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Chapter 1

Introduction

Our understanding of the role of RNA has undergone a major change in the last decade.

Once believed to be only a mere carrier of information and structural component of the

ribosomal machinery in the advent of the genomic age, it is now clear that RNAs play

a much more active role. RNAs can act as regulators and can have catalytic activity –

roles previously only attributed to proteins. There is still much speculation in the scientific

community as to what extent RNAs are responsible for the complexity in higher organisms

which can hardly be explained with only proteins as regulators [Mattick, 2003].

In order to investigate the roles of RNA, it is therefore necessary to search for new

classes of RNA. For those and already known classes, analyses of their presence in different

species of the tree of life will provide further insight about the evolution of biomolecules

and especially RNAs. Since RNA function often follows its structure, the need for com-

puter programs for RNA structure prediction is an immanent part of this procedure. The

secondary structure of RNA – the level of base pairing – strongly determines the tertiary

structure. As the latter is computationally intractable and experimentally expensive to

obtain, secondary structure analysis has become an accepted substitute. In this thesis,

I present two new algorithms (and a few variations thereof) for the prediction of RNA

secondary structures.

The first algorithm addresses the problem of predicting a secondary structure from a

single sequence including RNA pseudoknots. Pseudoknots have been shown to be func-

tionally relevant in many RNA mediated processes. However, pseudoknots are excluded

from considerations by state-of-the-art RNA folding programs for reasons of computa-

tional complexity. While folding a sequence of length n into unknotted structures requires

O(n3) time and O(n2) space, finding the best structure including arbitrary pseudoknots

has been proven to be NP-complete [Akutsu, 2000; Lyngsø and Pedersen, 2001]. Never-

theless, I demonstrate in this work that certain types of pseudoknots can be included in
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the folding process with only a moderate increase of computational cost.

In analogy to protein coding RNA, where a conserved encoded protein hints at a sim-

ilar metabolic function, structural conservation in RNA may give clues to RNA function

and to finding of RNA genes. However, structure conservation is more complex to deal

with computationally than sequence conservation. The method considered to be at least

conceptually the ideal approach in this situation is the Sankoff algorithm [Sankoff, 1985].

It simultaneously aligns two sequences and predicts a common secondary structure. Un-

fortunately, it is computationally rather expensive – O(n6) time and O(n4) space for two

sequences, and for more than two sequences it becomes exponential in the number of se-

quences! Therefore, several heuristic implementations emerged in the last decade trying to

make the Sankoff approach practical by introducing pragmatic restrictions on the search

space.

In this thesis, I propose to redefine the consensus structure prediction problem in a way

that does not imply a multiple sequence alignment step. For a family of RNA sequences,

my method explicitly and independently enumerates the near-optimal abstract shape space

and predicts an abstract shape as the consensus for all sequences. For each sequence, it

delivers the thermodynamically best structure which has this shape. The technique of

abstract shapes analysis is employed here for a synoptic view of the suboptimal folding

space. As the shape space is much smaller than the structure space, and identification

of common shapes can be done in linear time (in the number of shapes considered), the

method is essentially linear in the number of sequences. Evaluations show that the new

method compares favorably with available alternatives.

Organization of this thesis

I begin with a short review of the current biological knowledge of RNA, and in particular

non-coding RNA.

In Chapter 3, I include some basic definitions of the RNA folding problem and describe

some common ways of representing secondary structures. Then, I present three RNA

folding algorithms and recast their recurrences into the ADP approach.

In Chapter 4, I introduce the pseudoknot as a structural element of RNA secondary

structure. I devise a classification scheme for pseudoknots and show their biological impor-

tance. After that, I summarize the previous algorithmic approaches for RNA pseudoknot

folding.

Chapter 5 constitutes the first main part of this thesis. Here, I motivate and define a

new class of pseudoknots, the class of canonical simple recursive pseudoknots. I continue

with its implementation in the tool pknotsRG followed by a detailed evaluation. I demon-
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strate how Sparse Dynamic Programming can be used to accelerate pseudoknot folding.

The chapter closes with a discussion of some algorithmic extensions as well as the use of a

modified version of pknotsRG designed for the detection of ribosomal frameshift signals.

The second main algorithmic achievement of this thesis is reported in Chapter 6.

Following a brief discussion of the general background, I describe the consensus shape

approach, a new way for comparative secondary structure prediction, and show its perfor-

mance in comparison to other algorithms. In analogy to the original Sankoff algorithm I

also present a variant of the consensus shape method which computes aligned consensus

structures. In the end, I combine the pseudoknot prediction algorithm and the consensus

structure method into a powerful comparative pseudoknot predictions tool.

I conclude with a discussion and some implications of my work.

Previous publications

Major parts of the work reported here have already been published in the scientific liter-

ature:

1. Jens Reeder and Robert Giegerich. Design, implementation and evaluation of a

practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinfor-

matics, 5(104), 2004.

2. Jens Reeder and Robert Giegerich. Consensus shapes: an alternative to the

Sankoff algorithm for RNA consensus structure prediction. Bioinformatics, 21(17):

3516–3523, 2005.

3. Jens Reeder, Peter Steffen, and Robert Giegerich. pknotsRG: RNA pseudoknot

folding including near-optimal structures and sliding windows. Nucleic Acids Re-

search, 35(suppl 2): W320–324, 2007.

Additional work, related to this work in a more indirect way has appeared in:

4. Peter Steffen, Björn Voß, Marc Rehmsmeier, Jens Reeder, and Robert Giegerich.

RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioin-

formatics, 22(4): 500–503, 2006.

5. Jens Reeder, Matthias Höchsmann, Marc Rehmsmeier, Björn Voß, and Robert

Giegerich. Beyond Mfold: Recent advances in RNA bioinformatics. Journal of

Biotechnology, 124(1): 41–55, 2006.

6. Janina Reeder, Jens Reeder, and Robert Giegerich. Locomotif: From graphical

motif description to RNA motif search. Bioinformatics, 23(13): i392–400, 2007.
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Chapter 2

Biological Background

2.1 RNA structure

RNA (ribonucleic acid) is a linear macro-molecule composed of four different monomers,

namely the nucleotides Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). Its

sugar-phosphate backbone covalently connects successive nucleotides via a phosphodiester

bond. Unlike DNA (deoxyribonucleic acid), RNA ususally occurs single stranded with

some exceptions, e.g. in double stranded RNA viruses. Due to base pair complementarity

mediated by hydrogen bonds, intra-molecular base pairings can be formed, and thus, the

RNA molecule folds back onto itself. The most common base pairings are the Watson-

Crick pairs A•U and G•C, but G•U pairs also occur frequently. When several base pairs

stack directly on top of each other, they form a helical region similar to double stranded

DNA. This stacking of base pairs has a stabilizing effect on the molecule’s structure, caused

by the overlap of the π-orbitals of the nucleotides’ ring systems. However, helix formation

always leads to the inclusion of an otherwise free moving, unpaired loop region which

destabilizes the molecules’ structure. Depending on the enclosing number of base pairs,

one distinguishes between hairpin loops (closed by one base pair), bulge and internal

loops (closed by two base pairs), and multiloops - closed by more than two base pairs

(Figure 2.1). Under equilibrium conditions, an RNA molecule folds into the structure

that minimizes the sum of stabilizing and destabilizing effects. This folding is often called

the minimum free energy (MFE) structure.

RNA molecules fold hierarchically, i.e. first, the base pairings are formed, and later, the

helices arrange themselves to a precise 3-dimensional structure [Tinoco and Bustamante,

1999]. The 3-dimensional fold is often stabilized by non standard base pairs, triple base

pairs, and backbone-loop interactions. Nevertheless, the 2-D structure – defined as the

set of canonical base pairs – builds a scaffold for the 3-D structure. That is why biologists
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Figure 2.1: RNA folds back onto itself and hereby forms helices (stacking regions) and

loop elements.

can make assumptions on the function or the relationship of two RNA molecules simply

by comparing their secondary structure.

2.2 Roles of RNA

RNA has many roles, some of which were known for over 50 years, but the meaning and

importance of some new classes of RNA have become visible just recently.

Following the long time unchallenged dogma of molecular biology, “DNA makes RNA

makes protein”. This basically means that the genetic information stored in the genomic

DNA is transcribed into messenger RNA (mRNA) which serves as an information carrier

to the ribosome, where the protein is finally synthesized from the RNA template. In this

scheme, the mRNA acts as a linear molecule without any structural information. However,

there are some known exceptions to this rule, where (mostly) small structural motifs within

the mRNA influence the translation into the protein. One can distinguish between motifs

occurring within the protein coding reading frame, e.g. ribosomal frameshift inducing

motifs ([Dinman, 2006], see also Chapter 5.6), and motifs occurring in the 5’ and 3’

untranslated region (UTR), such as the well-known iron response element [Kikinis et al.,

1995].

In addition to the role as mRNA, there is a momentarily fast growing fraction of RNAs

which are transcribed from genomic DNA but never get translated into proteins. Those

kind of RNAs are subsumed under the name of non-coding RNA (ncRNA).

The two best and longest known classes of RNA are key players in the protein building
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machinery, namely the transfer-RNA (tRNA) and the ribosomal RNA (rRNA). The tRNA

acts as an adaptor molecule and mediates the translation of the triplet code encoded in

the mRNA into a sequence of amino acids. Translation takes place at the ribosome which

is a huge ribonucleo-protein-complex consisting of several different rRNAs and proteins.

It is now evident that the catalytic activity of the ribosome is performed solely by RNAs.

The proteins are only attributed a structure-stabilizing role.

Another class of small nuclear RNAs (snRNA) is involved in the splicing process of

eukaryotic mRNAs. The first observed members of this class were rich in Uracil which led

to the name uRNA.

A recently discovered class of non-coding RNAs are microRNAs (miRNAs) [Lee and

Ambros, 2001; Lagos-Quintana et al., 2001; Lau et al., 2001] which are small, 21-24 nu-

cleotide long RNAs processed from a ∼90 nucleotide long hairpin precursor. miRNAs act

as translational repressors by binding to complementary sequences within protein-coding

mRNA, oftentimes with a tissue- or stage-specific pattern.

Many rRNAs contain modified nucleotides. The locus of the modification is targeted

by small nucleolar RNAs (snoRNAs) which by complementarity guide site-specific methy-

lations or pseudouridylations to the rRNA.

In principle, tRNAs, miRNAs, and snoRNAs all follow the same pattern: In cooper-

ation with some proteins they exert their function in a target-sequence specific manner.

The RNA has the role of identifying the target by base pair complementarity, and the

protein then performs its, perhaps catalytic, function on the target. Thus, every molecule

has its perfectly designed part on the molecular stage.

Apart from this scheme, there are also RNAs which act without the help of a protein

and regulate gene expression directly by building a duplex with the target mRNA. One

such regulatory RNA is OxyS, first discovered in E. coli. By binding to its target mRNA

of the gene fhlA, it renders the ribosome binding site (RBS) inaccessible and thus down-

regulates translation [Argaman and Altuvia, 2000]. Interestingly, OxyS also upregulates

the activity of another gene (rpoS ) by titration of Hfq protein. In absence of OxyS, Hfq

binds to a sequence of rpos mRNA which otherwise forms an inhibitory intramolecular

structure [Altuvia and Wagner, 2000].

At the moment, there is much speculation if the already known ncRNAs are remnants

of an ancient RNA world or just the tip of the iceberg. It has been stated that the

complexity of higher organisms cannot solely be achieved by (regulatory) proteins, but

that there must be a hidden layer of regulatory ncRNAs [Mattick, 2003]. Hopefully the

near future will tell us, if this idea proves right. I am convinced that the tools developed

in this thesis will be a help in this task.
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Chapter 3

RNA Folding

In this section, I introduce three basic Dynamic Programming algorithms for RNA sec-

ondary structure prediction. The last one serves as the basis for the extensions necessary

to include pseudoknots as described in Chapter 5. The algorithms are explained in tradi-

tional matrix recurrences and also in ADP style. ADP (Algebraic Dynamic Programming)

is a domain specific language for solving Dynamic Programming algorithms over sequential

data. I introduce its basic concepts needed for understanding the algorithms presented

later in this thesis. However, I do not cover all aspects of the ADP language. For details of

ADP I refer to [Giegerich et al., 2004a; Steffen and Giegerich, 2005; Giegerich and Steffen,

2006].

3.1 RNA secondary structures

3.1.1 Basic definitions

From a computer science point of view, RNA sequences are strings over the nucleotide

alphabet A,C,G,U . In the following, s will denote a sequence, n its length. A secondary

structure is a set S of base pairs, where allowed pairs are G • C, A • U and G • U . For

every two RNA base pairs i • j and k • l from S with i < k, the following must hold:

1. j − i > 3

2. If i = k then j = l

3. Either i < j < k < l or i < k < l < j

Rule 1 imposes a minimal hairpin loop size of three nucleotides, rule 2 disallows triple base

pair interactions, and finally, rule 3 ensures that base pairs either precede each other or are
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(d) Dot-bracket notation

Figure 3.1: Equivalent representations of an RNA secondary structure with a pseudoknot

at its 3’ end. The dot plot (b) was produced by the Vienna RNA package and thus does

not show the pseudoknot in the MFE structure on the lower left triangle.

properly nested. Exceptions to the third rule introduce pseudoknots which are generally

not allowed in secondary structures. However, in Chapter 3, I relax this definition in order

to include some pseudoknots into the notion of secondary structure.

3.1.2 Representations of secondary structures

The secondary structure of RNA molecules can be represented in various ways. The most

common and obvious representation is the so called squiggle plot (Figure 3.1 a), in which

helices are drawn double-stranded and loops as arcs connecting the helices. This type of
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representation is widely used in the biological literature. An alternative, but equivalent

representation is the arc- or domes-representation (Figure 3.1 c), where the backbone is

drawn as a horizontal line and the base pairings as arcs. For properly nested structures,

one can draw all arcs in the area above the backbone without any crossing lines. For

pseudoknots, arcs beneath the backbone are necessary to minimize crossings. In the

computer science community the dot-bracket-notation (Figure 3.1 d) is often used, where

a dot represents an unpaired nucleotide, and each pair of opening and closing brackets of

the same type (rounded, curly, or squared) symbolizes a base pair.

In a dot plot (Figure 3.1 b), two types of information are displayed. In the lower left

half, exactly one structure is defined. Here, a dot at the intersection of row i and column

j denotes a base pair of nucleotides i and j. In the upper right half, an ensemble of

structures is displayed. Here, each dot stands for the probability of this particular base

pair to be formed in the equilibrium ensemble. Usually, the size of the dot is proportional

to the probability.

3.2 Algorithms for RNA secondary structure prediction

3.2.1 Maximizing the number of base pairs

The first algorithm for RNA folding was due to pioneering work of Nussinov [Nussinov

et al., 1978] in the late ’70s. It seeks to find the structure with the maximal number of base

pairs. Following a Dynamic Programming scheme, a matrix M is filled recursively. The

value of entry M(i, j) is defined as the maximum number of base pairs of the subsequence

si...sj. The calculation of M follows the observation that the base at position j is either

unpaired or paired to some base k. In the latter case, the sequence is divided into two

parts: the subsequence from i to k − 1 and the subsequence from k + 1 to j − 1 in the

interior of the base pair. Formulated as a matrix recurrence:

M(i, j) =



















0 if j ≤ i + 1

M(i, j − 1)

min
i≤k<j

(M(i, k − 1) + M(k + 1, j − 1) + 1) with basepair(k, j)

There are many ways how the matrix can be calculated, e.g. row by row or column by

column, as long as the computation proceeds from shorter to longer subsequences. The

structure which finally achieves the maximal number of base pairs (stored in M(1, n))

can be deduced by backtracking the optimal solution through the dynamic programming

matrix. The matrix can be stored in a triangular fashion but still requires O(n2) memory

space. The runtime is in O(n3) due to the moving k in the last recursion.
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ADP tree grammar

Now, I rewrite the same algorithm in ADP, beginning with the tree grammar which defines

the search space, i.e. the set of admissible structures over the input sequence.

M = tabulated (
nil <<< empty |||
unpaired <<< M ~~- base |||
split <<< M ~~! (pair <<< base -~~ M ~~- base) ‘with‘ basepairing ... h)

In the first line, I specify that the result of M parses are stored in a table by using

the keyword tabulated. The second line initializes empty sequences with the algebra

function nil. Here, the <<< operator feeds the result of the empty parser into the algebra

function nil. The empty parser succeeds only on empty (zero length) strings. The next

alternative in line three, connected via the ||| operator, skips one base on the 3’ end. In

ADP, operators containing a ~ character (such as the most general ~~~) partition the input

sequence and direct the resulting subsequences into the left- and right-hand side parsers.

The specialized ~~- operator divides the input string into two parts: Here, the left part

of size j − i − 1 recursively calls the result of M. The right part of size 1 is consumed by

a single character parser base. This case is evaluated by the algebra function unpaired.

Finally, there is the most complex alternative in line four. It splits the input into the

base pair k • j, the subsequence to the left of k, and the subsequence in the interior of

the base pair. The basepairing predicate is applied on the two nucleotides parsed by the

base parsers via the with keyword. The specialized ~~! combinator guarantees a minimal

hairpin loop size of one nucleotide. In the end, a choice function h is applied on the list

of alternatives via the ... operator.

ADP signature and algebra

An ADP program is completed by the definition of at least one algebra. The algebra

functions are restricted by a signature which serves as an interface to the evaluating

algebras. The signature defines the number of algebra functions and for each function, the

number and types of parameters and the result type. Our example requires the declaration

of four algebra functions plus the mandatory choice function h:

type Algebra alphabet answer = (
() -> answer, -- nil
answer -> alphabet -> answer, -- unpaired
alphabet -> answer -> alphabet -> answer, -- pair
answer -> answer -> answer, -- split
[answer] -> [answer] -- h
)
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Here, the type variable alphabet stands for the input type and the result domain is

specified by answer.

For a base pair maximization algebra, I instantiate the signature with the following

algebra functions:

bpmax :: Algebra Char Int
bpmax = (nil, unpaired, pair, split, h) where

nil () = 0
unpaired a b = a
split a b = a + b
pair l a r = a + 1

h [] = []
h xs = [maximum xs]

The complete, executable code of this algorithm along with more algebra functions

(counting, pretty printing and the generic algebra combinator ***) is given in the ap-

pendix.

It turned out that Nussinov-style base pair maximization has a limited prediction

accuracy. Mainly, there are two reasons for this. First, not all base pairs are formed

equally likely. Instead, the amount of a base pair’s stabilizing contribution depends on the

neighboring bases. The second reason stems from the destabilizing effect resulting from

unpaired loop regions. For most loops, a logarithmic energy penalty is incurred which

cannot be modeled in the Nussinov approach. These observations led to an improved

algorithm based on free energy minimization.

3.2.2 RNA folding by free energy minimization

Free energy based RNA folding was first described by Zuker and Stiegler [1981]. The

underlying energy model [Mathews et al., 1999] has been refined several times over the

last twenty years but remained the same in its principles: RNA secondary structures are

stabilized by the stacking effect of two adjacent base pairs or by single bases stacking on

a base pair at either end of a helix. These single stacking bases are often called dangling

bases. The formation of helices in turn prevents the free movement of the included loop

regions which destabilizes the folding. Hairpin, internal, and bulge loops are all attributed

precisely measured energy values for smaller loop lengths and logarithmically increasing

energies for larger loop lengths. Multiloops are scored with an affine energy model, with

a large constant (+3.4 kcal/mol) for multiloop initiation and a smaller constant (+0.4

kcal/mol) for each helix protruding from the multiloop.
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In the following, I neglect the effect of single base stacking for clarity and brevity.

Including the dangling bases in the recursions quadruples all rules starting or ending a

helix, with in each case one rule for no dangling base, for one dangling base at the 5’ side,

for one dangling base at the 3’ side, and finally for dangling bases at both the 5’ and 3’

side. Also, I simplify the evaluation of multiloops. Instead of the above mentioned affine

model, all multiloops are scored with a constant initiation parameter. This energy model

has also been used in the algorithm of Zuker and Stiegler [1981] which I describe now.

W (i, j) =































V (i, j)

W (i + 1, j)

W (i, j − 1)

min
i<k<j

(W (i, k) + W (k + 1, j))

V (i, j) =



































hl(i, j)

st(i, j) + V (i + 1, j − 1)

min
i<i′<j′<j

(il(i, i′, j′, j) + V (i′, j′)) with i′ − i + j − j′ > 2

min
i+1<k<j−1

(W (i + 1, k) + W (k + 1, j − 1))

Similar to the M matrix in the Nussinov algorithm, the matrix entry W (i, j) stores the

energy of the best folding of the subsequence si . . . sj . The additional matrix V stores the

minimum free energy of subsequence si . . . sj , given that si and sj form a base pair. Now,

the benefit of matrix V is that one can compute the energy of, say, a structure starting

with an internal loop opened by base pair i•j and closed by k• l directly by adding V (k, l)

and the internal loop contribution il(i, k, l, j). Note that by definition W (i, j) ≤ V (i, j).

We can directly translate these recurrences into ADP introducing a few additional

algebra functions (openL, openR, split, ml) and the terminal parser loop which reads

an arbitrary, non empty sequence.

W = tabulated (
V |||

openL <<< base -~~ W |||
openR <<< W ~~- base |||
split <<< W ~~~ W ... h)

V = tabulated (
(hl <<< base -~~ loop ~~- base |||
st <<< base -~~ V ~~- base |||
il <<< base -~~ loop ~~~ V ~~~ loop ~~- base |||
ml <<< base -~~ W ~~~ W ~~- base) ‘with‘ basepairing ... h)
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Figure 3.2: Ambiguous derivation for three adjacent Ws.

The algorithm as written above has a time complexity of O(n4) due to the handling

of internal loops: For all opening base pairs i • j, it iterates over all closing base pairs

i′ • j′. Usually, RNA folding algorithms limit the size of internal loops to a small constant

(e.g. 30), thus leading to an overall O(n3) time complexity. This heuristic is strongly

supported by the energy model and only fails for artificial sequences. Nevertheless, there

is an algorithm by Lyngsø et al. [1999] which uses a certain characteristic of the energy

model in order to evaluate all possible internal loops within O(n3) time. In practice, most

RNA folding tools resort to the simple heuristic of limiting internal loop size.

One can easily show that some structures can be derived from the grammar in more

than one way. E.g. consider the case of three adjacent helices. The derivation always has

to start with one W becoming two W s using the split rule. Then, we can either further

split the left W or the right W and end with three adjacent W s in either way (see also

Figure 3.2). As long as we are searching for only one minimal free energy structure, this

ambiguity does no harm. But when it comes to folding space statistics, like Boltzmann

weighted counting (partition function [McCaskill, 1990]), it must not be ignored.

3.2.3 Non-ambiguous energy based folding

I continue with an algorithm which overcomes all of the previous limitations and imple-

ments all features of the current energy model [Mathews et al., 1999]. Basically, it is an

ADP reimplementation of the grammar underlying RNAsubopt [Wuchty et al., 1999]. Also,

it will serve as the framework for the extensions allowing for pseudoknots in Chapter 5.

In order to remove ambiguity, structures have to be derived in a unique way. This is

done by building the structure stepwise from the 5’ end to the 3’ end. With each splitting

operation, exactly one helical substructure emerges at the leftmost (sub-)sequence end via

the nonterminal dangle. This also holds true for the interior of multiloops.

The correct handling of dangling bases requires four slightly different rules for each of

the nonterminals dangle and multiloop. All other dangling bases are handled implicitly

by the algebra functions hl,bl,br,il. I already mentioned that the currently accepted
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energy model for multiloops is more complex than the implementation of the previous

section. It rather imposes an affine cost ml = 3.4 + k ∗ 0.4, depending on the number

k of helices protruding from the multi-loop. (In an earlier model, unpaired bases in the

multi-loop were also penalized). This requires an additional matrix ml comps, in which

each use of the nonterminal dangle receives a 0.4 kcal/mol penalty.

