are ignored. On

the other hand, the partial structural information of the target sequences embedded in

probing data is retrieved to guide the alignment. Thus the structure alignment problem is

transformed into a sequence alignment problem with additional reactivity information. The

benchmark results show that the prediction accuracy of ProbeAlign outperforms filter-based

CMsearch with high computational efficiency. The application of ProbeAlign to the FragSeq
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data, which is based on genome-wide structure probing, has demonstrated its capability to

search ncRNAs in a large-scale dataset from high-throughput sequencing.

In conclusion, by incorporating high-throughput sequencing-based structure probing infor-

mation, ProbeAlign can improve the accuracy and efficiency of ncRNA homology search. It

is a promising tool for ncRNA functional annotation on genome-wide datasets.

1.3 STAR3D

The various roles of versatile non-coding RNAs typically require the attainment of complex

high- order structures. Therefore, comparing the 3D structures of RNA molecules can yield

in-depth understanding of their function conservation and evolutionary history. Recently,

many powerful tools have been developed to align the RNA 3D structures. Although some

methods rely on both backbone conformations and base pairing interactions, none of them

considers the entire hierarchical formation of the RNA secondary structure. One of the major

reason for this problem is that applying the algorithms of matching the tree-like topology to

the 3D coordinates directly is particularly time- consuming. In this article, we propose a novel

RNA 3D structural alignment method named STAR3D to take into full account the stack

relationship without complicated 2D structural alignment. It adopts a two-step strategy,

which includes detection of the consensus of stacks and guided alignment of loops. The

matching between 3D conserved stacks in the inputs is identified by joining small building

components, and then combined into a tree-like consensus of secondary structures. After

that, the unaligned loop regions are compared one- to-one in accordance with their relative

positions in the common tree. To evaluate the performance of STAR3D, we tested it on
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some RNAs in PDB with known 3D geometric information. The experimental results show

that the prediction of STAR3D is highly accurate for both non-homologous and homologous

RNAs. In addition, it is more efficient than the state-of-the-art tools by at least tens of

orders of magnitude.

1.4 RNA Structural Motif Clustering

As recurrent components of three-dimensional conformations and functional roles in bio-

logical systems, the RNA structural motifs provide us an easy way to associate molecular

architectures with their cellular mechanisms. In the past years, some computational tools

have been developed to search motif instances by using the existing knowledge of well-studied

families. Recently, with the rapidly increasing number of resolved RNA 3D structures, there

is an urgency of discovering novel motifs with the newly presented information. In this work,

we classify all the loops in non-redundant RNA 3D structures to de novo detect plausible

RNA structural motif families by using a clustering pipeline. Compared with other clustering

approaches, our method has two benefits: First, the underlying alignment algorithm is highly

sensitive to the variations in 3D structures; Second, sophisticated downstream analysis has

been performed to ensure the clusters are valid and easily applied to further research. The

final results of the clustering contain many interesting variants of known motif families, such

as GNAA tetraloop, kink turn, sarcin-ricin and T-loop. We also discover potential functional

motifs that conserved in ribosomal RNA, sgRNA, SRP RNA, riboswitch, and ribozyme.
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1.5 Overview of the Dissertation

In summary, we presented a suite of computational methods that target to solve the central

problems of ncRNA structure analysis and function annotation. For the study of RNA

secondary structures, we have developed computational methods to improve the consensus

folding algorithm and the RNA secondary structural alignment algorithm. For the study of

RNA tertiary structures, We have also developed a stack-based 3D structural alignment tool

and an automated clustering pipeline for discovering RNA structural motifs. In Chapter

2, 3, 4 and 5, all four methods will be described in detail. Their basic mechanisms are

summarized in the following.

1. PhyloRNAalifold is designed to incorporate phylogenetic information into the consen-

sus folding of RNA secondary structures, as described in Chapter 2.

2. ProbeAlign aims at making use of the pairing attributes revealed by probing data

to avoid the complex computation of secondary structure alignment without loss of

accuracy, as shown in Chapter 3.

3. STAR3D is developed to align RNA 3D structures with the guide of stack configuration,

as discussed in Chapter 4.

4. The RNA structural motif clustering pipeline is proposed to detect novel motif families,

as discussed in Chapter 5.

The first three tools and the clustering results are available at the website of Computational

Biology and Bioinformatics Group in the University of Central Florida (http://www.genome.ucf.edu/).
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It is anticipated that our tools can improve the ncRNA structure analysis and function an-

notation in the future.
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CHAPTER 2: RNA CONSENSUS STRUCTURE PREDICTION

WITH PHYLOGENETIC-BASED COVARYING MUTATIONS

2.1 Background

The discovery of novel non-coding RNA (ncRNA) families expanded our understanding of

RNAs, which not only carry genetic codes for protein synthesis but also participate in other

functions, especially the regulatory processes, such as localization, replication, translation

and degradation [38, 69, 107, 109]. In mammals, a substantial amount of transcripts (above

90%) are non-protein-coding, and most of them are functional [14, 154]. What’s more, the

non-coding regions in the human genome are crucially important. For example, microRNA

(miRNA) is used as a marker to differ normal tissues from tumors [27, 42, 114]; long non-

coding RNA (lncRNA) also contributes to human disease etiology [110]. These findings fuel

the research of RNA and also pose new challenges.

Unlike protein-coding genes, whose primary sequences can be applied for accurate functional

prediction with statistical signals, RNAs’ functions depend on their secondary structures.

Many computational methods have been proposed to fold RNA structures. One type of pop-

ular algorithms adopts Minimum Free Energy (MFE) model to fold a single RNA sequence,

which has been implemented in Mfold [192] and RNAfold [74]. However, the structure pre-

diction accuracy of this approach is limited. One major reason is that the precise energy
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parameters are hard to obtain experimentally [80]; on the other hand, the functional RNA

structure may not be the one with the minimum energy [107]. What’s more, single sequence

folding may not be applied to discover new RNA families even if the predicted structures are

correct, because the statistical signals in an RNA secondary structure are not strong enough

to distinguish itself from the stable structures folding from random sequences [128, 176].

Comparative methods can solve these problems by folding a consensus structure from mul-

tiple sequences, which not only improve the structure prediction accuracy, but also provide

additional signals to discover novel RNAs [171]. The idea of this approach is that RNA

secondary structures are conserved through evolution. Therefore, a consensus structure de-

tected by comparing related RNA sequences should be more accurate and significant than the

structure folded from a single sequence. With a consistent consensus structure, the specific

structure of each sequence in the alignment can be obtained by constraint folding. A classic

comparative method is the Sankoff algorithm [133]. Because constructing a precise structural

alignment of RNA sequences is also a challenging problem, the Sankoff algorithm computes

alignment and fold structure simultaneously. Excessive computational resources (O(n6)) are

required by the Sankoff algorithm for a large-scale problem. Some implementations of this

approach, such as Dynalign [65], Foldalign [68], LocARNA [168] and Conan [33], attempt to

restrict its solution space by limiting the number of possible sub-structures. However these

methods are still computationally expensive (O(n4)).

To reduce the computation complexity, comparative methods may align related sequences

first and then detect conserved signals in the alignment to infer a consensus structure. One

type of these methods extends the energy-based model from single sequences to alignments.

Based on the assumption that high covariance of two aligned columns implies the conserva-

tion of pairing, all potential pairing columns in an alignment can be determined. After that
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the optimal consensus structure with minimum average free energy can be folded just as a

single sequence structure. An example of covariance scoring scheme is Mutual Information

(MI), which can measure the dependence of two columns in the alignments [25, 60, 61].

RNAalifold [73] adopts the basic idea of MI scoring and imports the pairing rules of RNA

into the measurement of covariance. Another type of comparative methods is evolution-

based. In these methods, no thermodynamic parameters but statistical learning algorithms

are used. The evolutionary history of the aligned sequences is reformed with probability

theories [39, 121], and the RNA secondary structures are modeled as stochastic context-free

grammar (SCFG) [88, 89, 132]. Both strategies have their own strengths and weaknesses [31].

Some methods try to integrate both approaches. For example, PETfold extends Pfold [89], an

evolution-based algorithm, to consider the energetically favorable base-pairs [137]. However,

PETfold utilizes a Nussinov style model [117], which does not make full use of the energy

parameters. RNAalifold also tested two other covariance scoring schemes to incorporate

evolutionary information [13, 73], but neither of them yielded a better result.

In this article, we propose a novel method called PhyloRNAalifold. It improves RNAalifold

by explicitly incorporating the phylogenetic tree of the aligned sequences into the compu-

tation of covariance scores. Like RNAalifold, PhyloRNAalifold detects pairing columns by

evaluating covarying mutations and folds RNA structures through an MFE model. Unlike

RNAalifold, which does not consider the relative positions of sequences in the phylogeny,

PhyloRNAalifold counts the number of covarying mutations on the phylogenetic tree for each

pair of columns with a parsimony approach. What’s more, comparing with PETfold, PhyloR-

NAalifold retains the Turner’s model [190] in RNAalifold, which describes RNA structures

with many thermodynamic parameters derived from physical studies. With the supports of
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both energy-based model and evolution-based model, PhyloRNAalifold may detect consensus

structures more precisely.

The rest of the article is organized as follows: in the methods section, we discuss the basic

mechanism of RNAalifold, its shortcomings, and details of the PhyloRNAalifold algorithm.

In the results section, we describe the benchmark datasets, experimental results, and the

effect of parameters and alignment characteristics on our algorithm. In the discussion and

conclusion section, we summarize our existing works and propose directions for future re-

search.

2.2 Materials and Methods

2.2.1 Consensus folding energy and covariance score in RNAalifold

The basic approach of RNAalifold [73] is to integrate covarying mutation into the thermody-

namic model to predict consensus structures. First, covariance scores are computed for all

pairs of columns to determine possible pairing positions in the consensus structure. Then,

based on the MFE model, the minimum average folding energy is computed with dynamic

programming. Assume the given alignment is denoted by A, which contains N sequences

A = {s1, s2, . . . , sN}. Each sequence contains L symbols, including nucleotides and gaps,

and ski represents the ith symbol (1 ≤ i ≤ L) at the kth (1 ≤ k ≤ N) RNA sequence. The
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minimization of free energy is computed by using the following recursive functions:

Fi,j = min(Fi+1,j, min
i<k≤j

(Ci,k + Fk+1,j))

Ci,j = φ2γi,j + min



∑
sk∈A

H(i, j, sk)

min
i<p<q<j

(∑
sk∈A

I(i, j, p, q, sk) + Cp,q

)

min
i<p<j

(FMi,p + FM1p+1,j +Ma)

FMi,j = min



FMi+1,j +Mc

min
i<p<j

Ci,p + FMp+1,j +Mb

FM1i,j

FM1i,j = min (FM1i,j−1 +Mc, Ci,k)

(2.1)

where Fi,j, Ci,j, FMi,j, FM1i,j denote the minimum free energies for the region between ith

column and jth column with unconstrained structure, with enclosed structure, with a multi-

loop, and with a multi-loop containing a single branch, respectively. H(i, j, s) is the free

energy for a hairpin loop enclosed by si and sj, and I(i, j, p, q, s) is the free energy for an

internal loop containing two base-pairs, one is between si and sj and the other is between

sp and sq. Ma,Mc are penalties for closing bases and non-pairing bases in multi-loops. Mb

is the bonus for branch bases in multi-loops.

The recursive functions were derived from the Turner’s model [190]. One major change

made by RNAalifold for consensus folding is the usage of covariance score γ. It is not only

a factor in the computing of free energy, but also determines the possible pairing columns

in the alignment. Two parts, one is bonus and the other is penalty, are in this score. The
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first part of the covariance score is called the conservation score. For (ski , s
k
j ) and (sli, s

l
j),

three levels of confidence for pairing are assessed: base-pairs without mutation, base-pairs

with one mutation, and base-pairs with two mutations. In the latest version of Vienna RNA

package (v2.0) [102], the recursive function for computing conservation score is:

Vi,j =
1

N

∑
1≤k<l≤N


h(ski , s

l
i) + h(skj , s

l
j) if (ski , s

k
j ) ∈ B and (sli, s

l
j) ∈ B

0 otherwise

(2.2)

where h(x, y) is the Hamming distance between base x and base y, and B ={‘AU’, ‘UA’,

‘CG’, ‘GC’, ‘GU’, ‘UG’} is the set of all possible base-pairs. The second part is the penalty

score Qi,j, which deals with a pair of symbols that cannot form a base-pair:

Qi,j =
∑

1≤k≤N



0 if (ski , s
k
j ) ∈ B

0.25 if ski and skj are gaps

1 otherwise

(2.3)

Overall, the covariance score is:

γi,j = Vi,j − φ1 ×Qi,j (2.4)

where φ1 = φ2 = 1. A threshold value γt = −2 is defined for γi,j. If γi,j > γt, i
th column and

jth column are considered to be pairing columns. In the final output, the minimum average

folding energy, including the covariance score, is normalized by dividing N .
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2.2.2 Phylogenetic-based covarying mutation

RNAalifold incorporates covarying mutations into consensus folding to improve the detection

of pairing columns. From Equation (2), it can be seen that RNAalifold counts the level

of covariance by treating all sequences equally and try all possible combinations of base-

pairs. In short, RNAalifold models the relationship of sequences as a complete graph. As

a result, the specific evolutionary relationship among sequences in the phylogenetic history

is ignored. Take the RNA structural alignment in Figure 2.2.2 as an example. The red and

green columns achieve the same covariance score (2) in RNAalifold. However, as described

in [58], the conservation evidence in Figure 2.2.2(c) is stronger than that in Figure 2.2.2(b)

because at least two mutations occur at the green columns while only one is required to form

the red ones.

PhyloRNAalifold models the relationship of aligned sequences as a tree by introducing the

phylogenetic history of the alignment into the computation of covariance scores. The level

of structural conservation is measured by the number of covarying mutations on the tree.

Our assumption is that more covarying mutations on the tree mean stronger evidence of

conservation. In addition, PhyloRNAalifold does not discard the original scoring scheme

of RNAalifold, because experimental results showed this scheme can infer significant RNA

structural aspects with high sensitivity and selectivity [162]. Assume mi,j covarying mu-

tations occur between ith and jth columns on the alignment A’s phylogenetic tree and the

number of base-pairs on those columns is bi,j. The value of mi,j depends on the size of the

alignment. Since our approach focuses on improving the bonus part of the covariance scores,

the number of covarying mutations is normalized with its upper bound:
mi,j

bi,j−1 . A new factor
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Sequence1 -UACAUGAUCUUAUUC-U-A

Sequence2 AUACCUG-UCGUCUUCGU-A

Sequence3 AUCCAU--UCUGAUUCUU-A

Sequence4 AUCCCUAAUCGGAUUCGGUA

AU AU CG CG

AU CG

AU CG AU CG A- CG AU AG

CG AU

(a)

(b) (d)(c)

Figure 2.1: Covarying mutations in an RNA alignment. (a) A multiple RNA alignment
and its phylogenetic tree. Three pairs of columns, which are marked with different colors,
are analyzed in the following three sub-figures. (b) Possible covarying mutations in the red
columns. In this case, only one pair-wise mutation is required at the root node. (c) Possible
covarying mutations in the green columns. At least two pair-wise mutations occur at the
internal nodes in this case; (d) Possible covarying mutations in the blue columns. There are
non-pairing bases, ‘AG’ and ‘A-’. The label inference of the internal nodes does not depend
on them. So in this case, the number of mutations is one.

for the conservation score is proposed:

εi,j = 1 + β × mi,j

bi,j − 1
(2.5)

where β is the scale parameter for the normalized covarying mutation numbers. PhyloR-

NAalifold computes covariance scores with the following formula:

γpi,j = εi,j × Vi,j − φ1 ×Qi,j (2.6)
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All the other parameters and their default values in RNAalifold are retained. Due to the

fact that γpi,j ≥ γi,j (εi,j ≥ 1), two columns would be marked as pairing in PhyloRNAalifold

if their covariance score in RNAalifold is greater than the threshold γt (the default value

of γt is -2). Thus the advantage of PhyloRNAalifold is to import more potentially pairing

positions with high mutation numbers.

2.2.3 Computing the number of covarying mutations

Given a phylogenetic tree and labels at its leaves, the Fitch algorithm can optimize nucleotide

assignment of the internal nodes to minimize the number of mutations [48]. If we model

solving phylogeny as a maximum parsimony problem, this number can be taken as the actual

number of mutations. The Fitch algorithm consists of a forward phase and a backward phase.

In the forward phase, all possible labels at each internal node are inferred. In addition, the

number of mutations is estimated during a bottom-up traversal. In the backward phase,

a top-down pass is performed to find the optimal label at each internal node. Only the

forward algorithm is applied to PhyloRNAalifold, since we do not need the exact labels at

the internal nodes, but only the number of mutations on the tree. Without loss of generality,

we require T to be a rooted binary tree. r denotes the root of T and v, vl, vr denote a node,

left child of v, and right child of v respectively. F (v) is the set of possible labels at node

v, and cost(v) is the number of mutations on the sub-tree which is rooted at v. Then the
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forward phase can be described with the following recursive functions:

F (v) =


F (vl) ∩ F (vr) if F (vl) ∩ F (vr) 6= ∅

F (vl) ∪ F (vr) otherwise

cost(v) =


cost(vl) + cost(vr) if F (vl) ∩ F (vr) 6= ∅

cost(vl) + cost(vr) + 1 otherwise

(2.7)

For each leaf, F (v) is a base at the corresponding sequence. After the computation is finished,

cost(r) shows the minimum number of mutations on the phylogenetic tree. The optimization

of this algorithm was proved in [164].

In Equation 2.5, the computation of εi,j does not depend on non-pairing bases. Therefore, in

the revised Fitch algorithm non-pairing bases need not to be considered when the number

of covarying mutations is computed. We changed the original Fitch algorithm in two ways:

(1) at any leaf node, if (ski , s
k
j ) 6∈ B, set (ski , s

k
j ) = (‘-’, ‘-’); (2) for one internal node v, if

the bases at vl(vr) is (‘-’, ‘-’), v will obtain F (vr)(F (vl)) as its label. One example of this

algorithm is shown in Figure 2.2.2(d). The revised Fitch algorithm can be described by using
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the following functions.

F (v) =



F (vl) ∩ F (vr) if F (vl) ∩ F (vr) 6= ∅ and F (vl) 6= (‘-’, ‘-’) and F (vr) 6= (‘-’, ‘-’)

F (vl) if F (vr) = (‘-’, ‘-’)

F (vr) if F (vl) = (‘-’, ‘-’)

F (vl) ∪ F (vr) otherwise

cost(v) =



cost(vl) + cost(vr) if F (vl) ∩ F (vr) 6= ∅ and F (vl) 6= (‘-’, ‘-’) and F (vr) 6= (‘-’, ‘-’)

cost(vl) if F (vr) = (‘-’, ‘-’)

cost(vr) if F (vl) = (‘-’, ‘-’)

cost(vl) + cost(vr) + 1 otherwise

(2.8)

It is easy to see that our algorithm is optimal, because it only excludes non-pairing bases

from the computation of the original Fitch algorithm.

In PhyloRNAalifold, the tree structure is an input variable and the clients can use any

phylogenetic tree construction algorithm to build it. The time complexity of the original

RNAalifold algorithm is O(m × n2 + n3) [177], where n is the length of the alignment and

m is the number of sequences in the alignment. The extra computation in PhyloRNAalifold

is caused by the revised Fitch algorithm, whose time complexity ranges from O(logm) to

O(m). In addition, PhyloRNAalifold needs to compute εi,j for each pair of columns in the

alignment. Thus the overall time consumption of the revised Fitch algorithm is O(logm×n2)

or O(m× n2). Neither of them increases the time complexity of RNAalifold.
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2.3 Results

2.3.1 Benchmarking datasets

The 19 Rfam [51] families used in the CMfinder paper [179] were selected as our first bench-

marking dataset. It captures the diversity of known families by excluding highly conserved

ones. Other programs, such as PETfold [137] and RNAalifold [13], also adopted it in their

experiments. All the testing families came from Rfam version 11.0 and their seed alignments

were used. In order to evaluate the dependence of our folding algorithm on the alignment

quality, we also realigned the seeds with ClustalW [92] to generate the second benchmarking

dataset. For this dataset, the predicted structure of the first sequence in each alignment was

compared with its real consensus structure to measure the accuracy. Pair-wise identity and

the number of sequences in an alignment are two important alignment characteristics. Pair-

wise identity is related to the performance of consensus structure folding, while the number

of members is important for inferring an accurate evolutionary history. To analyze these

two factors, we generated the third benchmarking dataset which consisted of alignments

with different number of sequences and identities. Member sequences were randomly picked

from each seed alignment. For each family, we generated three sets. Each set included 50

alignments, and the alignments contained 5 sequences, 10 sequences and 20 sequences re-

spectively. 7 families (ctRNA pGA1, glmS, lin-4, Lysine, mir-10, s2m, Tymo tRNA-like),

whose sequences are less than 50, were excluded from this dataset because the diversity of

generated alignments was too small.

