
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 2017

Big data analytics in computational biology and bioinformatics Big data analytics in computational biology and bioinformatics

Kevin Byron
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Byron, Kevin, "Big data analytics in computational biology and bioinformatics" (2017). Dissertations. 17.
https://digitalcommons.njit.edu/dissertations/17

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/17?utm_source=digitalcommons.njit.edu%2Fdissertations%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

BIG DATA ANALYTICS
IN COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

by
Kevin Byron

Big data analytics in computational biology and bioinformatics refers to an array of

operations including biological pattern discovery, classification, prediction, inference,

clustering as well as data mining in the cloud, among others. This dissertation

addresses big data analytics by investigating two important operations, namely

pattern discovery and network inference.

The dissertation starts by focusing on biological pattern discovery at a genomic

scale. Research reveals that the secondary structure in non-coding RNA (ncRNA)

is more conserved during evolution than its primary nucleotide sequence. Using a

covariance model approach, the stems and loops of an ncRNA secondary structure

are represented as a statistical image against which an entire genome can be efficiently

scanned for matching patterns. The covariance model approach is then further

extended, in combination with a structural clustering algorithm and a random forests

classifier, to perform genome-wide search for similarities in ncRNA tertiary structures.

The dissertation then presents methods for gene network inference. Vast bodies

of genomic data containing gene and protein expression patterns are now available for

analysis. One challenge is to apply efficient methodologies to uncover more knowledge

about the cellular functions. Very little is known concerning how genes regulate

cellular activities. A gene regulatory network (GRN) can be represented by a directed

graph in which each node is a gene and each edge or link is a regulatory effect that

one gene has on another gene. By evaluating gene expression patterns, researchers

perform in silico data analyses in systems biology, in particular GRN inference, where

the “reverse engineering” is involved in predicting how a system works by looking at

the system output alone.

Many algorithmic and statistical approaches have been developed to compu-

tationally reverse engineer biological systems. However, there are no known bioin-

formatics tools capable of performing perfect GRN inference. Here, extensive

experiments are conducted to evaluate and compare recent bioinformatics tools for

inferring GRNs from time-series gene expression data. Standard performance metrics

for these tools based on both simulated and real data sets are generally low, suggesting

that further efforts are needed to develop more reliable GRN inference tools. It is

also observed that using multiple tools together can help identify true regulatory

interactions between genes, a finding consistent with those reported in the literature.

Finally, the dissertation discusses and presents a framework for parallelizing GRN

inference methods using Apache Hadoop in a cloud environment.

BIG DATA ANALYTICS
IN COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

by
Kevin Byron

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2017

Copyright c© 2017 by Kevin Byron

ALL RIGHTS RESERVED

APPROVAL PAGE

BIG DATA ANALYTICS
IN COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Kevin Byron

Dr. Jason T. L. Wang, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. James McHugh, Committee Member Date
Professor of Computer Science, NJIT

Dr. David Nassimi, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Associate Professor of School of Management, NJIT

Dr. Katherine G. Herbert, Committee Member Date
Associate Professor of Computer Science, Montclair State University

BIOGRAPHICAL SKETCH

Author: 	 Kevin Byron

Degree: 	 Doctor of Philosophy

Date: 	 May 2017

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2017

• Master of Science in Computer Science,
Stevens Institute of Technology, Hoboken, NJ, 1987

• Bachelor of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1983

• Associate in Applied Science in Computer Science,
Union County Technical Institute, Scotch Plains, NJ, 1975

Major: 	 Computer Science

Presentations and Publications:

K. Byron, K. G. Herbert, and J. T. L. Wang. Bioinformatics Database Systems,
Abingdon, UK: Taylor & Francis, 2017.

Y. Abduallah, T. Turki, K. Byron, Z. Du, M. Cervantes-Cervantes, and J. T. L.
Wang, "MapReduce algorithms for inferring gene regulatory networks using
an information-theoretic approach," BioMed Research International, 2017.

M. Vasavada, K. Byron, Y. Song, and J. T. L. Wang. "Genome-wide search for
pseudoknotted non-coding RNA: a comparative study," In Pattern Recognition
in Computational Molecular Biology: Techniques and Approaches (Wiley
Series in Bioinformatics), Hoboken, NJ: John Wiley & Sons, 2016.

K. Byron, J. T. L. Wang and D. Wen, "Genome-wide prediction of coaxial helical
stacking using random forests and covariance models," International Journal
on Artificial Intelligence Tools, Vol. 23, No. 3, 2014.

iv

K. Byron, C. Laing, D. Wen and J. T. L. Wang, “A computational approach to finding
RNA tertiary motifs in genomic sequences: a case study,” Recent Patents on
DNA & Gene Sequences, Vol. 7, No. 2, pp. 115-122, 2013.

K. Byron, J. T. L. Wang and D. Wen, “Genome-wide search for coaxial helical
stacking motifs,” IEEE 12th International Conference on Bioinformatics &
Bioengineering (BIBE), Cyprus, pp. 260-265, 2012.

K. Byron, M. Cervantes-Cervantes and J. T. L. Wang, “Biological informatics: data,
tools and applications,” in Computational Intelligence and Pattern Analysis
in Biological Informatics, (eds. U. Maulik, S. Bandyopadhyay and J. T. L.
Wang), Chapter 3, Hoboken, NJ: John Wiley & Sons, Inc., pp. 59-69, 2010.

K. Byron, M. Cervantes-Cervantes, J. T. L. Wang, W. C. Lin and Y. Park, “Mining
roX1 RNA in drosophila genomes using covariance models,” International
Journal of Computational Bioscience, Vol. 1, No. 1, pp. 22-32, 2010.

v

To Jutka.

vi

ACKNOWLEDGMENT

I thank my mentors, my dissertation committee, NJIT, the CS department staff, the

GSO staff, my friends, my family and the good Lord.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Gene Ontology as an Enabling Tool for Mining 1

1.2 Biological Pattern Discovery . 3

1.3 Biological Data Classification . 5

1.4 Biological Data Clustering . 7

1.5 Biological Network Inference . 9

1.6 Biological Data Mining in the Cloud 9

2 BIOLOGICAL PATTERN DISCOVERY: CASE STUDIES 14

2.1 Introduction . 14

2.2 A Case Study in RNA Secondary Structure Data Mining 14

2.2.1 Introduction . 15

2.2.2 Methods . 16

2.2.3 Results . 20

2.2.4 Conclusion . 26

2.3 A Case Study in RNA Tertiary Structure Data Mining 27

2.3.1 Introduction . 28

2.3.2 Methods . 30

2.3.3 Results . 40

2.3.4 Conclusion . 45

3 BIOLOGICAL NETWORK INFERENCE: A COMPARATIVE REVIEW 46

3.1 Introduction . 46

3.2 Methods . 49

3.2.1 Information Theoretic . 51

3.2.2 Bayesian . 54

3.2.3 Granger Causality . 58

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.4 Boolean . 62

3.2.5 Ordinary Differential Equations (ODE) 66

3.2.6 Tree-Based . 70

3.3 Results . 75

3.4 Discussion . 80

3.5 Conclusions . 82

4 CLOUD-BASED BIOLOGICAL NETWORK INFERENCE: A FRAMEWORK 83

4.1 Introduction . 83

4.2 Map-Reduce GRN Inference Algorithm Using MI and GO 84

5 CONCLUSIONS AND FUTURE WORK 89

REFERENCES . 90

ix

LIST OF TABLES

Table Page

1.1 Twelve Model Organisms Selected for Targeted Curation and Their
Respective Databases . 4

1.2 List of GO Slims Maintained by GO Consortium as Part of the GO Flat
File . 4

1.3 List of Current Cloud-Based Platforms Used for Bioinformatics Research
and Their URLs (last accessed on 4-3-2017). 13

2.1 Selected Drosophila roX1 Sequences (Source: www.flybase.org; Cr =
chromosome; Sc = scaffold) . 18

2.2 Description of Twelve Drosophila Genomes Downloaded from FlyBase
Public Database . 22

2.3 Summary of Homologues Found in Seven Drosophila Species Showing CM
Score, FlyBase Region, Region Coordinates, Strand and roX1 Status
for Each Homologue . 25

2.4 Features Used in the Random Forests Classifier for the Case Study
Including Name, Value and Description for Each Classifier Feature . . 37

2.5 Successful Search Results from Twelve CSminer Experiments Showing
Genome ID, Species, Positions, Strand, Coaxial Stacking Status and
Validation Status for Each Result . 42

2.6 Species and Kingdom for Each PDB Molecule Used to Build the
Covariance Models Employed by CSminer 43

3.1 Time-Series Gene Regulatory Network (GRN) Inference Tools Evaluated 74

x

LIST OF FIGURES

Figure Page

2.1 Three RNA topological families, A, B, and C, of 3-Way RNA junctions
containing a coaxial helical stacking. 29

2.2 Secondary structure plot of chain A from PDB molecule 3E5C. 33

2.3 Three-dimensional plot of chain A from PDB molecule 3E5C. 34

2.4 Hypothetical 3-way RNA junction illustrating random forests classifier
features. 35

2.5 Stockholm format multiple sequence alignment of ncRNA molecules from
six PDB samples. 39

2.6 CSminer’s prediction result on the genome of D. radiodurans. 40

3.1 Using a reverse engineering approach, a gene regulatory network (GRN)
is inferred from time-series gene expression data produced from a
microarray or RNA-Seq experiment. 48

3.2 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) TimeDelay-ARACNE’s predicted GRN when applied
to DREAM4 data. To aid comparative analysis, when a gene appeared
in both GRNs, that gene on one GRN was positioned similar to its
corresponding gene on the other GRN. 52

3.3 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) TimeDelay-ARACNE’s predicted GRN when applied
to ESCAPE data. To aid comparative analysis, when a gene appeared
in both GRNs, that gene on one GRN was positioned similar to its
corresponding gene on the other GRN. 53

3.4 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) MIDER’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 54

3.5 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) networkBMA’s predicted GRN when applied to
DREAM4 data. To aid comparative analysis, when a gene appeared
in both GRNs, that gene on one GRN was positioned similar to its
corresponding gene on the other GRN. 57

xi

LIST OF FIGURES
(Continued)

Figure Page

3.6 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) networkBMA’s predicted GRN when applied to
ESCAPE data. To aid comparative analysis, when a gene appeared
in both GRNs, that gene on one GRN was positioned similar to its
corresponding gene on the other GRN. 58

3.7 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) CGC-2SPR’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 62

3.8 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) CGC-2SPR’s predicted GRN when applied to ESCAPE
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 63

3.9 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) BoolNet’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 67

3.10 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) BoolNet’s predicted GRN when applied to ESCAPE
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 67

3.11 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) Inferelator’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 71

3.12 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) Inferelator’s predicted GRN when applied to ESCAPE
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 71

xii

LIST OF FIGURES
(Continued)

Figure Page

3.13 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) Jump3’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs,
that gene on one GRN was positioned similar to its corresponding gene
on the other GRN. 73

3.14 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) Jump3’s predicted GRN when applied to ESCAPE data.
To aid comparative analysis, when a gene appeared in both GRNs, that
gene on one GRN was positioned similar to its corresponding gene on
the other GRN. 74

3.15 Overall accuracy metrics of seven GRN inference tools applied against
DREAM4 synthetic time-series gene expression profile. 76

3.16 Overall accuracy metrics of six GRN inference tools applied against
ESCAPE experimental time-series gene expression profile. 77

3.17 Balanced accuracy metrics of seven GRN inference tools applied against
DREAM4 synthetic time-series gene expression profile. 78

3.18 Balanced accuracy metrics of six GRN inference tools applied against
ESCAPE experimental time-series gene expression profile. 79

4.1 MapReduce framework showing network inference with Gene Ontology
(GO) edge certification. 87

xiii

CHAPTER 1

INTRODUCTION

1.1 Gene Ontology as an Enabling Tool for Mining

Recently, there has been much discussion on how to report biology knowledge in

information systems. While it is difficult to persuade various stakeholders to alter

processes they have become used to, there is general consensus about the need for a

common, concise vocabulary of biological terms. An ontology provides a vocabulary

for representing and communicating knowledge about a topic [14]. The Gene Ontology

(GO) Consortium was formed in 1998 to establish and maintain an ontology about

gene information. Over time, additional biology and medical ontology groups formed

and today they are collectively called the Open Biomedical Ontologies (OBO) group.

The OBO Foundry consists of ontologies in various stages of maturity. Among

the more mature ontologies are the Cell Ontology (CL), Gene Ontology (GO),

Foundational Model of Anatomy (FMA) and the Zebrafish Anatomical Ontology

(ZAO).

In 2000, the GO consortium was a joint project of three model organism

databases: FlyBase, Mouse Genome Informatics (MGI) and the Saccharomyces

Genome Database (SGD). The goal of the consortium was to produce a precisely

defined, structured, common, controlled vocabulary describing the roles of genes and

gene products in any organism. [8] Within the gene ontology (GO), the following

ontologies developed:

• biological process ontology: a biological objective to which the gene or gene
product contributes;

• molecular function ontology: the biochemical activity of a gene product;

• cellular component ontology: a place in the cell where a gene product is active.

1

The Gene Ontology (GO) (http://www.geneontology.org - last accessed on 4-3-2017)

is a community bioinformatics resource [13]. Each GO entry has a unique numeric

identifier. Table 1.1 lists twelve model organisms selected for targeted curation. Each

organism is shown with the name of its respective database.

Gene ontology (GO) information exists as a publicly available flat file. The

current version of the full GO data set (last accessed on 4-3-2017) is located at

ftp://ftp.geneontology.org/pub/go/ontology/go.obo.

Predetermined sets of GO terms, called GO Slims, are used to aggregate gene product

information. GO slims may be created by users according to their needs, and may be

specific to species or to particular areas of the gene ontology. Go Slims provided by

the Gene Ontology Consortium (GCO) (last accessed on 4-3-2017) are described at

http://www.geneontology.org/GO.slims.shtml.

Table 1.2 identifies GO slims maintained by GOC curators and others. As a GO

flat file evolves, the respective Go Slim is updated simultaneously. Users can create

customized GO Slims using the OBO-Edit tool (last accessed on 4-3-2017) available

at

http://oboedit.org/.

OBO-Edit is an open source ontology editor written in Java. As an example, there

is a GO Slim data set for the yeast, Saccharomyces cerevisiae, genome. The current

version of the GO Slim yeast data set (last accessed on 4-3-2017) can be downloaded

from

http://www.geneontology.org.

In addition to OBO-Edit, another valuable GO utility is AmiGO. AmiGO is a

web-based tool that provides access to all terms and annotations in the GO database

[13]. AmiGO users can browse the ontology terms and search the annotations. AmiGO

2

(last accessed on 4-3-2017) is available at

http://amigo.geneontology.org.

Each gene ontology entry is classified as a biological process, molecular function

or cellular component. GO is used to compare computational biology experiments

with wet lab results. GO is also useful in establishing gene regulatory networks (GRN).

To map genes to GO terms, a mapping data set (last accessed on 4-3-2017) is provided

by NCBI at

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz.

The hypergeometric test can be used to identify whether or not a cluster of ncRNA

genes has a better than average chance of possessing a specific GO trait. This is a

valuable tool when analyzing unknown ncRNA genes. Khaladkar, et al., [56] used the

gene ontology to classify functions of ncRNA genes utilizing hypergeometric testing.

1.2 Biological Pattern Discovery

Pattern discovery is the problem of finding recurring patterns in biological data.

Patterns can be sequential, mainly when discovered in DNA sequences. Patterns can

also be structural (e.g., when discovering RNA motifs). Finding common structural

patterns helps to understand cellular mechanisms, such as post-transcriptional

regulation. Unlike sequentially conserved DNA motifs, RNA motifs exhibit conser-

vation in structure, which may be common even if the sequences are different.

Hundreds of algorithms have been developed to solve the sequential motif discovery

problem, while less work has been done for the structural motif discovery case.

Finding recurring patterns, motifs, in biological data gives an indication of

important functional or structural roles. Motifs can be either sequential or structural.

Motifs are represented as sequences when they represent repeated patterns in

biological sequences. Motifs are structural when they represent patterns of conserved

3

Table 1.1 Twelve Model Organisms Selected for Targeted Curation and Their
Respective Databases

GO Species Species Database

Arabidopsis thaliana Arabidopsis Information Resource (TAIR)

Caenorhabditis elegans WormBase

Danio rerio Zebrafish Information Network (Zfin)

Dictyostelium discoideum Dictybase

Drosophila melanogaster FlyBase

Escherichia coli EcoliHub

Gallus gallus AgBase

Homo sapiens Human UniProtKB-Gene Ontology

Mus musculus Mouse Genome Information (MGI)

Rattus norvegicus Rat Genome Database (RDG)

Saccharomyces cerevisiae Saccharomyces Genome Database (SGD)

Schizosaccharomyces pombe GeneDB S. Pombe

Table 1.2 List of GO Slims Maintained by GO Consortium as Part of the GO Flat
File

GO Glim Name GO Slim Developer

Generic GO slim GO Consortium

Plant slim The Arabidopsis Information Resource

Candida albicans Candida Genome Database

Protein Information Resource slim Darren Natale, PIR

Schizosaccharomyces pombe slim Val Wood, PomBase

Yeast slim Saccharomyces Genome Database

Aspergillus slim Aspergillus Genome Data

Metagenomics slim Jane Lomax and the InterPro group

4

base pairs (e.g., RNA secondary structures). Learning RNA structural motifs is

needed to understand cellular mechanisms.

The structural motif discovery problem should not be confused with the two

close problems: RNA structure prediction and RNA consensus structure prediction.

In the former, it is required to predict the secondary structure of a single RNA

sequence, whereas in the latter, it is required to find a list of base pairs that can

simultaneously be formed in a set of related RNA sequences. Predicting structure

involves minimizing total molecular free energy. Structures are evolutionary related

and share a similar overall fold. Evolutionary conservation information is utilized to

improve the accuracy of structure prediction process.

1.3 Biological Data Classification

Classification assigns data to predefined categorical class labels [45, 47]. A classi-

fication is an attribute or feature in a data set in which a researcher is most

interested. It is defined as the dependent variable in statistics. To classify data, a

classification algorithm creates a classification model consisting of classification rules.

For example, automobile insurers have developed classification models to categorize

drivers’ applications as “risky” or “safe”. In the medical field, classification can be

used to help define medical diagnosis and prognosis based on symptoms, history of

family illness and health conditions.

Classification is a two-step process consisting of training and testing. In the

first step, a training model is built which consists of classifying rules. The training

model is first “taught” the rules. Then, when the training model is “tested”, i.e.,

presented with new data not from the training data, the training model is able to

make a decision based on what it has learned from the training data.

5

A simplified hypothetical example of an RNA classification rule to determine

“Topological Family” class label using features of an RNA loop structure is shown

below:

IF LoopSize1 = LoopSize2 AND LoopSize3 ¡ Loopsize4

THEN

TopologicalFamily = “X”

ELSE

TopologicalFamily = “Y”

END-IF

Some classification rules use a mathematical formula to determine a class label.

Classifying rules are not necessarily 100% true; generally, rules with 90-95% accuracy

are regarded as solid rules. The accuracy of a classifier (or classification model)

depends on the degree to which classifying rules are true.

The second step, testing, examines a classifier using testing data for accuracy.

The class labels for the test data are known. The classifier is expected to predict the

class label for each test case based on how it has been taught. Generally, the testing

process is very simple and computationally inexpensive as compared to the training

step, which may be complex and require considerable computational resources.

An interesting technique in classification is the ensemble approach. The rationale

behind the ensemble approach is that multiple classifiers (or classification models)

working together can yield better classification accuracy than the use of a single

classifier. As a simple example, if Classifiers A, B, and C predict that a hard-to-classify

patient (patient1) has a disease and Classifiers D and E predict that patient1 doesn’t

have that disease, then, by using a voting strategy, the ensemble predictor would

6

predict that patient1 has the disease. In some cases, each classifier may be assigned

different weights and the final ensemble prediction would then be a weighted average of

the classifier votes. The classification case study in this chapter explores the ensemble

method in greater detail.

1.4 Biological Data Clustering

Clustering is defined as unsupervised learning that occurs by observing only

independent variables (unlike supervised learning analyzing both independent

variables and dependent variables) [45, 47, 107]. In order words, unlike classification,

clustering does not use “class”. In fact, this is the main difference between

classification and clustering. For this reason, clustering may be best used for studies

of an exploratory nature, especially if those studies encompass a large amount of data,

but very little is known about data (such as the mass of data typically generated by

microarray analysis).