As a further extension, I exclude isolated base pairs by always requiring two base pairs

in a row in the rules for closed (the analogon to the V matrix). The grammar’s axiom

struct mirrors the W matrix.

struct = listed (
sadd <<< base -~~ struct |||
cadd <<< dangle ~~~ struct |||
nil <<< empty ... h)

dangle = edl <<< base -~~ closed ~~. loc |||
edr <<< loc .~~ closed ~~- base |||
edlr <<< base -~~ closed ~~- base |||
is <<< loc .~~ closed ~~. loc ... h

closed = tabulated (
(stack ||| hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ stackpair ... h)

stack = sr <<< base -~~ closed ~~- base
hairpin = hl <<< base -~~ base --~ region ‘with‘ (minloopsize 3)~~- base ~~- base
leftB = bl <<< base -~~ base --~ region ~~~ closed ~~- base ~~- base
rightB = br <<< base -~~ base --~ closed ~~~ region ~~- base ~~- base
iloop = il <<< base -~~ base --~ region ~~~ closed ~~~ region ~~- base ~~- base

multiloop =
mldl <<< base -~~ base --~ base --- ml_comps1 ~~- base ~~- base |||
mldr <<< base -~~ base --~ ml_comps1 ~~- base ~~- base ~~- base |||
mldlr <<< base -~~ base --~ base --- ml_comps1 ~~- base ~~- base ~~- base |||
ml <<< base -~~ base --~ ml_comps1 ~~- base ~~- base ... h

where
ml_comps1 = tabulated (

sadd <<< base -~~ ml_comps1 |||
cadd <<< dangle ~~~ ml_comps ... h)

ml_comps = tabulated (
sadd <<< base -~~ ml_comps |||
cadd <<< dangle ~~~ ml_comps |||
addss <<< dangle ~~~ uregion ... h)

For efficiency reasons, some specialized operators are needed: --~ splits the two left-

most characters from the input sequence, --- the three leftmost characters. ~~. and .~~

do not split the sequence but rather return, in combination with the loc parser, their

actual positions in the sequence. This is needed for the correct handling of single base

stacking implemented in algebra functions edl, edr, edlr. Note that the nonterminal
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struct is always called with a fixed right boundary, namely n. Hence, I do not need a

quadratic table to store its results, but only a linear one. The tabulation of nonterminal

mlcomps1 is optional and leaves some room for time-space tradeoffs within the asymptotic

efficiency class.
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Chapter 4

Pseudoknot Folding

In this chapter, I introduce pseudoknots as structural elements of RNAs. Currently, there

is no accepted nomenclature for different kinds of pseudoknots. Therefore, I shortly define

and explain the most prominent classes of pseudoknots. After that, I summarize selected

algorithms for pseudoknot prediction and classify them with respect to their generality.

4.1 Classification of pseudoknots

RNA pseudoknots arise when bases within a loop region of a regular secondary structure,

enclosed by at least one base pair, interact with bases outside of the loop. Those bases

violate the nesting assumption of secondary structures. Formally, I define pseudoknots as

the set of base pairs which overlap with at least one other base pair:

Spk = {(i • j) | ∃ (k • l) : i < k < j < l ∨ k < i < l < j}

In some publications, all kinds of pseudoknots are generally regarded as part of the

tertiary structure. I have a different viewpoint accepting all Watson-Crick and G•U pairs

as part of the secondary structure, whether they are properly nested or not. The tertiary

structure then includes non-standard base pairs, triple base pairs, and all other types of

bondings.

4.1.1 H-type pseudoknots

The most simple pseudoknot forms when a hairpin loop interacts with bases outside of the

loop, generating two helices and two loops (Figure 4.1). This directly implies that the two

helices stack on top of each other, building a quasi-continuous helix. A single unpaired

base may occur at the interface of the helices, since it does not disrupt the helix stacking.
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Figure 4.1: An H-type pseudoknot is formed by interaction of a hairpin loop with bases

outside the loop. A: Linear representation with base pairs drawn as arcs over and under

the sequence. B: First, the hairpin forms, then the pseudoknot. C: Coaxial arrangement

without intervening unpaired bases leads to the H-type pseudoknot. Image reproduced

from [Staple and Butcher, 2005]

H-type pseudoknots are the best studied non-nested structures with many known biological

examples. There is even an approximation for loop free energy values available, based on

polymer thermodynamics and fitting to known pseudoknot data [Gultyaev et al., 1999].

In some definitions, the H-type pseudoknot helices are allowed to have (small) bulges and

internal loops. I call such knots relaxed H-type pseudoknots.

4.1.2 Simple pseudoknots

A simple pseudoknot also contains two helices but has no restrictions on the size of the inner

loop. The helices may be interrupted by bulges and internal loops, but no interactions from

the loop regions to other loops are allowed. Due to its three loops, a simple pseudoknot

has much more freedom to explore alternative stacking conformations. A simple recursive

pseudoknot has further secondary structure elements (including pseudoknots) within its

loops, as long as they require only pairings with bases from that particular loop. In other

words, no inter -loop pairings are allowed. For further reference, I call this class sr-PK.
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Figure 4.2: A simple pseudoknot, formed by helices a − a′ and b − b′, with intervening

sequences u, v,w. If the internal parts u, v,w contain further secondary structures, it is

called a simple recursive pseudoknot (sr-PK).

4.1.3 Planar pseudoknots

Planar pseudoknots are defined as structures which can be drawn on a plane without

any crossing of arcs. This allows for structures such as the frequently seen kissing hair-

pin pseudoknot, but also for arbitrarily long chains of pseudoknot helices of the type

ABA′CB′DC ′D′E . . . Y X ′Y ′ where A − A′, B′ − B′, ... each denote one or more contin-

uous base pairs.

4.1.4 Non-planar pseudoknots

The most complex pseudoknot class is entitled non-planar pseudoknots. It subsumes all

interactions not covered by one of the above classes. To my knowledge, there is only

one example of a non-planar pseudoknot, namely the pseudoknot surrounding the alpha

operon ribosome binding site in bacteria ([Schlax et al., 2001], see Figure 4.3). Its helix

crossing scheme is ABCDA′C ′B′D′ and cannot be drawn on a plane without any crossing

lines. The absence of more examples for this class should not lead to the conclusion that

this class may not be biologically plausible. Since there are no efficient tools available

which can systematically search for all non-planar pseudoknots, their detection is to some

extent a matter of luck (or wet-lab experiment).
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Figure 4.3: The non-planar pseudoknot surrounding the alpha operon ribosome binding

site in bacteria.

4.2 Biological relevance

Pseudoknots have been shown to be functionally relevant in many RNA mediated cat-

alytic processes. Examples are the RNA of the telomerase ribonucleoprotein complex

[Chen et al., 2000] and the self-splicing group I introns [Cech, 1988] where the pseudoknot

establishes the catalytic core. Pseudoknots were located in the mRNA of prion proteins

of humans and are confirmed for many other species [Barette et al., 2001].

A complex double pseudoknot is the hepatitis delta virus (HDV) ribozyme [Ferré-

D’Amaré et al., 1998]. HDV’s circular genome is replicated in a rolling-circle mechanism

leading to a long multi-genome RNA strand. The pseudoknot catalyzes the self-cleavage

into genome length units required for virus packaging. The HDV ribozyme is the fastest

known naturally occurring catalytic RNA with a reaction rate of one per second. The helix

conformation of HDV pseudoknot is ABCDC ′A′D′B′ classifying it as a planar pseudoknot.

Pseudoknots are also part of many non-catalytic processes. They are known to stim-

ulate efficient programmed -1 ribosomal frameshifting (-1 PRF), a mechanism used by a

wide range of RNA viruses to encode two proteins within one genomic region. Recently,

an unusual three-stemmed pseudoknot has been identified that promotes programmed -1

ribosomal frameshifting in the SARS coronavirus [Plant et al., 2005]. This pseudoknot

is thought to pause the ribosome during translation, which then shifts back by one nu-

cleotide on the heptameric ”slippery site”. The pseudoknot seems to be conserved in all
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coronaviruses, and thus could be a target for anti-viral therapeutics. In a study by [Jacobs

et al., 2007], over a thousand of potential -1 PRF signals were detected in the yeast genome.

The majority of signals, however, seem to direct the ribosome to premature termination

codons. This suggests a mechanism of post-transcriptional gene regulation through the

nonsense-mediated mRNA decay pathway. Further genome wide studies have to elucidate

this phenomenon. In Chapter 5, I present a search program for -1 PRF signals which is

based on the work of this thesis.

4.3 Previous algorithmic work

Well established algorithms for the prediction of RNA secondary structures from a single

sequence (Mfold [Zuker and Sankoff, 1984], RNAfold [Hofacker et al., 1994]) are commonly

based on the thermodynamic model of Mathews et al. [1999], returning the structure

of minimal free energy. In spite of their importance, pseudoknots are excluded from

consideration by these programs for reasons of computational complexity: While folding

a sequence of length n into unknotted structures requires O(n3) time and O(n2) space,

finding the best structure including arbitrary pseudoknots has been proven to be NP-

complete [Akutsu, 2000; Lyngsø and Pedersen, 2001]. In fact, the proof given in [Lyngsø

and Pedersen, 2001] uses a scoring scheme based on adjacent base pairs only. This is even

simpler than the MFE model, because it neglects entropic energies from loops. These

complexity results leave basically three routes to achieve practical algorithms.

Pseudoknot heuristics

The first route sacrifices the guarantee for optimality. Heuristic methods such as genetic

algorithms [Shapiro and Wu, 1997] try to find good, if not optimal, pseudoknotted struc-

tures by randomly mutating a set of structures. A mutation is more successful, if it leads

to more stable structures. Generally, genetic algorithms can find the optimal structure,

but oftentimes, they will converge to a locally optimal structure. Then, the tool Kinefold

[Isambert and Siggia, 2000; Xayaphoummine et al., 2003] computes a stochastic simulation

of RNA folding based on individual helix opening and closing operations. Finally, there

are algorithms that try to build pseudoknot structures by clever iterative helix picking.

In [Ren et al., 2005], the probability of a helix to be part of the final structure depends

solely on the energy of the helix. Of course, this neglects the destabilizing effect of loops

which may lead to unpredictable results.
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Simplification of the energy model

The second route is to consider pseudoknots in full generality, but to resort to an even

more simplistic energy model. An O(n4) time and O(n3) space algorithm for base pair

maximization has been given in [Akutsu, 2000], and O(n3) time algorithms based on

maximum weight matching in [Tabaska et al., 1998] and [Ruan et al., 2004].

Recently, an O(n4) time and O(n3) space algorithm based on the technique of [Akutsu,

2000] using a thermodynamic model has been reported in [Deogun et al., 2004]. It models

destabilizing effects of loops bounded by nested structures but neglects the loops connect-

ing the pseudoknotted parts. While it can handle simple pseudoknots consisting of more

than two helices, it is restricted to non-recursive pseudoknots.

Search space reduction

Finally, the third route is the one also followed here: One retains the established thermo-

dynamic model but restricts to a more tractable subclass of pseudoknots. For some quite

general classes of pseudoknots, polynomial time algorithms have been designed: Rivas

and Eddy achieve O(n6) time and O(n4) space [Rivas and Eddy, 1999]. This algorithm

is available, and in spite of the high computational cost, it is actually used in practice. I

shall call it pknotsRE for later reference. The key idea of their work is the use of four-

dimensional so called gap-matrices. The matrix entry (i, j, k, l) with i < k < l < j stores

the best folding of subsequence si . . . sj, excluding the inner part sk . . . sl. Combination of

two gap matrices then produces a pseudoknot. By subsequent combination of multiple gap

matrices, complex pseudoknot topologies can arise. The drawback of this powerful, but

computationally expensive algorithm is the following paradox: Pseudoknots with complex

helix interactions naturally require longer primary sequences than simpler ones. Yet, the

high runtime complexity of O(n6) as well as the space consumption of O(n4) restricts the

use of this algorithm to a maximal sequence length of around 150 nucleotides. Most of

the pseudoknots predicted belong to a much simpler structural class and do not exhibit

chains of crosswise interactions.

In [Dirks and Pierce, 2003], a simplification of [Rivas and Eddy, 1999] is proposed

that also implements the partition function allowing for analyses such as probabilistic

sampling. The main restriction is that pseudoknots are constructed of at most two gap

matrices which in turn prohibits structures like kissing hairpins. The time complexity is

reduced to O(n5) by an idea similar to the fast evaluation of internal loops [Lyngsø et al.,

1999]. However, the space requirements remain at O(n4). The algorithm is implemented

in the software NUPACK.

Further improvements have been shown to be possible for yet more restricted classes,
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e.g. the one by Lyngsø and Pedersen [2000]. Their model allows for structures composed

of five components s1s2s
′
1s

′
2s

′′
1, where both s1s

′
1s

′′
1 and s2s

′
2 are nested structures. The

algorithmic complexity is O(n5) time and O(n3) space, but to my knowledge, no imple-

mentation is available.

In addition to the maximal base pair algorithm in [Akutsu, 2000], the author also

proposes an extension accounting for entropic loop effects. These modifications do not

alter the class of predicted pseudoknots but raise the asymptotic runtime to O(n5).

4.3.1 A hierarchy of pseudoknot classes

Unfortunately, most of the above algorithms do not coincide with one of the pseudo-

knot classes. E.g., pknotsRE can predict the non-planar helix conformation of the al-

pha operon ribosome binding site but fails for other non-planar pseudoknots such as

ABCA′DB′EC ′D′E′. This makes it hard to relate the algorithms in terms of generality

and efficiency. For some algorithms however, Condon and coworkers [Condon et al., 2004]

devised and proved a hierarchy of their pseudoknot complexity. In detail, they proved

that

PKF ⊂ L&P ⊂ D&P ⊂ A&U ⊂ R&E

Following the terminology of [Condon et al., 2004], PKF is the class of pseudoknot-

free structures. L&P denotes a slightly simplified class of [Lyngsø and Pedersen, 2000]:

Instead of five segments, the sequence may be decomposed into four segments s1s2s
′
1s

′
2,

where both s1s
′
1 and s2s

′
2 are pseudoknot-free. I call the original class outlined in [Lyngsø

and Pedersen, 2000] L&P+. D&P is from [Dirks and Pierce, 2003], A&U is the work

by Akutsu [Akutsu, 2000], and R&E is the class of pknotsRE. As expected, the largest

class has the steepest computational requirements, both in time and in space. It should

be noted that the algorithm of D&P needs asymptotically more space than the A&U

algorithm, although the first class is properly contained in the latter. This may stem from

the fact that Dirks and Pierce also compute the partition function for pseudoknots of

class D&P. Calculating the partition function requires the implicitly underlying grammar

to be non-ambiguous. Yet, the A&U grammar is ambiguous and needs to be modified

for partition function folding. It is not clear whether this can be done without requiring

modifications which alter the asymptotic efficiency. A summary of these observations is

given in Table 4.1.

The class of pseudoknots handled by the tool pknotsRG, developed in this thesis, is a

proper subset of D&P and thus A&U and R&E, but not of L&P. It shares pseudoknots

with L&P, but each class contains some type of pseudoknots exclusively. I elaborate on

this fact in Section 5.1.5 and give a thorough presentation of pknotsRG in the next chapter.
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Asymptotic Efficiency contains Reference

Time Space

PKF O(n3) O(n2) all nested structures

L&P O(n5) O(n3) ABA′B′ [Lyngsø and Pedersen, 2000]

D&P O(n5) O(n4) ABCB′C ′A′ [Dirks and Pierce, 2003]

A&U O(n5) O(n3) ABCB′DA′D′C ′ [Akutsu, 2000]

R&E O(n6) O(n4) ABA′CB′C ′ [Rivas and Eddy, 1999]

PK NP ABCA′DB′EC ′D′E′

Table 4.1: Classification of pseudoknot predicting algorithms following [Condon et al.,

2004]. The classes are listed with increasing complexity, with the least complex class PKF

listed at the top. The example structure given for a particular class is not contained in

all classes listed above this particular class. So, the pseudoknot topology ABCB′C ′A′

is not contained in PKF and L&P, but in the other four classes. PKF is the class of

pseudoknot-free, nested structures predicted by RNAfold and Mfold. PK contains all

possible pseudoknots and is proven to be NP-complete, assuming a reasonable energy

model.



Chapter 5

pknotsRG

In this chapter, I describe an algorithm for folding RNA secondary structures including

pseudoknots under the MFE model which requires O(n4) time and O(n2) space. The

algorithm considers the class of simple recursive pseudoknots, further restricted by three

rules of canonization. Each simple recursive pseudoknot has a canonical representative

which is recognized by the algorithm. I begin with some general considerations about

a DP algorithm’s asymptotic complexity. This directly leads to the definition of the

class of pseudoknots captured by my algorithm, and I analyze its coverage of known

pseudoknots. After a detailed description of the algorithm and its implementation in the

software tool pknotsRG, I evaluate its predictive performance on biological data and finish

with a discussion about some algorithmic variants. Parts of this chapter have already been

published in [Reeder and Giegerich, 2004].

5.1 Canonical simple recursive pseudoknots

5.1.1 Anticipating the complexity of a DP algorithm

I start with a semi-formal discussion of how to estimate the efficiency of a DP algorithm

for folding (or any kind of motif search) before it is described in detail. I consider elements

of RNA structure as sequence motifs of different types: hairpins, bulges, multiloops, etc.

I use the ADP notation introduced in Chapter 3. By an equation

m = f <<< a ~~~ b ~~~ c |||
g <<< c ~~~ a

I specify that the sequence motif m can be composed in two alternative ways: The first

case, labeled by f , requires adjacent occurrences of motifs a, b, and c. The second case,

labeled by g, requires adjacent occurrences of motifs c and a. When motif m is to be
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scored, f and g act as the scoring functions that combine the local score contribution of

each case with the scores of sub-motifs a, b, and c.

What is the computational effort of locating motif m in an input sequence x of length

n, say at sequence positions i through j? First, I assume that all motifs can have an

arbitrary size between 0 and n. The algorithm must consider all boundary positions (i, j)

for motif m which requires at least O(n2) steps. In case g, it must consider all boundary

positions k where motif c meets a, such that the runtime for case g is in O(n3). In case f ,

there are two such moving boundaries k and l between the three sub-motifs, so I obtain

O(n4) overall for motif m.

This can be improved if there is an upper bound on the size of some motif involved.

If motif a is a single base, for example, the exponent of n decreases by one in both cases.

Furthermore, if motif b is (say) a loop of maximal size 40, then one factor of n is reduced

to a constant factor, and the overall asymptotic runtime is now O(n2). Sometimes a motif

description can be restructured to improve efficiency by reducing the number of moving

boundaries. Whether or not this is possible does not depend on the motif structure, but

on the scoring scheme! This is a somewhat surprising observation from [Giegerich and

Meyer, 2002], where such optimizations are studied, and where also the line of reasoning

exercised here is given a mathematical basis.

In the sequel, I shall exploit another source of efficiency improvement. If the lengths

of two sub-motifs are coupled somehow, say a and c have the same length, then the

boundaries k and l in case f are related by k− i = j − l. When iterating over k, I can use

l := j − k + i (rather than k ≤ l ≤ j) and save another factor of n.

5.1.2 Canonization

When the search space of a combinatorial problem seems to be too complex to be eval-

uated efficiently, heuristics are employed. Canonization restricts the search space in a

well-defined way, arguing that all relevant solutions in the full search space have a repre-

sentative that is canonical, and hence, nothing relevant is overlooked. One such technique

is the purging of structures that have isolated base pairs. Here, the plausibility argument

refers to the underlying energy model, where base pairings without stacking have little

or no stabilizing effect. This canonization does not affect efficiency, but it achieves a

significant reduction of the search space (figures in [Giegerich, 2000]), which renders the

enumeration of near-optimal solutions [Wuchty et al., 1999] much more meaningful.

I shall introduce three canonization rules that reduce the class sr-PK to the class of

canonized simple recursive pseudoknots, csr-PK. Using the notation introduced above, the
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Figure 5.1: Eight moving boundaries delineating a simple (recursive) pseudoknot.

motif definition of a simple recursive pseudoknot is given by

knot = knt <<< a ~~~ u ~~~ b ~~~ v ~~~ a’ ~~~ w ~~~ b’

with boundaries at sequence positions i, e, k, g, f, l, h, j as shown in Figure 5.1.

Segment a forms a helix with a′, and b with b′. Segments u, v, and w can have arbitrary

structures including pseudoknots. Naively implemented, one can expect a DP algorithm of

time complexity O(n8) according to the efficiency estimation technique introduced above.

Now, I apply canonization. Note that it only applies to helices forming pseudoknots; other

helices are unaffected. I first present the technical aspects, while the discussion of these

restrictions is deferred to the next section.

Canonization Rule 1:

(a) Both strands in a helix must have the same length, i.e. |a| = |a′| and

|b| = |b′|.

(b) Both helices must not have bulges or internal loops.

Note that (b) is a stronger restriction and trivially implies (a). Under the regime of Rule 1

we may conclude:

f = l − (e − i)

h = j − (g − k)

As a result, six out of eight boundaries are left that vary independently, and runtime is

down to O(n6).
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Canonization Rule 2:

The helices a, a′ and b, b′ facing each other must have maximal extent, or in

other words, compartment v must be as short as possible under the rules of

base pairing.

Observe that the maximal length of a and a′ is fixed once i and l are chosen. The maximal

helix length stacklen(i, l) can be precomputed and stored in an O(n2) table. The same

observation holds with respect to the other helix, and we fix

e = i + stacklen(i, l)

g = k + stacklen(k, j)

Thus, only four independently moving boundaries – i, k, l, j – are left, and we can hope

to obtain an algorithm with runtime O(n4). Scores of pseudoknots found between i and

j are stored in table knot(i, j), and hence the space requirements are O(n2), which is the

same asymptotic space efficiency as in the folding of unknotted structures.

A subtlety arises when both helices, chosen maximally, compete for the same bases,

or in other words, the length of either u,v, or w would become negative. This case is

addressed by

Canonization Rule 3:

If two maximal helices overlap, I will distinguish the following scenarios de-

pending on where the overlap occurs within the loop segment:

u: Helix a is shortened.

v: The boundary is fixed at an arbitrary point between a and b.

w: Helix b is shortened.

Let m and m′ be the helix lengths so determined. We finally obtain

e = i + m

g = k + m′

The language of pseudoknots in class csr-PK can be defined by a simple context free

grammar over an infinite terminal alphabet. Let ak denote a terminal symbol of k times

the letter a. The grammar uses a single nonterminal symbol S and its productions are

S → . | . S | S . | S S | ( S ) | [k S {l S ]k S }l
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for arbitrary k, l ≥ 1. For example, the simple pseudoknot of Figure 5.1 (left side) is

represented by the string ..[[[[[.....{{.]]]]]..........}} .

This grammar is useful for judging how different an experimentally determined struc-

ture is from class csr-PK. It is not useful for programming, since it is ambiguous and does

not distinguish the fine grained level of detail required by the energy model.

5.1.3 Canonical representatives

A careful discussion is required to show that each simple recursive pseudoknot, if not

canonical by itself, has (a) a canonical representative of (b) similar free energy.

Rule 1 (b) affects the length of helices that are considered in forming the pseudoknot.

Let there be a pseudoknot between i′ and j′. It is not canonical if one of the two helices

contains bulges or internal loops. However, there must be at least one pair of shorter helices

without bulges at i, j with i′ ≤ i and j ≤ j′ which serves as a canonical representative,

albeit with somewhat higher free energy.

Rule 2 is justified by the fact that the energy model strongly favors helix extension.

Clearly, for each family of pseudoknots delineated by i, k, l, j, there is a canonical one with

maximal helices whose free energy is at least as low – except for the following case: The

maximal helices compete with the internal structure of u, v, and w. It may be possible to

contrive a structure where shortening (say) helix a − a′ by one base pair allows to create

two pairs with new partner bases in u and v, resulting in a structure which has slightly

lower energy. Still, the free energy of the canonical pseudoknot must be very similar.

Finally, Rule 3 requires a decision where to draw the border between two overlapping

helices competing for the same bases. If the overlap occurs in loop u, the choice of

shortening helix a is well justified. The pseudoknot with a shorter b helix will be evaluated

anyway by the recursion for knot(i, j′) with j′ < j. The equivalent holds for an overlap

in loop w. At last, there is the case where the overlap occurs in the middle loop v. An

arbitrary decision here can only slightly affect free energy, as the same number of base

pairs are stacked either on the a − a′ or the b − b′ helix.