PhyloRNAalifold requires a phylogenetic tree of the alignment to infer the consensus struc-

tural aspects. In our experiments, DNADIST and KITSCH in the PHYLIP package [44] were
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used to generate phylogenies. First DNADIST computed a distance matrix of the sequences.

After that, KITSCH estimated a phylogenetic tree from the output matrix of DNADIST.

The reason of using KITSCH was that it can generate rooted binary trees, which were re-

quired by PhyloRNAalifold. Another notable issue in this process is that if two sequences

differ in more than 75% of their positions, DNADIST would set the distance between them

to -1, which represents infinity. KITSCH rejects negative distances. Thus -1 was replaced

with 1000 in distance matrices. We have checked all the positive sequence distances in our

experiments. None of them exceeded 10, so 1000 is large enough to represent infinity.

The implementation of PhyloRNAalifold was on the top of program RNAalifold in the Vienna

RNA package 2.0.7 [102]. The major change made by PhyloRNAalifold is to incorporate our

Fitch module into the scoring scheme of RNAalifold. To test our idea, Matthews correlation

coefficient (MCC) [52] was used to measure the accuracy of consensus structure prediction.

Its definition is:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.9)

where TP, TN, FP, FN represent the number of true positives, true negatives, false posi-

tives, and false negatives, respectively. Additional predicted base-pairs that are not in the

reference structure fall into two categories. Some base-pairs contradict reference, the oth-

ers are compatible with it. Compatible base-pairs can be inserted into the known consensus

structure, while adding contradictory base pairs breaks the pairing rules. Only contradictory

base-pairs were counted as false positive predictions.

Five algorithms, RNAalifold, RIBOSUM-based RNAalifold, PhyloRNAalifold, RIBOSUM-

based PhyloRNAalifold, and PETfold, have been tested on the first two datasets. The first
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four have also been benchmarked on the third dataset. The RIBOSUM scoring scheme [87]

is used in the latest version of Vienna RNA package. In this scheme, the sum of Hamming

distance h(ski , s
l
i) + h(skj , s

l
j) in conservation score was replaced by an entry in the RIBO-

SUM matrix R: R(ski s
k
j , s

l
is
l
j). The experiment results in [13] showed that RIBOSUM-based

RNAalifold outperformed the orignal RNAalifold in most of cases. In addition, the authors

of [13] used φ1 = 0.6 and φ2 = 0.5 as the default parameters in their experiments. We

applied their settings to make the comparison fair. The performance of PETfold was tested

in our experiments too. We used the web-server of PETfold [138] and its default parameters.

2.3.2 Effect of parameter β

In the first experiment, we compared the structure prediction results of PhyloRNAalifold

with RNAalifold on the original CMfinder dataset. Default values for φ1, φ2 and γt were used,

and β was a variable ranging from 1 to 15. Figure 2.3.2 shows that the novel scoring scheme of

PhyloRNAalifold improves the performance of RNAalifold in nearly all cases, except β = 1.

The differences of average MCC in both cases, with or without using RIBOSUM matrix,

become larger when β is increased, and they are maximized at β = 10. The largest differences

are 0.079 and 0.033 for RIBOSUM supported and non-RIBOSUM supported algorithms.

After that, the performance of PhyloRNAalifold is not boosted with the increasing of β. In

the following experiments, we select 10 as a default value for β.
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β
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0.92

0.94
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w/o RIBOSUM

w/ RIBOSUM

Figure 2.2: MCC on the CMfinder dataset as a function of the β parameter. The MCC results
of PhyloRNAalifold, with and without RIBOSUM matrix support, are shown in this figure.
The dash lines are references for the curves, which show the performance of RNAalifold
on the same dataset. It can be seen that except for β = 1, the new phylogenetic-based
covariance scoring scheme improves the performance of RNAalifold.

2.3.3 Benchmarking with other methods

Table 2.1 summarizes all results of the consensus structure predictions on the structural

alignments. PhyloRNAalifold with RISOSUM support achieves the best average MCC score.

When RIBOSUM matrix is incorporated, the score difference between PhyloRNAalifold and

RNAalifold becomes smaller. This may suggest that by using RIBOSUM matrix, RNAalifold

quantifies the conservation among base-pairs more precisely than its original solution. The

advantage of using phylogenetic history is swamped by this strategy to some extent. The

average specificity scores of five algorithms are the same, while PhyloRNAalifold and PET-
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fold have two largest average sensitivity scores. It is evidence of evolutionary information

helping the energy-based folding algorithms to detect more base-pairs with introducing very

few errors. An interesting observation is that Cobalamin has relative low MCC scores for

RNAalifold. PhyloRNAalifold improves the accuracy of the consensus structure prediction of

Cobalamin greatly. In addition, PETfold has the best performance on this family among all

five algorithms. We checked the consensus structure of Cobalamin and the predicted results

of RNAalifold. One possible reason is that there are too many gaps and non-pairing bases

at its pairing columns, which decrease the covariance scores of those columns in RNAali-

fold greatly. Without the bonus from evolutionary information, those columns cannot be

detected by RNAalifold at all.

Table 2.2 shows the results on the non-structural alignments of the CMfinder dataset. In

this case, RIBOSUM-based PhyloRNAalifold still achieves the highest average MCC score.

The performance of RNAalifold with RIBOSUM support is almost the same as that of the

top one algorithm. What’s more, PETfold, which has a larger average MCC score in the

previous experiment than RIBOSUM-based RNAalifold, falls to third place. This suggests

that the evolutionary information at the pairing columns may be disrupted by ClustalW,

whose alignment function does not consider secondary structures.

2.3.4 Effects of identity and the number of sequences

In this experiment, we try to analyze the correlation of two alignment characteristics, pair-

wise identity and the number of sequences, with the performance of PhyloRNAalifold. Fig-

ure 3 shows the experiment results. It can be seen that all four algorithms have similar
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Table 2.1: The benchmarking results on the structural alignments of the CMfinder dataset
(β = 10). The MCC on structural alignments of the CMfinder dataset is compared among
PhyloRNAalifold, RNAalifold and PETfold. The parameter β of PhyloRNAalifold is 10.
Best performance on the same family is set to bold.

Family #seq MPI RNAalifold PhyloRNAalifold
RNAalifold PhyloRNAalifold

PETFold
with RIBOSUM with RIBOSUM

Cobalamin 430 49.7 0.756 0.951 0.591 0.951 0.976
ctRNA pGA1 15 73.0 0.979 0.979 0.979 0.979 1.000
Entero CRE 56 81.7 0.912 0.912 0.916 0.916 1.000
Entero OriR 60 87.4 0.47 0.681 0.703 0.703 0.747
glmS 18 57.4 0.973 0.987 1.000 1.000 0.987
Histone3 52 46.0 1.000 1.000 1.000 1.000 1.000
Intron gpII 98 52.3 1.000 1.000 1.000 1.000 1.000
IRE 62 76.8 0.814 0.854 0.965 0.965 0.965
let-7 67 66.4 0.861 0.967 1.000 1.000 0.915
lin-4 12 68.8 0.977 1.000 1.000 1.000 0.836
Lysine 47 48.4 0.952 0.981 0.981 0.981 0.952
mir-10 36 67.9 0.789 0.865 0.957 0.957 0.935
Purine 133 54.7 0.904 1.000 1.000 1.000 0.977
RFN 144 68.1 0.826 0.851 0.826 1.000 1.000
Rhino CRE 12 81.4 0.581 0.581 0.976 0.976 0.750
S box 433 62.9 0.883 0.924 0.963 1.000 0.944
s2m 38 78.3 1.000 1.000 1.000 1.000 1.000
SECIS 61 41.0 0.972 1.000 1.000 1.000 0.972
Tymo tRNA-like 28 68.2 0.908 0.908 0.910 0.910 0.975

Mean 0.871 0.918 0.935 0.965 0.944
Specificity 1.000 1.000 1.000 1.000 1.000
Sensitivity 0.802 0.881 0.919 0.952 0.922

performance when the number of sequences in the alignments is 5. With the increasing of

the members in the alignments, the average MCC difference between PhyloRNAalifold and

RNAalifold becomes larger. Using more sequences provides a more precise phylogenetic his-

tory, so it is reasonable that PhyloRNAalifold achieves its best performance on alignments

with 20 sequences. In addition, for experiments on the alignments of 10 sequences and 20

sequences, the maximum performance difference exists between the pair-wise identities 65

and 80. If the pair-wise identity of an alignment is small, the original covariance scoring

scheme of RNAalifold works well enough because a large number of different base-pairs at

the pairing columns provide substantial conservational signals. On the other hand, when
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Table 2.2: The benchmarking results on the non-structural alignments of the CMfinder
dataset (β = 10). The MCC on non-structural alignments of the CMfinder dataset is com-
pared between PhyloRNAalifold, RNAalifold and PETfold. The parameter β of PhyloR-
NAalifold is 10. Best performance on the same family is set to bold.

Family MPI RNAalifold PhyloRNAalifold
RNAalifold PhyloRNAalifold

PETFold
with RIBOSUM with RIBOSUM

Cobalamin 43.2 -0.001 -0.001 -0.002 -0.002 -0.002
ctRNA pGA1 66.5 0.865 0.889 0.979 0.979 0.936
Entero CRE 81.7 0.912 0.912 0.916 0.916 1.000
Entero OriR 87.5 0.694 0.830 0.965 0.965 0.910
glmS 55.2 0.445 0.566 0.873 0.784 0.811
Histone3 45.1 1.000 1.000 1.000 1.000 1.000
Intron gpII 46.2 0.760 0.794 0.826 0.826 0.794
IRE 77.3 0.480 0.480 0.710 0.710 0.816
let-7 66.7 0.760 0.761 0.666 0.666 0.742
lin-4 64.6 0.523 0.521 0.712 0.712 0.739
Lysine 44.0 0.307 0.414 0.513 0.484 0.388
mir-10 68.4 0.741 0.820 0.957 0.957 0.935
Purine 53.8 0.852 0.977 0.977 0.977 0.953
RFN 64.2 0.342 0.309 0.302 0.433 0.477
Rhino CRE 81.4 0.581 0.581 0.976 0.976 0.750
S box 56.5 0.430 0.430 0.817 0.860 0.750
s2m 78.3 1.000 1.000 1.000 1.000 1.000
SECIS 36.5 0.000 0.000 0.000 0.000 -0.003
Tymo tRNA-like 64.1 0.691 0.703 0.768 0.768 0.596

Mean 0.599 0.631 0.735 0.737 0.715
Specificity 0.947 0.947 0.947 0.947 0.999
Sensitivity 0.486 0.545 0.689 0.704 0.655
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the alignment’s pair-wise identity is too large, all the symbols at the pairing columns are

almost the same. The effect of our new covariance scoring scheme is reduced due to the lack

of evolutionary information.
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Figure 2.3: The effect of alignment pair-wise identity and sequence number on the structural
prediction of PhyloRNAalifold (β = 10). The MCC results of PhyloRNAalifold and RNAal-
ifold on the third benchmarking dataset are shown in this figure. It can be seen that the
performance difference between PhyloRNAalifold and RNAalifold increases with the increas-
ing of the sequence number in the alignments. In addition, the maximum MCC difference is
achieved in the range of 65 ∼ 75 identitiess.

2.4 Discussion and Conclusion

We have proposed a novel approach, PhyloRNAalifold, to fold RNA consensus structures

by evaluating the level of conservation in aligned RNA sequences. With an evolution-based

covariance scoring scheme, PhyloRNAalifold can detect more potential pairing columns than

RNAalifold. The benchmark testing shows that PhyloRNAalifold can improve the perfor-

mance of RNAalifold, as well as PETfold.
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There are two possible directions for further research. The first direction is to analyze

the dependence of PhyloRNAalifold on the phylogenetic tree construction algorithms. Tree

structures have great effect on the RNA structure prediction of PhyloRNAalifold. Besides

DNADIST and KITSCH, there are other algorithms, such as UPGMA [145], PAUP [149] and

MrBayes [77], which can construct alternative trees. Finding or design an optimal algorithm

for detecting the phylogenetic information in the pairing columns is an open question. Ideally,

structure conservation should be considered because it is crucial for evaluating the similarity

between two RNA sequences. The second direction deals with incorporating the phylogenetic

information of non-pairing bases into the folding algorithm. Only covarying mutations among

base-pairs are considered in PhyloRNAalifold. In probabilistic methods, all the possible

mutations, including mutations in loop regions and stack regions, are modeled with HMM.

Our goal is to incorporate both types of mutations into PhyloRNAalifold, while still keep

the simplicity of the scoring scheme.
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CHAPTER 3: RNA HOMOLOGY SEARCH WITH

STRUCTURE PROBING INFORMATION

3.1 Background

The non-coding RNAs (ncRNAs) play various vital roles in the biological systems [38, 110,

147], such as gene-expression regulation [157], catalysis [32], signal recognition [62], and

ribosomal RNA modification [23]. Given the facts that most of the human genome (approx-

imately 62% [14] to 93% [15]) is transcribed [174] while only a small fraction of it (about

3%) actually codes for proteins, it is tempting to hypothesize that the ncRNAs contribute

enormously to the complex and elegant regulatory networks in human and other multicel-

lular organisms. Therefore, fully understanding any biological system is impossible without

the thorough research on the ncRNAs in it. However, annotating ncRNAs is more difficult

than proteins, because ncRNAs with divergent sequences may fold into conserved secondary

structures, and still perform similar biological functions. In this sense, secondary structure

conservation is used as a better evidence for functional conservation than sequence similarity

when conducting comparative ncRNA analysis.

Annotating the ncRNA secondary structure is a prerequisite for comparative ncRNA struc-

tural analysis. However, determining ncRNA secondary structure is a non-trivial task. The

performance of the existing computational methods (such as mfold [191], RNAfold [74], and
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RNAstructure [126]) for predicting secondary structure from a single ncRNA sequence is

not satisfying, especially for long ncRNA sequences [63]. Although the prediction accuracy

can be improved with evolutionary information from multiple sequence alignments [53, 56,

72, 121, 163], such information is not always available for every genome of interest. On

the other hand, genome-wide annotation of known ncRNA families by homology search still

appears as an open problem for lacking efficient and accurate computational pipelines. For

example, the latest release of the widely used software CMsearch has significantly improved

the computational efficiency of its previous versions [112]. However, it still would take about

3 hours to annotate the 1 Gbp chicken genome with known Rfam [19] families on a 100-

CPU cluster even with filters and MPI applied [112]. The sensitivity of CMsearch reaches

a plateau at ∼87% without filters, indicating intrinsic difficulty in detecting ncRNAs with

diverse sequences. The difficulty of ncRNA annotation is partly due to the computational

overhead of structure alignment, and partly due to the low information content given by the

secondary structures [128].

Recent advances in massive parallel sequencing make genome-wide probing of ncRNA sec-

ondary structures possible. Examples of technologies in this category include, but not limited

to, PARS [84], FragSeq [159], and SHAPE-seq [103] (SHAPE-seq has not been applied in

genome-wide study). With further improvements, such techniques are becoming more pow-

erful for understanding the in vitro [99, 185], or even in vivo ncRNA structrome [29]. The

information received from a typical genome-wide ncRNA secondary structure probing ex-

periment is the reactivity for each site. As the probing reagents, such as 1M7 [28, 103, 167],

DMS [29], or nuclease [159], are chosen to preferentially attack the paired/unpaired re-

gions, the experimentally determined reactivity can be used to assess the probability of

whether a specific site is paired. The reactivities can then be transformed into pseudo-
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energy terms [28, 181], and be incorporated into existing RNA-folding algorithms to predict

the optimal secondary structure that is compatible with both the RNA free energy models

and the observed reactivity pattern. When the reactivity information derived from SHAPE

technology [167] was incorporated, the 16s rRNA structure prediction accuracy was lifted

from 47% to 97% [28]. This success implies great potential in using the structure probing

information in other comparative genome-wide ncRNA analysis approaches.

Therefore, it is possible to improve the ncRNA annotation by incorporating the high-

throughput RNA secondary structure probing information. First, the computational effi-

ciency can be promoted by only focusing on transcribed regions revealed by the read-mapping

pattern as used in standard RNA-seq experiments. In addition, the experimentally defined

structural information can be used to reduce the search space of the alignment algorithms

and lead to the development of a more efficient one. Meanwhile, we can also expect to im-

prove the annotation accuracy because the experimentally determined structural information

reflects the real RNA structures, and is much more accurate than the in silico predictions.

Here, we present a novel ncRNA annotation algorithm called ProbeAlign, which, to the best

of our knowledge, is the first algorithm that considers high-throughput RNA structure prob-

ing information for the purpose of genome-wide ncRNA annotation. To make ProbeAlign

feasible for large-scale sequencing data, the specific pairing relationships between bases in

the query structures are discarded to achieve O(n2) time complexity. On the other hand,

with the usage of structure probing data, the partial structural aspects of target sequences

are introduced into the algorithm. Therefore, ProbeAlign tackles the homology search prob-

lem from another perspective with the support of new technologies. The benchmark results

show that the prediction of ProbeAlign outperforms filter-based CMsearch with a shorter

running time. Last but not least, the application of ProbeAlign to FragSeq data, which was
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generated by high-throughput sequencing-based RNA structure probing technology, shows

its capability of analyzing genome-wide datasets.

The rest of the paper is organized as follows: in the Methods section, we discuss the core

algorithm of ProbeAlign and how to estimate the p-values for the alignment scores. In the

Results section, we describe benchmark results, parameters optimization and an application

of our algorithm to FragSeq data. In the Discussion section, we summarize our existing

works, and propose possible directions for future research.

3.2 Materials and Methods

3.2.1 Algorithm design

ProbeAlign identifies the homologous ncRNAs in a profile-based search manner. The profile

is generated by using the multiple sequence alignment of a given ncRNA family. The aligned

columns formed by a majority of gap are excluded in the search profile. In addition, the

consensus structure of the family is considered as the structural information of the profile.

The targets of search are usually the genomic or transcriptomic sequences with experimen-

tally determined reactivities. In the latest implementation of ProbeAlign, higher reactivity

of a site indicates higher chance of being unpaired, and vice versa.

Assume the alphabet of RNA sequences is {A, C, G, U, X}, in which X represents all unknown

nucleotides. First we denote the query of an ncRNA family as Q = {P, S}, where P is the

sequence profile of the family and S is the pairing pattern in the corresponding consensus

34



structure. Let the length of the profile be n, then P = 〈p1, p2, . . . , pn〉 and S = 〈s1, s2, . . . , sn〉.

Here, pi = [vAi , v
C
i , v

G
i , v

U
i , v

X
i , v

−
i ], which is a vector that contains the frequency of the

nucleotides and gap at site i. si is a boolean value indicating whether site i is paired

in the consensus structure or not (0 means i is paired and vice versa). Note that the

specific pairing relationship between sites in P is not considered in S, which is similar to the

folded-BLAST [156]. For target T of length m, denote B = 〈b1, b2, . . . , bm〉 as the genomic

sequence and R = 〈r1, r2, . . . , rm〉 as the observed reactivities. Denote Di,j, Ii,j,Mi,j as the

optimal alignment scores for deleting, inserting and matching a column in the search profile,

respectively. They can be computed using the following recursive functions:

Di,j = max{Mi−1,j + ε0 + εe, Di−1,j + εe},

Ii,j = max{Mi,j−1 + ε0 + εe, Ii,j−1 + εe},

Mi,j = max{Di,j, Ii,j,Mi−1,j−1 + α× τ(si, rj) + β × σ(pi, bj)}.