Clustering is used to group objects into a specific number of clusters so that

the objects within a cluster have very high similarity and objects from different

clusters have very low similarity. Similarities between two objects are measured using

their attribute values. A very early application of clustering in biology was to cluster

similar plants and animals to create taxonomies based on their attributes (such as the

number of petals and the number of legs). A number of clustering algorithms have

been introduced and used over the last few decades. These algorithms are mainly

categorized into hierarchical and partitional. Each category of clustering methods

will be further discussed in the following sections.

Hierarchical agglomerative clustering algorithms successively merge the most

similar two groups of objects based on the pairwise distances between two groups of

objects until a termination condition holds, so that objects are hierarchically grouped.

For this reason, hierarchical algorithms themselves can be effectively categorized

7

according to the respective methods of calculating the similarity (or distance) between

two groups of objects. In order words, this categorization is based on how the

representative object of each group for similarity calculation is selected.

While hierarchical clustering is agglomerative, i.e., starting with atomic elements

and aggregating them into clusters of increasing size, divisive clustering starts with

the a complete data set and sub-divides the data set into smaller partitions. A divisive

clustering algorithm iteratively performs these two sub-problems: 1) decide the best

cluster to be split; 2) decide the best way to split the selected cluster [95].

Unlike hierarchical clustering algorithms, partitional clustering algorithms

require a user to input a parameter k, which is the number of clusters. Generally,

partitional algorithms directly relocate objects to k clusters. Partitional algorithms

are categorized according to how they relocate objects, how they select a cluster

centroid (or representative) among objects within a (incomplete) cluster, and how

they measure similarities between objects and cluster centroids. For example, k -

means, the most widely-used partitional algorithm, first randomly selects k centroids

(objects), and then decomposes objects into k disjoint groups by iteratively relocating

objects based on the similarity between the centroids and the objects. In k -means, a

cluster centroid is the mean value of objects in the cluster. In many cases, the cluster

centroids are not actual cluster objects. Unlike k -means, k -medoids selects the nearest

object to the mean value of objects in a cluster.

The major advantage of partitional clustering algorithms over other methods, is

their superior clustering accuracy as compared with hierarchal clustering algorithms

that is the result of their global optimization strategy (i.e., the recursive relocations

of objects). In addition, partitional algorithms can handle large data sets which

hierarchal algorithms cannot (i.e., better scalability) and can more quickly cluster

data. In short, partitional algorithms are more effective and efficient than hierarchical

algorithms. One major drawback to the use of partitional algorithms is that their

8

clustering results depend on the initial cluster centroids to some degree because

the centroids are randomly selected. Thus, clustering results obtained are a little

different each time the partitional algorithm runs. Such a process is known as

non-deterministic. A deterministic process, by comparison, will yield the same result

each and every time it is run.

1.5 Biological Network Inference

A simplification of the “central dogma of biology” is this: DNA begets RNA;

RNA begets protein. When a gene in your DNA is “expressed” for any number

of reasons, the result is an RNA molecule called a transcript, and that process

is called transcription. Some of those RNA transcripts are converted into protein.

Researchers believe that most of the RNA transcripts are not converted to protein

and that they serve a variety of other functions in the cell. RNA research is currently

very active. The collective sum of all genes of an organism is known as its genome,

and the study of the genome is called genomics. The collective sum of all expressed

RNA transcripts in the cell at a point in time for an entire genome is known as

a transcriptome. The study of the transcriptome, then, is called transcriptomics.

Massive databases have been established to gather transcriptomes for research into

the reasons for gene expressions. There is evidence that some genes cause other genes

to be expressed. This “cause-and-effect” relationship can be described in the form of

a Gene Regulation Network (GRN), which in many cases can be represented by a

simple graph. Much research is currently focused on the study on the transcriptome

at regular time intervals in an attempt to “infer” a reliable GRN.

1.6 Biological Data Mining in the Cloud

Advances in computational biological analytics tools must keep pace with biological

Big Data, i.e., the exponential growth of biological genomic data. Cloud computing

9

is “a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” (http://csrc.nist.gov/ - last

accessed on 4-3-2017).

Cloud-based tools with massive parallel-processing capability can be used for modern

computational biological research on Big Data. Cloud computing model offers an alter-

native to the expensive computational and storage needs of research computations

[43]. Pair-wise DNA or RNA sequence alignment, distance calculation, clustering,

multidimensional scaling and visualization of gene sequences are computationally

intensive operations. Similarly computationally expensive are interactive parallel

computations that can be used to determine differential equation parameters in

resolving gene network inference problems.

A Big Data problem can be solved by breaking it into smaller parts, solving the

smaller parts simultaneously in parallel, and then gathering together the individual

results. The time saved with this ”parallel processing” approach is called Speed-Up.

Amdahl’s law (Eq. 1.1) defining “Speed Up” is often used in parallel computing to

predict the theoretical maximum speedup using multiple processors [7].

Amdahl′sLaw : SpeedUp =
1

(1 − P) + P
S

(1.1)

In Eq. 1.1, P is the proportion of a problem that can be divided into parallel

computing tasks, and 1 − P is the proportion that cannot be parallelized, i.e., the

“sequential” proportion. The maximum acceleration capability lies in S, meaning that

P can be accelerated S times by using S parallel processors. The speedup of a program

using multiple processors in parallel computing is limited by the time needed for the

sequential fraction of the program. For example, assume that a program needs 20

hours using a single processor core. Assume that a particular portion of the program

10

(i.e., 1 − P) which takes one hour (i.e., 5%) to execute cannot be parallelized. The

remaining 19 hours (i.e., 95%) of execution time can be parallelized (i.e., P). In

this case, regardless of how many processors are devoted to a parallelized execution

of this program, the minimum execution time cannot be less than one hour. Hence

the speedup is limited to at most 20. Amdahl’s law is concerned with the speedup

achievable by “parallelizing” proportion P of a computation where the improvement

has a speedup of S. Amdahl’s Law clearly describes the efficiency and limitation of

parallel computing and has been widely adopted.

MapReduce [27] is a distributed data processing software development

framework developed by Google to support parallel distributed execution of its data

intensive applications. The MapReduce approach uses “divide-and-conquer” to speed

up the processing of Big Data. Using MapReduce, a data processing solution consists

of map and reduce steps. Google uses this framework internally to execute thousands

of MapReduce applications per day, processing peta-bytes of data, all on commodity

hardware. Running between the map and reduce phases is an internal shuffle phase

for handling intermediate results. The MapReduce framework automatically executes

those functions in parallel over any number of processors.

The MapReduce framework contains two main phases, map and reduce, that are

controlled by a driver program in one designated “master” machine. In the map phase,

the driver forwards portions of input data to multiple computing nodes designated as

“slave” machines. The MapReduce driver instructs the computing nodes to perform

calculations according to a user-defined program for the map process (AKA mapper).

The map results are saved to immediate files.

In the reduce phase (after the calculations on mappers have been completed), the

driver directs the computing nodes to gather the results from the intermediate files.

These intermediate results are processed using a user-defined program for the reduce

11

step (AKA reducer). Then reducers contribute their results to form the complete

output.

MapReduce provides an easy-to-use programming model that features fault

tolerance, automatic parallelization, scalability and data locality-based optimizations.

Many scientific computation algorithms that rely on iterative computations can be

implemented with a MapReduce computation specified for each iterative step.

One major factor in the success of MapReduce is the innovative distributed file

system developed by Google called Google File System (GFS) [37]. GFS is highly

fault tolerant to due extensive data replication on inexpensive commodity storage

equipment.

The MapReduce programming model provides an easy-to-implement framework

with fault tolerance capabilities. This model has been used to successfully solve many

large-scale scientific computing problems, including problems in the life sciences. The

goal of MapReduce is to deploy a large amount of time- and memory-consuming

tasks to many computing nodes that process tasks in parallel running user-defined

algorithms. The flow of the MapReduce process involves one master machine and

many slave machines running MapReduce tasks as directed by the driver process in

the master machine.

Apache Hadoop (http://hadoop.apache.org - last accessed on 4-3-2017) is a

widely used open-source implementation of the Google MapReduce [27] distributed

data processing framework. Apache Hadoop uses the Hadoop Distributed File System

(HDFS) for data storage, which stores the data across the local disks of the computing

nodes while presenting a single file system view through the HDFS application

program interface (API). HDFS is an open-source implementation of GFS. Like

GFS, HDFS is intended to be run on commodity storage equipment. HDFS provides

the distributed file system support to help ensure high performance and fault

tolerance. High levels of reliability are achieved through data replication. Throughput

12

Table 1.3 List of Current Cloud-Based Platforms Used for Bioinformatics Research
and Their URLs (last accessed on 4-3-2017).

Platform URL

Amazon Web Services (AWS) http://aws.amazon.com/

Eoulsan http://transcriptome.ens.fr/eoulsan/

NIH Biowulf http://hpc.nih.gov/systems/

The Galaxy Project http://galaxyproject.org/

performance is optimized by scheduling data transfer from the data replica nearest to

the location of the computation node. Apache Hadoop performs duplicate executions

of slower tasks and handles failures by rerunning the failed tasks using different worker

machines.

Cloud-based biological research is currently very active. Stormbow, mentioned

previously, analyzes RNA nucleotide sequence (i.e., RNA-Seq) samples using cloud-

based resources [129]. AWS was the infrastructure used to develop Stormbow.

Stormbow took 6 to 8 hours to process one RNA-Seq sample that contained over

100 million individual RNA molecules. The average cost was $3.50 per sample.

Bioinformatics is being challenged by increasingly larger data sets leading to

computational jobs that take unacceptably long times if done on a small number

of machines. For these cases, distributed computing on multiple clusters at different

locations is becoming an attractive, if not necessary, approach to achieve short run

times. Table 1.3 lists cloud-based platforms available for biological data processing.

Galaxy [38] for instance, is a powerful open-system web-based platform for data

intensive biomedical research. Galaxy allows the user to perform, reproduce, and

share complete analyses on the freely available server or on a private server instance.

13

CHAPTER 2

BIOLOGICAL PATTERN DISCOVERY: CASE STUDIES

2.1 Introduction

Two genome-wide biological data mining case studies are presented below. The first

case study is an example of biological pattern discovery where an RNA secondary

structures are evaluated using a covariance model. The second case study is an

example of biological data classification where RNA tertiary structures are evaluated

using a random forests classifier.

2.2 A Case Study in RNA Secondary Structure Data Mining

As an example of biological pattern discovery, a non-coding RNA pattern discovery

case study is presented [20]. Evolutionarily conserved functional domains of non-

coding RNA on chromosome X (roX1) of the fruit fly have been identified in eight

Drosophila species. Interestingly, within the roX1 RNAs of these same Drosophila

species, conserved primary sequences were also found. Specifically, three repeats of

the nucleotide sequence GUUNUACG were localized in the 3’-end of the predicted

roX1 RNAs for these eight Drosophila species. In this case study, a covariance model

(CM) was used to search for the characteristic features of roX1 functional domains

as a way to classify new examples of these structured RNAs in other Drosophila

species. In spite of high levels of genomic sequencing activities worldwide, annotation

of the Drosophila species is still incomplete. Much chromosome coordinate information

remains unknown. Therefore, whole genomes of Drosophila were obtained and scanned

to identify results in available annotated regions, i.e., chromosomes or scaffolds.

Using known roX1 examples for comparative support, it is believed to be possible to

predict novel roX1 functional domains accurately from sequence information alone.

Annotating roX1 on a genomic scale provides insight into evolutionary processes

14

among various species. The results of this case study indicate that a CM search and

classification process is effective in mining roX1 RNA genes. Furthermore, due to the

flexibility of the CM search methodology, this mining approach may very likely prove

successful for similar searches in various other organisms.

2.2.1 Introduction

Non-coding RNAs (ncRNAs) are functional RNA transcripts that are not translated

into protein (i.e., they are not messenger RNAs). Research has shown that ncRNAs

perform a wide range of functions in the cell [25, 29, 77, 102]. RNA on the X

chromosome (roX1) plays an essential role in equalizing the level of transcription

on the X chromosome in Drosophila males and females. Like humans, the Drosophila

male has a single X chromosome while the Drosophila female has two X chromosomes

[86]. Experiments have confirmed that roX1 RNA exists in eight Drosophila species

[85, 84, 83]. It is believed that there may exist secondary structure conservation of

the roX1 gene among other Drosophila species [84, 83]. Advances in the research of

genomes from twelve Drosophila species [101] might help shed light on this interesting

issue.

A highly regarded covariance model (CM) method named Infernal has been

successfully used in the classification of ncRNAs. Infernal is considered by many

bioinformaticians to be one of the most accurate tools for this purpose [99, 113].

Infernal is a genome-wide search tool, which applies stochastic context-free grammars

expressed as CM’s to find genomic regions that may contain ncRNAs [20, 105, 116]. A

CM is a statistical representation of a group of RNAs that share a common consensus

secondary structure [28]. The Infernal software package [41, 42, 82] contains a number

of powerful utilities. One of these utilities, named CMbuild, creates a CM from a

Stockholm alignment of sequences. Another Infernal utility, named CMsearch, is used

to scan a genome for sequences that match to the model and classify candidates

15

as likely or unlikely to belong to the group that the CM represents. The time

to run a CMsearch process can be lengthy depending on the size of the genome

scanned. However, by utilizing parallel processing methods, results can be obtained

in considerably shorter timeframes.

The first step in this case study was to demonstrate the capability of using a

CM in a genome scale homology search. Known Drosophila roX1 sequences from eight

species were gathered. These eight species of Drosophila are named D. ananassae, D.

erecta, D. melanogaster, D. mojavensis, D. pseudoobscura, D. simulans, D. virilis

and D. yakuba [84]. Using a “leave-one-out” testing approach, covariance models

were created using seven species at a time and the genome of the eighth species

was scanned for a match. This demonstrated that the CM classification process is

feasible in that 6 of the 8 searches were successful. The next step was to scan the

genomes of Drosophila species for which there are no confirmed roX1 sequences.

These four Drosophila species are named D. grimshawi, D. persimilis, D. sechellia,

and D. willistoni. Such a comparative genomics approach has been successful in

the unicellular organism Saccharomyces cerevisiae [55], i.e., a species of yeast very

commonly used in winemaking, baking and brewing.

Using this CM approach, the results show strong evidence of the presence of

roX1 functional domains in the genome of D. sechellia. This finding is believed

to be novel and significant in ongoing genomic studies of Drosophila and related

taxonomic groups. This bioinformatics study lays the groundwork for future CM

ncRNA classification.

2.2.2 Methods

Eight roX1 RNA sequences were obtained use “wet lab” experiments, i.e., confirmed

vs. predicted “in silico”. These sequences were from eight Drosophila species named D.

ananassae, D. erecta, D. melanogaster, D. mojavensis, D. pseudoobscura, D. simulans,

16

D. virilis and D. yakuba. [84] Table 2.1 illustrates selected sequences from this group.

In all eight cases, the sequences were expressed in standard FASTA format. The roX1

RNA sequences are fairly large ranging is length from 3,433 to 3,768 nucleotides. The

classification analysis process in this case study dictated that the large sequences

be subdivided into smaller subsequences while preserving all species and position

information for each subsequence. The RSmatch software package used in this case

study has this sequence subdividing capability [70].

The eight roX1 sequences were assigned names or tracking purposes as follows:

in columns 1, 2 and 3, “yp1”; and in columns 4 and 5, a sequential 2-digit number.

Starting and ending positions for each of the eight sequences were described in FASTA

notation as “start:end” where “start” represents the first numeric position and “end”

represents the last numeric position. For each of the original sequences, “start” had

the value of 1 and “end” had the value of the length of the sequence. The starting

and ending positions for each sequence were formatted specifically for RSmatch [70].

Then, when subsequences were extracted, the original FASTA notation was preserved

and additional subsequence position information was inserted for sequence accurate

tracking purposes.

To illustrate with an example, one FASTA sequence, named yp101, input to the

RSmatch slide-and-fold process was annotated this way: “>yp101 (1:3493) droana

rox1”. Note that the length of this roX1 gene sequence is 3,493 nucleotides (nt).

RSmatch was used to extract 100 nt subsequences with 50 nt overlaps from this

yp101 sequence. RSmatch produced properly annotated FASTA format sequences

such as “>yp101:1-100 (1:3493) droana rox1”, “>yp101:51-150 (1:3493) droana

rox1”, etc. Note that this notation clearly represents a 100 nt sequence extracted

from positions 1 through 100 and positions 51 through 150 of the original yp101

sequence. All of the original FASTA notation information was retained in the FASTA

notation of each subsequence. Providing position information in the notation of the

17

Table 2.1 Selected Drosophila roX1 Sequences (Source: www.flybase.org; Cr =
chromosome; Sc = scaffold)

Species Length Region Coordinates

D. yakuba 3,433 Cr X 4658396 - 4661828

3710814 - 3710795

D. simulans 3,439 Cr X 2761962 - 2759151

2762379 - 2761996

2759122 - 2758943

9903425 - 9903446

D. erecta 3,462 Sc 4690 1139892 - 1137083

1140318 - 1139928

1137036 - 1136857

D. melanogaster 3,468 Cr X 3755987 - 3754338

3754043 - 3753143

3756379 - 3756024

3754304 - 3754082

3753108 - 3752929

18

extracted subsequences is a critical function performed by RSmatch. In a similar

manner, all eight Drosophila roX1 sequences evaluated for this work were annotated

for compatibility with RSmatch, thus preserving subsequence position information.

RSmatch slide-and-fold process was run with the following parameters: sequence size

= 100 nt; overlap size = 50 nt; minimum free energy = 0. RNA structures were

prepared using the RSmatch “slide and fold” method. For each sequence, 100 nt

subsequences were extracted at every 50 nt position from the 5’-end downstream to

the 3’-end resulting in consecutive subsequences overlapping with one another on a 50

nt segment. Subsequences shorter than 100 nt, i.e., at the 3’-end, were also kept. All

subsequences were then “folded” using the RNAsubopt function in the Vienna RNA

package [50] with the setting “-e 0”. The Vienna RNA package is highly regarded for

its ability to accurately predict the secondary structure of non-coding RNA using the

minimal thermodynamic energy approach. With this “-e 0” setting, multiple folding

structures that have the same minimum thermodynamic energy are generated. Using

this method with RSmatch, 773 structures were obtained from the eight original

Drosophila roX1 sequences.

RSmatch was used to conduct pairwise comparisons of all 773 RNA structures

produced in the process previously described. In this step, RSmatch was configured

for nucleotide matching scores of 1 and 3 in single-stranded (ss) and double-stranded

(ds) regions, respectively. In addition, mismatch scores configuration settings were -1

and 1, in ss and ds regions, respectively. The gap penalty was -6 for both ss and ds

regions. This scoring scheme essentially gave more weight on matches in ds regions

than those in ss regions. Three unduplicated FASTA sequences were identified and

extracted from the highest-scoring pairwise alignments.

The MXSCARNA [106] package was used to align sequences for the covariance

model (CM) used in the case study. The resulting alignment was rendered in the

19

Stockholm format with predicted structure annotation. This alignment was input to

the Infernal package utility, named CMbuild, to create a CM.

The CM search utility, CMsearch, was run against a dataset of Drosophila

FASTA sequences. The genomes from 12 Drosophila species (i.e., D. ananassae,

D. erecta, D. grimshawi, D. melanogaster, D. mojavensis, D. persimilis, D.

pseudoobscura, D. sechellia, D. simulans, D. virilis, D. willistoni and D. yakuba)

were downloaded from Indiana University’s FlyBase database [23] (Table 2.2). Many

Drosophila genomes have not yet been completely annotated into clearly defined

chromosomes. As part of active research and sequencing efforts, the annotation of

Drosophila and other genomes become richer and more informative.

The Infernal package (version 1.0) utility, CMsearch, was used to locate

structures in Drosophila genomes with probability of matching the constructed CM

[82]. To improve computational efficiency, large FASTA sequences were subdivided

into smaller, overlapping subsequences to facilitate independent parallel searching

without negatively impacting results. Using a stochastic dynamic programming

algorithm, Infernal located and reported secondary structures in Drosophila genomes

similar to the profile that the CM represents. Given the structural similarity and high

score result of the CM search, a D. sechellia sequence discovered in the genome scan

was predicted to represent roX1 functional domain characteristics.