Let E(s) denote the free energy computed for structure s. Summing up, I have shown

that for each simple recursive pseudoknot K, there is a canonical one C in the search

space. While I cannot prove that E(C) ≤ E(K), I have argued that this is likely, and if

not, the energies will at least be close. Still, there might be another, energetically optimal,

canonical structure S (knotted or not) such that E(K) < E(S) < E(C). In this case, if

only the “best” structure S is reported, neither K nor its canonical representative C is

observed. (A remedy to this is the computation of near-optimal structures.)
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Simple recursive pseudoknots

csr-PK 1-nt bulge Rule 2 violated isolated base pair GA base pair total

166 15 7 18 3 209

Complex pseudoknots

large bulge internal loop triple helix kissing hairpins four helices total

2 24 12 3 1 42

Table 5.1: Class membership of 251 pseudoknots from PseudoBase. The structures were

determined by comparative sequence analysis and/or by experimental techniques. The

largest amount of pseudoknots is simple recursive or even canonical simple recursive.

5.1.4 Evaluation of the class csr-PK

To evaluate how well the class csr-PK covers known pseudoknots, I considered 251 pseu-

doknot structures from PseudoBase1, a database containing pseudoknot sequence and

structure information deduced from the literature [van Batenburg et al., 2001]. Some

database entries were removed, since they contain large gap regions in their loop sequence

and structures. The observations are shown in Table 5.1.

I found 209 simple recursive pseudoknots and 42 of more general shapes. I further

detected that 166 out of the 209 pseudoknots lie in csr-PK, i.e. they are their own canonical

representatives. Therefore, class csr-PK covers approximately 66% of PseudoBase.

Further, there are 43 simple pseudoknots which fail to qualify for class csr-PK for

various reasons. 15 pseudoknots have a single nucleotide bulge in their helix. I could relax

canonization Rule 1 to accommodate for such situations without altering the algorithm’s

efficiency. In fact, I implemented a prototype algorithm which allows for a 1-nucleotide-

bulge. Another 18 pseudoknots contain isolated base pairs at the end of a helix, three

have non-canonical base pairs and in seven pseudoknots, one of the helices does not have

maximal extent.

Considering the remaining 20% complex pseudoknots, note that often pseudoknots

in more general classes also have a similar representative in csr-PK. For example, the

pseudoknot of hepatitis delta virus (Figure 5.5) consists of four interacting helices of

shape a− b− c− d− c′ − a′ − d′ − b′, where helix d− d′ is very short - only two base pairs.

Deleting it, helix c − c′ is no longer crossing with other helices, and the pseudoknot falls

within class csr-PK.

1http://wwwbio.LeidenUniv.nl/~Batenburg/PKB.html
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Figure 5.2: The main recursion introducing pseudoknots in NUPACK [Dirks and Pierce,

2003]. Two overlapping g-regions allow for non-nested base pairs. Recursive pseudoknots

are realized by z-regions, the nonterminal for an arbitrary folding.

5.1.5 A hierarchy of pseudoknots - continued

How does class csr-PK blend into the hierarchy of [Condon et al., 2004]?

The class of canonical simple recursive pseudoknots is a proper subclass of D&P (see

Chapter 4.3 for an explanation and nomenclature of each class). This can easily be proven

by the fact that each csr-PK can be composed by two gap matrices and three inter-

vening loop segments, which is exactly what the recursions of D&P explicitly state (see

Figure 5.2).

However, csr-PK is not a subclass of L&P. Since class L&P does not contain any recur-

sive pseudoknots, it specifically does not contain any csr-PK. The other way round, L&P+

does contain kissing hairpins, and the simpler class L&P also contains simple pseudoknots

with bulges or internal loops. Both types of pseudoknots are not contained within csr-PK.

But note that both L&P and csr-PK contain canonical simple pseudoknots.

5.2 Implementation

A necessary prerequisite for the implementation of the new pseudoknot folding algorithm

is a scoring function, i.e. the underlying thermodynamic model. Since there is no well-

established energy model for pseudoknots, I had to develop my own model.

5.2.1 A pseudoknot energy model

The lack of a well founded energy model is probably one of the largest difficulties in

RNA pseudoknot prediction. Only for the least complex class, the H-type pseudoknots, a

reasonable model does exist. In [Gultyaev et al., 1999], Gultyaev and coworkers present
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a free energy model based on the theory of polymer thermodynamics fitted to known

H-type pseudoknots. Their key observations are that the loop energies depend on the

loop and stem sizes. Furthermore, the asymmetry in RNA helices results in different

energy contributions for each loop. Roughly speaking, there is a logarithmic decrease in

stability with longer loops. The minimal destabilizing configuration of loop and stem sizes

is penalized by 3.5 kcal/mol per loop, thus 7 kcal/mol total. With slightly longer loops,

the added penalty quickly reaches 9 kcal/mol. For long loops, say 10 nucleotides, the loop

energy ranges from 6 to 7.4 kcal/mol. It is not straightforward to extend their model

to simple (and even recursive) pseudoknots, which is why I chose to define a new energy

model.

Overall, the energy of a pseudoknot consists of stabilizing and destabilizing terms.

Whenever possible, I use the values from the current thermodynamic energy model for

properly nested RNA secondary structures [Mathews et al., 1999]. As stabilizing terms, I

count the nearest neighbor stacking energies of the pseudoknot helices and contributions

of dangling bases at both ends of each helix. If the length of the middle part v is smaller

or equal to 1, the pseudoknot helices stack coaxially on each other, and I further add

the appropriate stacking energy. In [Rivas and Eddy, 1999], (which uses an outdated

energy model for nested structures), a pseudoknot initiation parameter of 7 kcal/mol is

proposed. This consideration is inspired by the treatment of multiloops which also incur

an initiation penalty. However, I found that setting this value to 9 kcal/mol results in

better performance using the current energy model. Moreover, the relatively high initiation

parameter acts as a safeguard against too many false positive pseudoknots. My observation

is supported by the similar choice made by Dirks and Pierce [2003]. Finally, I penalize

each unpaired nucleotide inside a pseudoknot loop with 0.1 kcal/mol. This seems to be

a good approximation of the values given in [Gultyaev et al., 1999]. Compared to their

model, my approach probably underestimates the stability of H-type pseudoknots with

very short loops but agrees well for the remaining majority.

5.2.2 ADP implementation

As a starting point, I use the algorithm of Section 3.2.3 which is based on the standard

MFE model with dangling bases. It is non-ambiguous and requires O(n3) time and O(n2)

space.

The implementation strictly follows the outline given in the previous section, except

that a considerable amount of detail, related to the energy model, has to be taken care

of. While ADP bans the use of subscripts, my canonization ideas require to explicitly ma-

nipulate subscripts. I include the concrete pseudoknot code but explain only the essential
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points. A subscript pair (i, j) denotes input sequence positions inpi+1 . . . inpj, [...] denotes

lists, and <- denotes enumerating a list of alternative values. Comments start with --

and continue until the end of line.

I begin with the computation of stacklen and then introduce a new nonterminal sym-

bol knot representing the best folding of a csr-PK. Finally, I incorporate the nonterminal

in the main folding routine.

Precomputing the maximal helix lengths

The computation of all maximal helix lengths is a simple dynamic programming problem

on its own. I solve it, of course, with ADP:

The signature defines only two functions (sum and end) plus the choice function h:

type StacklenAlgebra base comp = (
base -> comp -> base -> comp, -- sum
base -> Region -> base -> comp, -- end
[comp] -> [comp] -- h
)

Instead of simply maximizing the number of base pairs in a helix, I chose to minimize

the free energy in accordance with the overall objective of finding the minimum free energy

structure. It is well known that base pair maximization and free energy minimization on

the level of overall structure prediction are not equivalent, mainly due to the destabilizing

effect of unpaired loop regions which are not taken into account in the base pair model.

It is noteworthy, however, that even for the simpler case of finding an optimal helix, they

are not equivalent. The difference originates from two values in the current energy model,

namely the energy for a U • G pair stacking on top of a G • U pair and G • U stacking

on U • G. The first case destabilizes the structure by +1.3 kcal/mol, the second case by

+0.3 kcal/mol. As a consequence, minimum free energy helices will not begin or end with

such stack pairs. However, they may form within a helix, if the surrounding base pairs

accommodate for the small destabilizing effect.

The algebra stacklen alg computes a tuple of energy and length, where minimization

acts on the first component – the energy.

stacklen_alg :: RNAInput -> StacklenAlgebra Int (Int,Int)
stacklen_alg inp = (sum,end,h) where

sum lb (c,k) rb = (c + sr_energy inp (lb, rb), k+1)
end lb _ rb = (0,1)

h [] = []
h xs = [minimum xs]
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When two equally stable helices are encountered, the smaller one is chosen by the

choice function h, leaving more bases to the interior of the later pseudoknot. The end of a

helix has one base pair and thus is of length one, but it has no stacks and thus an energy

of zero. With each additional base pair, the corresponding energy is added via sr energy,

and the length is incremented by one.

The grammar restricts the search space to helices with at least one base pair and the

usual three nucleotide minimal hairpin size. Helices with length zero result in empty lists.

stacklen = tabulated(
(end <<< base -~~ region ‘with‘ (minloopsize 3) ~~- base |||
sum <<< base -~~ stacklen ~~- base ) ‘with‘ basepair ... h)

The asymptotic efficiency of this tiny DP problem is O(n2) in both time and space. The

values finally stored in table stacklenwill now be used for the composition of pseudoknots.

Computing the pseudoknot

I introduce a new nonterminal symbol knot which holds the best folding of a subsequence

into a pseudoknot.

knot (i,j) = [pk’ energy a u b v a’ w b’ | k<-[i+3 .. j-8], l<-[k+4 .. j-4],

This line chooses k and l from the interval [i, j] and puts together the results from sub-

structures a, u, b, v, a′, w, b′ and some local energy contribution under the scoring function

pk’. The boundaries for k and l arise from some simple prerequisites: Each helix must

have a minimum length of two bases. Due to stereo-chemical reasons (a more detailed

look at this problem will be given in the next section) one base in the front part (u) and

two bases in the back part (w) are left explicitly unpaired: These bases should bridge the

stacks. This consideration is adopted from pknotsRE.

The next definitions implement canonization Rules 1, 2, and 3. They determine the

helix lengths, finally computed into the variables h and h′. Some care has to be taken

that the pseudoknot helices are not overlapping. If such an overlap occurs, the helices are

shortened as necessary. Eventually, if either h or h′ is smaller than two, a pseudoknot is

not possible at this particular location.

-- look up precomputed helix energy and length
(alphanrg, alphalen) <- stacklen (i,k),
(betanrg, betalen ) <- stacklen (l,j),

-- don’t let a-a’ and b-b’ collide within u
let h = min alphalen (k-i-1),
h >= 2,
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-- don’t let a-a’ and b-b’ collide within w
let tmph’ = min betalen (j-l-2),

-- don’t let a-a’ and b-b’ collide within v
let h’ = min tmph’ (l-k-h),
h’ >= 2,

The next lines define the pseudoknot components a through b′, plus the local helix

energy contribution. For sake of simplicity, I (mis-) use the region parser for the helix

parts. Their role as helices will be explicitly handled by the algebra function pk’. To

allow for dangling bases, additional parameters need to be provided with front, middle,

and back.

a <- region (i , i+h ),
u <- front j (i+h+1, k ),
b <- region (k , k+h’ ),
v <- middle (j-h’) (i+h) (k+h’ , l-h ),
a’<- region (l-h , l ),
w <- back i (l , j-h’-2 ),
b’<- region (j-h’ , j ),

-- recalculate the energy of shortened helices
(acorrectionterm, _) <- stacklen (i+h -1,l-h +1),
(bcorrectionterm, _) <- stacklen (k+h’-1,j-h’+1),

let energy = alphanrg - acorrectionterm
+ betanrg - bcorrectionterm

]

If the helices must be chosen shorter than maximal to avoid an overlap, a correction

term has to be subtracted. This explains the negative terms in the energy computation.

Left to be defined are the interior structures front, middle, and back.

front j = front’ |||
frd j <<< front’ ~~- base ... h

front’ = ul <<< singlestrand |||
pk_comps ... h

These cases take care of a potentially dangling base from the b-helix, and if the re-

maining region is not single stranded, a list of arbitrary substructures is generated from

pk comps. frd and ul are the corresponding functions from the energy model.

For the correct computation of middle’s energy contribution, two additional parame-

ters are necessary (see also production v above). The first two rules of middle deal with

the case of coaxially stacked pseudoknot helices, the next four rules implement dangling

bases.
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middle k l = emptymid k l <<< empty |||
midbase k l <<< base |||
middlro k l <<< base -~~ base |||
middl k <<< base -~~ mid |||
middr l <<< mid ~~- base |||
middlr k l <<< base -~~ mid ~~- base |||

mid ... h

mid = ul <<< singlestrand |||
pk_comps ... h

The rules for back follow the same logic as front, except that the dangling base is

now adjacent to the a-helix.

back i = back’ |||
bkd i <<< base -~~ back’ ... h

back’ = ul <<< singlestrand |||
pk_comps ... h

Returning to the first clause (knot), it chooses k, l inside [i, j], computes h and h′

using the precomputed maximal helix information, and passes these boundaries to the

pseudoknot compartments. Methodically, this is a use of inherited attributes with the

underlying tree grammar and appears to be a novel technique in dynamic programming,

at least in its grammar oriented tradition [Searls, 1997; Lefebvre, 1996; Rivas and Eddy,

2000; Evers and Giegerich, 2001].

Incorporation into the template grammar

With nested secondary structures, we do not need to be concerned about 3-dimensional

foldings whatsoever. Every properly nested secondary structure is stereo-chemically sound.

Unfortunately, the same does not hold for pseudoknotted structures. There are two

aspects that need to be taken into account:

First, the pseudoknot stems have to be bridged by loops inside the pseudoknot. This

can be guaranteed with relatively low effort by explicitly leaving a few nucleotides in the

loops unpaired. Of course, each choice where to leave the bases unpaired may not be

perfect for all situations and thus, sacrifices optimality. The decision taken here is to leave

one nucleotide explicitly unpaired in compartment u. This nucleotide should bridge the

b helix through the major groove, as this is known to be true from H-type pseudoknot

crystal structures. The a helix has to be bridged through the minor groove, thus requiring

at least two unpaired nucleotides also left explicitly unpaired in the w segment.

Second, the whole pseudoknot has to be bridged if included within a structure spanning

the whole pseudoknot. Imagine a pseudoknot with coaxially stacked helices, thus forming
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Figure 5.3: Pseudoknot at the core of human telomerase (hTR, left side), a ribonucleo-

protein complex, and frameshifting pseudoknot of pea enation mosaic virus (PEMV, right

side). Both are classical H-type pseudoknots but have a very different 3-dimensional fold.

While the helix ends of hTR lie on opposite sides, a sharp bend in the helix junction brings

the end of the PEMV pseudoknot into proximity.

a quasi-continuous helix, as e.g. the pseudoknot of the RNA component of the human

telomerase ribonucleoprotein complex (Figure 5.3, left side). In 3D, the pseudoknot’s

5’ and 3’ ends are located on opposite sides of the molecule. Hence, structures such

as (((([[[.{{{{]]]..}}}}))) are sterically infeasible. Clearly, a short single stranded

stretch of nucleotides has to bridge the pseudoknot, but the length of this stretch strongly

depends on the actual 3-dimensional structure. On the other hand, the pseudoknot of

pea enation mosaic virus (Figure 5.3, right side) has a sharp bend at its helix junction

which brings the pseudoknots ends almost in proximity. Here, fewer bases are needed for

bridging the ends of the pseudoknot.

This is where we leave the field of secondary structure prediction. To solve those issues,

I would need a 3-dimensional pseudoknot fold. Having the 3D-coordinates of the ends of

the pseudoknot, I could calculate the bases necessary for bridging the pseudoknot. Yet,

3D-folding of a 2D-structure itself is a hard problem and clearly not within the scope of

this thesis.

The above considerations led to the following changes in the template grammar of

Section 3.2.3:

Pseudoknots are non-closed components but can otherwise occur wherever the gram-

mar generates a dangle. Therefore, a new nonterminal dangle’ is introduced which can
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then either become a closed component via dangle’s productions or become a pseudo-

knot.

dangle’ = dangle ||| dangleknot ... h
dangle = edl <<< base -~~ closed ~~. loc |||

edr <<< loc .~~ closed ~~- base |||
edlr <<< base -~~ closed ~~- base |||
is <<< loc .~~ closed ~~. loc ... h

dangleknot = kndr <<< knot ~~- base |||
kndl <<< base -~~ knot |||
kndlr<<< base -~~ knot ~~- base |||
pk <<< knot ... h

The four productions of dangleknot implement dangling of bases outside of the pseu-

doknot.

Since I chose to model pseudoknots as non-closed components but still want to be able

to model structures like ((((..[[[..{{{{]]].}}}}.....)))), I introduce two special

cases within ml comps1 which allow for such structures, as long as there are at least three

unpaired nucleotides at either the pseudoknot’s 5’ or 3’ end. These unpaired bases should

act as safeguards against at least some sterically infeasible structures.

ml_comps1 = tabulated (
sadd <<< base -~~ ml_comps1 |||
cadd <<< mldangle ~~~ ml_comps |||
sadd <<< region ‘with‘ (minloopsize 3) ~~~ dangleknot |||
addss <<< dangleknot ~~~ region ‘with‘ (minloopsize 3) ... h)

The last nonterminal I need to define is pk comps which introduces recursive structures

within the pseudoknot loops. pk comps is basically a copy of ml comps with the exception

that unpaired nucleotides generated from these rules incur a small penalty (0.1 kcal/mol).

pk_comps = tabulated (
cadd <<< singlestrand -~~ pk_comps ||| -- one base at a time
cadd <<< mldangle ~~~ pk_comps |||
cadd <<< mldangle ~~~ (ul <<< emptystrand) ... h)

The complete grammar is displayed graphically in Figure 5.4 and is also given in APD

notation in the appendix.

5.2.3 Better than optimal . . .

There are many reasons why “the” MFE structure may only be part of what we want to

know about a molecule’s foldings. Often, the native structure of an RNA is not predicted

as the MFE structure. This may stem from uncertainties in the energy parameters, or

the molecule may not reach its MFE structure, either due to interactions with another
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are structure parts yet to be filled in subsequent recursion steps. Note that this graphical
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molecule or by ending in a kinetic trap. To deal with the problem of the optimal (knotted)

structure being non-canonical and its canonical representative being dominated by an un-

related structure, I provide two means: First of all, the algorithm is non-ambiguous which

is the prerequisite for a non-redundant enumeration of near-optimal structures [Giegerich,

2000]. We can ask the program to report all structures within a given energy increment

above the MFE. This is done in a way similar to RNAsubopt [Wuchty et al., 1999] from

the Vienna RNA package for pseudoknot-free structures. Second, I shall provide three

variants of the program:

pknotsRG-mfe computes the mfe structure (or the k best), pseudoknotted or not.

pknotsRG-enf picks out the energetically best structure from the folding space that

contains at least one pseudoknot (enforced pseudoknot mode).

pknotsRG-loc computes the energetically best pseudoknot that can be formed lo-

cally, i. e. somewhere in the sequence. “Best” is defined here as

minimal free energy per base to avoid a built-in bias towards large

pseudoknots.

Enforced pseudoknot mode

The enforced mode can be implemented very elegantly as an instance of so called classified

DP. I divide the search space into two classes, properly nested structures and pseudoknot

containing structures. Now, I solve the optimization problem conceptually for each class

separately and get two optimal results, one for each class. Technically, I need a classifi-

cation algebra that maps each (partial) candidate of the search space onto one class. Per

default, all classification algebras have the identity function as the choice function.

Since there are only two classes, I can use a boolean variable as the algebra’s result

type, where a true value represents a structure containing a pseudoknot. Then, there are

basically only three interesting algebra functions, namely nil, hl, and pk’:

hl llb lb r rb rrb = False

nil _ = False

pk’ x a u b v a’ w b’ y = True

The empty folding (nil) and hairpins (evaluated by hl) are the end of the recursion

in my DP scheme and certainly do not contain pseudoknots. Regardless of the inner

components, function pk’ always applies to pseudoknots.

All other algebra functions either simply pass on the result of their recursive com-

ponent (e.g. sr) or combine the results of their sub-parses by a logical OR-operation
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Program variant Nonterminals Productions Tables

pknotsRG-mfe 24 63 7

pknotsRG-loc 26 67 7

pknotsRG-enf 33 84 11

Table 5.2: The grammar sizes of three variants of pknotsRG

(denoted by ||):

sr lb e rb = e

cons c1 c = c1 || c
cadd x e = x || e

These functions are implemented in an algebra called knot or not. Altogether, the star

product of three algebras knot or not *** mfe *** prettyprint computes two optimal

foldings, one for each class, and their respective energy and dot-bracket representation.

Unfortunately, the ADP compiler (ADPC) [Steffen, 2006] is, at the time of writing

this thesis, not able to compile the general star product of three or more algebras to C

code2, which is why the above implementation only works in the Haskell embedding. For

the fast C implementation, I either have to manually incorporate the classifying procedure

into the C code, or I must modify the grammar. The second one is the choice taken here.

By grammar duplication, I obtain for each nonterminal two almost identical variants.

The first nonterminal stores the best folding not containing a pseudoknot according to its

productions. The second one, with almost identical rules, is restricted to contain at least

one pseudoknot. By carefully modifying the productions, I keep track of whether there

has been a pseudoknot in a subcomponent or not. The size of the resulting grammar is

given in Table 5.2.

Local pseudoknot mode

The best local pseudoknot motif is included by adding four cases and making bestPK the

new axiom:

bestPK = unscale <<< bestleft
bestleft = skipleft <<< base -~~ bestleft ||| bestright ... h_r
bestright = skipright <<< bestright ~~- base ||| knot_rel ... h_r
knotrel = scale <<< knot

Algebra functions scale and unscale deal with the length normalization of the pseu-

doknot energy. These clauses have time complexity O(n2) and preserve the non-ambiguity

2Recently, a PhD student in our group started to work on including this feature into the compiler.
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of the algorithm. If desired, an enumeration of near-optimal “local” pseudoknots is also

feasible.

The relative effort of implementing the three variants of pknotsRG can be judged from

the sizes of the tree grammars required which are summarized in Table 5.2.

5.3 Evaluation

First, I compare the predictive accuracy achieved by my approach and other DP based

algorithms. I restrict the evaluation to programs implementing the full energy model,

knowing that simpler models allow for faster programs but at the cost of less accurate

results. I finish with a benchmark of the asymptotic efficiency.

5.3.1 Predictive accuracy

I have already evaluated the class csr-PK against known pseudoknots, and I know that

my algorithm correctly implements this class in its search space. What is really tested in

the following is the adequacy of the current thermodynamic model (which my algorithm

shares with RNAfold for nested structures and, in an older version, with pknotsRE ), and

the results in this section may improve if this model is further improved in the future.

I applied my algorithm on the set of sequences listed in Table A.1, including 251 se-

quences from PseudoBase [van Batenburg et al., 2001]. Although there is some redundancy

on the sequence level, there is a good reason why I decided to use all available sequences

for testing: Even near identical sequences can have different MFE structures, or a small

change may prevent successful pseudoknot prediction. In contrast to [Deogun et al., 2004],

I did not restrict the evaluation to the class of pseudoknots recognized by my program.

It is also instructive to retain the difficult cases and see whether the predictions catch at

least some aspect of a more general pseudoknot. For example, for the sequence of hepatitis

delta virus (HDV), which natively folds into a planar pseudoknot, my algorithm predicts

all helices except for the very short helix 5 (see Figure 5.5).

The pseudoknots from PseudoBase usually do not have large flanking regions. In

fact, the database maintainers encourage submitters to cut out the pseudoknot from the

original sequence, flanked by 5 to 10 nucleotides. Also, sequences containing multiple

pseudoknots should be submitted separately. In order to test the algorithm on sequences

with more flanking context and, possibly, multiple pseudoknots, I included several other

test candidates. Namely, the complete E.coli transfer-messenger RNA (tmRNA), the

3’ UTR of turnip yellow mosaic virus (TYMV, [Deiman et al., 1997]), tobacco mosaic

virus (TMV, [van Belkum et al., 1985]), odontoglossum ringspot virus (ORSV, [Gultyaev
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Figure 5.5: The pseudoknot of hepatitis delta virus: On the left side the structure pro-

posed by [Ferré-D’Amaré et al., 1998], on the right side the MFE-structure predicted by

pknotsRG. The algorithm misses only the short helix 5 and adds three base pairs to helix 4.