(3.1)

Here, ε0 and εe are the gap open penalty and the gap extension penalty, respectively. In our

implementation, a “semi-global alignment” setting [70] is adopted. Therefore, these three

functions are initialized with: M0,0 = 0, Mi,0 = ε0+i×εe, M0,j = 0, and D0,j = Ii,0 = −∞. τ

and σ are functions to assess the structural and the sequence similarities between the queries

and the targets, respectively. α and β are weights assigned to these two types of similarities.

The sequence similarity between the query profile and the target sequence is computed using

the following formula:

σ(pi, bj) =
∑

x∈{A, C, G, U, X, –}

vxi ×m(x, bj), (3.2)

where m(x, y) is the substitution score between nucleotides x and y.
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The general function to compute structural similarity is as follows:

τ(si, rj) =

 0 if rj is not defined,

f(si, rj) otherwise.
(3.3)

Given the reactivity rj, p(πj|rj) is computed to compare the structural aspect of bj with si.

πj is a random variable and πj ∈ {0, 1}, 0 means bj is paired and 1 means bj is not paired.

According to the Bayes’ theorem, the probability can be computed as:

p(πj|rj) =
p(rj|πj)× p(πj)∑
πj
p(rj|πj)× p(πj)

. (3.4)

The probabilities p(r|π = 0) and p(r|π = 1) can be inferred from the reactivities retrieved

from the RNAs with known secondary structures [148]. To simplify the computation, we

assume p(π = 0) is equal to p(π = 1) and then define the function f as:

f(si, rj) = log p(πj = si|rj)− log p(πj 6= si|rj)

= log p(rj|πj = si)− log p(rj|πj 6= si).

(3.5)

Note that the probability p(r|π) varies among different probing techniques. Even for one

protocol, the reactivity distributions may be different due to the distinct computational

methods for transferring the chemical signals from biological experiments. Therefore, it may

be hard to apply Equation 5 on some techniques whose statistical properties have not been

studied yet. To overcome this limitation and make the implementation of ProbeAlign easy

to use, a simplified scoring function is proposed:

f(si, rj) =

 1 if (rj > rc and si = 1) or (rj < rc and si = 0),

−1 otherwise.
(3.6)
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In Equation 6, rc is a cutoff value which is used to annotate the structural aspects of targets.

Any site that has higher reactivity than rc is deemed as unpaired, and vice versa (rj > rc ⇒

p(πj = 1|rj) = 1; rj <= rc ⇒ p(πj = 0|rj) = 1). We have compared two different types of

structural similarity functions by taking SHAPE protocol as an example. The benchmark

results show that the optimal performance of those two functions is comparable. Therefore,

the simplified scoring function is practical for universal usage, while the protocol-specific

scoring function may be a better option if the reactivity distribution is known.

The above described dynamic programming algorithm computes the optimal alignment be-

tween the query profile and the target sequence with the consideration of both structural

and sequence similarity. After alignment, traceback is performed to check the base pairing

consistency between the query structure and the target. Bonus scores are assigned to the

possible pairing bases. Such additional information can be used to detect potential false

positive hits that have high alignment scores but low structural consistency with the query.

For example, in Figure 3.1, two alignment scores are the same. However, the target in align-

ment 1 is more conserved with the query, compared with the target in alignment 2, because

the red letters can form canonical pairs, while the green ones can not. Structure consistency

scores can help us distinguish these two targets.

3.2.2 P-value estimation

A robust scheme for evaluating the statistical significance of prediction results is important

for the homology search applications. However, what statistical distribution the ncRNA

alignment scores should follow is still unclear. In this case, we simulated the ProbeAlign
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Figure 3.1: Two alignments with different structure consistency scores. The reactivities
with red color are higher than rc, while the reactivites with blue color are less than rc.
In Alignment 2, the red letters can not form canonical base pairs. The green letters in
Alignment 1 can form canonical base pairs.

scores by searching 106 Rfam families (as defined by the Infernal RMARK3 dataset [112])

against five artificial sequences, whose GC content ranging from 30% to 70%. Each ar-

tificial sequence was constructed by concatenating random RNA sequences generated by

GenRGenS [123] with a simple context-free grammar [37]. The secondary structure of each

random sequence was predicted by mfold [191]. The corresponding reactivities of the sec-

ondary structure were simulated based on the SHAPE technology [148].

We fitted the ProbeAlign score density for each Rfam family with four different distributions:

the normal, Gumbel, GEV (Generalized Extreme Value), and Gamma distributions. The

goodness of fitting was measured with K-S test (Kolmogorov-Smirnov test). The fitting

results on the five artificial sequences show that the ProbeAlign scores follow the Gamma

distribution for most of Rfam families. Take the fitting on the artificial sequence with 50%

GC content as an example. Out of 106 tested families, 103 families fit best with the Gamma

distribution, and the other three families (bicoid 3, OLE, and rne5) fit best with the normal

distribution. The score distribution fitting of the Corona FSE family (which follows Gamma)

and the rne5 family (which follows normal) is shown in Figure 3.2. It is clear that even rne5
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fits better with the normal distribution, the Gamma distribution also fit the ProbeAlign

score distribution well. So the Gamma distribution was chosen to evaluate the p-values in

ProbeAlign.
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Figure 1 Two alignments with di�erent structure consistency scores. The reactivities with red
color are higher than rc, while the reactivites with blue color are less than rc. In Alignment 2, the
red letters can not form canonical base pairs. The green letters in Alignment 1 can form canonical
base pairs.

Figure 2 The fitting of the alignment score distributions for Corona FSE and rne5 families.

Figure 3 ROC plots for the performance of CMsearch (with the default parameters and filters)
and ProbeAlign in searching tRNA and RNase MRP. TP rate is computed by dividing the number
of TP predictions by the size of the training set. FP rate is computed by dividing the number of
FP predictions by the total number of all predictions.

Figure 3.2: Fitting of the alignment score distributions for Corona FSE and rne5 families.

3.3 Results

3.3.1 Benchmarks

In this section, we will compare the performance of ProbeAlign and CMsearch using the

RMARK3 benchmark dataset. This dataset contains 106 families, and each family has

a training alignment and a test set. The training alignments were employed to generate

queries for both tools. The sequences in the test sets were concatenated together and served

as the target in the experiments. The corresponding reactivities of the target were simulated

based on the SHAPE technology [148]. To make the comparison between ProbeAlign and
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CMsearch fair, for each family, we kept the number of predictions of these two programs the

same. A server machine with 4 Xeon i7 CPUs (2.4 GHz) and 128 GB RAM was used for the

benchmarking and subsequent experiments under single core configuration.

CMsearch adopts the covariance model to query against the target sequences to detect RNA

homologs. The recent release of CMsearch is coupled with Hidden Markov Model (HMM)-

based filters to improve its computational efficiency [112]. In the following experiments,

CMsearch will be invoked with default setting, which means the filters are coupled and the

default parameters are used. For ProbeAlign, the weights for the structural and sequence

similarity, α and β, were set to 0.7 and 2.6, respectively. The simplified scoring function

for structural similarity was used as default in the benchmarks. According to the property

of the SHAPE reactivity data [28], rc was set to 0.3. A detailed discussion of parameter

selection will be presented in the following section.

The synthesized target contains 780 ncRNA sequences (160,390 bps) from the RMARK3

dataset. It takes 2.13 minutes CPU time for ProbeAlign to finish the search while it takes 6.85

minutes CPU time for CMsearch. Such improvement is expected, since ProbeAlign adopts an

O(mn) algorithm, while the core algorithm of CMsearch is from O(mn1.3) to O(mn2.4) [111],

for a query with n sites and a target with m bases. In terms of prediction accuracy, the

overall TP/FP ratio of CMsearch is 632/292, while that of ProbeAlign is 653/271. Of the

106 ncRNA families in RMARK3, ProbeAlign generates different prediction results with

CMsearch in 27 families. Table 3.1 shows the performance difference of ProbeAlign and

CMsearch on those families.

The search results for the tRNA and RNase MRP families, whose ROC curves are shown

in Figure 3.3, clearly demonstrate the advantage of using the probing information to detect
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Table 3.1: Summary of the results of ProbeAlign and CMsearch on the RMARK3 dataset.
Only the families with different results between the two programs are shown in the table.

Rfam ID Name Identity # Tests # Predictions
CMsearch ProbeAlign
TP FP TP FP

RF00005 tRNA 44% 20 61 10 51 16 45
RF00007 U12 61% 7 8 7 1 6 2
RF00013 6S 43% 38 24 21 3 24 0
RF00017 SRP euk arch 46% 21 24 19 5 21 3
RF00020 U5 52% 22 23 19 4 22 1
RF00023 tmRNA 48% 59 59 58 1 57 2
RF00028 Intron gpI 34% 20 5 4 1 5 0
RF00030 RNase MRP 44% 28 36 16 20 22 14
RF00066 U7 62% 2 1 1 0 0 1
RF00080 yybP-ykoY 46% 13 13 13 0 10 3
RF00104 mir-10 58% 2 1 0 1 1 0
RF00114 S15 61% 8 11 8 3 7 4
RF00140 Alpha RBS 65% 3 4 1 3 3 1
RF00165 Corona pk3 68% 1 4 0 4 1 3
RF00177 SSU rRNA 5 49% 13 17 12 5 13 4
RF00230 T-box 46% 48 50 46 4 47 3
RF00504 Glycine 50% 14 14 14 0 13 1
RF00515 PyrR 46% 29 38 25 13 28 10
RF00534 SgrS 48% 3 2 0 2 1 1
RF00548 U11 57% 8 11 7 4 5 6
RF00640 MIR167 1 53% 10 9 8 1 7 2
RF00645 MIR169 2 52% 21 21 21 0 20 1
RF00661 mir-31 57% 3 3 2 1 3 0
RF01052 Arthropod 7SK 65% 2 3 0 3 2 1
RF01066 6C 67% 1 2 1 1 0 2
RF01069 purD 56% 8 9 8 1 7 2
RF01296 snoU85 62% 2 6 1 5 2 4

Overall 406 459 322 137 343 116

remote homologous sequences. The sequence identities for these two families are 46% and

47%, which make it challenging for HMM-based filters to find the tested RNAs. Note that

it would be possible for CMsearch to predict more low sequence identity hits by disabling

the filters, but it would dramatically (by 10,000-fold) increase the running time [112]. On

the other hand, when the probing information is considered, the high structural similarity

is able to compensate the low sequence similarity, and lift the ranking of ncRNA sequences

that are difficult to be detected by CMsearch. Figure 3.4 shows that a tRNA homolog

(Accession ID: AY632242.1/10-80) missed by CMsearch was identified by ProbeAlign. Of 71
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Figure 1 Two alignments with di�erent structure consistency scores. The reactivities with red
color are higher than rc, while the reactivites with blue color are less than rc. In Alignment 2, the
red letters can not form canonical base pairs. The green letters in Alignment 1 can form canonical
base pairs.
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Figure 1 Two alignments with di�erent structure consistency scores. The reactivities with red
color are higher than rc, while the reactivites with blue color are less than rc. In Alignment 2, the
red letters can not form canonical base pairs. The green letters in Alignment 1 can form canonical
base pairs.

Figure 2 The fitting of the alignment score distributions for Corona FSE and rne5 families.

Figure 3 ROC plots for the performance of CMsearch (with the default parameters and filters)
and ProbeAlign in searching tRNA and RNase MRP. TP rate is computed by dividing the number
of TP predictions by the size of the training set. FP rate is computed by dividing the number of
FP predictions by the total number of all predictions.

Figure 2 The fitting of the alignment score distributions for Corona FSE and rne5 families.

Figure 3 ROC plots for the performance of CMsearch (with the default parameters and filters)
and ProbeAlign in searching tRNA and RNase MRP. TP rate is computed by dividing the number
of TP predictions by the size of the training set. FP rate is computed by dividing the number of
FP predictions by the total number of all predictions.

Figure 3.3: ROC plots for the performance of CMsearch and ProbeAlign in searching tRNA
and RNase MRP. CMsearch is invoked with the default parameters and filters. TP rate is
computed by dividing the number of TP predictions by the size of the training set. FP rate
is computed by dividing the number of FP predictions by the total number of all predictions.

sites in the profile of the training set, 13 sites have frequencies less than 12.5% and 22 sites

have frequencies between 12.5% and 25%, which prevents the HMM filters to retrieve some

tRNAs.

Figure 3.4: An alignment generated by ProbeAlign between the tRNA query profile and a
target tRNA sequence. The accession ID of the target RNA sequence is AY632242.1/10-80.
The red color in target sequence and bars indicates the sites with low reactive scores (< rc).
The blue color indicates the sites with high reactive scores (> rc).
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3.3.2 Optimizing the structure and sequence similarity weights

In the ProbeAlign algorithm, the parameters α and β indicate the weights for the structural

and sequence similarity, and control how the two types of information are incorporated

into the dynamic programming algorithm. The setting of these parameters should reflect

how well the probing data would represent the actual secondary structure, as well as which

information is more important in defining a specific ncRNA family. Ideally, the setting of the

parameters should be family-specific to satisfy the structure and the sequence conservation

patterns. However, it is tedious to define a set of parameters for each search profile, and

more importantly, the overly tweaked parameters for the under-represented families would

even bias the search. In this case, it is expected to apply a set of universal parameters for

all families.

Three experiments have been conducted to analyze the effect of α and β on the performance

of ProbeAlign by using the RMARK3 dataset. The value of α varied from 0 to 2 with an

increasing step of 0.1, while the value of β varied from 4 to 0 with a decreasing step of -0.2.

In the first experiment, we investigated the performance of ProbeAlign with the default set-

ting under different combinations of α and β. In the second experiment, we excluded the

structure consistency score to investigate its contribution to the overall performance. In the

third experiment, the prediction was based upon the SHAPE-specific scoring function for

structural similarity. Figure 3.5 shows the performance of ProbeAlign in these three experi-

ments. For the first experiment (Figure 5, red line), the optimal performance is achieved at

α = 0.7 and β = 2.6, which is then taken as the default setting for the algorithm. For the

second experiment (Figure 5, blue line), the optimal performance is achieved at α = 0.6 and

β = 2.8. The performance of ProbeAlign is higher than that without considering the struc-

43



ture consistency score. Such improvement is more significant when the structural weight is

higher. Therefore structure consistency score is an effective way of improving the overall

performance. In the last experiment, we adopted the SHAPE-specific scoring function to

evaluate the structural similarity between the Rfam families and the target sequence. We

can see that the optimal performance for the SHAPE-specific function (Figure 5, green line)

and the default simplified function (Figure 5, red line) is comparable: 656/268 at α = 0.9

and β = 2.2 for the SHAPE-specific scoring function; 653/271 at α = 0.7 and β = 2.6 for

original simplified scoring function. The performance difference is increased when raising

the ratio of α/β. Therefore, the protocol-specific scoring function may be a better choice if

the underlying reactivity distribution is known. The implementation of ProbeAlign allows

users to decide which scoring function they use.
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Figure 3.5: Performance of ProbeAlign with different structure and sequence similarity
weights. The TP/FP ratio of CMsearch, 2.164, is represented as a dash line in the fig-
ure.
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3.3.3 High-throughput sequencing-based RNA structure probing data

FragSeq (fragmentation sequencing) is a genome-wide RNA structure probing technique that

has been applied to study the mouse nuclear transcriptome [159]. The RNA secondary struc-

tures in the KH2 undifferentiated mouse embryonic stem cells (undiff) and neural precursors

cells (d5np) were probed. By analyzing nine snRNA families (U1, U2, U3, U4, U5, U6,

U8, U11, and U12) in the mouse genome, the paper shows a good accordance between the

probing data and the real secondary structures. New secondary structures have also been

proposed to three other snRNA families (U15, U22, and U97), showing the ability of FragSeq

to discover novel ncRNA transcripts and their secondary structures.

We used ProbeAlign with default setting to search the nine snRNAs families against the

FragSeq data to demonstrate its utility on experimentally determined reactivities. We were

only interested in the genomic regions that were transcribed, i.e. being covered by more than

4 sequenced reads. There are 18,388 regions (32.2 Mbps) for the undiff cell line and 17,007

regions (29.0 Mbps) for the d5np cell line. The reactivities for these regions were computed

using FragSeq v0.0.1, a supplementary software for the probing protocol [159]. Because

FragSeq is a different technology than SHAPE, rc was adjusted to 0.5 from 0.3. All other

parameters remained the same as in the benchmark. A universal p-value cutoff (0.01) was

set for all searches. The running time for the undiff dataset was 30.20 minutes CPU time,

and for the d5np dataset was 26.97 minutes CPU time. During the analysis of the predicted

results, we found some reads were mapped onto repeat regions in the genome. Those hits

were removed by using Repbase database [82]. The final search results are summarized in

Table 3.2. U11 and U12 have no record in Repbase. Only 17 and 21 U4 records in Repbase

are covered by the transcribed regions of d5np and undiff cell lines, and all of them are top
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ranked in the results of ProbeAlign. The corresponding sequences with their locations on

the genome can be downloaded at http://genome.ucf.edu/ProbeAlign.

Table 3.2: Summary of the prediction results by ProbeAlign on the FragSeq data. The
numbers in the brackets show that how many predictions by ProbeAlign are recorded in
Repbase.

RF00003 RF00004 RF00012 RF00015 RF00020 RF00026 RF00096 RF00548 RF00007
U1 U2 U3 U4 U5 U6 U8 U11 U12

d5np 46(46) 18(18) 11(11) 243(17) 12(12) 120(117) 2(2) 1 4
undiff 46(46) 19(19) 11(11) 302(21) 12(12) 146(134) 2(2) 1 4

One interesting observation from the ProbeAlign search results is that the transcription of U4

and U6 snRNA families are more active in undiff cells than in d5np cells. It is not surprising

to see the potential correlation between the U4 and U6 transcription level, as they have been

proposed to interact with each other in splicing control. In fact, it is hypothesized that they

can bind with each other due to a long complementary sequence between them [78]. Recent

experiments show that the snRNAs in un-proliferated stem cells have higher expression than

in proliferated cells [101]. The observation is explained by the snRNAs playing an important

role in ribosome biogenesis, cellular proliferation and pre-mRNA splicing [85]. From the

ProbeAlign search results, we can further conclude that not only the expression level of the

snRNA is higher in un-proliferated cells, there are actually more U4 and U6 snRNA genes

being transcribed in un-proliferated stem cells.

3.4 Discussion and Conclusion

In this article, we have proposed a novel algorithm, ProbeAlign, for incorporating high-

throughput sequencing-based RNA structure probing data into ncRNA homology search.
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To our knowledge, this is the first application of structure probing information to RNA

functional annotation. This integration makes the accuracy of ProbeAlign even higher than

the CMsearch tool, especially for ncRNA homologs with low sequence identity. In addition,

the time complexity of the algorithm is O(n2), which is feasible for handling genome-wide

datasets.

ProbeAlign itself can also act as a filter for more detailed downstream alignment algorithms.

Considering both ProbeAlign and the HMM filters in CMsearch being O(n2) time complexity

algorithms, they should have comparable time efficiency if similarly optimized. It is clear

that ProbeAlign guarantees higher sensitivity and specificity. In this case, ProbeAlign can be

coupled with more accurate alignment algorithms such as CMsearch itself, or other structure-

sequence alignment algorithms such as FastR [7], PFastR [183], and RSEARCH [87]. We

are also developing a new structure-sequence alignment algorithm that takes into account

the probing information, which can also be used as the downstream detailed alignment after

ProbeAlign screening.