2.2.3 Results

The objective of this case study was to classify functional structure elements, i.e.,

non-coding RNA, in genomes of Drosophila species as potential roX1 homologues.

To an extent, portions of an approach previously deployed [57, 56, 58, 70] were used

as models in this case study. First, eight sequences of roX1 RNA transcripts were

obtained (Table 2.1). Next, a “slide and fold” method to construct RNA structures

was executed, as described in Methods. In this approach, subsequences 100 nucleotides

20

(nt) in length or shorter were folded according to their thermodynamic properties

using the Vienna RNA package [50]. Adjacent subsequences were overlapped by 50

nt. Non-coding RNA structures can be predicted accurately and efficiently in this way

for two reasons:

• prediction for small ribonucleotide structures is more accurate and efficient than
for large ones;

• structures with a size smaller than 50 nt were folded twice as subsequences of
two different larger structures, further increasing the probability of obtaining
accurate RNA structure predictions.

The Vienna folding package was run with a configuration that yielded multiple RNA

structure predictions with the same minimum free energy for a given sequence to

further improve folding accuracy. This step resulted in 773 predicted RNA structures.

Species vs. species pair-wise comparisons were applied using all 773 predicted

RNA structures. For computational efficiency, each alignment was run on a separate

processor independent of all others using a high performance computing (HPC)

cluster, leveraging parallel processing speed-up capabilities [88]. This HPC system, a

Sun Microsystems Discovery cluster, has 112 AMD Opteron dual-core Linux nodes

with 2 GB of RAM per node. The operating system used was Red Hat Enterprise

Linux AS release 4 Update 8. In this manner, approximately 520,000 pair-wise

alignments were completed in less than five minutes. Each comparison yielded an

alignment score. A group of three structures that were scored similarly and had

similar lengths were selected. At this step RNA structures were obtained from D.

melanogaster, D. simulans and D. yakuba.

A covariance model (CM) was created from this group of three structures by

first aligning the sequences into the Stockholm format and then running the Infernal

CMbuild utility. The complete genomes of eight Drosophila species for which the

presence of roX1 ncRNA transcripts has been confirmed were used as targets in

CM searches. All complete genomes used in this study were obtained from Indiana

University’s FlyBase database (http://www.flybase.org - last accessed 0n 4-3-2017)

21

Table 2.2 Description of Twelve Drosophila Genomes Downloaded from FlyBase
Public Database

Species Release Date Nucleotides Files

D. melanogaster 5.18 5/16/2009 130,430,583 7

D. simulans 1.3 7/24/2008 137,828,247 1

D. erecta 1.3 7/24/2008 152,712,140 1

D. pseudoobscura 2.4 5/19/2009 152,738,921 1

D. yakuba 1.3 7/24/2008 165,693,946 1

D. sechellia 1.3 7/24/2008 166,577,145 1

D. persimilis 1.3 7/24/2008 188,374,079 1

D. mojavensis 1.3 7/24/2008 193,826,310 1

D. grimshawi 1.3 7/24/2008 200,467,819 1

D. virilis 1.2 7/24/2008 206,026,697 1

D. ananassae 1.3 7/24/2008 230,993,012 1

D. willistoni 1.3 7/24/2008 235,516,348 1

[23]. These genomes were the most current releases at the time the study was

conducted (Table 2.2). A CM search located the roX1 genes precisely where they

were known to be present in six Drosophila species, i.e., D. ananassae, D. erecta, D.

melanogaster, D. pseudoobscura, D. simulans, and D. yakuba. However, the CM search

failed to locate the known roX1 ncRNAs on the remaining two Drosophila species,

i.e., D. mojavensis and D. virilis. In five of the six successful searches, the highest

scoring search result represented a sequence within the known range of the roX1

genomic coordinates for that species. The sixth successful search, on D. pseudoobscura,

produced the third highest scoring search result that represented a sequence within the

known range of the roX1 genomic coordinates for that species. The two highest scores

for D. pseudoobscura likely represent sequences with conserved roX1 functionality.

22

For computationally efficiency, the downloaded genome files were separated into

smaller files of 2 million base pairs (Mbp) per file. FASTA sequences larger than 2

Mbp were split into smaller FASTA sequences which overlapped one another by 5

thousand base pairs (Kbp) to prevent loss of accuracy in the study. This approach is

similar to the RSmatch slide-and-fold approach described in Methods. However, this

process was performed with custom Perl scripts. Concurrent CMsearch jobs were run

against multiple genome sequences in parallel using an high performance computing

(HPC) cluster. In this manner, a covariance model (CM) search of an entire genome

took about 10 minutes.

This case study then focused on classifying potential roX1 functional structure

elements in the genomes of the four fully sequenced Drosophila species in which the

presence of roX1 transcripts had not yet been confirmed. These four species are

named D. grimshawi, D. persimilis, D. sechellia and D. willistoni. The most current

release of these complete genomes were obtained from the FlyBase database. [23].

The same CM previously used was used to search for presence of roX1 functional

domains. While scoring results were not significant for three of the four species, a

strong score resulted from the CM search on the D. sechellia genome (Table 2.3).

This high score shows strong evidence of a roX1 functional domain in a specific

area of the D. sechellia genome, namely scaffold 4. Furthermore, in spite of the D.

sechellia’s incomplete annotation, this result likely indicates that this region of the

genome may be located in the X chromosome of D. sechellia. These findings need to

be confirmed by wet lab experiments.

To investigate possible roX1 homology between species, roX1 gene sequences

FBgn0019661 (for D. melanogaster) and FBgn0255860 (for D. sechellia) were

downloaded from the FlyBase database. A pair-wise alignment on the two sequences

was performed. Using the program DiAlign [104] with the “-n” option for nucleic acid

sequence comparison, a result of 94% similarity between the two gene sequences was

23

shown. This result indicates high probability of conserved roX1 functionality between

the two species.

In this case study, a systematic and computationally efficient approach was

designed and developed to classify roX1 RNA structure elements conserved in

Drosophila species. This approach consists of three major steps:

• comparison of RNA structures among all roX1 RNAs;

• selection of RNA structure groups significantly associated with those in other
species;

• utilization of a highly regarded structure-searching methodology (i.e., covariance
models) which, in addition to being highly sensitive and specific, is also very
flexible.

The stochastic representation of a cluster of RNA structures can be fine-tuned as

needed by adding or removing structures from the cluster. Using parallel processing

contributes to overcoming the burden of lengthy processing times. This method was

applied to classifying small RNA structures chiefly because these structure can be

classified more accurately compared with the methods that only use thermodynamic

minimization. As more powerful RNA structure classification and prediction programs

become available, this case study approach can be extended to larger RNA structures.

To compare the effectiveness of different search tools, BLAST search was

compared with Infernal in a search for conserved structural motifs. Since BLAST

is not designed to detect covariant base pairs that are critical in an RNA secondary

structure, Infernal was expected to perform better than BLAST. Each of the three

sequences from the case study’s covariance model were used in FlyBase BLAST

to search for homologues in the complete genomes of all 12 Drosophila species

downloaded from FlyBase. Every homologue detected by BLAST was also detected

by Infernal. However, BLAST failed to detect roX1 evidence in D. ananassae and D.

pseudoobscura, while such evidence was detected by Infernal. This simple experiment

provides an insight into the complexity involved in the classification of ncRNA motifs.

24

Table 2.3 Summary of Homologues Found in Seven Drosophila Species Showing CM Score, FlyBase Region, Region Coordinates,
Strand and roX1 Status for Each Homologue

Genome Score Region Coordinates Strand roX1?

D. melanogaster 88.84 chromosome X 3753295 - 3753232 - Y

D. yakuba 88.69 chromosome X 4661475 - 4661538 + Y

D. simulans 88.1 chromosome X 2759303 - 2759240 - Y

D. sechellia 88.1 scaffold 4 2954091 - 2954154 + N/A

D. erecta 72.78 scaffold 4690 1137235 - 1137172 - Y

D. ananassae 32.26 scaffold 13117 692432 - 692373 - Y

D. pseudoobscura 29.4 Unknown group 410 14965 - 14898 - N

D. pseudoobscura 28.28 XL group1e 6898105 - 6898042 - Y

D. pseudoobscura 29.11 Unknown group 260 63165 - 63089 - N

2
5

By conducting an homology scan on a complete genome or species chromosome,

a researcher can confirm whether a functional domain is present throughout that

genome or species chromosome, respectively. A stem-loop structure was previously

predicted in roX1 RNA on the X chromosome of D. melanogaster [103], for instance,

and it was determined that this structure was conserved in several species of

Drosophila [84]. This case study confirms that among seven different Drosophila

species, the roX1 functional domain is only present on the X chromosome and is also

absent from all chromosomes other than X. The maturation of genome annotation

and the translations of scaffold regions into chromosome regions will whether this

observation continues to hold.

2.2.4 Conclusion

In this case study, RSmatch and Infernal were demonstrated to be effective tools in

discovering patterns of novel ncRNAs. Homology searching is common in bioinfor-

matics, yet some of the most popular homology search methods such as BLAST and

FASTA, are often the least accurate [32]. For non-coding RNA, homology searching

is more challenging compared with a sequence homology search. This is due to

intramolecular covariant base pairs in ncRNA that are conserved to a higher degree

with respect to their primary structure, i.e., their nucleotide sequence.

An Infernal search requires considerable computer run time [82]. Freyhult, et

al., estimated that with a search query for the transfer RNA (tRNA) type of ncRNA,

Infernal would take about 96 days to search the entire human genome on a single

processor [32]. Innovative methodologies including HMM filtering and sequence-based

heuristics [114, 125] have been employed to improve computational efficiency. In this

study, as described, parallel processing with a high performance computing cluster

was used for speed-up and improved throughput.

26

Whole genomes of all 12 sequenced species of Drosophila were scanned. All 12

species are believed to have a common ancestor that existed about 40 million years

ago [84]. Phylogenetic relationships are based on the premise that species that evolved

“relatively” recently will have more genetic similarities than those species that evolved

earlier. As a result of this case study, the presence of the roX1 ncRNA is verified as

previously reported by other authors in six Drosophila species. In addition, strong

evidence of the presence of roX1 in D. sechellia was found, which was not known to

be previously reported.

2.3 A Case Study in RNA Tertiary Structure Data Mining

As an example of biological data mining, a case study in the mining of a three

dimensional RNA motif is presented. Artificial intelligence tools are used to find

motifs in DNA, RNA and proteins. In this case study, a computational tool for

finding RNA tertiary motifs in genomic sequences was designed and developed.

Specifically, this tool predicted genomic coordinate locations for coaxial helical

stackings in 3-way RNA junctions. These predictions were provided by CSminer,

a tertiary motif search package that utilized two versatile methodologies: random

forests and covariance models. A coaxial helical stacking tertiary motif occurs in a

3-way RNA junction where two separate helical elements are aligned on a common

axis to form a pseudocontiguous helix which provides thermodynamic stability to

the RNA molecule. The CSminer tool used a genome-wide search method based on

covariance models to find a genomic region that may contain a coaxial helical stacking

tertiary motif. CSminer also used a random forests classifier to predict whether the

genomic region indeed contains the tertiary motif. Experimental results demonstrated

the effectiveness of the CSminer approach.

27

2.3.1 Introduction

It is important for bioinformaticians to develop pattern discovery tools that leverage

increasingly powerful computational methodologies in critical life science research. In

this case study, CSminer (i.e., Coaxial helical Stacking miner), predicted locations,

i.e., genomic coordinates, of coaxial helical stackings in genomes. A coaxial helical

stacking occurs in an RNA tertiary structure where two separate helical elements are

aligned on a common axis and form a pseudocontiguous helix [62] at an RNA junction.

An RNA junction is an important non-coding RNA (ncRNA) loop structure that

forms where three or more helices meet. Coaxial helical stacking tertiary motifs may

occur in several large RNA structures, including group II introns [109], large ribosomal

subunits [9, 96, 115], pseudoknots [1], and transfer RNA (tRNA) [60], Coaxial helical

stackings provide thermodynamic stability to the RNA molecule [59, 112], and reduce

the separation between loop regions within junctions [2]. Coaxial helical stacking

interactions are also involved in long-range interactions in many RNAs [119] and are

essential features in a variety of other RNA junction topologies.

In this case study, the focus was on the 3-way RNA junction, though many

RNA junctions exist in 4-way and higher forms. The topologies of known 3-way

RNA junctions have been studied extensively [67]. 3-way RNA junctions that contain

a coaxial stacking are classified into three topological families called A, B and C,

depending primarily on the orientation of the helix that is not involved in the coaxial

stacking and on the lengths of the unpaired base regions separating the helices. Figure

2.1 illustrates these three topological families.

Each 3-way RNA junction in Figure 2.1, has three helices labeled P1, P2 and

P3. In a helix region, bases are paired in standard Watson-Crick pairings. In all three

examples in the figure, P1 and P2 are presumed to be coaxially stacked. There is

no presumption in any of these examples about the positions of the 5’-end and the

3’-end of the RNA molecule. In bioinformatics literature, the helix in a 3-way RNA

28

P2

P1
P3

Family A

P2

P1

P3

Family B

P2

P1 P3

Family C

Figure 2.1 Three RNA topological families, A, B, and C, of 3-Way RNA junctions
containing a coaxial helical stacking.

junction nearest to the 5’ and 3’ ends is generally considered to be the “first” helix.

The number of a helix does not necessarily indicate its position relative to the 5’ and

3’ ends of the RNA molecule. In each 3-way RNA junction in Figure 2.1, the unpaired

base region between P1 and P2 is called loop strand J12, the unpaired base region

between P2 and P3 is called loop strand J23, and the unpaired base region between

P3 and P1 is called loop strand J31.

The following are characteristics of each of the three topology families of 3-way

RNA junction:

• In RNA topology family A:

– loop strand J12 is the shortest of the three inter-helical loop strands;

– loop strand J31 is typically shorter than loop strand J23;

– P3 is roughly perpendicular to the coaxially stacking of P1 and P2.

• In RNA topology family B:

– the three loop strands J12, J23 and J31, are all approximately the same
length;

– P3 is oriented closer to P2 than to P1.

• In RNA topology family C:

– loop strand J12 is the shortest of the three inter-helical loop strands;

– loop strand J31 is typically longer than loop strand J23;

– P3 is oriented closer to P1 than to P2.

29

It is believed that the function of RNA is closely associated with its 3D structure,

which, by virtue of canonical Watson-Crick base pairings (i.e., AU, GC) and wobble

base pairing (i.e., GU), is largely determined by its secondary structure [66, 90, 92].

Several tools are available for secondary structure prediction and ncRNA search. One

of the most highly regarded of these tools is Infernal [82], discussed in this chapter’s

previous case study. A wide variety of statistical analysis approaches, in particular,

ensemble-based approaches, have been successful in life science applications. Laing,

et al., applied an ensemble-based approach, specifically random forests, to predict the

existence of a coaxial helical stacking in RNA junctions [62].

In this case study, the functionality of Infernal was extended to create the

CSminer tool to predict the existence of a tertiary RNA motif, i.e., a coaxial helical

stacking, in a genome. This is accomplished by invoking a random forests classifier

within Infernal to evaluate each significantly high-scoring Infernal search result and

report the coaxial stacking status of these results. The secondary structure in each

Infernal search result is formatted into Connectivity Table (CT) format and evaluated

by a random forests classifier to confirm the pattern match.

2.3.2 Methods

Laing, et al., studied 110 distinct 3-way RNA junctions that were confirmed in crystal

structures [62]. Each of these 110 unique junctions was verified in one of 32 crystal

structure models in the Protein Data Bank (PDB) [12]. The majority, 75%, of these

110 3-way RNA junctions were found in the complex ribosome subunit molecules

(rRNA), i.e., 51% in 23S rRNA, 20% in 16S rRNA and 4% in 5S rRNA. Kingdoms

represented in these 32 PDB samples were bacteria, archaea, animalia and plantae.

There was no dominant topological configuration among these 110 3-way RNA

junctions in that 47% were categorized as family C, 35% as family A and the remaining

18% as family B [62]. For each of these 110 3-way RNA junctions, the coaxial helical

30

stacking status was known. The coaxial stacking status of each 3-way RNA junction

was described as one of four possibilities: H1H2, H1H3, H2H3 or none, where HxHy

indicated that helix Hx shared a common axis with helix Hy. The helix identified as

H1 was the “first” helix in the 3-way RNA junction, as described below.

A 3-way RNA junction is described by three subsequences [62]. For each

subsequence, base coordinates and base values (i.e., A, C, G, U) are known. The

starting and ending coordinates of each subsequence indicate the 5’ and 3’ ends of the

subsequence, respectively. Unpaired bases of each subsequence are referred to as part

of the “loop regions” of the junction and are used to help determine the coaxial helical

stacking status of the junction as described later. The 3-way RNA junction formed

by these three subsequences includes unpaired bases of the loop region, terminal base

pairs of the three helices and the second to last base pairs of the three helices, as

follows. The 5’ end of the first subsequence is the 5’ base of the second to last base

pair of helix H1. The 3’ end of the first subsequence is the 5’ base of the second to last

base pair of helix H2. Similarly, the 5’ end of the second subsequence is the 3’ base of

the second to last base pair of helix H2, and the 3’ end of the second subsequence is

the 5’ base of the second to last base pair of helix H3. It follows that the 5’ end of the

third subsequence is the 3’ base of the second to last base pair of helix H3, and the 3’

end of the third subsequence is the 3’ base of the second to last base pair of helix H1.

The length of each subsequence is at least 4. The first two bases of each subsequence

are part of one helix and the last two bases of that subsequence are part of the next

sequential helix. There are zero or more unpaired bases between the two helices that

share a subsequence.

Figures 2.2 and 2.3 illustrate a 3-way RNA junction in nucleotide positions 5

through 49 of chain A in PDB molecule 3E5C, i.e., “Crystal Structure of the SMK

box (SAM-III) Riboswitch with SAM.” This 3-way RNA junction is known to have

31

a coaxial helical stacking identified as H2H3, i.e., helices H2 and H3 share a common

axis.

The secondary structure plot for the RNA sequence is shown in Figure 2.2,

which was produced using VARNA [26]. In this figure, the 3-way RNA junction is

enclosed within a dashed line. The first subsequence of the 3-way RNA junction starts

at position 5, ends at position 10 and consists of the bases CCGAAA. The second

subsequence of the 3-way RNA junction starts at position 34, ends at position 41 and

consists of the bases UUGUAACC. Finally, the third subsequence of the 3-way RNA

junction starts at position 46, ends at position 49 and consists of the bases GGGG.

Unpaired bases in the loop region are those bases not part of the terminal base pairs

of the three helices. In this figure, helices H2 and H3 are shown to be coaxially stacked

with the aid of a super-imposed bar.

Figure 2.3 was obtained using Jmol [48]. This figure presents a three-dimensional

representation of the same RNA molecule shown in Figure 2.2, i.e., positions 5 through

49 of chain A in PDB molecule 3E5C. This figure represents the crystal structure 3D

coordinates of the 976 atoms that comprise this RNA molecule. In this illustration,

helix H1 base positions 5 and 6 are identified, as are helix H2 positions 34 and

35, and helix H3 positions 46 and 47. The coaxial helical stacking of H2 and H3

is apparent in this illustration. In addition, Jmol provides interactive viewing of 3D

figure rotations. By rotating and viewing the figure from any angle, the coaxial helical

stacking becomes more visible.

A coaxial helical stacking motif in a 3-way RNA junction can be predicted

by a random forests classifier that has been trained using certain specifically chosen

“features” readily available in the secondary structure of known 3-way RNA junctions,

i.e., the 110 element dataset described above. Collecting appropriate features for motif

prediction is among the difficult yet important challenges in bioinformatics, pattern

recognition and machine learning. Features used for this case study were previously

32

C

C

G

A

A

A

G

G
A

UGGCGG

A

A
A

C G C C A
G A

U

G

C

C

U

U G
U

A

A

C

C

G

A
A

A

G

GG

G

5

14

24

34

44

49H1

H2

H3

5’

3’

Figure 2.2 Secondary structure plot of chain A from PDB molecule 3E5C.

33

Figure 2.3 Three-dimensional plot of chain A from PDB molecule 3E5C.