Image created with RnaViz2 [Rijk et al., 2003].

et al., 1994]), and satellite tobacco necrosis virus (STNV, [Danthinne et al., 1991]). Their

pseudoknots are partially included in PseudoBase without flanking regions, but in general,

the prediction is much more difficult and error-prone, when larger sequences are under

evaluation.

I compared the results to the output of RNAfold, as a representative for RNA folding

tools without pseudoknot folding capability, and to pknotsRE and NUPACK where com-

putationally feasible. Implementations for the algorithms of the A&U and L&P class are

currently either not available or not existent, respectively. For each predicted structure, I

counted the number of correctly and falsely predicted base pairs (TP and FP). Let BP be

the number of base pairs in the reference structure from the database or literature. False

negatives (FN) can be derived from: FN = BP −TP . Finally, I measured the sensitivity,

defined as (TP/BP), and selectivity (TP/TP+FP).

In Table 5.3, I list the prediction accuracy for the sequence set. For all sequences

except the tmRNA, I enhance the prediction accuracy with respect to RNAfold. Both,

sensitivity and selectivity, are increased. Compared to pknotsRE, my results are slightly
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RNAfold pknotsRE NUPACK pknotsRG-mfe

Sequence ID Sens Sel K Sens Sel K Sens Sel K Sens Sel K

PseudoBase 55.7 63.7 - 73.9 71.0 - 77.7 72.9 - 78.9 76.7 -

HIVRT 42.9 73.3 1/2 100 100 2/2 97.4 100 2/2 100 100 2/2

tRNAs 59.4 48.5 - 78.1 64.3 - 59.8 46.1 - 64.7 51.8 -

HDV 37.5 42.9 2/4 43.8 46.7 2/4 59.4 61.3 1/4 90.6 93.5 3/4

TYMV 70.8 73.9 1/2 100 96.0 2/2 87.5 87.5 2/2 91.7 88.0 2/2

TMV-up 52.0 61.9 3/6 52.0 59.1 3/6 52.0 61.9 3/6 88.0 88.0 6/6

TMV-down 67.7 74.2 2/4 94.1 94.1 4/4 52.9 54.5 2/4 100 100 4/4

STNV 37.7 32.5 2/8 * * * * * * 60.9 54.6 4/8

tmRNA 51.0 48.6 3/6 * * * * * * 51.0 49.1 3/6

ORSV 41.2 46.7 7/22 * * * * * * 75.0 73.4 19/22

Table 5.3: Evaluation of predictive accuracy.

Sens = sensitivity, Sel = selectivity, K = (number of correct predicted pseudoknot helices)/

(expected number of pseudoknot helices). A helix is accepted as correct, if it overlaps with

at least one base pair of the reference structure. For HIVRT, PseudoBase, and tRNA, the

average over all sequences is taken. * marks cases where pknotsRE and NUPACK were

unable to terminate.

better, probably because we are using the newer and subtler energy model. Interestingly,

pknotsRG also performs better than NUPACK, although both implement a very similar

energy model. Perhaps, NUPACK ’s larger search space is the source for some false pre-

dictions. However, there may be some other flaws in its implementation: I noticed that

NUPACK predicts a nested structure with -18.4 kcal/mol for the sequence of TMV-up,

and pknotsRG finds the correct pseudoknot with energy -25.3 kcal/mol. It is unclear to me,

why NUPACK does not predict a similar pseudoknot given the low energy of pknotsRG ’s

prediction.

I also folded eleven randomly selected human tRNAs, previously used in other studies

[Mathews and Turner, 2002] (third line in Table 5.3), and found false positive pseudoknots

in three of them. Interestingly, the overall prediction accuracy is, nevertheless, higher than

that of RNAfold. Note that pknotsRE outperforms all other programs on this sequence

set, probably because it also implements coaxial stacking of multiloop helices. tRNAs are

known to form two coaxial stacks which results in their typical 3-dimensional fold.

The evaluation is in good accordance with the evaluation in [Condon et al., 2004].

There, pknotsRG showed a leading performance with 0.76 sensitivity and 0.77 selectiv-

ity (called specificity there) on a short sequence set. Similar values were measured for

HotKnots, introduced in that particular study. pknotsRE and NUPACK both performed
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slightly worse than pknotsRG. On the longer sequence set (> 200 nucleotides), the perfor-

mance dropped for all evaluated programs. Sensitivities fall to around 50% and selectivities

even below 40%. This shows the general problem of folding long sequences via free energy

minimization. I comment on this phenomenon in Section 5.5.3.

Since I use the same energy model as RNAfold, predictions of RNAfold and pknotsRG

for unknotted structures are identical. Of course, if there is more than one optimal struc-

ture, each of the optimal alternatives may be reported, and thus, the same folding cannot

be guaranteed.

5.3.2 Computational performance

I benchmarked the performance of the programs used in the previous evaluation by 20

iterations with random sequences of length 20 to 800 bases where applicable. Time and

memory consumption were estimated with the memtime utility on a 2.8 GHz Intel Xeon

machine running Sun Solaris 10 equipped with 2 GB main memory. Benchmarks of NU-

PACK had to be done on a 4 GB Linux machine due to compiling issues. This machine

is approximately 33% faster, which should be kept in mind when comparing NUPACK

runtimes.

The results of the benchmark are displayed in Figure 5.6. The limiting factor for

pknotsRE is clearly the demanding O(n6) runtime. A sequence of length 100 is folded

within ∼5000 seconds; a sequence twice as long would require three to four days. The

lower asymptotic runtime of NUPACK allows for much faster folding than pknotsRE. The

limiting factor now becomes the steep O(n4) memory requirement. With almost 3 GB for

folding 150 nucleotides, we are about to hit the 32-bit boundary. Interestingly, NUPACK

requires approximately the six-fold amount of pknotsRE ’s memory despite both being in

the same asymptotic class. This can be explained by the fact that NUPACK uses twice

as many 4-dimensional tables and is implemented in an object-oriented way, which may

require a little overhead.

Clearly, pknotsRG is able to fold sequences that are longer than pknotsRE ’s and NU-

PACK ’s limits. Short sequences up to 200 nucleotides are folded within a second. Long

sequences (800 bp) take about six minutes. If we restrict the maximal pseudoknot size

to a reasonable constant, say 150 nucleotides, we can further increase the runtime. The

algorithm now runs in O(cn3) with a rather large constant c. This enables us to fold

sequences of length 1000 in 90 seconds. Being in the same asymptotic space complexity

class as usual RNA folding routines (e.g RNAfold), the memory problems are basically

removed. 30 MB for a folding of 800 nucleotides poses no problem to modern hardware.
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Figure 5.6: Benchmark of pknotsRG and other programs. pknotsRG is superior to pknot-

sRE and NUPACK, both in terms of time and memory. For comparison, also the values for

RNAfold are displayed. Note that the time and memory axes are drawn logarithmically.



pknotsRG 49

Figure 5.7: Recurrences for the Sankoff-style alignment of base pair probability matrices.

For a fair comparison, the reader should keep in mind that the extra time spent by

pknotsRE and NUPACK is not strictly wasted: It is spent on assuring that the optimal

folding of the input RNA sequence does not contain a more complex pseudoknot of lower

free energy than the reported structure. pknotsRG does not consider such structures and

hence, cannot make this assertion.

5.4 Sparse DP

One way to speed up Dynamic Programming algorithms is to make use of the implicit

sparseness of the search space. Eppstein and coworkers [Eppstein et al., 1990, 1992a,b]

analyzed several sequence analysis algorithms and detected situations for which intermedi-

ate solutions can be safely ruled out without evaluating them. In the following, I describe

how to exclude certain pseudoknot candidates from the folding space of pknotsRG and

thus, save a significant amount of computation time.

The idea roughly follows the technique of the algorithm implemented in the tool Lo-

cARNA [Will et al., 2007] which improves the Sankoff style RNA secondary structure and

alignment algorithm PMcomp [Hofacker et al., 2004]. I do not explain the algorithm in

detail here, but only the parts necessary to understand the modifications to the original

pknotsRG algorithm.

The recurrences used in PMcomp are shown in Figure 5.7. The matrix D stores the

best alignment of subsequences s1
i ...s

1
j and s2

k...s
2
l , given that s1

i aligns to s2
k and s1

j to

s2
l and that (s1

i , s
1
j) and (s2

k, s
2
l ) each form a base pair. The best result for unconstrained

folding and alignment is stored in matrix M . It can easily be seen that the most expensive
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Figure 5.8: A pseudoknot and its (nested) dot plot. The size of the dots is proportional

to the respective base pair probability.

part of the recurrences lies within the last alternative for the computation of M . Two base

pairs, one for each sequence, are added to the consensus structure, thus requiring overall

O(n6) time.

Now, the trick of LocARNA is that not all possible base pairs are examined for inclusion

in the consensus structure but, only those having a base pair probability p larger than a

threshold value p∗. In accordance with [Will et al., 2007], I call them significant base pairs.

Of course, given a fixed p∗, for each base, there are at most 1/p∗ ∈ O(1) significant base

pairs and thus, n ∗ p∗ = m ∈ O(n) in a complete probability matrix. It directly follows

that by restricting the most expensive loop to the significant base pairs, computation time

can be reduced to O(n2 ∗ m2).

5.4.1 Sparse pknotsRG

Now, I demonstrate a similar idea for reducing the number of evaluated pseudoknots.

Although the partition function algorithm computing the base pair probabilities (taken

from the Vienna RNA library) evaluates only nested structures, the helices involved in a

pseudoknot can often be seen in the dot plot. An artificial toy example is shown in Figure

5.8. Instead of the pseudoknot, two alternative structures can be folded with a reasonable

energy by deleting one of the helices each time. For later use, I call the structures PK∆a

and PK∆b. One can see both helices in the dot plot, where base pairs from PK∆b have

probabilities around 69% and base pairs from PK∆a around 25%. With larger sequences,
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Figure 5.9: The pseudoknot of turnip yellow mosaic virus and its dot plot. The base pairs

of the smaller pseudoknot helix are marked with a red ellipse.

the pseudoknot helices are also visible in the dot plot, however, having probabilities smaller

by two orders of magnitude as shown in Figure 5.9. The shorter pseudoknot helix has base

pair probabilities of around 0.001 (i.e. 0.1%).

In the optimal case, the pseudoknot-free MFE structure is just lacking one pseudoknot

helix but otherwise shares all base pairs as seen as in the toy example (PK∆b in Figure

5.8). Then, we can expect the probabilities of the shared helix to be reasonably high. On

the other hand, if the pseudoknot-free MFE structure folds an alternative structure not

sharing any base pairs with the pseudoknot, probabilities tend to be lower. The same holds

for the second pseudoknot helix which is always contained only in suboptimal structures

(except for the rare case that the two alternative structures are co-optimals).

I now adapt the pknotsRG algorithm in order to use the information from the dot

plots. Remember that the O(n4) time requirement stems from two variable boundaries

k, l, which move in between the left and right boundaries i and j.

knot (i,j) = tabulated [ ... | k <- [i..j], l <- [k..j],
...

]

Notice that in all evaluated pseudoknots, k is paired with j and base l with i. In

order to incorporate the base pair probabilities into pknotsRG, I define a new array of lists

jpair that stores, for each j, a list of all significant base pairs (k, j). The array can be

computed before the main folding routine:



52 pknotsRG

jpair:: Array Int [Int]
jpair = accumArray (flip (:)) [] (1,n) [(j,k) | j <- [1..n],

k <- [1..j-5],
bp_prob k j >= p* ]

The ks are stored in reverse order, such that the loop is terminated as soon as k passes

beyond the left pseudoknot border i:

knot (i,j) = tabulated [ ... | k <- takeWhile (>i) (jpair!j), l <-[k..j],
...

]

An analogous array of lists ipair stores an ascending list of significant base pairs for

each i.

ipair:: Array Int [Int]
ipair = accumArray (flip(:)) [] (1,n) [(i,l) | i <- [1..n],

l <- reverse [i+5..n],
bp_prob i l >= p* ]

Both, ipair and jpair store lists of size of at most 1/p∗ and thus, require O(n ∗1/p∗)

space. Including ipair into the pseudoknot loop yields:

knot (i,j) = tabulated [ ... | k <- takeWhile (>i) (jpair!j),
l <- takeWhile (<j) (dropWhile (<k) (ipair!i)),

... ]

Here, dropWhile and takeWhile assure that only values from the interval

[k + 1 . . . j − 1] will be evaluated.

Following the efficiency analysis of LocARNA, the loop is executed in the order of

O(n2 ∗ (1/p∗)2). Assuming a constant p∗ thus reduces the overall runtime of the pknotsRG

algorithm to O(n3), since the pseudoknot code is embedded in an O(n3) context for general

folding.

The actual runtime, however, strongly depends on the choice of p∗. Recall that for

the pseudoknot of TYMV, we would need a threshold of as low as 0.001. In order to

estimate the effect of different cut-off values, random sequences of varying sizes, whose

MFE prediction contains a pseudoknot, were folded with the new method and compared

to the original algorithm (Figure 5.10). Observe that with high p∗-values (say 0.01 to

0.0001) more than 50% of the foldings differ on average. A value as low as 1 · 10−6 suffices

for more than 80% of the random sequences and 1 · 10−9 almost always (99%).

By visual inspection, I identified three main reasons for mispredictions at low p∗ val-

ues. Namely, pseudoknots with a very short helix, pseudoknots stretching over a long

subsequence, and structures containing multiple pseudoknots. In all three cases, chances
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Figure 5.10: Evaluation of a suitable p∗ parameter. For each sequence length, I generated

100 random sequences and recorded which p∗ achieves the same folding as the original

pknotsRG. E.g. for sequence length 100 there are 40% identical predictions with p∗ set

to 1 · 10−3 and 85% at p∗ = 1 · 10−5. In general, the effect of p∗ is independent of the

sequence length.

are high that the alternative pseudoknot free structures considered by the Vienna library

partition function have significantly lower energies than the (pseudoknot) MFE prediction.

Consequently, the base pair probabilities of the pseudoknot helices will be extremely low.

When talking about asymptotic considerations, one has to bear in mind that constant

factors, such as 1/p∗ in our case, can only be omitted for input sequences larger than a

certain length N0. Below that threshold constant factors may still have a dominant effect.

Unfortunately, with pknotsRG we usually fold sequences shorter than 1000 nucleotides.

Hence, 1/p∗ cannot be seen as a negligible constant. As the number of significant base

pairs per base cannot exceed n, the algorithm is effectively in the same efficiency class as

before.

However, it is known that a dot plot is generally only sparsely populated, and we can

expect a far lower number of significant base pairs than 1/p∗ per base. In fact, one can

see from Figure 5.11 that the number of significant base pairs, averaged over all bases,
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Figure 5.11: The average number of significant base pairs in one column or row of the dot

plot grows sublinear. The regression parameters are noted on the right side.

does not grow linearly with n. E.g., with p∗ = 1 · 10−6 it grows proportional to n0.34, and

even with p∗ = 1 · 10−9, sufficient for 99% accurate prediction, growth is within O(n0.65).

This, of course, means that although an improvement in the worst case runtime is not

guaranteed, sparse pknotsRG may still be faster in the average case. And indeed, one can

detect a remarkable speed up in the benchmark in Figure 5.12. A 400 nucleotide sequence

folds within half the time for a low cut-off (p∗ = 1 · 10−9). With long sequences and a

slightly higher cut-off (p∗ = 1 · 10−6), folding is faster by a factor of 10.

Note that the estimated polynomial runtime from regression analysis is even lower than

O(n3), although the pseudoknots are still computed in an overall cubic context. This is

again due to the effect of constant factors: computing the pseudoknot loop is much more

expensive than all the other loops together and thus dominates.

Summing up, one can say that the use of base pair probabilities considerably speeds

up pseudoknot computation with only a little sacrifice in accuracy.
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Figure 5.12: Benchmark of the sparse pknotsRG variant. The red line (p∗ = 0) shows the

runtime of the original pknotsRG on random data. The observed asymptotic efficiency is

given in the legend. Note that the plot is drawn logarithmically on both axes in order to

clearly show the asymptotic behavior.

5.5 Discussion

In the following, I discuss extensions of the implemented model and their expected com-

putational cost.

5.5.1 Bulges, triple crossing and kissing hairpins

Canonization Rule 1 can be relaxed to allow for bulges inside the helices forming a pseu-

doknot. As long as their number (and hence, the length difference of the two arms of a

helix,) is bounded by a constant, asymptotic efficiency is not affected. As proof-of-concept,

I implemented a variant of pknotsRG which allows for small, 1-nt bulges. The changes

only slightly affect the algorithm’s runtime but require a few extra lines of code which

take care of whether Rule 3 truncates one of the maximal helices before, within, or after

the bulge. Of course, the same observation holds for small internal loops.

Two examples of non-simple pseudoknots are shown in Figure 5.13. I can incorporate

them into my algorithm by adding the definitions
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Figure 5.13: Two examples of more complex pseudoknots with three helices: Kissing

hairpins (left) and triple helix interaction (right).

kiss = kss <<< a~~~u~~~b~~~v~~~a’~~~w~~~c~~~x~~~b’~~~y~~~c’
triple = trp <<< a~~~u~~~b~~~v~~~c~~~w~~~a’~~~x~~~b’~~~y~~~c’

Canonization can be applied as before, with Rule 3 becoming more sophisticated for the

triple interaction case. This would yield an algorithm of runtime O(n6) bringing runtime

back to the efficiency class of the Rivas/Eddy algorithm. Note though that the space

requirement remains O(n2). This is due to the fact that now three interacting helices are

considered but not arbitrary chains.

5.5.2 Canonization - revisited

In Section 5.1.3, I argue that the canonization is well justified. In this section, I empirically

estimate the effect of canonization Rules 2 and 3 in order to strengthen my decision.

From a theoretical point of view, both rules reduce the asymptotic worst-case runtime by

pruning the search space. Rule 2 lowers the runtime from O(n6) to O(n4) by reducing

the number of pseudoknots which must be evaluated. For each pseudoknot boundary set

(i, j, k, l), only one pseudoknot – the one with maximal helix length – is considered instead

of |a − a′| ∗ |b − b′| pseudoknots. A similar consideration holds for Rule 3: Without an

ad-hoc decision on where to split overlapping helices, the algorithm would have to evaluate

all possible splits, bringing runtime back to O(n5).

However, the expected increase in runtime depends on the lengths of the maximal

helices and the amount of overlap, respectively. In the average case, I expect both to

be rather small and independent of the sequence length n. Thus, I can hope for faster

programs in practice.

To test these hypotheses, I implemented two variants of pknotsRG. pknotsRG-sr ig-
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Figure 5.14: The effect of canonization Rules 2 and 3: Practical runtimes increase by 50%,

if pknotsRG evaluates all simple recursive pseudoknots. Relaxing Rule 3 results in a 25%

longer computation time.

nores Rule 2 (and implicitly Rule 3) and thus evaluates all simple unbulged recursive

pseudoknots. pknotsRG-r3 alters Rule 3 and loops over all possible configurations resolv-

ing the overlap. Note that for both variants, Rule 1 still remains in effect, which means

no bulges are allowed in pseudoknot stems.

I generated 1000 random sequences, with lengths ranging from 50 to 100 nucleotides,

containing a pseudoknot in the MFE folding computed by pknotsRG-sr (the most general

folding program). For only 85 sequences, pknotsRG predicts another structure with a

higher energy. Moreover, 24 of the 85 structures are the canonical representatives of

the pknotsRG-sr MFE structures. Predictions of pknotsRG and pknotsRG-r3 differ in 53

cases, with 12 pseudoknot structures being the canonical ones. These numbers confirm my

previous rationale: the canonical pseudoknot is in most cases (over 90 %) also the optimal

one. Furthermore, there are only few cases (around 6%) where my canonization prevents

a particular (non-canonical) pseudoknot to be detected, because another structure has a

lower energy and is reported as MFE structure.

What remains to be evaluated is the effect on the real computation time. The bench-

mark in Figure 5.14 shows that the observed runtime of pknotsRG-sr increases by a con-

stant factor of about 1.5. The other variant, pknotsRG-r3, brings a 25 % increase in

runtime. This suggests that Rules 2 and 3 may be relaxed at a noticeable cost but with
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little improvement in search space coverage. Hence, I will offer the relaxed variants as an

optional mode in the next release of the pknotsRG software package.

5.5.3 Folding long sequences

RNA folding in vivo as in vitro must be understood as a hierarchical process, where

small structures in close vicinity form first and then combine to larger ones [Tinoco and

Bustamante, 1999]. The folding path becomes relevant, and the longer a sequence, the

more unlikely it is that its folding path leads to a global energy minimum. In other words,

the longer the sequence, the less reliable are the results of minimum free energy folding.

pknotsRG allows me to test this using a fairly large structure containing pseudoknots that

has been proven experimentally. I considered the sequence of the group I intron from

Tetrahymena thermophila (419 nt, GenBank accession: V01416). The MFE-structure

found was quite different from the “true” structure taken from the literature [Cech, 1990].

I handcoded the experimental structure and evaluated its stability in my energy model.

The result was striking: The experimental structure (-132.26 kcal/mol) was significantly

far away from the possible minimum of free energy (-154.04 kcal/mol). So far in fact that

it seems infeasible to detect the structure by scanning the space of near-optimal structures.

This could be interpreted as the energy model being incorrect, but since it works well for

short sequences, I suggest that this is an indication that the kinetics of folding already

have a strong influence with this size of sequence, at least, when pseudoknots are involved.

While I have achieved a considerable speedup for predicting small pseudoknotted struc-

tures, it seems that the minimum free energy approach is not meaningful with the largest

structures which it can now handle algorithmically. However, the situation changes when

one is looking for particular structural motifs.

The search for such motifs using combinatorial matchers like RNAmotif [Macke et al.,

2001] is hampered by the problem that a motif description is either too specific and

misses relevant instances, or else, it is too vague and produces a large number of different

matches to the same sequence. An idea is to develop thermodynamic matchers (TDM)

which are RNA folding programs based on the established MFE model but specialized

to the particular structural motif at hand. Such a matcher returns the optimal way to

fold a sequence into the motif structure together with the free energy of this folding.

Comparing this energy to the MFE of an unrestricted folding can give a hint with respect

to the significance of such a match. A TDM can easily be obtained via the Locomotif

system [Reeder et al., 2007], which in its newest version also incorporates the pseudoknot

algorithm described in this thesis. In the next section, I demonstrate the development and

application of a TDM for the detection of ribosomal frameshift signals.
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5.6 Detection of programmed ribosomal frameshift signals

Parts of the work presented in this section have been implemented by Corinna Theis during

her Bachelor thesis under my supervision. A paper describing this work is currently in

preparation. In this section, I use the term “we” to refer to joint work with C. Theis.

5.6.1 Biological motivation

Programmed ribosomal frameshift (PRF) alters the reading frame by shifting the translat-

ing ribosome exactly one nucleotide to either the +1 or -1 direction. A stop codon in the

original reading frame is then bypassed in the shifted reading frame. This way, two dif-

ferent protein products can be obtained from one mRNA. The frequency of frameshifting

events at a particular site is used by viruses for a defined ratio between the two proteins.

Changes in the ratio can lead to less efficient virus propagation and thus, can be a target

for antiviral therapeutics. Recently, a role of -1 PRF in post-transcriptional regulation

has been proposed in Saccharomyces cerevisiae [Jacobs et al., 2007]. The authors propose

a model where -1 PRF leads to premature termination targeting the mRNA for rapid

degradation via the nonsense-mediated mRNA decay pathway (NMD).

-1 programmed ribosomal frameshift is most effective when two cis-acting signals are

present: a heptameric slippery site and a stable secondary structure. The slippery site is

the location of the actual frameshift event having the consensus sequence X XXY YYZ

(triplets are shown for the pre-shifted reading frame). The structural element follows

within a few bases and can be a simple stem-loop structure or a pseudoknot. It is believed

that the pseudoknot promotes a higher frameshift efficiency, since it is more effective in

pausing the ribosome. This can be explained by the torsional frameshift model [Plant

and Dinman, 2005], in which a pseudoknot imposes a higher resistance to the translating

ribosome. While a simple stem-loop can freely unwind, unwinding the first pseudoknot

helix is restricted by the second helix. Energetically, this imposes a well-defined barrier,

where ribosomes are directed to pause translation. It is also known that ribosome pausing

is a necessary, but not sufficient prerequisite for frameshifting [Kontos et al., 2001].