In conclusion, we present here an accurate and efficient RNA homology search algorithm,

ProbeAlign, which incorporates the high-throughput sequencing-based RNA structure prob-

ing information. With the increasing requirement of genome-wide ncRNA annotation, we

anticipate that more RNA transcripts, and their secondary structures and functionalities,

will be annotated by using ProbeAlign.
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CHAPTER 4: RNA TERTIARY STRUCTURE ALIGNMENT

USING A STACK-BASED STRATEGY

4.1 Background

Non-coding RNAs (ncRNAs) play diverse cellular functions in biological systems [8, 38, 69,

147]. Unlike mRNAs whose primary sequences are genetic codes for protein synthesis, the

regulatory information of most ncRNAs is encoded in their architectures: the secondary

structures defined by the hierarchical assembly of double-stranded stacks, and higher-order

three-dimensional (3D) structures consisting of packed secondary structure modules inter-

linked by tertiary interactions [79, 175]. Therefore, the structural alignments of such ncRNAs

can provide essential insight to their functional and evolutionary relationships. However,

compared to the development of the computational methods for RNA secondary structure

analysis, the progress of RNA 3D structural alignment has been limited. Although the pro-

tein 3D structural alignment has been studied for years and many sophisticated methods

have been proposed [40, 76, 105, 106, 180], it is hard to apply them directly to ncRNAs due

to the different properties of their secondary structures.

Recently, with the rapid growth of RNA deposition in the Protein Data Bank (PDB) [12], a

number of tools have been developed specifically for the alignments of RNA 3D structures.

Generally, they can be categorized into two groups. In the first group, the base pairing
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interactions in the inputs are ignored, or degraded into sequential information. Then the

RNAs can be compared using the quadratic-time alignment algorithms. For example, both

iPARTS [161] and LaJolla [9] represent RNA backbones as sequences of letters derived from

the features of nucleotide torsion angles. iPARTS continues to apply conventional pairwise

alignment methods to the encoded linear sequences, while LaJolla searches the similar “n-

grams” (substrings of length n) in the RNAs by using hash tables. Similar to LaJolla, FRIEs

[166] also uses the matching of k-mer RNA fragments. In this method, a large set of training

fragments from the PDB are clustered into tens of classes based on their structural proper-

ties. Each k-mer in an RNA can be labelled with the probabilities in these classes, and thus

the similarity of two fragments can be measured with the dot product of their probability

vectors. Rclick [113] is another RNA 3D structural alignment tool based on the detection

of local similarity. The matches between n-body cliques (in which n member nucleotides

satisfy that all pair-wise spatial distances are within a threshold) are determined by the

superimposition of their atomic coordinates. With this local structural equivalence, the op-

timal global alignment is generated by using 3D least squares fitting. Unlike the previously

mentioned tools, DIAL [45] incorporates base pairing interactions into its dynamic program-

ming scoring function, which also accounts for sequence and torsion angle information. A

penalty is assigned if the pairing attributes (paired or unpaired) of two aligned nucleotides

are different. ESA [91] models the RNA 3D structures not as sequences but as curves in a

four-dimensional space: the atomic coordinates are in 3D space, and the sequence informa-

tion is encoded as an additional dimension. Then the similarity between two RNAs can be

evaluated by minimizing their geodesic distance with a quadratic-time dynamic programming

algorithm.
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The other group of RNA 3D structural alignment tools relies on the comparison of base

pairing interactions in the molecules. In ARTS [35], two successive base pairs are used

together as a seed. The optimal matching of seeds in two RNAs is extended globally to the

unpaired regions, and the result is refined with the least squares fitting technique. Similar

to ARTS, the final results of R3D Align [124] are assembled from the alignments of local

neighborhoods. Neighbors are the spatially closest nucleotides in one RNA, which may imply

interactions such as base pairs, tertiary interlinks and stacking contacts. The structurally

similar neighbors in two RNAs are detected, and the optimal combination of these local

alignments is determined by employing maximum clique finding algorithm on a compatibility

graph. SARA [20] does not discriminate the paired and unpaired regions in RNAs. Inspired

by a protein 3D structural alignment method named MAMMOTH [118], SARA describes the

backbone of an RNA as a series of unit-vectors. The distances between the unit spheres of

inputs can be measured with URMS (unit-vector root mean square), and the corresponding

global alignment is identified by using dynamic programming. The same procedure is applied

only to base pairs if the pairing information is provided. The 3D structural alignment of

entire RNAs can be optimized based on the mapping of pairing interactions. SETTER [75]

integrates stacks and loops into the RNA 3D structural alignment method. It splits the RNA

sequences into GSSUs (generalized secondary structure units), each of which has a loop, a

neck and a stem. The highly similar GSSU pairs are used as seeds to guide the alignment

of other GSSUs. To simplify the computation, the exact mapping of nucleotides is ignored

in this method.

It can be seen that the RNA secondary structural information, in particular the hierarchical

topology of stacks, is not used in the reviewed methods. However, the enclosing and jux-

taposing relations between stacks provide more detailed structural information than what
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has been used in the existing tools, such as “paired” or “unpaired” attributes, base pairing

interactions and stack positions. The issue is the difficulty of integrating the conventional

RNA secondary structure alignment algorithms into the RNA 3D structural comparison.

Given the high time complexity of these algorithms [at least O(n3)] [68, 133, 168, 188],

applying them directly to the relatively complicated atomic coordinates will increase the

computational complexity significantly.

Here, we propose a novel RNA 3D structural alignment tool called STAR3D that explicitly

makes use of the conservation of secondary structures with high efficiency. It aims at finding

the consensus of stacks by using 2D topology and 3D geometry first, and then uses it to guide

the alignments of the loop regions. To achieve this goal, first, the sub-stacks with similar

3D structures are detected and assembled into conserved stack pairs. Then, a compatible

graph is constructed based on their secondary structural relations and spatial distances. In

this graph, the maximum clique can be converted into a tree-like consensus structure of two

RNAs. After that, the loop regions are ordered by the common tree. Each of them only needs

to be compared with its partner by using 3D information. STAR3D has been implemented in

Java. The benchmarking results show that STAR3D outperforms the state-of-the-art RNA

3D structural alignment tools with high efficiency.
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4.2 Materials and Methods

4.2.1 Preprocessing

The inputs of STAR3D are the atomic coordinates of two polymer RNA chains, which

are presented in the corresponding PDB files. They are preprocessed to obtain the RNA

secondary structures to guide the 3D structural alignment. All plausible pairing interactions

are identified by using MC-Annotate [54, 93]. Among them, the Watson-Crick base pairs

(A↔U, C↔G) and wobble base pairs (G↔U) are retrieved to form the RNA secondary

structures [34]. Other pairing interactions are considered during the loop alignment. In

order to avoid excessive computation, we eliminate the crossing base pairs in the secondary

structures by using the program RemovePseudoknots [144] in the RNAstructure package

[126]. The discarded stems are used as pairing interactions in the loops.

4.2.2 Stack decomposition

Helical structured stacks are formed by consecutively nested Watson-Crick base pairs and

wobble base pairs. To detect the 3D structural conservation in the stacks efficiently, the

double-stranded regions in the pseudoknot-free secondary structures are decomposed into

consecutive sub-stacks of size k, namely k-stacks. A stack with l base pairs (l ≥ k) can be

divided into l− k+ 1 overlapping k-stacks. All the possible k-stacks are collected for further

processing.
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Figure 4.1: The normalized ranks of the matched stacks in two 23S rRNAs (PDB 2j01,
chain A and PDB 2aw4, chain B). The structure similarity is measured with RMSD and the
matching of stacks is determined by a hand-crafted base pair alignment [146]. For a stack
of size k in 2j01, its RMSDs to all the size-k stacks in 2aw4 are computed.

Based on the definition of k-stack, we introduce some basic notations. Given an RNA A,

the 3D coordinates of the i -th residue are denoted as A[i]. At the secondary structure level,

the set of k-stacks in the pseudoknot-free structure is denoted as PA. For a specific k-stack

pA ∈ PA, the index of the leftmost base (5’ end) is represented as b(pA) and the index of

the rightmost base (3’ end) is represented as e(pA). Thus the 3D coordinates of the double-

stranded subsequences in pA are A[b(pA) . . . b(pA) + k − 1] and A[e(pA) − k + 1 . . . e(pA)],

which are defined as 3D(pA).

4.2.3 Detecting the conserved stack regions

STAR3D identifies the stack components conserved in 3D structures as anchors and uses

them to constrain the global alignment. Similar approaches have been applied in numerous

computation-efficient tools for genome alignment [18, 100] and RNA secondary structure

53



alignment [6, 81]. The difference is that STAR3D uses the 3D coordinates of atoms to detect

the potential homologous regions. Given the fact that RNA stacks adopt an A-form helical

conformation, a major issue needs to be addressed: whether the 3D structural similarity

of conserved stack regions is significant enough to distinguish them from the random ones.

The survey results in Figure 4.1 indicate that the orthologous sub-stacks have highly similar

3D structures, and they can be detected by evaluating RMSD. In our method, the k-stacks

(default value of k is 3) in the inputs are retrieved as the building blocks for the larger

conserved regions. Shorter helices are not considered because of their low occurrence in the

real RNAs.

Given two input RNAs A and B, the two sets of k-stacks PA and PB are sorted in ascending

order by the leftmost bases. The three-dimensionally conserved k-stacks in A and B are

determined by their RMSDs. Ci,j, the indicator of conservation for pAi and pBj , is computed

using the following function:

Ci,j =


1 RMSD(3D(pAi ), 3D(pBj )) < rc

0 otherwise

(4.1)

The function RMSD measures the average spatial distance between the superimposed

residues in 3D(pAi ) and 3D(pBj ), with rc being the RMSD cutoff (default value is 4 Å)

[20]. In our implementation, the RMSD values are computed with the Kabsch method [83]

by using the geometric center of six backbone atoms C3’, C4’, C5’, O3’, O5’ and P [125]. The

indicators for all pairs of k-stacks (PA × PB) are stored in a matrix. Then, we extend the

consecutive matches of k-stacks to form larger ungapped alignments. For instance, pAi , p
A
i+1

and pBj , p
B
j+1 can be merged into two aligned stacks of size k + 1, if Ci,j = Ci+1,j+1 = 1,

b(pAi ) = b(pAi+1)− 1, e(pAi ) = e(pAi+1) + 1, b(pBj ) = b(pBj+1)− 1 and e(pBj ) = e(pBj+1) + 1. This
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procedure continues through the diagonals of the matrix until all the constructed alignments

can not be extended any further. The two stack components in an assembled alignment are

called extended stacks, written shortly as e-stacks. Correspondingly, the aligned e-stacks

form e-stack pairs. We define the sets of e-stacks in A and B as QA and QB, and the set

of e-stack pairs as S. According to the definition of e-stack, the cardinalities of QA, QB

and S are identical. As a result, we denote the members of a specific e-stack pair si(∈ S)

as qAi (∈ QA) and qBi (∈ QB) (si = (qAi , q
B
i )). Note that e-stacks may overlap with each

other [see Figure 4.2(a)]. Unlike k-stacks, the sizes of e-stacks are not fixed. Therefore, we

define a new notation l(qA) to represent the number of base pairs in qA. Hence 3D(qA) are

A[b(qA) . . . b(qA) + l(qA)− 1] and A[e(qA)− l(qA) + 1 . . . e(qA)].

For some large RNAs, the numbers of e-stack pairs are too large for computation. To

determine the highly significant ones, we consider two criteria: the RMSD between two e-

stacks and their size. The significant scores of e-stack pairs are defined using the formula

RMSD(3D(qAi ), 3D(qBi )) − 0.1 × l(qAi ). They are sorted in ascending order and only 200

top-ranked pairs are retained for further processing. Based on our study, 200 high-scoring

e-stack pairs are sufficient to cover most of the conserved helical regions in 23S rRNAs, the

largest RNAs in PDB. More e-stack pairs may be used by setting the parameter if more

complex structures are presented.

4.2.4 Assembling the consensus of stacks

To generate a consensus of stacks, the positions of e-stack pairs in the secondary structures

and 3D space are analyzed. In the pseudoknot-free secondary structure of A, two e-stacks qAi
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Figure 4.2: A description of the basic data structures used in STAR3D. (a) The e-stack
pairs in two artificial RNAs. The gray boxes show the e-stacks and the dashed lines show
the matching between them. e-stack 3 and e-stack 4 are overlapped with each other. (b)
The compatible graph of e-stack pairs in (a). Red color marks the enclosing relations and
blue color marks the juxtaposing relations. The solid lines show the edges in the maximum
clique. To simplify the presentation, the 3D similarity requirement is not considered in the
figure. (c) The tree-like consensus of e-stacks obtained from the clique in (b).

and qAj may have one of the three following relations: (i) qAi and qAj are overlapping (denoted

by qAi ⊗ qAj ); (ii) qAi encloses qAj (denoted by qAi ≺E qAj ); (iii) qAi is before and juxtaposed

to qAj (denoted by qAi ≺J qAj ). In our algorithm, qAi directly encloses qAj if qAi ≺E qAj and

@k(qAi ≺E qAk ≺E qAj ) (denoted by qAi <E qAj ). Similarly, we say qAi is directly before and

juxtaposed to qAj if qAi ≺J qAj and @k(qAi ≺J qAk ≺J qAj ) (denoted by qAi <J q
A
j ).

Notice that both ≺E and ≺J are strict partial orders, so the non-overlapping e-stacks in an

RNA can form a directed acyclic graph (DAG). It is well-known that the RNA secondary

structures have a tree-like topology [71, 104, 135, 184]. Thus we model the non-overlapping

relations of e-stacks in A as a tree:

1. Assign a pseudo stack qA• (b(qA• ) = 0, e(qA• ) = |A|+ 1, l(qA• ) = 0) to the root node.

2. Connect qAi to qAj if qAi <E q
A
j .
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3. Order the children nodes of qAi in ascending order based on ≺J .

We also define the compatible e-stack pairs: si and sj are compatible if (qAi , q
A
j ) ∈ R,

(qBi , q
B
j ) ∈ R, and R ∈ {≺E,�E,≺J ,�J}. The non-compatible e-stack pairs can not be in

the consensus together because their members are disordered in the secondary structures.

Furthermore, we can prove the following lemma:

Lemma 1. For a non-empty set S ′ ⊆ S, if any two of e-stack pairs si = (qAi , q
B
i ) and

sj = (qAj , q
B
j ) ∈ S ′ are compatible, the corresponding two e-stack sets have the same tree

structure.

Proof. Without loss of generality, we assume that qAi is a child of qA• and qBi is not a child

of qB• . Then qBi must be on a subtree rooted at one child of qB• . Thus at least two stacks,

qB• and qBj , enclose qBi . However qAi has only one ancestor qA• . It is a contradiction to the

conditions, because si and sj are not compatible. So the children of qA• and qB• are from the

same set of e-stack pairs. Based on Step 3 of the tree construction procedure, the orders of

their children should be the same. Then it is proved that the lemma holds for the top two

levels of the trees. Assume it is also true for the top n levels. Then for an e-stack qAi′ at n-th

level, its partner qBi′ must also be at n-th level, and their relative positions on the trees are

the same. Assume an e-stack qAj′ is a child of qAi′ and qBj′ is not a child of qBi′ . First qBj′ must

be on a subtree rooted at qBi′ . Otherwise si′ and sj′ are not compatible. Second, qBj′ can not

be at (n + 2)-th or lower levels, otherwise the numbers of the ancestors of qAj′ and qBj′ are

different, which is a contradiction to the conditions. So the children of qAi′ and qBi′ are also

from the same set of e-stack pairs, and they can be sorted by the juxtaposing relation. By

induction, we know the lemma is true.
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Lemma 1 indicates how to find the 3D structural consensus of the stack regions in two

input RNAs. Thus, to detect the e-stack configuration for the consensus, we construct a

compatible graph. The vertices are the e-stack pairs. A vertex si is connected to another

one sj if they meet two requirements. First, si and sj are compatible, which ensures the

e-stacks in them are well-ordered in the secondary structures. Second, si and sj must satisfy

RMSD(3D(qAi ) ◦ 3D(qAj ), 3D(qBi ) ◦ 3D(qBj )) < rc, which implies that si and sj share similar

rigid transformation (“◦” means the concatenation operation which joins the lists of 3D

coordinates end-to-end). Based on the graph properties, the optimal stack configuration can

be inferred from the maximum clique in the graph, which is detected by using the Bron-

Kerbosch algorithm [17]. After that, the 3D structural alignment in the double-stranded

regions is determined by the topology of these vertices in the clique. Note that the e-stacks

are the maximal 3D conversed regions in the helices (they can not be extended any more).

Therefore, the 3D similarity requirement will filter most of the improper edges, and make

the compatible graph very sparse. Although normally finding the maximum clique takes

exponential time, it is solved very efficiently in our method. Figure 4.2(b) and 4.2(c) show

a compatible graph and the corresponding consensus of stacks. The detected consensus is

the “core” of the 3D structural conservation, and it will work as an anchor for the following

loop alignment. The double-stranded regions not in the consensus, such as stack 4 in Figure

4.2(a), are considered as loops in the following computation. The corresponding Watson-

Crick base pairs and wobble base pairs are also used as interactions in the loop regions to

assist the alignment.
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4.2.5 Loop alignment using 3D information

With the tree-like consensus of stacks, all the other regions not in it can be divided into

ordered loops. For one leaf node, two hairpin loops enclosed in two e-stacks can be identified.

For the internal nodes, their enclosed regions are split by their children nodes into internal

loops, bulges, or multi-loops. Hence, the numbers of loops in the inputs are the same, and we

can find the mapping of them by traversing the tree. This approach has two benefits. First,

the computational efficiency of loop alignment can be improved significantly for large RNAs,

because only the matched loops need to be aligned together. Second, the superimposition

of stack regions can be used to guide the 3D structural alignment of loop regions. For the

functional RNAs, the stack regions are more conserved than the loop regions. Thus, any

RMSD computation during the loop alignment uses the rotation and translation of the stack

alignment.

A dynamic programming algorithm with quadratic-time complexity is applied to the 3D

structural alignment of two loops. Assume the 3D structures of k-th pair of matched loops are

A[ik . . . ik+nk1−1] and B[jk . . . jk+nk2−1]. To simplify the description and computation, we

denote them as LAk [1 . . . nk1 ] and LBk [1 . . . nk2 ], whose starting index is 1. Thus, the recursive

function is (1 ≤ i ≤ nk1 , 1 ≤ j ≤ nk2):

Ii,j = max{Mi−1,j + εo + εe, Ii−1,j + εe, Di−1,j + εo + εe}

Di,j = max{Mi,j−1 + εo + εe, Ii,j−1 + εo + εe, Di,j−1 + εe}

Mi,j = max{Ii−1,j−1, Di−1,j−1,Mi−1,j−1}+ α(i, j) + β(i, j)

(4.2)

59



Here, εo and εe are the gap open penalty and gap extension penalty. I, D, M denote

the optimal alignment scores for insertions, deletions and substitutions, respectively. These

functions are initialized with M0,0 = I0,0 = D0,0 = 0, Mi,0 = M0,j = −∞, Ii,0 = εo + εe × i,

D0,j = εo + εe × j, I0,j = Di,0 = −∞. The optimal score is max(Ink1
,nk2

, Dnk1
,nk2

,Mnk1
,nk2

)

and the exact 3D structural alignment for the two loops can be found by using traceback.

The scores for substitution contain two parts: α(i, j) and β(i, j). The function α(i, j) is

based on the 3D distance between two bases. The corresponding formula is:

α(i, j) =



−∞ di,j ≥ 2 · rc

mismatch score 2 · rc > di,j ≥ rc

0.5×match score rc > di,j ≥ 0.5 · rc

match score 0.5 · rc > di,j

(4.3)

where di,j denotes the RMSD between two nucleotides LAk [i] and LBk [j]. Note that they are

superimposed with the transformation of aligned stack regions. To capture the backbone

conformation, STAR3D uses 3-nucleotide regions, LAk [i − 1, i, i + 1] for LAk [i] and LBk [j −

1, j, j+ 1] for LBk [j], in the computation of di,j. The possible values of di,j can be categorized

into three groups. The two nucleotides are not allowed to be aligned if the spatial distance

is too large (≥ 2 · rc). Otherwise, they are defined to be “matched” or “mismatched”, and

the matched nucleotides may be assigned with two different scores.