34

G
A

G

G C

C

G
G

C
U

GUAG
U

C

3’ 5’

3’

5’

5’

3’

H1

H2H3

J12

J23

J31

Figure 2.4 Hypothetical 3-way RNA junction illustrating random forests classifier
features.

collected [62]. Figure 2.4 shows a hypothetical 3-way RNA junction that illustrates

features used in this case study’s random forests classifier. Helix regions, consisting

of paired nucleotides, are identified as H1, H2 and H3. Loop regions, consisting of

unpaired nucleotides, are identified as J12, J23 and J31.

Table 2.4 describes 15 features used to train the random forests classifier

employed in the case study. Feature values were derived from attributes of known

3-way RNA junctions. A hypothetical 3-way RNA junction is shown in Figure 2.4.

Features used are based on three principles.

• A short loop region in the 3-way RNA junction, i.e., the unpaired strand between
adjacent helices, is more likely to be associated with a coaxial helical stacking.
For this reason, the sizes or lengths of the three loop regions (i.e., the numbers
of unpaired nucleotides in the three loop regions) of a 3-way RNA junction are
used as features as well as the manner in which these three sizes relate to one
another, e.g., the minimum, median and maximum of the three sizes.

35

• It is known that consecutive unpaired adenine bases tend to interact via
hydrogen bonding with the minor groove of a neighboring helix. This common
interaction, known as A-minor motif, stabilizes contacts between RNA helices.
In fact, the A-minor motif is the most common tertiary interaction in the large
ribosomal subunits. For this reason, information about consecutive unpaired
adenine bases is used as features.

• Thermodynamic free energy associated with the base pairs at the helix termini
and the loop regions between adjacent helices is used as features. It is known that
as thermodynamic free energy declines in a conformation, stability increases.

In total, 15 features were used for coaxial helical stacking prediction to train the

random forests classifier used in this case study.

Thermodynamic free energy of two adjacent helices was determined by the

length or size of the unpaired nucleotide loop region between the two helices, denoted

LoopSize, as follows:

• When LoopSize was 0, the free energy values were taken from the table of
RNAstructure [93].

• When LoopSize was 1, the free energy values were taken from the table of
RNAstructure, plus 2.1. If two possible values exist, the smaller one was taken.

• When LoopSize ranged from 2 to 6, the free energy values were calculated as
follows: a + b ∗ LoopSize + c ∗ h where a = 9.3, b = -0.3, c = -0.9, h = 2.

• When LoopSize was greater than 6, the free energy values were calculated as
follows: a+6 ∗ b+1.1 ∗ ln(LoopSize/6)+ c ∗h where a = 9.3, b = -0.3, c = -0.9,
h = 2.

The CSminer program combines the trained random forests classifier described

above with Infernal [82], which was discussed in this chapter’s previous case study.

Complete nucleotide sequences were extracted, starting at the 5’ end and ending at the

3’ end, from the Protein Data Bank (PDB) [12] for all 110 known 3-way RNA junctions

described above. Using RNAview [123] for guidance, the 110 secondary structures were

manually evaluated. Out of the 110 secondary structures, 31 were selected based on

similarity of length and general secondary structure. When searching a genome for

ncRNA secondary structure motif matches, Infernal uses a covariance model (CM)

comprised of several similar ncRNA secondary structures. As Infernal builds a CM,

it takes into account the differences among the structures used in building the model,

36

Table 2.4 Features Used in the Random Forests Classifier for the Case Study Including Name, Value and Description for Each
Classifier Feature

Feature Value Description

A(J12) 0 Adenine bases in loop region J12

A(J23) 1 Adenine bases in loop region J23

A(J31) 0 Adenine bases in loop region J31

∆G(H1,H2) -1.4 Thermodynamic free energy of helices H1 and H2

∆G(H2,H3) 6.3 Thermodynamic free energy of helices H2 and H3

∆G(H1,H3) -2.1 Thermodynamic free energy of helices H1 and H3

|J12| 0 Length of J12 loop region in bases

|J23| 4 Length of J23 loop region in bases

|J31| 0 Length of J31 loop region in bases

Min(|J12|,|J23|,|J31|) 0 Minimum of 3 loop region lengths

Med(|J12|,|J23|,|J31|) 0 Median of 3 loop region lengths

Max(|J12|,|J23|,|J31|) 4 Maximum of 3 loop region lengths

Min(|J12|,|J31|) 0 Minimum of J12 and J31 loop region lengths

Min(|J12|,|J23|) 0 Minimum of J12 and J23 loop region lengths

Min(|J23|,|J31|) 0 Minimum of J23 and J31 loop region lengths

3
7

and shapes the model with statistical representations of these differences. Since the

purpose of Infernal is to find structures similar to the CM, the structures that comprise

the CM must also be similar. The more members that make up the CM, the more

effective the model becomes. Even though a CM can be built using a single ncRNA

structure, such a model would have significantly reduced effectiveness in locating

similar structures.

The 31 selected secondary structures were clustered using RNAforester [49].

RNAforester clusters secondary structures based on secondary structure similarity.

Six 3-way RNA junctions with similar secondary structures were grouped into a

high-scoring cluster by RNAforester. These six 3-way RNA junctions had similar

secondary structures and known coaxial helical stackings. The six 3-way RNA

junctions belonged to PDB molecules with identifiers 2GDI, 2CKY, 2AVY, 1S72,

2AW4 and 2J01, respectively. These six 3-way RNA junctions formed the CM used

in the case study.

A Stockholm format multiple sequence alignment is required to create an

Infernal CM. The structure alignment provided by RNAforester was manually

extracted, along with the consensus secondary structure. These established the

required Stockholm format multiple sequence alignment (Figure 2.5). The Stockholm

format multiple sequence alignment is a multiple alignment of ncRNA sequences

together with the consensus secondary structure of the aligned sequences. The

secondary structure is shown in dot-parentheses notation, in which dots represent

bases and parentheses represent base pairs. The CM was created from the constructed

Stockholm format multiple sequence alignment using Infernal’s CMbuild utility [82].

Infernal’s CMsearch utility was extended to execute a trained random forests

classifier whenever an ncRNA secondary structure similar to the covariance model

was detected during genome-wide searches performed by CMsearch. The resulting

program was named CSminer.

38

STOCKHOLM 1.0
#=GF ID 2GDI(94) (riboswitch) length=74
#=GF ID 2CKY(96) A. thaliana length=73
#=GF ID 2AVY(82) E. coli length=71
#=GF ID 1S72(21) H. marismortui length=73
#=GF ID 2AW4(22) E. coli length=71
#=GF ID 2J01(23) T. thermophilus length=71
#=GF ID COAX_Model_19 (CM model name)
#=GF alignment and consensus structure by RNAforester software

2GDI_94.ct CUCGGGGU----GCC-CUUCUGCGUGAAGGCUGAGAAAUACCCGUAUCACCU-GA
2CKY_96.ct ACCAGGGG----UGC--UUGUUCAC-AGGCUGAGAAAGUCCCU-UUGAACCU-GA
2AVY_82.ct UUAUCCUUUGUUGCCAGCGGUCCGGCCGGGAACUCA-A-AGGA--G--ACUG-C-
1S72_21.ct GACAAGAUGAAGCG--UGCCGAAAG-GCACGUGG-A-AGUCUG--UU-AGAGUU-
2AW4_22.ct GGCAGGUUGAAGGU--UGGGUAACA-CUAACUGG-A-GGACCG--A--ACCGAC-
2J01_23.ct GCCAGGGUGAAGCU--GGGGUGAGA-CCCAGUGG-A-GGCCCG--A--ACCGGU-
#=GC SS_cons ((.((((((((((((..(((.....)))))))).).)).)))).....((((.((

2GDI_94.ct UC-UGGAUAAUGCCAGCGUAGGG-AA--G
2CKY_96.ct AC-AGGGUAAUGCCUGCGCAGGG-AGUGU
2AVY_82.ct CA-GUGAU--AA-ACUGGA-GGAAGGUGG
1S72_21.ct GGUGUCCUACAAUACCCUC-UCG-UGAUC
2AW4_22.ct UA-AUGUUGAAAAAUUAGC-GGA-UGACU
2J01_23.ct GG-GGGAUGCAAACCCCUC-GGA-UGAGC
#=GC SS_cons .(.(((......)))))).))).)...))
//

Figure 2.5 Stockholm format multiple sequence alignment of ncRNA molecules from
six PDB samples.

The trained random forests classifier was capable of predicting a coaxial helical

stacking in a 3-way RNA junction within the ncRNA secondary structure detected

by CMsearch. Breiman designed the random forests classifier to be comprised of

numerous classification and regression trees (CARTs) [17], each of which is formed

by a small random subset of 4 (i.e., the square root) of the 15 features. Each CART

is capable of contributing a “better than random opinion” about the coaxial helical

stacking prediction of an unknown or unlabeled input. By consolidating all opinions

from all CARTs, i.e., by tallying all “votes”, the random forests classifier is able to

predict the coaxial helical stacking status of the 3-way RNA junction.

It takes constant time for the random forests classifier to make predictions,

and the space used by the random forests classifier is independent of the genome

length. Thus, the space and time complexities of CSminer are the same as Infernal.

Specifically, the space complexity of CSminer is O(L2M) and the time complexity is

O(L3M), where L is the genome length and M is the number of states in the stochastic

context-free grammar represented by the covariance model (CM) [28]. “Wallclock” run

39

CM: COAX_Model_19
>gi|15805042|ref|NC_001263.1|

 Plus strand results:

 Query = 1 - 74, Target = 251047 - 251117
 Score = 48.18, GC = 62

 Coax status = H2H3

 ((,<<<<<-<<<<<<-<<______>>>>>>>->->->>>>,,,<<--<-<<<<______>
		1 gcCaGGguGGaGgcCuggGUacgaccGgcUgGCAagcCCgauACCGacuggugaUAAAAc 60
	 :CCAGG::G+A :CC ::GU++ A::GG: GG A:G:CCGA ACCG :+ :UG U+AAAC
	 251047 ACCAGGUUGAAACCC-CCGUGACAGGGGGCGG-AGGACCGA-ACCGGUGCCUGCUGAAAC 251103

		 >>>->->>,,,,))
	 61 acccgcGGguGagc 74
 A: C:CGG+UGAG:
	 251104 AGUCUCGGAUGAGU 251117
//

Figure 2.6 CSminer’s prediction result on the genome of D. radiodurans.

times varied from 1 second to 1 hour 21 minutes and 48 seconds depending on the

size of the target genome and the length of the aligned structures in the CM.

2.3.3 Results

A series of experiments were conducted to evaluate the pattern discovery effectiveness

of the approach presented in this case study. In the first experiment, CSminer was

run against the complete genome of Deinococcus radiodurans, i.e., GenBank ID

NC 001263.1, obtained from the NCBI GenBank database [11]. An ncRNA tertiary

motif, i.e., H2H3 coaxial helical stacking, was detected between positions 251047 and

251117 on the plus strand of the genome (Figure 2.6). This 3-way RNA junction

is predicted by CSminer to contain a coaxial helical stacking. The coaxial helical

stacking is of type H2H3 (i.e., helix H2 and helix H3 are aligned with a common

axis).

This CSminer prediction result is validated as follows. Based on NCBI BLAST

[6] and manual analyses, it is known that D. radiodurans is related to PDB molecule

1NKW. Specifically, the chain 0 nucleotide sequence was downloaded from the PDB

for the 1NKW structure. Using NCBI BLAST, this downloaded sequence was located

in the whole genome of D. radiodurans, i.e., GenBank ID NC 001263.1, from positions

40

251047 through 251117 on the plus strand. These positions are consistent with those

shown by CSminer where the motif was detected (Figure 2.6). Furthermore, based

on previous analysis [62], this region of the 1NKW structure contains a 3-way RNA

junction with a coaxial helical stacking of type H2H3, which is what CSminer reports.

Table 2.5 presents the successful search results from 12 different CSminer

experiments using three different covariance models (CMs) where the CMs were built

using the techniques described in the previous subsection. A search is considered

successful when the Infernal CMsearch score is higher than 30. The table contains

the following columns:

• “Model PDB ID’s”: This column shows the PDB molecules from which
RNA sequences of known coaxial helical stacking ncRNA tertiary motifs were
extracted, aligned and used to build a CM for the CSminer genome search. The
source species from which the PDB molecules come can be found in Table 2.6.

• “Genome ID”: This column shows the accession number representing the
genome sequence searched by CSminer with the respective CM formed with
RNA sequences extracted from the PDB ID’s shown in the first column. Note
that the genome searched with a CM is different from the genomes/species from
which RNA sequences were extracted and used to build that CM.

• “Species”: This column shows the name of the species corresponding to the
Genome ID in the second column.

• “Positions/Strand”: This column shows search result positions in the genome
sequence where CSminer predicts the location of a coaxial helical stacking. This
column also shows the DNA strand, positive or negative, to which the search
result positions pertain. Note that positions increase from low to high for a
positive strand search result, and the positions decrease from high to low for a
negative strand search result.

• “Status”: This column shows the motif type predicted (H1H2, H1H3 or H2H3),
where HxHy indicates that helix Hx shares a common axis with helix Hy.

• “Validated”: This column shows whether or not the predicted result described
by the fourth and fifth columns is validated by known crystal structure evidence
in the PDB database. Where there is no available crystal structure evidence (i.e.,
when the column shows “no”), the predicted result needs to be validated by wet
lab experiments.

CSminer was applied to the complete genome of Thermus thermophilus, i.e.,

GenBank ID CP002777.1. An ncRNA tertiary motif, i.e., H1H2 coaxial helical

stacking, was detected between positions 14310 and 14384 on the plus strand of the

genome. This result was validated by cross-checking the result coordinates against

41

Table 2.5 Successful Search Results from Twelve CSminer Experiments Showing Genome ID, Species, Positions, Strand,
Coaxial Stacking Status and Validation Status for Each Result

Model Genome Species Positions Strand Status Validated?

1NKW,1S72,2Aw4 CP002777.1 T. thermophilus 14310-14384 + H1H2 yes

NC 013209.1 A. pasteurianus 1536843-1536769 - H1H2 no

NC 009484.1 A. cryptum 2585998-2585924 - H1H2 no

NC 016582.1 S. bingchenggensis 9707198-9707272 + H1H2 no

1S72,2AVY,2AW4, NC 001263.1 D. radiodurans 251047-251117 + H2H3 yes

2CKY,2GDI,2J01 NC 013209.1 A. pasteurianus 1731899-1731829 - H2H3 no

NC 009484.1 A. cryptum 2009814-2009744 - H2H3 no

NC 016582.1 S. bingchenggensis 7289052-7289122 + H2H3 no

1NKW,2AW4,2J01 NC 006397.1 H. marismortui 2771-2656 - H1H2 yes

H2H3

NC 013209.1 A. pasteurianus 1538830-1538717 - H1H2 no

H2H3

NC 009484.1 A. cryptum 2587983-2587870 - H1H2 no

H2H3

NC 016582.1 S. bingchenggensis 9704954-9705067 + H1H2 no

H2H3

4
2

Table 2.6 Species and Kingdom for Each PDB Molecule Used to Build the Covariance
Models Employed by CSminer

PDB ID Species Kingdom

2CKY Arabidopsis thaliana plantae

1NKW Deinococcus radiodurans bacteria

2AVY Escherichia coli bacteria

2AW4 Escherichia coli bacteria

2GDI Escherichia coli bacteria

1S72 Haloarcula marismortui archaea

2J01 Thermus thermophilus bacteria

the known motifs in PDB molecule 2J01. This result is listed as “Validated” in Table

2.5.

CSminer was also applied to the complete genome of Haloarcula marismortui,

i.e., GenBank ID NC 006397.1. Two ncRNA tertiary motifs, i.e., H1H2 and H2H3

coaxial helical stackings, were detected between positions 2771 and 2656 on the

minus strand of the genome. This result was validated by cross-checking the result

coordinates against the known motifs in PDB molecule 1S72. This result is also listed

as “Validated” in Table 2.5.

In addition, experiments were conducted by selecting three bacterial genomes

that are closely related phylogenetically to species represented in the covariance

models (CMs) used in this case study. The three bacterial genomes selected

were Acetobacter pasteurianus (GenBank ID NC 013209.1), Acidiphilium cryptum

(GenBank ID NC 009484.1) and Streptomyces bingchenggensis (GenBank ID

NC 016582.1). Experiments were also conducted to see whether these CMs would

produce any meaningful search results in other biological kingdoms. Genomes selected

were two viral genomes, one animal genome, one fungi genome and one protista

genome. The two viral genomes selected were Human immunodeficiency virus 1

43

(GenBank ID NC 001802.1) and Human immunodeficiency virus 2 (GenBank ID

NC 001722.1). The animal genome selected was Drosophila melanogaster chromosome

X (GenBank ID NC 004354.3). The protista species chosen, Plasmodium falciparum

(GenBank ID NC 004317), is a protozoan parasite and one of the species of

Plasmodium that causes malaria in humans. The fungi species chosen, Saccharomyces

cerevisiae (GenBank ID NC 001136), is one of the most intensively studied eukaryotic

model organisms in molecular and cell biology, much like Escherichia coli as the model

bacterium.

This ncRNA tertiary motif prediction method was performed on these additional

genomes using CSminer. For each of the additional bacterial genomes, a motif was

predicted. None of the additional bacteria organisms selected is represented in the

PDB. Therefore, it cannot be confirmed that these predicted results are in fact coaxial

helical stackings. These predictions are left to be validated with wet lab experiments.

All the predicted results are listed in Table 2.5.

For the two viral genomes, the animal genome, the fungus genome and the

protista genome, no motif was predicted. This was likely an indication that the motifs

of interest were specific to the genomes/species represented in the covariance models

(CMs) used by CSminer (cf. Table 2.6).

Two segments from PDB molecules 2GDI and 2CKY (used in the third CM in

Table 2.5) are members of RFAM family RF00059, i.e., the “TPP riboswitch, also

known as the THI element and Thi-box riboswitch” [41]. However, none of the results,

either validated or non-validated, were found to overlap with a known RNA gene that

is a member of some RFAM family. This is not unusual. When CSminer finds a match

to the CM used in its search, that match need only be similar to a small number of

structures comprising the CM. The match need not be similar to every structure

comprising the CM.

44

2.3.4 Conclusion

This case study demonstrated that CSminer, by combining the strengths of the

genome-wide ncRNA search tool, Infernal, with an ensemble-based random forests

classifier, was an effective biological data mining instrument. Among the growing

number of ensemble-based methodologies, the random forests method is among the

most accurate. This functionality adds significant additional functionality to Infernal.

Effective mining of coaxial helical stacking motifs in genomes will help to further

unravel the mysteries of non-coding RNA. Much remains unknown in this exciting

research area. This case study conclusion was that genome-wide mining of coaxial

helical stacking RNA motifs was feasible and cost effective.

45

CHAPTER 3

BIOLOGICAL NETWORK INFERENCE:
A COMPARATIVE REVIEW

3.1 Introduction

In life sciences research, the inference of gene regulation mechanisms in the cell is

among the most active and interesting areas. Reverse engineering is the process

of discovering the dynamic behavior and connectivity structure of a system given

observations of the system. In this work, we attempt to identify the topology of a

biological network through reverse engineering inference from experimental (ESCAPE

[120]) and simulated (DREAM4 [75]) time-series gene expression data using publicly

available implementations of time-series GRN inference tools. Understanding the

topology of a GRN helps provide insights into the biology of cellular systems and

potential targets of pharmacological compounds. Computationally reverse engineered

GRNs help to simplify the daunting genetic analysis wet-lab process by drastically

reducing the number of potential molecular interactions or locations of interaction

sites to be investigated.

Advances in molecular biology, such as Next Generation Sequencing (NGS),

allow researchers to the greatest extent ever possible to explore how genes regulate one

another with nucleotide precision. There is much interest in computational approaches

to reverse engineering genetic network probabilistic models from steady-state and

time-series gene expression data [3, 69, 87]. Time-series data gathered in a microarray

or RNA-Seq experiment consist of gene expression values recorded at each of a

number of time intervals. Reverse engineering a GRN from digitized time-series

gene expression data requires determining, for each (target) gene, the gene or genes

most likely, i.e., most probable, to be regulators. A realistic GRN model helps guide

effective disease treatment and intervention techniques through errant gene regulation

46

correction. Once a GRN model is predicted through software, it must be translated

into a hypothesis to be verified in a wet-lab experiment.