5.6.2 Previous work

Several computational studies, with the general goal of detecting new PRF events, were

undertaken in recent years [Hammell et al., 1999; Moon et al., 2004; Bekaert et al., 2003;

Jacobs et al., 2007]. The first study by Hammell et al. [1999] found over 200 putative

PRF events in the yeast genome. Their approach relies on a strict pseudoknot structure

consensus and requires two overlapping ORFs of at least 50 codons. In [Bekaert et al.,
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2003], a machine learning approach is used to discriminate between strong and weak

PRF signals. Another approach uses a combinatorial folding routine to identify possible

frameshifting pseudoknots next to a slippery sequence [Moon et al., 2004].

The most recent and probably most elaborate study has been used to identify over a

thousand strong and statistically significant -1 PRF signals in the genome of S. cerevisiae

[Jacobs et al., 2007]. It is based on a two-step procedure, where the first step identifies

slippery sequences followed by a possible frameshift pseudoknot. In the second step,

they are analyzed statistically. In more detail, RNAmotif is used in the first step and

finds all potential pseudoknots that could be formed according to the descriptor. The

descriptor specifies the allowed loop and helix lengths which are extracted from known -1

PRF pseudoknots. All potential pseudoknots are then subjects of statistical analysis in

step two. The potential pseudoknots are refolded with pknotsRE. The MFE of the folding

is compared to folding energies of randomized sequences via z -score analysis. Finally,

sequences with a low z -score (<-1.65) are regarded as statistically significant, since they

appear to be more stable than expected by random.

Despite its overall good architecture, there is one shortcoming in the procedure. Se-

quences are forced to fold into a pseudoknot in the first step but are folded freely in the

second step. Thus, the result of the procedure is indeed twofold: (i) The final candidates

have the theoretical potential to fold a pseudoknot, and (ii) they have a MFE folding

which is more stable than expected by random. However, it is not guaranteed that the

stable structure which causes the good z -score actually is a pseudoknot. In fact, I found

that from 1706 strong candidates only 163 contain a pseudoknot. The pseudoknot, which

was folded by RNAmotif in step one, may have an energy similar to the MFE folding, but

more likely, it will be less stable and hence, less probable to be formed in equilibrium.

In the light of these findings, I propose another approach for -1 PRF signal search:

A specialized RNA folding program, called pknotsRG-fs, which explicitly folds a given

sequence into the most stable structure conforming to the general frameshifting pseudoknot

restrictions. The restricted folding energy can then be compared with the unrestricted

MFE folding. This already gives a strong indication of whether the frameshift signal is

likely to form or not.

In the remainder of this section, I will first introduce the specialized folding program

and then show its incorporation into a tool for genome wide annotation of -1 PRF signals.

5.6.3 pknotsRG-fs: A specialized folding program

The RECODE database [Baranov et al., 2003] contains information about 28 -1 PRF

signals with a pseudoknot as cis-active signal. We analyzed the sequences and structures
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Figure 5.15: A consensus -1 PRF signal extracted from the RECODE database.

and extracted the consensus information displayed in Figure 5.15. The slippery sequence

has consensus X XXY YYZ, where XXX stands for any three identical nucleotides, YYY

for either three As or three T/Us, and Z for any nucleotide. The spacer region must

contain at least one nucleotide and not more than twelve nucleotides. The stem and loop

regions are chosen to include all but two examples which have unusually large loop sizes.

It should be noted that loops 2 and 3 are large enough to further fold internally and thus,

can have a stabilizing effect on the overall structure. E.g., the pseudoknot of the SARS

coronavirus frameshift signal contains an additional third stem in loop 3 [Plant et al.,

2005].

Following these restrictions, I implemented a specialized folding routine devised to

fold a sequence into the structure of lowest free energy while maintaining the given re-

strictions. Finding the structure with an optimal energy can, in general, be done with any

Dynamic Programming (DP) approach. However, explicitly formulating the exact recur-

rences, which evaluate the folding space according to the above restrictions, is a tedious

and error-prone task in a low-level programming language. A remedy to this is to use the

more high-level ADP approach.

By some small changes to the original pknotsRG grammar, I obtain a new grammar

precisely describing frameshift inducing pseudoknots. It incorporates all explicit length

constraints but leaves enough freedom for the loop regions to fold into any further stabiliz-

ing structures. The underlying thermodynamic model [Mathews et al., 1999] then comes

for free – it has already been implemented and can be re-used. For efficiency reasons, I

eventually compiled the grammar into a low-level programming language (C) using the

ADP compiler [Steffen, 2006]. It then takes less than a second to fold a sequence of length



62 pknotsRG

100. In the end, I obtain a thermodynamic matcher, pknotsRG-fs, which computes for

a given input sequence the minimal free energy -1 PRF pseudoknot. Of course today,

I would use the Locomotif system [Reeder et al., 2007] for this task, but at the time

of implementing the tool, Locomotif had no building block for pseudoknots. Based on

pknotsRG-fs, we developed a search procedure termed KnotInFrame.

5.6.4 KnotInFrame search procedure

We devised a simple, yet effective pipeline for the detection of -1 PRF signals. It proceeds

through the following steps:

1. Detect all slippery sequences (X XXY YYZ) in the correct reading frame

(X=[A,C,G,T/U], Y=[A,T/U], Z=[A,C,G,T/U]). Also, there must not be an in-

frame stop codon in the upstream sequence until the next in-frame start codon.

2. For each slippery site:

2.1 Fold every [40, 60, . . . , 120] nucleotide long sequence downstream of the slippery

site, once unconstrained with RNAfold and once constrained with pknotsRG-fs.

2.2 For every subsequence, compute the relative distance:

∆rel =
MFERNAfold − MFETDM

length

2.3 Select maximal ∆rel for this slippery site.

3. Sort and report all ∆rel values for all slippery sites.

The choice of possible sequence lengths in step 2.1 is motivated by the actual size of

frameshift signals found in RECODE. Except for two unusually long signals, all fit well in

one of the five possible windows. These window sizes performed best in a simple window

size and increment survey. In addition to the steps above, we already discard unlikely

foldings in step 2.1, where either the MFETDM is rather high (> -7.4 kcal/mol), or where

the difference between MFETDM and MFERNAfold is very unfavorable (> 8.7 kcal/mol)

for the pseudoknot. Usually, those candidates would be ranked very low anyways, but

since we have no confidence in them, we remove them as early as possible. Note that some

time can also be saved in step 2.1: Instead of folding each subsequence of length 40, 60,

· · · , 120 on its own, we only fold the longest sequence once and backtrace the optimal

solutions for the shorter sequence from the same DP matrix. The optimal solution for the

40 nucleotide long subsequence can be backtraced starting from matrix entry (0, 40) and

correspondingly for the other subsequences.
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Rank 1 2 3 4 5 6 7 8 not found

Count 18 4 1 - 1 - 1 1 2

Table 5.4: Result of KnotInFrame on the RECODE database. Most of the annotated -1

PRF signals are ranked on position one or two.

In the end, we obtain, for each input sequence, a sorted list of frameshift signal candi-

dates. In order to see how this new method actually performs on real data, we turn again

to the RECODE database.

5.6.5 Evaluation

We extracted all 28 sequence entries of RECODE annotated as -1 PRF signal in early

2007. In total, these sequences have a length of 230 kb and contain ∼ 800 slippery sites

in the correct reading frame and are, thus, analyzed by our tool. Of those, ∼ 600 are

discarded in step 2.1, due to a low folding energy as explained above. For most of the

entries, KnotInFrame is able to predict the position of the true -1 PRF signal with rank

one (18) or two (4). Some signals were ranked rather low, and two signals were not found at

all, since they are either too long or have a slippery site not consistent with our consensus.

Here, only four nucleotides are annotated in RECODE. A detailed overview of the results

is given in Table 5.4.

At this point, the question arises if the true signals will also be ranked at a high

position, when more slippery sites in a possibly longer input sequence compete for rank

one. A more detailed look (see Figure 5.16) at the relative distances reveals that in fact,

true -1 PRF signals have a tendency to have a higher ∆rel than the ∼ 200 slippery sites

not leading to PRF (called false positives in the following). However, the discriminative

signal is not strong enough for a clear separation. One could use a relative distance of

0.1 as minimal threshold which leaves us with more true positives than false negatives.

However, this threshold overlooks most true -1 PRF signals. A threshold of 0.05 captures

over 50% of true positives, but then the number of false positives is approximately twice

as large as the number of true positives. Finding the appropriate balance between high

sensitivity and selectivity for this problem should therefore be governed by the intended

use of the program.

In order to test the hypothesis that structural RNAs have a higher MFE than random

sequences, we also performed a z -score analysis for all candidates reported by KnotIn-

Frame. For each candidate, we shuffled 100 randomized sequences with the same dinu-

cleotide content and folded them with pknotsRG-fs. In [Höchsmann et al., 2006], it has
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Figure 5.16: Distribution of relative distances for annotated -1 PRF signals (red) and

non-shifting sequences (blue). Although, there is a bias for real PRF signals to higher

relative distances, the overlap with non-PRF signals is too large for a clear separation.

been shown that using a TDM for z -score analysis provides a stronger signal than using

a general folding algorithm. However, the outcome for -1 PRF signals is less fruitful than

the results of [Höchsmann et al., 2006] as shown in Figure 5.17. Most of the false positives

have a z -score between 0 and -3. The fact that the z -scores are not centered at 0 is most

certainly a result of discarding unfavorable folds in step 2.1. This already introduces a

bias for more stable structures than expected by random. With a z -score of -3 and lower,

the number of true positives equals approximately the number of true negatives. A small

number of true positives is also deeply buried in the cloud of false positives which makes

it hard to detect them either by z -score analysis or via the relative distance. Altogether,

it turns out that with z -score analysis, we have the same difficulties in separating the true

PRF signals from the wrong ones. Therefore, we refrain from using the z -score in KnotIn-

Frame, since it would increase the runtime by a factor of 100 (for folding the randomized

sequence) without a significant increase in performance.

It seems that with only one sequence at hand, we can do no better as aforementioned.

However, the situation changes, if we have a set of homologous sequences. Then, the

co-occurrence of a slippery site and a conserved, stable frameshifting pseudoknot could

improve the search for -1 PRF signals in a future version of KnotInFrame.
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Figure 5.17: z -scores plotted against relative distances. Although only weakly correlated

with ∆rel, the z -score analysis does not provide significant further informations for sepa-

rating -1 PRF signals from the background distribution.

5.7 Potential improvements of pknotsRG

The energy model for pseudoknots is by no means optimal. It is carefully optimized to

predict as few spurious pseudoknots as possible while at the same time, correctly pre-

dicting most known pseudoknots. Nevertheless, I believe that the values are much more

imprecise than the experimentally measured values for nested components. Unfortunately,

it is unlikely that more precise values will be experimentally determined in the near future

for the following reason: Pseudoknot stability is strongly dependent on the concentration

of divalent ions. However, the ion concentration at which the energy parameters for the

nearest-neighbor model were measured is unfavorable for pseudoknot formation. There-

fore, it is questionable whether there will be a consistent model for nested structures and

pseudoknots. One possible way to improve the implemented pseudoknot energy model

would be to include the theoretical values reported in [Gultyaev et al., 1999]. I could

easily adapt pknotsRG to use a more complex energy model, such as a logarithmic and/or

stem length dependent loop energy. However, then the problem arises of how to score

pseudoknots more complex than those considered in [Gultyaev et al., 1999]. In particular,

a smooth transition in terms of energy from simple H-type to more complex pseudoknots
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has to be assured.

Some extensions of the algorithm mentioned in this chapter are already implemented

but need to be wrapped up before releasing them in the pknotsRG package. Those are

the relaxation of canonization Rules 2 and 3 as described in Section 5.5.2 and the sparse

version of pknotsRG. A variant that allows for small internal loops and bulges in the

pseudoknot helices is also planned for the next release.

5.8 Software availability

The pknotsRG program family is available for download on the Bielefeld Bioinformatics

Server3, both as C source code and precompiled binary executable for most common

platforms (Solaris, Linux, Windows and Mac OS X). It can also be used online with some

restrictions, such as maximal sequence length and suboptimal energy barrier. However,

the downloadable version has none of the Web Server restrictions. It folds arbitrary long

sequences (given enough time and memory) and reports as many suboptimal solutions as

the user requests.

Another useful extension for large scale analysis is a sliding window technique with

adjustable window size and window position increment. For each position of the window,

the analysis is performed according to the user settings (e.g. enforced mode with 20% sub-

optimals). When the window is shifted, only the non-overlapping part of the new window

has to be computed, while the old part can be be re-used. Depending on the window size

and increment, this saves a considerable amount of time compared to a wrapper program

that folds each window independently. The window functionality as well as the enumera-

tion of suboptimal structures were automatically compiled by the ADP compiler – another

benefit of the ADP approach.

The Windows version contains a basic graphical user interface; the other versions

provide a powerful interactive command line tool. All versions are available in the down-

load section of the project home page at http://bibiserv.techfak.uni-bielefeld.de/

pknotsrg .

KnotInFrame will be available online at http://bibiserv.techfak.uni-bielefeld.

de/knotinframe .

3http://bibiserv.techfak.uni-bielefeld.de



Chapter 6

Consensus Shapes

In this chapter, I report on a new comparative secondary structure prediction algorithm

termed RNAcast. It is based on the idea that related RNA structures, although not being

identical, have to share the overall shape in order to perform a similar function. Following

a short overview of related approaches, I define the mathematically precise meaning of

a common shape and demonstrate its applicability in the tool RNAcast. This part has

already been published [Reeder and Giegerich, 2005]. Then, I continue with an extension

of the method presented leading to the tool RNAforecast. Finally, I merge last chapter’s

pknotsRG and RNAcast to yield a powerful, comparative pseudoknot folding algorithm.

6.1 Comparative structure prediction and the Sankoff

algorithm

Single sequence minimum free energy folding methods, such as Mfold [Zuker and Stiegler,

1981; Zuker, 2003], RNAfold [Hofacker et al., 1994], and pknotsRG [Reeder and Giegerich,

2004] are widely used today, although it is known that their results are not completely

reliable. Their accuracy has been measured to be 73% for a short sequence set [Mathews

et al., 2004]. For longer sequences, the accuracy drops down to as low as 41% [Doshi

et al., 2004]. Better results are generally achieved by comparative analysis of a family

of homologous sequences, where sequence and structure conservation is exploited using

a resolved tertiary structure whenever available, sequence alignment, statistical methods,

and human expertise [Gutell et al., 1992].

A first comparative approach based on thermodynamics was formulated by Sankoff

as early as 1985 [Sankoff, 1985]. It performs sequence alignment and minimal free en-

ergy folding simultaneously. The time complexity is O(n6) with space O(n4) for two
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sequences of length n, and for more sequences, it becomes exponential in the number of

sequences. Given these high computational costs, it seemed unlikely that this algorithm

would ever be put into practice. For many years, it rested in oblivion. Recently, how-

ever, interest in comparative methods for RNA structure prediction has been nurtured by

findings on the functional versatility of RNA and several related approaches have been

suggested. Some emphasize the sequence conservation aspect, folding a predetermined

sequence alignment under thermodynamic rules (RNAalifold, [Hofacker et al., 2002]). The

other extreme emphasizes thermodynamics and suggests to use multiple structure align-

ments of independently folded sequences [Höchsmann et al., 2004; Siebert and Backofen,

2005].

Then, some approaches directly implement Sankoff’s idea of simultaneous alignment

and folding but introduce various pragmatic restrictions, e.g. Dynalign [Mathews and

Turner, 2002] and Foldalign [Gorodkin et al., 1997]. In the early days, those algorithms

restricted the search space in a straightforward way in order to achieve practical programs:

Foldalign aligned only subsequences with a predefined maximal length difference; Dynalign

restricted the maximal distance between two aligned residues. For a review of these

and other tools, the reader is referred to the study of [Gardner and Giegerich, 2004].

However, in their current versions a more dynamical way of restricting the search space is

employed. Dynalign [Harmanci et al., 2007] uses (pure) sequence alignment probabilities

to constrain the (structural) alignment to positions with a significant probability. On

the other hand, LocARNA [Will et al., 2007] (see also Chapter 5.4) uses single sequence

base pair probabilities from the partition function to direct the structural alignment to

use only significant base pairs in the consensus structure. Foldalign 2.1 [Havgaard et al.,

2005, 2007] prunes the search space by discarding subalignments which do not exceed a

length-dependent minimal score. Each of these heuristics offers a drastic improvement in

runtime at a small possible loss in accuracy.

A different approach to Sankoff has been implemented in the tool CMfinder [Yao et al.,

2006]. In an expectation-maximization scheme, an alignment and a Covariance Model

(CM) are iteratively refined, so that in the end, the CM holds the consensus information,

and the alignment is optimal with regards to the CM.

6.1.1 Comparative RNA gene prediction

The strengthened interest in this field is mostly due to several recently described RNA

gene finders based on comparative RNA structure prediction, the most prominent one

being RNAz [Washietl et al., 2005b]. They all use a similar strategy but each with a

different consensus structure prediction algorithm at their core. The main idea is that
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if a structure is more conserved in various species than expected by random, it is most

likely under evolutionary pressure and hence, an RNA gene. RNAz employs RNAalifold

to compute consensus structures and support vector machines for the classification as

functional or non-functional RNA. In a prototype screen for conserved RNA structural

elements, RNAz found thousands of putative functional non-coding RNAs in the human

genome [Washietl et al., 2005a]. A similar screen based on the EvoFold program was

performed in [Pedersen et al., 2006]. For its structure predictions, EvoFold uses Pfold

[Knudsen and Hein, 1999], an algorithm based on phylogenetic stochastic context free

grammars (phylo-SCFG). Interestingly, both screens yield approximately 40000 candidate

genes, but their predictions overlap only by a small amount.

The drawback of these type of RNA gene finders is that they need a sufficiently accurate

sequence alignment as prerequisite. Yet, with RNA genes, it is often the case that although

the structure is well conserved, the sequences are only conserved less than 50%. In such

cases, pure sequence based alignment algorithms, such as ClustalW, will often fail to

produce a meaningful alignment. Hence, the subsequent consensus structure prediction

will fail, too. There is thus an implicit paradox: The alignment step tries to minimize

sequence variation, while the structure prediction tries to maximize the covariation - a

better alignment (in terms of alignment score) might result in a worse covariation score.

A solution to this is to use Sankoff-style algorithms and perform both steps simulta-

neously. Of course, this makes its application much more costly. A gene finder based on

Dynalign is introduced in [Uzilov et al., 2006], and a screen performed with a Foldalign

based gene predictor has been reported in [Torarinsson et al., 2006]. This particular

screen took about seven months on 70 computers and analyzed ∼1% of the human and

mouse genome. Clearly, this is far away from regular use for complete genome annotation

pipelines.

Behind all these approaches, there is the original Sankoff approach as the ideal method

— the one that every program tries to approximate in different ways. “Making Sankoff

practical” has been a recurring theme at the meetings of the computational RNA commu-

nity. However, this road may require so many pragmatic restrictions that the ideal looses

much of its attraction.

A way out of this dilemma may be to change the definition of a consensus structure.

In Sankoff’s approach, the consensus is a folded sequence alignment that optimizes a

combined sequence similarity and energy score. What if we drop the implicit multiple

sequence alignment step (as this problem is known to be NP-complete)? Let us agree

that a consensus structure for sequences s1, . . . , sk is a set of structures x1, . . . , xk, one
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for each si, that all have – in some mathematically precise sense – a common shape.

Should a sequence alignment of s1, . . . , sk, compatible with the consensus, also be desired,

it may be computed afterward from x1, . . . , xk, rather than from s1, . . . , sk, by multiple

structure alignment [Höchsmann et al., 2004]. The latter phase will certainly need to

resort to heuristics, but for the first phase, there may be a chance to achieve a complete

and non-heuristic solution in acceptable time.

6.2 An alternative to the Sankoff method

6.2.1 A hypothetical method

To explain the new approach, let us first consider a hypothetical, exhaustive method. Let

s1 and s2 be two RNA sequences, both of length n. Let us enumerate their foldings in

order of increasing free energy, yielding x1, x2, . . . , xN1
for s1 and y1, y2, . . . , yN2

for s2.

The numbers N1 and N2 will be very large, even for small n, but let us ignore this for the

moment.

If s1 and s2 have a common structure, there must be xi = yj for some i and j. In

fact, there may be many such pairs. We rank them by (i + j), and the pair (xi, yj) with

minimal rank is our predicted consensus. Just as well, we may produce the k top-ranking

consensus pairs.

Using known algorithmic techniques, one can implement the enumeration in O(n3 +

n(N1+N2)) time and O(n2) space and the identification of common structures in O(n(N1+

N2)) time and space, where structures are represented as strings and keyword or suffix

trees are employed for fast identity matching. Clearly, if we add a third sequence s3, with

structures z1, z2, . . . , zN3
, the (N1 + N2) above is replaced by (N1 + N2 + N3), and hence,

this method is additive in the number of sequences! Too bad it is not practical for the

following two reasons:

• The numbers N1, N2, . . . are very large and Ni grows exponentially with n. Even

if we restrict enumeration to an energy range of say 10% above the minimal free

energy, Ni may be large as 100 000 or 1 000 000. This alone might not be a threat

on today’s computers, but here is our second problem:

• Sequences s1 and s2 need not have the same length, and hence, their structures

cannot be identical. We must allow for some flexibility in the relative position

of helices. Therefore, we need to resort to some pairwise similarity computation,

catapulting computation time of the identification phase to O(n2 ·N1 ·N2) or higher.

The additive behavior is lost.
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To make the hypothetical method practical, we need to restrict enumeration to a small,

but representative sample of the folding space and achieve identification of consensus pairs

in linear time in spite of their not being identical.

6.2.2 Outline of the consensus shapes prediction method

I build on the recent approach of abstract RNA shapes analysis [Giegerich et al., 2004b]

to solve both of the above problems. Deferring formal definitions, a shape is a family of

structures sharing a common pattern of helix nesting and adjacency. The near-optimal

folding space contains only a (relatively) small number of shapes. Using abstract shapes

analysis, I enumerate representative structures – one per shape, and only those! – for

both s1 and s2. The highest ranking structure pair xi and yj, where both have the same

shape, then forms the consensus pair. While the structures xi and yj are only similar,

their shapes can be easily computed, and identity matching on shapes can be implemented

in time O(n · (N1 + N2)) as sketched above – for significantly reduced N1 and N2.

These ideas will be rigorously described below, and I shall report on their implemen-

tation and evaluation.

6.3 RNA shape analysis and consensus shapes

6.3.1 Abstract shapes

Here is a summary of the basic definitions of abstract shapes analysis.

• An RNA sequence s has folding space F(s), the set of all admissible structures

under the given base pairing rules. For each structure x ∈ F(s), one can compute

its free energy E(x).

• The minimal free energy structure mfe(s) for a sequence s is the structure

x ∈ F(s) where E(x) is minimal.

• For efficient computation of shapes via Dynamic Programming, they must be repre-

sented as trees. Let S be the tree-like domain of structures and P a tree-like domain

of shapes. A shape abstraction is a mapping π from S to P that preserves juxta-

position and embedding.

• The abstract shape space of sequence s is P(s) = {π(x) | x ∈ F(s)}. The class

of p-shaped structures in F(s) is F(s| p) = {x| x ∈ F(s), π(x) = p}.
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• The shape representative structure p̂ ∈ F(s) for shape p is the structure whose

free energy is minimal among all members of that shape class. It is called shrep for

short.