The second function β(i, j) calculates the bonus scores for the base pairs in loop regions.

Pseudoknots, non-canonical base pairs and canonical base pairs in the unaligned stack regions

are considered in the computation. Due to the potential crossing in pseudoknots and non-

canonical base pairs, finding the optimal matching of these pairing interactions is an NP-hard
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problem. To reduce the running time, we propose a heuristic algorithm to solve the problem.

Generally, each base has three possible pairs: Watson-Crick base pair, Hoogsteen base pair

and Sugar base pair [97]. All the predicted base pairs of two nucleotides LAk [i] and LBk [j] are

compared in 3D space by using a similar approach of comparing nucleotides in α(i, j). The

match of two base pairs is valid if the corresponding RMSD is less than rc. The maximum

number of matched pairs is returned as the result of β(i, j). Thus the problem is converted

into bipartite graph matching, which can be solved by dynamic programming.

4.3 Results

4.3.1 Benchmarking tools

STAR3D is benchmarked with ARTS, LaJolla (v2.2), SARA (v1.0.7) and R3D Align in this

section. Their batch programs are available and widely used for performance testing. In

addition, they can output the exact one-to-one mapping of nucleotides, which is important

for the analyzing of specific alignments of homologous and non-homologous RNAs. R3D

Align is dedicated to homologous RNAs. To make the comparison fair, it is only used in the

experiments for homologous rRNAs. An in-house modification of LaJolla is implemented

to output not only the rigid transformation but also the exact alignments. All the experi-

mental results were performed with default parameters. To evaluate the secondary structure

similarity and optimize the superimposition, “-b” and “-s” options are specified for SARA.

Both ARTS and LaJolla generate “disordered alignments”, e.g. ai is aligned to bj, ak is

aligned to bl, while i < k and j > l. For ARTS, the largest proper alignment is retrieved;
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Figure 4.3: The cumulative frequencies of the PSI and PSS values of STAR3D, ARTS, SARA
and LaJolla in different experiments. (a) STAR3D vs. ARTS. (b) STAR3D vs. SARA. (c)
STAR3D vs. LaJolla. (d) All four tools.

for LaJolla, the improper alignment is discarded since only one result is returned from the

modified implementation.

4.3.2 Alignment quality assessment with R-FSCOR dataset

The R-FSCOR dataset [21] contains 192 chains collected from the SCOR database [151]. In

SCOR, the chains with at least three base pairs and unique function annotations are clustered

at 90% identity. The representative in each cluster is selected into the R-FSCOR dataset.

The performance of four tools is compared by calculating PSI (percentage of structural iden-
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Table 4.1: The comparison of mean PSI and PSS values between STAR3D and three other
tools by using the R-FSCOR dataset.The total number of inputs is 18336. ARTS, SARA,
LaJolla and STAR3D output 11385, 18335 , 7771 and 17455 alignments, respectively. Best
performance is set to bold.

# of overlapped alignments
ARTS SARA LaJolla STAR3D

PSI PSS PSI PSS PSI PSS PSI PSS
ARTS vs. STAR3D 11054 0.538 0.485 - - - - 0.682 0.632

SARA vs. STAR3D 17454 - - 0.601 0.580 - - 0.679 0.638

LaJolla vs. STAR3D 7397 - - - - 0.580 0.251 0.754 0.729

Consensus 4451 0.600 0.549 0.683 0.668 0.627 0.318 0.764 0.729

tity) and PSS (percentage of aligned secondary structure) values of the all-to-all alignments

for the R-FSCOR dataset. PSI is defined as the percentage of aligned nucleotides in 4Å with

respect to the length of the shorter sequence. PSS is defined as the percentage of aligned base

pairs in 4Å with respect to the smaller number of base pairs of two aligned RNA sequences.

PSI and PSS have been used as replacement for RMSD to evaluate the quality of the 3D

structural alignment [20, 75]. The base pairs in the tested chains, including both canonical

base pairs and non-canonical base pairs, are predicted using MC-Annotate. All programs

in this experiment were executed on a CentOS cluster with 100 nodes. None of the tools

can find alignments for all the inputs. ARTS outputs 11385 proper alignments, LaJolla out-

puts 7771 proper alignment, SARA outputs 18335 alignments and STAR3D outputs 17455

alignments, respectively. For STAR3D, no alignment is generated if the sizes of all potential

e-stacks in the inputs are less than k(= 3). However, the alignments for these inputs can be

detected if a smaller k (e.g. 2) is specified. In addition, RNAMotifScanX [189], which is also

designed by our lab for searching RNA 3D structural motifs in the single-stranded regions,

can be applied since those RNAs are relatively short and are dominated by loops. STAR3D

was compared with ARTS, SARA, and LaJolla one by one. To make the comparison fair,

the inputs are not considered if STAR3D or the corresponding benchmarking tool can not

generate alignments for them. Table 4.1 summarizes the mean PSI and PSS values of four
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tools in the experiments. It can be seen that STAR3D outperforms the other three tools by

a large margin: the PSIs are increased by 13% to 30%, and the PSSs are increased by 10% to

190%. The low PSS values of LaJolla may be caused by ignoring of the secondary structural

features. ARTS and SARA have relatively high PSS values because the base pairing infor-

mation is integrated. For SARA, the optimization step after the backbone alignment may

contribute to its better performance than ARTS. By considering the secondary structures of

two input RNAs, STAR3D accurately predicts the matching of the stack regions, which is

demonstrated by the high PSS values. And guided by the consensus of stacks, STAR3D pro-

vides best global alignments in all four tools without an optimization step, which is shown by

the high PSI values. We also find that the running time of STAR3D for the whole procedure

is much shorter (at least 1/10) than the other three tools. A detailed discussion about the

computational efficiency will be shown in a later section. Figure 4.3 shows the cumulative

frequencies of the PSI and PSS values in different comparisons. Figure 4.3(d) is based on

the valid inputs for all tools. It can be seen that some alignments of SARA and LaJolla may

not contain any base pair. On the other hand, the PSS values of ARTS and STAR3D are

all greater than zero, because ARTS extends the base pair mapping and STAR3D relies on

the stack mapping. What’s more, from Figure 4.3(d), we can see that PSI curves between

0.0 to 0.2 are very similar for all tools. The major performance difference between STAR3D

and the other three tools is at the range from 0.4 to 0.7, which indicates STAR3D may be

more sensitive to the local conservation of RNAs.

64



(a) (b) (c) (d)

Figure 4.4: The alignment results for the GNRA motif (PDB: 1zih, chain A) and the 23S
rRNA (PDB: 1njo, chain 0). (a) The result of LaJolla. (b) The result of SARA. (c) The
result of ARTS. (d) The result of STAR3D. The blue ribbons show the 3D structure of the
GNRA motif and the red ribbons show the 3D structures of the aligned regions in the 23S
rRNA. The secondary structural alignments are listed below the 3D structure figures and
the base pairs are predicted by MC-Annotate. The green letters in the LaJolla alignment
mark the disordered nucleotides (2526-2527).

4.3.3 Structural alignments of non-homologous RNAs

Identifying the conserved regions in non-homologous RNAs is a major aim of the RNA 3D

structural alignment tools. In this section, we will analyze the different strategies of STAR3D

and three other tools by showing the alignments of non-homologous RNAs. The RNAs in

the examples are obtained from the R-FSCOR dataset.

The first example is the alignment between a GNRA motif (PDB 1zih, chain A) and a

Deinococcus radiodurans 23S rRNA (PDB 1njo, chain 0). The aligned regions and the

corresponding secondary structures are shown in Figure 4.4. Although it has a decent stack

mapping (residue 2526 is paired with residue 2540 and residue 2527 is paired with residue

2539), the alignment produced by LaJolla is disordered: residue 2526-2527 should be at the

5’ side of residue 2539. For SARA, the aligned region of the rRNA is highly conserved with a
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Figure 4.5: The alignment result of STAR3D for the sarcin-ricin motif (PDB: 483d, chain
A) and the 23S rRNA (PDB: 1qvg, chain 0). The blue ribbon shows the 3D structure of
the sarcin-ricin motif and the red ribbon shows the 3D structure of the 23S rRNA. The base
pairs in the aligned regions are predicted by MC-Annotate.

segment of the motif. However, only one strand of the motif is aligned and the corresponding

loop regions are very different. One possible reason is that the unit-vectors used by SARA

only describe the conformation of the backbone. Furthermore, the alignments of base pairs

and the whole 3D structures are computed separately. Thus it may overlook the pairing

information if the partial structure alignment achieves the maximum score. ARTS finds

the matching of base pairs first and then extends it to both 5’ and 3’ directions of the RNA

strand. In Figure 4.4(c), it can be seen that three base pairs are matched very well, while the

3D structures of the loop regions are distinct. This may be caused by the different treatment

of stacks and the corresponding loops in the computation of ARTS. For STAR3D, the entire
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motif (residue 1-12) is aligned to the residues 130-141 in the rRNA. The tetraloop of the

rRNA has the common structural characteristics of the GNRA motif: the four residues are

“GUAA” and the loop is closed by a “C↔G” pair. The 3D structural alignment in Figure

4.4(d) also shows that the detected region in the 23S rRNA has a very high probability

to be a GNRA motif. Similarly to the strategy of ARTS, the conserved stack regions are

detected first in STAR3D. However, STAR3D ensures that the corresponding loops should

have similar rigid transformation with the stacks, otherwise, the entire alignment will be

assigned a low score.

The sarcin-ricin motif is an important structural motif involved in the interaction between

rRNAs and the elongation factors [150]. In the R-FSCOR dataset, there is one chain of 23S

sarcin-ricin motif (PDB: 483d, chain A) and 22 23S rRNAs, 11 from Haloarcula marismortui

(H.m.) and 11 from Deinococcus radiodurans (D.r.). The 3D structural alignments of the

motif and all the 23S rRNAs are analyzed. Compared with the GNRA motif, sarcin-ricin

is more complex: it contains 27 residues, 6 canonical base pairs and 4 non-canonical base

pairs. For ARTS and LaJolla, no highly conserved region is found in those rRNAs. SARA

can detect potential motifs in all the H.m. 23S rRNAs, but none in the D.r. 23S rRNAs.

STAR3D not only finds the motif candidates in H.m. 23S rRNAs, but also in 6 of 11 D.r. 23S

rRNAs. To verify the detected motifs, the docking results of the alignments are analyzed.

An example alignment of the sarcin-ricin motif and one H.m. 23S rRNA is shown in Figure

4.5. From the base pair profiles and the 3D structures, it can be seen that the hairpin loop

(residues 2684-2710) has a high probability to be a sarcin-ricin motif. By checking the base

pair annotation of all the D.r. 23S rRNA, we can find the structural variance in the motif

regions. For the five rRNAs in which STAR3D can not detect the motifs, only four base

pairs are annotated in the helix of the motif regions. The different annotation between these
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regions and the sarcin-ricin motif, which has five base pairs in the stack, disallows STAR3D

to make the correct prediction.

4.3.4 Structural alignments of homologous rRNAs

We also tested the performance of STAR3D on aligning the 3D structures of homologous

16S and 23S rRNAs. The benchmarking dataset includes three 23S rRNA chains from three

different species: Haloarcula marismortui (PDB 1s72, chain 0), Escherichia coli (E.coli ;

PDB 2aw4, chain B), and Thermus thermophilus (T.th; PDB 2j01, chain A); and two 16S

rRNA chains from two species: T.th. (PDB 2avy, chain A) and E.coli (PDB 1j5e, chain A).

We also used the two manually generated alignments of these 16S rRNAs as references. The

first one is the Crystallographer alignment, which is implied in the numbering system used

by the crystallographers; the second one is the Composite alignment, which is hand-crafted

and based on comparative analysis. They have been used as benchmarking dataset before

[124, 166] (note that no such alignments are available for 23S rRNAs). R3D Align is also

included in this benchmarking. All the tools are installed locally on a DELL XPS Desktop

with Intel i7-4770 CPU at 3.40 GHz with 16 GB of RAM. To make the comparison fair, only

one thread is allowed in the experiments.

First, we compare the running time of five tools for the rRNA alignments (see Table 4.2).

It can be seen that STAR3D improves the time efficiency of the other tools by ten to a

thousand folds. The adoption of the MaxSub algorithm [143] to refine the original 3D

structural alignments may cause the huge time consumption in SARA. For STAR3D, the

major running time reduction comes from the computation of loop alignments. Assuming
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Table 4.2: Running time (in seconds) of ARTS, LaJolla, SARA, R3D Align and STAR3D for
the homologous alignments of 16S and 23S rRNAs. Best performance is set to bold. The
preprocessing time is not included for ARTS, SARA, R3D Align, and STAR3D.

rRNAs ARTS LaJolla SARA R3D Align STAR3D
H.m. and E.coli 23S 117.2 119886.7 27035.2 751.7 1.7
H.m. and T.th. 23S 98.5 125835.9 26184.8 573.4 2.0
E.coli and T.th. 23S 79.7 152635.6 27467.3 653.2 1.4
E.coli and T.th. 16S 20.1 16209.3 4714.4 308.9 1.1

the total lengths of loop regions for two RNA sequences are n1 and n2, the time complexity

of loop alignment is O(n1 × n2). In STAR3D, one loop region only needs to be compared

with another one marked by the e-stacks. Thus the time complexity is O((n1 × n2)/m),

where m denotes the number of e-stack pairs in the consensus. With the relatively large

number of stacks in RNAs with complex structures, our method can significantly improve

the efficiency of the loop alignments.

Table 4.3: Summary of alignments between the T.th. and E.coli 16S RNAs (PDB: 1j5e,
chain A and PDB: 2avy, chain A). Best performance is set to bold.

Manual 3D Structural Alignment
Crystallographer Composite ARTS LaJolla SARA R3D Align STAR3D

Number of aligned nucleotides 1488 1414 1116 1106 1343 1400 1466
Agreeing with Composite 1401 1414 1056 1101 1240 1362 1362
Agreeing with Crystallographer 1488 1401 1081 1030 1276 1354 1414

Based on manually generated alignments of two 16S rRNAs, the accuracy of five tools is

also examined. The results are shown in Table 4.3. It can be seen that both R3D Align

and STAR3D achieve the maximum true positive number if the background dataset is the

Composite dataset. The accuracy of STAR3D is slightly lower than R3D Align because it

detects more nucleotide matches in the two sequences. However, for the crystallographer

dataset, STAR3D outperforms the other three tools. So STAR3D is not only highly efficient

but also an accurate algorithm when it is used to align large homologous RNA molecules.
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4.4 Discussion and Conclusion

In this article, we have proposed a novel tool, named STAR3D, for RNA 3D structural

alignment. First it detects the conserved double-stranded regions in two input RNAs by

joining the matches of small stack components. Then the consensus of stacks is assembled

based on the 3D structural similarity and 2D compatible relationship. Its underlying tree-

like topology leads to the ordering of loop regions. In addition, the rigid transformation of

the aligned stacks can guide the 3D alignment of the loop regions. As a result, each loop only

needs to be compared with its partner in the other sequence by using the superimposition of

the conserved stacks. Finally, we combine the stack alignment and all the loop alignments

as the final result. This “two-step” strategy is derived on the basis of three observations.

First, insertions and deletions are rarely seen in the conserved helical regions, which means

that the ungapped extension is applicable to the stacks; second, the 3D structural similarity

of conserved stacks is higher than that of random stacks; third, the stack regions are easier

to annotate, even for low resolution PDB structures, so the stack alignment can be used as

an anchor for the loop alignment. By integrating these properties into the design, STAR3D

avoids the complex computation of secondary structure comparison. Furthermore, the one-

to-one loop alignments, which replace the all-to-all base matching in entire single-stranded

regions, reduce the running time of STAR3D for large RNAs significantly. The benchmark

results show that the prediction accuracy of STAR3D outperforms the state-of-the-art tools,

and does so with higher efficiency. What’s more, STAR3D can be easily implemented with

multi-thread support. The detection of e-stack pairs depends on ungapped alignment. The

computation at each diagonal can be performed at an individual thread. For maximum clique

finding, the Bron-Kerbosch algorithm can be implemented in parallel too. In the last step,
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the alignments of loop regions are independent, and can be deployed in different threads as

well.

A potential expansion of STAR3D is to implement a local alignment version of the tool.

From the experiment of aligning the GNRA motif and the 23S rRNA, it can be seen that

STAR3D is sensitive to local similarities in RNA 3D structures. On the other hand, it is

natural to convert STAR3D into finding local alignments. In the original method, only the

maximum clique in the compatible graph is chosen to build the structural tree. To develop

a local alignment approach, We can change STAR3D to deal with multiple cliques. For each

one, a local alignment can be generated by only comparing the loops covered by the aligned

stacks. With this new method, we anticipate that more structural motifs will be found in

the functional ncRNAs.

Another direction for future study is to incorporate comparative methods into STAR3D.

There are two approaches. The first one is to use the comparative methods to improve

the alignments of the RNAs with low resolution coordinates. The excessive flexibility of

atomic positions challenges the prediction of base pairing interactions, which may affect the

performance of STAR3D. To solve the problem, we plan to design an iterative pipeline to

find the base pairs in the low resolution RNA structures. First, we need a homology of the

target that has high resolution 3D structural data. Hence a better annotation of base pairs

for the target can be inferred by aligning two RNAs with STAR3D. In the following run,

these predicted base pairs can be used as the secondary structural information in STAR3D to

generate a more precise alignment. This procedure is continued until no new base pairs can

be detected for the target. Considering the high efficiency of STAR3D, the time consumption

of the pipeline should be practical. In addition, the low resolution RNAs can be aligned to

other RNAs more accurately with the inferred base pairs. The second way is to find the 3D

71



structural conservation among the RNAs in one family by using comparative methods. A

hierarchical clustering based method, which is similar to CLUSTALW [155], is adopted. A

3D consensus structure of two RNAs can be constructed by connecting the centroids of the

mapped nucleotides. Then, by merging the sub-clusters we can find the consensus for the

whole family and its corresponding multiple sequence alignment.

72



CHAPTER 5: DE NOVO DISCOVERY OF STRUCTURAL

MOTIFS IN RNA 3D STRUCTURES THROUGH

CLUSTERING

5.1 Background

Non-coding RNAs (ncRNAs) achieve their specific cellular functions by folding into three-

dimensional (3D) structures interlinked by numerous locally stable components. Among

them, some highly abundant building blocks called “RNA structural motifs”, are found to

play important roles which may determine the behaviors of the molecules. For examples, the

kink-turn motifs are the important binding sites for 9 proteins in the bacterial 23S ribosomal

RNAs (rRNAs) [86]; The cleavage of sarcin-ricin motifs led by the toxin proteins may result in

the shutdown of protein synthesis in ribosome completely [50]. Therefore, the identification

and understanding of these recurrent structural components are indispensable for the study

of RNA molecules. Considering that the number of resolved RNA 3D structures is rapidly

increased in recent years, thorough analysis of structural motifs is expected to extend our

knowledge of the relationship between RNA architectures and functionalities.

One major computational approach for studying RNA structural motifs is to search homolo-

gous instances of known motifs by using comparative methods. Traditionally, similar to the

proteins in tertiary structural alignments, the motifs are modeled with their 3D geometric
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features, such as backbone conformations or torsion angles. NASSAM [66] and PRIMOS

[36] are typical tools which primarily rely on the 3D atomic coordinates. They perform well

for some simple motifs, but may not work for complex ones since the underlying computa-

tional methods are too rigid to identify the flexible variations in structures. Unlike these two

methods, FR3D integrates base pairing interactions into the alignments for RNA structural

motifs [134]. The evaluation of 3D spatial distances is constrained by the pairwise interac-

tions which improves the computational efficiency and accuracy dramatically. However, as

the most critical characteristics of RNAs, the base-base interactions should be used as key

factors in the assessment of structural discrepancy directly [119]. Based on the idea, RNAMo-

tifScan is proposed to search new motif candidates that share highly conserved secondary

structural patterns with the query [186]. The benchmarking results show that RNAMotifS-

can outperforms other state-of-the-art RNA structural motif searching tools, especially for

the instances with distinct geometric variations caused by insertions or deletions.