GRN inference from time-series gene expression data is challenging. Time-series

gene expression data is typically sparse in the sense that the data contain many more

variables (genes) than observations (experiments). That is, the number of observation

time points (T) is usually much smaller than the number of genes (n) in time-series

gene expression data sets. GRN inference algorithms take this situation into account

to minimize false predictions when n is significantly larger than T .

NGS technologies simultaneously measure all gene expressions for even complex

organisms containing tens of thousands of genes. GRN inference through reverse

engineering, however, requires preprocessing to help reduce computational complexity.

During a given experiment, for instance, many genes do not change their expression

levels and are therefore less relevant to the experiment. After removal of irrelevant

genes from the input, the regulatory relationships among the remaining genes

are studied. Depending on the complexity of the algorithm, genes having similar

expression patterns may be clustered and studied as a group [30] helping to further

improve computational performance.

Here we present a survey of GRN time-series inference tools that use a variety

of approaches. Each tool is applied to the same two time-series gene expression data

sets: one is a simulated data set and the other is an experimental data set derived

from wet lab experiments (see METHODS). Our objective is to provide a comparative

overview of GRN time-series inference tool capabilities.

In a NGS time-series experiment, high throughput sequencing of the

transcriptome occurs at specified time intervals typically following a perturbation

intended to increase gene expression activity. Consecutive transcriptome sequencing

reveals potential regulatory relationships among genes. For instance, plentiful

expression of one gene shortly after plentiful expression of a different gene may be

47

Figure 3.1 Using a reverse engineering approach, a gene regulatory network (GRN)
is inferred from time-series gene expression data produced from a microarray or RNA-
Seq experiment.

evidence (to be evaluated) of an expression dependency, or regulation, between the

two genes.

Figure 3.1 presents a high level overview of GRN inference of time-series gene

expression data. On the left side of the figure, a table named “Time-series gene

expression data” represents hypothetical results of a time-series gene expression

experiment. This hypothetical experiment consists of measuring the expression values

of six genes, named g1 through g6, over the course of five time points. The expression

levels, i.e., observations, of the six genes for one time point comprise one row of the

table, such that observations during the first time point comprise the first table row,

observations during the second time point comprise the second table row, etc. It can

be seen, for instance, that the expression value for gene g6 during the third time point

is 0.357.

On the right side of Figure 3.1 is a directed graph named “Inferred gene

regulatory network”, which contains six nodes and seven edges. Each node represents

one of the six genes, g1 through g6, from the gene expression table on the figure. A

directed edge from one gene (a regulator) to another gene (a target) on the graph

depicts a regulatory effect believed to exist between the two genes. For instance, the

directed edge from regulator gene g6 to target gene g3 is meant to convey that gene

g3 is a target gene whose expression level is directly affected by gene g6, one of g3’s

regulator genes.

48

Researchers apply a perturbation, or unusual external influence, to cells during

gene expression experiments with the intention of evoke a differential expression,

i.e., a significant change in normal expression for a gene. A perturbation might

include cell starvation, injury, chemical induction, extreme temperature shift, etc.

Different perturbations evoke different cellular responses from different genes. Certain

genes differentially expressed after perturbation of the immune system by influenza

infection, for instance, may not be the same as those expressed following injury or

starvation perturbation. Evolution of the GRN itself is studied in theoretical systems

biology [64].

In spite of recent tremendous advances in GRN inference tool research, the

problem of predicting a realistic remains elusive. Improved performance has been

achieved, however, by combining GRN edge predictions from multiple methods [5, 31,

71, 74, 89]. By combining individual inference method results to form a community or

group prediction for improved performance motivates us to use the frequent pattern

mining technique described in this paper.

Here, we survey the performance of seven time-series GRN inference tools using

simulated and experimental data sets described in METHODS. We find that, while

each tool’s performance might be considered unrealistic relative to the known gold

standard for each respective network, contributions of all tools combined can be mined

for frequent patterns resulting in a group performance that exceeds the individual

performances of all tools taken individually. We conclude that group performance has

significant potential for improving performance in time-series GRN inference research.

3.2 Methods

Two publicly available time-series gene expression data sets were downloaded for the

experiments conducted in this survey. One data set was synthetic and the other was

experimental.

49

A synthetic data set was downloaded from the DREAM (Dialogue for Reverse

Engineering Assessments and Methods) initiative website. The DREAM initiative

organizes annual reverse engineering competitions called the DREAM challenges [73].

In the DREAM4 edition, one challenge involved in silico regulatory network inference

from synthetically generated gene expression data sets. The DREAM4 challenge

was divided into three subchallenges named In Silico Size 10, In Silico Size 100,

and In Silico Size 100 Multifactorial, where “Size” referred to the number of genes

in the network. We downloaded our synthetic data set from the In Silico Size 10

subchallenge. This download included a gold standard network consisting of 15 gene

interactions from which gene expression data sets were generated synthetically for

DREAM4 challenges [40].

An experimental data set was obtained from the Embryonic Stem Cell Atlas

from Pluripotency Evidence (ESCAPE) database [120]. A gene regulatory network

(GRN) consisting of 30 genes was identified experimentally by Avi Ma’ayan’s team

[121]. The original chip x network was downloaded from the Ma’ayan Lab ESCAPE

website in a MySql database table format. There were 206,521 records and 178,841

unduplicated edges in the MySql database table format of the original chip x network.

Using the proposed 30 ground truth network genes as a reference, 84 non-self-directed

edges were extracted from the MySql database table format of the original chip x

network to compile our proposed ESCAPE ground truth network.

Seven publicly available time-series GRN inference tools were downloaded and

applied to the synthetic and experimental time-series gene expression data sets

downloaded as described above. Six different GRN inference methods evaluated in

this study were Bayesian, Boolean, tree-base, Granger causality (GC), information

theoretic and ordinary differential equations (ODE).

50

3.2.1 Information Theoretic

Information theoretic models are based on the statistical analysis of dependencies

between pairs of gene expression patterns (see Eq. (3.1)). A variety of popular mutual

information (MI) tools has been developed, including ARACNE (Algorithm for the

Reconstruction of Accurate Cellular Networks) [76] and TimeDelay-ARACNE [130].

The ARACNE algorithm, deployed in TimeDelay-ARACNE algorithm, filters out

noisy indirect interactions among triplets of genes using Data Processing Inequality

(DPI) [76, 130].

Ik(gx, g
(k)
y) =

∑

1≤i≤n−k

p(gi
x, g

i+k
y)log

p(gi
x, g

i+k
y)

p(gi
x)p(gi+k

y)
(3.1)

For each pair of genes (gx, gy), time-delayed MI is computed as in Eq. (3.1) where

n is the number of time points, gi
x represents the gene expression at time point i, k

denotes a time point interval, p(gi
x) is the marginal distribution of gi

x and p(gi
x, g

i+k
y)

is the joint distribution of gi
x and gi+k

y [3].

ARACNE [76] first used the Data Processing Inequality (DPI) filter to remove

indirect interactions between genes and reduce incorrect regulation predictions.

According to DPI, if gene Xi interacts with gene Xk via gene Xj, and there is no

other path from gene Xi to gene Xk, then the following inequality (Eq. (3.2)) must

apply:

I(Xi, Xk) ≤ (I(Xi, Xj), I(Xj, Xk)) (3.2)

ARACNE considers the 3 pairwise MIs (i.e., 3 edges) in all instances of

interactions among 3 genes and removes the smallest edge among the 3 if it falls

below a given DPI tolerance for MI. Interactions within an interaction triangle are

51

Figure 3.2 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) TimeDelay-ARACNE’s predicted GRN when applied to DREAM4
data. To aid comparative analysis, when a gene appeared in both GRNs, that gene
on one GRN was positioned similar to its corresponding gene on the other GRN.

taken to be indirect. Such indirect interactions are removed from the predicted GRN

when they violate the DPI beyond a tolerance threshold.

TimeDelay-ARACNE version 1.20.0 was run using R version 3.2.5 on RStudio

version 0.98.1103 on Windows 8.1 Pro. When TimeDelay-ARACNE was applied to

DREAM4 data, it predicted a graph containing 15 edges. TimeDelay-ARACNE was

applied to ESCAPE data and a total of 17 edges were predicted. Figure 3.2 illustrates

how the GRN predicted by TimeDelay-ARACNE, when applied to DREAM4 data,

compares with the DREAM4 gold standard GRN. Similarly, Figure 3.3 illustrates

how the GRN predicted by TimeDelay-ARACNE, when applied to ESCAPE data,

compares with the ESCAPE gold standard GRN. For easier comparative analysis of

gene interactions in the figures, whenever the same gene appeared in both GRNs,

that gene on one GRN was positioned similar to its corresponding gene on the other

GRN.

Another information theoretic tool evaluated for this survey was MIDER

(Mutual Information Distance and Entropy Reduction) [111]. MIDER was

52

Figure 3.3 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) TimeDelay-ARACNE’s predicted GRN when applied to ESCAPE
data. To aid comparative analysis, when a gene appeared in both GRNs, that gene
on one GRN was positioned similar to its corresponding gene on the other GRN.

downloaded from http://www.iim.csic.es/ gingproc/mider.html (last accessed on

4-3-2017). MIDER uses mutual information based entropic metrics and time delays

to compute distances among variables (genes). This distance measure was used to

determine regulatory effect between a pair of genes. MIDER version 2 was run using

MATLAB version 9.1.0.441655 (R2016b) on Windows 8.1 Pro. The MIDER utility,

runMIDER.m, was run and a GRN was produced. MIDER was able to infer a GRN for

the DREAM4 time-series gene expression data. However, when attempting to apply

MIDER to the ESCAPE time-series gene expression data, no GRN was produced.

According to MIDER’s author, Alex Villaverde, the problem appeared to be a lack

of any calculable mutual information between pairs of variables at every time point.

Therefore, MIDER results for the DREAM4 data set were reported, but there were no

results to report for the ESCAPE data set. When MIDER was applied to DREAM4

data, it predicted a graph containing 13 edges.

Figure 3.4 illustrates how the GRN predicted by MIDER, when applied

to DREAM4 data, compares with the DREAM4 gold standard GRN. For easier

53

Figure 3.4 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) MIDER’s predicted GRN when applied to DREAM4 data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

comparative analysis of gene interactions in the figure, whenever the same gene

appeared in both GRNs, that gene on one GRN was positioned similar to its

corresponding gene on the other GRN.

3.2.2 Bayesian

A Bayesian network (BN) is a probabilistic graphical model representing random

variables and their conditional dependencies in a directed acyclic graph (DAG) [33].

BNs are used to represent GRNs inferred from steady state and time-series gene

expression profile data. A steady state BN gene regulatory network (GRN) is a

representation of a joint probability distribution in the form of a DAG, G=(V,E),

whose vertices, {V }, correspond to genes and whose edges, {E}, correspond to

regulatory links between source genes and target genes in {V }. Each vertex Vi ∈ V

corresponds to a random variable Xi which can take on any specific gene expression

value. The conditional distribution for each target gene is determined by its parents,

i.e., source genes, that regulate it. The graph G follows the Markov property that each

54

vertex (gene) is dependent only on its parents. The BN joint probability distribution

of each variable X1, X2, ..., Xp is defined as follows:

P (X1, X2, ..., Xp) =

p
∏

i=1

P (Xi | PaG(Xi)), (3.3)

where p is the number of genes, PaG(Xi) is the set of parents for variable Xi as

determined by the set of edges E in graph G, and P (Xi|PaG(Xi)) is the conditional

distribution for each variable, Xi.

A dynamic Bayesian network (DBN) is a Bayesian network relating variables to

one another over adjacent time intervals [61]. In the case of a DBN, similar to the BN,

the GRN represents a joint probability distribution in the form of a DAG, G=(V,E),

whose vertices, {V }, correspond to genes and whose edges, {E}, correspond to

regulatory links between source genes and target genes in {V }. In a time-series gene

expression experiment, assume there are n time points at which expression levels of p

genes are measured. The gene expression data can be represented by an n× p matrix

X whose ith row contains expression values for p genes measured at time point i. The

DBN joint probability distribution of each variable X11, ..., X1p, X21, ..., Xnp is defined

as follows:

P (X11, ..., X1p, X21, ..., Xnp)

= P (X1) × P (X2 | X1) × ... × P (Xn | Xn−1).

(3.4)

where p is the number of genes, n is the number of time intervals and Xi =

(Xi1, Xi2, ..., Xip) is a p-dimensional variable vector representing gene expression

values of p genes at time interval i.

A Bayesian GRN inference tool estimates a probabilistic network of regulator-

gene pairs from gene expression data. A Bayesian network (BN) defines the conditional

probability distribution (CPD) of each child node given its parent nodes. Learning the

55

structure of a Bayesian network is computationally intensive. Among the numerous

approaches to perform a Bayesian network inference, the junction tree algorithm is

among the most common [51, 54]. At each time interval, the objective is to estimate

the parameters of each CPD to match the expression data. The ultimate goal is to

create a model with the maximum likelihood, which is often a matter of maximizing

the sum of the mutual information (MI) between each child node and its parent nodes

[79]. A static Bayesian GRN network is acyclic in that it does not allow the presence

of a cycle as a feedback loop. However, a cycle for a feedback loop is permitted by a

dynamic Bayesian network model which is learned from time-series gene expression

data. This approach performs reasonably quickly when the network size is small but

becomes computationally prohibitive for medium to large size networks.

The networkBMA Bayesian-based time-series GRN inference tool was evaluated

for this survey. To help compensate for sparse nature of time-series data, a Bayesian

model averaging (BMA) approach can be used to approximate values between points

in the time series and to eliminate genes that are highly correlated [126]. This

approach is used in the networkBMA package evaluated in this study. networkBMA

is an unsupervised GRN inference algorithm [127] that uses the Bayesian network

inference computational approach and was developed within the R language and

environment. networkBMA reads time-series gene expression profile data and predicts

regulatory relationships between pairs of genes in a GRN. networkBMA addresses

known limitations of Bayesian network inference, such as the exponential compu-

tational costs of evaluating networks that are not small [21, 22, 24]. A novel

Bayesian model averaging (BMA) approach utilizes a more efficient model space

search. networkBMA also performs time-series expression profile data transformations

to improve performance in several areas, such as eliminating predictions of gene

self-regulation.

56

Figure 3.5 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) networkBMA’s predicted GRN when applied to DREAM4 data. To
aid comparative analysis, when a gene appeared in both GRNs, that gene on one
GRN was positioned similar to its corresponding gene on the other GRN.

networkBMA version 1.12.0 was run using R version 3.2.5 on RStudio version

0.98.1103 on Windows 8.1 Pro. When networkBMA was applied to DREAM4 data, it

predicted a graph containing 90 edges. The top 15 edges were chosen for performance

evaluation per literature recommendation [64]. networkBMA was applied to ESCAPE

data and a total of 870 edges were predicted. The top 84 edges were chosen for

performance evaluation per the same literature recommendation. Figure 3.5 illustrates

how the GRN predicted by networkBMA, when applied to DREAM4 data, compares

with the DREAM4 gold standard GRN. Similarly, Figure 3.6 illustrates how the

GRN predicted by networkBMA, when applied to ESCAPE data, compares with the

ESCAPE gold standard GRN. For easier comparative analysis of gene interactions in

the figures, whenever the same gene appeared in both GRNs, that gene on one GRN

was positioned similar to its corresponding gene on the other GRN.

57

Figure 3.6 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) networkBMA’s predicted GRN when applied to ESCAPE data. To
aid comparative analysis, when a gene appeared in both GRNs, that gene on one
GRN was positioned similar to its corresponding gene on the other GRN.

3.2.3 Granger Causality

Granger causality (also known as of Wiener-Granger Causality), occurs in a situation

involving two time-series variables, X and Y , when a prediction is attempted for

a subsequent value of X using only past values of X and a second prediction is

attempted for a subsequent value of X using past values of both X and Y [39]. When

the second prediction is significantly more successful than the first prediction, then Y

is said to Granger-cause X. A Granger causal influence of one time-series on another

time-series can be claimed if the prediction of one time-series can be significantly

improved by using knowledge from the second time-series.

The Granger causality approach is common for inferring relationships among

genes in time-series gene expression profiles. One gene, say g2, is said to be causal

for another gene, g1, if the prediction of gene g1 at time point t using all relevant

information available at time point t− 1 about gene g1 can be significantly improved

by also considering all relevant information available at time point t − 1 about gene

g2.

58

An autoregressive model describes how a term at time point t in a gene

expression time-series can be predicted from previous gene expression terms in the

series at time points t−1, t−2, etc. Eq. (3.5) shows an autoregressive model prediction

of the expression of a gene g1 at time point t given the previous q terms in the gene

expression time-series.

gt
1 = c + α1g

t−1
1 + ... + αqg

t−q
1 + ǫt (3.5)

In the autoregressive Eq. (3.5), c is an initial constant, α1 through αq are

coefficients of each previous gene g1 expression in the series and ǫt is typical noise

associated with gene expression profile experiment.

An autoregressive model is also used to determine if there is a Granger causality

between two genes, e.g., g1 and g2. If the autoregressive model in Eq. (3.6) holds and

at least one of the gene g2 coefficient terms β1 through βq is not equal to zero, then

there is a term in the g2 time-series that contributes to the prediction of the expression

value of gene g1 at time point t, and gene g2 is said to “Granger cause” gene g1.

gt
1 = c + α1g

t−1
1 + ... + αqg

t−q
1 + β1g

t−1
2 + ... + βqg

t−q
2 + ǫt (3.6)

When time-series gene expression data for a higher number of genes, g1 ... gn,

are available, the vector autoregressive (VAR) model is used for Granger causality

prediction [44].

One of the primary goals of studying a time-series gene expression profile is to

identify direct inter-gene causal relationships. [34, 78, 81]. Two of the most common

methods often used to infer interactions among items in a time-series are the Granger

causality method the Bayesian network inference method. Whereas the Bayesian

method can be applied to static or time-series data, the Granger causality method is

59

used only for time-series data. A direct causal relationship between two genes, i.e.,

{g2→g1}, implies that the expression of gene g2 predicts the expression of gene g1.

Granger causality was originally developed for economic forecasting and has recently

been successfully applied to the problem of gene regulatory network (GRN) inference

[18, 131] using a GRN inference tool named CGC-2SPR.

The CGC-2PRS process for a hypothetical network was evaluated as follows as

detailed in [124]. A hypothetical gene regulatory network was established containing

1,000 nodes and 1,082 regulatory edges. After running the CGC-2SPR (conditional

Granger causality using two-step prior Ridge regularization) process using simulated

gene expression data, the highest ranking edges were compared against the gold

standard network from which the expression data were derived. The BayesianRidge

algorithm produced regression matrix B using a lag time, p, of 3 to limit the range of

the effect that one gene will have on another gene. The X matrix was comprised of

18 rows by 30 columns and represented three (i.e., p = 3) replicates of each of the 10

genes in the network for 18 (i.e., 21 - p) time-points in the time-series. The Y matrix

was comprised of 18 rows by 10 columns and represented the original expression

value for each of the 1,000 genes in the network for 18 (i.e., 21 - p) time-points in the

time-series. The W matrix was comprised of 30 rows by 10 columns and represents

prior knowledge about the regulatory network. Prior knowledge about an edge took

the form of the value 1 in ith row and ((j-1) mod 1000 + 1)th column of the W

matrix when a regulatory relationship from gene i to gene j was known to exist.

(As previously stated, no prior knowledge was applied in tools used for this survey. as

such, all values in matrix W were set to zero.) The regression matrix B was comprised

of 30 rows by 10 columns representing scores of all pair-wise combinations of genes

in the 10 gene network .

After computing regression matrix B, CGC-2SPR Perl and MATLAB scripts

were run to score the results relative to the gold standard of the simulated network.

60

The Perl script named analyse.pl compared result edges with gold standard network

edges and saved the edges that match. The Perl script named prepare.pl compared

result edges with gold standard network edges and saved data recorded on the same

line with the results (i.e., located in columns 3 and 4) recorded with an edge that

matched a gold standard network edge. A predicted edge that matched a gold standard

edge was known as a true positive (TP).

The CGC-2SPR GRN inference tool identified 3 true positives for the DREAM4

network. This is less than the 15 gold standard network edges obtained from the In

Silico Size 10 subchallenge site [40].