Abstract shape analysis, as implemented by the program RNAshapes, is computed for

an RNA sequence s and an energy range R. It delivers a list [(p1, p̂1), . . . (pk, p̂k)] with the

following properties:

• the pi are different shapes, and the p̂i are their respective shreps,

• the list is ordered by increasing energy: mfe(s) = p̂1 and E(p̂i) ≤ E(p̂i+1),

• the list is restricted to the energy range indicated by R : E(p̂i) ≤ E(mfe(s)) + R,

• the list completely covers this energy range in the abstract shape space: There is no

shape pk+1 such that E(p̂k+1) ≤ E(p̂1) + R

The strength of shape analysis lies in four aspects (for details see [Giegerich et al., 2004b]):

• It produces a non-heuristic, mathematically well-defined synoptic view of the near-

optimal folding space, directing the focus on a small number of shreps.

• Shape analysis uses the full energy model [Mathews et al., 1999] and runs in the

same asymptotic space and time complexity as suboptimal RNA folding.

• Shapes are meaningful across sequences, hence lend themselves to a comparative

approach. This aspect is exploited here for the first time.

• The approach is generic with respect to the shape abstraction (π) that is actually

used. Shapes can be more or less abstract depending on the level of detail considered

relevant.

I illustrate the latter point by defining two shape abstractions, used in this study, in

more detail. In general, shape abstractions retain nesting and adjacency of helices but

disregard their size and concrete position in the primary sequence. They may choose to

retain or to discard bulges and internal loops which leads to different levels of abstraction.

For a mapping of an example structure see Figure 6.1. “Level 5” is the strongest abstrac-

tion and does not account for bulges and internal loops at all. It only records hairpins and

multiloop bifurcations. “Level 3” retains helix interruptions, but does not specify whether

they result from 5’-bulges, 3’-bulges or internal loops.

As I am not concerned with the algorithmics of shape analysis here, I can ignore tree-

like representations of structures and shapes and define shape abstractions as mappings
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π5(.) = ε ̺5(.) = ε

π5(.s) = π5(s) ̺5(.s) = ̺5(s)

π5(s.) = π5(s) ̺5(s.) = ̺5(s)

π5((s)) = [̺5(s)] ̺5((s)) = ̺5(s)

π5((s)s
′) = [̺5(s)]π5(s

′) ̺5((s)s
′) = π5((s)s

′)

π3(.) = ε ̺3((s)) = ̺3(s)

π3(.s) = π3(s) ̺3(s) = π3(s) in all other cases

π3(s.) = π3(s)

π3((s)) = [̺3(s)]

π3((s)s
′) = [̺3(s)]π3(s

′)

Table 6.1: Definition of level-5 (π5) and level-3 (π3) shape abstractions. s and s′ denote

a non-empty, well-balanced dot-bracket string, and ε denotes the empty string. Brackets

in the input/output string are written in bold face. Note that the difference lies with ̺5

versus ̺3, where the former reads across bulges and internal loops, while the latter decides

to record a new helix part with every interruption.

CGUCUUAAACUCAUCACCGUGUGGAGCUGCGACCCUUCCCUAGAUUCGAAGACGAG

((((((...(((..(((...))))))...(((..((.....))..)))))))))..

Shape Level 5: [[][]]

Shape Level 4: [[][[]]]

Shape Level 3: [[[]][[]]]

Shape Level 2: [[ []][ [] ]]

Shape Level 1: [ [ [ ]] [ [ ] ]]

1

10

20

30

40

50

56

C
G

U
C

U
UAA

A
CUC

AU
CAC

C
G

U G U G G A G
C

U G C
G

A
C

C C
U

U
C C

C
U

A
G
A

UU
C

G

A
A

G
A

C
G A

G*
*

*
*

*
*

******

*
*
*

*
*

Figure 6.1: An example secondary structure and its five shape representations, imple-

mented in the tool RNAshapes [Steffen et al., 2006].

from the more familiar string representations of structures to string representations of

shapes. Structures are represented as dot-bracket strings, e.g.

((((((...(((..(((...))))))...(((..((.....))..))))))))).. . The level-5-shape of this

structure is represented as “[[][]]”, its level-3-shape as “[[[]][[]]]”. In Table 6.1, I

provide equations defining shape abstractions π5 and π3.
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Rank of true shape 1 2 3 4 5 5-9 10-19 20+ total

lin4 9 0 0 0 0 0 0 0 9

IRES 5 2 0 0 0 0 0 0 7

tRNA 3 1 5 2 0 0 0 0 11

srp RNA 2 2 0 0 0 0 0 0 4

riboswitch 7 0 0 0 0 0 0 0 7

S box 4 5 2 0 0 0 0 0 11

5S rRNA 1 2 0 1 0 1 0 0 5

U12 RNA 0 0 0 0 1 0 1 4 6

U1 RNA 1 1 0 1 0 0 1 0 4

U2 RNA 0 0 0 0 0 3 0 2 5

Table 6.2: Ranks of the true shape in the list of near-optimal shapes using RNAshapes.

The true shape is on one of the first ten ranks in 61 out of 69 cases.

Based on my experience, I generally suggest to work with the less abstract Level 3

except for long molecules, where a stronger abstraction speeds up the program, because

the shape space is reduced further.

6.3.2 Rankings of true shapes

In order to evaluate whether shape analysis bears promise towards consensus prediction,

I performed two preliminary studies using several sequence families from Rfam [Griffiths-

Jones et al., 2003] and other databases (Table A.2 in the appendix), where the “true”

structure s is known. From this true structure, I computed the “true” shape p∗ = π(s).

The first question then asks for the rank i such that pi = p∗ in the list of shapes

returned by shape analysis. Table 6.2 shows the outcome. The average rank of the true

shape is 5.06, and in 32 out of 69 cases (46%) the true shape has rank one.

The advantage of shape analysis over complete suboptimal folding [Wuchty et al.,

1999] is confirmed by two detailed observations: For one of the tRNA sequences, the true

shape has rank three, while the true structure has rank 104 in the complete enumeration.

In the worst case observed, a U12 RNA sequence, the true shape has rank 28, while its

associated true structure has rank 3 695 033. This confirms my intuition that the shape

space is small enough to completely enumerate its interesting part. Yet, it also confirms

that the reliability (in terms of correctly predicted shapes) of single sequence folding is

around 46% – not useless, but not dependable either.

Secondly, I investigated whether this improves when we move towards a comparative
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Rank of true shape 1 2 3 4 5 ≥ 6 total

lin4 36 0 0 0 0 0 36

IRES 11 10 0 0 0 0 21

tRNA 22 22 11 0 0 0 55

srp RNA 5 1 0 0 0 0 6

riboswitch 21 0 0 0 0 0 21

S box 21 31 3 0 0 0 55

5S rRNA 8 1 1 0 0 0 10

U12 RNA 0 3 0 0 0 12 15

U1 RNA 4 0 1 0 1 0 6

U2 RNA 0 0 0 0 0 10 10

Table 6.3: The table shows the rank of the reference shape in all pairwise comparative

predictions. The average rank of the true shape improves from 5.06 for single sequence

prediction to 3.06.

approach by using pairs of sequences. In Table 6.3, all pairs of predictions (within each

family) are considered, and the rank of the true shape in the list of all common shapes

is reported. In the pairwise approach, the average rank of the true shape improves to

3.13, and the true shape now has rank one in 128 out of 235 cases (53%). I conclude that

the power of comparative analysis is well captured by my approach, and I expect even

better performance from using three or more sequences. Based on these observations, I

developed the method of consensus shape prediction.

6.3.3 Consensus shape prediction

For a set of sequences {s1, . . . , sk}, intentionally a family of related RNA sequences, I

enumerate their shape spaces P(s1), . . . ,P(sk). Upon those, I define:

Definition 1 A shape p is a common shape of {s1, . . . , sk} if p ∈
⋂k

i=1 P(si).

Definition 2 The consensus shape for sequences {s1, . . . , sk} is the common shape p

that minimizes rank(p̂1, . . . , p̂k).

Here, rank is a scoring function that combines the individual shrep scores. I discuss

several meaningful scoring functions in the next section.

Computing the intersection of P(s1), . . . ,P(sk), once those are generated, is a trivial

task. Usually, there are far fewer common shapes than there are shapes in P(s1), . . . ,P(sk).
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Then, I sort all common shapes by their rank and find the consensus shape as the first

one in the list.

Note that the above definitions do not only yield the consensus shape, but moreover,

from shape analysis, one also gets the set of shreps – the resulting output is a (k+1)-tuple

(p, [p̂1, . . . , p̂k]). These shreps constitute an (unaligned) multiple RNA structure prediction

for the input sequences.

6.4 Algorithm implementation

6.4.1 The program RNAcast

The above method has been implemented in the program RNAcast1 which stems from

“RNA consensus abstract shapes technique”. Although most of the method is clear

from the definition of the consensus shape, a few details remain to be fixed.

The algorithm proceeds over three distinct phases:

Step 1: The algorithm starts with sequences s1, . . . , sk as input and an energy thresh-

old R. Let n be their average length. It runs RNAshapes on each individual sequence

with the provided energy range R. Theoretically, every sequence could have its own R,

but in practice, only one is used.

Step 2: Within the k resulting lists (the shape spaces), it identifies all shapes that

occur in all the lists. Hashing techniques are used for fast identity matching of shapes.

Thus, this phase runs in time proportional to k · n · |P(s1)|, since it iterates only over the

list P(s1), and the hash table is used to look for co-occurrences in the other shape spaces

P(s2), . . . ,P(sk). After this step, the program holds a list of all l common shapes together

with their shreps: [(p1, [p̂
1
1, . . . , p̂

1
k]), . . . , (pl, [p̂

l
1, . . . , p̂

l
k])].

Step 3: Finally, it evaluates each common shape with a scoring function and produces

a sorted list of all common shapes. The first shape of this list is returned as the consensus

shape along with its shreps. If desired, the r ≤ l best common shapes can be reported as

well.

I suggest to use the output of RNAcast as input for RNAforester [Höchsmann et al.,

2004], a multiple RNA structure alignment program. (Another use of RNAforester for

improving RNAcast predictions is given in Section 6.7). The unaligned RNAcast output

is shown in Figure 6.2. A structural alignment is shown graphically in Figure 6.3.

1Available at http://bibiserv.techfak.uni-bielefeld.de/rnacast/
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Shape: [[[]][][]] Score: -223.50 relative Score: 0.99

CCUUUGCAGGCAGCGGAAAUCCCCACCUGGUAACAGGUGCCUCUGCGGCCAAAAGCCACGUGUAUAAGAUACACCUGCAAAGG

((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) (-34.10) R = 2

CCUUUGCAGGCAGCGGAAUCCCCCACCUGGUGACAGGUGCCUCUGCGGCCGAAAGCCACGUGUGUAAGACACACCUGCAAAGG

((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) (-39.10) R = 2

GCACGCAAGCCGCGGGAACUCCCCCUUGGUAACAAGGACCCGCGGGGCCGAAAGCCACGUUCUCUGAACCUUGCGUGU

((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((...))))))))))))) (-34.10) R = 2

GCAUGAUGGCUGUGGGAACUCCCCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGUCCUCACGGACCCAUCAUGC

((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((....))))))))))))) (-34.70) R = 3

GCAUGACGGCCGUGGGAACUCCUCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGCCCACACGGGCCCGUCAUGU

((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) (-41.90) R = 1

GCAUGUUGGCCGUGGGAACACCUCCUUGGUAACAAGGACCCACGGGGCCGAAAGCCAUGUCCUAACGGACCCAACAUGU

((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) (-39.60) R = 1

Figure 6.2: Example output for a family of IRES elements of picornaviruses. First, it

shows the common shape and the achieved score (absolute and relative). Thereafter, for

each input RNA, the sequence, the predicted shrep, its energy, and its individual rank in

the shape space is given. Note that the sequences are not aligned.

Left to be defined is the scoring function rank. I propose and test four different

possibilities:

1. Rank sum:

rank1(pi, p̂
i
1, . . . , p̂

i
k) = rank(p̂i

1) + · · · + rank(p̂i
k)

Each shrep contributes with its individual rank in the sorted shape space of its

sequence.

2. Sum of energies:

rank2(pi, p̂
i
1, . . . , p̂

i
k) = E(p̂i

1) + · · · + E(p̂i
k)

3. Normalized sum of energies2:

rank3(pi, p̂
i
1, . . . , p̂

i
k) =

E(p̂i

1
)

E(mfe(s1)) + · · · +
E(p̂i

k
)

E(mfe(sk))

4. Sum of probabilities:

rank4(pi, p̂
i
1, . . . , p̂

i
k) = Prob(p̂i

1) + · · · + Prob(p̂i
k)

where Prob(...) are the structure probabilities from the partition function [McCaskill,

1990], requiring additional O(k · n3) steps to compute. In this case, of course, we

have to maximize over all scores.

2This feature has been suggested by the audience of the 2005 Benasque RNA meeting.
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Figure 6.3: Two multiple RNA structure alignments of five 5S rRNA computed by

RNAforester. On the left-hand side, the alignment of the structures as found in the

database [Szymanski et al., 2000] is depicted. On the right-hand side, the output shreps

of RNAcast served as input for the alignment. Obviously, the structures are similar, with

RNAcast predicting a few additional compatible base pairs. The alignment visualization

should be interpreted as follows: The frequencies of the bases A, C, G, U are proportional

to the radius of circles which are arranged clockwise on the corners of a square for each

residue, starting at the upper left corner. Additionally, these circles are colored red, green,

blue, and magenta for the bases A, C, G, and U, respectively. The frequency of a gap is

proportional to a black circle growing at the center of the square.

Functions rank2, rank3, and rank4 can easily be normalized to the interval [0 . . . 1]. This

simplifies comparisons between different RNA families under evaluation. Note that rescal-

ing of the scores does not have an influence on the order of common shapes. Therefore,

RNAcast also reports the relative score in its output (see Figure 6.2).

Overall, it turned out that rank2 and rank3 perform equally good and slightly better

than the other two scoring functions. rank3 may be superior to rank2, if the sequences

under evaluation exhibit large differences in the MFE values. In that case, the relative

distance to the respective MFE value (considered by rank3) may be more meaningful than
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the absolute distance (considered by rank2). However, I did not observe any differences

in the predictions with the test set. As expected, rank4 performs better than the simple

rank sum score. But, the prediction accuracies for all four scoring functions do not differ

much. The method seems to be relatively robust concerning the choice of scoring function.

I decided to use rank2 for all computations discussed in this chapter.

6.4.2 Technical limitations

Mathematically, at least one common shape always exists for any set of sequences. This

does not hold when the search space is limited, and hence, the choice of the energy range

R is critical: If the true shape is missing in the enumerated shape space of one of the

input sequences, (because the energy of its shrep is too high), this shape can neither

become a common shape nor the consensus. The predicted consensus will be wrong in

this case. This has consequences: Theoretically, there is no upper bound for the number

k of sequences to be considered, and from the efficiency point of view, k can be quite

large. But with larger data sets, it is more likely that one of the sequences is an outlier,

and the chosen energy range is just not large enough. Then, the true consensus shape

is missed due to the effect explained above. Increasing k implies a tendency to increase

R, unless we know in advance that the data set is very homogeneous. Whenever more

sequences require us to look deeper into the shape space, these two sources of increased

efforts multiply. In practice, I suggest to be cautious with more than ten input sequences,

unless it is guaranteed that no outlier is in the input set.

Another point of advice can be given as a rule of thumb: All predicted consensus

shreps have the same number of helices. If their native structures are suspected to have

different numbers of helices (as with a mixture of four and five stem tRNAs), the energy

threshold should be large enough to accommodate the loss of the extra stem.

6.5 Evaluation

Based on the preliminary tests, I concluded that my method is capable of identifying the

correct shape in 53% of all pairwise predictions. When using RNAcast in the multiple way,

the correct shape is predicted for six out of ten families, and for three further families the

true shape is on rank two or three. Still, predicting the correct shape alone is not good

enough. Within a shape class, considerable structural variation can occur. Since shapes

abstract from concrete helix positions and sizes, it is theoretically possible that the shrep

of a correct shape does not share a single base pair with the true structure.
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In this section, I evaluate the accuracy achieved by RNAcast on the base pair level and

compare it to other tools.

In particular, I answer the following questions:

1. How accurate are the shreps given the correct shape?

2. What is the improvement over single sequence folding algorithms?

3. How does RNAcast perform compared to other pairwise and multiple folding algo-

rithms?

4. What are the reasons for wrong predictions?

I analyze the structure predictions in terms of sensitivity, selectivity, and the Matthews

correlation coefficient (MCC):

Sensitivity =
TP

TP + FN

Selectivity =
TP

TP + FP

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

True positive base pairs (TP), true negatives (TN), and false negatives (FN) are

counted as usual. No slipping of helices is allowed. For false positives (FP), I use the

counting method proposed by [Gardner and Giegerich, 2004]: Predicted base pairs that

do not occur in the reference structure, but are compatible with it, are not counted for FP.

A base pair i • j is compatible if neither i nor j is paired to another base in the reference,

and there is no other base pair k•l that violates the nesting convention (i.e. k < i < l < j).

This assumption is meaningful, since the reference structures used in this study are often

based on a consensus. The members of a specific RNA family share most of the base pairs

in the consensus but may have additional ones.

6.5.1 Accuracy of the true shrep

Let us first assume that we already know the correct shape of the family under evaluation.

We are then asking for the corresponding shreps. We can either look them up in the

RNAshapes output, or we can generate an RNA folding program restricted to that specific

shape and compute the optimal structure directly. I employed this strategy for the same
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set of RNA families as used in the preliminary study and evaluated the accuracy of the

shreps.

On average, sensitivity is 78.2% and selectivity is 78.6%, compared to 65.4% and 65%

respectively for the MFE-prediction of the single sequence. This shows that knowing the

correct shape improves secondary structure prediction of single sequences significantly.

However, in most realistic cases, we do not know the true shape in advance. The best

we can do then is to rely on the consensus shape computed by RNAcast. Note that even

when the predicted consensus shape is incorrect, it may still be close to the correct shape,

in which case the predicted structures may also resemble the truth closely.

6.5.2 Improvement over single sequence prediction

Next, I determined the accuracy of the structures predicted by RNAcast, regardless of the

predicted shape being correct or not.

I folded each RNA family in five different ways:

1. Single sequence prediction using RNAfold,

2+4. RNAcast on all pairwise combinations using shape abstractions π5 and π3, and

3+5. RNAcast in a multiple way on all family members at once, again in each case with

π5 and π3. The energy threshold R was set to 10 kcal/mol.

Figure 6.4 shows the (average) MCC of each prediction method. One can see that

“going comparative” pays off: In all cases but one (multiple tRNA folding with π5),

RNAcast performs better (or equal) than single sequence prediction. The clover leaf

prediction for tRNA failed - one arm of the clover leaf was missed. However, using the

less abstract shape mapping π3 yields the correct shape and a higher accuracy. One

can further see that using multiple sequences increases the reliability of the prediction.

Overall, π3 gives the highest accuracy especially for shorter sequences (≤ 150 bases), where

additional bulges or internal loops may be more important than in longer sequences. The

averaged MCC for RNAcast multiple with shape abstraction π3 is 0.77. This is an obvious

increase compared to 0.64 for single sequence prediction. With π5, the MCC is 0.72.

Pairwise predictions using π3 have an average MCC of 0.73 (0.7 for π5) – lower than for

the multiple approach, but still better than the single sequence approach.

While these results are already promising, I also want to relate RNAcast ’s performance

to existing comparative tools.
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Figure 6.4: Accuracy (MCC) of RNAcast on a set of RNA families sorted by their aver-

age size. The bars correspond to RNAfold (light yellow), RNAcast-π5 pairwise (orange),

RNAcast-π5 multiple (red), RNAcast-π3 pairwise (light blue), and RNAcast-π3 multiple

(dark blue).

6.5.3 Comparison to the Sankoff approach

Comparison to Dynalign

Dynalign was chosen as a representative of the (pairwise) Sankoff approach. In [Mathews

and Turner, 2002], the sensitivity of Dynalign is measured on a set of 5S rRNA. I found a

secondary structure for five sequences of that set in the database [Szymanski et al., 2000]

and applied RNAcast on them. Single sequence prediction performs relatively bad on this

data set (see row RNAfold in Table 6.4). Using RNAcast in a pairwise fashion clearly

improves the accuracy, but the results are still not satisfying. The average sensitivity of

(pairwise) Dynalign is 84.2% which is only topped by running RNAcast multiple on all

five sequences simultaneously. Then, a sensitivity value of 92% and an almost perfect

selectivity of 97.8% can be achieved.
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Program Sensitivity Selectivity Correlation

RNAfold 43.08 41.2 0.41

Dynalign 84.20 - -

RNAcast (pairwise) π3 59.10 62.40 0.60

RNAcast (multiple) π3 91.98 97.82 0.95

Table 6.4: Prediction accuracy for a set of 5S rRNA. Note: The evaluation of Dynalign,

taken from [Mathews and Turner, 2002], allows for slipping helices which we do not allow

in our evaluation. Selectivity and correlation were not given in [Mathews and Turner,

2002].

RNAcast RNAcast Carnac Dynalign

pairwise multiple

Sens. Corr. Sens. Corr. Sens. Corr. Sens. Corr.

11 tRNA-PHE 45.2 0.49 71.4 0.75 71.4 0.81 54.78 0.54

5 RNAse P 61.3 0.58 65.6 0.63 64.9 0.79 31.95 0.32

Table 6.5: Comparison to the Gardner study. RNAcast uses shape abstraction π5. The

Dynalign RNAse P results may improve for a larger window size. For detailed Carnac

and Dynalign parameter sets see [Gardner and Giegerich, 2004].

Comparison to the Gardner study

In [Gardner and Giegerich, 2004], several multiple RNA folding algorithms were eval-

uated. The study included three different approaches, where “Plan B” referred to tools

that approximate the Sankoff approach of simultaneous alignment and folding. I chose the

S.cerevisiae tRNA-PHE (11 sequences, high sequence similarity) and the E.coli RNAse P

(5 sequences, medium similarity) data sets from that study and compared the prediction

accuracies. Since Dynalign permits only pairwise folding, Gardner et al. folded the refer-

ence sequence with each of the other sequences at a time. I applied RNAcast in the same

fashion. The corresponding results are in column “RNAcast pairwise” and “Dynalign”

in Table 6.5. Dynalign performs better on the tRNA set, but RNAcast predicts better

structures on the RNAse P set. Carnac [Touzet and Perriquet, 2004] can fold multiple

sequences and performed quite well in the Gardner study. Naturally, my method yields

much better results for a multiple sequence input than for only two sequences (see col-

umn “multiple”). The average correlation increases from 53.5% to 69%. The sensitivity

is comparable to Carnac which in turn is almost perfectly selective and thus has a better

correlation.
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Comparison with FoldalignM study

Recently, a pairwise progressive multiple version of Foldalign has been introduced in

[Torarinsson et al., 2007]. The authors tested their algorithm and several others includ-

ing RNAcast on a set of 17 Rfam families. Unfortunately, they tested RNAcast with its

default parameters which sets the energy threshold R to 10% of the MFE. This threshold

turned out to be too low for 7 families, where RNAcast was not able to predict a consensus

structure. In order to allow for a fair comparison, I re-evaluated RNAcast ’s accuracy with

a higher threshold (10 kcal/mol) and obtained a consensus structure for all families. I

also included LocARNA into the evaluation. Since it predicts a single consensus structure

for all sequences, I had to map the structure back onto the individual sequences. Doing

so, I removed all non-canonical base pairs, since the test set was constructed in the same

manner. The results are shown in Table 6.6. RNAcast performs better than the combi-

nations of ClustalW +Pfold and ClustalW +RNAalifold. Yet, FoldalignM, CMfinder, and

LocARNA (in global, multiple mode), which are all computationally more expensive than

RNAcast, perform even better on the test data set.

It should be noted that this evaluation uses a different measure of accuracy than the

previous ones. Compatible base pairs are counted as false positives and thus reduce the

accuracy. I believe that RNAcast suffers disproportionally from this difference. By al-

gorithm construction, RNAalifold, FoldalignM, and CMfinder do not predict base pairs

which could be folded only in the minority of the sequences. Those base pairs are usually

the ones which are also not present in the reference consensus structure. In contrast,

RNAcast employs energy minimization to obtain the shreps and thus tends to predict ad-

ditional base pairs in accordance with the consensus shape which might not be conserved

in other family members. In order to test this hypothesis, I re-ran the evaluation with

my previous definition of false positives which does not count additional compatible base

pairs. As expected, the accuracy rises from 0.74 to 0.81. Thus, it can be concluded that a

significant amount of predicted base pairs do not contradict the consensus but are merely

additions to it. I did not re-evaluate the other programs, so one has to keep in mind that

their accuracy might also rise, but I expect their gain to be lower than RNAcast ’s.