The issue of search tools is that they are based on the existing knowledge of RNA struc-

tural motifs, and thus can not be applied to detect new families. To solve the problem,

the comparative methods for searching are incorporated into clustering pipelines for the de

novo discovery of conserved structural elements. One example is COMPADRES [160], which

makes use of PRIMOS to categorize RNA structural motifs in the database of existing RNA

3D structures. Its performance is limited by the rigid alignments, and the clustering results

are hard to be applied to the further research due to the complex models only covering

3D geometric information. LENCS (longest extensible non-canonical substructure) adopts a

much simpler model which defines the RNA structural motifs as graphs of nucleotides inter-

connected by base pairs [30]. Thus the structural similarity of two motifs can be evaluated

by the maximum common subset in their graphs. With this measurement of similarity, a hi-
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erarchical clustering tree is built, and the homologous motifs are classified by cutting it with

a universal threshold. LENCS has successfully identified several putative new motifs in three

rRNAs without using any tertiary information directly. But its sensitivity to the potential

structural variations is relatively low due to the strict matching only allowing the same types

of base pairs. A recent approach of classifying RNA structural motifs takes into account all

the hairpin and internal loops in the non-redundant RNA 3D structures [122]. Based on

FR3D, this pipeline aims at grouping the loop regions conserved in 3D space together with

the help of pairing interaction constraints. All the annotated motif instances and families

are well organized in an online database named RNA 3D Motif Atlas. Due to the rigid

restriction on the 3D geometric discrepancy among cluster members, the method intends to

categorize the highly similar components into numerous small groups. On the other hand, it

may lose insights of the relationship among motif variations with structural difference. We

also developed a clustering framework named RNAMSC for de novo RNA structural motif

identification in rRNAs [187]. To ensure the high coverage of base pairing information on

the RNA sequences, the base-pair annotation of two different tools, MC-Annotate [93] and

RNAView [178], are combined. Then the non-canonical base pairs in the loops are compared

according to their isostericity [96], and the statistically significant alignments are determined

by using P -values which are inferred from the background simulated data. After that, the

conserved candidate pairs with high P -values are summarized into a graph, in which the

strongly connected subgraphs are retrieved. The experimental results show that RNAMSC

not only outperforms LENCS in the recovery of known motifs, but also discovers several novel

motif families. Compared with RNA 3D Motif Atlas, our approach assumes that the base

pairing interactions, which are the direct indicators of cellular functions, should be adopted

to measure structural similarity in the clustering. As a result, RNAMSC can detect the

potential motif variations whose 3D structures are distinct from the majority of instances.
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Here we propose a new clustering pipeline to automatically detect novel RNA structural

motifs by extending RNAMSC. There are three major differences between this framework

with the original RNAMSC. First, the new pipeline is optimized for the large-scale inputs,

such as the non-redundant RNA structure dataset; Second, all the single-stranded regions

in the RNA molecules, including the multi-way junctions, are considered in the classifica-

tion; Third, the clustering results are post-processed to analyze their functionalities and

relationships. By using this new clustering approach, we have identified totally 192 motif

families, 68 from hairpin loops, 79 from internal loops, and 45 from multi-loops. Gener-

ally, the large clusters contain the pervasive motifs in RNA 3D structures, such as GNRA

tetraloop, T-loop, kink-turn, sarcin-ricin, etc. The variations in some motif families which

are accidentally separated from the majority can be retrieved back based on checking their

secondary and tertiary structural patterns in the downstream analysis. Furthermore, we

also discover some novel motifs conserved in both rRNAs and non-rRNAs, such as single

guide RNA (sgRNA) in Cas9 complex, Alu domain in the signal recognition particle RNA

(SRP RNA), GlmS riboswitch and twister ribozyme. All the clusters and the corresponding

annotation are available at the web-site http://genome.ucf.edu.

5.2 Materials and Methods

5.2.1 Data preparation

Our clustering approach is based on the known knowledge of RNA 3D structures deposited

in the PDB database [12]. As the paper is written, there are over 3000 experimentally
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solved macro-molecular structures containing RNAs. To avoid the possibly statistical biases

caused by over similar ones, the Non-redundant List (of RNA-containing PDB structures)

from BGSU RNA group [98] was adopted. This dataset eliminated the redundancy both in a

single PDB file and among multiple PDB files, while keeping sufficiently diverged homologous

structures. The selected 876 PDB files (including 1307 RNA chains) at 4.0 Å resolution

threshold in v1.89 NR list were downloaded.

After that, all the plausible pairing interactions in the RNA 3D structures were identified

by using MC-Annotate [93] and RNAView [178]. Their annotation results were merged,

and the conflicts were solved by taking the MC-Annotation predictions. For each chain,

the predicted cis Watson-Crick base pairs were retrieved to reveal the A-form helices in

the RNA secondary structure. The pseudoknots in the structure were recognized by the

program K2N [144] and then eliminated. In the pseudoknot-free secondary structure, the

single-stranded region was decomposed into hairpin loops, internal loops (including bulges),

and multi-loops by the consecutively nested cis Watson-Crick base pairs (≥ 2). The loops

without non-canonical base pairing interaction were removed to refined the dataset. Given

the fact that some known structural motifs were closed by cis Watson-Crick base pairs, the

helix ends were also retained. Finally, the orders of the strands in loops were considered

to generalize motif candidate instances for the alignment. The two strands in the hairpin

loops were concatenated in both ascending and descending orders. For loops with more

than two strands, we avoided the excessive number of strand permutations. The loops were

converted into circle forms by connecting the 5’ ends of left most strands and 3’ ends of

the rightmost strands, and then only the permutations in the cyclic orders were used in the

further computation.
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5.2.2 Loop alignment and clustering

All the motif candidates were grouped into three different datasets: HL (from hairpin loops),

IL (from internal loops and bulges), and ML (from multi-loops). The HL dataset contained

1036 instances, the IL dataset contained 1868 instances, and the ML dataset contained

2778 instances. In each dataset, an all-to-all alignment of the loops was performed using

RNAMotifScan. Because RNAMotifScan was developed for searching which treated queries

and targets differently, any loop was aligned twice to its partner, as the query in first one and

as the target in the second one. The two corresponding Z-scores were computed with the

alignment score distributions of queries, and the smaller one was assigned to the candidate

pair as the numerical measurement of their tertiary structural similarity.

After that, three weighted graphs for different loops were constructed from the alignment

results. In these graphs, the vertices represented the loops and the edges were labeled with

the standardized scores. Noted that internal loops and multi-loops had multiple candidates

with different orientations of strands. The maximum Z-score of all the candidate alignments

for two loops was chosen as the weight of the edge, and a cutoff was set to determine

whether it should be removed or not. The strongly connected sub-graphs were identified

with a CAST-like clique finding algorithm [10] in the processed unweighted graph.

During the alignment and the clustering, the parameters of the pipeline were tuned to

generate the most reliable results for the motif discovery. For RNAMotifScan, 30 sets of

parameters were used: the weights for sequence similarity and structural similarity can be

(0.2, 0.8) and (0.4, 0.6); the gap start and extend penalties can be (3, 2), (6, 2) and (6, 4);

the penalty of missing one base pair in two inputs can be 1 to 5. Different Z-score cutoffs,
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ranging from 1.0 to 3.0 with step of 0.1, were also applied in the graphs. Therefore, there

were 930 (30 × 31) different clustering results for each loop dataset. To benchmark their

accuracy, we compute the sensitivity and specificity by using the known motifs in rRNAs

[187]. The one with highest sensitivity and 0 specificity was chosen for the further analysis.

Based on these criteria, we chose the five parameters and the cutoff to be 0.2, 0.8, 6, 4, 3, and

-1.1 for the HL dataset; 0.2, 0.8, 6, 2, 2, and -2.2 for the IL dataset. Since no enough known

motif instances in multi-loops to conduct the evaluation, the parameters for IL dataset were

used in the clustering for ML dataset directly.

5.2.3 Motif family identification

We extract the potentially conserved motif families from the clusters for HL, IL, and ML

datasets by using both computational methods and visual inspection. For two members of a

cluster, the aligned regions enclosed by base pairs were detected, and the fragments outside

of all base pairs were filtered out. This “core” of the alignment must satisfy two requirements

to keep itself for the further analysis. First, the length of the base-pair surrounded alignment

must be greater than 3; Second, their root-mean-square deviation (RMSD) must be greater

than 4Å. As a result, the edges for the false conservations which did not meet the two

conditions were deleted from the graph. After that, the dangling loops were believed to be the

false predictions and removed from the cluster. Considering different motifs may be grouped

into the same cluster if they share common patterns in their secondary structures [189]. The

3D structures of the remained loops in clusters were manually checked to categorize them

into sub-groups. Then the secondary structural consensus and the key 3D structural features

of sub-groups were extracted. With these critical properties, the possible functionality of the
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motifs in the sub-groups were obtained by literature research, and the relationship among

sub-groups in different clusters was observed by comparison. Finally, we designed an ID

system to refer the clusters and sub-groups. The cluster ID contains two fields: a loop type

prefix and a cluster index suffix (e.g. IL1). Based on that, the sub-group ID is defined

as cluster ID followed by the sub-group index, separated by an underscore character (e.g.

IL1 1).

5.3 Results

5.3.1 Summary of the clustering results

To evaluate the clustering results, 10 well-studied motif families are analyzed. The clusters

containing the maximum numbers of instances for these motifs are chosen as representatives.

All the other motif instances not in the representatives are annotated as plausible variations.

Table 5.1 summarizes the clustering results for the 10 motif families, including the prediction

accuracy and the numbers of variations. The precision is computed by dividing the number

of true motifs with the size of the cluster. Note that if one loop consists of several motifs,

it will be counted multiple times. From the table, we can see the clustering results of

GNAA and GNGA motifs are accurate because they are highly conserved in both sequences

and secondary structures. The related variations mainly come from the combination with

sarcin-ricin motifs, which will be discussed later. T-loops are relatively hard to be clustered

together, due to their low sequence identity and simple base pairing patterns. It indicates

the weight of structural similarity should be set much greater than the weight of sequence
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Table 5.1: The clustering results of 10 well-known motif families. The numbers in the
brackets show the variations detected from the datasets not containg the clusters.

Motif name Cluster ID # of true instances size of cluster precision # of variations

GNAA HL1 85 87 98% 5
GNGA HL3 45 45 100% 14
T-loop HL4 29 31 94% 55(6)
Sarcin-ricin IL3 47 56 84% 18(14)
Kink-turn IL5 25 39 64% 38
Hook-turn IL6 26 31 84% 0
C-loop IL8 16 21 76% 7
E-loop IL9 16 21 76% 7
Tandem shear IL13 22 30 73% 5
Reverse kink-turn IL21 19 20 95% 6

similarity when searching T-loops. Both sarcin-ricin and kink-turn have lots of variantions,

which only share the key 3D structural features but not the secondary structural patterns

with the majority of instances in the representative clusters. One possible reason is that the

binding activity may disturb the base pairing interactions in them, and we will show several

examples in the later sections. The precision of the kink-turn cluster (IL5) is relatively low

because E-loops have two common non-canonical base pairing interactions with kink-turn

motifs. Hook-turn has a unique base pairing pattern, so it is easy to identify. Although

C-loop is hard to detect due to its crossing base pairs, our pipeline still achieves acceptable

results for it. All the other three motifs, E-loop, tandem shear, and reverse kink-turn, consist

of tandem non-canonical base pairs. E-loop and tandem shear have similar 3D structures,

so we mainly use their secondary structural features to distinguish them.

Besides the motifs in the table, we have discovered other functional ones in the clustering

results. The first example is the well-known tetraloop receptor in group I intron (IL4 1 and

IL22 1) [1]. Some of them are used in the target molecules to maximize its crystallizability

[46]. The L1 protuberance of 50S rRNA and mRNA are also clustered together in IL18. It

has already been proved that they have both similar 3D structures and binding activities
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[115]. We also detected the motifs that are conserved both in mitochondrial 16S rRNAs and

bacterial 23S rRNAs [140]. The identification of these known functional motifs indicate that

the clustering results can be applied to further analysis for new motifs.

5.3.2 Novel instances of known motifs

5.3.2.1 Tetraloops

Tetraloops are basic building blocks of RNA 3D structures which are important for thermo-

dynamic stability and binding activity of the molecules [47, 141]. The most frequent two

types of tetraloops are GNRA loops [172] and UUCG loops [41]. In addition, GNRAs can

be categorized into GNGA loops and GNAA loops. In our clustering results, the majority of

GNAA, GNGA, and UUCG motifs are in IL1, IL3 and IL6. Some other GNAAs and GNGAs

are found to be linked with sarcin-ricin motifs. One instance of this motif module is shown in

Figure 5.1 (a). This loop is from the region C3120-A3136 in the Homo sapiens (H. sapiens)

mitochondrial 16S rRNA. It can be seen that the 3D structure of A3125-G3131 is highly con-

served to a GNAA reference. We also find that the corresponding region in the Haloarcula

marismortui (H. marismortui) 23S rRNA contains a GNGA motif, which indicates GNAA

and GNGA are interchangeable in this module. Similar modules for UUCG have been also

detected. One example is shown in Figure 5.1 (b), which is in the H. marismortui 23S rRNA.

The “U-shape” turn in this loop is docked with the blue UUCG tetraloop precisely in the

3D space. Base on the observation, We may hypothesize that the combination of sarcin-ricin

and tetraloop should be a very common module in RNA 3D structures.
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(a) (b)

Figure 5.1: The 3D structures of two RNA motifs containing both tetraloops and
sarcin-ricins. (a) The hairpin loop in the H. sapiens mitochondrial 16S rRNA (PDB: 3J7Y,
chain: A) which contains a GNAA tetraloop. The blue tube shows a superimposed GNAA
tetraloop in the H. marismortu 23S rRNA (PDB: 4BW0, chain: A). (b) The hairpin loop
in the H. marismortui 23S rRNA (PDB: 1S72, chain: 0) which contains a UUCG tetraloop.
The blue tube shows a superimposed UUCG tetraloop in the Methanococcus vannielii mRNA
fragment.

5.3.2.2 T-loops

T-loop is a compact U-turn-like loop which was originally discovered in transfer RNA (tRNA)

[129]. After that, many T-loop instances have been identified in a variety of ncRNAs, ranging

from rRNA to riboswitch [24]. Our clustering results cover almost all the known T-loops in

the hairpin loops. What’s more, We also find two instances of T-loop in the internal loop

cluster IL26. One of them is in the Thi-box (thiamine pyrophosphate sensing) riboswitch

and known for the ligand 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) [139]. The

other one is discovered in a T-box stem I RNA. Figure 5.2 shows its structures and the

3D alignment to the T-loop in a tRNA(leu). Note that their secondary structure consensus

consists of one trans S/H and one trans W/H base pairing interactions. The difference is that

in the tRNA the base pairs exist in a hairpin loop, while the two interactions in the T-box
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Figure 5.2: The 3D and secondary structures of an internal loop in T-box stem I RNA
(Oceanobacillus iheyensis) and a hairpin loop in tRNA (Thermus thermophilus). (a) The
3D docking of two loops. The orange tube represents the internal loop in the T-box stem
I RNA (PDB: 4TZZ, chain: C) and the blue tube represents the hairpin loop in the tRNA
(PDB: 2BTE, chain: E). (b) The secondary structure of the internal loop. (c) The secondary
structure of the hairpin loop. In (a), (b), and (c), red color marks the structural consensus
of the two loops.

stem I RNA bend one strand of the internal loop to a U-shape turn. Considering relatively

large size of the twisted strand, the third interaction at G38/G70 should be important to

the stability of the entire loop. This T-loop also works with another T-loop (the homology

is 4MGN C:51-63 in HL8) in the same RNA to stack on tRNA elbow [182]. The similar

binding behavior is also in RNase P and ribosomal RNA, so the study of this T-loop and its

partner may provide useful information for searching more homologous modules.
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5.3.2.3 Kink-turn

Kink-turn is a motif in the internal loop region with an asymmetrical architecture [86]. Its

key feature is the tight kink at the backbone of the longer strand, which causes the axes of the

two helical stems differ by about 120◦. In a real cellular environment, kink-turn may adopt

a dynamic conformation [136]. To maintain the k-shape geometry, the motifs require the

presence of metal ions [108], or the binding with proteins [158]. We detected two kink-turn-

like motif instances in the cluster IL37. Note that the loop in the 16S rRNA was detected in

our previous work [187]. With the newly discovered instance, we can analyze their conserved

patterns and the related functions. Figure 5.3 shows their secondary and 3D structures. It

can be seen that all base pairs can be matched together if the red nucleotides are ignored.

Compared with the consensus base pairing pattern of common kink-turns [189], these two

instances form the 3D kinks by three base pairs (G247/A282, A246/G278, A246/G281 in

1FJG and G18/A48, A17/A44, A17/G47 in 3RW6). In the common kink-turns, the Watson-

Crick base pairs, C242/G284 in 1FJG and U11/G50 in 3RW6, should be followed by two

continuous non-Watson-Crick base pairs. However, in these two loops, the two interactions

are separated by the nucleotides marked with red color. In Figure 5.3, these red nucleotides

form the bulges at the shorter strand, which do not exist in the common kink-turns. What’s

more, both red regions have binding functions. According to the results of MC-Annotate,

the nucleotide U244 is paired with A893 in another loop region. On the other hand, the

large bulge containing the flipped out nucleotides, A13, G14, and A15, is the binding site

of the TAP protein and critical to the formation of CTE-TAP complex [152]. So based on

the function similarity, we may suggest that the secondary structural pattern is important

to the binding activity in the kink-turn motifs.
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Figure 5.3: The 3D and secondary structures of two internal loops in a 16S rRNA (Thermus
thermophilus) and a CTE rRNA. (a) and (c) are the superimposed 3D structures of two
loops in the 16S rRNA (PDB: 1FJG, chain: A) and the CTE RNA (PDB: 3RW6, chain: H).
(b) and (d) are the secondary structures of (a) and (b). In (a), (b), (c), and (d), red color
marks the nucleotides with binding activities.

5.3.2.4 Sarcin-ricin

Sarcin-ricin motif is first found in the large ribosomal subunit as the attacking site of two

protein toxins, ricin and α-sarcin. The catalyzation among them will impact the binding

between elongation factors and ribosome, which may result in the cessation of the protein

synthesis [67]. More sarcin-ricin instances with similar structural features have been discov-

ered in other RNAs, including 5S and 16S rRNAs, by using computational methods [95, 186].

In our clustering results, the majority of sarcin-ricins are also detected in rRNAs (see the

cluster IL3). Their secondary structures are almost the same as the widely used consensus

[95], and the 3D structures are highly conserved with the known instances. On the other

hand, we also find some functional loops that share structural features with sarcin-ricin.

Here, we present two possible variations of sarcin-ricin whose secondary and 3D structures

are shown in Figure 5.4. The first loop is in the cluster IL38. Based on the secondary

structure, the S-shape turn in its 3D structure is mainly supported by two non-canonical
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base pairs (A415/G428 and A414/A430) and one outward stacking interaction (G428/A430).

All these three pairing interactions are in the consensus of sarcin-ricins [189]. However, in

common sarcin-ricins, the cis H/W base pair U429/A431 should be a cis H/S interaction

between U429/A430. The possible reason for this difference is that the strand U427-C433 is

longer than in the consensus. This motif instance also exhibits a special structural property:

the bulge at the strand G409-G416. Actually, it has important molecular functions that S4

protein interacts with the flipped out A412 and its backbone contacts to G410 and A411

[16]. So the two base pairing interactions not in the consensus, A411/A430 and G413/G428,

may be important for the structural stability disrupted by the long range linkages. We may

hypothesize that this motif is a sarcin-ricin disturbed by the protein binding activity. And

the comparison of its secondary structure pattern with the sarcin-ricin consensus may help

us to detect potential RNA-protein interactions.

Another interesting loop is in the cluster IL62. We call it “double S-turns” because there

are two symmetrical S-shape turns in its 3D structure (see Figure 5.4 (c)). In the existing

model for ligand-induced folding of the TPP riboswitch, this loop is the TPP-bind pocket

which is critical for the ligand recognition [139]. The two nucleotides, U62 and U79, shape

the pocket by protruding into solution and losing the stacking effects to the adjacent bases.