The CGC-2PRS process described above was repeated for the ESCAPE

experimental time-series gene expression profile. The CGC-2SPR GRN inference tool

identified 18 true positives for the ESCAPE network. This is less than the 84 gold

standard network edges obtained from the ESCAPE database [121, 120].

Note that CGC-2SPR was designed to be run using prior knowledge. For a

fair comparison against other tools in this survey, CGC-2SPR was run without using

prior knowledge since most tools surveyed did not have the ability to consider prior

knowledge. Yet, in spite of the lack of prior knowledge, CGC-2SPR scored the highest

among all tools in the GRN inference using the ESCAPE experimental time-series

gene expression data set.

Modules of CGC-2SPR version 2015 were run using R version 3.2.5 on RStudio

version 0.98.1103 on Windows 8.1 Pro. Other CGC-2SPR modules were run using

MATLAB version R2015a (8.5.0.197613) 64-bit (glnxa64) on Linux version 2.6.32-

642.6.2.el6.x86 64. Other CGC-2SPR modules were run using Perl version 5.10.1 on

Linux version 2.6.32-642.6.2.el6.x86 64. When CGC-2SPR was applied to DREAM4

data, it predicted a graph containing 90 edges. The top 15 edges were chosen for

performance evaluation per literature recommendation [64]. CGC-2SPR was applied

to ESCAPE data and a total of 870 edges were predicted. The top 84 edges were

61

Figure 3.7 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) CGC-2SPR’s predicted GRN when applied to DREAM4 data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

chosen for performance evaluation per the same literature recommendation. Figure 3.7

illustrates how the GRN predicted by CGC-2SPR, when applied to DREAM4 data,

compares with the DREAM4 gold standard GRN. Similarly, Figure 3.8 illustrates how

the GRN predicted by CGC-2SPR, when applied to ESCAPE data, compares with the

ESCAPE gold standard GRN. For easier comparative analysis of gene interactions in

the figures, whenever the same gene appeared in both GRNs, that gene on one GRN

was positioned similar to its corresponding gene on the other GRN.

3.2.4 Boolean

A Boolean network (BLN), B(G,R), is represented by a graph, B, consisting of

nodes G={g1, g2, ..., gN} representing N genes, and edges R={(gi→gj)|gi, gj∈R}

representing regulatory interactions between pairs of genes. Each node, gi, represents

a Boolean variable whose state is determined by a Boolean function of other Boolean

62

Figure 3.8 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) CGC-2SPR’s predicted GRN when applied to ESCAPE data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

variables. In particular, the state of node gi at time t + 1 results from K other nodes

gi1 , gi2 , ..., giK having regulatory interactions on gi (defined in R) at time t as described

by the following Boolean function [10]:

gi(t + 1) = fi(gi1(t), gi2(t), ..., giK (t)). (3.7)

Boolean networks (BLNs) and probabilistic Boolean networks (PBLNs) are

highly studied mathematical models in GRN inference research [117]. BLNs and

PBLNs represent the expression level of each gene as either ON or OFF (i.e.,

1 and 0). This particular form of discretization for BLNs and PBLNs is called

binarization. In this way, standard and well understood logic operations (AND, OR

and NOT) are used to clearly describe gene regulatory interactions. The clarity of

understanding provided by BLNs and PBLNs is often offset by information loss due

to the binarization process. One of the advantages of a Boolean GRN is the ease

of building the network with biological expert knowledge expressed in non-technical

natural-language statements. Conversely, however, it’s not clear whether a Boolean

63

GRN can be inferred from a pre-existing gene expression profile data set in the absence

of such biological expert knowledge.

A BLN or PBLN model describes a GRN as transitioning among a finite number

of states. A state in a BLN or PBLN is a binary vector of all the gene expression

values (1 or 0) at any point in time, and the state space for a BLN and PBLN model

consists of all the possible states, i.e., 2n, for a model with n genes. Details for building

the BN and PBN from a state transition model are described in [118].

Liang, et al, [68] proposed a deterministic process named REVEAL to identify

an update rule for each gene of a network when the input and output values are

known. This situation isn’t feasible, however, where a reference network isn’t available.

Shmulevich, et al, [97] describes a de novo process to infer a probabilistic Boolean

network without requiring a reference network.

Among the challenges when predicting a gene regulatory network using Boolean

algebra methods is the discretization process. When a floating point gene expression

value is converted to a binary integer, gene expression is deemed to be either on or

off, like a simple electric switch. Valuable information may be lost in this prediction

process. A misrepresented gene expression at one time point impacts predictions at

subsequent time points since the predicted output for one gene is determined by the

input of all genes in the network.

The BoolNet Boolean network based time-series GRN inference tool was

evaluated for this survey. BoolNet [80] supports providing required edges and

excluded edges as ”prior knowledge.” A Boolean network may be synchronous,

asynchronous, probabilistic or temporal. BoolNet provides two algorithms for network

reconstruction: REVEAL and Best-Fit Extension. BoolNet provides the ability to

perform a heuristic search or an exhaustive search of a binarized gene expression data

set.

64

Reconstruction of DREAM4 and ESCAPE data required normalization, or

binarization of the gene expression data values. Data normalization can be based on

difference of expression values or the average of expression values [15]. The BoolNet

package has a built-in function that binarizes the gene expression data.

Customized R scripts dm185.r and dm186.r (available from the author upon

request) parsed the raw output objects generated by BoolNet. These scripts formatted

BoolNet predictions for performance evaluation and plotting tools. The BoolNet

method named reconstructNetwork processed a network in matrix form and produced

an object of R class probabilisticBoolenNetwork, which was printed using the BoolNet

print method. The output of the BoolNet print method was parsed by customized

R scripts (available from the author upon request) to extract desired edges for

performance evaluation.

To evaluate the GRN inference performance of BoolNet, we formatted our

DREAM4 and ESCAPE time-series data sets into R matrix objects required by

BoolNet. In the required format, gene expression results for a specific point in time

were arranged in columns and all expressions for a specific gene were recorded in a

row. Gene identifiers were recorded in the first column prior to the gene expression

values. There were no names for rows and columns, i.e., the method returned the

value NULL. Boolean network inference requires the binarization of gene expression

values, which results in the translation of each gene expression value into a 0 or 1. The

BoolNet method binarizeTimeSeries performed the binarization task and created an

object of the same matrix class of the original time-series gene expression data set.

Let B be the matrix of binarized gene expression values. The BoolNet

reconstructNetwork method predicted a probabilistic Boolean GRN comprised of

optional regulatory edges {gene1→gene2, gene1→gene3, ... , gene1→geneM}, M < N ,

for each of the N genes in the network, where, in each gene pair, the first gene is

the regulatory gene and the second gene is the target gene. The maxK parameter

65

of the reconstructNetwork method limited the number of edges having a common

regulating gene. Higher maxK parameter values consumed proportionately more CPU

and memory computational resources. Prior gene regulatory interaction knowledge,

when used, could be provided via the excludeDependencies and requiredDependencies

parameters during the running of the reconstructNetwork method. The BoolNet

chooseNetwork method produced one network by selecting edges within the proba-

bilistic Boolean GRN produced by the reonstructNetwork method. The chooseNetwork

method produced a list of transition functions from which GRN edges were extracted.

GRNs predicted by BoolNet varied depending on the order of genes in the

input gene expression data set. This drawback was indicative of the steep complexity

increase when larger networks were evaluated and was related to the need to specify

parameters appropriately in order to obtain results in reasonable timeframes.

BoolNet version 2.1.1 was run using R version 3.2.5 on RStudio version 0.98.1103

on Windows 8.1 Pro. When BoolNet was applied to DREAM4 data, it predicted a

graph containing 35 edges. The top 15 edges were chosen for performance evaluation

per literature recommendation [64]. BoolNet was applied to ESCAPE data and a

total of 66 edges were predicted. Figure 3.9 illustrates how the GRN predicted by

BoolNet, when applied to DREAM4 data, compares with the DREAM4 gold standard

GRN. Similarly, Figure 3.10 illustrates how the GRN predicted by BoolNet, when

applied to ESCAPE data, compares with the ESCAPE gold standard GRN. For

easier comparative analysis of gene interactions in the figures, whenever the same

gene appeared in both GRNs, that gene on one GRN was positioned similar to its

corresponding gene on the other GRN.

3.2.5 Ordinary Differential Equations (ODE)

The inference of a gene regulatory network from time-series gene expression data can

be performed using ordinary differential equations (ODE) whereby the instantaneous

66

Figure 3.9 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) BoolNet’s predicted GRN when applied to DREAM4 data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

Figure 3.10 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) BoolNet’s predicted GRN when applied to ESCAPE data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

67

change in the expression level of a gene is expressed as a formulas involving expression

level of other genes. Assuming that the behavior of a gene regulatory network (GRN)

on N genes can be modeled by a system of nonlinear differential equations, the model

is defined as an N x N matrix of coefficients describing the regulatory interactions

between the genes [35].

In systems biology, the S-system model in Eq. (3.8) [94] is often used as a basis

for inferring a GRN.

dxi

dt
= αi

N
∏

j=1

x
gi,j

j − βi

N
∏

j=1

x
hi,j

j , for i = 1, 2, ..., N (3.8)

In Eq. 3.8, parameters i and j each represent one network node, parameter g

is a kinetic order representing the positive interaction between two network nodes,

parameter h is a kinetic order representing the negative interaction between two

network nodes, parameter α represents a non-negative constant of positive inter-node

interaction for each network node, parameter β represents a non-negative constant of

negative inter-node interaction for each network node and N represents the number

of nodes in the network.

Where there is time-series information gathered about the output of each node of

a network, the cause-and-effect relationship among the network nodes is believed to be

derivable by solving for the parameters of the S-system that represents that network.

This approach has considerable promise in the field of cellular biology research. A large

and growing body of time-series gene expression profile data is available for evaluation.

Where S-system parameters can be accurately derived regarding the genes involved

in a time-series gene expression profile, researchers hope to glean critical information

about cellular function, especially disease progression.

Efficiently solving for the best coefficients in the matrix is challenging. By

defining a separate formula for each individual gene as a function of all other

68

pertinent genes, the solution to the inference problem can be presumably determined

by solving the problem of N simultaneous equations for N variables. While solving

ordinary differential equations is less computationally intensive than solving partial

differentially equation, the problem remains exponentially difficult, i.e., NP-hard,

and requires heuristic approaches to avoid excessive run times for medium to large

numbers of genes. The ODE methods considered here are applied to networks

consisting of small numbers of genes.

Inferelator is a time-series GRN inference tool that applies gene groupings

(where a group y is comprised of clusters of genes x) based on similarities in

co-expression, and solves for the following ODE:

dyi(t)

dt
= αiyi +

P
∑

j=0

βi,jfj(x(t)), for i = 1, 2, ..., N (3.9)

where αiyi represents the degradation rate of yi, β is a matrix of kinetic parameters to

be computed, fj(x(t)) represents the minimum of xi(t) or xi′(t) and N is the number

of y groupings. Inferelator applies a Bayesian approach in combination with the above

ODE method. Algorithm details are available in [72].

Inferelator is maintained at the GitHub project hosting site (https:

//github.com/ChristophH/Inferelator) [72]. Inferelator must be run in a non-Windows

environment when multiple cores are deployed. Otherwise the message “’mc.cores’

< 1 is not supported on Windows” is displayed. Sample jobs included with the

download from GitHub, including jobs processing 100-gene DREAM4 networks,

worked successful and served as good examples for setting up new jobs. Input data file

directories for DREAM4 10-gene and the ECLIPSE 30-gene network were established

and populated. Parse method options provided by Inferelator are BBSR and MEN.

Inferelator has the capability to use prior knowledge to improve the confidence of

GRN edge predictions. Inferelator was applied to DREAM4 and ESCAPE time-series

69

gene expression data sets without the use of prior knowledge since prior knowledge

information was not used when running other GRN inference tools.

Inferelator version 2.0 was run using R/Rscript version 3.2.4 on Linux

version 2.6.32-642.6.2.el6.x86 64. When Inferelator was applied to DREAM4 data, it

predicted a graph containing 42 edges. The top 15 edges were chosen for performance

evaluation per literature recommendation [64]. Inferelator was applied to ESCAPE

data and a total of 221 edges were predicted. The top 84 edges were chosen

for performance evaluation per the same literature recommendation. Figure 3.11

illustrates how the GRN predicted by Inferelator, when applied to DREAM4 data,

compares with the DREAM4 gold standard GRN. Similarly, Figure 3.12 illustrates

how the GRN predicted by Inferelator, when applied to ESCAPE data, compares with

the ESCAPE gold standard GRN. For easier comparative analysis of gene interactions

in the figures, whenever the same gene appeared in both GRNs, that gene on one GRN

was positioned similar to its corresponding gene on the other GRN.

3.2.6 Tree-Based

Feature selection inference models leverage the tree-based approach for classification

and regression. Random forests tree-based ensemble methods [16] decompose the

problem of finding potential regulators of N genes into N distinct sub-problems.

As each of the N genes is assumed to be a target gene, each of the N genes is ranked

as a potential regulator gene using feature selection and random forests methods.

Highest ranking genes are identified as potential regulators for the target gene in

question. Using gene expression data, potential regulatory genes for a given target

gene are identified as those genes whose expression influences the expression of the

target gene.

Jump3 [53] enhances the tree-based ensemble approach used by GENIE3 [52]

and uses the Extra-Trees procedure [36]. In this manner, rather than using a brute

70

Figure 3.11 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) Inferelator’s predicted GRN when applied to DREAM4 data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

Figure 3.12 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) Inferelator’s predicted GRN when applied to ESCAPE data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

71

force exhaustive candidate selection process, the best candidate is determined by

evaluating random candidates. The learned tree-based model is used to determine an

importance score for each candidate regulator. By using averaging over the trees in

the ensemble, the best probability of regulators genes for a target gene is efficiently

identified.

GENIE3 (GEne Network Inference with Ensemble of trees) is an algorithm

designed to infer a gene regulatory network (GRN) from steady state gene expression

data [53]. GENIE3 decomposes the prediction of an n gene GRN into n independent

regression problems. The objective of each regression problem is to predict the

expression pattern of one unique gene. This gene is treated as a target gene while

all other genes are treated as potential regulator genes. Each regression problem

uses a tree-based ensemble method, such as Random Forests or Extra-Trees. The

significance of a regulator gene in the prediction of the target gene expression pattern

determines the likelihood of a regulatory link. Jump3 uses an on-off model of gene

expression, similar to the Boolean inference method, and estimates the activity state

of the promoter of the gene. Jump3 models the expression of a gene using a stochastic

differential equation (SDE):

dxi = (Aiµi(t) + bi − λixi)dt + σdw(t) (3.10)

where subscript i represents the ith target gene, Aiµi(t) represents the binary state of

the target gene’s promoter (on or off), bi represents the presence of general purpose

basal transcription factors, λixi represents decay of the ith target gene and σdw(t)

represents a kinetic noise rate.

Jump3 version 2015 was run using MATLAB version 9.1.0.441655 (R2016b) on

Windows 8.1 Pro. When Jump3 was applied to DREAM4 data, it predicted a graph

containing 43 edges. The top 15 edges were chosen for performance evaluation per

72

Figure 3.13 Comparison of: (a) DREAM4 gold standard gene regulatory network
(GRN) and (b) Jump3’s predicted GRN when applied to DREAM4 data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

literature recommendation [64]. Jump3 was applied to ESCAPE data and a total of

676 edges were predicted. The top 84 edges were chosen for performance evaluation per

the same literature recommendation. Figure 3.13 illustrates how the GRN predicted

by Jump3, when applied to DREAM4 data, compares with the DREAM4 gold

standard GRN. Similarly, Figure 3.14 illustrates how the GRN predicted by Jump3,

when applied to ESCAPE data, compares with the ESCAPE gold standard GRN.

For easier comparative analysis of gene interactions in the figures, whenever the same

gene appeared in both GRNs, that gene on one GRN was positioned similar to its

corresponding gene on the other GRN.

Table 3.1 identifies the seven time-series GRN inference tools used in this survey.

The name of each tool, the method used, the tool development platform used, the

capability of the tool to apply prior knowledge and a journal citation for the tool are

shown.

73

Figure 3.14 Comparison of: (a) ESCAPE gold standard gene regulatory network
(GRN) and (b) Jump3’s predicted GRN when applied to ESCAPE data. To aid
comparative analysis, when a gene appeared in both GRNs, that gene on one GRN
was positioned similar to its corresponding gene on the other GRN.

Table 3.1 Time-Series Gene Regulatory Network (GRN) Inference Tools Evaluated

Tool name Method* Platform Priors? Citation

MIDER IT MATLAB [111]

TimeDelay-ARACNE IT R [130]

networkBMA Bayesian R Yes [127]

CGC-2SPR GC R/MATLAB Yes [124]

BoolNet Boolean R Yes [80, 100]

Inferelator ODE R Yes [72]

Jump3 Tree-based MATLAB Yes [53]

*Inference method abbreviations:

GC = Granger causality

IT = Information theoretic

ODE = Ordinary differential equations

74

3.3 Results

For a fair comparison among the seven GRN inference tools evaluated in this survey,

consistent procedures were used whenever possible. Research shows that in spite of the

genome complexity diversity among studied organisms, the mean ratio of regulators

per gene is between 1.5 and 2 [64]. For this reason, when our testing of a GRN

inference tool resulted in regulatory relationships exceeding 15 relationships or 84

relationships for the DREAM4 network or the ESCAPE network, respectively, we

chose the top 15 or 84 relationships, respectively. These numbers also match the

sizes of the respective DREAM4 and ESCAPE gold standard networks. For each tool

surveyed, default runtime parameters were used unless otherwise noted. It’s likely that

a performance metric score could be improved by fine tuning one or more runtime

parameters. However, the intention of the survey was to run each tool “out of the

box” to the greatest extent possible. Some of the tools have the capability to use prior

knowledge about a network to improve the prediction performance. For a consistent

comparison, all tools were run without the benefit of prior network knowledge. Using

DREAM4 and ESCAPE gold standard networks as references, performance metrics

of the GRN inference tools evaluated in this survey were determined.

In GRN inference, a true positive (TP) indicates that a certain edge is claimed

to exist in the gold standard network and the edge is, in fact, present in the gold

standard network. A false positive (FP) indicates that a certain edge is claimed to

exist in the gold standard network but the edge is, in fact, not present in the gold

standard network. A true negative (TN) indicates that a certain edge is claimed to

not exist in the gold standard network and the edge is, in fact, not present in the

gold standard network. A false negative (FN) indicates that a certain edge is claimed

to not exist in the gold standard network but the edge is, in fact, present in the

gold standard network. Overall accuracy is defined in Equation (3.11) [122]. We also

use TP (FP, TN, FN, respectively) to represent the number of true positives (false

75

Figure 3.15 Overall accuracy metrics of seven GRN inference tools applied against
DREAM4 synthetic time-series gene expression profile.

positives, true negatives, false negatives, respectively), produced by a GRN inference

tool. P is the sum of TP and FN. N is the sum of TN and FP.

Overall accuracy =
TP + TN

P + N
(3.11)

Figure 3.15 shows overall accuracy results for the seven time-series GRN

inference tools evaluated in this survey which were applied to the DREAM4 synthetic

time-series gene expression profile. The overall accuracy results ranged from 71% for

BoolNet and Jump3 to 80% for TimeDelay-ARACNE. Figure 3.16 shows overall

accuracy results for the six time-series GRN inference tools evaluated in this

survey which were applied to the ESCAPE experimental time-series gene expression

profile. The overall accuracy results ranged from 81% for networkBMA to 88% for

TimeDelay-ARACNE. Note that no results were produced by the MIDER GRN

inference tool when applied to the ESCAPE time-series gene expression profile.

76

Figure 3.16 Overall accuracy metrics of six GRN inference tools applied against
ESCAPE experimental time-series gene expression profile.

Balanced accuracy is defined in Equation (3.12) and is an important metric in

a case where a performance estimate may be overly optimistic due to an imbalanced

data set [19, 122]. GRNs are sparse graphs in which there are few edges present and

many edges absent. This property is known as low connectivity [108]. In the case

of E. Coli, for example, whose genome is comprised of about 4,000 genes, the mean

number of regulatory interactions per gene is 2 to 3. This is a typical imbalanced

data set in which the size of the majority class (i.e., the set of edges absent) is much

larger than the size of the minority class (i.e., the set of edges present). A blind GRN

inference algorithm would work by predicting all edges to be absent. The algorithm

would create errors for those few edges present while making correct predictions for

all the edges absent, thus still yielding high overall accuracy results. This motivates

the need for balanced accuracy, in which the accuracy results for the majority class

and minority class are calculated separately.