Overall, the evaluations show that RNAcast outclasses single sequence prediction meth-

ods and to a lesser extent, procedures which fold an independently computed sequence

alignment. Depending on the test data set and the evaluation method, RNAcast has a

comparable or slightly worse performance than algorithms implementing the Sankoff-style

which in turn, are naturally a lot slower. Thus, the following directives may be given as

a rule of thumb:
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Family #seq FoldalignM CMfinder LocARNA Clustal/ Clustal/ RNAcast

Pfold Alifold

Entero CRE 56 0.75 0.77 0.81 0.95 0.71 0.77

Histone 3 63 1 1 1 1 1 1

IRE 29 0.83 0.92 0.95 0.67 0.64 0.71

Intron gpII 75 0.73 0.71 0.78 0.78 0.76 0.71

Lysine 48 0.60 0.77 0.76 0.59 0.22 0.74

Purine 29 0.89 0.90 0.74 0.76 0 0.77

RFN 47 0.73 0.73 0.80 0.72 0.77 0.62

Rhino CRE 12 0.82 0.96 0.69 0.66 0.77 0.73

SECIS 63 0.73 0.68 0.65 0 0 0.65

S box 64 0.73 0.81 0.81 0.77 0.72 0.71

tRNA-like 22 0.74 0.77 0.87 0.62 0.73 0.79

ctRNA pGA1 17 0.94 0.89 0.95 0.86 0.92 0.96

glmS 14 0.72 0.74 0.76 0.62 0.49 0.53

let-7 9 0.83 0.79 0.87 0.84 0.80 0.82

lin-4 9 0.78 0.76 0.84 0.72 0.73 0.78

mir-10 11 0.81 0.85 0.71 0.75 0.85 0.79

s2m 23 0.79 0.68 0.80 1 0.64 0.54

AVG 35 0.79 0.81 0.81 0.72 0.63 0.74

Table 6.6: Re-evaluation of RNAcast on several Rfam families with a higher energy thresh-

old. The performance is much better than reported in [Torarinsson et al., 2007]. Accuracy

in this study is measured with the approximate correlation coefficient and counting of com-

patible base pairs as false positives. All values except those for RNAcast and LocARNA

are from [Torarinsson et al., 2007].

1. If a good sequence alignment is available (usually with a mean pairwise identity

> 60–70%), use alignment folding.

2. Use RNAcast below 60-70% mean pairwise identity.

3. If running RNAcast does not yield a consensus shape, turn to a Sankoff-style algo-

rithm.

6.5.4 Detailed analysis of mispredictions

In the preliminary study, it turned out that the true shape is detected in 53% of all pairwise

predictions. Nevertheless, the MCC for pairwise predictions is over 70%. This raises the

question of how bad the wrong shapes really are? By visual inspection, I could classify a

few recurring situations, listed in Table 6.7.
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Error classification

additional hairpin predicted 3

multiloop enclosure 42

one hairpin missed 22

otherwise 41

total 107

Table 6.7: Recurring situations, for which RNAcast predicts the wrong shape. In general,

prediction accuracy on the base pair level for the first three cases is still rather high.

In three cases, all tRNAs, RNAcast predicts an additional hairpin not mentioned in

the database. This hairpin is the variable arm and therefore predicted correctly. On

other sequences (42), I found that parts of the reference structure were enclosed by an

additional helix, thus forming a multiloop. In my point of view, this situation cannot be

classified as false, either. It further confirms my choice not to count compatible base pairs

as false positives. Another point of error was the loss of one hairpin in 22 cases. Instead

of the hairpin, there is either a single-stranded region, or the region is consumed by the

prolongation of a neighboring helix. Nevertheless, the remaining structure is accurate. All

remaining cases (41) differ substantially from the reference and have to be admitted as

wrong predictions without an excuse.

In general, the accuracy for the first three situations is still rather high on the base

pair level. In fact, it is higher than single sequence predictions. Usually, sequences for

which RNAcast predicts a wrong shape have a low accuracy and are poorly predicted by

RNAfold as well.

6.5.5 Efficiency

Let me now recapitulate RNAcast ’s efficiency.

The enumeration phase runs in O(k · n3 + |P(s1)| + · · · + |P(sk)|). Step 2 runs in

time proportional to (k · n · |P(s1)|), since the algorithm needs to iterate only over the

list P(s1) and uses the hash table to look for co-occurrences in the other shape spaces

P(s2), . . . ,P(sk). Finally, scoring and sorting of candidates can be done in O(k ·l+ l∗log l)

time where l is the number of common shapes. In general, the P(si) are rather small and

the first step dominates the computation time.

As is to be expected from the asymptotic analysis, the efficiency of RNAcast is quite

good. It strongly depends on RNAshapes’ efficiency which has recently been optimized

[Steffen et al., 2006]. For reason of completeness, I also report the values for the old versions



RNAcast 87

Original measurements published in [Reeder and Giegerich, 2005]:

tRNA U2 RNA RNAse P

72 and 75 188 245 and 248

Program (Parameters) Time Memory Time Memory Time Memory

RNAcast (π5, R = 10) 0.6 19 4.5 29 22.5 80

RNAcast (π3, R = 10) 0.8 20 5.0 31 58.0 257

Dynalign (M=15) 488 20 7631 92 12718 141

Measurements using the current versions as of 2007:

RNAcast (π5, R = 5) 0.1 1 0.5 16 1.3 18

RNAcast (π3, R = 5) 0.1 3 0.5 16 1.5 20

RNAcast (π5, R = 10) 0.2 13 1.2 16 5.0 24

RNAcast (π3, R = 10) 0.2 13 1.5 19 25.5 143

LocARNA (p∗ = 0.01) 0.3 2 2.7 3 14.9 3

LocARNA (p∗ = 0.001) 0.5 2 4.8 3 73.0 4

Dynalign 5.7 10 54 17 127.1 23

Foldalign 2.5 6 66 33 164.5 62

Table 6.8: Time (in seconds) and memory (in MB) requirements for three pairwise pre-

dictions, measured on a 2.8 GHz Dual Xeon system with 2 GB RAM. Depending on the

actual parameter settings, RNAcast is faster than the Sankoff-style programs, except for

the case of π3 and a high R and LocARNA running with a low significance threshold.

of pairwise RNAcast and Dynalign in Table 6.8 which were used in the benchmark of the

original publication [Reeder and Giegerich, 2005], on which this chapter is based. While

at the time of publication, the difference in runtime between RNAcast and Dynalign (and

other Sankoff-like algorithms not benchmarked back then) was quite tremendous, the re-

cent improvements for Sankoff-style alignment programs (especially the heuristic employed

in LocARNA) reduce this gap considerably. Still, the consensus shapes approach is faster,

however, depending on the sequence length and the actual choice of shape abstraction

level and energy range. Only LocARNA with its default parameters (which might be

too optimistic in some cases) is faster than RNAcast (with conservative settings) on the

RNAse P sequence pair. Note that for long sequences and a high energy threshold, the

memory requirements of RNAcast are larger than those of the other programs. However,

most of the memory is already required by RNAshapes for the enumeration of the shape

spaces. The actual consensus analysis adds only a little overhead.

Of course, the true strength of RNAcast lies in its linear runtime dependence on the



88 RNAcast

5 U12 RNA 11 Sbox 29 Purine 75 Intron gpII

RNAcast (π5) 2.0 2.4 4.9 8.9

RNAcast (π3) 3.4 3.4 7.0 15.3

LocARNA 10.1 21.0 92.4 242.1

FoldalignM 355.4 482.8 2140.5 9297.2

Table 6.9: Runtime in seconds measured for predictions of multiple RNA sequences. With

increasing number of sequences, RNAcast ’s relative speed advantage becomes more obvi-

ous. For RNAcast, R was set to 10; the other programs used their default values.

number of sequences. Therefore, I also benchmarked it against LocARNA and FoldalignM

in a multiple fashion. The results are shown in Table 6.9. The runtime of FoldalignM is

at least a factor of 100 larger than my method and LocARNA’s around a factor of five to

more than ten. Obviously, the latter program’s heuristic is much more effective than the

first one’s. Nevertheless, both FoldalignM and LocARNA suffer from their quadratic de-

pendence on the number of input sequences, witnessed by the increasing relative difference

to RNAcast ’s runtime.

6.6 Discussion

6.6.1 Differences to the Sankoff notion of consensus

Let me once more relate RNAcast to Dynalign which is one of the best available approxi-

mations to the Sankoff algorithm. It is important to keep in mind that while the Sankoff

algorithm can, in principle, maximize sequence similarity alongside with free energy min-

imization, its Dynalign implementation minimizes gap penalties, but otherwise ignores

sequence content.

The quantitative results in the previous section show that the consensus shape method

is comparable or better in the quality of predictions and much faster computationally. In

that section, results from both tools were compared to a “gold standard” which is much

easier than comparing them to each other, because they pursue different objectives.

Remember that I have not presented another approach to implement the Sankoff algo-

rithm, but I have significantly changed the problem definition: While the Sankoff approach

determines a sequence alignment reflecting a common set of base pairs, consensus shape

prediction produces a consensus abstract shape together with its shrep for each sequence,

but no alignment. Since this deviates from the traditional and accepted notion, let us

discuss common aspects as well as differences from a conceptual point of view.
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Dynalign produces sequences aligned according to the predicted common base pairs,

hence with the same Level 5 shape. However, their Level 3 shapes may be different, as some

sequences may have gaps where others have bulges. In either case, the structures reported

are not necessarily the shreps of their respective shapes. One may refold the structures

individually with the consensus base pairs fixed, but then, the refolded structures may be

“out of shape”, because they exhibit additional hairpins.

RNAcast predictions are unaligned. Using the predicted shreps, a multiple structure

alignment may be obtained via RNAforester or similar structure alignment tools. From the

structure alignment, a sequence alignment, consistent with the consensus shape, may be

easily derived. The structure alignment also minimizes the number of gaps, but in contrast

to the Sankoff approach, it does so after structure prediction and not simultaneously.

Hence, one may expect cases where the Sankoff approach produces results that fix the

relative positions of helices more strongly, while with RNAcast, conserved helices may

move more flexibly. However, I have not observed this effect to a significant amount in my

studies. I demonstrate the combination of RNAcast and RNAforester in the next section.

6.7 Alignments of consensus structures

The evaluations performed so far clearly show that the consensus shape approach reliably

predicts most of the annotated base pairs. In order to mimic the usual outcome of Sankoff-

style algorithms, RNAcast ’s unaligned consensus structure prediction can be aligned with

the structural alignment tool RNAforester [Höchsmann et al., 2004]. A benchmark suite

for such alignments of structural RNAs is the BRAliBase [Gardner et al., 2005]. It provides

pairwise and multiple alignments of RNAs with mean pairwise sequence identity ranging

from 10 – 100 %. Performance of an algorithm to be tested on BRAliBase is measured

in terms of sum-of-pairs-score (SPS) and structure conservation index (SCI). The SPS

measures the amount of correctly aligned residues, while the SCI measures the amount of

conserved structural information in the alignment. Specifically, the SCI is defined as the

ratio of the alignment-folding score (computed by RNAalifold) and the average RNAfold-

MFE of the sequences contained in the alignment. Dataset II of BRAliBase contains over

one hundred pairwise tRNA alignments and was used in [Gardner et al., 2005] to assess

the performance of several (structural) alignment tools.

I designed a simple pipeline (called RNACaFo) which redirects RNAcast ’s output into

RNAforester and evaluated its performance on the data set II3. The outcome is shown in

Figures 6.5 and 6.6 (dotted red line). In the moderate to high homology region, the use of

3Joint work with Alexander Hosfeld, a diploma student under my supervision.
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Figure 6.5: SPS curves for the programs in the BRAliBase study augmented with curves

for RNACaFo (dotted red line) and RNAforecast (solid red line). While the former fails to

clearly separate from the pure sequence alignment programs, the latter outperforms even

Dynalign. In this study, α was set to 0.5, and shape abstraction π5 was used.

structural alignment programs is dispensable, since pure sequence alignments are usually

good enough. In the low homology region, RNACaFo shows little improvement in terms

of SPS over ProAlign, the best pure sequence alignment tool. Considering the SCI, the

situation looks more promising. Here, a clear separation of RNACaFo and the sequence

alignment tools is apparent. However, the accuracy of Sankoff-style approaches is not

reached. The significant difference of RNACaFo’s accuracy in terms of SCI compared to

SPS suggests that the alignments are more accurate in the helical parts. A misalignment

of conserved base pairs may prevent RNAalifold from assigning a particular base pair and

thus, results in a lower SCI score. On the other hand, misaligned loop regions only have

a minor influence on the SCI, but contribute on equal terms to the SPS as helical regions.
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Figure 6.6: SCI curves from the BRAliBase benchmark. Both RNACaFo and RNAforecast

surpass all pure sequence alignment tools in the interesting low homology region. The

latter even approaches the performance of the Sankoff-style alignment tools.

6.7.1 RNAforecast

Motivated by the results of the simple pipeline, the idea of an improved pipeline, called

RNAforecast, was born. It uses the information obtained from the structural alignments

to select better consensus shapes from the list of common shapes. The idea is formalized

by a further rank function:

5. RNAforecast score:

A linear combination of RNAcast and relative RNAforester score, where the α bal-

ances the influence of each score.

rank5(pi, p̂
i
1, . . . , p̂

i
k) = α ·

rank2(pi,p̂
i

1
,...,p̂i

k
)

k
∑

j=1

E(mfe(sj))

+ (1 − α) · forester score(p̂i
1, . . . , p̂

i
k)
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The first operand (multiplied by α) is the rank2 function defined earlier, normalized

with the sum of MFEs, thus a value from the interval [0 . . . 1]. (One could as well as use

rank3 instead of rank2 and change the denominator to k for rescaling to one.) The second

operand (weighted by (1 − α)) is the relative RNAforester score which is upper-bounded

by 1 but has no lower bound. For details on the scoring function and definition of the

relative score see [Höchsmann et al., 2004].

Of course, computing a multiple structural alignment for all common shapes adds a

considerable amount of computation time. Computing a single alignment of k structures

with maximal sequence length n requires O(n2d2k2) time, where d is the maximum de-

gree of a tree node. (Structures are handled as trees/forests in the model underlying

RNAforester.) Particularly note that RNAforecast ’s runtime does not scale linearly with

the number of sequences as RNAcast ’s, but quadratically.

Thus in practice, I restrict the alignment procedure to only the best, say ten, consensus

shapes, according to the RNAcast score. To give some real numbers: Consensus shape

prediction of five U2 RNAs (∼190 nucleotides) takes five seconds with RNAcast, while

the RNAforecast prediction takes about 100 seconds. Still, this is much faster than e.g.

FoldalignM, which takes over ten minutes on this particular data set, but in the same

range as LocARNA. For shorter sequences, say five typical tRNAs, the difference lies in

0.3 seconds for RNAcast versus 36 seconds for RNAforecast.

This raises the question whether the extension is justified by improved predictions.

Figures 6.5 and 6.6 (solid red line) give the answer. Both, SPS and SCI, values are lifted

to the level of Sankoff-style alignment programs. Again, the SCI is significantly higher

than SPS. Remember that the BRAliBase data set II consists of only pairwise alignments,

but RNAcast and RNAforecast can handle multiple sequences. It would be worthwhile

to set up a new test set or use the BRAliBase data set I and to evaluate the alignment

performance of the multiple Foldalign version, CMfinder, LocARNA, and RNAforecast.

The RNAforecast pipeline is conceptually similar to the MARNA approach [Siebert

and Backofen, 2005], but not identical for the following reason: MARNA independently

predicts, for each sequence, a small (hopefully representative) set of structures. It uses

either randomly sampled RNAs, generated by the probabilistic backtrace procedure of

RNAsubopt, or RNAshapes, as in my approach. However, in the next step, they perform

an all-against-all pairwise structural alignment and use the resulting scores as basis for

a multiple alignment with the T-Coffee system. Assuming k sequences of length n and

E structures per sequence, this approach requires O(E2 · k2) structural alignments, each

taking O(n4) time. Therefore, the number of structures per sequence E is set to a rather

small constant, say three, to keep the runtime practical.
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However, in the extended consensus shape approach, the expensive structural align-

ments are limited to structures exhibiting the same shape. Since we consider, for each

sequence, only one structure per shape, RNAforecast requires a factor of E less structural

comparisons. Hence, this allows us to look deeper into the suboptimal shape (structure)

space.

Note that another difference lies within the underlying model for structure comparison.

While RNAforester aligns trees, MARNA aligns arc-annotated sequences. Of course, I

could as well have used the latter for the pipeline.

6.8 Amalgamating pknotsRG and RNAcast

The original RNAshapes implementation considers only properly nested secondary struc-

ture in its folding space. However, the technique of abstract shape analysis can (at least

conceptually) easily be taught to any DP folding routine. To demonstrate this fact, I

implemented a prototype algorithm which employs abstract shape analysis for canonical

simple recursive pseudoknots. The algorithm uses an extended definition of the previously

introduced structure-to-shape mapping. Pseudoknots are indicated by square brackets for

the first stem (as regular helices in the previous shape notation) and curly brackets for

the second stem. Unpaired loop regions in pseudoknots are handled in the same way as

internal loops – they will appear only in shape Level 2 and lower. For a precise definition

of π5 and π3 see Table 6.10.

At the present time, the prototype implementation is, in practice, a lot slower than the

original pknotsRG for two reasons. First, it cannot be compiled with the ADP compiler,

since it requires the use of a classifying shape algebra in addition to the regular energy and

prettyprint algebras. Hence, it relies on the more powerful, but slower Haskell embedding

of ADP. Second, it does not employ the efficient backtracing procedure of RNAshapes (for

details see [Steffen, 2006], Chapter 5.1), but rather applies shape abstraction already in the

matrix fill stage. This is why the asymptotic runtime lies in O(n4 · |PR|) (with |PR| being

the number of suboptimal shapes residing within the chosen energy range R) rather than

in O(n4+|PR|), achievable with a separation of matrix fill and shape abstraction stage. To

give some concrete numbers: Computing all shapes within 10 kcal/mol of the MFE for a

sequence of length 100 nucleotides takes about 40 minutes. Reducing the energy threshold

to 5 kcal/mol, reduces runtime to 140 seconds. Note that the higher runtime does not

only stem from the less efficient implementation, but also from the drastic increase in the

size of the shape space when pseudoknots are considered. While a random sequence of

100 bases has 41 shapes within its 10 kcal/mol suboptimal nested shape space, the same
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π5(.) = ε ̺5(.) = ε

π5(.s) = π5(s) ̺5(.s) = ̺5(s)

π5(s.) = π5(s) ̺5(s.) = ̺5(s)

π5((s)) = [̺5(s)] ̺5((s)) = ̺5(s)

π5((s)s
′) = [̺5(s)]π5(s

′) ̺5((s)s
′) = π5((s)s

′)

π5([
ks{ls′]ks′′}l) = [π5(s){π5(s

′)]π5(s
′′)} ̺5([

ks{ls′]ks′′}l) = [π5(s){π5(s
′)]π5(s

′′)}

π3(.) = ε ̺3((s)) = ̺3(s)

π3(.s) = π3(s) ̺3(s) = π3(s) in all other cases

π3(s.) = π3(s)

π3((s)) = [̺3(s)]

π3((s)s
′) = [̺3(s)]π3(s

′)

π3([
ks{ls′]ks′′}l) = [π3(s){π3(s

′)]π3(s
′′)}

Table 6.10: Definition of level-5 (π5) and level-3 (π3) shape abstractions including rules

for canonical simple recursive pseudoknots.

sequence can fold into 541 different possibly pseudoknotted shapes.

Nevertheless, this first version of pknotsRG-shape allows us to perform single sequence

shape analysis for moderate size sequences and of course, also consensus shape analysis.

The techniques described earlier in this chapter can directly be applied on the pseudoknot

containing shape space. RNAcast can easily be modified to use pknotsRG-shape for the

enumeration of the shape spaces in step 1. Step 2 and step 3 require no modifications at all.

However, since RNAforester is unable to align pseudoknotted structures, the RNAforecast

approach cannot be used with pseudoknots.

To my knowledge, this is the first comparative pseudoknot folding algorithm which has

no prerequisites other than the pure sequences. Previous comparative pseudoknot folding

algorithms [Witwer et al., 2004; Ruan et al., 2004] require an initial sequence alignment

and thus, inherit all the problems of programs such as RNAalifold with misalignments of

low homology sequences.

I did not perform a thorough evaluation of this new approach, since there are only

very few RNA families in Rfam and other databases which contain pseudoknots and are

short enough to be folded with pknotsRG-shape. Instead, I demonstrate its applicability

by comparative folding of the ribosomal frameshift inducing element conserved in the

coronavirus family (Rfam ID: RF00507). While pknotsRG fails to predict the correct

topology for six out of eleven family members, the pseudoknot consensus method succeeds
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in finding it. The corresponding structures are given in Figure 6.7.

Considering the fact that there are many uncertainties in the pseudoknot energy model,

which poses an implicit disturbance in pseudoknot prediction from single sequences, I

am convinced that this method will be a leap forward in the detection of pseudoknots.

This, of course, assumes that the here described method will be re-implemented (semi-

automatically using the ADP compiler) in the most-efficient manner, employing the tricks

mentioned earlier with RNAshapes.

6.9 Potential improvements

Reality differs from my evaluation scenario. Database families can be considered reliable

homologues, but when a new (putative) family is investigated, one cannot be sure whether

structure is preserved. With consensus shape prediction, I would like to implement a

safeguard against members in the sequence set that really do not share the common

shape with the rest. Such a situation will most likely result in consensus garbage. In my

opinion, leave-one-out tests can be designed to recognize this situation. Such tests can be

implemented efficiently, because only steps 2 and 3 of the RNAcast algorithm, but not the

most costly step 1 must be iterated.

It should be kept in mind that the calls to RNAshapes are independent of each other

and thus can, in principle, be executed in parallel. Depending on the number of sequences,

this will reduce the runtime considerably. However, this feature is currently not imple-

mented.

Another point of disturbance arises, if the sequences under evaluation are, in fact, mem-

bers of an RNA family but are flanked by non-conserved sequence parts. I am convinced,

that my approach is relatively robust, as long as the conserved RNA sequences are flanked

by only a few bases. However, with larger, unrelated flanking sequences, the outcome will

usually not be correct. For such situations, one would like to have an adaptive window

approach which automatically chooses the interesting region for each sequence. Working

with an adaptive window size is a current research problem in RNA gene prediction. My

approach will certainly benefit from advances in this direction.