From Figure 5.4 (d), it can be seen that there are two stacking interactions, A61/C63 and

G78/A80, to enforce the local stability around these two nucleotides. They also cause the

large turns in the S-shape structures. On the other hand, the other two non-canonical

base pairs tight the two strands together. The analysis of this internal loop indicates that

the stacking effect between discontinuous bases is important evidence of detecting specific

structural motifs, such as bulge and S-turn. In addition, this specific organization of pair-
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Figure 5.4: The 3D and secondary structures of two internal loops in a 16S rRNA (Thermus
thermophilus) and a TPP riboswitch (Escherichia coli). (a) and (c) are the 3D structures of
two loops in the 16S rRNA (PDB: 1FJG, chain: A) and the TPP riboswitch (PDB: 2GDI,
chain Y). (b) and (d) are the secondary structures of (a) and (c). In (a), (b), (c), and (d),
red color marks the nucleotides with binding activities.

pair ineractions, including pairing interactions and stacking interactions, may be important

to form pocket-like 3D structures.

5.3.3 Novel motif families

5.3.3.1 Novel motif families in the hairpin loop regions

The first potential motif family mainly contains four different instances from HL2 1 and

HL53 1. One of them is the loop 10 in the yeast 18S rRNA [94]. The other three are the

“stem loop 1” in the sgRNA of the Cas9-sgRNA-DNA ternary complex [5, 116]. It is newly

discovered in the complex by studying the crystal structure of Cas9 [116]. The mutation

of residues interacted with stem loop 1 results in decreased DNA cleavage activity of the

CRISPR-Cas system, which indicates the loop is essential for the formation of the functional
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Figure 5.5: The 3D and secondary structures of two hairpin loops in an 18S rRNA (Sac-
charomyces cerevisiae) and a Cas9-sgRNA-DNA complex. (a) and (c) are the superimposed
3D structures of the loops in the 18S rRNA (PDB: 3U5F, chain: 6) and the sgRNA (PDB:
4OO8, chain: B). The extension of two loops is shown in gray. (b) and (d) are the secondary
structures of (a) and (c). In (a), (b), (c), and (d), the red color marks the nucleotides binding
with the proteins.

Cas9-sgRNA complex. Figure 5.5 shows the high similarity between these two internal loops

in terms of both geometric and base pairing patterns. Except the helix ends, all the other

interacted bases are identical in two loops. The continuity of the stacks is broken by U280

and U59 that are marked with red color in the figures. Both of them flip out from the stems

and cause the turns in the backbone of two loops. The most critical feature is that they have

similar functional roles: U280 interacts with L24e protein through the eB13 bridge in the

hyper-rotated state [11, 57]; U59 in the sgRNA hydrogen bonds with Asn77 in the bridge

helix of Cas9 [116]. So these loops are not only conserved in 3D structures but also the

functions, which implies the potential closely relationship between the base pairing pattern

and the protein binding activity.
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Figure 5.6: The 3D and secondary structures of two internal loops in a 16S rRNA (Thermus
thermophilus) and a 5S rRNA (Plasmodium falciparum). (a) and (c) are the superimposed
3D structures of two loops in the 16S rRNA (PDB: 1FJG, chain: A) and the 5S rRNA (PDB:
1VX6, chain: B). (b) and (d) are the secondary structures of (a) and (c). In (a), (b), (c),
and (d), the conserved base pairing interactions are marked as red. The extension in (a) is
marked with gray color.

5.3.3.2 Novel motif families in the internal loop regions

One interesting highly significant cluster for internal loops is IL16 1 which contains 6 in-

stances. Four of them are conserved regions in 16S rRNAs, and two of them are the loop B

in the 5S rRNAs. We choose representatives from two sub-groups and describe their 3D and

secondary structures in Figure 5.6. From the results of superimposition, we can see that the

consensus of interactions in two loops, which are shown in red, are highly conserved in 3D

space. The corresponding base pairs in the secondary structures are from the same groups in

the isostericity matrices [96]: U375-A389 and G56-C26 belong to cis W/W I1; A374/C390

and A55/A27 belong to trans W/S I1; A373/G371 and A54/U52 belong to trans H/S I1. So

they are co-variations, and the interchange between them will maintain the 3D structures of

the loops. What’s more, although the interactions of C372/A389 (trans W/H) and U53/C26

(cis H/W) are not the same, the geometric relationship of bases in them are quite similar.

Therefore, these two base pairs may also contribute to the structural similarity of these two

internal loops.
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Figure 5.7: The 3D and secondary structures of two internal loops regions in a 16S rRNA
(Thermus thermophilus) and a GlmS riboswitch (Bacillus anthracis). (a) and (c) are the
superimposed 3D structures of two loops in the 16S rRNA (PDB: 1FJG, chain: A) and the
GlmS riboswitch (PDB: 2NZ4, chain: S). (b) and (d) are the secondary structures of (a)
and (c). The conserved base pairing interactions are marked as red. The extension in (a) is
marked with gray color.

Then the major difference between two motif instances comes from the regions U387-G388

and G21-A25. First, the lengths of two regions are not the same, which suggests a potential

insertion in the loop of 5S rRNA. It also can be seen from the Figure 5.6 that a significant

feature shared between them is the turn on the phosphate backbone. However, the backbone

of the internal loop in 5S rRNA (the blue one) turns with a slightly large angle. The reason

may be the trans H/S base pairing interaction between G22 and U53. Although the 3D

structures of two regions are not totally the same, they actually may have similar molecular

functions. Based on the results of MC-Annotate, the nucleotide G388 in the 16S rRNA, which

flips out from the stem, is interacted with C58. For the region in the 5S rRNA, a possible

contact to helix 89 in 23S rRNA has been identified by a SELEX (systematic evolution

of ligands by exponential enrichment) experiment [90]. It is hypothesized that A23 is the

possible binding site due to its base twisting further than the backbone. Moreover, the base

pairing consensus we detected here should be very critical for their interlinking functions.
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Another possible functional motif is discovered in the cluster IL42. One instance in this

cluster is from the 16S rRNA of Thermus thermophilus, while the other two are actually the

same internal loop in the GlmS riboswitch of Bacillus. Riboswitches are metabolite-sensing

RNAs that can directly control the synthesis of downstream genes [169]. By binding to

specific ligands, their structures are rearranged to terminate the transcription or hinder the

translation . However, unlike other riboswitches, the GlmS riboswitch does not alternate its

structure upon the binding of glucosamine-6-phosphate (GlcN6P) [64]. Instead, the binding

activity results in a cleavage on the GlmS mRNA which reduces the GlcN6P synthetase

production greatly [170]. So it is also called “GlmS ribozyme”. The internal loop studied

here is interlinking two helices, P4 and P4.1, in the GlmS riboswitch. Its secondary and

3D structures are aligned with those of the loop in 16S rRNA, and the results are shown

in Figure 5.7. We can see that although both strands of the loop in Figure 5.7 (a) are

shorter than those of the loop in Figure 5.7 (b), the consensus marked by red color is highly

conserved in sequences, base pairing interactions, and 3D structures. The “S-shape” turns

in the regions C1284-A1287 and U96-A98 are important common features of two loops too.

In the GlmS riboswitch, the turn is supposed to pack obliquely into the minor groove of

P2.1 helix, which is important for the GlcN6P binding [26]. On the other hand, we also

find that the flipped out nucleotide A1287 in the 16S rRNA also forms two interactions with

A1353 and A1370. So the bulge-like structures may be indicators for the long-range tertiary

interactions. The discovered motif may also be critical for the stability of the large internal

loops whose structures are disturbed by intra-molecular linkages.
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Figure 5.8: The 3D and secondary structures of two multi-loops in a 23S rRNA (Haloarcula
marismortui) and the Alu domain of a SRP RNA (Bacillus subtilis). (a) and (c) are the
superimposed 3D structures of two loops in the 23S rRNA (PDB: 1S72, chain: 0) and the
SRP RNA (PDB: 4WFL, chain: A). The conserved base pairing interactions are marked as
red. (b) and (d) are the secondary structures of (a) and (c).

5.3.3.3 Novel motif families in the multi-loop regions

The first potential novel family in multi-loops is obtained from the sub-group ML2 1. Ten

members are conversed regions from 21S, 23S, 25S and 28S rRNAs, and the last one comes

from the Alu domain of a signal recognition particle (SRP) RNA (Bacillus subtilis). SRP is

a highly diverse ribonucleoprotein complex existing in all three kingdoms of life [130]. The

RNA in it can be divided into two functional domains, and one of them, the Alu domain,

arrests protein biosynthesis by blocking the elongation factor entry site [142, 173]. Then

by hindering the translation, SRP can prevent membrane proteins from being prematurely

released from the ribosome. The multi-loop in the cluster is the one interlinking helix 1,

helix 2 and helix 5a in the SRP RNA. Figure 5.8 shows the comparison of its secondary

and 3D structures with those of the loop in 1S72. Both loops have three strands, which are

inter-connected by three highly conserved non-canonical base pairs: G1681/A1414 (trans

S/H), A1414/A1682 (trans W/W) and A1682/U1696 (trans H/W) in 1S72, G62/A12 (trans
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S/H), A12/A64 (trans W/W) and A64/U101 (trans H/W) in 4WFL. The eight interacted

nucleotides are marked with red color in Figure 5.8 (a) and (c). Note that the 3D geometric

patterns of the consensus are quite similar in two loops, except there is an insertion A63

between G62 and A64 in 4WFL. The structural difference between the Alu domain of SRP

RNA in mammalian and bacteria may explain the potential function of the motif. The

G-A-A-U 4 base platform observed in Bacillus subtilis (bacteria) is absented from the Alu

domain in eukaryota. Previous experiments have already shown that the 5’ region of human

Alu domain is very flexible and SRP9/14 proteins are required to stabilize the conformation

and induce the binding to 50S rRNA [165]. On the other hand, the bacterial Alu domain

adopts a closed conformation directly with the help of the 4 base platform. This evidence

may suggest that the discovered motif is critical to the stabilization of the local structure

that binds to proteins.

Another interesting sub-group for multi-loop is ML17 1, which contains three conserved

regions in 23S rRNAs and one instance in env22 (type P1) twister ribozyme. As a small

self-cleaving ribozyme, twister presents in many species of bacteria and eukaryota. It has

been identified by using bioinformatics method recently, and the name comes from the ancient

Egyptian hieroglyph “twisted flax” which resembles the 3D structure of the molecule [131].

The further research shows that twister may play a similar role as the hammerhead ribozyme

in the biological systems. Moreover, the instances of twister are categorized into three groups,

type P1, type P3, and type P5, which can circularly permute to each others. The crystal

structure of the twister used here comes from a type 1 instance. To compare it with the

multi-loop in 23S rRNAs, we pick the one in 1S72 as a representative. Figure 5.9 shows

the secondary structures of two loops and the 3D superimposition of their extensions. One

common feature is that both of them are interlinked by trans S/S base pairing interactions
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Figure 5.9: The 3D and secondary structures of two multi-loops in a 23S rRNA (Haloarcula
marismortui) and a env22 twister ribozyme (synthesized). (a) The 3D docking of two loops.
The yellow tube shows the multi-loop in the 23S rRNA (PDB: 1S72, chain: 0) and the blue
tube shows the multi-loop in the twister ribozyme (PDB: 4RGE, chain: B). The extended
regions of both loops are shown in gray. The nucleotides involved in the pseudoknots are
labeled (G1512-C1450 and C1513-G1449 in 1S72, G12-C37 and C13-G36 in 4RGE). (b) The
secondary structure of the multi-loop in the 23S rRNA. (c) The secondary structure of the
multi-loop in the twister ribozyme. The pseudoknots in (b) and (c) are marked with red
lines.

(A1492/C1514 and A42/C14). What’s more, the neighbors of the paired bases (G1512 and

C1513 in 1S72, G12 and C13 in 4RGE) form pseudoknots with nucleotides outside of the

multi-loops (C1450 and G1449 in 1S72, C37 and G36 in 4RGE). From the Figure 5.9 (a), it

can be seen that their 3D structures, which are marked with red color, are highly conserved.

Note that the orange multi-loop in 1S72 has four strands, while blue one only has three

strands. The extension of the 4th strand in the orange loop (C1455→G1453) involves in

the formation of the pseudoknot. Although not direct substitution, the blue loop has one

sharply bent strand (G25→A26) who makes an 180-degree turn to serve the interaction. This

interesting case that different secondary structures result in highly homologous 3D structures

may suggest the tertiary structural pattern is highly important.
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We also extend the 3D alignment to the P2 and P4 helices of the twister ribozyme to study

its local structural similarity with the 23S rRNA. Figure 5.9 (a) shows that the two RNAs

are quite conserved in these 40-nt regions. The self-cleavage sites in the twister, dU5 and

A6, are highlighted with green color. During the transcription, guanosine and Mg2+ are

coordinated to the non-bridging phosphate oxygen at the U-A step for cleavage catalysis

and structural integrity. We also mark the corresponding nucleotides, U1505 and U1506, in

1S72 with green color. It can be seen that they share a similar splayed-apart conformation

with the cleavage sites in the twister ribozyme. With so many common features, these two

regions should be further studied with the experimental effort to confirm their functional

correlation.

5.4 Discussion and Conclusion

In this paper, we studied the RNA structural motifs in non-redundant RNA 3D structures

by using a de novo clustering approach. The single-stranded regions in the correspond-

ing secondary structures are extracted and categorized into hairpin loops, internal loops,

and multi-loops. The base pairing patterns in the same type of loops are compared by

RNAMotifScan, and then the significant conservations are assembled into a graph. The

densely connected sub-graphs are retrieved to form the clusters in which the members share

common secondary structural features. In each cluster, by evaluating the alignments, the

loops not close to any others in 3D space are removed. The remained loops in the clusters

are further analyzed, and then classified into different sub-groups if their 3D structures are

distinguishable from critical conformations. Finally, we try to detect the homologous sub-

groups in different clusters by measuring the similarity of their secondary and 3D structural
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patterns. The clustering results for the known motifs indicate the high prediction accuracy

of this new pipeline. Some interesting instances, which not only maintain the key features

of known motifs but also exhibit specific structural variations, are found in the downstream

analysis. We also identify numerous novel motif families, even in the multi-loop regions.

The in-depth investigation of the clusters provides directions for the further research. First,

RNA structural motifs may work together as a “module”, such as the hairpin loops containing

sarcin-ricins and tetraloops (Figure 5.1), and the two T-loops in the T-box stem I RNA

(Figure 5.2). However, all the existing searching tools, no matter what models they use, only

focus on detecting the single motifs in isolation. Therefore, a new tool for discovering motif

modules may provide essential evidence of the relationship among RNA structural motifs,

which is important for the study of RNA structures and their functions. Another problem

is to use base pairing interactions to infer the potential binding activities between RNAs

and other molecules. The disturbed secondary structures of the kink-turn and sarcin-ricin

variations (Figure 5.3 and Figure 5.4) reveal that they may be the indicators of the long range

interlinkages. Furthermore, the affected base pairs also have specific patterns which can be

easily integrated into computational methods. This approach should be more accurate than

many other methods based on indirect measurements, such as using the distances between

atoms.
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CHAPTER 6: CONCLUSION

Recently, non-coding RNAs are attracting increasing research focus due to their abundance

in living cells and versatile biological roles. Generally, their molecular functions are largely

determined by the ability to fold into high-order structures. Therefore, the understanding of

the ncRNAs’ underlying structures is critical to the study of many cellular processes, such

as catalysis, regulation, and host defense. In this dissertation, we have presented a suite of

computational methods for analyzing the secondary and tertiary structures of RNAs by using

comparative approaches. It is anticipated that our computational methods will promote the

function annotation and discovery of ncRNAs.

Folding and searching are two major problems in the computational analysis of RNA sec-

ondary structures. Due to its limitation to distinguish random sequences and the restriction

of the energy parameters, the single-sequence folding will be replaced by the consensus fold-

ing if the alignment of homologous RNAs is available. One approach to consensus folding is

based on the assumption that high covariance of two sites in a multiple alignment indicates

the conservation of base pairing interaction. To evaluate the possibilities of potential base

pairs, the numbers of the mutations at the pairing columns are counted. However, these co-

variances should not be treated equally because their relative positions on the phylogenetic

tree are different. For ncRNA searching, one of the major issues is the low efficiency when

applying it to the genome-wide dataset. Although many heuristic optimizations have been
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purposed to solve the problem, they are either still too complex to annotate all the known

ncRNA families or too simplified to make accuracy prediction.

The tool named PhyloRNAalifold is developed to aim at improving the performance of con-

sensus folding algorithm that adopts the covariance model. It counts the potential covarying

mutations following the structure of phylogenetic trees, which avoids the over-emphasizing

of some insignificant ones. We incorporated the idea into the widely used consensus folding

tool RNAalifold, and the benchmarking results show its superior capability of detecting the

conserved base pairs. On the other hand, to solve the efficiency issue of ncRNA homology

search, the high-throughput structural probing data is incorporated to indicate the pairing

attributes of targets. By using this partial information, we can ignore the matching of base

pairs in the secondary structural alignment, which is the most time-consuming part of the

algorithm. The idea has been implemented as a tool named ProbeAlign by using C++ and

benchmarked with the other state-of-the-art ncRNA homology search tool CMsearch. It can

be seen that its prediction outperforms CMsearch with a shorter running time, even with

filters applied. We also used ProbeAlign to search ncRNAs in the mouse genome with the

help of FragSeq probing data.

At the tertiary structure level, both global and local conservation are important. The global

3D structural similarity between two RNA molecules can provide crucial evidence of their

evolutionary history. On the other hand, the local stable structural components in RNAs

are essential for specific cellular functions, such as RNA-RNA and RNA-protein interactions.

In recent years, many computational tools have been designed to compare RNA tertiary

structures. Some of them ignore the base pairing interactions, which results in inaccurate

predictions, while others rely on the inter-linkages among nucleotides, which causes the high

overload in computation. For searching known RNA structural motifs, there are also some
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tools to align the local components in RNA 3D structures. Now, the large size of RNA

deposition in the PDB database provides us plenty of resources to discover the novel motifs

computationally. Some clustering pipelines have been proposed to identify potential motif

families automatically by categorizing the conserved structural components together. The

concentration on 3D geometric similarity and overlook of base pairing patterns may lead to

rigid clustering results which lose lots of plausible instances for the motifs.

STAR3D is a stack-based RNA 3D structural alignment tool that achieved both accuracy

and efficiency by adopting the divide-and-conquer strategy. We found that there is small

diversity between the 3D structures of the helical regions in RNAs. Then by comparing

the distances between superimposed stacks, the non-homologous ones can be determined

and filtered out. Combining this information with the topologies of RNA secondary struc-

tures, the core consensus of the stack regions in 3D space are extracted. After that, the

loops in two RNAs are ordered and aligned one-by-one. From the benchmarking results, it

can be seen that STAR3D not only runs faster than other tools but also generates better

alignments accurate at both secondary and tertiary structural levels. Besides finding global

similarity in RNA 3D structures, we also attempt to detect valuable local building blocks.

The original RNAMSC clustering pipeline has been extended to process the large-scale loop

dataset retrieved from the non-redundant RNA 3D structures. The highly conserved loop

regions are grouped and analyzed to determine the positive motif family members. Based on

the clustering results, function annotation is performed to find potential variations of know

motifs and discover novel ones with new features.

In conclusion, our works contain four parts. The first tool, named PhyloRNAalifold, distin-

guishes the covarying mutations on the phylogenetic tree of homologous RNAs and then use

the information in the classic energy model for RNA secondary structure folding. The sec-
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ond tool, named ProbeAlign, integrates the pairing information embedded in probing data

into genome-wide ncRNA homology search to reduce the overhead of structural alignment.