77

Figure 3.17 Balanced accuracy metrics of seven GRN inference tools applied against
DREAM4 synthetic time-series gene expression profile.

Balanced accuracy =
1

2

(

TP

P
+

TN

N

)

(3.12)

Figure 3.17 shows balanced accuracy results for the seven time-series GRN

inference tools evaluated in this survey which were applied to the DREAM4 synthetic

time-series gene expression profile. The balanced accuracy results ranged from 48%

for BoolNet and Jump3 to 64% for TimeDelay-ARACNE using DREAM4 data.

Figure 3.18 shows balanced accuracy results for the six time-series GRN inference

tools evaluated in this survey which were applied to the ESCAPE experimental

time-series gene expression profile. The balanced accuracy results ranged from 47%

for networkBMA to 57% for CGC-2SPR using ESCAPE data. Note that no results

were produced by the MIDER GRN inference tool when applied to the ESCAPE

time-series gene expression profile.

The Precision performance metric (also known as the Positive Predictive Value)

is a measure of the relevance of predicted values. If all predicted Positive values were

78

Figure 3.18 Balanced accuracy metrics of six GRN inference tools applied against
ESCAPE experimental time-series gene expression profile.

true positives (TP), for instance, then the Precision performance metric would be

100%. The formula for the Precision performance metric is:

Precision =
TP

TP + FP
(3.13)

Precision measures for the seven tools applied to DREAM4 data in this survey

ranged from 13% for BoolNet and Jump3 to 40% for TimeDelay-ARACNE with

a median Precision value of 20%. Precision measures for the six tools applied to

ESCAPE data ranged from 5% for networkBMA to 21% for CGC-2SPR with a median

Precision value of 13%.

The Recall performance metric (also known as Sensitivity) is a measure of the

relevant values predicted. If all positive values (i.e., gold standard GRN regulatory

edges) were predicted, for instance, then the Recall performance metric would be

100%. The formula for the Recall performance metric is:

79

Recall =
TP

TP + FN
(3.14)

Recall measures for the seven tools applied to DREAM4 data in this survey

ranged from 13% for BoolNet, Jump3 and MIDER to 40% for TimeDelay-ARACNE

with a median Recall value of 20%. Recall measures for the six tools applied to

ESCAPE data ranged from 1% for TimeDelay-ARACNE to 21% for CGC-2SPR with

a median Recall value of 12%.

3.4 Discussion

The seven tools used in this survey were chosen to ensure a diverse representation

of common time-series GRN inference methods. Each tool was available to be

downloaded from a public-access Website. Documented instructions for each tool

were sufficient to guide the authors through the necessary steps to run with default

parameters and to retrieve results for comparative analysis processing. The balanced

accuracy performance metric, as defined in Equation (3.12), addresses the disparity

in a typical GRN between the majority and minority classes, i.e., when the data set

is imbalanced between edges present and edges absent.

Mining for common patterns is an important research area in many disciplines.

For instance, market basket transaction analysis, or affinity analysis, helps determine

the likelihood of a shopper buying product y when he or she has already purchased

product x [45]. In a similar manner, we propose that among computational biology

predictions generated by various GRN inference tools there will be common patterns

in the form of frequently occurring gene clusters. We claim that a higher than average

presence of a specific cluster of genes is a significant clue to finding the true GRN in

the organism being studied.

80

Motivated by successes using the Apriori algorithm for mining frequent common

patterns [4, 128], and by successes combining GRN tools as mentioned in Section 3.1

of this paper, we explored a graph-based frequent pattern mining approach to improve

GRN inference performance. We evaluated the seven DREAM4 time-series gene

expression data set GRN inference results obtained in this survey (see Section 3.3).

DREAM4 GRN inference balanced accuracy results were generally low, with balanced

accuracy scores ranging from 48% for BoolNet to 64% for TimeDelay-ARACNE.

ESCAPE GRN inference balanced accuracy results were similarly low, with balanced

accuracy scores ranging from 47% for networkBMA to 57% for CGC-2SPR. These

balanced accuracy performance metrics were based on the gold standard networks

obtained for DREAM4 Size10 Network1 [75] and ESCAPE [120], respectively, as

described in Section 3.2.

We devised a concept of a common pattern being a network topology among

the same genes having at least one edge where the gene count was at least two and

the same topology was predicted by a minimum of two GRN inference tools. Our

observation was applied to the DREAM4 time-series gene expression data set. One

example of this common pattern (using DREAM4 challenge E. coli gene names) was

the set of two edges {marA→rob, rob→marA} which were both present, and were the

only edges present, in the 2-gene topologies in the GRNs predicted by the Inferelator

and networkBMA inference tools. We observed that these two edges were present in

the DREAM4 gold standard network.

In a similar manner, we observed common patterns among the results obtained

after applying GRN inference tools to the ESCAPE experimental gene expression

profile. One example of this common pattern (using ESCAPE database mouse gene

names) was the set of two edges {Pou5f1→Nr0b1, Sox2→Fgfr2} which were both

present, and were the only edges present, in the 4-gene topologies in the GRNs

81

predicted by the Inferelator and Jump3 inference tools. We observed that these two

edges were present in the ESCAPE gold standard network.

Using a frequent pattern mining approach, results from multiple GRN inference

tools can be combined as a means of improving performance metrics. Preliminary

but promising results encourage us to pursue this concept of graph-based frequent

pattern mining in future GRN research. The combination of multiple GRN inference

tools is consistent with recent successful results by others [5, 31, 71, 74, 89].

3.5 Conclusions

We applied seven publicly available and algorithmically disparate GRN inference tools

against publicly available time-series gene expression data sets, one experimental

and one synthetic. We evaluated the results and observed that scores computed

using standard performance metrics were generally low, with, for example, the

balanced accuracy scores ranging from a low of 47% for the networkBMA tool

applied to the ESCAPE data set to a high of 64% for the TimeDelay-ARACNE

tool applied to the DREAM4 data set. We further observed that an improvement

in the balanced accuracy performance metric score might be achieved by applying

and a graph-based frequent pattern mining approach to the results from all other

tools. We conclude that while GRN inference research is intense in a wide variety

of interesting approaches, there is no approach or tool that can claim dominating

success. We further conclude that group-based efforts have shown, and continue to

show, promising advances. Finally, we conclude that a graph-based frequent pattern

mining approach, in particular, is promising and is worthy of continued research

efforts.

82

CHAPTER 4

CLOUD-BASED BIOLOGICAL NETWORK INFERENCE:
A FRAMEWORK

4.1 Introduction

Unprecedented quantities of biological data generated in a variety of formats

at equally unprecedented speeds present a mixture of blessings and challenges

to bioinformatics researchers. These three dimensions of challenges, i.e., variety,

velocity and volume, comprise the current “big data” phenomenon in bioinformatics

[63, 91]. Innovative methodologies in computational biology, including dimensionality

reduction, feature selection, parallelization and cloud computing, mitigate high

volume complexities by expediting the process of converting big data into useful

knowledge [46, 110]. There is no doubt that mining biological big data and revealing

details about gene regulatory interactions will lead to a greater understanding of

cellular functions.

Time-series gene expression profiles reveal the cell transcriptome at regular time

intervals. By mapping the reads in these profiles to their respective reference genome

sequence, the source gene for each transcript can be identified. By applying mutual

information (MI) methodologies, a directed acyclic graph (DAG) can be constructed

to predict a gene regulation network (GRN) for the organism. In the DAG, the two

nodes of each edge would represent a pair of genes such that one gene regulates the

expression of the second gene. Research in the inference of GRNs produces promising

results [76, 130].

No GRN inference research using MI methodologies to date has leveraged the

massive parallel processing capability of cloud computing in conjunction with Gene

Ontology (GO) knowledge refinement to refine prediction results. We will implement

GRN inference using MI methodologies and GO result refinement in a cloud-based

83

environment to predict a gene regulatory network (GRN) from both experimental

RNA-Seq and synthetic time-series data sets. Furthermore, we will select data sets

for which there are known or predicted GRNs available for benchmarking analysis.

We will demonstrate that this cloud-based method can easily be scaled up by multiple

orders of magnitude with little impact on performance.

This novel cloud-based implementation to infer a GRN will be an important

bioinformatics tool. Cloud resources are increasingly more flexible and affordable

compared with local traditional computing resources. Cloud resources are available

on demand with minimal financial or time commitment. Cloud computing advantages

in the field of bioinformatics research are well known [65].

4.2 Map-Reduce GRN Inference Algorithm Using MI and GO

The open source Apache Hadoop (http://hadoop.apache.org - last accessed on

4/2/2017) is used on the Amazon Web Services (AWS) Elastic Cloud Computing

(EC2) platform (http://aws.amazon.com/ec2 - last accessed on 4/3/2017). Hadoop

implements Google’s MapReduce parallel processing framework [27]. The same

process will be followed for synthetic as well as RNA-Seq time series data sets.

The time-series gene expression profiles of each gene represented in a data

set will be evaluated to identify a time point at which gene expression changes

initially, either positively or negatively, beyond a certain threshold. Then, using an

MI approach, a GRN DAG will be constructed depicting the influence that one gene

has on another gene. Finally, the DAG will be pruned by consulting the GO database

and by applying the Data Processing Inequality (DPI) modifications [130].

As illustrated in Figure 4.1, the Master compute node of the Hadoop imple-

mentation will prepare the data for the Slave compute nodes, namely the Map and

Reduce functions. For each gene in the gene expression profile, the Master computer

node will compare the first gene expression profile value with each subsequent gene

84

expression profile value. When the difference, positive or negative, exceeds a certain

threshold percentage, that time point, i.e., the Initial change of Expression (IcE), will

be known for that gene [130]. As soon as the expression value exceeds plus or minus

the designated threshold percentage of the first gene expression, the IcE value will be

known for that gene.

When the IcE is known for all genes, the Master compute node will prepare data

partitions for tasks to be performed by Slave compute nodes. In each case where the

IcE of a gene is less than or equal to the IcE of a different gene, the Influence (INFL)

that the first gene has on the second gene will be determined by a Slave compute node

[130]. The computation of INFL for one gene pair is independent of the INFL for a

different gene pair. As a result, the computation of INFL for multiple gene pairs will

be run simultaneously in parallel. Since the number of these tasks is order n-squared,

where n is the number of genes, the power of Hadoop’s parallel processing capability

will be realized. Using a data set containing 100 genes, the number of gene pairs

processed as simultaneous Slave tasks could be as high as 10,000. In theory, a data

set containing 20,000 genes generating as many as 400,000,000 Slave tasks should take

the same amount of time as a data set containing 10 genes, assuming that sufficient

cloud resources are available for the simultaneous Slave tasks.

As prescribed by the MapReduce framework, a Map function in Hadoop is

defined to process data in the form of a pair of data items. For this research, the

first of the two items comprising the Map input data pair will be a unique gene-pair

identifier, such that the first gene has an IcE value which is less than the IcE value of

the second gene in the gene-pair. The gene-ID of the first gene in the gene-pair will

be the same for all gene-pairs assigned to one Map task. The second of the two items

comprising the Map input data pair will be the two complete sets of gene expressions

for all time points for both genes in the gene-pair.

85

As prescribed by the MapReduce framework, a Map function in Hadoop is

defined to produce data for the Reduce function in the form of another pair of data

items. For this research, the first of the two data items comprising the Map output

data pair will be the gene-ID of the first gene in the gene-pair that was processed by

a Map function. This ensures that each gene under consideration as a regulator of

other genes will be processed by only one Reduce task. The second of the two items

comprising the Map output data pair will be second gene in the gene-pair and the

INFL computed for the gene-pair, i.e., a numeric expression of the influence that the

first gene has on the second gene. Simultaneously, the INFL value will be evaluated.

All gene-pairs having an INFL value below a certain threshold (to be determined),

will be discarded and not forward to a Reduce function for further processing. Thus,

if a gene is not deemed to have a sufficient influence on another gene, there will be

no edge for that gene-pair on the inferred gene regulatory network.

As prescribed by the MapReduce framework, a Reduce function in Hadoop is

defined to process data in the form of a pair of data items produced by the Map

function described above. For this research, the Reduce function will consolidate

all Mapper-produced gene-pairs according to the first gene in each gene-pair.

Furthermore, the Reduce task will evaluate the GO database and determine of the

first gene in the gene-pair has been shown to possess a regulatory capability. This

information will be valuable in “certifying” that a DAG edge in the GRN should be

considered was high confidence. The Reducer nodes will produce one output key-value

pair for each unique “first-gene” among all gene-pairs. Thus, the Master node will

receive the same number of key-value data pairs as there are unique “first-genes”

among all gene-pairs.

The key-value data pair produced by the Reducer nodes is described as follows.

The “key” in each key-value data pair will be a unique numeric gene-id. This gene-id

will represent all gene-pairs that have the same gene-id as the first of the two genes

86

Figure 4.1 MapReduce framework showing network inference with Gene Ontology
(GO) edge certification.

87

in the gene-pairs. The “value” in each key-value data pair will be an array of data

triples. The first item in each data triple in this array will be the second gene of the

gene-pair produced by the Mapper nodes. The second item in each data triple in this

array will be the INFL value associated with each gene-pair produced by the Mapper

nodes. The third item in each data triple in this array will be the GO certification

value associated with each gene-pair produced by the Mapper nodes. GO certification

will be a simple binary value, i.e., YES or NO. The output produced by the Reduce

function will be evaluated by the Master compute node.

At the conclusion of all Map and Reduce tasks, the Master compute node

will examine the collection of gene-pair INFL and GO certification values. This

information will be used to create a DAG comprised of a directed edge for each

gene-pair in the collection. If the GO database confirms that the gene has a regulatory

function, then the edge in the DAG will be marked as a “GO certified” edge. The

DAG will be checked for pairs of genes that have a directed edge in both directions.

In each such case, one edge will be removed if it is not a “GO certified” edge and if

the INFL of the edge is less than the INFL of the second edge.

The resultant DAG will represent a prediction of a GRN for the organism

represented by the gene expression profile. This prediction will be benchmarked

against similar predictions compiled for the same gene expression profile.

We have received some results using the proposed cloud-based framework [3].

88

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Research shows that when prior knowledge is available and applied in gene regulatory

network inference (GRN), network prediction performance results are generally

improved [21]. Seven recent bioinformatics tools for time-series based GRN inference

were reviewed and compared using both simulated and experimental data sets.

Standard performance metrics for these GRN inference tools are generally low,

suggesting that further efforts be needed to develop more reliable network inference

tools. Using multiple tools together can help identify true regulatory interactions

between genes, a finding consistent with those reported in the literature.

In the future, we plan to explore and evaluate new algorithms leveraging

frequent subgraph mining (FSM) for genome-wide pattern discovery and network

inference using steady-state and time series data in the cloud. We will also perform

network inference algorithms using Apache Spark and Apache Hadoop and compare

them [27, 98].

89

REFERENCES

[1] D. P. Aalberts and N. O. Hodas. Asymmetry in RNA pseudoknots: observation and
theory. Nucleic Acids Research, 33:2210–2214, 2005.

[2] D. P. Aalberts and N. Nandagopal. A two-length-scale polymer theory for RNA loop
free energies and helix stacking. RNA, 16:1350–1355, 2010.

[3] Y. Abduallah, T. Turki, K. Byron, Z. Du, M. Cervantes-Cervantes, and J. T. L. Wang.
MapReduce algorithms for inferring gene regulatory networks from time-series
microarray data using an information-theoretic approach. BioMed Research
International, 2017.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proceedings 20th international conference very large data bases, VLDB, volume
1215, pages 487–499, 1994.

[5] G. Altay and F. Emmert-Streib. Revealing differences in gene network inference
algorithms on the network level by ensemble methods. Bioinformatics,
26(14):1738–1744, 2010.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[7] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of ACM Spring Joint Computer
Conference, pages 483–485, New York, 1967.

[8] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald,
G. M. Rubin, and G. Sherlock. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25(1):25–29, 2000.

[9] N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. The complete atomic
structure of the large ribosomal subunit at 2.4 A resolution. Science, 289:905–
920, 2000.

[10] S. Barman and Y. K. Kwon. A novel mutual information-based Boolean network
inference method from time-series gene expression data. PLoS ONE, 12(2),
2017.

[11] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell,
and E. W. Sayers. GenBank. Nucleic Acids Research, 41:D36–D42, 2013.

90

[12] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research,
28:235–242, 2000.

[13] J. A. Blake, M. Dolan, H. Drabkin, D. P. Hill, L. Ni, D. Sitnikov, S. Burgess, T. Buza,
C. Gresham, F. McCarthy, and others. Gene Ontology: enhancements for 2011.
Nucleic Acids Research, 40(D1):D559–D564, 2012.

[14] J. A. Blake and M. A. Harris. Gene Ontology (GO) project: structured vocabularies
for molecular biology and their application to genome and expression analysis.
Current Protocols in Bioinformatics, Chapter 7, 2008.

[15] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed. A comparison of
normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics, 19(2):185–193, 2003.

[16] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.

[18] S. L. Bressler and A. K. Seth. Wiener-Granger causality: a well established
methodology. Neuroimage, 58(2):323–329, 2011.

[19] K. H. Brodersen, C. S. Ong, J. M. Buhmann, and K. E. Stephan. The balanced
accuracy and its posterior distribution. In Proceedings - International
Conference on Pattern Recognition, pages 3121–3124, Department of
Computer Science, ETH Zurich, 2010.

[20] K. Byron, M. Cervantes-Cervantes, J. T. L. Wang, W. C. Lin, and Y. Park. Mining
roX1 RNA in Drosophila genomes using covariance models. International
Journal of Computational Bioscience, 1(1):22–32, 2010.

[21] K. Byron, K. G. Herbert, and J. T. L. Wang. Bioinformatics Database Systems.
Abingdon, UK: Taylor & Francis, 2017.

[22] V. Chandrasekaran, N. Srebro, and P. Harsha. Complexity of inference in graphical
models. In Proceedings of 24th Conference on Uncertainty in Artificial
Intelligence, pages 70–78, Massachusetts Institute of Technology, 2008.

[23] FlyBase Consortium. FlyBase: the Drosophila database. Nucleic Acids Research,
22(17):3456–3458, 1994.

[24] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.

[25] F. F. Costa. Non-coding RNAs: lost in translation? Gene, 386(1-2):1–10, 2007.

[26] K. Darty, A. Denise, and Y. Ponty. VARNA: interactive drawing and editing of the
RNA secondary structure. Bioinformatics, 25(15):1974–1975, 2009.

91

[27] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of ACM, 51(1):107–113, 2008.

[28] R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK:
Cambridge University Press, 1998.

[29] S. R. Eddy. Non-coding RNA genes and the modern RNA world. Nature Reviews.
Genetics, 2(12):919–929, 2001.

[30] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of National Academy
of Sciences of the United States of America, (25), 1998.

[31] R. J. Flassig, S. Heise, K. Sundmacher, and S. Klamt. An effective framework
for reconstructing gene regulatory networks from genetical genomics data.
Bioinformatics, 29(2):246–254, 2013.

[32] E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Exploring genomic dark matter:
A critical assessment of the performance of homology search methods on
noncoding RNA. Genome Research, 17(1):117–125, 2007.

[33] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to
analyze expression data. Journal of Computational Biology, 7(3-4):601–620,
2000.

[34] A. Fujita, J. R. Sato, H. M. Garay-Malpartida, P. A. Morettin, M. C. Sogayar, and
C. E. Ferreira. Time-varying modeling of gene expression regulatory networks
using the wavelet dynamic vector autoregressive method. Bioinformatics,
23(13):1623–1630, 2007.

[35] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring genetic networks
and identifying compound mode of action via expression profiling. Science,
301(5629):102–105, 2003.

[36] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
Learning, 63(1):3–42, 2006.

[37] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. SIGOPS Operating
Systems Review, 37(5):29–43, 2003.