I have performed an overall evaluation of the new method but have not tried to opti-

mally adjust it to particular data sets. For example, when studying short molecules like

microRNA precursors, Level 2 abstraction, which distinguishes 5’-, 3’- bulges and internal

loops, might be more conclusive than Level 3. More systematic study and experience is

needed to provide guidance about the most conclusive level of shape abstraction to be

used in a particular context.
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Shape: [{][]} Score: -381.815827 relative Score: 0.97

> L22089.1/6839-6925 RF00507; Corona FSE;

CGCUUCCAAAUUCCAGACCCAACCGGGUCUGGAAUUGGGCUCUGCAAUUGGGUGUGACCCAGACGUGCAUUGGACAGCCUUUGGUGU

........[[[[[[[[[[[[.{{{]]]]]]]]]]]].((((.((((.(((((.....)))))...))))......))))...}}}.. (-38.40) R = 1

> M22457.1/6904-6990 RF00507; Corona FSE;

UGCAUCGAAGUUCCAGACCCAACCGGGUCUGGAGCUUGGUUCUGCUAUUGGAUGUGAUCCUGAUGUUCACUGGACCGCUUUUGGUGU

.......[[[[[[[[[[[[[.{{{]]]]]]]]]]]]](((((.((....((((...))))....)).....)))))......}}}.. (-35.60) R = 2

> X74312.1/6937-7023 RF00507; Corona FSE;

UGCAUCAAAGUUCCAGACCCAACCGGGUCUGGAACUAGGAUCAGCCAUUGGAUGUGACCCAGAUGUACACUGGACUGCCUUCGGUGU

........[[[[[[[[[[[[.{{{]]]]]]]]]]]].((..((((((.((.((((.......)))).)).))).)))))...}}}.. (-34.40) R = 23

> AF029248.1/13602-13686 RF00507; Corona FSE;

GGGUUCGGGGUACAAGUGUAAAUGCCCGUCUUGUACCCUGUGCCAGUGGCUUGGACACUGAUGUUCAAUUAAGGGCAUUUGACAU

.....[[[[[[[[[[[..{{{{{{{{{..]]]]]]]]]]]...(((((.......)))))............}}}}}}}}}.... (-35.30) R = 2

> AF391541.1/13342-13426 RF00507; Corona FSE;

GGGUUCGGGGUACGAGUGUAGAUGCCCGUCUCGUACCCUGUGCCAGUGGUUUAUCUACUGAUGUACAAUUAAGGGCAUUUGAUAU

......[[[[[[[[[[..{{{{{{{{{..]]]]]]]]]]((((((((((.....))))))..))))......}}}}}}}}}.... (-39.30) R = 1

> AY613949.1/13349-13430 RF00507; Corona FSE;

GGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCACUAGUACUGAUGUCGUCUACAGGGCUUUUGAUAU

......[[[[[[[[[[...{{{{{..]]]]]]]]]](((((((((((....)).))).)))))).....}}}}}........ (-31.60) R = 1

> AY338732.1/12302-12383 RF00507; Corona FSE;

GGGUACGGGGUAGCAGUGAGGCUCGGCUGAUACCCCUUGCUAAUGGAUGUGAUCCUGAUGUUGUAAAGCGAGCCUUUGAUGU

......[[[[[[.....{{{{{{{{.....]]]]]].(((....((((...)))).......)))...}}}}}}}}...... (-25.10) R = 1

> AJ271965.2/12339-12417 RF00507; Corona FSE;

GAGUGCGGGGUUCUAGUGCAGCUCGACUAGAACCCUGCAAUGGUACUGAUCCAGACCAUGUUAGUAGAGCUUUUGACAU

...[[[[[[[[[[[[[[..{{{{{.]]]]]]]]]]]]]](((((.(((...)))))))).......}}}}}........ (-36.40) R = 1

> X69721.1/12521-12599 RF00507; Corona FSE;

GAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAAUGGUACAGACAUAGAUUACUGUGUCCGUGCAUUUGACGU

.....[[[[[[[[[[[[......{{]]]]]]]]]]]].....((((.(((((((....))))))).))))......}}. (-35.40) R = 4

> AY518894.1/12426-12504 RF00507; Corona FSE;

GAGCAAGGGGUUCUAGUGCAGCUCGACUAGAACCCUGUAAUGGCACGGACAUCGAUAAGUGUGUUCGUGCUUUUGACAU

......[[[[[[[[[[[.....{{{]]]]]]]]]]].....(((((((((((........)))))))))))..}}}... (-31.60) R = 5

> AF353511.1/12621-12699 RF00507; Corona FSE;

GAGUACGGGGCUCUAGUGCAGCUCGACUAGAGCCCUGUAAUGGUACUGAUACACAACAUGUGUAUCGUGCUUUUGACAU

...[[[[[[[[[[[[[[.....{{{]]]]]]]]]]]]]]..(((((.(((((((.....))))))))))))..}}}... (-38.00) R = 2

Figure 6.7: Consensus shape prediction for the coronavirus frameshifting stimulation element. The three-stem pseudoknot

topology (schematic drawing on the right side, reproduced from [Staple and Butcher, 2005]) is predicted for all sequences.

Note that for some sequences, this shape is not ranked on position 1, i.e. it will not be predicted by pknotsRG as MFE.
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Structural alignments of common shapes can improve the quality of predictions, as

shown with the RNAforecast pipeline. However, this comes with an increase in asymptotic

time efficiency. Since RNAforester performs a pairwise all-against-all structural alignment

during the guide tree construction, the linear dependence on the number of input sequences

is lost. Therefore, improvements in this step will have a major impact on the overall

computation time. Here, I propose two alternative methods for the alignment step in the

RNAforecast pipeline: First, a faster “string-like-alignment” method can be used for the

guide tree construction, solely. The full structural alignment would then be performed

only for the progressive alignments along the tree. A similar approach has been suggested

in [Hofacker et al., 2004], where a fast (sequence) alignment of probability profiles is used

as a substitute for the expensive base pair matrix alignment. The authors claim that the

quality of the fast alignments is sufficient to construct the guide tree. Second, I propose

to restrict the structural alignments to those parts of the structures which correspond to

the same part in the shape string. To give an example, let us assume we are aligning two

structures both exhibiting the two-hairpin-shape [][]. Then, we can effectively divide

both sequences somewhere between the 3’-most paired base of the left hairpin and the

5’-most paired base of the right hairpin. The two smaller subsequence pairs can now be

aligned independently. Depending on the number of cut-points and how balanced the

subsequence lengths are, we can expect a significant reduction in runtime.

The Sankoff algorithm and its heuristic implementations principally score both se-

quence/structure conservation and free energy. However, the actual choices taken in

current implementations differ. Dynalign minimizes the combined score of energy and

a (positive) penalty for gaps. Foldalign maximizes a combined score of sequence similar-

ity (using a substitution matrix similar to RIBOSUM [Klein and Eddy, 2003]) and free

energy values multiplied by -10. LocARNA and PMmulti score sequence conservation and

base pair probabilities which of course, are derived from the free energy model. To my

knowledge, no exhaustive study has been conducted which aims on finding the optimal

combination or weighting of the two components. I am confident that RNAforecast, as

well as the above mentioned programs, will benefit from a such a study.
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Chapter 7

Conclusion

In this thesis, I presented the algorithm pknotsRG-mfe, based on the MFE-model, for

finding the best RNA structure including the pseudoknot class csr-PK. The algorithm

achieves time complexity O(n4) and space complexity O(n2). The runtime improvement,

compared to pknotsRE, results from the idea of canonization, while the space improve-

ment results from disallowing chained pseudoknots. The algorithm variant pknotsRG-enf

returns the energetically best structure that contains a pseudoknot (interesting when the

MFE structure is unknotted), while pknotsRG-loc reports the best pseudoknot (under a

length-normalized energy score) somewhere in a sequence. It achieves a high prediction ac-

curacy for moderate length sequences, whereas long sequences, at least when pseudoknots

are involved, seem to have a folding scheme that cannot be modeled with minimum free

energy folding. pknotsRG has been successfully applied in several biological publications,

e.g. [Roberts et al., 2004; Zeenko and Gallie, 2005; Dmitriev et al., 2007; Hansen et al.,

2007; Nibert, 2007]. Furthermore, it has been incorporated into various computational

pipelines [Huang et al., 2005; Moon et al., 2007; Taufer et al., 2007].

The algorithm pknotsRG is based on a simpler grammar model than the crossed in-

teraction grammars [Rivas and Eddy, 2000] underlying pknotsRE, as well as the commu-

nicating grammars underlying the approach by Cai et al. [2003]. It requires only a minor

extension over the ADP tree grammars which are applicable to a wide range of sequence

analysis problems [Giegerich et al., 2004a]. Furthermore, the grammar is not only a the-

oretical backup explaining the underlying model. With minor annotation for the sake of

efficiency, the grammar actually constitutes executable code. This means that pknotsRG

can serve as a template for a new class of programs which I call thermodynamic matchers.

I demonstrated this fact by showing the development and application of a thermodynamic

matcher for the detection of -1 ribosomal frameshift signals. Thermodynamic matchers,

which can include the class of pseudoknot defined in this thesis, can easily be defined by
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drawing them with the interactive Locomotif system [Reeder et al., 2007].

The current state-of-the-art RNA homology search tool, Infernal [Nawrocki and Eddy,

2007], ignores pseudoknot base pairs and thus, looses their covariance information. In some

cases, this may lead to misclassifications, especially if the amount of pseudoknotted bases

is rather high. The program pknotsRG can help researchers in the future to identify

known, pseudoknot containing RNA families in newly sequenced genomes. Family spe-

cific thermodynamic matchers can be defined, either automatically from the consensus

structure annotation or semi-automatically using the Locomotif system. In conjunction

with Infernal or even stand-alone, a matcher can give a strong hint at the thermodynamic

stability of a sequence forced into the family consensus structure.

A significant speedup for comparative RNA folding algorithms can be achieved by us-

ing heuristics relying on base pair probabilities. In this thesis, this method is employed

successfully for the first time in the context of pseudoknot prediction. The sparse version

of pknotsRG achieves an asymptotic runtime of around O(n3) (with a significance thresh-

old of p∗ = 1 · 10−8) – the same asymptotic efficiency class as regular folding of nested

RNA secondary structures.

In the second part of my thesis, I presented a new method for the consensus prediction

of multiple RNA sequences. It is based on the rationale that RNA molecules exhibiting

the same function often have a similar overall shape or structure. Building on the ab-

stract shapes approach, I devised a fast method which independently enumerates, for each

sequence, the suboptimal shape space and quickly identifies shapes common to all input

sequences. I showed that this method performs superior to single sequence prediction and

alignment folding programs. In comparison to (heuristic) algorithms implementing the

much more expensive Sankoff approach, the accuracy in terms of correctly predicted base

pairs is similar. In general, RNAcast is much faster than other comparative prediction

algorithms. Its main advantage is its linear dependence in runtime on the number of in-

put sequences. This allows us to use the full comparative power hidden in a set of related

sequences.

In order to strengthen RNAcast ’s predictions, I designed a pipeline, RNAforecast,

which employs the score of the structural RNAforester alignment in combination with the

original score for consensus shape ranking. This method shows a good performance in

the low-homology region below 60 % pairwise sequence identity – an area previously only

accessible with the much more expensive Sankoff implementations.

Finally, I implemented a functional prototype of a comparative pseudoknot prediction

algorithm by amalgamating the two independent approaches of this thesis. Assuming that
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a dramatically faster version of pknotsRG-shape will be available soon (which is straight-

forward, but time consuming to implement), this method will have a definite impact on

the prediction of RNA pseudoknots.
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Appendix

Nussinov78

The ADP implementation of Nussinov’s base pair maximization algorithm as explained in

section 3.2.1.

-- Haskell header --

import ADPCombinators -- download at
-- http://bibiserv.techfak.uni-bielefeld.de/adp/src/ADPCombinators.lhs

import Array
import List

-- The signature --

data M = Nil ()
| Unpaired M Char
| Pair Char M Char
| Split M M

deriving (Eq, Show)

-- Algebra type --

type Algebra alphabet answer = (
() -> answer,
answer -> alphabet -> answer,
alphabet -> answer -> alphabet -> answer,
answer -> answer -> answer,
[answer] -> [answer]
)

-- Enumeration algebra --

enum :: Algebra Char M
enum = (nil, unpaired, pair, split, h) where
nil = Nil
unpaired = Unpaired
pair = Pair
split = Split
h = id
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-- Counting algebra --

count :: Algebra Char Int
count = (nil, unpaired, pair, split, h) where
nil a = 1
unpaired a b = a
pair a b c = b
split a b = a * b
h [] = []
h xs = [sum xs]

-- Base pair maximization algebra --

bpmax :: Algebra Char Int
bpmax = (nil, unpaired, pair, split, h) where
nil () = 0
unpaired a b = a
pair a b c = b + 1
split a b = a + b
h [] = []
h xs = [maximum xs]

-- Pretty printing algebra --

pp :: Algebra Char String
pp = (nil, unpaired, pair, split, h) where
nil () = ""
unpaired a b = a ++ "."
pair b c d = ’(’: c ++ ")"
split a b = a ++ b
h = id

-- Algebra product operation --

infix ***
(***) :: Eq answer1 =

(Algebra Char answer1) -> (Algebra Char answer2) ->
Algebra Char (answer1, answer2)

alg1 *** alg2 = (nil, unpaired, pair, split, h) where
(nil1, unpaired1, pair1, split1, h1) = alg1
(nil2, unpaired2, pair2, split2, h2) = alg2

nil a = (nil1 a, nil2 a)
unpaired (a1,a2) b = (unpaired1 a1 b, unpaired2 a2 b)
pair a (b1,b2) c = (pair1 a b1 c, pair2 a b2 c)
split (a1,a2) (b1,b2) = (split1 a1 b1, split2 a2 b2)

h xs = [(x1,x2)| x1 <- nub $ h1 [ y1 | (y1,y2) <- xs],
x2 <- h2 [ y2 | (y1,y2) <- xs, y1 == x1]]
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-- The yield grammar --

nussinov78 alg f = axiom m where
(nil, unpaired, pair, split, h) = alg

m = tabulated(
nil <<< empty |||
unpaired <<< m ~~- base |||
split <<< m ~~! (pair <<< base -~~ m ~~- base )

‘with‘ basepairing ... h)
where
infixl 7 ~~!
(~~!) = (*~*) 0 3

Bind input:

z = mk f
(_,n) = bounds z
base = achar’ z
axiom = axiom’ n
tabulated = table n

basepairing :: Filter
basepairing = match z
match inp (i,j) = i+1<j && basepair (z!(i+1), z!(j))
basepair (’a’,’u’) = True
basepair (’u’,’a’) = True
basepair (’c’,’g’) = True
basepair (’g’,’c’) = True
basepair (’g’,’u’) = True
basepair (’u’,’g’) = True
basepair ( x , y ) = False

pknotsRG

This code shows the complete yield grammar underlying the algorithm pknotsRG. The

start symbol (axiom) is struct.

struct = listed (
sadd <<< base -~~ struct |||
cadd <<< dangle’ ~~~ struct |||
nil <<< empty’ ... h_l)

dangle’ = dangle ||| dangleknot ... h
dangle = edl <<< base -~~ closed ~~. loc |||

edr <<< loc .~~ closed ~~- base |||
edlr <<< base -~~ closed ~~- base |||
is <<< loc .~~ closed ~~. loc ... h

dangleknot = kndr <<< knot ~~- base |||
kndl <<< base -~~ knot |||
kndlr<<< base -~~ knot ~~- base |||
pk <<< knot ... h
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closed = tabulated (
(stack ||| hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ stackpair ... h)

stack = sr <<< base -~~ closed ~~- base
hairpin = hl <<< base -~~ base --~ (region ‘with‘ (minloopsize 3))

~~- base ~~- base
leftB = bl <<< base -~~ base --~ region ~~~ closed ~~- base ~~- base ... h
rightB = br <<< base -~~ base --~ closed ~~~ region ~~- base ~~- base ... h
iloop = il <<< base -~~ base --~ region ~+~ (closed, region)

~~- base ~~- base ... h

multiloop =
mldl <<< base -~~ base --~ base --- ml_comps1 ~~- base ~~- base |||
mldr <<< base -~~ base --~ ml_comps1 ~~- base ~~- base ~~- base |||
mldlr<<< base -~~ base --~ base --- ml_comps1 ~~- base ~~- base ~~- base |||
ml <<< base -~~ base --~ ml_comps1 ~~- base ~~- base ... h

where
ml_comps1 = tabulated (

sadd <<< base -~~ ml_comps1 |||
cadd <<< mldangle ~~~ ml_comps |||
cor <<< (region ‘with‘ (minloopsize 3))

~~~ (ul <<< (pkml <<< dangleknot)) |||
addss <<< (pkml <<< dangleknot)

~~~ (region ‘with‘ (minloopsize 3)) ... h_l)
-- a single pseudoknot inside a multiloop

ml_comps = tabulated (
sadd <<< base -~~ ml_comps |||
cadd <<< mldangle ~~~ ml_comps |||
addss<<< mldangle ~~~ uregion ... h_l)

pk_comps = tabulated ( -- in pk_comps unpaired bases yield a npp penalty
cadd <<< singlestrand -~~ pk_comps ||| -- one single base at a time
cadd <<< mldangle ~~~ pk_comps |||
cadd <<< mldangle ~~~ (ul <<< emptystrand) ... h_l)

mldangle = mlstem <<< dangle ||| -- adds ml_penalty (40)
pkml <<< dangleknot ... h -- adds pkml_penalty (600)

knot = tabulated ( pknot ... h_p)

-- Construction of the pseudoknot out of 4 regions (2 stems) and 3 internal
-- components. Note that one base in front and two bases in back are left
-- unpaired explicitly.

pknot (i,j) = [pk energy a u b v a’ w b’ | k<-[i+3 .. j-8], l<-[k+4 .. j-4],

-- look up precomputed helix lengths
(alphanrg, alphalen) <- stacklen (i,k),
(betanrg, betalen) <- stacklen (l,j),

-- don’t let a-a’ and b-b’ collide within u
let h = min alphalen (k-i-1),
h >= 2,
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-- don’t let a-a’ and b-b’ collide within w
let tmph’ = min betalen (j-l-2),

-- don’t let a-a’ and b-b’ collide within v
let h’ = min tmph’ (l-k-h),
h’ >= 2,

a <- region (i , i+h ),
u <- front j (i+h+1, k ),
b <- region (k , k+h’ ),
v <- middle (j-h’) (i+h) (k+h’ , l-h ),
a’<- region (l-h , l ),
w <- back i (l , j-h’-2 ),
b’<- region (j-h’ , j ),

-- recalculate the energy of shrinked helices
(acorrectionterm, _) <- stacklen (i+h -1,l-h +1),
(bcorrectionterm, _) <- stacklen (k+h’-1,j-h’+1),
let energy = alphanrg - acorrectionterm

+ betanrg - bcorrectionterm
] where

-- The internal parts of a pseudoknot:

front j = front’ |||
frd j <<< front’ ~~- base ... h_l

-- one base dangling of b,b’
front’ = ul <<< emptystrand |||

pk_comps ... h_l

middle k l = emptymid k l <<< empty |||
midbase k l <<< base |||
middlro k l <<< base -~~ base |||
middl k <<< base -~~ mid |||
middr l <<< mid ~~- base |||
middlr k l <<< base -~~ mid ~~- base |||

mid ... h_l
mid = ul <<< singlestrand |||

pk_comps ... h_l

back i = back’ |||
bkd i <<< base -~~ back’ ... h_l

-- one base dangling of a,a’
back’ = ul <<< emptystrand |||

pk_comps ... h_l

singlestrand = pss <<< region
emptystrand = pss <<< uregion
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Data sets

Sequences used in the evaluation of pknotsRG. The first three entries each represent a set

of sequences. # BP = number of base pairs in the reference structure.

Sequence ID Description Length # BP Reference

PseudoBase Collection of pseudoknots

extracted from the literature

variable variable [van Batenburg

et al., 2001]

7 HIVRT Ligands of HIV reverse tran-

scriptase isolated by SELEX

35 11 [Tuerk et al., 1992]

11 tRNAs Selected transfer RNAs 71-82 18-19 [Sprinzl et al.,

1998]

HDV Self-cleaving HDV ribozyme 87 32 [Ferré-D’Amaré

et al., 1998]

TYMV tRNA-like structure of 3’ end

of TYMV

86 24 [Deiman et al.,

1997]

TMV-up Upstream pseudoknot do-

main of the 3’ UTR of TMV

85 25 [van Belkum et al.,

1985]

TMV-down tRNA-like downstream pseu-

doknot domain of the 3’

UTR of TMV

105 34 [van Belkum et al.,

1985]

ORSV 3’ UTR of ORSV possibly in-

volved in virus replication

419 136 [Gultyaev et al.,

1994]

STNV 3’ UTR of STNV involved in

regulation of translation

252 69 [Danthinne et al.,

1991]

tmRNA Transfer-messenger RNA of

E.coli rescues stalled ribo-

somes by trans-translation

363 104 [Nameki et al.,

1999]

Table A.1: pknotsRG test data set.
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The following data set has been used in the evaluation of RNAcast. A complete list of all

sequences and structures is also available at http://bibiserv.techfak.uni-bielefeld.

de/rnacast/references.html.

ID length # Description Source

lin4 70-72 9 microRNA precursor Rfam [Griffiths-

Jones et al., 2003]

IRES 79-84 7 IRES regions of Picornaviridae

viruses

[Witwer et al.,

2001]

tRNA 76-93 11 transfer RNA [Sprinzl et al., 1998]

srp RNA 78-107 4 RNA of the Signal Recognition Par-

ticle (Eubacterial)

SRPDB [Rosenblad

et al., 2003]

riboswitch 97-100 7 Purine riboswitch Rfam

S box 103-114 11 SAM riboswitch (S box leader) Rfam

5S rRNA 117-120 5 Component of the large ribosomal

subunit

5S rRNA DB [Szy-

manski et al., 2000]

U12 RNA 130-157 6 Small nuclear RNA, component of

the spliceosome

Rfam

U1 RNA 157-163 4 See U12 Rfam

U2 RNA 188-197 5 See U12 Rfam

Table A.2: RNAcast test data set.
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Ferré-D’Amaré, A. R., Zhou, K. and Doudna, J. A. (1998) Crystal structure of a hepatitis delta

virus ribozyme. Nature, 395, 567–674.

Gardner, P. P. and Giegerich, R. (2004) A comprehensive comparison of comparative RNA struc-

ture prediction approaches. BMC Bioinformatics, 5.

Gardner, P. P., Wilm, A. and Washietl, S. (2005) A benchmark of multiple sequence alignment

programs upon structural RNAs. Nucleic Acids Research, 33, 2433–2439.

Giegerich, R. (2000) Explaining and controlling ambiguity in dynamic programming. In Proc.

Combinatorial Pattern Matching, pp. 46–59. Springer Verlag.

Giegerich, R. and Meyer, C. (2002) Algebraic Dynamic Programming. In Kirchner, H. and Ringeis-

sen, C. (eds.), Algebraic Methodology And Software Technology, 9th International Conference,

AMAST 2002, pp. 349–364. Springer LNCS 2422, Saint-Gilles-les-Bains, Reunion Island, France.

Giegerich, R., Meyer, C. and Steffen, P. (2004a) A discipline of dynamic programming over sequence

data. Science of Computer Programming, 51, 215–263.

Giegerich, R. and Steffen, P. (2006) Challenges in the compilation of a domain specific language

for dynamic programming. In Proceedings of the 2006 ACM Symposium on Applied Computing.

Giegerich, R., Voss, B. and Rehmsmeier, M. (2004b) Abstract Shapes of RNA. Nucleic Acids

Research, 32, 4843–4851.

Gorodkin, J., Heyer, L. J. and Stormo, G. D. (1997) Finding the most significant common sequence

and structure motifs in a set of RNA sequences. Nucleic Acids Research, 25, 3724–3732.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. and Eddy, S. R. (2003) Rfam: an RNA

family database. Nucleic Acids Research, 31, 439–441.

Gultyaev, A. P., van Batenburg, F. and Pleij, C. (1999) An approximation of loop free energy

values of RNA H-pseudoknots. RNA, 5, 609–617.

Gultyaev, A. P., van Batenburg, F. and Pleij, C. W. A. (1994) Similarities between the secondary

structure of satellite tobacco mosaic virus and tobamovirus RNAs. Journal of General Virology,

75, 2851–2856.

Gutell, R. R., Power, A., Hertz, G. Z., Putz, E. J. and Stormo, G. D. (1992) Identifying constraints

on the higher-order structure of RNA: continued development and application of comparative

sequence analysis methods. Nucleic Acids Research, 20, 5785–5795.

Hammell, A. B., Taylor, R. C., Peltz, S. W. and Dinman, J. D. (1999) Identification of Putative

Programmed -1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Research, 9,

417–427.



114 Bibliography

Hansen, T. M., Reihani, S. N. S., Oddershede, L. B. and Sørensen, M. A. (2007) Correlation

between mechanical strength of messenger rna pseudoknots and ribosomal frameshifting. Pro-

ceedings of the National Academy of Sciences, 104, 5830–5835.

Harmanci, A., Sharma, G. and Mathews, D. (2007) Efficient pairwise rna structure prediction

using probabilistic alignment constraints in dynalign. BMC Bioinformatics, 8, 130.

Havgaard, J. H., Lyngsø, R. B., Stormo, G. D. and Gorodkin, J. (2005) Pairwise local structural

alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21, 1815–

1824.

Havgaard, J. H., Torarinsson, E. and Gorodkin, J. (2007) Fast pairwise structural RNA alignments

by pruning of the dynamical programming matrix. PLoS Computational Biology, 3, 1896–1908.
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