The third tool, named STAR3D, uses the stacks in RNA secondary structures to guide the

tertiary structural alignment which results in dramatical improvement of performance. We

also classify the single-stranded regions in non-redundant RNA 3D structures to de novo

discover structural motifs. The underlying algorithms of these tools are expected to inspire

more advanced computational methods, and we also hope the downstream findings can help

the biological experiment studies of RNA structures.
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[4] C. Ambühl, S. Chakraborty, and B. Gärtner. Computing largest common point sets
under approximate congruence. In Algorithms-ESA 2000, pages 52–64. Springer, 2000.

[5] C. Anders, O. Niewoehner, A. Duerst, and M. Jinek. Structural basis of PAM-
dependent target DNA recognition by the Cas9 endonuclease. Nature, 513(7519):569–
573, Sep 2014.

[6] V. Bafna, H. Tang, and S. Zhang. Consensus folding of unaligned RNA sequences
revisited. J. Comput. Biol., 13(2):283–295, 2006.

[7] V. Bafna and S. Zhang. FastR: fast database search tool for non-coding RNA. Proc
IEEE Comput Syst Bioinform Conf, pages 52–61, 2004.

[8] P. J. Batista and H. Y. Chang. Long noncoding RNAs: cellular address codes in
development and disease. Cell, 152(6):1298–1307, 2013.

[9] R. A. Bauer, K. Rother, P. Moor, K. Reinert, T. Steinke, J. M. Bujnicki, and R. Preiss-
ner. Fast structural alignment of biomolecules using a hash table, n-grams and string
descriptors. Algorithms, 2(2):692–709, 2009.

[10] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. J.
Comput. Biol., 6(3-4):281–297, 1999.

[11] A. Ben-Shem, N. Garreau de Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and
M. Yusupov. The structure of the eukaryotic ribosome at 3.0 resolution. Science,
334(6062):1524–1529, Dec 2011.

102



[12] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Res., 28(1):235–
242, Jan 2000.

[13] S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler. RNAalifold:
improved consensus structure prediction for RNA alignments. BMC Bioinformatics,
9:474, 2008.

[14] B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, et al. An integrated encyclopedia
of DNA elements in the human genome. Nature, 489(7414):57–74, Sep 2012.

[15] E. Birney, J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, et al. Identification and
analysis of functional elements in 1% of the human genome by the ENCODE pilot
project. Nature, 447(7146):799–816, Jun 2007.

[16] D. E. Brodersen, W. M. Clemons, A. P. Carter, B. T. Wimberly, and V. Ramakrishnan.
Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure
of the proteins and their interactions with 16 S RNA. J. Mol. Biol., 316(3):725–768,
Feb 2002.

[17] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Commun. ACM, 16(9):575–577, 1973.

[18] M. Brudno, A. Poliakov, A. Salamov, G. M. Cooper, A. Sidow, E. M. Rubin,
V. Solovyev, S. Batzoglou, and I. Dubchak. Automated whole-genome multiple align-
ment of rat, mouse, and human. Genome Res., 14(4):685–692, 2004.

[19] S. W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barquist, E. P. Nawrocki, S. R. Eddy,
P. P. Gardner, and A. Bateman. Rfam 11.0: 10 years of RNA families. Nucleic Acids
Res., 41(Database issue):D226–232, Jan 2013.

[20] E. Capriotti and M. A. Marti-Renom. RNA structure alignment by a unit-vector
approach. Bioinformatics, 24(16):i112–118, 2008.

[21] E. Capriotti and M. A. Marti-Renom. SARA: a server for function annotation of RNA
structures. Nucleic Acids Res., 37(Web Server issue):W260–265, 2009.

[22] J. C. Carrington and V. Ambros. Role of microRNAs in plant and animal development.
Science, 301(5631):336–338, Jul 2003.

[23] J. Cavaille and J. P. Bachellerie. SnoRNA-guided ribose methylation of rRNA: struc-
tural features of the guide RNA duplex influencing the extent of the reaction. Nucleic
Acids Res., 26(7):1576–1587, Apr 1998.

[24] C. W. Chan, B. Chetnani, and A. Mondragon. Structure and function of the T-loop
structural motif in noncoding RNAs. Wiley Interdiscip Rev RNA, 4(5):507–522, 2013.

103



[25] D. K. Y. Chiu and T. Kolodziejczak. Inferring consensus structure from nucleic acid
sequences. Computer applications in the biosciences : CABIOS, 7(3):347–352, 1991.

[26] J. C. Cochrane, S. V. Lipchock, and S. A. Strobel. Structural investigation of the
GlmS ribozyme bound to Its catalytic cofactor. Chem. Biol., 14(1):97–105, Jan 2007.

[27] C. M. Croce. Causes and consequences of microRNA dysregulation in cancer. Nat.
Rev. Genet., 10(10):704–714, Oct 2009.

[28] K. E. Deigan, T. W. Li, D. H. Mathews, and K. M. Weeks. Accurate SHAPE-directed
RNA structure determination. Proc. Natl. Acad. Sci. U.S.A., 106(1):97–102, Jan 2009.

[29] Y. Ding, Y. Tang, C. K. Kwok, Y. Zhang, P. C. Bevilacqua, and S. M. Assmann.
In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory
features. Nature, Nov 2013.

[30] M. Djelloul and A. Denise. Automated motif extraction and classification in RNA
tertiary structures. RNA, 14(12):2489–2497, Dec 2008.

[31] C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics, 22(14):e90–98, Jul 2006.

[32] E. A. Doherty and J. A. Doudna. Ribozyme structures and mechanisms. Annu Rev
Biophys Biomol Struct, 30:457–475, 2001.

[33] R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and align-
ment using sequence alignment constraints. BMC Bioinformatics, 7:400, 2006.

[34] D. E. Draper. The rna-folding problem. Accounts of Chemical Research, 25(4):201–
207, 1992.

[35] O. Dror, R. Nussinov, and H. Wolfson. ARTS: alignment of RNA tertiary structures.
Bioinformatics, 21 Suppl 2:47–53, 2005.

[36] C. M. Duarte, L. M. Wadley, and A. M. Pyle. RNA structure comparison, motif search
and discovery using a reduced representation of RNA conformational space. Nucleic
Acids Res., 31(16):4755–4761, Aug 2003.

[37] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge, UK, 1998.

[38] S. R. Eddy. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet.,
2(12):919–929, Dec 2001.

[39] S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucleic
Acids Res., 22(11):2079–2088, Jun 1994.

104



[40] I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure comparison and structure
patterns. J. Comput. Biol., 7(5):685–716, 2000.

[41] E. Ennifar, A. Nikulin, S. Tishchenko, A. Serganov, N. Nevskaya, M. Garber, B. Ehres-
mann, C. Ehresmann, S. Nikonov, and P. Dumas. The crystal structure of UUCG
tetraloop. J. Mol. Biol., 304(1):35–42, Nov 2000.

[42] A. Esquela-Kerscher and F. J. Slack. Oncomirs - microRNAs with a role in cancer.
Nat. Rev. Cancer, 6(4):259–269, Apr 2006.

[43] M. A. Faghihi, F. Modarresi, A. M. Khalil, D. E. Wood, B. G. Sahagan, T. E. Morgan,
C. E. Finch, G. St Laurent, P. J. Kenny, and C. Wahlestedt. Expression of a noncoding
RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of
beta-secretase. Nat. Med., 14(7):723–730, Jul 2008.

[44] J. Felsenstein. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5:164–
166, 1989.

[45] F. Ferre, Y. Ponty, W. A. Lorenz, and P. Clote. DIAL: a web server for the pairwise
alignment of two RNA three-dimensional structures using nucleotide, dihedral angle
and base-pairing similarities. Nucleic Acids Res., 35(Web Server issue):W659–668,
2007.

[46] A. R. Ferre-D’Amare, K. Zhou, and J. A. Doudna. A general module for RNA crys-
tallization. J. Mol. Biol., 279(3):621–631, Jun 1998.

[47] J. L. Fiore and D. J. Nesbitt. An RNA folding motif: GNRA tetraloop-receptor
interactions. Q. Rev. Biophys., 46(3):223–264, Aug 2013.

[48] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(3760):279–284, Jan 1967.

[49] E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Exploring genomic dark matter:
a critical assessment of the performance of homology search methods on noncoding
RNA. Genome Res., 17(1):117–125, Jan 2007.

[50] L. Garcia-Ortega, E. Alvarez-Garcia, J. G. Gavilanes, A. Martinez-del Pozo, and
S. Joseph. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-
G and EF-Tu binding. Nucleic Acids Res., 38(12):4108–4119, Jul 2010.

[51] P. P. Gardner, J. Daub, J. Tate, B. L. Moore, I. H. Osuch, S. Griffiths-Jones, R. D.
Finn, E. P. Nawrocki, D. L. Kolbe, S. R. Eddy, and A. Bateman. Rfam: Wikipedia,
clans and the ”decimal” release. Nucleic Acids Res., 39(Database issue):D141–145,
Jan 2011.

[52] P. P. Gardner and R. Giegerich. A comprehensive comparison of comparative RNA
structure prediction approaches. BMC Bioinformatics, 5:140, Sep 2004.

105



[53] P. Ge and S. Zhang. Incorporating phylogenetic-based covarying mutations into
RNAalifold for RNA consensus structure prediction. BMC Bioinformatics, 14:142,
2013.

[54] P. Gendron, S. Lemieux, and F. Major. Quantitative analysis of nucleic acid three-
dimensional structures. J. Mol. Biol., 308(5):919–936, 2001.

[55] M. T. Goodrich, J. B. Mitchell, and M. W. Orletsky. Practical methods for approxi-
mate geometric pattern matching under rigid motions:(preliminary version). In Pro-
ceedings of the tenth annual symposium on Computational geometry, pages 103–112.
ACM, 1994.

[56] A. R. Gruber, S. Findeiss, S. Washietl, I. L. Hofacker, and P. F. Stadler. RNAZ 2.0:
improved noncoding RNA detection. Pac Symp Biocomput, 15:69–79, 2010.

[57] S. Gulay. Building a map of the dynamic ribosome. PhD thesis, University of Mary-
land, 2015.

[58] B. Gulko and D. Haussler. Using multiple alignments and phylogenetic trees to detect
RNA secondary structure. In Lawrence Hunter and Teri Klein, editors, Biocomputing:
Proceedings of the 1996 Pacific Symposium, pages 350–367. World Scientific Publishing
Co, Singapore, 1996.

[59] R. A. Gupta, N. Shah, K. C. Wang, J. Kim, H. M. Horlings, D. J. Wong, M. C. Tsai,
T. Hung, P. Argani, J. L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R. B. West,
M. J. van de Vijver, S. Sukumar, and H. Y. Chang. Long non-coding RNA HOTAIR
reprograms chromatin state to promote cancer metastasis. Nature, 464(7291):1071–
1076, Apr 2010.

[60] R. R. Gutell, A. Power, G. Z. Hertz, E. J. Putz, and G. D. Stormo. Identifying con-
straints on the higher-order structure of RNA: continued development and application
of comparative sequence analysis methods. Nucleic Acids Res., 20(21):5785–5795, Nov
1992.

[61] R. R. Gutell and C. R. Woese. Higher order structural elements in ribosomal RNAs:
pseudo-knots and the use of noncanonical pairs. Proc. Natl. Acad. Sci. U.S.A.,
87(2):663–667, Jan 1990.

[62] T. Hainzl, S. Huang, and A. E. Sauer-Eriksson. Structural insights into SRP RNA: an
induced fit mechanism for SRP assembly. RNA, 11(7):1043–1050, Jul 2005.

[63] M. Hajiaghayi, A. Condon, and H. H. Hoos. Analysis of energy-based algorithms for
RNA secondary structure prediction. BMC Bioinformatics, 13:22, 2012.

[64] K. J. Hampel and M. M. Tinsley. Evidence for preorganization of the glmS ribozyme
ligand binding pocket. Biochemistry, 45(25):7861–7871, Jun 2006.

106



[65] A. O. Harmanci, G. Sharma, and D. H. Mathews. Efficient pairwise RNA structure
prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics,
8:130, 2007.

[66] A. M. Harrison, D. R. South, P. Willett, and P. J. Artymiuk. Representation, searching
and discovery of patterns of bases in complex RNA structures. J. Comput. Aided Mol.
Des., 17(8):537–549, Aug 2003.

[67] T. P. Hausner, J. Atmadja, and K. H. Nierhaus. Evidence that the G2661 region of 23S
rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie,
69(9):911–923, Sep 1987.

[68] J. H. Havgaard, E. Torarinsson, and J. Gorodkin. Fast pairwise structural RNA
alignments by pruning of the dynamical programming matrix. PLoS Comput. Biol.,
3(10):1896–1908, Oct 2007.

[69] L. He and G. J. Hannon. MicroRNAs: small RNAs with a big role in gene regulation.
Nat. Rev. Genet., 5(7):522–531, Jul 2004.

[70] J. Hertel, D. de Jong, M. Marz, D. Rose, H. Tafer, A. Tanzer, B. Schierwater, and
P. F. Stadler. Non-coding RNA annotation of the genome of Trichoplax adhaerens.
Nucleic Acids Res., 37(5):1602–1615, Apr 2009.

[71] M. Hochsmann, T. Toller, R. Giegerich, and S. Kurtz. Local similarity in RNA sec-
ondary structures. Proc IEEE Comput Soc Bioinform Conf, 2:159–168, 2003.

[72] I. L. Hofacker. RNA consensus structure prediction with RNAalifold. Methods Mol.
Biol., 395:527–544, 2007.

[73] I. L. Hofacker, M. Fekete, and P. F. Stadler. Secondary structure prediction for aligned
RNA sequences. J. Mol. Biol., 319(5):1059–1066, Jun 2002.

[74] I. L. Hofacker, W. Fontana, P. F. Stadler, S. L. Bonhoeffer, M. Tacker, and P. Schus-
ter. Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem.,
125:167–188, 1994.

[75] D. Hoksza and D. Svozil. Efficient RNA pairwise structure comparison by SETTER
method. Bioinformatics, 28(14):1858–1864, 2012.

[76] L. Holm and C. Sander. Protein structure comparison by alignment of distance ma-
trices. J. Mol. Biol., 233(1):123–138, 1993.

[77] J. P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inference of phylogenetic
trees. Bioinformatics, 17(8):754–755, Aug 2001.

[78] J. M. Izquierdo and J. Valcarcel. A simple principle to explain the evolution of pre-
mRNA splicing. Genes Dev., 20(13):1679–1684, Jul 2006.

107



[79] A. Jacquier. The complex eukaryotic transcriptome: unexpected pervasive transcrip-
tion and novel small RNAs. Nat. Rev. Genet., 10(12):833–844, 2009.

[80] J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of secondary structures
for RNA. Proc. Natl. Acad. Sci. U.S.A., 86(20):7706–7710, Oct 1989.

[81] Y. Ji, X. Xu, and G. D. Stormo. A graph theoretical approach for predicting com-
mon RNA secondary structure motifs including pseudoknots in unaligned sequences.
Bioinformatics, 20(10):1591–1602, 2004.

[82] J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and J. Walichiewicz.
Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome
Res., 110(1-4):462–467, 2005.

[83] W. Kabsch. A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A, 34(5):827–828, 1978.

[84] M. Kertesz, Y. Wan, E. Mazor, J. L. Rinn, R. C. Nutter, H. Y. Chang, and E. Segal.
Genome-wide measurement of RNA secondary structure in yeast. Nature, 467:103–107,
2010.

[85] S. Kishore, A. Khanna, Z. Zhang, J. Hui, P. J. Balwierz, M. Stefan, C. Beach, R. D.
Nicholls, M. Zavolan, and S. Stamm. The snoRNA MBII-52 (SNORD 115) is processed
into smaller RNAs and regulates alternative splicing. Hum. Mol. Genet., 19(7):1153–
1164, Apr 2010.

[86] D. J. Klein, T. M. Schmeing, P. B. Moore, and T. A. Steitz. The kink-turn: a new
RNA secondary structure motif. EMBO J., 20(15):4214–4221, Aug 2001.

[87] R. J. Klein and S. R. Eddy. RSEARCH: finding homologs of single structured RNA
sequences. BMC Bioinformatics, 4:44, Sep 2003.

[88] B. Knudsen and J. Hein. RNA secondary structure prediction using stochastic context-
free grammars and evolutionary history. Bioinformatics, 15(6):446–454, Jun 1999.

[89] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochastic
context-free grammars. Nucleic Acids Res., 31(13):3423–3428, Jul 2003.

[90] J. Ko, Y. Lee, I. Park, and B. Cho. Identification of a structural motif of 23S rRNA
interacting with 5S rRNA. FEBS Lett., 508(3):300–304, Nov 2001.

[91] J. Laborde, D. Robinson, A. Srivastava, E. Klassen, and J. Zhang. RNA global align-
ment in the joint sequence-structure space using elastic shape analysis. Nucleic Acids
Res., 41(11):e114, 2013.

108



[92] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan,
H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J.
Gibson, and D. G. Higgins. Clustal W and Clustal X version 2.0. Bioinformatics,
23(21):2947–2948, Nov 2007.

[93] S. Lemieux and F. Major. RNA canonical and non-canonical base pairing types: a
recognition method and complete repertoire. Nucleic Acids Res., 30(19):4250–4263,
2002.

[94] L. Lempereur, M. Nicoloso, N. Riehl, C. Ehresmann, B. Ehresmann, and J. P. Bachel-
lerie. Conformation of yeast 18S rRNA. Direct chemical probing of the 5’ domain
in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of
dimethyl sulfate-accessible. Nucleic Acids Res., 13(23):8339–8357, Dec 1985.

[95] N. B. Leontis, J. Stombaugh, and E. Westhof. Motif prediction in ribosomal RNAs
Lessons and prospects for automated motif prediction in homologous RNA molecules.
Biochimie, 84(9):961–973, Sep 2002.

[96] N. B. Leontis, J. Stombaugh, and E. Westhof. The non-Watson-Crick base pairs and
their associated isostericity matrices. Nucleic Acids Res., 30(16):3497–3531, Aug 2002.

[97] N. B. Leontis and E. Westhof. Geometric nomenclature and classification of RNA base
pairs. RNA, 7(4):499–512, 2001.

[98] N. B. Leontis and C. L. Zirbel. Nonredundant 3d structure datasets for rna knowledge
extraction and benchmarking. In Neocles Leontis and Eric Westhof, editors, RNA 3D
Structure Analysis and Prediction, volume 27 of Nucleic Acids and Molecular Biology,
pages 281–298. Springer Berlin Heidelberg, 2012.

[99] F. Li, Q. Zheng, P. Ryvkin, I. Dragomir, Y. Desai, S. Aiyer, O. Valladares, J. Yang,
S. Bambina, L. R. Sabin, J. I. Murray, T. Lamitina, A. Raj, S. Cherry, L. S. Wang,
and B. D. Gregory. Global analysis of RNA secondary structure in two metazoans.
Cell Rep, 1(1):69–82, Jan 2012.

[100] R. A. Lippert, X. Zhao, L. Florea, C. Mobarry, and S. Istrail. Finding anchors for
genomic sequence comparison. J. Comput. Biol., 12(6):762–776, 2005.

[101] I. Livyatan, A. Harikumar, M. Nissim-Rafinia, R. Duttagupta, T. R. Gingeras, and
E. Meshorer. Non-polyadenylated transcription in embryonic stem cells reveals novel
non-coding RNA related to pluripotency and differentiation. Nucleic Acids Res.,
41(12):6300–6315, Jul 2013.

[102] R. Lorenz, S. H. Bernhart, C. Honer Zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker. ViennaRNA Package 2.0. Algorithms Mol Biol, 6:26, 2011.

109



[103] J. B. Lucks, S. A. Mortimer, C. Trapnell, S. Luo, S. Aviran, G. P. Schroth, L. Pachter,
J. A. Doudna, and A. P. Arkin. Multiplexed RNA structure characterization with
selective 2’-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
Proc. Natl. Acad. Sci. U.S.A., 108:11063–11068, 2011.

[104] B. Ma, L. Wang, and K. Zhang. Computing similarity between RNA structures.
Theoretical Computer Science, 276(12):111 – 132, 2002.

[105] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of protein cores.
Proteins, 23(3):356–369, 1995.
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