[38] J. Goecks, J. Taylor, A. Nekrutenko, E. Afgan, G. Ananda, D. Baker, D. Blankenberg,
R. Chakrabarty, N. Coraor, J. Goecks, G. Von Kuster, R. Lazarus, K. Li,
A. Nekrutenko, J. Taylor, and K. Vincent. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computa-
tional research in the life sciences. Genome Biology, 11(8), 2010.

[39] C. W. J. Granger. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica, (3), 1969.

92

[40] A. Greenfield, R. Bonneau, A. Madar, and H. Ostrer. DREAM4: Combining
genetic and dynamic information to identify biological networks and dynamical
models. PLoS One, 5(10), 2010.

[41] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy. Rfam: an
RNA family database. Nucleic Acids Research, 31:439–441, 2003.

[42] S. Griffiths-Jones, A. Khanna, S. R. Eddy, S. Moxon, M. Marshall, and A. Bateman.
Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids
Research, 33:D121–D124, 2005.

[43] T. Gunarathne, B. Zhang, T. Wu, and J. Qiu. Scalable parallel computing on clouds
using Twister4Azure iterative MapReduce. Future Generation Computer
Systems, 29(4):1035–1048, 2013.

[44] J. D. Hamilton. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[45] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. 3rd ed. San
Francisco, CA: Morgan Kaufmann, 2011.

[46] Y. Han, K. Muegge, S. Gao, W. Zhang, and B. Zhou. Advanced applications of RNA
sequencing and challenges. Bioinformatics and Biology Insights, 9:29–46, 2015.

[47] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. Cambridge, MA:
MIT Press, 2001.

[48] A. Herraez. Biomolecules in the computer: Jmol to the rescue. Biochemical Education,
34:255–261, 2006.

[49] M. Höchsmann, T. Töller, R. Giegerich, and S. Kurtz. Local similarity in
RNA secondary structures. In Proceedings of IEEE Computer Society
Bioinformatics Conference, volume 2, pages 159–168, 2003.

[50] I. L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,
31(13):3429–3431, 2003.

[51] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
International Journal of Approximate Reasoning, 15(3):255–263, 1996.

[52] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring regulatory
networks from expression data using tree-based methods. PLoS One, 5(9):1–
10, 09 2010.

[53] V. A. Huynh-Thu and G. Sanguinetti. Combining tree-based and dynamical systems
for the inference of gene regulatory networks. Bioinformatics, 31(10):1614–
1622, 2014.

[54] F. V. Jensen. An Introduction to Bayesian Networks. New York, NY: Springer, 1996.

93

[55] L. A. Kavanaugh and F. S. Dietrich. Non-coding RNA prediction and verification in
Saccharomyces cerevisiae. PLoS Genetics, 5(1), 2009.

[56] M. Khaladkar, J. Liu, D. Wen, J. T. L. Wang, and B. Tian. Mining small RNA
structure elements in untranslated regions of human and mouse mRNAs using
structure-based alignment. BMC Genomics, 9, 2008.

[57] M. Khaladkar, V. Patel, V. Bellofatto, J. Wilusz, and J. T. L. Wang. Detecting
conserved secondary structures in RNA molecules using constrained structural
alignment. Computational Biology and Chemistry, 32(4):264–272, 2008.

[58] M. Khaladkar, J. T. L. Wang, V. Bellofatto, B. Tian, and B. A. Shapiro. RADAR:
A Web server for RNA data analysis and research. Nucleic Acids Research,
35:W300–W304, 2007.

[59] J. Kim, A. E. Walter, and D. H. Turner. Thermodynamics of coaxially stacked helixes
with GA and CC mismatches. Biochemistry, 35:13753–13761, 1996.

[60] S. H. Kim, J. L. Sussman, F. L. Suddath, G. J. Quigley, A. McPherson, A. H. J.
Wang, N. C. Seeman, and A. Rich. The general structure of transfer RNA
molecules. Proceedings of National Academy of Sciences of the United States
of America, (12):4970–4974, 1974.

[61] S. Y. Kim, S. Imoto, and S. Miyano. Inferring gene networks from time series
microarray data using dynamic Bayesian networks. Briefings in bioinformatics,
4(3):228–235, 2003.

[62] C. Laing, D. Wen, J. T. L. Wang, and T. Schlick. Predicting coaxial helical stacking
in RNA junctions. Nucleic Acids Research, 40:487–498, 2012.

[63] D. Laney. 3D data management: Controlling data volume, velocity and variety. META
Group Research Note, 6, 2001.

[64] R. D. Leclerc. Survival of the sparsest: Robust gene networks are parsimonious.
Molecular Systems Biology, 4, 2008.

[65] Y. Lee, Y. Hsiao, and W. Hwang. Designing a parallel evolutionary algorithm for
inferring gene networks on the cloud computing environment. BMC Systems
Biology, 8, 2014.

[66] N. B. Leontis, A. Lescoute, and E. Westhof. The building blocks and motifs of RNA
architecture. Current Opinions in Structural Biology, 16:279–287, 2006.

[67] A. Lescoute and E. Westhof. Topology of three-way junctions in folded RNAs. RNA,
12(1):83–93, 2006.

[68] S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse engineering
algorithm for inference of genetic network architectures. Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing, pages 18–29, 1998.

94

[69] J. M. Lingeman and D. Shasha. Network Inference in Molecular Biology: A Hands-on
Framework. New York, NY: Springer, 2012.

[70] J. Liu, J. T. L. Wang, J. Hu, and B. Tian. A method for aligning RNA secondary
structures and its application to RNA motif detection. BMC Bioinformatics,
6, 2005.

[71] A. Madar, R. Bonneau, A. Greenfield, and E. Vanden-Eijnden. DREAM3: network
inference using dynamic context likelihood of relatedness and the inferelator.
PLoS ONE, 5(3), 2010.

[72] A. Madar, A. Greenfield, H. Ostrer, E. Vanden-Eijnden, and R. Bonneau. The
Inferelator 2.0: a scalable framework for reconstruction of dynamic regulatory
network models. Annual International Conference of the IEEE Engineering
in Medicine and Biology Society., pages 5448–5451, 2009.

[73] D. Marbach, R. Küffner, M. Kellis, B. Holmes, J. C. Costello, N. M. Vega, D. M.
Camacho, K. R. Allison, J. J. Collins, N. Vega, T. Petri, L. Windhager,
R. Zimmer, R. J. Prill, G. Stolovitzky, A. Aderhold, R. Bonneau,
F. Dondelinger, D. Husmeier, A. Madar, C. S. Poultney, A. Greenfield, S. Mani,
Y. Chen, F. Cordero, R. Esposito, A. Visconti, M. Crane, H. J. Ruskin,
A. Ŝırbu, M. Drton, R. Foygel, S. Rezny, A. De La Fuente, V. De Leo, A. Pinna,
N. Soranzo, J. Gertheiss, T. Hothorn, P. Geurts, V. A. Huynh-Thu, A. Irrthum,
L. Wehenkel, M. Grzegorczyk, A. C. Haury, F. Mordelet, P. Vera-Licona, J. P.
Vert, G. Karlebach, R. Shamir, S. Lèbre, H. Ostrer, Z. Ouyang, M. Song,
H. Wang, Y. Zhang, R. Pandya, Y. Saeys, and A. Statnikov. Wisdom of crowds
for robust gene network inference. Nature Methods, 9(8):796–804, 2012.

[74] D Marbach, S Roy, F Ay, PE Meyer, R Candeias, T Kahveci, CA Bristow,
and M Kellis. Predictive regulatory models in Drosophila melanogaster
by integrative inference of transcriptional networks. Genome Research,
22:1334–1349, 2012.

[75] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating realistic in silico
gene networks for performance assessment of reverse engineering methods.
Journal of Computational Biology, 16(2):229–239, 2009.

[76] A. A. Margolin, A. Califano, I. Nemenman, C. Wiggins, K. Basso, R. D. Favera,
and G. Stolovitzky. ARACNE: An algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinformatics,
7, 2006.

[77] J. S. Mattick and I. V. Makunin. Non-coding RNA. Human Molecular Genetics,
15:R17–R29, 2006.

[78] N. D. Mukhopadhyay and S. Chatterjee. Causality and pathway search in microarray
time series experiment. Bioinformatics, 23(4):442–449, 2007.

95

[79] K. Murphy and S. Mian. Modelling gene expression data using dynamic Bayesian
networks. Technical report, Computer Science Division, University of
California, Berkeley, CA, 1999.

[80] C. Müssel, H. A. Kestler, and M. Hopfensitz. BoolNet-an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26(10):1378–
1380, 2010.

[81] R. Nagarajan and M. Upreti. Comment on causality and pathway search in microarray
time series experiment. Bioinformatics, 24(7):1029–1032, 2008.

[82] E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-fold faster RNA homology searches.
Bioinformatics, 29(22):2933–2935, 2013.

[83] S. W. Park, Y. Park, and M. I. Kuroda. Regulation of histone H4 Lys16 acetylation by
predicted alternative secondary structures in roX noncoding RNAs. Molecular
and Cellular Biology, 28(16):4952–4962, 2008.

[84] S. W. Park, I. K. Yool, J. G. Sypula, J. Choi, H. Oh, and Y. Park. An evolutionarily
conserved domain of roX2 RNA is sufficient for induction of H4-Lys16
acetylation on the Drosophila X chromosome. Genetics, 177(3):1429–1437,
2007.

[85] Y. Park, R. L. Kelley, H. Oh, M. I. Kuroda, and V. H. Meller. Extent of chromatin
spreading determined by roX RNA recruitment of MSL proteins. Science,
(5598):1620–1623, 2002.

[86] Y. Park and M. I. Kuroda. Epigenetic aspects of X-chromosome dosage compensation.
Science, (5532), 2001.

[87] N. Patel and J. T. L. Wang. Semi-supervised prediction of gene regulatory networks
using machine learning algorithms. Journal of Biosciences, 40(4):731–740,
2015.

[88] L. Peng, L. K. Ng, and S. See. YellowRiver: A flexible high performance cluster
computing service for grid. In Proceedings - Eighth International Conference
on High-Performance Computing in Asia-Pacific Region, volume 2005, pages
553–558, Nanyang, 2005.

[89] R. J. Prill, J. Saez-Rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky.
Crowdsourcing network inference: the DREAM predictive signaling network
challenge. Science Signaling, 4(189), 2011.

[90] A. M. Pyle and Z. Shakked. The ever-growing complexity of nucleic acids: from small
DNA and RNA motifs to large molecular assemblies and machines (editorial
overview). Current Opinions in Structural Biology, 21:293–295, 2011.

96

[91] Y. Qin, H. K. Yalamanchili, J. Qin, B. Yan, and J. Wang. The current status and
challenges in computational analysis of genomic big data. Big Data Research,
2:12–18, 2015.

[92] N. J. Reiter, C. W. Chan, and A. Mondrago. Emerging structural themes in large
RNA molecules. Current Opinions in Structural Biology, 21:319–326, 2011.

[93] J. S. Reuter and D. H. Mathews. RNAstructure: software for RNA secondary
structure prediction and analysis. BMC Bioinformatics, 11, 2010.

[94] M. A. Savageau. Introduction to S-systems and the underlying power-law formalism.
Mathematical and Computer Modelling, 11(C):546–551, 1988.

[95] S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga. Cluster selection in
divisive clustering algorithms. In SIAM International Conference on Data
Mining, pages 299–314, 2002.

[96] F. Schluenzen, A. Tocilj, J. Harms, M. Gluehmann, D. Janell, A. Yonath, R. Zarivach,
A. Bashan, H. Bartels, I. Agmon, and F. Franceschi. Structure of functionally
activated small ribosomal subunit at 3.3 Å resolution. Cell, 102(5):615–623,
2000.

[97] I. Shmulevich, W. Zhang, E. R. Dougherty, and S. Kim. Probabilistic Boolean
networks: A rule-based uncertainty model for gene regulatory networks.
Bioinformatics, 18(2):261–274, 2002.

[98] A. G. Shoro and Tariq R. Soomro. Big data analysis: Apache Spark perspective.
Global Journal of Computer Science and Technology, 15(1), 2015.

[99] A. C. G. Silveira, F. L. Thompson, A. T. R. Vasconcelos, K. L. Robertson, B. Lin,
Z. Wang, and G. J. Vora. Identification of non-coding RNAs in environmental
Vibrios . Microbiology, 156(8):2452–2458, 2010.

[100] A. Singh, J. M. Nascimento, S. Kowar, H. Busch, and M. Boerries. Boolean approach
to signalling pathway modelling in HGF-induced keratinocyte migration.
Bioinformatics, 28(18):i495–i501, 2012.

[101] A. Stark, M. F. Lin, M. Kellis, P. Kheradpour, M. D. Rasmussen, A. N. Deoras, J. S.
Pedersen, A. S. Hinrichs, B. Paten, W. J. Kent, D. Haussler, L. Parts, J. W.
Carlson, S. E. Celniker, C. Yu, S. Park, K. H. Wan, M. A. Crosby, W. M.
Gelbart, B. B. Matthews, A. J. Schroeder, L. S. Gramates, S. E. St Pierre,
M. Roark, K. L. Wiley Jr., R. J. Kulathinal, P. Zhang, K. V. Myrick, J. V.
Antone, S. Roy, J. G. Ruby, D. P. Bartel, J. Brennecke, E. Hodges, G. J.
Hannon, A. Caspi, S. W. Park, Y. Park, M. V. Han, M. W. Hahn, M. L.
Maeder, B. J. Polansky, B. E. Robson, D. A. Eastman, S. Aerts, B. Hassan,
J. Van Helden, D. G. Gilbert, T. C. Kaufman, M. Rice, M. Weir, C. N. Dewey,
L. Pachter, E. C. Lai, M. B. Eisen, A. G. Clark, and D. Smith. Discovery of
functional elements in 12 Drosophila genomes using evolutionary signatures.
Nature, 450(7167):219–232, 2007.

97

[102] G. Storz. An expanding universe of noncoding RNAs. Science, (5571), 2002.

[103] C. Stuckenholz, M. I. Kuroda, and V. H. Meller. Functional redundancy within
roX1 , a noncoding RNA involved in dosage compensation in Drosophila
melanogaster . Genetics, 164(3):1003–1014, 2003.

[104] A. R. Subramanian, M. Kaufmann, and B. Morgenstern. DIALIGN-TX: Greedy
and progressive approaches for segment-based multiple sequence alignment.
Algorithms for Molecular Biology, 3(1), 2008.

[105] Y. Sun, J. Buhler, and C. Yuan. Designing filters for fast-known ncRNA identification.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
9(3):774–787, 2012.

[106] Y. Tabei, K. Asai, H. Kiryu, and T. Kin. A fast structural multiple alignment method
for long RNA sequences. BMC Bioinformatics, 9, 2008.

[107] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Boston, MA:
Addison-Wesley, 2006.

[108] D. Thieffry, A. M. Huerta, E. Pérez-Rueda, and J. Collado-Vides. From specific gene
regulation to genomic networks: a global analysis of transcriptional regulation
in Escherichia coli. Bioessays: News And Reviews In Molecular, Cellular And
Developmental Biology, 20(5):433–440, 1998.

[109] N. Toor, K. S. Keating, S. D. Taylor, and A. M. Pyle. Crystal structure of a self-spliced
group II intron. Science, 320:77–82, 2008.

[110] I. Triguero, S. del Ŕıo, V. López, J. Bacardit, J. M. Beńıtez, and F. Herrera.
ROSEFW-RF: the winner algorithm for the ECBDL’14 big data competition:
An extremely imbalanced big data bioinformatics problem. Knowledge-Based
Systems, 87:69–79, 2015.

[111] A. F. Villaverde, J. R. Banga, J. Ross, and F. Morán. MIDER: Network inference
with mutual information distance and entropy reduction. PLoS ONE, 9(5),
2014.

[112] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Müller, D. H. Mathews, and
M. Zuker. Coaxial stacking of helixes enhances binding of oligoribonucleotides
and improves predictions of RNA folding. Proceedings of National Academy
of Sciences of the United States of America, 91(20):9218–9222, 1994.

[113] A. X. Wang, W. L. Ruzzo, and M. Tompa. How accurately is ncRNA aligned within
whole-genome multiple alignments?. BMC Bioinformatics, 8, 2007.

[114] Z. Weinberg and W. L. Ruzzo. Sequence-based heuristics for faster annotation of
non-coding RNA families. Bioinformatics, 22(1):35–39, 2006.

98

[115] B. T. Wimberly, D. E. Brodersen, W. M. Clemons Jr., R. J. Morgan-Warren, A. P.
Carter, V. Ramakrishnan, C. Vonrheln, and T. Hartsch. Structure of the 30S
ribosomal subunit. Nature, 407(6802):327–339, 2000.

[116] T. K. Wong, T. W. Lam, W. K. Sung, and S. M. Yiu. Adjacent nucleotide dependence
in ncRNA and order-1 SCFG for ncRNA identification. PLoS One, 5(9), 2010.

[117] Y. Xiao. A tutorial on analysis and simulation of Boolean gene regulatory network
models. Current Genomics, 10(7):511–525, 2009.

[118] Y. Xiao and E. R. Dougherty. Optimizing consistency-based design of context-
sensitive gene regulatory networks. IEEE Transactions on Circuits and
Systems I: Regular Papers, 53(11):2431–2437, 2006.

[119] Y. Xin, C. Laing, N. B. Leontis, and T. Schlick. Annotation of tertiary interactions
in RNA structures reveals variations and correlations. RNA, 14:2465–2477,
2008.

[120] H. Xu, C. Baroukh, R. Dannenfelser, E. Y. Chen, C. M. Tan, Y. Kou, Y. E. Kim,
I. R. Lemischka, and A. Ma’ayan. ESCAPE: database for integrating high-
content published data collected from human and mouse embryonic stem cells.
Database: The Journal of Biological Databases & Curation, 2013:1–12, 2013.

[121] H. Xu, I. R. Lemischka, A. Ma’ayan, Y. S. Ang, and A. Sevilla. Construction and
validation of a regulatory network for pluripotency and self-renewal of mouse
embryonic stem cells. PLoS Computational Biology, 10(8), 2014.

[122] S. Xu, C. Markson, K. L. Costello, C. Y. Xing, K. Demissie, and A. A. Llanos.
Leveraging social media to promote public health knowledge: Example of
cancer awareness via Twitter. JMIR Public Health And Surveillance, 2(1),
2016.

[123] H. Yang, F. Jossinet, N. Leontis, L. Chen, J. Westbrook, H. Berman, and E. Westhof.
Tools for the automatic identification and classification of RNA base pairs.
Nucleic Acids Research, 31(13):3450–3460, 2003.

[124] S. Yao, S. Yoo, and D. Yu. Prior knowledge driven Granger causality analysis on gene
regulatory network discovery. BMC Bioinformatics, 16(1), 2015.

[125] Z. Yao, Z. Weinberg, and W.L. Ruzzo. CMfinder: a covariance model based RNA
motif finding algorithm. Bioinformatics, 22(4):445–452, 2006.

[126] K. Y. Yeung, R. E. Bumgarner, and A. E. Raftery. Bayesian model averaging:
Development of an improved multi-class, gene selection and classification tool
for microarray data. Bioinformatics, 21(10):2394–2402, 2005.

[127] W. C. Young, A. E. Raftery, and K. Y. Yeung. Fast Bayesian inference for gene
regulatory networks using ScanBMA. BMC Systems Biology, 8(1), 2014.

99

[128] S. Zhang, Z. Du, and J. T. L. Wang. New techniques for mining frequent patterns in
unordered trees. IEEE Transactions on Cybernetics, 45(6):1113–1125, 2015.

[129] S. Zhao, K. Prenger, and L. Smith. Stormbow: A cloud-based tool for read
mapping and expression quantification in large-scale RNA-seq studies. ISRN
Bioinformatics, 2013.

[130] P. Zoppoli, S. Morganella, and M. Ceccarelli. TimeDelay-ARACNE: Reverse
engineering of gene networks from time-course data by an information theoretic
approach. BMC Bioinformatics, 11, 2010.

[131] C. Zou and J. Feng. Granger causality vs. dynamic Bayesian network inference: A
comparative study. BMC Bioinformatics, 10, 2009.

100

	Big data analytics in computational biology and bioinformatics
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledfgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Biological Pattern Discovery: Case Studies
	Chapter 3: Biological Network Inference: A Comparative Review
	Chapter 4: Cloud-Based Biological Network Inference: A Framework
	Chapter 5: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

